GW - 1

REPORTS

YEAR(S):

1985

A REVIEW OF SUBSURFACE PETROLEUM HYDROCARBONS AT THE BLOOMFIELD REFINERY

Prepared for BLOOMFIELD REFINING COMPANY

bу

Engineering-Science, Inc. 2901 North Interregional Austin, Texas 78722

TABLE OF CONTENTS

		<u>Page</u>
	Figures Tables	iv v
CHAPTER 1	INTRODUCTION Site Location Refinery History Objectives and Scope	1- 1 1- 1 1- 1 1- 4
CHAPTER 2	ENVIRONMENTAL SETTING Site Topography Geology and Soils Geohydrology Surface Waters San Juan River Hammond Ditch Site Drainage Refinery Wastewater Treatment Land-use and Population Characteristics	2-1 2-1 2-3 2-5 2-5 2-6 2-7 2-8
CHAPTER 3	PREVIOUS SITE INVESTIGATIONS Plateau Investigations Neutron Logging Zeta-SP Thermonics Aquatrace Water Levels Surface Water and Soil Samples Groundwater Monitoring Wells Site Sampling by NMOCD FIT 1983 Investigation FIT 1984 Investigation	3- 1 3- 1 3- 3 3- 4 3- 4 3- 5 3- 8 3-12 3-19 3-27 3-28
CHAPTER 4	SITE ASSESSMENT Characterization and Potential Sources of Groundwater Constituents Potential Surface Water Impacts San Juan River Hammond Ditch Potential Groundwater Impacts Shallow Alluvial Groundwater Groundwater in the Nacimiento and Deeper Formations	4- 1 4- 1 4- 2 4- 3 4- 4 4- 6 4- 6
CHAPTER 5	CONCLUSIONS AND RECOMMENDATIONS	5- 1
DEEEDENCES		

APPENDIX A NEUTRON PROBE ACCES HOLE LITHOLOGIC LOGS

APPENDIX B GROUNDWATER MONITORING WELL LOGS

APPENDIX C 1983 FIT SAMPLES

APPENDIX D 1984 FIT SAMPLES

LIST OF FIGURES

		Page
1.1	Location of the Bloomfield Refinery	1- 2
1.2	Generalized Refinery Plot Plan and Major Surface Features	1- 3
2.1	Elevations of the Top of the Nacimiento Formation	2- 2
3.1 3.2	Locations of Neutron-Probe Access Holes Hydrographs of Water Levels in Neutron-Probe Access	3- 2
J. Z	· Holes	3- 7
3.3	Locations of Groundwater Monitoring Wells and Geologic Cross-section A-A'	3-13
3.4	Geologic Cross-section A-A'	3-15
3.5	Locations of NMOCD and Plateau 7/12 and 7/14 1982 Water and Soil Sampling	3-25
3.6	Locations of 1984 FIT Samples	3-30

LIST OF TABLES

		Page
3.1	Groundwater Elevation Measurements in Neutron-Probe	
• •	Access Holes	3- 6
3.2	Analytical Results of September 1981 Plateau Water Sampling	3- 9
3.3	Analytical Results of December 1981 Plateau	
	Sampling of API Wastewater Pond Effluent	3-10
3.4	Analytical Results of 7/12/82 and 7/14/82 Plateau Water and Soil Sampling	3-11
3.5	Groundwater Elevation Measurements in Monitoring Wells, 1984	3-14
3.6	Analytical Results of February 15, 1984, Monitoring Well Sampling	3-17
3.7	First Quarter Monitoring Well Analytical Results (September 1984)	3-18
3.8	Analytical Results of 9/3/81 NMOCD Water Sampling	3-20
3.9	Analytical Results of 7/6/82 NMOCD Water Sampling	3-21
3.10	Analytical Results of 7/12/82 and 7/14/82 NMOCD	
	Water Sampling	3-22
3.11	7/12/82 and 7/14/82 NMOCD Soil Sampling	3-23
3.12	7/28/82 NMOCD Water Sampling	3-24
4.1	Analyses of Selected Parameters at USGS Water	
	Quality Station 0935710 During the Time Period 1977-1981	4- 5

CHAPTER 1

INTRODUCTION

SITE LOCATION

The Bloomfield refinery, currently owned and operated by Bloomfield Refining Company, is located in the northwest corner of the State of New Mexico, as shown in Figure 1.1. The refinery is situated on a bluff adjacent to the San Juan River, south and slightly east of the town of Bloomfield. Although the refinery owns land on both sides of the San Juan River, all process units and storage areas are located south of the river. Approximate refinery property boundaries are shown on the plot plan presented as Figure 1.2. The plot plan also indicates the locations of the process and tank storage areas, surface waters, and elements of the wastewater treatment system.

REFINERY HISTORY

The Bloomfield Refinery was reportedly constructed in the late 1950's. The refinery operated approximately five years before being sold to Suburban Propane Corporation in the early 1960's. Plateau, Inc., a subsidiary of Suburban Propane, operated the refinery prior to its sale to the current owner in the fall of 1984. The refinery processes a combination of low sulfur crudes and petroleum which are transported to the refinery by pipeline and truck. Major refinery products include gasoline and diesel fuel, although fuel gas, heavy burner fuel, propane, butane, and other petroleum products are produced in smaller quantities.

Information pertinent to the existing subsurface situation at the refinery has been developed by several sources. Much of the information was developed by American Ground Water Consultants, Inc. (AGWC) for Plateau, Inc. and was submitted to the then New Mexico Oil Conservation Commission (NMOCC) as part of its proposed discharge and monitoring plan for refinery effluent (Ref. 1-3). The original discharge plan was submitted to the NMOCC in October 1977 and was approved in June 1978. AGWC subsequently conducted monitoring activities on the solar evaporation ponds for the purpose of determining leakage rates from the ponds, and prepared milestone reports on these activities in January 1979 and January 1981

(Ref. 2, 3). These reports were submitted to the New Mexico Environmental Improvement Division (NMEID). Since the original discharge plan was scheduled to expire in the summer of 1982, an updated discharge plan was prepared and submitted to the New Mexico Oil Conservation Division (NMOCD) in March 1982 (Ref. 1). This plan ultimately was approved on June 7, 1984. During the interim, Plateau installed six groundwater monitoring wells to provide additional information on groundwater quality.

Soil and water samples from the Hammond Ditch, San Juan River, ground-water seeps, wastewater treatment system, and other refinery areas have been collected by Plateau as well as the state and EPA. Sampling efforts were conducted by the NMOCD on five separate occasions during 1981 and 1982. Plateau analyzed concurrent samples and collected additional information during the same time period. EPA's Region VI Field Investigation Team (FIT) conducted extensive site investigations during 1983 and 1984 (Ref. 4, 5).

OBJECTIVES AND SCOPE

The primary objective of this study was to compile and evaluate existing information pertaining to subsurface petroleum hydrocarbons at the Bloomfield Refinery and identify any additional data requirements to more fully characterize the nature and extent of subsurface petroleum constituents at the refinery and, if necessary, develop a remedial action plan. The scope of activities included the collection and evaluation of available data from the refinery and its consultants. Meetings were held with the NMEID and EPA in December 1984 to discuss the situation at the refinery and solicit input from these agencies. Existing data has been summarized in this report, and more detailed information can be obtained from the original sources listed in the bibliography to the report.

CHAPTER 2

ENVIRONMENTAL SETTING

SITE TOPOGRAPHY

Ground surface elevations at the site range from approximately 5,420 feet above mean sea level (msl) for the alluvial deposits along the San Juan River to over 5,570 feet msl along the southern property boundary. The most striking surface feature at the site is the bluff along the south side of the San Juan River. This bluff, shown on Figure 2.1, rises close to 100 feet above the river floodplain deposits. From the top of the bluff, the land surface slopes gradually upward to the south. Surface drainage has created several major and numerous minor intermittent stream channels or arroyos which drain in the direction of the river. The major intermittent stream channels are also indicated on Figure 2.1.

GEOLOGY AND SOILS

The Bloomfield Refinery is located on Quaternary Jackson Lake Terrace deposits approxiamtely 100 feet above the elevation of the present day San Juan River. At the time of formation, during the last glacial period, the San Juan River carried large quantities of glaciofluvial outwash which were deposited at a thickness of 10 to 15 feet over much of the refinery property. Later, wind-blown sands and silts were deposited over the coarser gravels and cobbles to form loess deposits. These deposits are found at the surface on much of the refinery property and are interbedded to some extent with the coarser deposits. The coarser gravels and cobbles underlying the quaternary silts and sands outcrop along the 70- to 100-foot bluff just south of the San Juan River.

Underlying the quaternary sand, silt, and cobble deposits is the Tertiary age Nacimiento Formation, a massively bedded gray to green to bluish clay or shale. The Nacimiento outcrops on the bluff south of the San Juan River where its exposure is at least 70 feet. The San Juan River channel is incised into the Nacimiento, which is approxiately 500 feet thick at the site as indicated by the log of the AMOCO-DAVIS gas unit F-1 near the southern property boundary. The location of this well is shown on

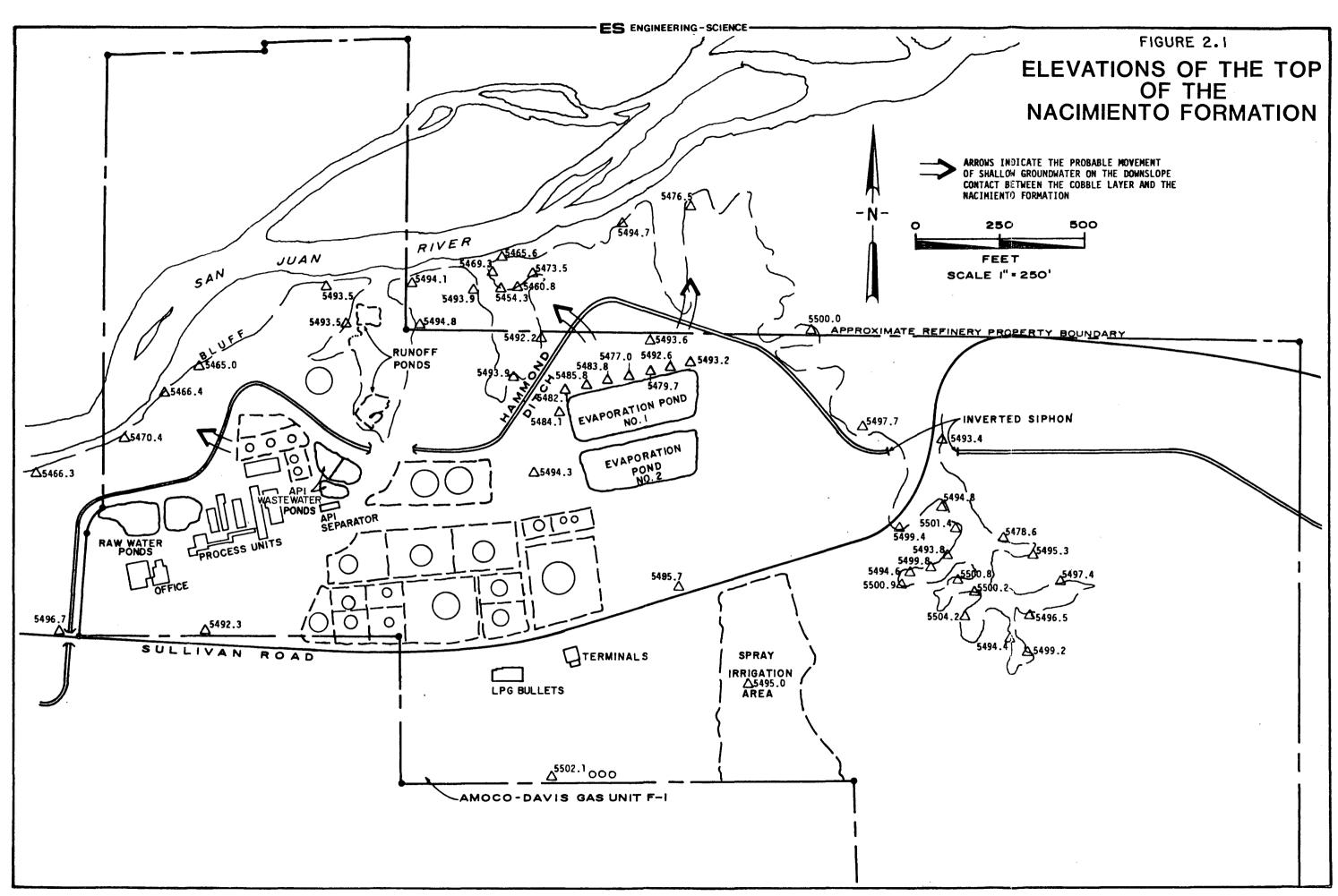


Figure 2.1. The first major aquifer is the Ojo Alamo, consisting of sandstone of Tertiary Age, directly underlying the Nacimiento Formation. The Ojo Alamo is, in turn, underlain by the Kirtland Shale and Fruitland Formation.

Along the bluff, and in the intermittent stream channels which carry water from the terrace to the San Juan River, the contact between the coarse cobble layer and the underlying Nacimiento Formation can be determined visually. As a result of the many investigations which have been performed at the site, the elevation of the contact has been determined at over 50 locations along the bluff and intermittent stream channels and in observation and monitoring wells throughout the site. These elevations are shown on Figure 2.1. Although the top of the Nacimiento Formation generally increases in elevation to the south at an angle of approximately one degree, the contact is not flat but undulating. The lowest subcrop elevations occur to the northwest of the refinery and generally north of the solar evaporation ponds, in the general locations indicated by the arrows on Figure 2.1. Major seeps have been observed along the northwest bluff in the area coinciding with the low subcrop elevations. Likewise, arroyos north of the solar evaporation ponds which coincide with the low subcrop elevations normally contain water. Previous studies have postulated a major east-west depression in the subcrop connecting these low areas. However, there is no information on the subcrop elevation in the area just east of the API separator and API wastewater ponds, and the subcrop depressions may or may not be connected.

GEOHYDROLOGY

Seeps along the bluff emerge in several areas, particularly those areas where the elevation of the subcrop between the Nacimiento Formation and the overlying cobble layer is lowest, northwest of the refinery and generally north of the solar evaporation ponds. Additional seeps have been observed in intermittent stream channels at higher elevations, but also at the subcrop. It appears that water entering the cobble layer from the Hammond Ditch, solar evaporation ponds, or other sources migrates through the upper permeable sands, silts, and cobbles until it encounters the relatively impermeable Namimiento Formation. The water then follows the

subcrop depressions to the northwest and north of the refinery, emerging on the bluff as seeps. Some of the subsurface water is intercepted at higher subcrop elevations by the intermittent stream channels and also emerges as seeps. These seeps have been occurring for a long period of time, as evidenced by the presence of cattails, marsh grass, trees, and other vegetation in the vicinity of the active seeps.

It is probably significant that the seeps occur only at the contact between the Nacimiento Formation and the cobble layer. Although approximately 70 to 100 feet of the Nacimiento Formation are exposed on the bluff, seeps have been observed only at the contact between the two formations. Minor sandstone or silt lenses in the Nacimiento Formation and observed in the bluff during the FIT investigations did not produce seeps, suggesting that these potentially more permeable lenses are not connected to the permeable cobble, sand, and silt deposits overlying the Nacimiento.

The occurrence and movement of groundwater in the area of the refinery is complicated by the presence of the Hammond Ditch, the solar evaporation ponds, and the raw water ponds. The Hammond Ditch contributes to bank storage in the cobble layer overlying the Nacimiento Formation during the irrigation season when the ditch is full. During the winter months, water enters the ditch from the cobble layer where it was stored the previous irrigation season. Additional subsurface water emerges as seeps during all seasons in the intermittent stream channels and along the bluff at the Although it seems clear that water from the ditch Namimiento subcrop. alternately contributes to and draws from bank storage, depending on the season, the zone of influence of the ditch is not clear, and is further complicated by probable leakage from the solar evaporation ponds and the Water level measurements made at the refinery indicate raw water ponds. that maximum groundwater elevations are only slightly higher than the water surface elevations in the Hammond Ditch when flowing full. The groundwater disappears entirely when the maximum groundwater elevation encounters the Nacimiento subcrop near the southern property boundary. These observations suggest that the groundwater present in the upper sands, silts, and cobbles is attributable to the Hammond Ditch and the refinery ponds, and that there is little or no natural recharge within the quaternary sand, silt, and cobble deposits or the Nacimiento Formation in this area.

SURFACE WATERS

Two major surface water bodies may impact or may be impacted by subsurface contamination at the Bloomfield Refinery: the San Juan River and the Hammond Irrigation Ditch. Each of these water bodies will be discussed in more detail in the following paragraphs.

San Juan River

The San Juan River has its origins in the San Juan Mountains in extreme southwestern Colorado. The perennial stream is used as a domestic, agricultural, and industrial water supply in the area. Bloomfield Refining utilizes the river water as a raw water supply for refining operations. The river is used as an emergency municipal water supply by the City of Farmington, approximately 15 miles downstream from the refinery.

Flow in the San Juan River is regulated upstream of the refinery by the Navajo Dam, on which construction was completed in 1963. Between 1963 and 1982, the average regulated flow has been approximately 1,100 cfs.

As shown in Figure 2.1, the channel of the San Juan River is filled with alluvial deposits. The channel itself is incised into the top 100 feet of the Nacimiento Formation, which is visible on the exposure of the high bluff on which the refinery is located just south of the San Juan River.

Hammond Ditch

The Hammond Irrigation Ditch provides water for agriculture and livestock in the vicinity of the Bloomfield Refinery, and is not intended to be used as a source of potable water. As shown on Figure 2.1, the ditch is located on the high bluff overlooking the San Juan River, between the San Juan and the refinery process, tank storage, and wastewater treatment areas. In passing from east to west through the refinery property, the ditch passes through an inverted siphon beneath Sullivan Road on the east side of the property, through a culvert beneath an El Paso Natural Gas pipeline right-of-way near the refinery API wastewater ponds, and through another culvert beneath Sullivan Road where the ditch leaves the refinery property.

The Hammond Ditch was constructed between 1960 and 1964 in Quaternary Jackson Lake Terrace deposits. The ditch carries water during the irrigation season - approximately mid-April through mid-October. Due to the presence of the upper permeable cobble layer, the ditch acts as a line source of recharge to the cobble deposits. During the nonirrigation season, water previously held as bank storage re-enters the Hammond Ditch. Additional water in the upper cobble deposits emerges on the bluff and in intermittent stream channels as seeps at the contact between the cobble layer and the less permeable Nacimiento Formation. These intermittent stream channels and seeps support lush vegetation, including marsh grass, cattails, and trees as evidence of the increased water supply.

SITE DRAINAGE

Surface drainage at the site follows four major drainage patterns, one for each of the following areas: (1) the area north of the Hammond Ditch; (2) process, tank farm, and other confined areas; (3) the area east of the spray irrigation area; and (4) other areas south of the Hammond Ditch. North of the Hammond Ditch, surface runoff occurs directly to the San Juan River or to the intermittent stream channels that lead to the river. Some runoff may also enter the two holding ponds in the major arroyo located across the Hammond Ditch from the API wastewater ponds. These holding ponds were constructed to capture any process area spills, runoff, or overflow from the API wastewater ponds which exit the process area via the El Paso Natural Gas pipeline right-of-way. These ponds are not a part of the wastewater treatment system and were intended to prevent spills and other potential surface contamination from entering the San Juan River. At present, these ponds contain water which is believed to originate primarily from seepage from the Hammond Ditch. The lower pond derives water from the upper ponds as well as from the seeps at the contact between the cobble layer and the Nacimiento Formation.

Drainage in the process area, tank farm, and wastewater treatment areas (including the spray irrigation area) is contained. Process area runoff is routed through sumps to the API separator for hydrocarbon recovery. Other accumulated water is contained within bermed areas and is subject to percolation or evaporation.

The area east of the spray irrigation area drains to a large arroyo on the eastern portion of the refinery property. This arroyo drains to the north, and ultimately contributes runoff to the San Juan River.

Other areas south of the Hammond Ditch drain to the ditches along Sullivan Road. The runoff then moves east along the road, and may enter the Hammond Ditch where it passes beneath the road.

REFINERY WASTEWATER TREATMENT

Refinery process wastewater is treated for primary oil removal in an API separator located east of the major refinery process units. The API separator is constructed of steel-reinforced concrete and follows standard API design. Process area runoff and tank farm water draw sumps are diverted to the API separator for hydrocarbon recovery. Petroleum hydrocarbon spills are handled in the same manner.

Following the API separator, wastewater flows to a series of three API wastewater ponds located north of the API separator and south of the Hammond Ditch. In 1983, these ponds were lined with a 100-mil high-density polyethylene liner by Permanent Lining Systems of Odessa, Texas. A french drain collection system consisting of four-inch PVC perforated pipe also was installed at this time to collect any leakage through the pond liner in a common observation well or sump. After the initial installation, water was detected in the observation well. Fluorescein dye added to the ponds confirmed that leakage was occurring from the ponds. The ponds were emptied and the liner seams repaired, and the ponds were put back in service. Leakage from the ponds to the collection system has occurred since that time. As leakage in a pond is detected, the pond is drained, repaired, and put back in service.

Wastewater from the API wastewater ponds is pumped to a series of two solar evaporation ponds east of the process area and northeast of the tank farm. The two evaporation ponds cover an area of approximately five acres and are operated in series, with wastewater passing through the south pond (No. 2) to the north pond (No. 1). Originally, the ponds were constructed by forming earthen embankments from silts and sands obtained from the pond

bottom. The pond bottoms have been treated with about two pounds per square foot of Wyoming bentonite to reduce leakage.

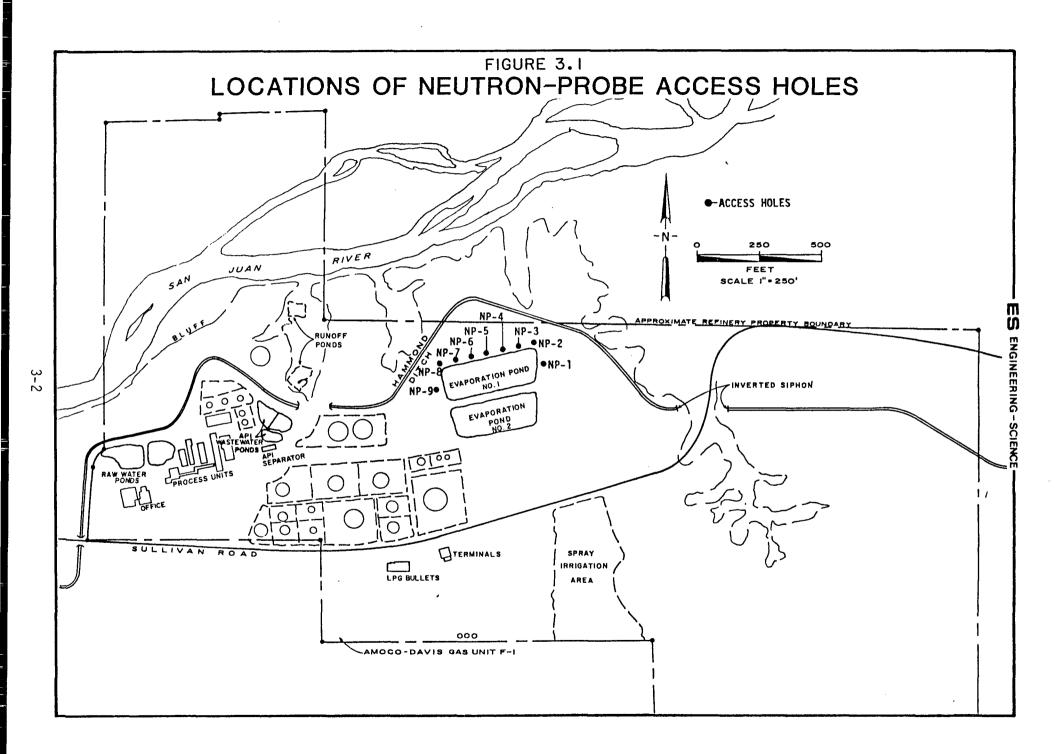
Increases in the quantity of raw wastewater during the late 1970's necessitated additional handling facilities. Consequently, in 1981, Plateau began spray irrigating approximately 10 acres east of the product and crude truck racks south of Sullivan Road and southeast of the solar evaporation ponds. The spray irrigation area is utilized primarily during the months between March and October when evapotranspiration is highest. The irrigation area is surrounded by a perimeter berm to prevent surface runoff of treated refinery effluent.

LAND-USE AND POPULATION CHARACTERISTICS

Land use in the vicinity of the refinery is primarily agricultural. Water in the Hammond Ditch is used downstream of the refinery for livestock watering and for irrigation of crops such as vegetable gardens, orchards, alfalfa, and corn, and is not intended to be a potable water supply. The refinery is remote from any major population centers. The nearest town, Bloomfield, is located approximately one mile northwest of the refinery and has a population of approximately 5,000. State Highway 44 is moderately traveled and is located approximately one-half mile west of the refinery.

CHAPTER 3

PREVIOUS SITE INVESTIGATIONS


PLATEAU INVESTIGATIONS

During the past seven to eight years, Plateau conducted several evaluations of wastewater and groundwater quality, pond leakage, and subsurface geology in conjunction with the preparation of a discharge plan for refinery effluent. Early efforts were directed to the determination of leakage rates from the solar evaporation ponds through geophysical methods. More recent efforts have focused on the quality of soils and ground and surface waters at and in the vicinity of the refinery.

Neutron Logging

In April 1977, nine neutron-probe access holes were drilled around the north, east, and west embankments of solar evaporaton pond 1 to aid in detecting changes in soil moisture content due to leakage from the ponds when they were filled. The six-inch diameter holes were completed to a depth of 50 feet using mud-rotary methods. Locations of the access holes are shown in Figure 3.1. At the completion of drilling, the holes were water flushed and blown with air. Neutron-probe access tubes consisting of two-inch schedule 40 PVC pipe were installed in each of the holes, which were backfilled with a mixture of dry bentonite and soil to retard leakage through the annulus. The lithologic logs for the neutron-probe access holes are included as Appendix A. As shown by the logs, samples for some of the intervals were lost and were not recorded. The remaining intervals indicate that each of the holes is completed into the upper portion of the Nacimiento Formation.

Neutron logging is conducted by lowering the neutron probe into the access holes and determining the soil-moisture profile. Neutron logging is normally conducted in a dry hole so that accumulated water in the hole does not affect the probe readings. Since initially no water was anticipated in the boreholes, the holes were constructed without a bottom cap. However, water was unexpectedly detected in the access holes after they were completed. This water is attributable to leakage of water through the annular space or water contained in the Nacimiento Formation itself. Most of the

access holes exhibited a slow response to groundwater levels and required several months to reach equilibrium. Consequently, the early efforts at neutron logging indicated variable moisture contents due to changing water levels, as well as higher readings due to the presence of water in the holes. Data collected since the equilibration of water levels in the holes indicate few changes in the soil moisture content between subsequent readings.

Access holes NP-1, 2, 3, 4, and 5 indicate a two to five volume percent increase in moisture content in the top two to three feet of the evaporation pond embankment after the pond was filled. A similar increase in soil moisture content was observed in access holes NP-6, 7, 8, and 9 at greater depths in the embankment. These small changes in moisture content are believed attributable to capillary action in the unsaturated zone in the pond embankment. Increases of approximately five to 10 volume percent were observed in most access holes at a depth of 10 to 25 feet, corresponding to the Jackson Lake Terrace silt deposits in which the ponds were constructed. Increases in moisture content were observed in the cobble layer underlying the silt deposits and, for several access holes, in the upper portion of the Nacimiento Formation. Those data indicate a slow rate of seepage from the bottom of the solar evaporation ponds, primarily to the underlying cobble layer.

Zeta-SP

Zeta-SP surveys of solar evaporation pond 1 were conducted on three occasions. This technique involved dragging electrodes over the pond bottom to determine electropotentials. Areas with significantly lower electropotentials relative to background levels generally are indicative of pond leakage. The initial survey, conducted on July 15, 1977, gave no evidence of significant areas of leakage. Subsequent surveys, conducted on July 12 and September 20, 1978, indicated some low electropotentials in the northwest corner of the pond; however, the data were highly variable and may be misleading due to the presence of aquatic plants in the pond which prevented adequate contact between the pond bottom and the electrodes. Consequently, no further surveys were conducted after this date.

Thermonics

The nine neutron-probe access holes located in the solar evaporation pond embankments also were used to develop thermal profiles of the embankment and subsurface material. These thermal profiles were used to calculate seepage rates based on the premise that variations in temperatures at depth are the result of the variability in the rate of fluid flow through the pond embankment. Areas of greatest permeability will approach the temperature of the pond more closely, whereas areas of reduced permeability will reflect changes in pond water temperature more slowly due to the reduced diffusion of heat through the embankment soils.

Temperature profiles made during the period from 1977 to 1979 were used to estimate the thermal diffusivity of the embankment soil. By assuming a typical value of soil conductivity, the groundwater velocity and, ultimately, the rate of seepage was determined to be approximately 13 gallons per minute. Various profiles indicated the major area of leakage was either in the west or east end of evaporation pond 1.

AQUATRACE

Radioactive tracer tests were conducted on solar evaporation ponds 1 and 2 between 1978 and 1981. A tracer designated TRAC 5 was injected into pond 1 near neutron probe access hole NP-8. The tracer TRAC 3 also was injected into the south solar evaporation pond (pond 2). Initial analyses for the tracer found a low concentration of TRAC 5 in pond 1 but no tracer in the San Juan River downstream of the refinery or in the Hammond Ditch either upstream or downstream of the refinery. Subsequent sampling in September and October 1978 indicated TRAC 5 in low concentrations in the Hammond Ditch and the San Juan River downstream of the refinery due to leakage from the north pond. Subsequent sampling in December 1978, July and December 1980, and January 1981, did not find the tracer in downstream San Juan River water samples. The data indicate possible leakage from Pond 1 to the Hammond Ditch as well as a small surface depression located east of the solar evaporation ponds. The amount of leakage from pond 1 to these areas was not quantified.

An attempt to estimate leakage from pond 2 was made using a separate tracer, designated as TRAC 3. Sampling based on this tracer was inconclusive, due to the fact that tracer was detected in higher concentrations upstream than downstream in both the Hammond Ditch and the San Juan River.

Water Levels

After the completion of the nine neutron-probe access holes and prior to the filling of the solar evaporation ponds, water was detected in each of the holes, and was believed to be the result of fluids introduced during drilling. The holes were blown dry, and immediately began to accumulate water again. Recovery was relatively rapid in holes NP-3, 5, 7, 8, and 9 and noticeably slower in NP-1, 2, and 4. The fact that the holes contained water prior to the filling of the pond is significant, and indicates the presence of water in the cobble layer and/or the upper Nacimiento Formation. The slow recovery of several of the observation wells is consistent with the movement of water from the cobble layer through the annular space containing a mixture of bentonite and sand or through the Nacimiento Formation, both of which are of very low permeability.

Water levels in the nine holes are tabulated in Table 3.1 and are illustrated in Figure 3.2. These data do not include periods when the holes were air blown to remove water prior to the introduction of temperature probes to provide the thermal data previously discussed. As shown, several wells such as NP-2 and NP-4 required up to one year to reach equilibrium with the water level in the vicinity of the solar evaporation ponds. Due to the slow well recovery, short-term changes in groundwater levels are impossible to assess, and the water level measurements are useful only for determining long-term trends.

During the irrigation season, water levels in the Hammond Ditch in the vicinity of the solar evaporation ponds are typically 5,498 to 5,500 feet msl. This ditch contributes to the water stored in the cobble layer, as evidenced by the presence of water in the observation wells prior to the filling of the evaporation ponds. The water levels in the wells since pond 1 was filled indicates that the pond also contributes to the water in the cobble layer. Since pond 2 was constructed in the same manner, it too

TABLE 3.1

GROUNDWATER ELEVATION MEASUREMENTS IN NEUTRON-PROBE ACCESS HOLES

Date	NP-1	NP -2	NP-3	NP - 4	NP - 5	NP - 6	NP - 7	NP-8	NP -9
21-22 May 1977	5473.66	5473.97	5497.18	5481.78	5498.68	5492.71	5496.51	5498.18	5499.49
18-19 September 1977	5481.94	5478.27	5499.83	5490.68	5496.18	5498.60	5490.44	5495.17	5495.42
10-11 January 1978	5485.09	5480.59	5497.51	5493.82	5497.77	5497.60	5494.97	5497.00	5497.93
14 February 1978	5486.78	5486.60	5499.61	5495.41	5500.04	5502.84	5495.23	5498.27	5505.04
27 March 1978	5485.54	5486.50	5498.42	5495.01	5498.83	5501.03	5494.83	5497.61	5503.30
26 April 1978	5484.82	5484.57	5498.44	5494.68	5498.78	5500.84	5494.86	5497.75	5501.90
2 June 1978	5484.32	5484.57	5498.73	5494.87	5499.08	5494.89	5494.92	5497.94	5501.10
29 June 1978	5483.69	5484.17	5498.70	5494.77	5498.87	5498.31	5494.50	5497.85	5500.17
12 July 1978	5483.39	5484.82	5499.20	5494.96	5499.54	5497.94	5494.42	5498.32	5500.28
20 September 1978	5483.47	5486.50	5499.61	5496.67	5499.20	5497.42	5495.14	5498.55	5500.29
25 October 1978	5480.28	5486.64	5499.14	5495.58	5499.57	5496.72	5495.57	5498.37	5499.09
11 November 1978	5479.18	5487.69	5499.66	5496.30	5500.01	5497.35	5496.80	5498.90	5499.92
13-14 December 1978	5479.66	5469.13	5499.71	5496.27	5500.01	5497.18	5496.55	5498.90	5499.92
23 January 1979	5479.00	5488.34	5499.85	5495.58	5499.38	5498.34	5495.07	5498.00	5498.79
13 February 1979	5477.79	5488.03	5499.49	5495.64	5499.93	5495.81	5495.70	5498.51	5499.01
8-9 March 1979	5478.17	5488.27	5499.83	5495.98	5500.21	5496.24	5495.84	5498.75	5499.37
6 June 1979	5476.42	5490.49	5500.71	5496.03	5500.43	5496.68	5496.45	5498.91	5502.21
18-19 September 1979	5476.06	5491.22	5500.17	5496.19	5500.39	5496.70	5496.14	5498.81	5501.71
12 December 1979	5476.21	5491.01	5498.51	5495.64	5498.61	5492.47	5496.65	5497.50	5498.68
9 July 1980	5475.57	5492.94	5500.37	5496.27	5500.41	5496.40	5495.66	5498.89	5498.68
2 October 1980	5475.22	5493.47	5499.10	5495.73	5498.85	5496.16	5495.87	5498.06	5503.90
11 December 1980	5475.03	5493.43	5497.71	5495.45	5497.89	5496.04	5496.06	5497.06	5502.40
5 June 1981	5475.21	5491.47	5497.86	5496.03	5498.78	5496.10	5495.50	5498.65	5500.60
17 September 1981	5475.02	5491.57	5494.28	5495.67	5498.21	5496.07	5495.77	5497.44	5499.93
8 December 1981	5475.22	5490.06	5497.14	5495.28	5497.19	5495.90	5495.83	5496.60	5499.30
15 February 1984	5482.78	5489.67	5498.04	:	5497.94	5497.23	5496.53	5497.38	5498.18
24 February 1984	5483.33	5490.34	5498.66	5496.36	5498.45	5497.65	5496.91	5497.80	5498.57
Benchmark	5521.82	5520.67	5521.13	5521.17	5521.13	5520.94	5520.97	5521.29	5520.90

probably contributes to groundwater in the area. Maximum recharge from pond 1 appears to occur in the western end of the pond near observation well NP-9. The water level fluctuations in the wells do not appear to be related to the fluctuations of the water levels in the Hammond Ditch due to the irrigation season. Although it appears clear that both the evaporation ponds and the Hammond ditch contribute to shallow alluvial groundwater in the vicinity of the ponds, the magnitude and direction of groundwater movement is not well-defined.

Surface Water and Soil Samples

While the refinery was operated by Plateau, water and soil samples were collected on several occasions to provide additional information on wastewater quality and subsurface petroleum hydrocarbons relative to the refinery discharge plan which had been submitted previously to the NMOCD. Table 3.2 lists the analytical results of samples of the then unlined API wastewater ponds collected in September 1981. These data are typical of refinery process wastewaters (Ref. 6). A sample of the API wastewater pond effluent collected in December 1981, shown in Table 3.3, appears to be of somewhat better quality. This water is and was being pumped to the solar evaporation ponds, and was analyzed at the time the spray irrigation area had just begun operation.

Plateau collected one soil and six water samples simultaneous with an NMOCD investigation of the refinery site on July 12 and 14, 1982. These data are tabulated in Table 3.4. Concentrations of petroleum constituents, including benzene, toluene, xylene, and ethylbenzene, in the mg/l range were found in water in the alluvial river deposits at the bottom of the bluff adjacent to the San Juan River. Concentrations of aromatic and aliphatic petroleum compounds in the ppm range were detected in soil from the banks of the Hammond Ditch near the API wastewater ponds. Concentrations of several petroleum constituents in the lower ppm range were found in the API separator effluent and in the Hammond Ditch downstream of the refinery. A low concentration of the petroleum constituent toluene (0.2 mg/l) also was found in a seep on the bluff northwest of the refinery.

TABLE 3.2

ANALYTICAL RESULTS OF SEPTEMBER 1981 PLATEAU WATER SAMPLING

Parameter	North API Wastewater Pond	South API Wastewater Pond
BOD, mg/l	87.3	136
COD, mg/l	525	657
NH ₃ , mg/1	317	316
Sulfide, mg/l	619	802
Phenol, mg/l	145	102
pH, units	7.14	8.33

TABLE 3.3

ANAYLTICAL RESULTS OF DECEMBER 1981 PLATEAU SAMPLING OF API WASTEWATER POND EFFLUENT

 Parameter	API Wastewater Pond Effluent Concentration
As, mg/l Ba, mg/l Cd, mg/l Cr, mg/l SCN, mg/l F, mg/l Pb, mg/l Hg, mg/l Hg, mg/l NO ₃ , mg/l Se, mg/l Cl, mg/l Cu, mg/l Fe, mg/l Mn, mg/l SO ₄ , mg/l Phenols, mg/l Zn, mg/l Zn, mg/l pH, units Al, mg/l B, mg/l Co, mg/l Mo, mg/l Ni, mg/l Ca, mg/l Ni, mg/l Ca, mg/l Mg, mg/l K, mg/l Acid Extractables: Dimethylphenol, mg/l Chloromethylphenol, mg/l Base/Neutral Extractables: Naphthalene, mg/l Benzene, mg/l Toluene, mg/l	<pre></pre>
Ethylbenzene, mg/l Anthracene, mg/l Phenol, mg/l 2,4-dichlorophenol, mg/l 2,4,5-trichlorophenol, mg/l 2,4,6-trichlorophenol, mg/l 1,1,1-trichloroethane, mg/l Chloroform, mg/l PCB's, mg/l	0.068 <0.1 6.1 <0.1 <0.1 <0.1 <0.2 9.2 <0.1

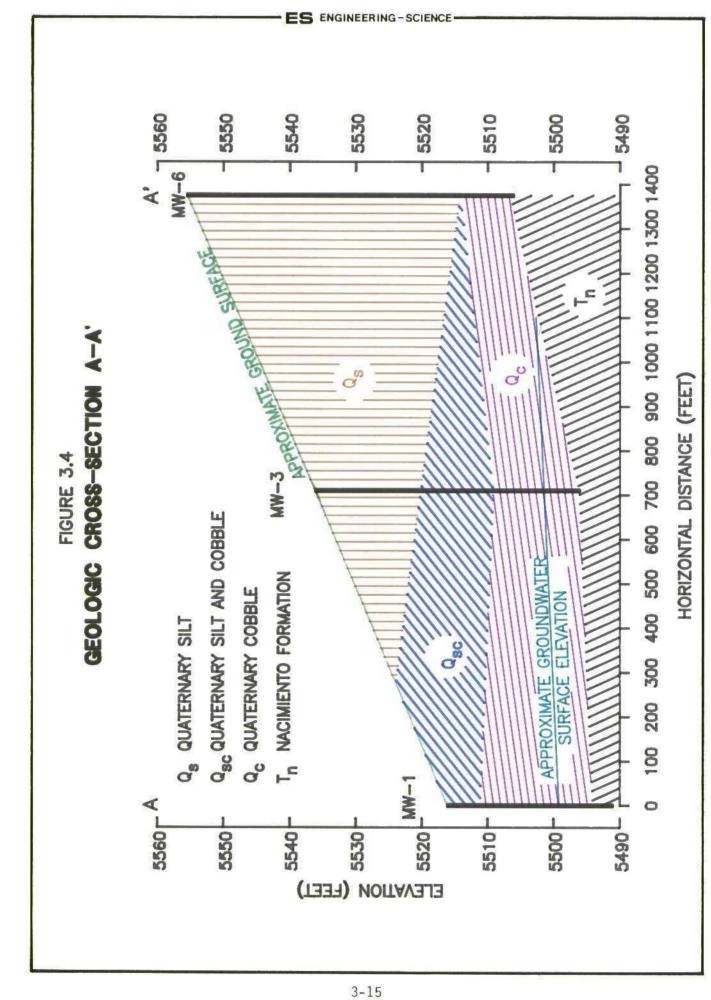
ANALYTICAL RESULTS OF 7/12/82 AND 7/14/82 PLATEAU WATER AND SOIL SAMPLING TABLE 3.4

	Sample A	Sample B	Sample C	Sample D	Sample E	Sample F	Sample G
	Water from Test Trench 100 vards NW	Water from Test Trench	Water from Hammond Ditch 150 vards S)			
	of Hammond Ditch and	of Hammond Ditch and	of Hammond Ditch and		Groundwater from River		Soil from Hammond Ditch
Parameter	Sullivan Road Intersection	Sullivan Road Intersection	Sullivan Road Intersection	Water from API Separator	River Terrace Deposits	Seep from Bluff NW	Near API Waste- water Pond
SO ₄ , mg/l	210	65	30	230	175	85	125
Cl, mg/l	370	205	40	260	320	215	109
mg/l	0.7	0.5	0.2	6.0	1.1	0.2	9.0
Oil and grease, mg/l	NA	NA	0.8	8.0	09	NA	NA
Phenols, mg/l	NA	NA	<0.1	1.4	0.2	NA	NA
C, mg/l	N V	NA	18	149	06	VN	۷V
TDS, mg/l	NA AN	NA	5494	1710	5376	NA	NA
Cyanides, mg/l	NA	NA	4	300	80	NA	NA
Benzene, mg/l	NA	NA	0.2	5.3	70.6	QN	NA
Toluene, mg/l	NA	, NA	1.3	3.7	100.0	0.2	NA
Xylenes, mg/l	NA	NA	0.8	0.3	150.3	· QN	NA
Ethylbenzene, mg/l	NA	NA	60.0	0.03	19.9	QN	NA
0/M Cresol, mg/l	NA	NA	QN	0.4	QN	QN	NA
Phenol, mg/l	NA	NA	ND	0.2	QN	ON	NA
Aromatic and Alipahtics, mg/l	cs, NA	NA	QN	28	QN	S	15,800

NA: Not Analyzed. ND: Not Detected.

GROUNDWATER MONITORING WELLS

In February 1984, Earl and Sons, Inc. of Cedar Crest, New Mexico, installed six monitoring wells at the Bloomfield Refinery at the locations shown on Figure 3.3. The holes were drilled using an Ingersoll Rand TH-60 rig using air rotary methods and a down-the-hole air hammer. Drilling was terminated in each hole when drilling cuttings indicated the top of the Nacimiento Formation had been penetrated. Some water also was required during drilling, and was obtained from the San Juan River. Methanol or acetone was used to rinse the bits between holes. The holes were drilled in the expected order of increasing organic concentrations to minimize cross-contamination between the wells. The lower 20 feet of each well were screened. Lithologic logs for each of the six wells are presented in Appendix B.


The water levels in the wells were determined on February 9, 1984, after the last well was completed, and again on February 14 and 15 and February 24. There were no significant differences between the sets of water level measurements. The water level measurements are presented in Table 3.5. Water levels in the five holes containing water varied by less than four feet. The water levels levels in these wells are consistent with those in the Hammond Ditch during the irrigation season, and the neutron-probe access holes. Well 6, which was dry, encountered the Nacimiento Formation above the water elevations in the other wells. The relationship between water levels and the subsurface geologic units is clearly illustrated by Cross-section A-A', taken through MW-1, 3, and 6, in a general north to south trend, as shown on Figure 3.4.

In MW-1, the top of the Nacimiento Formation is at approximately 5,493.6 feet msl. Water in the cobble layer contributed by the Hammond Ditch and evaporation ponds and overlying the Nacimiento was at 5,498.8 feet msl on February 24, 1984. At MW-3, the top of the Nacimiento is slightly higher, and the water elevation also has increased slightly in the cobble layer to about 5501.6 feet msl. South of MW-3, the elevation of the Nacimiento increases more rapidly than the water surface elevation, such that the cobble layer, which is still present at a reduced thickness in MW-6, is completely dry. The slope of the Nacimiento Formation is approximately one percent upward to the south on a regional basis.

TABLE 3.5

GROUNDWATER ELEVATION MEASUREMENTS
IN MONITORING WELLS, 1984

Monitoring Well	Benchmark	Water Elevation 2/9	Water Elevation 2/14-2/15	Water Elevation 2/24
MW-1	5515.64	5499.08	5498.63	5498.78
MW-2	5519.38	5500.27	5499.48	5500.37
MW-3	5535.74	5501.68	5501.48	5501.63
MW-4	5524.30	5499.36	5499.33	5499.46
MW-5	5545.01	5502.34	5501.28	5502.17
MW-6	5555.13	Dry	Dry	Dry

Background water samples were collected from wells MW-1 through MW-4 on February 15, 1984, and submitted to two laboratories for analysis. As shown in Table 3.6, significant differences between the laboratories were observed for several parameters, including aluminum, cadmium, cobalt, copper, iron, lead, nickel, selenium, nitrate, and others. Concentrations of petroleum constituents in the low mg/l range were detected in MW-4, the well located closest to the process area. MW-1, located between the Hammond Ditch and the solar evaporation pond, did not show extensive petroleum hydrocarbon or heavy metal contamination. MW-3 also appeared relatively clean, and one laboratory detected benzene, toluene, and phenol concentrations of less than 100 ug/l in MW-2.

As part of the refinery discharge plan plan approved in June 1984, the refinery has initiated a program to analyze groundwater from MW-1 and MW-4 on a quarterly basis. At the time of this report, only the first set of data, collected in September 1984, are available. These data are tabulated in Table 3.7. As shown, MW-4 has increased concentrations of petroleum-derived compounds, including phenols, benzene, and toluene. Although all petroleum compounds analyzed were less than method detection limits for MW-1, parameters such as lead and phenols had increased from previous samples. Significant differences in TDS, sulfates, chlorides, and nitrate between the two wells indicate different probable sources of groundwater constituents.

The differences between the February 15 and September analytical work are difficult to evaluate, particularly considering the differences observed between the two laboratories previously discussed. The fact that the Hammond Ditch was flowing in September but not in February probably has affected the water sampled in MW-1 since it is apparent the ditch contributes water to the cobble layer in this area. At present, it is unknown whether water in the ditch significantly impacts groundwater in the vicinity of MW-4. Given the complex hydrogeology of the site, it is likely that at least a full year of analytical data and water level measurements covering periods when the Hammond Ditch is and is not flowing, will be necessary to evaluate the water quality data adequately.

TABLE 3.6

ANALYTICAL RESULTS OF FEBRUARY 15, 1984, MONITORING WELL SAMPLING

	Well No. 1		Well No. 2		Well	No. 3	Well No. 4	
	Hauser	CEP	Hauser	CEP	Hauser	CEP	Hauser	CEP
Aluminum, mg/l	43.8	<0.1	37.7	<0.1	48.8	<0.1	10.2	<0.1
Arsenic, mg/l	0.0027	<0.01	0.0102	0.01	0.0035	<0.01	0.0038	<0.01
Barium, mg/l	<1.0	0.1	<1.0	<0.1	<1.0	1.3	<1.0	0.2
Boron, mg/l	<10.0	0.2	<10.0	0.3	<10.0	0.6	<10.0	0.5
Cadmium, mg/l	0.1	0.006	0.11	0.004	0.1	0.002	0.2	0.01
Chromium, mg/l	<0.1	<0.001	<0.1	<0.001	<0.1	<0.001	<0.1	<0.00
Cobalt, mg/l	1.0	0.09	1.1	<0.01	0.93	<0.01	0.95	<0.01
Copper, mg/l	0.13	0.009	0.11	0.001	<0.1	0.007	<0.1	0.004
Iron, mg/l	12.7	0.04	15.7	0.03	43.1	0.02	8.3	<0.01
Lead, mg/l	2.8	0.006	3.1	0.005	2.7	0.004	2.8	0.00
Manganese, mg/l	1.1	1.21	11.3	18.1	1.8	4.43	3.5	2.07
Mercury, mg/l	0.001	<0.0004	0.0013	<0.0004	<0.0024	<0.0004	<0.001	<0.00
Molybdenum, mg/l	<0.5	0.24	<0.5	0.013	<0.5	0.014	<0.05	0.00
Nickel, mg/l	0.84	0.05	0.87	0.02	0.76	<0.01	0.75	0.02
Selenium, mg/l	0.0096	0.11	0.0057	0.10	0.0053	0.07	0.0036	0.10
Silver, mg/l	<0.1	<0.01	<0.1	<0.01	<0.1	<0.01	<0.1	<0.01
Zinc, mg/l	1.1	0.45	0.5	0.32	0.8	0.67	0.9	2.8
pH (units)	7.22	7.27	7.25	7.33	7.14	7.00	6.92	6.98
TDS, mg/l	3038	3050	4825	4360	4098	5220	1600	1780
Chloride, mg/l	1040	1000	1120	1100	1012	1200	417.5	470
Cyanide, mg/l	<1.0	0.19	<1.0	0.21	<1.0	0.24	<1.0	0.17
Fluoride, mg/l	0.62	0.54	1.12	0.58	0.81	0.24	0.32	0.33
Nitrate, mg/l	1.2	0.05	1.0	0.02	46.5	<0.01	1.3	0.02
Sulfate, mg/l	240	520	1025	1700	975	2000	<10.0	<1.0
Phenols, mg/l	<0.015	0.13	0.05	0.04	· <0.05	0.09	0.19	0.05
Benzene, mg/l	ND	<0.001	ND	0.032	ND	<0.001	9.24	3.96
Toluene, mg/l	ND	<0.001	ND	0.074	ND	<0.001	2.43	5.08

Hauser refers to Hauser Labs of Boulder, Colorado.

CEP refers to Controls for Environmental Pollution in Santa Fe, New Mexico.

TABLE 3.7
FIRST QUARTER MONITORING WELL ANALYTICAL RESULTS (SEPTEMBER 1984)

Parameter	Monitoring Well No. 1	Monitoring Well No. 4
As, mg/l	<0.002	<0.002
Ba, mg/l	1.0	4.0
Cd, mg/l	0.014	<0.002
Cr, mg/l	<0.005	0.10
Pb, mg/l	0.125	0.088
Hg, mg/l	<0.002	<0.002
Se, mg/l	0.35	0.40
Ag, mg/l	<0.003	<0.003
Cu, mg/l	0.10	0.03
Fe, mg/l	57.0	43.7
Mn, mg/l	1.70	7.8
Zn, mg/l	0.30 <0.1	0.18 <0.1
U, mg/l	1059.0	410.0
Cl, mg/l	825.0	10.0
SO ₄ , mg/l	023.0	10.0
PCB, mg/l	<0.01	<0.01
Phenols, mg/l	0.024	0.552
CN, mg/1	<0.01	<0.01
NO_3 as N , $mg/1$	7.2	0.02
A1, mg/1	2.0	<0.05
B, mg/l	<0.004	<0.004
Co, mg/l	0.08	<0.003
Mo, mg/l	<0.005	<0.005
Ni, mg/l	0.3	0.2
F, mg/l	0.284	0.597
TDS, mg/l	3582.0	1860.0
Benzene, mg/l	<0.01	0.419
Toluene, mg/l	<0.01	0.296
Carbon tetrachloride, mg/l	<0.01	<0.01
1,2 Dichloroethane, mg/l	<0.02	<0.02
1,1 Dichloroethylene, mg/l	<0.005	<0.005
1,1,2,2 Tetrachloroethylene, mg/l	<0.02	<0.02 <0.01
1,1,2 Trichloroethylene, mg/l	<0.01 7.2	7.1
pH, units Ra 226 & 228, pCi/l	/•2 <5	/.1 <5

SITE SAMPLING BY NMOCD

The NMOCD conducted water and soil sampling investigations at the Bloomfield Refinery on five occasions during 1981 and 1982. The data obtained from four of these investigations are tabulated in Tables 3.8 through 3.12. A single sample collected at an unknown location on December 29, 1981, which had a COD concentration of 172 mg/l is not included.

The first sampling investigation conducted by the NMOCD occurred on September 3, 1981, when seven water samples were collected. These samples were analyzed for inorganic parameters, primarily metals, as shown in Table 3.8. Considering the high sulfate and chloride concentrations in the API wastewater pond, solar evaporation pond 1, and seeps, the fact that there is no difference in these parameters in the Hammond Ditch as it passes through the refinery suggests very little or no impact on the ditch water.

On July 6, 1982, the NMOCD collected 19 water samples at various points around the refinery, including an API wastewater pond, solar evaporation pond 1, the Hammond Ditch, the San Juan River, and numerous seeps. These samples were analyzed for TOC and seven inorganic parameters, as shown in Table 3.9. The API wastewater pond, solar evaporation pond 1, and many of the seeps were found to contain concentrations of lead, chloride, and or TDS exceeding state and federal drinking water criteria. Groundwater from the alluvial river deposits adjacent to the San Juan River and near a major seep had the highest TOC, boron, and lead concentrations. Water collected from the Hammond Ditch just downstream of the refinery contained low chloride and TDS concentrations relative to the other samples, and gave no evidence of being impacted by groundwater constituents at the refinery.

The NMOCD followed up this sampling with an investigation of water and soils at the refinery on July 12 and 14, 1982. These samples were analyzed for specific organics typically associated with petroleum products. These data are tabulated in Tables 3.10 and 3.11. Sample locations are presented in Figure 3.5.

TABLE 3.8

ANALYTICAL RESULTS OF 9/3/81 NMOCD WATER SAMPLING

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6 Seep on Bluff	Sample 7	
Parameter	Sump from North API Wastewater Pond	Southeast Corner of Evaporation Pond No. 1	Upstream Hammond Ditch at West end of Siphon	Seep in Arroyo 150+ yards NE of Evaporation Pond No. 1	Seep NW of Evaporation Pond No. 1	250+ yards North of North API Wastewater Pond	Downstream Hammond Ditch at Sullivan Road	
C1	1102.2	997.8	3.6	235.8	603.9	696.8	4.6	
F	0.45	0.56	0.16	1.12	1.16	0.77	0.15	
S0 ₄	355.2	563.3	46.3	314.3	1118.0	1896.0	46.5	
Fe Fe	0.4	<0.1	- `	-	<0.1	-	<0.1	
Mn	<0.1	<0.1	-	-	<0.1	-	<0.1	
Nî	0.04	<0.01	-	-	<0.01	-	<0.01	
Mo	<0.01	<0.01	-	-	<0.01	-	<0.01	
Co	<0.005	<0.005	-	-	<0.005	-	<0.005	
As	0.046	<0.005	- -	-	0.005	-	<0.005	
Ва	0.4	<0.1	-	-	0.4	-	<0.1	
Cd	<0.001	<0.001	-	-	<0.001	-	<0.001	
Cr	0.009	<0.005	-	-	<0.005	-	<0.005	
Pb	<0.005	<0.005	-	-	<0.005	-	<0.005	
Hg	<0.005	<0.005	-	-	<0.005	•	<0.000	
Se	<0.005	<0.005	-	-	<0.005	-	<0.005	
Ag	<0.001	<0.001	-	-	<0.001	-	<0.001	
Zn	<0.1	<0.1	-	-	<0.1	-	<0.1	
Cu	0.061	<0.05	-	-	<0.05	-	<0.05	
Al	<0.1	<0.1	-	•	0.24	-	0.1	
В	1.2	-	-	- .	0.28	-	0.04	

All values in mg/l.

TABLE 3.9

ANALYTICAL RESULTS OF 7/6/82 NMOCD WATER SAMPLING

	Sample Location	TOC (mg/l)	Boron (mg/l)	Cobalt (mg/l)	Chromium (mg/l)	Lead (mg/l)	Chloride (mg/l)	Fluoride (mg/l)	TDS (mg/1)
S-1	Downstream Hammond Ditch 35 feet South of Sullivan Road	3.75	<0.01	<0.01	<0.01	<0.01	10	0.0027	220
S-2	Seep from Bluff NW	3.75	0.32	<0.01	<0.01	<0.01	20	0.0060	640
S-3	Seep from Bluff NW	5.63	0.29	<0.01	<0.01	0.01	130	0.0069	1679
5-4	Seep from Bluff NW	3.75	0.36	<0.01	<0.01	0.01	150	0.0092	1124
S-5	Groundwater fróm River Terrace near Seep	26.25	0.74	<0.01	<0.01	0.40	330	0.0124	3127
5-6	Seep Below Holding Pond	3.75	0.54	<0.01	<0.01	0.10	760	0.0092	4667
S-7	Seep at Holding Pond just North of Hammond Ditch	<1.88	0.19	<0.01	<0.01	0.02	440	0.0162	2059
8-8	API Wastewater Pond Sump	1.88	<0.01	<0.01	<0.01	0.07	960	0.0019	2927
5-9	NW Corner of Evaporation Pond No. 1	5.63	0.07	<0.01	<0.01	0.09	1130	0.0281	3831
5-10	Seep North of Hammond Ditch and NE of Evaporation Pond No. 1	5.63	<0.01	<0.01	<0.01	0.04	420	0.0116	1782
5-11	Seep E of Evaporation Pond No. 1	5.63	0.16	<0.01	<0.01	0.09	920	0.0174	4289
5-12	Seep from Culvert at Sullivan Road and E of Evaporation Pond No. 1	7.50	0.46	0.01	<0.01	0.16	280	0.0083	7875
5-14	Spray Irrigation System	3.75	<0.01	<0.01	<0.01	0.07	1180	0.0299	3822
S-15	Seep at San Juan River from Arroyo E of Refinery	3.75	<0.01	0.01	<0.01	0.14	380	0.0101	7209
5-16	San Juan River Upstream	3.75	<0.01	<0.01	<0.01	<0.01	10	0.0040	208
5-17	Groundwater near Highway 44 and Sullivan Road	11.25	<0.01	<0.01	<0.01	0.03	200	0.0240	2098
-18	Seep from Bluff NW	11.25	<0.01	<0.01	<0.01	0.05	220	0.0057	1713
-19	Seep from Bluff NW	1.88	<0.01	<0.01	<0.01	0.04	60	0.0140	587
-20	Seep from Bluff NW	18.75	<0.01	<0.01	<0.01	0.09	820	0.0108	3528

TABLE 3.10

ANALYTICAL RESULTS OF 7/12/82 AND 7/14/82 NMOCD WATER SAMPLING

Parameter	Sample A Test Trench 100 yards NW of Hammond Ditch and Sullivan Road Intersection	Sample B Test Trench 150 feet SE of Hammond Ditch and Sullivan Road Intersection	Sample C Hammond Ditch 150 yards S of Hammond Ditch and Sullivan Road Intersection		Sample E Groundwater from River Terrace Deposits	Sample F Seep from Bluff NW
Cd, mg/l	. 0.002	0.001	<0.001	0.001	0.04	NA
Cr, mg/l	0.013	<0.008	<0.005	0.041	0.62	NA
Pb, mg/1	0.13	0.10	<0.005	0.12	18.17	NA
Hg, mg/l	0.0014	<0.0005	<0.0005	<0.0005	<0.0005	NA
Co, mg/l	0.05	0.05	<0.05	0.069	0.57	NA
Ni, mg/l	0.13	<0.05	<0.05	0.08	0.80	NA
Oil and Grease, mg/l	NA	NA	1.2	15.7	296.2	NA
Cn, mg/l	NA	NA	ND	0.19-0.39	0.0036	NA
Phenols, mg/l	NA	NA	0.0295	21.34	1.01	NA
Cl, mg/l	365.5	385.3	5.0	1499.5	554.5	NA
F, mg/1	0.49	0.38	0.22	0.38	0.43	NA
SO ₄ , mg/1	146.5	12.2	51.0	239.7	1420	NA
B, mg/1	0.53	0.49	0.03	0.37	0.38	NA
TDS, mg/l	1963	1733	4180	2170	4830	NA
TOC, mg/l	NA	323	3.6	323	860	NA
Benzene, ug/1	<1	<1	<1	21.13 mg/	'l 15.66 mg/	′1 <1
Toluene, ug/l	<1	<1	<1	21.08 mg/	'1 44.6 mg/1	1.43 mg/l
Ethylbenzene, ug/l	<1	NA	NA	<1. mg/l	4.03 mg/	′1 <1
M-Xylene, ug/l	<1	<1	<1	1.27 mg/	'l 16.3 mg/l	<1
Aliphatic Hydrocarbon Screen	ND	ND	ND .	Present	Present	ND

ND: None Detected NA: Not Analyzed

TABLE 3.11
7/12/82 AND 7/14/82 NMOCD SOIL SAMPLING

	Sample A Test Trench 100 Yards NW of Hammond Ditch and Sullivan Road	Sample B Test Trench 150 Feet SE of Hammond Ditch and Sullivan Road	Sample E Soil Sample From River Terrace	Sample G Soil Sample in Hammond Ditch Near API Waste-
	Intersection	Intersection		water Ponds
Benzene	<1 ppb	<1 ppb	<1 ppb	0.009 ppm
Toluene	<1 ppb	<1 ppb	0.115 ppm	0.158 ppm
Ethylbenzene	NA	<1 ppb	0.044 ppm	0.056 ppm
M-Xylene	<1 ppb	<1 ppb	0.124 ppm	0.229 ppm

TABLE 3.12
7/28/82 NMOCD WATER SAMPLING

	Sample La	Sample Ca	Sample Da	Sample Ia	Sample Ja	Sample Ka Water from	
Parameter	Alluvial Well Water	Hammond Ditch Downstream	API Separator Effluent	Hammond Ditch Upstream at Siphon	Seep from Bluff NW	Test Trench 50 yards South of two Ponds East of Refiner	
SO ₄ , mg/l	417.2	56.7	454.2	57.3	151.8	NA	
C1, mg/1	38.2	6.5	1504	3.9	203.5	78.2	
B, mg/1	0.29	0.07	0.35	0.03	0.84	0.66	
TDS, mg/l	- 906	186	2676	184	1549	NA	
TOC, mg/l	1.5	5.4	418	4.6	98	9.6	
Mn, mg/l	0.36	0.05	0.11	0.05	0.92	0.13	
Co, mg/1	0.05	0.05	0.05	0.05	0.05	0.069	
Pb, mg/1	<0.005	<0.005	0.20	<0.005	0.26	0.38	
U, mg/l	NA	NA	. 0.005	NA	NA	NA	
Phenols, mg/l	NA	0.013	37.05	0.191	NA	NA	
Cn, mg/1	ND	0.002	NA	NA	0.001	NA	
Benzene, ug/l	<1	<1	17.1	<1	<1	<1	
Toluene, ug/l	<1	<1	16.5	<1	<1	<1	
M-Xylene, ug/l	<1	<1	3.0	<1	<1	NA	
Ethylbenzene,	ug/1 NA	<1	3.6	<1	<1	NA	
Aliphatic Hydr	0-						
carbons,	ND	ND	Present	ND	ND	ND	

NA: Not Analyzed ND: Not Detected Water samples from the test trenches northwest and southeast of the downstream Hammond Ditch intersection with Sullivan Road had lead concentrations of two to three times state and federal drinking water criteria, and the southeast sample had a TOC concentration of 323 mg/l. However, concentrations of petroleum constituents including benzene, toluene, ethylbenzene, xylene, and aliphatic hydrocarbons typically present in refinery product were all less than detectable limits. Soil samples collected at the same locations also were free from significant concentrations of these organics. The sample of Hammond Ditch water contained low concentrations of oil and grease (1.2 mg/l) and phenols (29.5 ug/l), but otherwise differs from the concurrent sample collected by Plateau in that benzene, toluene, xylene, and aliphatic petroleum hydrocarbons were all less than detectable limits.

The water sample collected from the API separator contained concentrations of TOC and the petroleum constituents benzene and toluene in the mg/l range, as well as other compounds typical of refinery wastewaters. The concurrent sample collected by Plateau had lower petroleum hydrocarbon concentrations, although the same compounds were still present.

Groundwater from the alluvial river deposits was found to contain a variety of organic and inorganic compounds. A soil sample at this location also contained a similar variety of compounds. A high lead concentration (18.17 mg/l) was detected in this sample. Specific petroleum hydrocarbons, including benzene, toluene, ethylbenzene, and xylene, were present in concentrations in the mg/l range, although generally lower than the concentrations detected in Plateau's sample of the same date. It should be noted that the concentrations of many parameters exceed those present in the sample collected from the API separator, suggesting a probable source other than refinery effluent.

A soil sample collected from the south bank of the Hammond Ditch near the El Paso Natural Gas pipeline right-of-way was found to contain the petroleum constituents benzene, toluene, ethylbenzene, and xylene at concentrations of less than 0.25 ppm. The stained soils in this area are reportedly the result of diesel fuel spilled in the process area in past years due to improper tank-filling procedures. Downstream of this area of the ditch, two four-foot diameter berms were constructed to contain the

seepage, and the collected water and petroleum hydrocarbon mixture was pumped to the API wastewater ponds for subsequent treatment. This seepage may be the source of the petroleum hydrocarbons detected further downstream in the ditch water.

The NMOCD completed their site investigations during 1982 with a visit to the refinery on July 28 for the collection of additional water samples. These analyses are tabulated in Table 3.12. As shown in the table upstream and downstream samples of the Hammond Ditch water were almost identical, and show no evidence of refinery impacts. The API separator sample was similar to samples previously collected from the same source. Samples of a seep on the northwest bluff and water from a test trench near the solar evaporation ponds had elevated lead concentrations of five to eight times state and federal drinking water standards, although little evidence of petroleum compounds was present. The NMOCD also sampled an alluvial water well at an unknown location which showed no evidence of increased metals or organic concentrations.

FIT 1983 INVESTIGATION

On May 16, 1983, the EPA conducted a FIT investigation of the Bloom-field Refinery. Water samples were collected in the Hammond Ditch upstream, downstream, and near the process area; in the San Juan River upstream and downstream; in a retention pond seep north of the API wastewater ponds; and from two seeps on the bluff, one east and one west of the refinery. Soil samples were collected in the landfarm area, the Hammond Ditch near the process area, and in the vicinity of the three seeps from which water samples were collected. These data are attached to this report as Appendix C.

Upstream and downstream samples of San Juan River water show few differences and do not indicate measurable contamination of the water downstream of the refinery. Of the metals analyzed, iron was somewhat higher downstream of the refinery than upstream, but was still well within state and federal water quality standards for drinking water supplies. Priority pollutant analyses found a single alkane in the upstream sample at 0.0075 ppm which was not detected in the river water downstream of the refinery.

Water samples from the Hammond Ditch upstream and downstream of the refinery and adjacent to the process area show no significant differences for the metals analyzed (aluminum, iron, manganese, and zinc). The same alkane identified in the upstream San Juan River sample was found in similar concentrations in the Hammond Ditch upstream and downstream of the refinery. An unknown volatile organic compound was also found in the upstream sample at a concentration of 0.12 ppm. The water sample collected from the ditch near the process area contained a low concentration (0.011 ppm) of molecular sulfur. No other priority pollutants were identified in the water samples from the Hammond Ditch water which are commonly associated with refinery operations or product. The soil sample collected of the Hammond Ditch bank near the process area contained metals concentrations typical for U.S. soils. Two alkanes were found in this soil sample at a total concentration of less than 1 ppm.

The three water samples from the seeps contained numerous volatile organic and acid and base/neutral compounds common in raw crude and refined product, including alkanes, phenolic compounds, benzene isomers, polynuclear aromatics, and a variety of unidentified compounds. The retention pond seep contained fewer petroleum-derived compounds at generally lower concentrations than the seeps sampled on the west and east bluffs. Soil samples collected in the vicinity of the seeps indicated concentrations of polynuclear aromatic compounds in the ppb to low ppm range around the west seep, whereas the soil sample collected in the vicinity of the east seep was characterized by similar concentrations of alkanes and related petroleum compounds. Only a single alkane at a concentration of 0.32 ppm was identified in soil from the retention pond seep.

FIT 1984 INVESTIGATION

An extensive sampling program was conducted by the EPA Region VI FIT during the week of March 19-24, 1984. Samples were collected from the refinery API separator, solar evaporation ponds, spray irrigation area, groundwater monitoring wells, and other surface features in probable runoff pathways. Seepage samples and soil samples from the river alluvium also were collected, as well as upstream and downstream samples in the San Juan River and the Hammond Ditch. A map showing the locations of all samples is

presented in Figure 3.6. The analytical data is attached to this report as Appendix D, along with a data summary originally presented in the FIT report.

Water and soil samples were collected at four locations in the Hammond (1) upstream of the refinery, (2) near the API wastewater ponds, (3) below the raw water ponds, and (4) downstream of the refinery. Water samples upstream and downstream of the refinery contained no measurable concentrations of organic or inorganic parameters. A small concentration of the petroleum constituent xylene (7.3 ppb) was detected in the ditch water near the raw water ponds. Petroleum hydrocarbons including several benzene compounds and numerous unknowns were detected in the water adjacent to the API wastewater ponds. In the soil samples, unknown organic compounds were detected in all samples except that collected near the raw water ponds, at concentrations greater than 45 ppm. In the soil near the API wastewater ponds, in the area where a stain of diesel fuel had been reported previously, four polynuclear aromatic compounds (PNA's) at a total concentration of over 18 ppm were detected. Alkanes were detected in all samples, including those collected upstream of the refinery, and a large number of unknown organic compounds were found in the soil samples both upstream and downstream of the refinery. Given the large concentrations of alkanes and unknown organic compounds detected in upstream soil samples, it is impossible to determine conclusively the source of similar compounds and concentrations in downstream samples. It should be noted that off-site migration of organic compounds was not demonstrated in water samples collected in the ditch.

Soil samples collected throughout the refinery indicate a variety of organic compounds are present in widely varying concentrations. Small concentrations of toluene, heptanol, and other petroleum-derived organics of less than 2 ppm were detected in soils in the spray irrigation area. Soils in a portion of the refinery property located just north of the spray irrigation area contained higher concentrations of the petroleum constituents PNA's, alkanes, and other unknown organics in the 10-50 ppm range. Evaporation pond soils were found to contain petroleum-derived phenolic compounds, PNA's, aromatic and other solvents, alkanes, and other compounds, mostly in concentrations of less than 1 ppm, although one of the

samples taken from the southern end of pond 2 had organic concentrations up to 10 ppm, as well as elevated chromium, copper, and zinc levels.

Soils and water samples in seepage areas and intermittent stream channels, north and northwest of the refinery, all contained evidence of organic compounds commonly associated with refinery operations and refined product. The highest concentrations of these petroleum constituents were found in soils from a major seep on the bluff northwest of the refinery and in the alluvial river deposits immediately below. PNA's, alkanes, benzene, and other petroleum constituents were detected at concentrations exceeding 100 ppm. The seeps containing the highest organic concentrations are likely the result of past spills of oil or product at the refinery, since organic concentrations are well in excess of the concentrations of the same compounds present in the API wastewater ponds or in the API separator effluent, solar evaporation ponds, or spray irrigation area.

The FIT collected water and soil samples from the San Juan River both upstream and downstream of the refinery. No evidence of downstream impacts was found, despite the high organic concentrations present in the adjacent river terrace deposits. The compounds 1,1,2-trichloroethane and 1,1,2,2-tetrachloroethane were found in both upstream and downstream soils in similar concentrations. The source of these compounds is unknown, although laboratory contamination is a strong possibility.

Three groundwater monitoring wells, MW-1, MW-4, MW-5, were sampled during the 1984 FIT visit. Petroleum hydrocarbons including ethylbenzene, xylene, and alkanes were detected in MW-5 at concentrations of less than 50 ug/1, and no organic compounds were detected in well MW-1, although a low phenol concentration had been detected in one previous analysis. Organic concentrations approaching 30 mg/l for individual petroleum constituents were found in MW-4, which is consistent with previous analyses, although concentrations of specific parameters differ from previous samples. Water from each of the wells contained elevated aluminum and iron concentrations. Manganese also was detected in MW-4 at a slightly elevated concentration (7.62 mg/1).

CHAPTER 4

SITE ASSESSMENT

CHARACTERIZATION AND POTENTIAL SOURCES OF GROUNDWATER CONSTITUENTS

Organic constituents commonly associated with refinery operations and refined product are widespread in groundwater in the upper sands, silts, and cobbles of the Jackson Lake Terrace and other Quaternary deposits above the Nacimiento Formation at the Bloomfield refinery, and have been observed in seeps in the intermittent stream channels to the north of the Hammond Ditch. The areas with petroleum hydrocarbon concentrations in the ppm range are the major seeps emerging from the bluff northwest of the refinery, the alluvial river deposits to which these seeps drain, and the vicinity of MW-4. Other seeps and arroyos north and northeast of the refinery show evidence of petroleum hydrocarbons at lower concentrations.

The areas with the highest petroleum hydrocarbon concentrations are believed to be primarily the result of hydrocarbon spills and leaks in and around the process area. The concentrations of aromatic solvents, polynuclear aromatics, alkanes, substituted benzenes, and other petroleum-derived hydrocarbons in the major northwest bluff seep and the alluvial river deposits are significantly higher than the concentrations observed in the API separator effluent, API wastewater ponds, solar evaporation ponds, and spray irrigation area and implicate a separate source. Concentrations of specific petroleum hydrocarbons in the API separator effluent and API wastewater ponds are typical of refinery operations as reported by EPA Furthermore, the presence of short-chain and low molecular weight hydrocarbons in the seepage from the northwest bluff is characteristic of refined product and also strongly suggests it may be the result of leaks and/or spillage. The 1984 FIT report also indicated that the river terrace deposits where the large petroleum hydrocarbon concentrations were found was the site of a 2,500-barrel oil spill in 1963.

The area in the vicinity of MW-4 also contains subsurface petroleum hydrocarbons. This area reportedly was near areas used at one time for truck washing and truck loading which may have contributed to the petroleum hydrocarbons present. The water sample collected at this location

contained some similar compounds to the northwest bluff seep, although numerous different petroleum constituents were present in the samples.

Samples collected from the arroyo north of the solar evaporation pond generally contain fewer organic compounds at lower concentrations than those near the process area or along the northwest bluff. The petroleum compounds detected are similar to those found in the evaporation ponds and spray irrigation area, which suggests these areas as possible sources.

The extent of the petroleum hydrocarbons in the shallow subsurface is well defined in certain areas, and, although the horizontal extent is not known with certainty, the general area of petroleum hydrocarbons can be defined. It is likely that to the south, the petroleum hydrocarbons extend no further than the point where the water level intersects the Nacimiento Formation, and may not extend even this far, as the subsurface soil and water samples collected in this area by the NMOCD and Plateau did not indicate petroleum hydrocarbon presence. Soil and water samples collected west of the Hammond Ditch and north of Sullivan Road also did not indicate the presence of petroleum hydrocarbons and, furthermore, movement of impacted groundwater in this area is unlikely due to the location of the ditch, which would provide a barrier much of the year due to the hydraulic gradient when the ditch is full. In addition, groundwater movement appears to follow the Nacimiento subcrop which slopes down toward the north on a regional basis.

Taken together, the data on groundwater quality suggest multiple sources of groundwater petroleum hydrocarbons ranging from spills or leaks of crude oil or product to the seepage of partially treated wastewater. It is doubtful that all individual sources of spills could be identified, considering the hydrocarbons obviously have moved throughout the shallow subsurface and are influenced by the recharge of water form and surcharge to the Hammond Ditch. Therefore, it seems most prudent to consider the entire process area extending to MW-4 in the south as a single source of petroleum hydrocarbons.

POTENTIAL SURFACE WATER IMPACTS

Subsurface petroleum hydrocarbons at the Bloomfield Refinery potentially could impact two major surface water bodies: the San Juan River and

the Hammond Ditch. Potential impacts on the Hammond Ditch can be further divided into irrigation season and non-irrigation season impacts.

San Juan River

None of the surface water or soil samples collected by Plateau, the NMOCD, or EPA upstream or downstream of the refinery indicate the river has been affected adversely by the subsurface petroleum hydrocarbons at the refinery. Although it is apparent that concentrations of petroleum hydrocarbons are present in the alluvial river deposits adjacent to the San Juan River, these compounds have not been detected downstream in measurable Given the small flow rate of the seeps relative to the flow rate of the San Juan River, the dilution rate is sufficiently high such that even if hydrocarbons are entering the river they are diluted to such an extent that they do not have a measurable impact on water quality. Field estimates of the total rate of seepage from all seeps have been as high as 10-20 gpm. At the average river flow rate of 1,090 cfs since the Navajo dam was completed in 1963 (determined at USGS gauging station 09355500, 7.2 miles downstream from the dam and approximately 19 miles upstream from the site), the dilution rate would be 24,460 to 1 if as much as 20 gpm were entering the river. Therefore, it is hardly surprising that petroleum hydrocarbon impacts downstream from the refinery in the San Juan River have never been demonstrated.

Due to the high flow rate of the San Juan River, flow rates have not been measured in conjunction with sampling activities. If the discharge of petroleum hydrocarbons through seeps eventually leading to the river were constant, the potential for adverse impacts increases as the flow in the river decreases. This is true for several reasons. Obviously, a reduction in the San Juan River flow reduces the dilution rate for any petroleum hydrocarbons which may be entering the river. Secondly, a lowering of the river level may allow petroleum hydrocarbons present in the alluvial deposits to enter the river during low-flow conditions. Although the river flow rates during site sampling invstigations are not known, river flow rates are available at several USGS gauging stations on the San Juan River. One of these, USGS gauging station 0935710, was used briefly as a water quality station as well as a gauging station between 1978 and 1981. The station is located several miles downstream of the refinery but upstream of

the City of Farmington. The locations of the gauging stations are shown on Figure 1.1. During this period, concentrations of a large number of inorganic and some organic analyses were determined on a monthly basis. Analyses of selected parameters which might be impacted by the introduction of refinery hydrocarbons to the river are summarized in Table 4.1. The data indicate there is no correlation between concentrations of these water quality parameters (including organic carbon and lead) and river flow rates which can be attributed to the subsurface petroleum hydrocarbons at the refinery. There is no indication that concentrations increase during low-flow conditions due to increased migration of petroleum hydrocarbons into the river. Furthermore, there is no indication that water quality parameters increase due to a flushing out of petroleum hydrocarbon substances from the alluvial deposits during periods of high flow.

Based on the available information, impacts on the San Juan River due to subsurface petroleum hydrocarbons at the refinery are not measurable, including during low-flow and high-flow periods.

Hammond Ditch

Potential impacts on the Hammond Ditch due to subsurface petroleum hydrocarbons at the refinery are difficult to assess, if only because of the seasonal use of the ditch to carry irrigation water. During the irrigation season, the ditch contributes water to the upper alluvial deposits as bank storage and the hydraulic gradient tends to move groundwater in directions away from the ditch, and in some instances toward the numerous seeps along the Nacimiento subcrop. Only one of many water samples collected from the ditch downstream during the irrigation season showed any evidence of petroleum hydrocarbons, and a sample collected concurrently by NMOCD was free of hydrocarbons. Petroleum hydrocarbons have been detected in the ditch below the API wastewater ponds and raw water ponds at low concentrations when the ditch is flowing - these are most likely the result of the surface soil stains in the ditch near the API wastewater ponds, since the hydrocarbons are absent in water downstream from the refinery but increase in an upstream direction to a maximum for the sample collected near the API wastewater ponds.

When the ditch is not carrying irrigation water, the hydraulic gradient is reversed and water will tend to come out of bank storage and

TABLE 4.1

ANALYSES OF SELECTED PARAMETERS AT USGS WATER QUALITY STATION 0935710 DURING THE TIME PERIOD 1977-1981

Date	Instan- taneous Flow Rate (cfs)	Sulfate (mg/l)	Chloride (mg/l)	Nitrate + Nitrite- (mg/l)		Organic-N (mg/l)	Boron (ug/l)	Dissolved Organic Carbon (mg/l)	Total Chromium (ug/l)	Total Lead (ug/l)	Total Zinc (ug/l
December 9, 1977	579	100	3.9	0.31	0.27	0.09	40	3.4	0	4	20
January 24, 1978	606	120	4.0	0.13	0.00	0.14	30	3.0	-	-	-
February 22, 1978	519	120	4.0	0.23	0.13	1.3	40	4.2	-	-	-
March 28, 1978	653	120	4.5	0.06	0.01	0.51	30	3.1	-	-	-
April 27, 1978	480	120	4.3	0.05	0.03	0.33	40	3.7	•	-	-
June 27, 1978	339	120	5.4	0.14	0.03	0.52	40	4.6	-	-	_
July 18, 1978	380	150	4.8	0.09	0.00	0.39	50	8.0	0	10	40
August 21, 1978	496	140	4.5	0.08	0.02	0.33	50	7.7	-	_	-
September 15, 1978.	490	140	5.0	0.08	0.04	0.42	40	4.9	•	-	-
October 18, 1978	524	170	5.2	0.15	0.01	0.37	50	5.8	0	2	20
November 28, 1978	560	170	5.0	0.14	0.02	0.56	60	3.8	-	_	_
December 18, 1978	701	140	5.4	0.20	0.01	0.31	60	3.8	-	_	_
January 23, 1979	627	150	4.8	0.18	0.03	0.20	40	5.6	_	_	
February 21, 1979	934	170	4.7	0.25	0.04	4.2	60	6.4	-	_	_
March 26, 1979	2 520	130	4.4	0.23	0.04	9.2	50	3.3	-	-	_
April 24, 1979	5030	62	3.4	0.08	0.01	0.33	30	3.6	10	38	80
May 23, 1979	5530	64	3.2	0.06	0.05	0.46	40	4.9	-	-	-
June 18, 1979	4990	61	2.8	0.06	0.03	0.10	120	8.4		-	-
July 24, 1979	4850	50	2.2	0.15	0.02	0.41	3	1.9	0	8	30
August 22, 1979	793	94	2.5	0.08	0.27	0.93	30	5.8	-	-	-
September 17, 1979	510	130	2.5	0.06	0.01	0.39	30	7.2	_	-	-
October 2-, 1979	579	150	3.6	0.06	0.01	0.45	50	9.5	0	6	20
November 20, 1979	294	250	5.1	0.18	0.04	-	50	5.9	-	-	- 20
December 17, 1979	1630	80	6.6	0.11	0.03	0.57	140	4.1		-	
January 22, 1980	1720	79	6.4	0.46	0.02	0.40	30	4.5	-		-
February 18, 1980	1820	-	2.5	0.19	0.12	1.9	30		-	-	-
March 18, 1980	2640	55	2.5	0.09	0.00	0.33	30	4.8	•	=	-
April 6, 1980	724	120	3.6	0.12				3.3	-	-	•
May 21, 1980	977	91	2.9	0.01	0.08	0.52	30	5.9	-	-	-
· ·					0.02	0.40	60	6.7	-	-	-
June 16, 1980	1390	69 70	2.7	0.02	0.00	0.76	30	7.6	10		40
July 24, 1980	855	79	2.5	0.08	0.01	0.85	40	4.3	10	16	40
August 26, 1980	1020	100	3.1	0.00	0.00	0.64	20	4.0	-	-	•
September 24, 1980 October 30, 1980	1010	81 80	2.7	0.00	0.00	0.35	40 50	4.2	-	~	-
	1210		2.5	- 0.12	0.00	0.07	50 40		-		70
November 24, 1980	1560	76 65	2.9	0.13	0.03	0.83	40	4.7	0	10	70
December 15, 1980	1520	65 62	2.3	•	-	-	10	•	-	-	•
January 19, 9181	1830	62	2.3	-	-		10	-	•	-	-
February 23, 1981	969	86	2.7	0.01	0.06	0.75	0	4.8	•	-	~
March 23, 1981	843	88	2.6	-	-	-	20	-	-	-	-
April 20, 1981	430	150	4.1	-	-	-	30	-	-	-	• •-
May 26, 1981	413	130	11	0.09	0.08	0.63	20	7.2	10	3	60
June 23, 1981	373	130	3.3	-	-	-	20	-	-	-	-
July 20, 1981	588	92	2.7	•	-	-	20	-	-	-	-
August 24, 1981	759	82	2.4	0.03	0.06	0.39	20	2.7	•	-	-
September 8, 1981	1030	320	5.5	-	-	•	50	-	•	-	-

recharge the ditch. The presence of water in the ditch during all seasons supports this conclusion. The return water carries with it petroleum hydrocarbons from the shallow subsurface, which are evident in the ditch during the winter months. At present, Bloomfield Refining has constructed several earthen berms in the ditch to capture the water and low concentrations of petroleum hydrocarbons which are then pumped back to the refinery for treatment. The berms prevent the petroleum hydrocarbons from migrating off-site in the ditch during the non-irrigation season.

At the start of the irrigation season, the possibility exists that petroleum hydrocarbons in the ditch upstream of the berm will be transported downstream with the first flush of irrigation water. Some of the petroleum hydrocarbons would undoubtedly adhere to downstream ditch soils and may have contributed to the alkanes detected in off-site soil samples.

Impacts on downstream water users should be negligible during the irrigation season due to the hydraulic gradient which forces ditch water into bank storage, and the dilution factor due to the water flow in the ditch. Using current recovery procedures, petroleum hydrocarbon substances recharging the ditch during the non-irrigation season will remain on-site and receive treatment in the refinery wastewater treatment system.

POTENTIAL GROUNDWATER IMPACTS

Shallow Alluvial Groundwater

That shallow groundwater beneath the refinery contains hydrocarbons typical of refinery operations is well-documented, particularly in the vicinity of and downgradient of the process area. The available data indicate that petroleum hydrocarbons migrate downward through the permeable sand, silt, and cobble deposits until encountering the relatively impermeable Nacimiento Formation. Subsurface migration occurs along depressions in the formation, which slopes downward regionally in a northerly direction. The petroleum hydrocarbons emerge in seeps where the contact between the upper permeable layers and the Nacimiento Formation is exposed along the bluff adjacent to the San Juan River. After migrating down the bluff, the petroleum hydrocarbons accumulate in the San Juan River terrace deposits and the shallow groundwater of these deposits.

The depressions in the Nacimiento subcrop are well-documented by the presence of seeps and surveyed elevations at the contact, but are less well-defined in other areas of the refinery property. At least three separate depressions are noticeable along the bluff: two north and northeast of the solar evaporation ponds and one northwest of the refinery which contains a seep with the highest petroleum hydrocarbon concentrations analyzed. A connection between the subcrop depressions resulting in a major east-west depression through the refinery property has been inferred in previous reports and is a possibility based on the information available (Ref. 3). However, it is also possible that two of the depressions are separated by a ridge of the Nacimiento subcrop. If the ridge exists, subsurface petroleum hydrocarbons east of the ridge may be a result of past spills in the area, leakage from the solar evaporation ponds and/or the spray irrigation area. At present, the existence of this ridge and the extent of the Nacimiento subcrop depressions are not known.

Groundwater in the Nacimiento and Deeper Formations

The Ojo Alamo is the shallowest dependable potable groundwater supply in the vicinity of the refinery. This sandstone formation is approximately 500 feet below the ground surface at the refinery, underlying the thick and relatively impermeable Nacimiento Formation. Indirect evidence of the Nacimiento's low permeability exists in several facts: (1) groundwater emerges at seeps along the bluff only at the contact between the Nacimiento Formation and the more permeable cobble layer above it, never from the clay or shale itself or the thin sandstone or silt lenses which can be seen along the bluff in several locations; and (2) the neutron-probe access holes, which are completed into the top of the Nacimiento, have a very slow response to any changes in groundwater levels, indicating very slow groundwater movement at best. Based on the low formation permeability and the thickness of the formation at this location (over 400 feet), it is extremely unlikely that the upper subsurface hydrocarbons could migrate downward to such an extent that the Ojo Alamo sandstone would become contaminated.

There is presently no direct evidence to either document or disprove the presence of petroleum hydrocarbons within the Nacimiento Formation itself. Indirect evidence based on the location of groundwater seeps suggests that the potentially more permeable silts and sandstone lenses do not contain significant water or petroleum hydrocarbons. In any case, there are no domestic or irrigation wells in the area which utilize this formation as a water supply.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Based on a review of analytical data collected by the refinery, the NMOCD, and EPA, hydrological data collected by the USGS, and hydrogeological data prepared for the refinery, the following conclusions can be drawn concerning the presence of subsurface petroleum hydrocarbons at the refinery:

- (1) Petroleum hydrocarbons and other compounds commonly associated with refinery operations are widespread in groundwater in the upper sand, silt, and cobble deposits underlying the refinery. The extent of the petroleum hydrocarbons appears limited on the western refinery boundary by the Hammond Ditch and on the south by the lack of natural shallow groundwater south of a point where the groundwater levels encounter the relatively impermeable Nacimiento Formation. Subsurface petroleum hydrocarbons appear to be the result of many sources, primarily the result of many individual leaks and spills known to have occurred at the refinery.
- (2) All available evidence supports the contention that petroleum hydrocarbons are confined to the upper layer of sands, silts, and cobbles overlying the Nacimiento Formation. However, there is no hard data on possible hydrocarbons in the Nacimiento Formation itself.
- (3) There is little likelihood that the first major potable water aquifer, the Ojo Alamo, will be impacted measurably by the subsurface hydrocarbons at the refinery.
- (4) There is no indication from the data examined that the San Juan River downstream of the refinery has been impacted measurably by the petroleum hydrocarbons, either under low-flow or high-flow conditions.
- (5) Few measurable impacts have been observed in the Hammond Ditch downstream of the refinery during the irrigation

season. Water and small amounts of petroleum hydrocarbons are pumped back to the refinery for treatment during the non-irrigation season. Even with collection, some petroleum hydrocarbons may be flushed downstream at the start of the irrigation season.

(6) The subcrop of the Nacimiento Formation shows three major depressions at the outcrop along the bluff adjacent to the San Juan River. Whether or not there is a major east-west depression through the refinery at the subcrop is presently unknown.

The following actions are recommended to obtain additional information prior to the development of a remedial action plan for the refinery:

- (1) The refinery should continue to monitor groundwater quality in the six monitoring wells on a quarterly basis to develop baseline water quality in the areas where the wells are located. At least one year of data is necessary to evaluate properly the seasonal impact of the Hammond Ditch on groundwater quality. Water levels in the wells should be determined monthly for the same purpose.
- (2) An additional well should be constructed in the vicinity of MW-4 to determine whether there are petroleum hydrocarbons in the Nacimiento Formation. The upper cobble layer should be cased off, and the well screened in the Nacimiento, preferably in an interval in the upper 10 to 20 feet which contains sand or silt lenses. This well should be monitored at the same frequency as the other wells.
- (3) An earth resistivity survey should be conducted to determine the Nacimiento subcrop elevations throughout the refinery, particularly in the area of the possible east-west depression. The survey also may be useful in determining the extent of seepage from the solar evaporation ponds and probable mixing with the Hammond Ditch water, since the TDS concentrations are different for both sources.

- (4) The San Juan River should be sampled downstream of the refinery (possibly at the Highway 44 bridge) during a low-flow period, preferably less than 300 cfs, to satisfy state and federal agency concerns about downstream water impacts. The sample should be analyzed for the full list of 129 priority pollutants.
- (5) Samples of the Hammond Ditch water are recommended at the start of the irrigation season to determine whether petroleum hydrocarbons are being transported downstream and, if there is surface water transport, at which concentrations.

REFERENCES

- (1) American Ground Water Consultants. March 24, 1984. Discharge Plan for a Refinery Operated by Plateau, Inc. near Bloomfield, New Mexico.
- (2) American Ground Water Consultants. January 30, 1979. Milestone Report on Monitoring Activities at the Bloomfield Refinery Operated by Plateau, Inc., San Juan County, New Mexico.
- (3) American Ground Water Consultants. January 28, 1981. Second Milestone Report on Monitoring Activities at the Bloomfield Refinery operated by Plateau, Inc., San Juan County, New Mexico.
- (4) Ecology and Environment, Inc. May 16, 1983. Site Inspection Report for the Plateau. Inc. Bloomfield Refinery.
- (5) Ecology and Environment, Inc. May 1984. On-site Sampling Investigation, Plateau, Inc. Refinery (NM1686), Bloomfield, New Mexico.
- (6) U.S. Environmental Protection Agency. Development Document for Effluent Limitations Guidelines and Standards for the Petroleum Refining Point Source Category. EPA 440/1-79/0146. December 1979.
- (7) U.S. Geological Survey. Water Resources Data for New Mexico. USGS Water Data Report 77-1.
- (8) U.S. Geological Survey. Water Resources Data for New Mexico. USGS Water Data Report 78-1.
- (9) U.S. Geological Survey. Water Resources Data for New Mexico. USGS Water Data Report 79-1.
- (10) U.S. Geological Survey. Water Resources Data for New Mexico. USGS Water Data Report 80-1.
- (11) U.S. Geological Survey. Water Resources Data for New Mexico. USGS Water Data Report 81-1.

APPENDIX A

NEUTRON PROBE ACCESS HOLE LITHOLOGIC LOGS

LITHOLOGY	INTERVAL (ft)
Neutron Access Hole 1	
Samples missing Samples missing Samples missing Samples missing Cobble and large pebbles Pebbles and cobble Brownish silt and pebbles Brownish green silty clay Bluish gray silty clay Grayish silty clay	0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50
Neutron Access Hole 2	
Samples missing Samples missing Samples missing Samples missing Brownish silt and pebbles Greenish clay Greenish gray silty clay Grayish silty clay Grayish silty caly Grayish silty clay	0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45
Neutron Access Hole 3	
Samples missing Samples missing Samples missing Brown silt, and pebbles and cobble Pebbles and cobble Green shale Greenish gray clay Greenish gray silty clay Bluish gray sandy clay	0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

LITHOLOGY	INTERVAL (ft)
Neutron Access Hole 5	
Samples missing Samples missing Samples missing Samples missing Gravel and pebbles Pebbles Greenish gray silty clay Grayish silty clay Grayish silty clay Grayish silty clay	0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50
Neutron Access Hole 6 Gray sand Gray sand Gray sand Pebbles and cobble Pebbles Buff silt Buff silty clay Buff sand Buff sand	0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50
Neutron Access Hole 7 Samples missing Brownish sand Silt and pebbles Pebbles Pebbles and cobble Pebbles and cobble Pebbles and cobble Grayish clayey sand Grayish clayey sand Grayish clayey sand	0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

LITHOLOGY	INTERVAL (ft)
Neutron Access Hole 9	
Samples missing Buff silt Gray sand	0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45
Grav sand	45-50

APPENDIX B

GROUNDWATER MONITORING WELL LOGS

	1 8 February 1984 29.11.27.24221
DEPTH IN FEET	DESCRIPTION
0-5	Light brown clayey sand, coarse, poorly sorted, quartzose and slightly calcareous
5-10	Yellowish gray sandy pebbles and cobbles, poorly scrted, rounded to subrounded
10-12	Yellowish gray pebbly sand, very coarse, poorly sorted, felospathic and noncalcareous
12-22	Dark gray pebbly and sardy cobbles, some quartz peobles, most are volcanic, subrounded cobbles and pebbles, some clay, a little water at about 15 feet
22-25	Gray-green clayey sand becoming light yellow clayey sandstone and sandy claystone

DATE:	2 7 February 1934 29.11.27.24321
DEOTH IN FEET	DESCRIPTION
C-5	Light yellow brown silty sandy clay, very calcareous
5-10	Light yellow brown clayey sand, subrounded to subangular, moderately to poorly sorted, very calcareous
10-15	Light brown pebbly sand, clayey, very calcareous, cobbles at 15 feet
15-20	Gray sandy pebbles, poorly sorted coarse quartzose sand, pebbles are dark gray and volcanic
20 - 25	Dark gray cobbles, some quartz pebbles, mostly volcanic, some sand
25-26	Yellow gray clayey sandstone and sandy claystone

į

···

7

~

	3 8 February 1984 29.11.27.24442
CEPTH IN FEET	DESCRIPTION
C-5	Yellow brown sandy silt and clay, very calcareous quartzose
5-10	yellow brown sand, calcareous, silty and clayey, quantzose
10-15	Yellow brown sand, silty and clayey, fine-grained, vary calcareous, quartzose
15-27	Light brown clay, sandy, very calcareous, becoming peobly with depth
27-35	Gray yellow brown cobbly sand, coarse, poorly sorted, silty and clayey, volcanic pebbles small amount of water at about 35 feet
35-40	Gray coboles, pebbly and sandy, coarse sand, yellow gray clayey sandstone at about 40 feet

WELL NUMBER: DATE: LOCATION:	4 9 February 1984 29.11.27.23344
DEPTH IN FEET	DESCRIPTION
C - 5	Yellow gray-brown sandy silt and clay, calcareous
5-10	Yellow brown silty sandy clay and clayey silty very slightly calcareous
10-15	Reddish yellow-brown clayey sandy silt, silty clay, fine-grained quartzose sand, noncalcareous
15-19	Light brown coarse sand with clay and pabbles, calcareous
19-25 .	Gray mebbly sand, very coarse, poorly sorted, some clay and silt, subrounded to subangular, quartzose, pebbles rounded, slightly calcarecus
25-3C	Gray cobbles and pebbles, subrounded to rounced, volcanic; at about 25 feet, hydrocarbon small and color
30-32	Gray cobbly sand, with hydrocarbon smell and color, coarse grained, sand is quartzose and feldspathic, subrounded and subangular quartz grains are clear
32	Yellow gray clayey sandstone

...

	5 6 February 1984 29.11.26.31112
DEPTH IN FEET	DESCRIPTION
C-5	Pale yellow brown clay, silty, some sand, calcareous
5-1 C	Pale yellow brown clayey sand and quartzose silt, poorly sorted, calcareous
10-15	Yellow brown sand, subrounded quartzose sand slightly calcareous
15-20	Yellow brown sand, clayey, moderately coarse grained, very slightly calcareous
20-25	Yellow brown sand, clayey, silty, fine to medium grained, moderately sorted, noncalcareous
25-35	Yellow brown sand, silty and slightly clayey, fine-to-medium grained, well sorted, subangular, noncalcareous, becoming more clayey with depth
35-37	Yellow brown pebbly and cobbly sand, clayey, calcareous
37-47	Dark gray sandy and clayey cobbles and pebbles/ water at 42 feet
47-50	Dark gray cobbles with greenish clay
50-54	Green-gray pebbly clay

:.-

WELL NUMBER: DATE: LOCATION:	7 February 1984
DEPTH IN FEET	DESCRIPTION
0-15	Pale yellow brown sand, clayey and silty, subangular, poorly sorted, quartzose, very calcareous, becoming more clayey with depth
15-20	Pale yellow brown silt, sandy and clayey, silt is coarse, sand is very fine, moderate sorting, quartzose and calcareous
20-25	Pale yellow sand, slightly clayey, subrounded, well sorted, quartzose, noncalcareous
25 - 35	Pale yellow sand/ coarse to medium grained/ quartzose/ noncalcareous
35-41	Pale yellow sand, clayey, fine grained, silty, quartzose, slightly calcareous
41-49	Gray-black cobbles and mebbles, volcanic
49-52	Gray-green clayey sandstone and sandy claystone

APPENDIX C
1983 FIT SAMPLES

CASE NUMBER: SAS 542F

SITE NAME/CODE: Plateau Refining

_	
E 4 4	
RATT	
CONCENTRATIONS	
200	

page 1 of

				(E	CON FDA Comple	CONCENTRATIONS	ONS (ppm)			1 - 1 - 1	a a
ď	PARAMETER	177	110		1	יי בייום כדים		11.			١
7	VICE LE LE LE	3F 0FA0	MF	. M.F.	3 F	•		ω. 1 1	1	wearern	Eastern .
	Worris Tuno	2040	9249	9550	1006		4553	9554	9555	0.3. 2.	0.3.2.
	נומרו זא זאף	water	water	Water	water	5011	-	soil	water	3011	3011
	Aluminum		0.239	0?233	0.224	7.440		4 960	0 256	5.4	3.3
	Chromium					0.15)	38	36
	Barium					200		92		995	500
	Beryllium					0.61		0.28		9.0	9.0
	Cobalt					5,4				8	7
	Copper					11		5.2		2.1	14
Task 1		0.173	0.087	0.202	0.186	8,400		6.000	1.72	20,000	15,000
	Hickel					7.8		4.2		16	13
	Manganese	0.024	0.031		0.024	257		173	1.67	390	290
	Zinc		0.013	0.011	0.012	33			0.012	51	36
	Boron			0.171					0.421	22	32
	Vanadium					11				99	46
	Silver		-								1
	Arsenic					5.4		5.2	0.013	6.1	5.4
	Antimony					•			0,033	150	
	Selenium				•	0.5		0.75	0.133	0.25	0.39
Task 2										•	1
						0.018		0.05		0.055	960.0
	Tin									10	10
	Cadmium					0.59		9.0	0013		
	Lead					20		289	177	18	14
	Ammonia					10		8.5		••	1
Task	3 Cyanide .									2	1
	Sulfide							-			1
Sample	S		04	03	05	05	Blank	90	90	1. Ambient ba	ackground concen-
		CC	1 7	רכ			Blank	Æ	MC	rrations a	pply only to soil
•		Hamond	San Juan	Hamond	Hamond	Hamond	Jow	West	West	matrix sam	ples. Values ob-
Sample	Station	ditch	River	ditch	ditch	_	water	Bluff	Bluff	tained fro	m "Geochemistry
Loca	u	W. Sul-	upstream	E. Sul-	west	sidewest side	u v	seep	seep	of Some Ro	of Some Rocks, Soils,
		KIND VI		1776						י דפוני פווס	104040 704101

Reference for East/West Division is the 97° W longitudinal line which bisects Region VI.

Contermious United States" Geological Survey Pro-fessional Paper 574 F 1975.

CASE NUMBER: SAS 542F

SITE NAME/CODE: Plateau Refining

CONCENTRATIONS (ppm)

age of

						CONCENTRATIONS	ONS (ppm)				
	-	·	. !	E	EPA Sample	ple Numbers				Mean Ambient	Background 1.
PA	PARAHETER	MF : 9556	9557	8558	9559	9560 ·	9561	9562	9563	Western U.S. 2.	Eastern U.S. 2.
	Matrix Type	Soil	Water	Soil		5011	5011	Water	2011		Soil
	Aluminum	3810	0.251	9830	75.5	1950				5.4	3.3
	Chromium	2.2		9.9	0.042	449			,	38	36
	Barium	25	0.661	15	0.125	IIO				560	500
	Beryllium	0.26		1.5						9.0	9.0
	Cobalt			7.7	Γ.	2.7				8	7
	Copper	/•0		19	0.066	123	***************************************			21	14
Task 1	Iron	5230	4 56	10.800	56.5	4.420				20,000	15,000
	Nickel	2.7		10	2	15				16	13
	Manganese	490	7.23	285	16	79				390	290
	2 inc	22	0,03	45		632				51	36
	Boron		0,979		0.52					2.2	32
	Vanadium									99	97
	Silver	•								[-
	Arsenic	3	0.039	8.9	0.044	4.3				6.1	5.4
	Antimony					•				150	•
	Selenium	0.2		0.75	0.034	0.32				0.25	0.39
Task 2	Thallium									2	3
	Mercury	-								0.055	960.0
	Tin					2.4				10	10
	Cadmium	0.49		96.0	g	1.0				1	1
	Lead	24	0.067	52	0.139	43				18.	14
				10		20				1	•
Task 3										1	
	Sulfide									1	•
Sample	Station Number	0.1	07	0.8	RO	09	Blank	Blank.	Віапк	1. Ambient b	nud cond
•		MC	QC	ÄC	₩Ç.	. JW	Soil	Medium	Low	trations apply	s apply only to soil
Sample Si Location	Sample Station Location	East Bluff Seep	East Bluff Seep	Retention Poild seep	Retention Pond seep	RetentionLand farm Pond seep area		Water	1108	ଥାପ	ocks, Soils,
2. Ref	Reference for East Region VI.	East/West 1	Division	is the 97°	W lon	gitudinal line which bisects	ne which	bisects		11.150 0	us United States I Survey Pro-

Page3 of A

ASE NUMBER: SAS 542F

ITE NAME/CODE: Plateau Refining

CONCENTRATIONS (ppm)

				13	FDA Commit	J. N. mkou	Allida's para		***************************************			7
ŝ				3		Numbers				Mean Ambient	Background 1.	
4.	FARAMETER	MF						•		r n	Eastern	
		9569								U. S. 2.	. U. S. 2.	
	Matrix Type	twater								Soil	Soil	
	Aluminum	0.206								5.4	3.3	1
	Chromium									38	36	
	Barium									560	500	_
ا ا	Beryllium									9.0	9.0	
	Cobalt				٠					8		,
	Copper			٠						21	14	·
Task 1	Iron	0.172								20,000	15,000	·
	Nickel									16	13	
	Manganese	0.024			·					390	290	
1	Zinc	0.014							٠	51	36	· · · ·
	Boron	0.234								2.2	32	
	Vanadium									99	97	
	Silver										-	
	Arsenic			·						6.1	5.4	
	Antimony									150		
	Selenium	·								0.25	0,39	
Task 2	Thallium									1	•	
1	Mercury									0.055	960.0	
	Tin									10	10	, .
	Cadmium									1	ĭ	
	Lead									1.8	14	r,
	Ammonia .									i	1	 -
Task 3	Cyanide									•	9	
	Sulfide									2	3	
Sample	Station Number	10	·							1. Ambient ba	background concen-	
•		rc	•			•				trations a	ipply only to soil	
			_							matrix sam	samples. Values ob-	ŗ
Sampl	Sample Station	,			•					tained fro	m "Geochemistry	
Location	ion	•		-						of Some Ro	- I	1
			7					1	7	Flant and	Vegetables in th	e l

Reference for East/West Division is the 97° W longitudinal line which bisects Region VI.

Concermious United States" Geological Survey Professional Paper 574 F 1975. Page 4 of 4

E NAME/CODE; Plateau Refinery

E NUMBER: P1740, SAS 5427

\sim	
Ε	
۵	
5	
$\overline{}$	ı
_	í
	i
ONS	į
z	í
0	į
2	i
Ε	Į
_	i
${f I}^{ m RA}$	ı
=	ı
⊆	ı
7	į
Š	ı
O	1
ž	Į
0	1
CONCENTE	
_	Í
	i

EPA SAMPLE NUMBERS																						
EPA SAMPI				,																		
	E1867		0.014	0.038	110.0								٠						Water	blank	Hammond LC ditch water	e blank
	51865	0 011																•	Water	05	Hammond ditch	West sid
	T.I.		K	K	×												•					
	2 S.H.S.																					
ETERS	P.P.																			er		tion
	Fraction	ABN	ABN	ABN	ABN														•	Station Number		tion Loca
PARAMETERS	Compound		nknown	ıknown	ıknown						-	-			•	-		•	Matrix Type	Sample Stat	•	Sample Station Location

Priority Pollutant.
Specified Hazardous Substance.
Tentatively Identified.

TE NAME/CODE: Plateau Refinery

SE ER: 1740 5 5.00

					•		CONCE	CONCENTRATIONS			
PARAM	PARAMETERS							EPA SAMPLE	LE NUMBERS	RS	
Compound	Fraction] P.P.	S.H.S	3 T.I.	FIREE	F1868	F1'870	E1872	F1874	F1875	F1877
aphthalene	ABN			1	0000	2,400		701			
nenanthrene	ABN	×				present	present		117		
-methyl naphthalene	ABN		×			3,800			17.		
nzene	VOA	×				present			0.0124		
hyl henzene	VOV	×				5.5			7.70.0		
nluene	VOV	×				21			1:0		
.xylene	VOA		×			39.	0 22		22		
nloro benzene	VOA	×							•		
1 2 2 tetra chloroethane	VOA	×					0.0039				
ethylene chloride	VOA	X					0.006	present	present	0.018	0.004
luoro trichloromethane	VOA	X					present	1		T	
CB-1248	Pest	Х					19.2				
hrysene	ABN	X							44		
luorene	ABN	×							49		
yrene	ABN	×							16		
1. 1242	put	×							460		
limethyl benzene (13)	VOA			×		25					
oluene 362	ABN	×		×		16					
limethyl benzene isomer 516	ABN	٠		×		.50					
benzene isomer	ABN			X		00					
l benzene isomer	ABN			X		.80					
thyl benzene isomer	ABN			Υ		- nZ			resent		
hyl benzene isomer	ABN			Ϋ́		11	`.				
thyl benzene isomer	ABN			Y		06.					
ne isomer '	ABN			×		50					
4 benzene isomer /58	ABN			Υ		20					
	Type				Soll	Sofl	Sofl	5011	Soft	5011	Sofl
Sample St	ation Number	r			05	90	07	08	60		
					Hammond	West	East	Reten-		MC soll	LC soil
. Sample St	Station Location	ion			urch Lside		seep	LIUII FOND SFEP	ומיווו		חומווג

Priority Pollutant.
Specified Hazardous Substance.
Tentatively Identified.

SE NUMBER: P 1740 SAS 542F

TE NAME/CODE: Plateau Refinery

		7,017	770									0.26																				
	RS	71075	7073																													
(mdd) S1	LE NUMBERS	-1074	- TOT-	present	present									1,400	2		1								360	870	1200	present			- No-ben	
CONCENTRATIONS (ppm)	EPA SAMPLE	61072	7707																			·										
CONCE		61,070											2,600	1,400	0.075	0.051	0.127	890.0	0.15	0:18	0.097	0.066	0.36	0.28	1,800	6,100	8,300	1,400				
			902	911	18	120	110	92	120	04	100	100	74						٠							present						
		F1056											0.59	0.35																		
		T.T.	K	×	×	\ \	×	×	×	~	γ	×	×	×	×	×	×	X	×	×	Υ	Υ	Χ	×	×	×	×	χ				
		S.H.S.																														
		P.P.																												er		tion
	rers	Fraction	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ARN	ABN	ABN	VOA	VOA ~	VOA	VOA	VOA	VOA	VOA	VUA	VOA	VOA	ABN	ABN	ABN	ABN	Ð	Station Number		Station Location
•	PARAMETERS		764	800	843	879	1032	7901	1133	1155	1170	1316	1358	1447	378	.417	۶۲.	489	503	208	250	536	557	580	1089	1197	1299	1440	rix Type			ple Sta
		Compound	bstituted benzene isomer	Benzene isomer	Benzene isomer	5:Benzene isomer	kaneb.s.asa 1807.am	thyl naphthalene isomer		L	methyl naphthalene isomer .	kana.	kane	kane	thyl cyclopentane(12)	-	thy-ethyl cyclopentane isomer	cohol or alkene (12)	(12)	kane		cohol or alkene	kane	kane		kane		tuted naphthalene	Matrix	. Sample		. Sample

Priority Pollutant.

Specified Mazardous Substance.

Tentatively Identified.

.

Fage 3 or /

SE NUMBER: P 1740 SAS 542F

TE NAME/CODE: Plateau Refinery

CONCENTRATIONS (ppm)

	1							CONCE	CONCENTRALLONS (PPE)	(S (ppm)			
				: • . !					EPA SAMPLE	PLE NUMBERS	RS		
•	PARAMETERS	TERS											
		1	0 0	2 0 0	٠ د								
Cohol or alkana	1445	ABN	1		**** F.18bb	1868 - F1868	T	130	27813	E18/4	-18/5	F18//	
	201		1		\ \ \ \		- 1	110:	000	present	K		
	1483	ABN			×	present	- 1	3,900	0.32	1600	0.3		
ulcohol or alkene	1536	ABN			×	-	=	90		present			
ılkane	1568	ABN			×	present		9,200					
ılkane	1572	ABN			X		ST.	H .300:		1900			
ılkane	1648	ABN			×		٥	p,800					
ılkane	1655	ABN			×		٥	2,200		1000			
ilkane	1724	ABN			×		اما	6,600		1,100			
ılkane	1611	ABN .			×		-	4,300		1,100			
alkane	1866	ABN			×		7	2,400		present			
alkane	1933	ABN			×		F	1,500		850			
alkane.	1998	ABN			×			900		800			
alkane	2059	ABN			×			610		940			
alcohol or alkene	400	VOR			×					0.78			
dimethyl cyclohexane isomer	466	VGA			×					0.65:			
cyclohexane	47/9	VOA:		-	×					0.66			
alkane	200	VOA			X					0.73			
alkane	513	VOA			Υ				-	60.0			
alkane	552	VOA			×	·				1.3			
dimethyl benzene isomer	602	VOA			×					1.2			
	. 678	YOA			×					9.0			
alkane	1524	ABN			×		t)	.500			·		
	-												
	-												
Matrix	rix Type	e											
Sample		Station Number	er										
	Sample St	Station Location	tion							•			-
	1												
			•										

1. Priority Pollutant.
2. Specified Hazardous Substance.
3. Tentatively Identified.

ASE NUMBER: P 1740 SAS 542F

SITE NAME/CODE: Plateau Refinery

		-	•						CONCE	NTRATION	(mdd) SI			
										EPA SAMP	EPA SAMPLE NUMBERS	RS		
		PARAMETERS	TERS											
,	Compound	•	Fraction	P. P.	2 S.H.S.	T.I.	F1866	F1868	F1870	F1872	F1874	F1875	F1877	
alkane		2131	ABN		1	k		present	present		950			
alkane		2253	ABN			×				-	970			
alkane		2330	ABN			~					100			
lkane		2423	ABN			×					1000			
lkane		2535	ABN			×					1100			
lkane		2/92	ABN			×					1001			
lkane		2833	ABN			×					870			
lkane		1363	ABN			×					850			
nknown		.2589	ABN			×						3.5		
		٠												
	·													
	٠	11												
					•			٠						
•														
â														
		•												
		٠			:-									
	•													
		-												
			e											
		Sample Sta	Station Number	er										
					·									
		Sample Station Location	tion Loca	tion										
				•		•			٠					
Tenta	Specified Hazardous Sub Tentatively Identified,	substance. ed.	•											
	; ; ;		•											

ASE NUMBER: 1740 SAS 542F

ITE NAME/CODE: Plateau Refinery

CONCENTRATIONS (ppm)

Beck of

-	PARAMETERS	TERS							EPA SAMP	EPA SAMPLE NUMBERS	RS		
Compound		Fraction	P. P.	S.H.S.	H. T.	F1861	F1862	E1863	11864	E1060	71071	64047	0.50
alkane	1243	ABN			×	1001	0.008	0.0075	000	71009	718/1	118/3	18/6
unknown		VOA			×				0.12				
Jenzene		VOA	×						1	0.45	4		
1, 2-dichloroethane		VOA	×							0.058	4.4		
loluene		VOA	~							0.074			
scetone		VOA		×		ļ				present	0.48		
J-xylene		VOA		×						0.2	36	ח חחקב	Ì
cyclohexane		VOA			×					0.0088	27.0	2000	Ī
methyl cyclopentane		VOA			×					0.0068	1.0		Ì
1, 2-dibromo ethane		VOV			×					0.018			Ì
methyl cyclonexANE	,	VoA			~					0 0073	0 0		
	1025	ABN			×					0.25	05-7		
unknown	1074	ABN			×					20.0			ĺ
unknown, alkane	1242	ABN			×					800	000		600
phenol		ABN	×								+400000		52017
2-methyl phenol	÷	ABN	×	-							present		İ
البها		ABN	×								1 6	+ 40000	
2-methyl naphthalene		ABN		*					ŀ		3.0	חובאבוור	
ethyl benzene		VOA	×								V:46		
2-butanone		VOA		×							present		
2-hexanone		VOA		×							0.28		i
4-methyl-1-8-PENTANONE		VOA		×							present		İ
2-methyl hutane .		VOA		>'	×						0.05		İ
hexan		VOA			X						0.11		İ
alkane	,	VOA			×						0.24		j
unknown .		VOA			×						1.6	l	
M	Matrix Type	e				water	water	water	water	water	er	V.	Water
₹S	Sample Sta	Station Number	ı,			01	0.5	04	03	90	10		BTank
•							Hammond Ditch W	rar	Hammone Ditch E	dWest Bluff	East Bluff	Reten- pond	Med. conc
Š	ample Sta	Sample Station Location	ton				SIDE SULLUPSTRE	3	SIDE SULL	seep	\Box	SEEF	
•					l	ļ.		ı					

Specified Hazardous Substance.
Tentatively Identified.

ASE NUMBER: P 1740 SAS 542F

IIE NAME/CODE: Plateau Refinery

CONCENTRATIONS (ppm)

F1876 present F1873 0.064 0.035 0.054 0.084 0.072 0.0910.84 0.11 0.08 0.8/ $0.11 \\ 0.23$ F1871 0.39 0.04 0,32 0.14 12.0 EPA SAMPLE NUMBERS F1869 F1864 F1863 F1862 F1861 S.H.S P.P. Matrix Type Sample Station Number Fraction ABN ABN ABN ABN ABN ABN ABN ABN ABN ABN SS ABN ABN ABN PARAMETERS 756 789 819 1097 981 911 961 970 1066 1283 497 1157 imethyl naphthaleng isomer imethyl benzene isomer Compound -4 benzene isomer ubstituted benzene ethylene chloride C-3 benzene isomer -3 benzene isomer -3 benzene isomer -3 benzene isomer -4 benzene isomer nknown nknown nknown nknown lkane kane kane lkane kane kane kane kane 1 kane alkane

Sample Station Location

Priority Pollucant. 3.7.

Specified Hazardous Substance. Tentatively Identified.

TABLE II OPCANIC ANALYSIS SUMMARY

NUMBER: P 1740 SAS 542F

E NAME/CODE: Plateau Refinery

		·	1-	1-	T	1-	1	T -	-	٦-	T	· • –	 1 -	 T	7		 •		,								
		F1876	-																								
		F1873	0 25	0.17	0.06	0.22	0.16	0.25	0.093																		
	RS	-1871																									
(mad) SI	LE NUMBE	- F1869																									
SNTRATION	EPA SAMPLE NUMBERS	F1864			,																						
CONCE		F1863																		·							
		F1862																					٠				
•		3 - F1861		-																							
٠		T.I.	×	×	X	×	×	×	×																		
	·	S.H.S.																									
		P.P.																							L.	ion	•
	ERS	Fraction	ARN	ABN	ABN	ABN	ABN	ABN	ABN																Station Number	Station Location	
-	PARAMETERS		707	1012	1140	1163	1294	1376	1526					-	٠	1.1				•	-	-			Sample Stat	Sample Stat	
		Compound	นคงน	3.dibydro-1H-inden-l-one	nown	บลุงเ	ane	ane	ane			٠												Mat	San	San	

Priority Pollutant.

APPENDIX D
1984 FIT SAMPLES

Plateau Inc. Refinery Bloomfield, NM Summary of Sample Data

These samples (Stations 01-29) were taken by FIT.

NOTE: As an example to clarify this summary, unknowns (19-55,640 ppb) indicates that 19 unknowns were detected at a total concentration of 55,640 ppb.

Station 01: Hammond Ditch, upstream

Water

Organics: none Inorganics: none

Soil

Organics:

di-n-octyl phthalate (2300 ppb), alkanes (2-1020 ppb),

unknowns (19-55,640 ppb)

Inorganics:

none

Station 02: Hammond Ditch, below API separator pond.

Water

Organics:

Substituted benzenes (3-245 ppb), unknowns (20-1487 ppb)

Inorganics:

none

Soil

Organics:

Polynuclear aromatic hydrocarbons (4-18,810 ppb),

unknowns (21-268,300 ppb)

Inorganics:

none

Station 03: Hammond Ditch, below freshwater pond.

Water

Organics:

xylene (7.3 ppb)

Inorganics:

none

Soil

Organics:

alkanes (3-1245 ppb)

Inorganics:

none

Station 04: Hammond Ditch, downstream

Water

Organics:

none

Inorganics:

none

Soil

Organics:

alkanes (11-45,000 ppb), unknowns (11-49,900 ppb)

Inorganics:

none

Station 05: Spray irrigation area

Soil

Organics:

Di-n-octyl phthalate (440 ppb), toluene (1100 ppb),

heptanol (690 ppb), unknowns (3-1140 ppb)

Inorganics:

none

EPTox:

none

Station 06: Spray irrigation area

Soil

Organics:

Toluene (1700 ppb), unknowns (2-1770 ppb)

Inorganics:

none

EPTox

none

Station 07: Landfarm, west end

Soil

Organics:

unknowns (9-6220 ppb)

Inorganics:

none

EPTox

none

Station 08: Landfarm, east end

Soil

Organics:

Polynuclear aromatic hydrocarbons (6-4370 ppb), alkanes

(20-467,043 ppb), unknowns (9-131,049 ppb), o-decyl

hydroxyl amine (22,000 ppb)

Inorganics:

Chromium (69.5 ppm), zinc (73 ppm).

EPTox

none

Station 09: Tamerisk Area

Water

Organics:

none

Inorganics:

none

Soil

Organics

unknowns (4-12,620 ppb)

Inorganics

none

Station 10: Arroyo #1, below evaporation ponds

+..

Water

Organics:

none

Inorganics:

iron (46.5 ppm), maganese (17.1 ppm)

Soil

Organics:

toluene (920 ppb), alkanes (2-29,700 ppb), unknowns

(7-31,500 ppb)

Inorganics:

manganese (922 ppm)

Station 11: Transportation terminal sump

Water

Organics:

Aromatic solvents (4-169 ppb), other aromatics (5-3150

ppb), alkanes (25-37,130 ppb), 1,2-dichloro propane (8

ppb)

Inorganics:

none

Soil

Organics:

Polynuclear aromatic hydrocarbons (3-146,000 ppb), aromatic solvents (2-25,300 ppb), vinyl acetate (2400

ppb), methyl cyclohexane (14,000 ppb), substituted benzenes (3-131,000 ppb), unknowns (15-8,210,000 ppb)

Inorganics:

Cadmium (2.2 ppm)

High Concentration Oil:

Organics:

Polynuclear aromatic hydrocarbons (5-810,000 ppb),

alkanes (18-75,830,000 ppb)

Inorganics:

chromium (40 ppm), cadmium (1.3 ppm)

Station 12A: South evaporation pond

Soil

Organics:

Phenols (4-12,850 ppb), polynuclear aromatics (5-3410

ppb), aromatic solvents (4-13,380 ppb), other solvents

(4-2,340 ppb), alkanes (8-11,415 ppb), unknowns

(22-69,396 ppb), aniline (present)

Inorganics:

chromium (347 ppm), copper (50 ppm), zinc (146 ppm)

EPTox: ..

Reactive, sulfide (285 ppm)

```
Station 12B South evaporation pond
```

Water

Organics:

Phenols (4-20,840 ppb), toluene (450 ppb), 2-methyl

propane (12 ppb)

Inorganics:

none

Soil

Organics:

Phenols (4-4120 ppb), polynuclear aromatics (2-present),

aromatic solvents (3-210 ppb), other solvents (3-741 ppb), alkanes (5-121 ppb), unknowns (11-8195 ppb),

aniline (present)

Inorganics:

none

EPTox

none

Station 13A North evaporation pond

Water

Organics:

none

Inorganics:

none

Soil

Organics:

4-methyl phenol (1300 ppb), 2-methyl naphthalene

(present), alkanes (7-223 ppb), unknowns (12-7510 ppb)

Inorganics:

none

EPTox

Reactive, sulfide (362 ppm)

Station 13B North evaporation pond

Soil

Organics:

4-methyl phenol (660 ppb), 2-methyl naphthalene (present), acetone (126 ppb), xylenes (46 ppb),

hexadecanoic acid (770 ppb), alkanes (8-310 ppb),

unknowns (14-5147 ppb)

Inorganics:

none

EPTox

none

Station 14 Pond, north of Landfarm

Water

Organics:

Pentachlorophenol (56 ppb), fluoranthene (32 ppb),

phenanthrene/anthracene (38 ppb), unknowns (7-180 ppb)

Inorganics:

none

Soil

Organics:

unknown (1-870 ppb avg)

Inorganics:

Manganese (580 ppm), iron (poor duplicate

agreement-29,550 & 3,690 ppm)

EPTox

Reactive, sulfide (238 ppm)

Station 15 Landfarm, sludge on south side

High Concentration

Organics:

Chrysene, 2-methyl naphthalene, N-nitroso diphenyl amine, xylenes and diethyl phthalate all present, acetone (32,000 ppb), alkanes (26-4.381,200 ppb).

un knowns (4-389,000 ppb)

Inorganics:

Aluminum (30,000 ppm), chromium (1760 ppm), barium (600 ppm), copper (200 ppm), iron (16,800 ppm), zinc (12,000 ppm), arsenic (12 ppm), cadmium (1.1 ppm), lead (42

ppm).

Station 16 Landfarm, sludge on east side

High Concentration

Organics: Xylenes (260,000 ppb), vinyl acetate (54,000 ppb),

polynuclear aromatics (3-present), acetone, toluene and ethyl benzene present, alkanes (29-15,486,000 ppb), unknown (1-154,000 ppb), substituted benzene (1-510,000

ppb)

Inorganics: Aluminum (14,800 ppm), chromium (1,880 ppm), barium

(400 ppm), copper (200 ppm), iron (13,200 ppm), zinc (1,480 ppm), arsenic (12 ppm), cadmium (1.3 ppm), lead

(44 ppm-triplicate analysis)

Station 17 Seepage area, below runoff pond

Water

Organics:

none

Inorganics:

Aluminum (32.4 ppm), manganese (51 ppm)

Soil

Organics:

Alkanes (2-14,700 ppb), unknowns (9-10,900 ppb)

Inorganics:

Cobalt (12.5 ppm), manganese (4,580 ppm)

Station 18 Seepage area, leachate spring on face of bluff.

Water

Organics:

Aromatic solvents (4-1,961,000 ppb), polynuclear aromatics (3-11,200 ppb), alkanes (14-960,800 ppb), unknowns (8-451,600 ppb), substituted benzenes (11-2,612,000), substituted naphthalene (present)

Inorganics:

Manganese (7.19 ppm)

Soil

Organics:

Polynuclear aromatics (4-87,000 ppb), aromatic solvents

(4-579 ppb), alkanes (19-756,714 ppb), unknowns

(9-339,070 ppb), substituted benzenes (7-343,469 ppb),

substituted naphthalene (210,000 ppb)

Inorganics:

Manganese (347 ppm)

High Concentration

Organics:

Polynuclear aromatics (5-2,710,000 ppb), aromatic

solvents (4-29,300,000 ppb), other solvents

(3-1,310,000 ppb), N-nitrosodiphenylamine (76 ppb), alkanes (14-18,241,000 ppb), unknowns (3-2,179,000 ppb),

substituted benzenes (10-19,352,000 ppb)

Inorganics:

Chromium (80 ppm)

Station 19 River terrace, stain on western edge

Soil

Organics:

Polynuclear aromatics (3-480,000 ppb), alkanes (7-1,370,00 ppb), unknowns (5-1,060,000 ppb), substituted benzenes (7-997,000 ppb), substituted

naphthalenes (3-550,000 ppb)

Inorganics:

none

Station 20 Arroyo #2, west side of river terrace

High Concentration

Organics:

Acetone, naphthalene, toluene, 2-hexanone and

di-n-butyl phthalate all present

Inorganics:

Aluminum (37,200 ppm), chromium (160 ppm), barium (400

ppm), iron (15,000 ppm), lead (29 ppm)

Station 21 San Juan River, upstream

Water

Organics:

Unknowns (6-522 ppb)

Inorganics:

none

Soil

Organics:

1,1,2-tricholorethane (430 ppb),

1,1,2,2-tetrachloroethane (820 ppb), unknown (7700 ppb)

Inorganics:

none

Station 22 San Juan River, downstream

Water

Organics:

unknown (26 ppb)

Inorganics:

none

Soil

Organics:

1,1,2-trichloroethane (610 ppb),

1,1,2,2-tetrachloroethane (950 ppb), di-n-octyl

phthalate (680 ppb), unknowns (3-2460 ppb)

Inorganics:

none .

Station 23 South API separator pond

x Link ford

Water

Organics:

Phenols (4-9620 ppb), polynuclear aromatics (5-860 ppb),

arcmatic solvents (4-12,800 ppb), aniline (220 ppb), substituted benzenes (5-8730 ppb), unknowns (4-1890

ppb), others (4-1460 ppb)

Inorganics:

none

High Concentration

Organics:

Polynuclear aromatics (4), aromatic solvents (4-384,000

ppb), other solvents (2-160,000 ppb), alkanes

(25-4,347,000 ppb), substituted benzenes (2-358,000

ppb), unknown (92,000 ppb)

Inorganics:

Chromium (240 ppm), zinc (160 ppm), lead (91 ppm)

EPTox

Reactive, sulfide (410 ppm)

Station 24 Northeast API separator pond

Water

Organics:

Phenols (4-13,700 ppb), aromatic solvents (4-5430 ppb), other solvents (3-4840 ppb), 1,1-dichloroethane (7.3 ppb), substituted benzenes (2-3390 ppb), alkanes (7-2207 ppb), other (82 ppb), 3-ethyl phenols (200 ppb).

Inorganics:

none

High Concentration

Organics:

Inorganics:

xylenes, toluene, acetone, 2-hexanone all present, aluminum (27,600 ppm), chromium (160 ppm), barium (400

ppm), zinc (80 ppm), lead (17 ppm)

EPTox

Reactive, sulfide (158 ppm)

Station 25 Northwest API separator pond

Water

Organics:

Phenols (4-20,120 ppb), aromatic solvents (4-15,520 ppb), aniline (440 ppb), 2-methyl napthalene present, other solvents (3-2948 ppb), alkanes (9-4333 ppb), substituted benzene (1-3299 ppb), unknown (1-5100 ppb).

Inorganics:

none

Station 26 Small pond north of API separator and Hammond Ditch

Water

Organics:

Alkanes and unknowns (2-85 ppb)

Inorganics:

none

Soil

Organies:

Polynuclear aromatics (12 below detection limits), phenanthrene (950 ppb), unknowns (23-42,140 ppb)

Inorganics:

Copper (107 ppm), manganese (322 ppm), zinc (228 ppm),

lead (28 ppm)

Station 27 Plateau Well #4

Water

Organics: Aromatic solvents (3-19,000 ppb), 2-methyl naphthalene

(70 ppb), naphthalene (200 ppb), substituted benzenes (7-99,850 ppb), alkanes (23-233,938 ppb), unknowns

(12-26,935 ppb), organic acids (2-320 ppb)

Inorganics:

Aluminum (31.8 ppm), iron (57.7 ppm), manganese (7.62

ppm)

Station 28 Plateau Well #5

Water

Organics:

Ethyl benzene (31 ppb), xylene (6 ppb), alkanes

(4-37ppb)

Inorganics:

Aluminum (76 ppm), iron (70.6 ppm)

Station 29 Plateau Well #1

Water

Organics:

none

Inorganics:

aluminum (11.6 ppm), iron (20.9 ppm)

Polynuclear aromatic hydrocarbons include naphthalene, fluorene, phenanthrene, anthracene, 2-methyl naphthalene, fluoranthene, benzo(a) anthracene, pyrene, benzo(b) fluoranthene, benzo(k) fluoranthene, acenaphthene, chrysene, benzo(ghi) perylene, dibenzofuran and ideno(1,2,3-cd) pyrene.

Aromatic solvents include benzene, toluene, ethyl benzene and xylenes.

Phenols include phenol, 4-methyl phenol, 2-methyl phenol, and 2,4-dimethyl phenol.

Other solvents include acetone, carbon disulfide, vinyl acetate, 2-hexanone and 2-butanone.

Metals are listed if sample concentration appears to be elevated in comparison to other samples in the same matrix (soil, water).

Plateau Inc. Refinery Bloomfield, NM Summary of Sample Data

These samples (Stations 001-008) were taken by U.S. EPA, Region VI. EPTox includes testing for ignitibilty, corrosivity and reactivity.

Stations 001 API Separator effluent

Water

Organics:

Polynuclear aromatics (6-1968 ppb), aromatic solvents (4-11,700 ppb), phenols (3-1350 ppb), total phenols (10,800 ppb), smiline (380 ppb), diethyl phthalate (74 ppb), substituted benzenes (2-1330 ppb), substituted naphthalenes (2-1942 ppb), creosols (2-1280 ppb)

Inorganics:

none

EPTox

None

Station 002 API Separator influent

Water

Organics:

Aromatic solvents (4-9180 ppb), polynuclear aromatics (7-1670 ppb), phenols (3-870 ppb), total phenols (2930 ppb), aniline (80 ppb), diethylphthalate (210 ppb), substituted benzenes (2-2070 ppb), substituted naphthalenes (2-1440 ppb), creosols (2-560 ppb)

Inorganics:

None

Oil

Organics:

Aromatic solvents (4-82,700,000 ppb), polynuclear aromatics (3-6,800,000 ppb), chlorobenzene (2,800,000 ppb), 1,1,1-trichloroethane (1,700,000 ppb), methylene chloride (6,700,000 ppb), total phenols (23,300 ppb),

diethyl phthalate (2,000,000 ppb), alkanes

(5-117,000,000 ppb), substituted benzenes (5-29,800,000 ppb), substituted naphthalenes (10-38,779,000 ppb, 12

below detection limit)

Inorganics:

None

EPTox

Ignitable (flash point 24°C).

Station 003: API Separator sludge, east end

Oil/Sludge

Organics:

Aromatic solvents (4-4,730,000 ppb), polynuclear aromatics (3-140,000 ppb), total phenols (82,800 ppb), diethyl phthalate (150,000 ppb), alkanes (15-17,000,000 ppb), substituted benzenes (3-790,000 ppb, 2 below detection limit), substituted napthalenes (2-450,000

ppb, 17 below detection limit)

Inorganics:

Chromium (883 ppm), copper (875 ppm), nickel (83 ppm), zinc (1370 ppm), arsenic (36.8 ppm), lead (372 ppm)

EPTox:

Reactive, sulfide (4300 ppm).

Station 004

API Separator sludge, west end.

Oil/Sludge Organics:

Aromatic solvents (4-6,890,000 ppb), poly nuclear aromatics (5-140,000 ppb, 4 of 5 below detection limit). diethyl phthalate (150,000 ppb), 1,1,1-trichloroethane (8,400 ppb), alkanes (15-23,210,000 ppb), substituted benzenes (4-775,000 ppb, 1 below detection limit), substituted naphthalenes (6-975,000 ppb, 14 below

detection limit)

Inorganics:

Chromium (502 ppm), copper (967 ppm), nickel (83.4 ppm),

zinc (946 ppm), arsenic (34.5 ppm), cadmium (4.1 ppm),

lead (425 ppm)

EPTox

Reactive, sulfide (3000 ppb)

Station 005

EPTOX

Spent Caustic - Come rost tank - caustic is from a process

caustic (pH 12.8)

reactive, sulfide (16,800 ppm)

The pipes and the tank >

Station 006

Drum in north boneyard.

Oil

Organics:

Aromatic solvents (4-12,880 ppb), cholorbenzene (340 ppb), l,l,l-trichloroethane (1,800 ppb), bis(2-ethyl hexyl) phthalate (1,600,000 ppb), diethyl phthalate (140, 000 ppb), total phenols (12,500 ppb), others

(3-1,980,000 ppb)

Inorganics:

None

EPTox

None

Station 007

Drum in north bone yard

Organics:

Aromatic solvents (4-17,370 ppb), chlorobenzene (720 ppb), 1,1,1-trichloroethane (2600 ppb), methylene chloride (4300 ppb), diethyl phthalate (270,000 ppb),

phenanthrene present, total phenols (4,140 ppb)

Inorganics:

None

EPTox

None

Station 008

Drum in north boneyard.

Oil/Sludge

Organics:

Aromatic solvents (4-31,450 ppb), chlorobenzene (3100 ppb), methylene chloride (900 ppb), naphthalene, diethyl phthalate and phenanthrene present, total phenols (5,600 ppb), alkanes (7-119,500 ppb), substituted naphthalenes

(2-570,000 ppb, 17 below detection limit)

Inorganics:

chromium (57.1 ppm), zinc (270 ppm), arsenic (2.5 ppm)

EPTox

None

Transportation Yard drum (assumed Station 009)

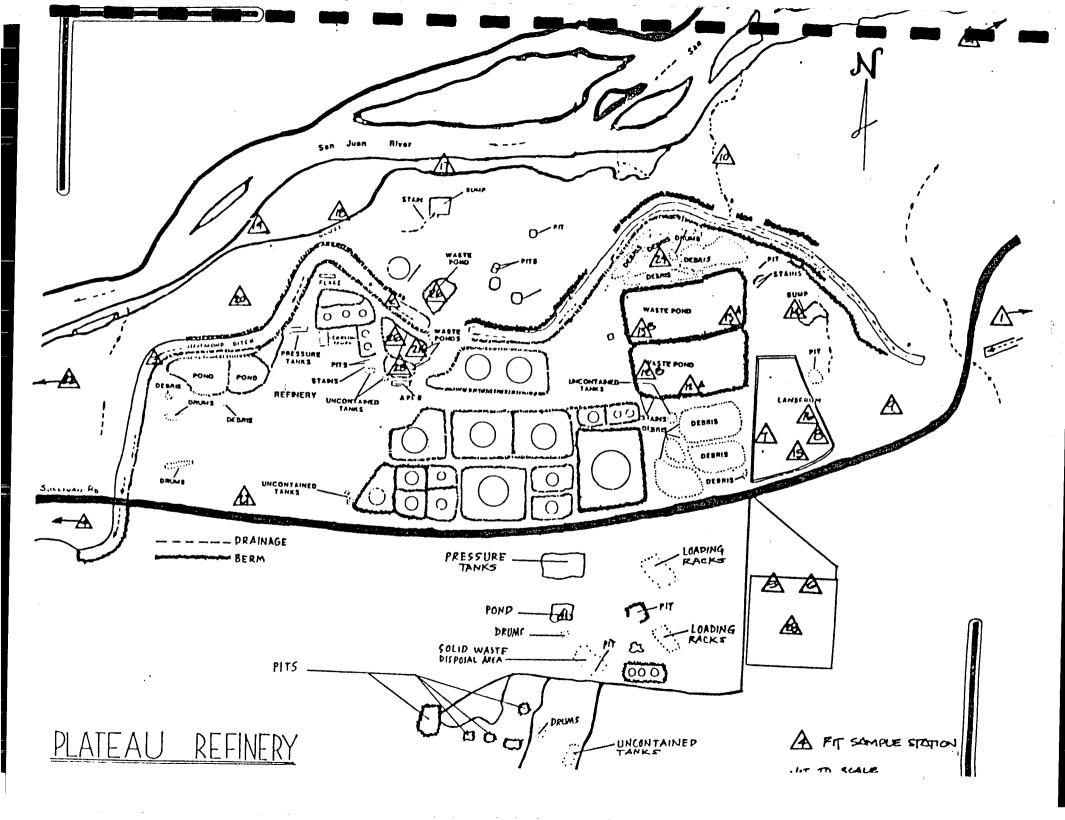
·..

0i1

Organics:

Aromatic solvents (4-144,130,000 ppb), cholorbenzene

(620,000 ppb), alkanes (2-48,700 ppb), substituted


benzene (1-90,000,000 ppb).

Inorganics:

Not analyzed

EPTox

None

2573 ASE MUMBER: ITE NAME/CODE: Plateau Refinery NM 1586

EP TOXICITY

CONCENTRATIONS (ppm)

•	_												_													٠.				_	1	Լ, ,			
	Background 1.	• •	0.3. 2.	000	91.	300		0.0			000, 61	000	26.7	07	3,	91,		١,٠ς	,	0.39		960 0	2013		1,1		1		buc kr round		tx sumples.	Some Rocks,	and Vegeta-	States" Geological	Professional Paper
A 1. 1. 1. 1.	Amolent Bac	Western		000 75	H.	260	9 0	2	2	000 01	-:	001	200	6.6.	77	00	06.5	6.1	<150	0.25	,	0.055	01>		81		,	-	1. Ambient b	rati	to soil matrix	try of	Soils, Plant	United States" Geologics	
		AR 418	CI WAGE KEEN			1.57																	1:-					362	LSA	S.E.	N. EVAP-	PONO			
		AR 417	SUMERKEN			1.23																	7.9					65.7	138	S.W.	N. EVAP-	ORATION POND			
		AR 416	SLVOGE/SEA			1.45																	8.7				0.20	158	24	VE	_			which bigects	i i i
200		AR 415	Subce Ken	A STATE OF THE PARTY OF THE PAR		1.55																	9.1		0.032		1.02	410	23	5-				line which	
Numbers		AR 414	TWO PHASE																				4.2*	1		43.3C-0AC				TRANSPOR- TATION	7480	(* or (* v * v * v * v * v * v * v * v * v *	1077	dinal li	
Sample		AR 413	Soil			0.797																						238	14	SUMP	8			W longitudinal	; (C
ΕPΛ		AR 412	2011		0.077	1.42																					0.94		30	EASTEND		DEPTH		the 97" W	1
		AR 411	5011		0.024	0.967																							07	WESTEND LANDFARM	7-4	DEPTH		ř.	Jun 14 Au
		AR 410	1			1.16																							90	135'N.OF	SPRAK	IKR 16ATON		ut Division	יין ניטו
		AR 409	Soil			0.584																					1.13		05	85'E.OF	SPRAT SPRAT 2-4 1-3'	TRKIGATION		for Engt/Went	
	PANAMETER		Hatrix Type	Aluminum	Chromium		Heryllium	Cobalt	Copper		Nickel	Hanganese	2 inc	Noron	Vanadium	Silver	Arsenic	American	Aut thony	3616H1HM	Thallum	Mercury	H	Cudmium	Lend	FLASH POWT		Sulfide	Station No.		Sample Station	Location			Region VI.
Ì			ı							Ţ	2 K	P					1		7	¥	כ ס	t		f	۲	2 K	51	1	1		S		١		'

*Aqueous Phase

TTE MANE/CODE:

ASE NUMBER:

CONCENTRATIONS (anm)

						CONCENTIVAT' TONS	ONS (ppm))				
				EPA	Sample Numbera	Numbera					Ambient Back	Background 1.
rakaneter K	AR 419	AR 420	AR 401	AR 402	AR 403	AR 404	AR 405	AR 406	AR 407	AR 408	י ב	Eastern
Matrix Type		SLUDGE/SED SLUDGE/SED AQUEDUS	PAGVEOUS	014	QULT SLUDGE	SLUDCA DILY SLUDGE	ARVEOUS	710	7/0	OILYSLUNCE		Soil
MUUTUUI A.											54,000	33.000
Chromium						0.125					3.8	36
Bartum	0.991	1,18	0.415	2.18	2.02	2.97	0.482	90.0		1.39	260	300
Heryllum											9.0	9.0
Cobalt											3	1
Comper											21	1)]
lron											20 000	000 51
S Nickel											000101	000, 61
- Hanganese											Ont	00%
. Zinc											200	2.70
Horon											1	000
Vanadium		-									77	75
Silver											99	94
Arenne							E				<.50	_
VI 3CIII C							717				1.9	5.4
, Ancimony											<150	
				412	0.437	0.249	412				0.25	0.39
Thallium												
Hereury				<0.97							350 0	0000
AH	7.9	7.9	8.8	7.4*	9.5	8.9	12.8	¥ P - 9	6.7*	7 8	(10.0)	0.070
_				<1 93						, ,		
Lend						0 033					3-	
ELASH POINT	1			24°C	>716 C	711/		×710 C	7110	-	0 1	57
1		13			2			3 1/2	3			
Sulfide		285	10	43	4300	3 000	16 800	17	11	22		
Station No.	12R	120	001	002	003	000	2000	000	700	600	1	
	W.END	MIDDLE	APE	APE	٦,	APISED.	Ť	T	13	000	זי אווסופער סנ	xg round
	S.EVAP-		SEPARATOR	SEPARATOR	_	_	$\overline{}$			Noora Noora		
inmple Station			EFFLUENT	EFFLUENT INFLUENT SLUDGE		SLVDGE		9	BONETARD	BONETARD	Values obtained	ix amples.
weation	LONO					E NO		•			The mian	Some Rocks
					ENO						Soils, Plant	and Vegeta-
Ry for one	for Engl/Wour			07 20 014							اءا	the Conterminous
•				10	tong tenatuat	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ne varen	Disects		•	- 1	Geolog tenl
· Concentration corrected	ion correc		for lab blank concentration	concent	ration						saivey froles	Frolessional Paper

Concentration corrected for Inb blank concentration

*Aqueous phase

SAMPLES COLLECTED BY EPA

HITE MAME/CODE; Plateau Refinery NM 1686

2573

SASE NUMBER:

!							CONCENTIVATIONS (ppm)	ONS (ppm.			
					EPA	Sample	Numbern			Ambient Background	kground 1.
	LAKARIETEK	40 401	707 40	402		70V 0V	AD ADS	707 dv	807 40	Менсеги	
!	Matrix Type	+	Water	0116	017/5TMA 011	111/64000	\$5	0110		0.5.2.	U.S. 2.
•	ΛΙտաίոυտ									37,000	1105
	Chronnium	-			883	502			57.1	 200° 1.0	000,00
	Barium			2.18				3.4		260	000
	Beryllium									9.0	9 0
,	Cobalt									9	2.0
I					875	296			2.92	21	1/1
' K	I ron Nickal	-	1000		6	,				20,000	15,000
s e _	<u> </u>		17000		33	83.4			13.1	91	1.3
L ——	1_	0.000			1370	0.4.5		•		390	290
	Noron	CUCULU -			13/0	340			270	5.1	36
_	Vanad i um									2.2	3.5
	Silver								1	99	917
!	Arsenic				0,00	7.00			, k	<.50	
	<u> </u>				30.05	34.3		1	6.5	1.9	5.4
7										<150	\$
2 K	1									0.25	0.39
51	1									1	1
	1				*	*				0.055	0.096
l.	Cadmina					- 1				<10	(10
l۲	1_					4 1				->	\
' K	1				312	425	Ì		17.8	118	1/1
9 2	1									1	1
	}	10							+	:	3
; i	Station No.	001	002	200	003	004	900	700	008	 	,
	•	0.70	A P.E. SEPARATOR	APE	APE	200	₹.	3	DRUM IN	concentratio	 Amblent one Kground concentrations apply only
υ: 	Sample Station	JEFFLUENT	INFIVENT	INFLUENT	SLUBGE	₹	0	BONETARD	BONETARD	 Values obtained	matrix anaples.
- 1	location				ENO ENO	WES' END				 	Some Rocks,
	Region VI.	Enst/West	ut Divis	Division is the 97°	he 97" W	longitudinal	dinal line	ne which	which bisects	United States" Geological Survey Professional Paper	in the Conterminous ed States" Geological
_		ו בטונהכו	המ נסג י	tor Inb blank concentration	concent	ration				,	

^{*} Not analyzed

VSE NUMBER:

ITE MAHE/ CODE: Plateau Refinery (NM 1686)

CONCENTIVATIONS (ppm)

·		1		1		_	_	_	-		_		,	1	-, -	<u>.</u>		_ -	_				r						>		ŗ	<u> </u>	. •
keround 1.	Enstern		000	1)(300	9.0		7/1	000 51	2001	290	91.	61.	177		7 3		01. (1)	60	700 0	0.030			1,1	-		1	background	ns apply only	Hann ple			-11 10 X 10 X 10 11 III
Ambient Background	Western	5011	54, 000	38	560	9.0	=	21	20 000	91	390	5	7.7	1)1)	05 >	2000	1.50	200	7.0	0.055	(1)			81		1	ŧ	1. Ambient b	concentrations	to soil matrix	Values obtain	chemistry of	30113, 11000
	MF 1155	Water	0.6						0.5		0.03										94/	200						22	SOFT.	UPSTREAM	FROM HWY	5.80NK	
	MF 1153	Water	0.8						0.75		0.06							0000	Navio		ND	0011						21	_				
	MF 1148	Water							0.1		0.165							200	٩.		NOR	OON					•	14	MID SUMP	E.OF	באקראדון (פאר סייון)		
	MF 1145	Water	3.6		0.4				46.5		17.1	0.01				0 041		0.005			NOR	0011					X	7.0	ARROVO	BELOW	FV480047	POND	
Numbera	MF 1144	Water	1						0.65		0.27							0.013			NOR	001					90	60	,S.	AREA	:		
Sample	¥	Water	0.8	0.04				0.1	0.95		0.015	0.1						0.005			NDB	OON						BLANK	FIELD	DLANK			
EPA	MF 1136	Water	9.5		0.3				3.7		2.04										NDR	2011					0.3	S	3.84VK	DITCH	A DJACEUT	FRESHWATZA	Cana
	MF 1138	Water			0.1				9.0		1.38							0.006			NDB						0.0	70 8	S. BANK	Ş	747	TOAPE	
	MF 1131	Water	4.2		0.1				3.85		1.62	0.01						0.006			NOR	-					100	10	01	27.70	Vrsikead Dilan		
	MF 1130	Water	-		0.4				1.05		0.165							0.003			NOR						100	5	447777		1	STREAM	
	PARAHETER	Matrix Type	Α 1 տա i n տա	Chromium	Rarium	Beryllium	Cobalt		lron	Nickel		Z.1.nc	lloron	Vanadium	Silver	Arsenic	Antimony		Thallium	Mercury	Tin	Cadmium	3 Lend	Ammonta	Cynnide	Sullide	ON HOLLING				tation	11011	

No ference for Enst/West Division is the 97" W longitudinal line which bisects Region VI.

Concentration corrected for lab blank concentration

bles in the Conterminous United States" Geologient Survey Professional Paper

ITE NAME/CODE:Plateau Refinery (NM 1686)

ASE NUMBER:

CONCENTRATIONS (ppm)

Γ				٥		T	T	T	T		3	1	T		T	T		T		T	2		1		T	T	T	7	on ly	· Æ	ונינים	۲ ا
keroma	Eastern	0.8.2	Soil	33.000	36	300		2.0		000 51		06%) -	1.2	100		17.5		0 10		960.0	01>	>	14		-		b ac ke ro und	ng apply	matrix annoles.	obtained from "Geo-	Some Ruc
Ambient Backeround	Western	_	1	54,000	38	260	9.0	3	21	20 000	16	390	5.1	7.7	99	<.50	6.1	<150	0.25		0.055	<10	- -	18	1	***		1. Ambient b		to soil matr	Values obtai	Chemistry of Some Rucke,
		MF 1168 MF 1169	Water	0.4						7 6	4	0 645	7 7 7 7						0 003	222		NDR	***					26	Dond N	of API	POND	
			Water	L		0 0	1			0 65 0	7 7 7 7	0 15		2 2 2			0.011		0 003	22.2	0.001	NDR						24	NF.	API	Pond	
		MF 1166 MF 1167	Water	0.8		0	1			0 0	1	0.21	•						0.002		0.0005	NDB						25	¥	API	Pond	
				76	0.04	0 3				70 6 C	12	0.915	0.12						0.002			NDB		0.02				28	Spray	IRR IGATION	AREM	WELLAS
Numbera		MF 1165	Mater	0.8		0 2	1			1 -		0.15	0.04						0.005		0.0004	NDB						23	_		Pond	
Sample		MF 1164	Water	31.8	0.04	1 8			0 05			7.62	0.18				0.018				0.0004	NDR	0.003	0.042				27	Plateau	Monitor	Well #4	
EPA		MF 1162	Water	1	0.02	0.6				5 95	0.04	7.19	0.03				0.049		0.002			ם משר		0.031				18	Leachate	Spring	25'BELOW	POINT
		MF 1163	Water						0 05	NDR			0.28				0.028		0.002			NDB						BLANK	Field	Blank		
	A,B	MF1158	Water	32.4	0.01	0.2		0.05		4.37 C	•	51	0.08				0,022		0.004			NDB		0.006				0A 17	QA QA	Dupli-	cate	
		MF 1152	Water	2						1.55		0.18	ם ס									NDB	0.0091	0.035				11	Truck	area	Sump	corner
	PARAMETER		Matrix Type	Aluminum	Chromium	Barium	Meryllium	Cobalt	Copper		S Nickel		Zinc	Noron	Vanadium	Silver	Arsenic	Antimony		Thallium	Hercury	Tin	_		Annuonin	Cynnide	Sulfide	Station No.	•	•	Sample Station	מר מר נסוו

We ference for East/West Division is the 97" W longitudinal line which bisects $_{\rm Region\ VI}$.

- Concentration corrected for lab blank concentration

bles in the Conterminous United States" Geological Survey Professional Paper

CASE NUMINER:

SITE NAME/ CODE: Plateau Refinery

CONCENTRATIONS (nnm)

Reference for East/West Division is the 97" W longitudinal line which bisects
Region VI.
 Concentration corrected for lab blank concentration

JASE NUMBER:

SITE NAME/CODE: Plateau Refinery (NM 1686)

CONCENTRATIONS (ppm)

				EPA	Sample	Numbera					Ambiont u.	
PARAMETER											Amorene bac	background 1.
	MF 1134	MF 1135	MF 1138	MF 1139	MF 1140	MF 1141	MF 1142	MF1146	MF 1147	MF 1149	Western II.S. 7	Eastern 11 c 2
Matrix Type		Soil	5011	Soil	5011	5011	Soil	Soll	Soil	Soil	1-	Soil
Aluminum	6820	5640	5820	9000	8400	6120	5600	4970	2620	2140	54,000	73.000
Chromium	4	14.5	5	9.5	7.5	21	69.5	4.5	2	2	38	2001
Barium	160	130	130	145	235	175	140	85	50	40	360	300
Neryllium	0.5	0.25	0.25	0.5	0.5	0.25					0.6	9.0
Cobalt	2.5	2.5	2.5	5	5	2.5	5	2.5	25	2 5	8	2.6
Copper	10	10	7.5	10	10	7.5	15	7 5	2 2	<u></u>	21	
lron	7770.	6770	0669	0096	11300	7820	8690	4720	3820	295500	20.000	1 5 100
Nickel	9	9	9	8	8	9	9	4	4	2	16	200
Hanganese	172	157	168	156	188	196	214	237	922	580	068	067
Z inc	24.5	32	24	33	33.5	32.5	73	19.5	12	6	15	2/3
Noron						1					2.3	200
Vanadium				10	20	10	10				66	3/7
Silver	-7-1-										25	
Arsenic	1.1	1.4	1	2	2.2	2.6	2.1	1.3		1.0	05:	
Antimony											0.17	
Selenium					3	-	0	0 3	0 3	60	001	
Thallium											7.0	65.0
Hercury					9.0						330 0	1 00
Tin	BON	NDB	NDB	NDB	12	NDB	NDB	NOR	NAR	NDR	0.03	0.030
Cndmium	0.09	0.08	0.08	0.12	0.19	0.11	0.16	0	0.1			
Lend	9	6.5	5	3.6	4.4	4	4.7	5.5	1	9	7	
Ansnonia											0.1	6,1
Cynnide												•
Sulfide												-
Station No.	01	02	03	05	90	07	a O	00	10	\ \ \ \	Amb so the	1
	HAMMOND	S.BANK	i	.0F	125 W.OF	WEST	EAST	15 X	ARROYO	410	ت. بد د	ons apply only
: 1 1 40 of 10 mm 0		DITCH DIFCH	DITCH	COONER	N.E.	LANDFARM	SIDE OF	_	BELOW	E.OF	to Boil matrix	Brumple
location		<u></u>	A D JACENT	OF SPRAY	OFSPRAT	2-4 65.		LANDEILL	E.SIDEOF	EVAPORATION	Values obtain	obtained from "Gen-
		CORNER	FRESHWATE	FRESHWATEL TRIGATION TRRIGATION POND	IRRIGATION AREA				Porto	2	chemistry of	Some Rocker,
	-	1							ļ	T	1 1 10	

No ference for Enst/West Division is the 97" W longitudinal line which bisects Region VI.

- Concentration corrected for lab blank concentration

bles in the Conterminous United States" Geological Survey Professional Paper

CASE NUMBER:

SITE NAME/CODE: PLATEAU REFINERY

		NM 1686					CONCENTRATIONS	(mad) SNC				•	
	1				EPA	EPA' Sample	Numbero					Ambient Bacl	Background
	PARAMETER	MF1150	MF1151	MF1154	MF1156	". MF1157	MF1159	MF1160	MF1161	MF1170	ME1171	Western	1 6
	Matrix Type	Soil	Soil	Soil	Soil	Soil	So i 1	Çoj.1	1:00	1100	17.00	7 : 50	0.5. 2.
	Aluminum	2990	4820	2780	3690	7800	4620	4780	2060	1180	25.35	1705	3011
	Chromium	2.5	6	3	4	8	2 5	7707			1,44		000,55
	Nariom	9	. 165	90	130	. 195	30	9.	15		72.	36.0	20
	Beryllium				0.25	0.25	. 0 25	77		77	77	000	2000
	Cobalt		2.5		2,5		4			2		0.0	9.0
	Copper	2.5	17.5	2.5	5	7.5	·l	5		107	17 6	0 6	,
ī	Iron	3690	6140	3990	5470	9480	5860	E 200	0000	101	5.7.	17	7
'ম' —	Nickel	2	٩	2	9	200	4	7000	7007	2340	75.4	000,02	15,000
26,		432	154	123	159	1 44	1580	125	247	222		000	
		12	69	12.5	18	30.5	17	13	1-1-1	228	30 07	0.00	767
	Boron			·						-744		,,,,	000
	Vanadium					10						77	, , , , ,
	Silver				-			1				90	4.6
	Arsenic	7	ł	,	ė			,				06.۶	
	Antimony		7-7	411	Q-A	37		0.9	. 3.9	2	1.5	6.1	5.4
	Salanium			•								<150	1
	Thalling			0.2				0.1			0.54	0.25	0.39
Ś											•	t	-
	-		·									0.055	960.0
y 5 i	ı	NDB	NDB	NDB	NDB	. NDB	NDR	NDR	BUN	NDR	a CN	410	Q10
PĮ,			2.2			0.11				0.15	0.1	1>)
1		2.1	23	2.7	2.8	4.2	1.9	3,8	4.4	28	5.7	18	14
κ3	╝		٠					•					
SP													,
	Sulfic												,
	Station No.	14	1.	21	22	90	17	10	18	2,6	120	1. Ambient by	har ke rassad
		Mid sump	Truck .	0 X .7.		125'W.05	Spen	STAINED	LEACHATE	N Puod	113	111111111111111111111111111111111111111	ic ng todila
	٠	E of	area	mile up-	STREPM FORM WAY	ME.		TERRACE	SPRING	of APT	\$ C	to soil metric	444
	Sample Station	evap	dμ		20 T T T T T T T T T T T T T T T T T T T	CORNER			25'8ELOW	יייי איייי	יים וובי	Value obtained	od from 110
	Location	No puod	M		S. BANK	101-5FRAT		ш	DISCHARGE	2			Some Books
		lupl.	corner	Bank	- 1	(000)		ì	1810	•	ond bond		and Vereta-
2.	Roference for						•					n the C	Contermious
•		י במפר/ אפשר		DIVIBION 18 C	rue y/ w	w tongitu	gitudinal line which bisects	ne which	bisects			•	
ນ ເ		n corrected		for lab blank concentration	concent	ration					<u>-</u>	Survey Professional	sional Paper

Reference for East/West Division is the 97° W longitudinal line which bisects Region VI.

Concentration corrected for lab blank concentration ا ن

CASE NUMBER:

SITE NAME/CODE: PLATEAU REFINERY

NM 1686

CONCENTRATIONS (ppm)

					V 0.3	١,							
	DABAMETER						i cilio e i a				Ambient Background	Unckg	round 1.
		MF1173	MF1175	MF1176	MF1133			-			Western	נו	
	Out I have	1		1	,;		-	+			0.8.	2.	U.S. 2.
-	ווורניא זאנ	1,05,50	1102	105	Soil					·	Soil		Soil
	A luminum	0597	4/90	3980	5080	-					34,000	 	000,00
	Chromium	22.5	82	347	4						38		36
	Narium	100	95	150	110						260	<u> </u>	300
	Neryllium					•	 -				9.0	-	9 0
_	Cobalt		2.5									1	
	Copper	15	10	50	5			-			16		, , ,
1	Iron	3520	5770	5730	6090						000 00	000	500
` `	1	4	Ų	a	7722	:	 				707	220	000, 61
151	1	5.4 B	125	160	167			İ			10	-	
T	7 : 20	21.0	16.3	100	707						390		290
-	, III.C	31.3	77	146	23						51		36
	Boron				. :						22	-	32
	Vanadium		-			-					99	H	4,6
	Silver				-						05. >		
	Arsenic	1	1	2.5	0.9			-					7 7
	Antimony						-				150	-	
	Selenium	0.23	0.1	0.17	0						200		
	Thallium						+	<u> </u>			7.0	$\frac{1}{\sqrt{2}}$	٧٤٠٥
Ž	Hercury	1.0		4 0			1	İ					
K	l	NDR	NDR	NO.	aun			Ì			0.0		0.096
SP		0 05	200	0 5	0.07			1			012	1	. 012
Ì,	1.	3.03	5:3	13.3	70.0		1					1	-
3	Ŀ	0.0	7.0	12	3.6						1 8		14
\	Viiilli I G						-				•	_	
S P	Cyanide										3		1
	211115										ı		
	Station No.	13A	128	12A	04						. 1. Anbient	I	b nc kg round
		SE	. pua	Middle	lammond						concentra	ations	concentrations apply only
,	•		of S.	of S.			•	-			to soil matrix	natrix	anaple.
Λ.	Sample Station		_	Bank of	-umop			•			Values ob	taine	obtained from "Ger-
\ 	Location	evap.	puod	S. evap.	stream							S Jo	Some Rocks.
		pond		pond						-	Soils, Pl		and Vegetu-
,											bles in t	the Co	Contermious
• ,	Reference tor	r Edat/Weat		Division is the 97 W lon	the 97 W	longitudi	nal line	gitudinal line which bisects	bisects	•		tates"	0
,		1 1 1 1	F 103	1 -4 1 1 1 1 1 1	1						Survey Pr	Professional	ional Paper
,		TELLOU C	ייייי	X		5 (, 4 5 3							

Reference for East/West Division is the 97° W longitudinal line which bisects Region VI.

^{3 -} Concentration corrected for lab blank concentration

CASE NUMBER: 2573 SAS 1006F

SITE NAHE/CODE: PLATEAU REFINERY

NM1686

	Ambient Background .	Western Eastern				560			21 14	000.0		390 290		7.7			1 9		0.25		700 0 088		017	7		:	1. Andient background	ncentrations	to soil matrix samples.	Value s obtained from "Cet	chemistry of Some Rocks,	Soils, Plant and Vegeta-
		MF5121	Sludge	3,600	240					5.200		120	160								-			-	-		23	South	API. pond			-
•		MF5120	Sludge	27,600	160	400				9.000		180	80				ď							17			24	NE API	poud			
CONCENTRATIONS (ppm)		MF5119	0i1		80			·									-			-							18	LEACHATE	SPRING	25' BE-	V VSCWOOVE	14011111111
CENTRATI	Numberø	MF5118	Sludge	37.200	160	400				15,000.		180												29			20	ARROTO	N.OF E.		MATAK	ı
CON	Snmp	HF5117	0i1	. 400	40					009	:					:							1 3	6			11	Truck	æ	su oil	L L	corner
	:PA:	MF5116T	Studge	15,600 -	2,120.	400			400	13,400	٠	300	1,640		•	-	13						1.2	53			16	Tripli-	cate		:	
		MF5116	Studge			400			200	12,200		180	1,480			·	13				0.3		1.5	46			16		cate	·		
			Sludge		1,880	400			200	13,200	٠	180	1,480				12						1.3	44			16	20 NOF	BORING	#8 F 6 V/A 46	E. Ero of	1000
NM1686		MF5115	Sludge,	30,000	1,760	600			200	16,800		240	12,000				12						1.1	42			15	50' SW	or soring	#8 5.51de #8	71 LAND-	
WN		PARAMETER	Matrix Type		Cin	Harium	Ucryllium	Cobalt	2.5			aneac	Z inc	Boron	Vanndium	Silver	Arsenic	Antimony	Selenium	Thallium		X Tin	Cadmium	Lead		w Cyanide	Station No.			location		
	_									Τ'	بلا	त्र हो <u>।</u>								Ź		χ:	[9 S	.,	٤٦	SP	-			າ		

Reference for East/West Division is the 97° W longitudinal line which bisects Region VI.

United States" Geological Survey Professional Paper

C - Concentration corrected for lab blank concentration

SE NUMBER:

TE NAME/CODE: Plateau Refinery

NM 1686

CONCENTRATIONS (ppb)

EPA SAMPLE NUMBERS

Page of

a .	PARAMETERS							ברא סאמר	SAMFLE NUMBERS	g.	
Compound	Praction	СТАВВ	F3447	F3449	F 3450	F 3451	F 3452	F 3453	F 3454	F 3455	
81s(2-ethylhexyl) phthalate	ABN	-	1								
Methylene Chloride	VOA	Ī	38	NDB		2.7	NDB	5.5 NDB	NOB	33	
Un decane, 2,6 - Dimethyl	ABN	3	2900								
	ABN	Ç,	5300								
Heptadecane, Tetramethy	ABN	3	5300							16000	
Alkane Derivative	ABN	3	2500								
Heptadecane tetramethyl	ABN	3	5100							32000	
Octadecane	ABN	3	3200	530						30000	
Alkane	ABN	3	4000								
Alkane	ABN	3	1700								
Hexadecane	ABN	3	2200								
Alkane	ABN	3	9300								
Unknown	ABN	3	1700	919	7100		510	R	1904	43000	
Unknown	ABN	3	15000	410	7800		300	1000	1203	26000	
Unknown	ABN	3	2200	810	4000		330		02/	46000	
Octadecane	ABN	3	4000							35000	
Unknown	ABN	3	13000	2900	5500				480		
Unknown	ABN	3	3700	017	17000				380		
Jnknown	ABN	3	2300	2400	10000				420		
Elcosane	ABN	3	4800							31000	
Unknown	ABN	3	4500	1700	8200				. 400	16000	
Unknown	ABN	3	2900	1200	15000				540		
Di-n-octyl phthalate	ABN	3		2300			440*				
1.2.4 Trithiolane	ABN	3		007							
9	ABN	3		490		620					
Unknown	ABN	3		450	6100				280		
	1		Soil	Soil	Sail	Soil	Soil	Soil	Soil	Sott	
Sample	Station	Number	04	10	02	0.3	05	06	07	08	
			Down -	Up-	S. Bank	S. Bank	85ft. B	125 ft.	West	East side	
Sample S	Sample Station Location		Stream	Stream	Hammond DITCH	Hammond DIFC#	NE corne	r W. of	NE corner W. of end Landlandfarm	landfarm	
		1	DITCH	DIFCH				LAKIE. AKEA			

Priority Pollutant.

*Duplicate analysis did not detect this

compound.

NDB - Concentration less than determined in lab blank Specified Mazardous Substance. Tentatively Identified.

K or LT () - Present in sample below quantification limit (quantification limit)

P - Present in sample (tentatively identified compound) weight factor.

C - Concentration corrected for lab blank concentration

CASK NUMBER: 2573

SITE NAME/CODE: Plateau Refinery

CONCENTRATIONS (ppb)

EPA SAMPLE NUMBERS F 3447 1500 1300 F 3455 1000 1200 460 5 P 3453 2.5 3452 1100 NDB 069 L. 3451 NDB 620 F 3450 18000 510 14000 4100 8200 2007 14000 13000 24000 18000 20000 3000 1200 9400 F 3449 3300 3900 0068 2100 5900 5400 3800 9000 450 C1488 PARAMETERS Fraction ABN ABN VOA VOA MBN MBN MBN ABN ABN ۷0۸ ABN ABN ABN ABN ABN ABN ABN ABN ABN MBH ABN ABN Heptadien-5-yne, Dimethyl Phenanthrene/anthracene Fluorotrichloromethane -Benzo (a) anthracene Compound 2 methyl napthalene Fluoranthene Napthalene -Chrysene Fluorene Heptanol Unknown Unknown Unknown Jnknown Unknown Unknown Unknown Jnknown Unknown loluene Jnknown Unknown Xylene Alkane Pyrene

NDB - Concentration less than determined in lab blank

Soil

S a

iig B

Seil

Soil

S S S

Soil

百

Sample Station Number

Matrix Type

Cyclohexane Methyl

Sample Station Location

05

4

^{1.} Priority Pollutant.

[.] Specified Hazardous Substance,

^{3.} Tentatively Identified.

C - Concentration corrected for lab blank concentration

^{) -} Present in sample below quantification limit (quantification limit) P - Present in sample (tentatively identified compound) K or LT (

:ASE:

Plateau Refinery ITE NAME/CODE:

NM 1686

CONCENTRATIONS (ppb)

EPA SAMPLE NUMBERS F 3455 Soil 28000 27000 25000 24000 22000 26000 49000 29000 34000 30000 8 23 Cluss Sample Station Number Sample Station Location Fraction PARAMETERS Matrix Type VOA ABBN ABBN ABBN ABBN ABBN ABBN ABBN X X X X X X eptadecane tetramethy vclohexane Trimethyl vdroxylamine o-Decy Compound Jyclohexane ethyl vclohexane Dimethyl exatriacontane lexatriacontane exatriaco*NTANE* exatriacontane icosane eosane cosane icosane icosane cosane Inknown nknown nknown nknown

Priority Pollutunt. Specified Hazardous Substance. Tentatively Identified.

C - Concentration corrected for lab blank concentration NDU - Concentration less than determined in lab blank

) - Present in sample below quantification limit (quantification limit) K or LT (P - Present

in sumple (tentatively identified compound)

2573 SASE NUMBER:

Plateau Refinery NM 1686 HITE NAME/ CODE:

CONCENTRATIONS (ppb)

EPA SAMPLE NUMBERS

	PARAMETERS							EPA SAMP	EPA SAMPLE NUMBERS	RS		
Compound	Fraction	С1 ивв	E 2444	F 3445	E 2446	E 2448	E 24EC	7 2457	7	7 246.1	1	
Methylene Chloride	VOA	1	, ,	1111	1 T		0280	7550	242B	1940	1 3404	3466
Lylene	VOA	2			ΙΤ	7.3						
Unknown	ABN	3			7.9					18	2,5	26
Unknown	ABN	3			74					42	70/	79
Unknown	ABN	3			57					34	160	
Unknown	ABN	3			48					26	68 89	
Menzene ethyl dimethyl	ABN	3			120							
<u> Иркло</u> мп	ABN	3			78						100	
Venzene ethyl dimethyl	ABN	3			72							
Benzene ethyl dimethyl	ABN	3			53							
Unknown	ABN	3			160					26	69	
Unknown	ABN	3			61					22		
Unknown	ABN	3			95							T
Unknown	ABN	3			210							T
Unknown	ABN	3			77							
Unknown	ABN	3			76							
Unknown	ABN	3			99							T
Unknown	ABN	3			09							
Unknown	ABN	3			41							
Unknown	ABN	3			100					-		
Unknown	ABN	3			52					,	-	
Unknown	ABN	3			78		İ					T
Unknown	ABN	3			70							
Pentachlorophenol	ABN	1								26		
•	ABN	_								ê e		
Menanthrene/anthracene	ABN	_								385		
Matrix	ıx Type		Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Sample	Station	Number	04	10	20	03	BTank	60	P	14	+	22
			Down-	Up-	S. Bank	S. Bank	Field	Tameris	Arroyo	Sump E.	2 mile	50 ft.
s aldmes	Sample Station Location		Stream HAMMOND DITCH	stream HAMMOND	Hammond DITCH	Hammond Dirck	Blank	area	below 5.3.06	of Evap Powb	ج ق	n upstredm
							Ì		בומו זי הייווי		JAKK H	17.44

Priority Pollutant.

Specified Mazardous Substance, Tentatively Identified.

NDB - Concentration less than determined in lab blank

^{) -} Present in sample below quantification limit (quantification limit) C - Concentration corrected for lab blank concentration K or LT (

P - Present in sumple (tentatively identified compound)

SE N ER: 25

E NAME/CODE: Plateau Refinery

NM 1686

CONCENTRATIONS (ppb)

Page 06-3/

MPLE NUMBERS																															
EPA SAMPLE	F 3478		98.000	70*	9.000	7	<u></u>			10.000	•			20,000	╄													Mater	12	Plateau	Monitor Well #4
	3472 F 3476	-	32,000	4600	21,000	***************************************	280 000	200	560,000	1.100,000	150,000			61,000							R	Ž		7	6			Water Water	18	Seep be-LeachatePlateau	OW LOWERSPITING
	F 3463 F			560 LT	10	8	14	20	61	84	12		14	8	13	9	130	1600	920	1400	1000	820	2600	820	1500	1200	2600	Water Wa			SVMP 9
	Class F 3461	1 26	3 13	2	1	-	-	-		7	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Water	mber 10		ion
PARAMETERS	Fraction	ABN	ABN	ABN	VOA	VOA	AOV	VOA	VOA	VOA	VOA	VOA	VOA	VOA	VOA	VOA	VOA	ABN	ABN	ABN			ABN	ABN	ABN	ABN	ABN	х Туре			Sample Station Location
-	Compound	vrene	enzene Dimethyl	-Hethylnaphthalene	enzene	2 dichloropropane	thylbenzene	ethylene chloride .	oluene	ylene	yclohexane methyl	exane 3 methyl	Hekeng, Z Dimethylle)	velohexane dimethyl	velohexane trimethyl	lentane. 2 methyl	enzene Dimethyl	Indecane or isomer	Ukane	Ukane	laphthalene 2 methyl or isomer	tetramethyl	llkane	Waphthalene Dimethyl	Alkane or Derivative	Waphthalene Dimethyl	llkane	Matrix	al dwa S		s aldmes

Priority Pollutant. Specified Hazardous Substance. Tentatively Identified.

C - Concentration corrected for lab blank concentration NDB - Concentration less than determined in lab blank

K or LT () - Present in sample below quantification limit (quantification limit) P - Present in sample (tentatively identified compound)

concentration Reanalysis of sample showed only less than DL

ASE NUMBER: 2573

ITE NAME/COUE: Plateau Refinery

NM 1686

CONCENTRATIONS (ppb)

SPA SAMPLE NUMBERS Monitor Well #4 Plateau 3478 140,000,22,000 470,000 45,000 130,000 25,000 10,000 Water 200* 51,000,1 23,000 43 500 350000 3476 CCC, 25 Water 27,000 14,000 3200 3,500 8,800 9,200 4,600 5,000 Water Class F 3463 1700 5000 2600 2000 3300 2400 1700 1500 1300 Sample Station Number Sample Station Location Fraction PARAMETERS ABN ABN ABN ABN ABIN MBM ABN ABN ABN AIBN 黎 MOA **VOA** ¥0A HO TO. VO_A VOV VOV ABN Matrix Type entene Injunethylice kane or derivative kane or derivative kane or derivative kane or derivative Compound aptang 2 Wethy inzene Dimethy exane 2 methy xane Dimethy nzene Metify nzene proby nzene Ethýl nzene Ethyl aphthalene~ nknown Jknown nknown **IKNOWN** tane kane kane kane kane rkane nane

Priority Pollutant.

Specified Hazardous Substance,
Tentatively Identified.
*Reanalysis, of sample showed oncy 96ppb

NDB - Concentration less than determined in lab blank

(Cont.)

(Cont.)

cont.)

) - Present in sumple below quantification limit (quantification limit) - Concentration corrected for lab blank concentration K or LT (ပ

P - Present in sample (tentatively identified compound)

257 ISE NUMBER: TE NAME/CODE: Plateau Refinery

NM 1686

CONCENTRATIONS (ppb)

EPA SAMPLE NUMBERS F 3463 Water 780 550 F 3478 F 3446 Mater 38 38 12,000 19,000 7,100 monitor 14,000 18,000 Plateau Water E 3477 Blank Field Mater Blank 19 32 4 98 8 64 47 94 79 7,000 7,000 F 3476 8,600 2,400 9,600 32,000 37,000 17,000 22,000 4.800 4.800 7,200 000,7 26,000 Water C 1 488 Sample Station Number Fraction PARAMETERS ABN AB AB ABN ABN ABN ABN ABN ABN ABN ABA ABN X DA **V**DA XOA VOA YOA Matrix Type ane or alkyl derivative ane or alky derivative nzene ethyl dimethyl Compound nzene methyl propyl nzene ethyl methyl clo Pentane Methy ntachlorophen 01 nzene trimethyl nzene trimethyl nzene trimethyl lecane Dimethy tanol Dimethy tane 2 methyl clohexane radecane decane decane lecane nown NOWN NOW known KNOWN KNOWN ane

Priority Pollutant.

*Reanalysis of sample did not show Specified Hazardous Substance. Tentatively Identified

is compound.

C - Concentration corrected for lab blank concentration NDB - Concentration less than determined in lab blank (cont.)

(cont.)

Well #4

(cont)

Sample Station Location

) - Present in sample below quantification limit (quantification limit) K or LT (P - Present

- Present in sample (tentatively identified compound)

1SE NUMBER: 2573

ITE NAME/CODE: Plateau Refinery

NM1686

CONCENTRATIONS (ppb)

			_	_	_	_			_				,				~	γ—		_	, -	_	1		_	_	7	_	_			
																																:
																															,	
	:																															
NUMBERS																										-				!		
EPA SAMPLE															_	-										-				<u> </u>		
EP/																														<u></u>		
																			-													
														<u> </u> 								_				-					-	
	176			0																								er	18		-	(cont.)
	B F 3476			8800								_						_										Wa			-	_
	F 3478	31,000	110	09	92	610	220	220	100	140	170	270	150	130	78	200	087	250	2/0	98	BET	123	240	150	340	69	R21	Water	- 27	1	NA N	(cont.
	СТАВВ	3	~	3	3	3	3	3	٣	3	3	3	3	3	2	3	3	3	3	3	3	5	?	٦	3	<u>ا</u>	h-		Number		ation	
PARAMETEKS	Fraction	VOA	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	MBN	Type	Station	•	Sample Station Location	
PAI		1,	ıer															ative	active		:	arive						Matrix	Sample		Imple St	
-	pund	yl Methy.	or isomer						<u>\</u>									te deriv	le Deriv			re derra		Propyl							S.	٠
	Compound	Syclopentane Ethyl	Sycloheptatriene		Methyl	Dimethyl			ane propy	Dimethyl	Methyl		Trimethy					Alkene or Benzene derivative	Alkene or Benzene Derivative	Cyclohexane butyl		Alkene or Benzene derivative										
		Cyclopen	Cyclohep	Octane	Octane 2	Benzene	Unknown	Nonane	Cyclohexane	Octane D	Nonane P	Unknown	Benzene	Unknown	Unknown	Jnknown	Alkane	Alkene C	Alkene c	cyc tone)	UNKNOWN	Alkene (Unknown	Benzene Methyl	Unknown	Unknown	Unknown					
									•																							

[.] Priority Pollutant.

C - Concentration corrected for lab blank concentration VONE.) (cont.)
NDB - Concentration less than determined in lab blank

Specified Hazurdous Substance. Tentatively Identified.

K or LT () - Present in sample below quantification limit (quantification limit) P - Present in sample (tentatively identified compound)

CASE NUMIRER:

2573

SITE NAME/CODE: Plateau Refinery

NM 1686

CONCENTRATIONS (ppb)

EPA SAMPLE NUMBERS

	•																					,
2						•										-		•				
		,																				
	F 3476							3400												Water	18	
	F 3463						212(LT)												-	Water	=	
	F 3445						# <u>1</u> 7													Water	10	
	ClassF 3478	420	88	160	200	120				12,000										Water	27	
	C1 888	3	3	3	3	3	3	. 1	3	3											Number	ation
PARAMETERS	Fraction	ABN	ABN	ABN	ABN	ABN	VBV	ABN	ABN	VOA										х Туре	e Station Number	Sample Station Location
/d	Compound	Undecane	Unknown	Dodecane	Benzoicacid Dimethyl	Benzoicacid Dimethyl	Bis (2-ethylhexyl) phthalate	inthrene/anthra	Heptane Ethyl Methyl/	Cyclohexane Dimethyl										Matrix	Sample	Sangle S

[.] Priority Pollutant.

^{1.} Specified Mazardous Substance.
3. Tentatively Identified.

^{*}Not found in reanalysis of sample

NDB - Concentration less than determined in lab blank

^{) -} Present in sample below quantification limit (quantification limit, C - Concentration corrected for lab blank concentration

P - Present in sumple (tentatively identified compound) K or LT (

2573 SAS 1006 E CASE NUMBER:

SITE NAME/CODE: Plateau Refinery

NM 1686

CONCENTRATIONS (ppb)

		T								\neg			Γ		Г	1	П	T	Г	Г	T		T	T	П	П						1
	F 3492																											Water			Blank	
((S	F 3491																											Water	62	Plateau	Well #1	- 101 u co-
E NUMBE	3	840	8,800	4,400	6,800																							Water	128	W. end	OF S. Well #1	
EPA SAMPLE NUMBERS	F 3486																											Water	13A	S. E.	Corner	C. C. Dick
	F 3483																											Water	56	Pond N.	of API	
	F 3482	300	7,200	2,200	4,000							2,600	7.3	330	5K	2,300	240	140	1,000	1,500	2,500	80	- 69	82	120	130	339	Water	24	Z.	API PoND	†
	F 3481	520	11,000	3,000	5,600					440	800K	1,700		420	5K	2,600	290	53	11,000	2,400	3,299	84			150	150	390	Water	25	.× .×	APT pond	
	F 3480																			9		9.8			14	6.3	6.9	Water	28	Spray	Irriga-	WELLAS
	F 3479	820	3,600	2,200	3,000	20K	420	22	38	220	380	2,800		1,000K					7,600	2,400	7,500							Mater	-23	_	API PoND	
	Cluss	1	-	2	2	1	1	1	1	2	2	I	-1	1	-	2	2	7	1	2	3	3	3	~	3	3	3		Number		ation	
PANAMETERS	Fraction	ABN.	ABN	ABN	ABN	ABN	ABN	ABN	ABN.	ABN	ABN	VOA	VOA	VOA	V0A	VOA	VOA	VOA	VOA	VOA	VOA	VOA	VOA	ester VOA	עטע	VUA	VOA		e Station Number		Sample Station Location	
Vd.	Compound	4_dimethylphenol x		2-methylphenol	4-methyphenol	Acenanhthene	Manhthalene	Fluorene	Phenanthrene ''	ine	2-methylnaphthalene/		1-dichloroethane	ErWithenzene ~/	Chloroform	one	2-Butanone	Carbondisulfide	lene	Total Xylenes	Benzene, 1, 3-dimethyl	2-meth	opane, I,Ladimethyl	(HBO ₂) cyclohexy	ı	^	Cyclohexane, methy ${\cal F}$	Matrix	alomas		Sample St	
		2 4	Pheno	2-ше	4-me	Acen	Naph	F1110	Phen	Aniline	2-me	Benzene	1	ETHYL	Chlo	Acetone	2-Bu	Carb	Toluene	Tota	Benz	Butane,	Cyc	Bori	Cyc	Cyc	Cyc					,

1. Priority Pollutant.
2. Specified Hazardous Substance.
3. Tentatively Identified.

NDU - Concentration less than determined in lab blank

) - Present in sample below quantification limit (quantification limit) C - Concentration corrected for lab blank concentration K or LT () - Present in sample below quantitication P - Present in sample (tentatively identified compound)

CASE NUMBER: 2573 SAS 1006E

ille wame/code: Plateau Refinery

NM 1686

CONCENTRATIONS (ppb)

EPA SAMPLE NIMBERS

			-	_	-	_	·		4-	-	_		—		-,-										_						
	F 3492							-																				Mater		Field	Blank
X S	F 3491																				-							Water	5.0	Plateau	well#/
EFA SAMPLE NUMBERS	F 3488					12			250	100																		Water	128		
LPA SAMI	F 3486																											Water	.13/	S.E.	Corner South
	F 3483																							35	50			Water	- 56	Pond N.	Of API
	F 3482		80	1,399								068										ROOR	200					Water	24	N.E.	API
	F 3481		9/	1,799	93		91	5,100		1.500	7 7 7	840																Water	25		RPI
	F 3480	31																										Mater	23	Spray	Irriga-
	F 3479								300	640	300	1,280	310	580	200	190	150	. 330	. 170	290						1200	310	Water	23	th	API PONO
	C1 u88 F	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	. 3	3	3	3	3	3	3	3		Number		ation
PARAMETERS	Fraction	VOV	VOA	VOA	VOA	VOA	VOA	VOA	ABN	ABN	ABN	erc)abn	ABN	ABN	ABN	ABN	ABN	ABN) ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN		Station Number		ation Loc
PAI	Compound	Q.	Oxetane, 2, 3, 4-trimethyl	1. 5-Hexadiene-3-yne	4	2-Propanol, 2-methyl	Octane	Unknown	Benzene, methyl	I, 3, 5-cycloheptatriene	zene	71	l-eth	-1	, 4-met			_	:-methylnaphthalene (see ABNFAR)	hosphoric acid, diethylpentyl	(1somers 1 & 2)	oluene (see volatile fraction)	'henol, 3-ethyl	yclopropane, pentyl	laknown	nknawn	aknawn	Matrix	Sample		Sample Station Location

Priority Pollutant.

NDB - Concentration less than determined in lab blank

[.] Specified Hazardous Substance,

Tentatively Identified.

C - Concentration corrected for lab blank concentration

^{) -} Present in sample below quantification limit (quantification limit) P - Present in sample (tentatively identified compound) K or LT (

2573 SAS 1006F

CASE NUMBER:

SITE NAME/CODE: Plateau Refinery

NM 1686

CONCENTRATIONS (ppb)

EPA SAMPLE NUMBERS

<u>a. </u>	PAILAMETERS							EPA SAMP	EPA SAMPLE NUMBERS	s S		
Compound	Fraction	СЗивв	F 3479	F 3480	F 3481	F 3482	F 3483	F 3486	F 3488	F 3491	F 3492	
Unknown	ABN	3	160									
Unknown	ABN	3	022									
	-											
-										,		
-												
					- {							
Matrix			water	water	Water	Water	Water	Water	Water	Water	Water	
Sample	le Station Number	7	- 1	28	- 1	24	1 1	13A	128	59		
			South API	Spray . N.W. Irriga- API		N.E. API		S.E. Corner <i>or</i>	S.E. W. end Plateau Corner <i>or</i> of south well	Plateau n well	Field Blank	
Sangles	Sample Station Location	\neg		TION AREA	- 1	DOND	PONDS	Y. EVAR.	EVAP. POND	#/		
•				WELLAS								

Specified Mazardous Substance. Tentatively Identified. 1. Priority Polluting.
2. Specified Mazardous
3. Tentatively Mazardous

NDB - Concentration less than determined in lab blank

^{) -} Present in sumple below quantification limit (quantification limit) C - Concentration corrected for lab blank concentration K or LT () - Present in sumple below quantification P - Present in sumple (tentatively identified compound)

SAMPLES COLLECTED BY EAR

ITE NAME/ CODE: Plateau Refinery

ASE WERE EFFERD CHISTO

CONCENTRATIONS (ppA)

Priority Pollutant.
 Specified Huzardous Substance.
 Tentatively Idearified

C - Concentration corrected for lab blank concentration NDB - Concentration less than determined in lab blank

K or LT () - Present in sumple below quantification limit (quantification limit) P - Present in sumple (tentatively identified compound)

EPA Lah (Houston) ASE NUMBER:

HITE NAME/ CODE: Plateau Refinery Samples collected by EPA

SAMPLES COLLECTED BY EPA

•									•																							
n/110/0	SI																															•
n/mud(444) St	LE NUMBERS	0170	मार पर्वास								12.5						36.2	4											611/100	*	Trans-	portation
CONCENTRATIONS	EPA SAMPLE	7 04 04	7	26.5				18.7											210				< 140	Z 140	< 140	× 140	×140	Z140	011	008	Orum in	north portatio
CONC		40 0404 AP 0405	A HAR WAY																										0i1	007	n Orum in	Sepakarak sepakarak north sepakarak north seden seden sepakarak north seden se
		JAN AN M	157																										011	900	Drum in	od north
			+	1.200	930	1.700	270			2,800	1100	1,500				2 600	-	=		`	-	_	Ľ	_		120		275	Sludge	004	API	Separation Styles
		צטעט מע		1.400	750	1.400			510	1,800	830		1,000	400	1200			<130	180	<130	270	< 130	< 130	∠ 130	∠ 130	~130	7		SYudie	003	NP I	Separator
		AR0402	1	10,000	10,000					41,000	18,000							7.900	6,100	3.500	17,000	5.700	< 980	< 980	4,900	4,600	2,800	1,500	0;1	200	NP I	Separator INFLUENT
		Class	3	3	3	3	3	က	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	ۍ ،	٠,	3		Number		cation
	PARAMETERS	Fraction	VOA	VOA	YOA	VOA	VOV 72	VOA	VOV	VOV	VOV	VOA	VOA	VOA	VOA	VOA	VOA) ABN			ABN	ABN	ABN	ABN	ABN	ABN	AISN	AUN	к Туре	e Station Number		Sample Station Location
Samples collected by EFA	ργ	Compound	2-Rutanone, 3-methyl	Cyclohexane 1 3-Dimethyl-	Cyclohexane, 1, 4-Dimethyl	eth	Pentane, 2, 2, 4, 4-tetra METHY		Benzene, 1-methylethyl.	١,	Heptane, 2-methyl-		2,	2	Octane, 2-methyl	Octane	ıted	Toluene(see volatile fraction)	ılene	= Γ	(1Somers	7)		L ₂ substituted Naphthalene	62 Substituted Naphthalene	2 substituted Naphthalene	substituted	Naphithale	Matrix	a I dun S		Sample St

[.] Priority Pollutant.

specified Mazardous Substance, Tentatively Identified,

NDU - Concentration less than determined in lab blank

^{) -} Present in sumple below quantification limit (quantification limit) C - Concentration corrected for lab blank concentration K or LT (

P - Present in sumple (tentatively identified compound)

ASK NUMBER; EPA Lab (Houston)

ill: NAME/CODE: Plateau Refinery

SAMPLES COLLECTED BY EPA

•																																
onaneus de de de de de de de de de de de de de	Blank																				-					-	,		Blank	Blank	_	
	AL AD																											Studge		Trans-	north portatio	
CONCENTRATIONS EPA SAMPLE	8090 00	< 140	<140		< 140	< 140	<u><140</u>	<140	<140	<140	2140	2140	14D									360	777					Oi.1	003	Drum in	north	
CONC	AR 0407	L																										0i1	700	Orum in	BONETARD	
	AR 0406																						210	670	1.100			011	900	Orum in	Bowerard	
	AR 0404		475	475								475	475				230											gludge	004	VbΙ	Separa-	אכזי באוו
	AR 0403		<130		<130	<130	<130	<130	< 130	7.130	<130	< 130	2130				200	100	310	4130	4 130						7 1 7	Studge	003	API	Separa-	
	AR 0402	× 980	₹ 980		< 980	< 980	2 980	<980	< 980	1,700	1,700	066	1,500	7 980	₹ 980	7 980	10 300	3,600	10 000	2 200	2,800	13 000						011	005	API	Separa-	KKENEN
	Class	3	3	3	3.	~	~	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	-1			Number			ł
PARAMETERS	Fraction) ABN) ABN	$\operatorname{\lrcorner}$						\neg				, ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	*		ABN		. 1	Station		ation Lo	
, HAY	Compound		- 1	Substituted	Substituted	L3 Substituted Naphthalene(1504)	L3 Substituted Naphthalene(ssm3)	L3 Substituted Naphthalene(150મ)	Ca Substituted Naphthalene(1300 5)	C3 Substituted Naphthalene(1501)	Substituted	Substituted	C2 Substituted Naphthalene/Ison 9)	C3 Substituted Naphthalene(150410)	Cs Substituted Naphthalene(1500)	htha	Ethylmethylbenzene	Trimethylbenzene (isomer 1)	(isomer	(isomer	Trimethylbenzene (isomer 4)	2-methylnaphthalene	0	<u> </u>	7.1	Ji-n-butyl phthalate		- 1	Sample		Sample Station Location	

NDB - Concentration less than determined in lab blank

[.] Priority Pollutant.
'. Specified Hazardous Substance.
1. Tentatively Identified.

C - Concentration corrected for lab blank concentrution

^{) -} Present in sumple below quantification limit (quantification limit) K or LT () - Present in sumple below quantitied on pound)

ASE NUMBER:, EPA Lab (Houston)

ITE NAME/CODE: Plateau Refinery

SAMPLES COLLECTED BY EPA

CONCENTRATIONS (ppb)

																		T				T	Ī									7
	2																														,	7
SILS	04MB-4 AR DAMR.	אוובא עום	2.5																			•						Water	Blank	Water		ZH43E
PLE NUMBERS			5.0	2	1																							Water	Blank	Mater	FOR	
EPA SAMPLE	04MB-2AR04MB-3 AR		3.7	r.	١.																	-						Water	Blank	Water	blank Fox ort	
	AAR 04MB.		2.8																									Water	Blank	r Lab	water	
	AR 04MB-/AR		2.3										-															Water	Blank	Lab water Lab	blank	
	Lab Blank					6.0	7																					Water	Blank	Blank		
	AR 0402	2,200		4.500	440	240	210	7 80	120	160	<20	2,930	160	520	1100	086	2,000	360	400	3,200	966	444	190	099	1.410	300	260	Water	002	API	SEDAGATER	
	AR 0401	2.200		5.500	480		74		70	280	18	10,800	150	096	2000	1,700	1,800	420	300	1,780	1,038	904	240	390	940	520	760	4		API	Separame EFFLUENT	
	Class	-	-	-		1	-	-1		-	-		- -		3	3	3	3	3	3	3	3	3	3	3	3	5		Number		ation	
PARAMETERS	Fraction	YOA	YDA	VOA	ABN	ABN	ABN	ABN	ABN.	ABN	ABN	ABN	ABN	ABN	VOA	VOA	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	к Туре	e Station		Sample Station Location	
, q	Compound	Benzene	Dichloromethane	Toluene	Naphthalene	Di-n-octylphthalate	Diethyl phthalate	Benzo(a)anthracene .	Fluorene	Phenanthrene		Total Phenols (4AAP)	2, 4-Dimethylphenol	Phenol	M-Xylene	U ,8/or p-xylene	Toluene	Methylnaphthalene		Aylene (1somers 1 &2)	L ₂ substituted Naphthalene	رع substituted Naphthalene	Ulmetny I pneno I	metnyletnylbenzene	irimetnyibenzene	U-Creso!	r-creso.	Matrix	Sample		Sauple S	-

Priority Pollutant. Specified Hazardous Substance. Tentatively Identified.

NDU - Concentration less than determined in lab blank

C - Concentration corrected for lab blank concentration

) - Present in sample below quantification limit (quantification limit) P - Present in sumple (tentatively identified compound) K or LT (

Puge 17 of 31

EPA Lab (Houston) CASE NUMBER:

SITE NAME/CODE: Plateau Refinery

SAMPLES COTLECTED BY EPM

CONCENTRATIONS (ppb)

																		T	1	T	T				
										_	_	-						1	-	1	\downarrow				1
																								•	
KS	ARO4MB-5				22											,					Water	Blank	Water	OILSLUDGE STANK	- 1100 a Kenned
EPA SAMPLE NUMBERS	AR04MB-4				14																Water	Blank	Water	blank Fox ord/stubbe	
EPA SAMP	AR04MB-3				23																Water	Blank	Water	blank For	
	ARO4MB-1ARO4MB-2ARO4MB-3ARO4MB-4				18																Water	Blank		water BLANK	
	ARO4MB-1				45																Water	Blank	t	blank	
	Lab Blank			23																	Water	Blank	Blank		
	AR 0402	80	590																		Water	002		SEPARATOR INFLUENT	
	AR 0401	380	700																		Water	200	Idl	Separator Effluent	
	СТавв	3	3	3	3																				1
PARAMETERS	Fraction	ABN	ABN	VOA	VOA			٠													x Type			Sample Station Location	
, d			•	1400			•														Matrix	Sample		Sample S	
	Compound	Aniline	2-methylnaphthalene	Nidpate Stand (,	Acetone																				

. Priority Pollutant.

NDB - Concentration less than determined in lab blank

SE NUMBER:

TE NAME/COUE: Plateau Refinery

NM 1686

CONCENTRATIONS (ppb)

EPA SAMPLE NUMBERS

î.	PARAMETERS				•			TELY OWER	בייא אייייי איייייי	5)		
Compound	Praction	Cluss	F 3459	F 3460	F 3465	F 3467	F 3471	F 3473	F 3474	F 3475		
Methylene Chloride	VOA	1	10		10	8		4.7		L		
Fluorotrichloromethane	VOA	1	þ	8	4.2							
Unknown	ABN	3	740					068				
Jnknown	ABN	3	10,000					970				
Unknown	ABN	3	089					1100				
Unknown	ABN	3	1200					830				
Nonyne	ABN	.3		1700							1	
Unknown	ABN	m		2100	7700	480		1500				
Unknown	MBN	2		3200				1900				Ī
Jnknown	ABN	<u>-</u>		6700				900				
Unknown	ABN	3		2,500				1000				
Unknown	ABN	3		1400				1800				
Docosane, 11 decyl	ABN	3		28,000								
Unknown	ABN	3		14,000		580						T
Benzene Methyl	ABN	3		920								
Unknown	NBN	~		1600		1400						
tyl pht	ABN	1				089						
1, 1, 2-t		3			430	610						
Ethane, 1, 1, 2, 2-tetrac#1000	do ABN	3			028	950						
Hexatriacontane	ABN	3						13,000				Γ
Ioluene or isomer	ABN	3				1500	1700					
Alkane	ABN	3						1700				
Naphthalene	ABN	1							140,000	36,000		
7	ABN	1							LT 13 god	3000		
2 methyl naphthalene	ABN	2							340,000	48,000		
Ethylbenzene	VOA	1		•						19		
Matri	ix Type		Soil	Soil	Soil	Soil	Soil	Soil	Soil	5011		
Sample		սահе	60	10	21	22	90	17	19	18		
			risk	Arroyo	is mile	50 ft.	125 ft.	seep	terrace	leachate		
Sample S	Sample Station Location	tion	area	3	upstream s/rg s.	Jostream Ream HWP	OF N.E.	below Lower	LENCHATE	Spring 15'8810W		
				- T- T- T- T- T- T- T- T- T- T- T- T- T-	Can		True Pour	GNOG	20075	יייייייייייייייייייייייייייייייייייייי		

Priority Pollutant. Specified Hazardous Substance. Tentatively Identified.

C - Concentration corrected for lab blank concentration NDB - Concentration less than determined in lab blank

) - Present in sumple below quantification limit (quantification limit) K or LT (

P - Present in sample (tentatively identified compound)

ASE NUMBER:

2573

ITE NAME/CODE: Plateau Refinery

NM 1686

CONCENTRATIONS (ppb)

																														,	
S)																					-										
E NUMBERS																															
EPA SAMPLE																														<u> </u>	
≃																											-			<u> </u>	
	3475	160	40									Unk.		Unk.												_0/8Z_	15	5011	18		
	F 3474 F			150,000	110,000	170,000	140.000	150.000	150,000	220,000	170,000	500,000	150,000	120,000	250,000	360,000	110,000	190,000	120,000	77,000	230,000	230,000	120,000	140,000	120,000			5031			
	C] u 8 8	-	2	3		3	3		3	3	H		3	3	3	3	3	3	3		3	3	3	3	3	2	F		Number	tion	
PAKAMETERS	Fraction	VOA	۸۵۷	ABN	ABN	ABN	A ARN		1	ABN	ABN	ABN	YER ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	YOA	k Type	Station	Sample Station Location	
7.4	Compound	Toluene	Xylene (or isomer)	Benzene Ethyl Dimethyl	Benzene Ethyl Dimethyl	ır Deri	hyl	Benzene ethyl dimethyl orisanka	Unknown	Benzene Diethyl	Unknown	Unknown	Benzene Ethyl Methylethylokishick ABN		Naphthalene 2 methyl		Naphthalene Dimethyl	Naphthalene Dimethyl	or derivat	- G	Alkane or derivative	Alkane	Unknown	Alkane	Alkane	Fluorene	Benzene	Matrix	Տուոր Տ	Sample St	

Priority Pollutant.

Specified Hazardous Substance. Tentatively Identified.

NDB - Concentration less than determined in lab blank

C - Concentration corrected for lab blank concentration

K or LT () - Present in sample below quantification limit (quantification limit) P - Present in sample (tentatively identified compound)

E NAME/CODE: Plateau Refinery

NM 1686

CONCENTRATIONS (ppb)

EPA SAMPLE NUMBERS

	· —	· T	Τ-	_	_		_	r	 	<u> </u>	ı —	_	T	_	Τ-	1	1	T	T	T	1	T	T	1	1	т-	1	_	τ-			ť
														Ì						Ì						Ť	Ť					
		-	1					<u> </u>	-	_		<u> </u> 				-	1				<u> </u> .•	-		1		1	1		-	-		
NUMBERS		<u> </u> -			_			_				_			<u> </u>	<u> </u>	-			-	<u> </u>		_			-	1	1	<u> </u>			
A SAMI'LE				,																												
VIG												 	-	-			-		-					-	<u> </u>		+	-				-
											-		_										_	-	_		-	-			<u></u>	
																																-
	F 3475											Unk.		Unk.									-			7870	15	:			····	-
		160	340	000	00	00	00	00	00	00	00		00	•	00	00	00	00	00	00	8	100	B	8	80	-	<u> </u>	1100	18			
	F 3474	[150,0	110,000	170,0	140,000	150,000	150,000	220,000	170,000	500,000	150,0	120,0	250,000	360,0	110,000	190,000	120,000	77,0	230,000	230,000	120,000	140,000	120,000			6,531	19) 		
	Cluss	1	2	3	3	3	3	. 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	£	3	3	2	-		umber		tion	
reks	tion	X	V	Z	Z	Z	N	Z	N	N	N	Z	z	z	Z	Z	Z	Z	Z	N	N	N.	N	N.	N.	MBM	V(C	G.	Station Number	ı İ	n Loca	
PARAMETERS	Fraction	NOV	VOV	ABN	ABN	ABN	FR ARN			ABN	ABN	VBV	SOMER AB	ABN	ABN	ABN	VBN	ABN	A	VBN	ABN	ABN	ABN	MBM	NBV	F	VOY	ix Type			Statio	
		1					OFFSAMER	OFISAMER					Ethyl Methylethylokisomer ABN							- <u>-</u> \								Matr	Sample		Sample Station Location	
	nnd		ar)	Dimethyl	ime thy]	ative	imethyl	dimethyl					ethyle		ethyl		Dimethy l	Dimethyl	ative	l propy	ative										S	
	Compound		r isom	thylp	thylp	Derive	thyl d	ethyl d		Diethy1			thyl M		ne 2 m				or derivative	dimethyl	or derivative											
		oluene	Xylene (or isomer	Benzene Ethyl	Benzene Ethyl Dimethy	Alkane or Derivative	Benzene ethyl dimethyl	Benzene e	Unknown	Benzene D	Jnknown	Jnknown	Benzene E	Jnknown	Naphthalene 2 methy	Octadecane	Vaphthalene	Naphthalene	Alkane or			Alkane	Unknown	Alkane	Alkane	Fluorene	Benzene					
		10]	ζ	Ben	Ben	Alk	Ben	Ben	Unk	Ben	빌	Unk	Ben	Unk	Nap	0ct	Nap	Nap	ATK	ßen	Alk	¥ ¥	Š	Ž	V	n	Ben					

Priority Pollutant.

Specified Unzardous Substance.

Tentatively Identified.

NDU - Concentration less than determined in lab blank

C - Concentration corrected for lab blank concentration or $L\Gamma$ () - Present in sample below quantification limit (quantification limit) K or LT () — Present in sample below quantification P — Present in sample (tentatively identified compound)

Plateau Refinery TTE NAME/CODE:

ASE

NM 1686

CONCENTRATIONS (ppb)

đ	PAILAMETERS					EPA SAMPLE	'LE NUMBERS			
									-	
Compound	Fraction	C1 488	F 3475	-						
Cyclohexane	VOA	3	91							
Cyclopentane methyl	VOA	3	92					<u>-</u> -		
Cyclopentane dimethyl	VOA	3	25							
Cyclohexane methyl	VOA	3	87							
Pentanol Methyl propyl	VOA	3	81							
Jexane 2 methyl	YOA	3	43							
Inknown	YOA	3	35					İ		
Inknown	YOA	3 .	35							
septane 3 methyl	VOA	3	110							
leptane 2 methyl	VOA	2	65					İ		
Octane	VOA	3	120							
Senzene dimethyl	VOA	-	469					İ		
Senzene dimethyl	ABN	5	64,000							
Jenzene ethylmethyl	ABN	ļ-,	64,000							
lenzene Trimethyl	ABN	~	72,000							
Jenzene trimethyl	ABN	,	43,000					İ		
lenzene methyl propyl	ABN	6	46,000					Ì		
senzene methyl, methylethyl	ABN	<u></u>	54,000							
Vikane or derivative	ABN	~	68,000							
Inknown	ABN	<u>ب</u>	130,000							I
Jnknown	ABN	3	52,000							
Jnknown	ABN	3	51,000					İ		
likane or derivative.	ABN	3	64,000						-	
daphthalene derivative	ABN	~	210,000							
Jnknown	ABN	3	72,000							
likane or derivative	ABN	3	34,000							I
Matrix	х Туре		Soil							T
Sample		unber	18							
2 1111111111111111111111111111111111111	1 1 1 1 1 1	!			**					
c aldmic	פשוחוה פרקנוסט רסכענוסט	101								-

Priority Pollutant.

Specified Hazardous Substance, Tentatively Identified.

C - Concentration corrected for lab blank concentration NDB - Concentration less than determined in lab blank

) - Present in sample below quantification limit (quantification limit) K or LT (

P - Present in sumple (tentatively identified compound)

2573 ASE NUMBER:

ITE NAME/COUE: Plateau Refinery

NM 1686

CONCENTRATIONS (ppb)

																							···-	
10																 ,-								
S NUMISERS				-																				
EPA SAMPLE																								
•																								
										} 														
	F 3475	140,000	61,000	34,000	000.86	140,000	1,000	43,000	37,000											SOIL	,81			
	9 1		Ī			Γ	3	3	~												Number	_	ation	•
PAILAMETERS	Franki on	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN											к Туре	Sample Station Number		Sample Station Location	
Vd	71110000		Heptadecane tetramethyl.		Alkane or derivative			Alkane or derivative												Matrix Type	Sampl		S olympia	•

^{1.} Priority Pollutant.
2. Specified Hazardous Substance.
3. Tentatively Identified.

C - Concentration corrected for lab blank concentration NDB - Concentration less than determined in lab blank

^{) -} Present in sample below quantification limit (quantification limit) K or LT () - Present in sample below quantification P - Present in sample (tentatively identified compound)

ASE NUMBER: 1006F

ITE NAME/CODE: Plateau Refinery

NM 1686

CONCENTRATIONS (ppb)

0001 FIN							CONCE	CONCENTRATIONS	S (ppb)			•
	SHELENS							EPA SAMPLE	LE NUMBERS	S N		
Compound	Brockion	- 6										
2. 4-dimethylphenol	\dagger		14px	1467	F-3970	F 3484	F 3485	F 348/	F 3489	E 3990	Blank	Blankl
Phenol	RNA	-							2400	5600		
2 - methylphenol	RNA	1							730	2400		
1 - methylphenol	BNA	2					099	1300	990	4000		
Acenaphthene	BNA	-				200K						
Fluoranthene	BNA					. 570K						
Vaphthalene	BNA				80,000K	110K			68K	920		
Z	BNA	1	Mariore	Lant		. 					2700K	
ois(2-ethylhexyl) phthalate	BNA	-				207				460K		46K
li-n-butyl phthalate	BNA			84K					520K		\ \ !	
penzo(a) anthracene	BNA					210K				300K		
venzo(b) Fluoranthene	BNA	-				690K						
venzo(k) Fluoranthene	BNA	-				690K						
١.	BNA	-				230K						
enzo(ghi) perylene	BNA					TIOK						
luorene	BNA				ZB, UUUK	170K				400K		
ene	BNA	-				950				066		
deno (1, 2,3, -cd) pyrene	BNA	1				150K						
yrene (/	BNA	1				390K				1500		
niline	BNA	2							170K	STOK		
ibenzofuran	BNA	2				130K						
-methylnaphthalene	BNA	2			146,000		54K	86K	70K			
enzene	VOA				2000 NDB					280		
thylbenzene	VOA	1			3,300 C		9.6	3K	20	2300	1500K	
ethylene chloride	VOA	1	11 C	ე6	2000 NDB	13 C	7.2 C	120	9.4	7 081 C	3400	7.5
Juene	VOA	1			2000 NDB				103	3900	5500	
Matrix	Type		Soil	Soil	Med/soil	Soil	Soil	Soil	Soil	Soil	Med/soil	10W/S01
Sample	Station	Number	14	14	11	26	138	VEI	128			
		S	Sump E.			Pond N.	S.W.	l	W. end	middle	Blank	Blank 1
Saluple S	Sample Station Location		of eva-	of eva-	area sump	of API PONDS	° «	corner of Eynp.	AATION	OF S. BANK OF	,	
			nore o	7			powo	040	Powo	EVAP. POND	j	٠/
Driority Dollmring	,		5	1	-				1			

Priority Pollutunt. Specified Hazardous Substance, Tentatively Identified.

NDB - Concentration less than determined in lab blank

C - Concentration corrected for lab blank concentration

^{) -} Present in sumple below quantification limit (quantification limit) P - Present in sumple (tentatively identified compound) K or Lr (

ASE NUMBER: 1006F

ITE NAME/CODE: PLATEAU REFINERY

med/so Blank 1 Blank φ 100K 1100K 2,600 12,000 med/soi 20,000 2,900 Blank 31ank SEPARA- S.BANKOF TON POND S.EVAPOR-WEND OF MIDDLEOF ATION POND 569 950c 560 288 38 soil F3490 6.900 500 412 323 373 190 640c EPA SAMPLE NUMBERS CONCENTRATIONS (ppb) 7316 5 NDB F3489 5 NDB 7.2 Soil 18 প্র 38 61 87 S.E.COR-WER OF N. NER OF J. WER OF N. EVAPORA- EVAPORA-TICY POND TICH POND 160 13A 38 F3487 NDB 46 35 38 22 14 2 61 5.W. Cof-F3485 5 NDB126c 46c soil 99 18 5 53 15 20 21 PONDN. OF APE PONDS 5011 <u>396</u> F3484 56 QA DUPL NW Corner 2,000,000 000,000 ned/soi 22 000c 14,000 29,000 2.400c 57,000 15,000 F3470 Truck EVAPORA - EVAPORA. Truci EVAPORA - EVAPORA. Tron PONDS Tron PONDS area 70% MIDSUMP MIDSUMP SUMP 120c F3469 soil 2 Made n 5 NDB soil 1200 F3468 Class Sample Station Number Sample Station Location Fraction PARAMETERS Volatile J. 12. 11. 11/1 Voa Matrix Type cis_1-ethy]-3-methy]-cyclopentane " Vindusties 1.1.2-Trichlorotrifluoro ethane 305W 122me 149 cis-1.3-dimethylcyclohexane (0)1+ -ethvl-2-methvlbenzene 1,2,3-Trimethylbenzene scan 420 scan 498 NM1686 515 4-methyl-2-pentanone Compound Methylcyclopentane scan Dimethyldisulfide Carbon disulfide Methlcvclohexane 2-methylpentane 2-methylheptane -methyloctane Vinyl Acetate Propylbenzene Intal Xylenes Cyclohexane 2-butanone 2-hexanone Inknown Acetone Straene Unknown Unknown lonare Octane

Tentatively Identified.

Specified Hazardous Substance, Priority Pollutant.

NDB - Concentration less than determined in lab blank

C - Concentration corrected for lab blank concentration

^{) -} Present in sample below quantification limit (quantification limit) K or LT (

⁻ Present in sample (tentatively identified compound)

SE NUMBER: 1006F

TE NAME/CODE: Plateau Refinery
NM 1686

								CONCE	CONCENTRATIONS (ppb)	s (ppb)			•
	PARAMETERS	TERS							EPA SAMPLE	LE NUMBERS	RS		
Compound	-	Fraction	Class	F 3468	F3469	F 3470	F 3484	F 3485	F 3487	F 3489	F 3490	Blank	Blank 1
nknown		VOA	3) .		123,000			,				
nknown		VOA	3								327		
nknown		VOA	3							75	212		
nknown		YOA	3					54					
nknown		YaA	•										550
exadecanoic acid		BNA	3					170					
ecane		BNA	3								5,300		
nde cane		BNA	8								4,005		
nknown	(Scan xx 735)	BNA	3		1,100								
nknown	(" 752-61)	RNA	8	049			260	099	750	069			
nknown	814	BNA	3			320,000					5,200		
nknown		BNA	3								1,800		
nknown	1		3			530,000							
nknovn	(" 1043-1959)		3			670,000					2,900		
nknown	(" 1119-1121)	ANA	3				1,100				2,800		
nknown	(1141-1128)	BNA	3			530,000					005, 9		
nknown	1	64A	.3				190						
nknown		BNA	3			000,009	1,600				6,800		
nknown		BWA	3				3,600				3,050		
nknown		BNA	3			820,000					4 ,000		
nknown	("1346)	BNA	3			290,000							
nknown	1	BNA	3				4,700						
nknown	(" 1429)	BNA	3			950,000							
nknown	(11 1437)	BNO	3			420,000							
nknown	(11 1444)	BNA	3				4,500						
nknown	(11 1469)	BNA	3					610					
	Matrix Type			Soil	Soil	med/	Soil	Soil	Soil	Soil	Soil	med/	low/
	Sample Sta	Station Number	er	14	14	=	26	138	13A	12B	12A		
				Sump	Sump	Truck	Pond N.	MS	SE	W. end	middle	Blank	Blank
	Sample Sta	Station Location		E. Of EVAPOR- Arick Pand	E. Of EVAPOR- ATTOM POR	SUMP N.W.	of API	V EVARA-	Eynpokanon COUNTY	ARATION	BANKOFS BANKOFS EVAL. POND		<u> </u>
			,		ad DUPL.								

Specified Hazardous Substance. Tentatively Identified, Priority Pollutant.

C - Concentration corrected for lab blank concentration NDB - Concentration less than determined in lab blank

) - Present in sample below quantification limit (quantification limit) Kall (

P - Present in sample (tentatively identified compounds)

1006F ASE NUMBER: ITE NAME/CODE: PLATEAU REFINERY

NM1686

CONCENTRATIONS (ppb)

EPA SAMPLE NUMBERS

	Blank																											med/soil		Blank	
	Blank B																											ned/soil n		Blank Bl	
o.	F3490					3.700	3.600			3,100					3,000		2,900	3.300	3,000		3 ode			2.800				sail m			
SAMPLE HUMBERS	F3489								٠									530	700	790	1.000	1.200		1.000		1.000	700	soil	128		
ברת אמיני	F3487									025									730	680	1.100	1,100		089	570	680	590	soil	130		
	F3485		610		460			460						460				460		909	450	450	450		620			soil	138		·
	F3484	1 900				2.500	1,700		2.300		2,000	820			1,200		1,200	1,700	1,700	1,600	1,700	1,600		1.500		1.100	770	roi1	26		
	F3470	210.000		660,000			430,000			420,000			280,000			280,000												mad/soil	11		
	E3469																											soil	14		
	E3468																											soil	14		
	Class	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	7		Number		ation
PARAMETERS	Fraction	RNA	2	11		#	=	=	=	=	н	н	=	=	=	5	tt.	11	Ξ	=	=	=	=	=	2	Ξ		с Туре	Stution		Sample Station Location
1Vd	Compound	Unknown (Scan #1513-1520)		" (" 1594)	1598)	" (" 1600-1602)	" (" 1659-1677)	" (" 16.75)	" (" 1677)	" (" 1744-1751)	" (" 1750)	" (" 1776)	" (" 1814)	" (" 1819)	(" 1821-	")	1889-90)	" (" 2015-2018)	" (" 2075-2079)	" (" 2134_2138)	" (" 2194_2199)	" (" 2261_2267)		" (" 2339-2346)	" (" 2400-2402)	" (" 2429-2438)	" (" 2538-2548)	Matrix	Sample		Sample St

^{1.} Priority Pollucant.
2. Specified Hazardous Substance.
3. Tentatively Identified.

C - Concentration corrected for lab blank concentration NDB - Concentration less than determined in lab blank

^{) -} Present in sample below quantification limit (quantification limit, K or LT () - Present in sample below quantification P - Present in sample (tentatively identified compound)

Page 26 of 31

CASE NUMBER:

SITE NAME/CODE: Plateau Refinery

CONCENTRATIONS (ppb)

			 _	 	 	 	 	 	 	 		 	 					
	Blank														Low/5011		Blank	
	Blank														Med/SoilLow/Soi		Dlank	
IRS	F 3490										.,				۷I	12A		
EPA SAMPLE NUMBERS	F3489	510													5011	128	SEPARATION	POND
EPA SAME	F3487														_	13A		
2000	F3485														5011	138	٠	
	F3484														5011	26		
	F3470														16d/5011			
	F3469														_	14		
	C1888 F3468													:	5011	14		
	Class	3														umber		tion
PARAMETERS	Fraction	BNA													1 ype	Station Number		Sample Station Location
IVA	Compound	4,													Macrix Lype	Sample		Sample St

Priority Pollutant.
 Specified Hazardous Substance.
 Tentatively Identified.

NDB - Concentration less than determined in lab blank

C - Concentration corrected for lab blank concentration

^{) -} Present in sample below quantification limit (quantification limit) K or LT () - Present in sample below quantification P - Present in sample (tentatively identified compound)

CASE NUMBER:

SITE NAME/CODE: Plateau Refinery

\$ 0					COL	CONCENTRATIONS (ppb)	(ppb)			
	PARAMETERS					EPA SAM	PLE NUMBER	S		
· ~	Fraction	Classlank	lank 2	Blank 3						
Methylene Chloride	Volatile	1	1K	3,6K		,				
Acetone	=	2	8.3							
2-Hexanone	11	2	12	7						
4-methyl-2-pentanone	11	2	1К	2K						
Styrene	=	2	1K					•		
Total Xylenes	=	2	1К							
									·	
					-			.•		
Matri	Matrix Type	_	LOW/3011	_ow/Soil						
Samp	le Station Number	- 1								
		<u>~</u> .	Blank	Blank	 					
Sample S	Sample Station Location	tion			•					
		 						-	-	

Priority Pollutant.
 Specified Hazardous Substance.
 Tentatively Identified.

NDB - Concentration less than determined in lab blank

C - Concentration corrected for lab blank concentration
K or LT () - Present in sample below quantification limit (quantification limit)
P - Present in sample (tentatively identified compound)

Page 28 of 31

CASE NUMBER:

SITE NAME/CODE:

CONCENTRATIONS (ppd)

									1_																							,	
																					-										_		
epa sample numbers	F 5121	1		×	×	75C	150 C	41	85	×			¥	190		×	37			a	170	96	380	330		290	022	Sludge	23	BOUTH	A 6 2 PO N D		
epa sampl	F 5120	1				×				-				×		×			×									Sludge	24	.E.	PE		
	F 5119	76			2,600	3800	11,000	3,200	930	×		110	×	12,000	~	×	3,100		~	1,900	2,300	Ь	2,600	5.000	a.			011	18	LEACHATE	OF E. FRESH SPRING A WATER		
	F 5118					×				×		İ	<u>.</u>	×		~		У	×									Sludge	20	ARROTO N.	OF E. FRESH WATER	6000	
	F 5117	<u> </u>	¥		440	×				×	170	200	×	<u></u>		 		Х	У									011	11	TRUCK	SVAP	hoot	אומהי
	F 5116			**	*	×	260	~	54	¥				<u></u>		~				280	Ь	160	890	490	d	420	Ь	Sludge		20.4.05	E EVO OF	ייים ליין	ומת המינמ
	e F 5115	×	У	X	×	32C	×									~				Ь	d	d	Ь	94	Ь	ф	88	Sludge	15	50'SW. OF	5.517E	1 * mice	
	Class	1	1		2	2	2	1	2	1	-	1	-1		2	-	-	-	2	3	3	3	3	3	3	3	3		Number		it ion	1	
PARAMETERS	Fraction	ABN	ABN	ABN	ABN	VOA	VOA	VOA	VOA	ABN	ABN	ABN	ABN	VOV	ABN	VOA	YOA	ABN	VOV	VOA	VOA	VOV	VOA	VOA	VOA	VOΛ	VDA	с Туре	Station		Sample Station Location		
۷d	Compound	N-nitrosodiphenyl amine	diethy] phthalate	chrysene	2-methyl naphthalene	acetone	xylenes	ethyl benzene	vinyl acetate	naphthalene	fluorene	phenanthrene	pyrene	toluene	dibenzofuran	methylene chloride	Renzene	di-n-butyl phthalate	2-hexanone	cyclo hexane	methyl cyclopentane	2-methyl pentane	methyl cyclohexane	alcohol or alkene	unknown	Cycuc alkane	cis.1, 3-dimethyl cyclo hexane	Matrix	Sample		3S a lamps		

Priority Pollutant.
 Specified Mazardous Substance.
 Tentatively Identified.

K*- missing data sheet
NDB - Concentration less than determined in lab blank

C - Concentration corrected for lab blank concentration

) - Present in sample below quantification limit (quantification limit) K or LT () - Present in sample below quantification P - Present in sample (tentatively identified compound)

SE NUMBER:

E NAME/ CODE:

CONCENTRATIONS (ppm)

														-											
			<u> </u> 					-			<u> </u>		<u> </u>	-	-	<u> </u>			-					<u> </u>	
HBERS		<u> </u>	 	_					 -		-			<u> </u>		 -	<u> </u>	 					e e		
PLE 110	F5121		5/			۵	d	<u>_</u>	<u>a</u>	_		_												t t	South API pond
EPA SAMPLE NUMBERS	F5120																						agpnis	54	NE API POND
	F5119																								
	F5118																						sludge	20	ARROYO N. LEACHATE OF E.FRESH. SPRING- WATER POND
	F5117	1,420		Ь		Ь	d	474	d														oil	11	Truck area sump
	F5116	587	Ь		514	Ь	440	٦	362	362	254	15											sludge	16	SORING #8 SORING #8 E. ENDOF
	F5115	246		136	126	128	99.4	84.6	8.69		51.4	a.											sludge	15	50'S.W. OF BORING! *8 S.SITE LANDEILL
	C1488 F5115	3	3	3	3	3	3	3	3	3	5	~											1	Number	- 1
PARAMETERS	Fraction	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN	ABN										- 1	Туре	Station	Sample Station Location
ЬЧ		-																					Matrix	Sample	ample St
	Compound																								S
		Ukane	Ukane	Inknown	Ukane	Ukane	Ukane	llkane	likane	11kane	Nkane	11kane													

. Specified Hazardous Substance, Tentatively Identified. . Priority Pollutant.

NDB - Concentration less than determined in lab blank

C - Concentration corrected for lab blank concentration
K or LT () - Present in sample below quantification limit (quantification limit
P - Present in sample (tentatively identified compound)

CASE NUMBER:

SITE NAME/CODE: Plateau Refinery

CONCENTRATIONS (Print)

<u>ل</u> م	PARAMETERS						EPA SAMP	EPA SAMPLE NUMBERS	
Fraction Class	- m 1	B F 5115	F 5116	F 5117	F 5118	F 5119	F 5120	F 5121	
V0A 3	,	78	Ь					р	
	\dashv	82	Ь					Б	
V0A 3		81	250	- Contract of the Contract of				Ь	
						Ь			
V0A 3		120	480					270	
V0A 3		Ь	420			р		360	
V0A 3	-	110							
V0A 3	\vdash		510			8,900		. 008	
		6	P			þ		d	
V0A 3	H	71	d_	,		d		Ь	
	Н	Ь	р			3,000		Ь	
V0A 3	Н					1,700			
VOA 3	Н	110	360					280	
ABN 3	\vdash	173	511	1,560				131	
ABN 3						815			
						991		Ь	
						861		Ь	
	-					960			
	1					1,090		58	
	-1							79	,
ABN 3						724			
	1					671			
ABN 3	-	Ь	373			Ь		106	
ABN 3						465			
YOA 3	-	45	ρ						
YoA 3	Н					950		d	
Type	S	Sludae	Sludae	0i1	Sludge	011	Sludne	Sludge	
ion Number			16	11	20	18	.24	23	
Samule Station Location		50' SW 808146#81	20' N. OF BORING# 8 E. ELVO OF	Truck Area Sump	O N.	Spring	ne API Pond	South API	
1	7	HANDELLE	LANDE ILL	7,110	0.0			Rond	

Priority Polluëant.
 Specified Hazardous Substance.
 Tentatively Identified.

NDB - Concentration less than determined in lab blank

^{) -} Present in sample below quantification limit (quantification limit) C - Concentration corrected for lab blank concentration K or LT (

P - Present in sample (tentatively identified compound)

Page 31 of 31

SITE NAME/CODE: CASE NUMBER:

CONCRATE ATTONC

							CONCE	CONCENTRATIONS EPA SAMPLE	S (PPM) LE NUMBERS	S	
PARAMETERS	ETERS										
Compound	Fraction	Славв	F 5115	F5116	F5117	F 5118	F 5119	F 5120	F 5121		
Unknown	ABN	3					294				
Unknown	ABN	3							92		
Unknown	ABN	3					625				
Alkane	ABN	3	Ы	Ь	556						
Alkane	ABN	3	Ы	Ь	Ь		358		d		
Alkane	ABN	3					457				
Alkane .	ABN	3	214	909			663		133		
Alkane	ABN	3			3,350						
Alkane	ABN	3	163	2			Ы				
Alkane	ABN	3	a.	630	3,200		663		149		
Alkane	ABN	3			7,010						
	ABN	3		154			Ь				
	ABN	3			3430	3,430					
Alkane	ABN	3	266	663			979		187		
Alkane	ABN	3		405	9,680		495				
Alkane	ABN	. 3	222		5,180				441		
Alkane	ABN	E	324	Ы	9,220						
Alkane	ABN	3	Ы	928			648		101		
Alkane	ABN	3	Ь	113	2,510		Ь		78		
Alkane	ABN	3	Ы	Ъ	7,920		617		Δ.		
Alkane	ABN	3	284	1,330	7,540		946		140		
Alkane	ABN	3	312	1,300			946		158		
Alkane	ABN	3	294	1,160	3,440		Р		149		
Alkane	ABN	3	284	573	3,080		ď		123		
Alkane	ABN	3	210	268	2,250		d		108		
Alkane	ABN	3	184	Ь	l i		Ь		108		
Matrix Type	pe		Sludge	Sludge	011	Sludge	0i1	Sludge	Sludge		
Sample Sta	Station Number		15	16	11	20	18	77	23		
			MS , 05	20 Nof	Ir uck	Arrayo	Le ac-	NE API	South		
			boring boring	boring ** K.ENB	area	N. OF H	hate	puod	API		
o and mac	arion poca		-ANDEILE !	1.F.	duna	Powo	opr ing		puod		1

Priority Pollutant.

Specified Hazardous Substance. Tentatively Identified.

NDB - Concentration less than determined in lab blank C - Concentration corrected for lab blank concentration

KalT () - Present in sample below quantification limit (quantification limit) P - Present in sample (tentatively identified compounds)