

REPORTS

YEAR(S): IQQQ

BARRIER VAPOR EXTRACTION SYSTEM STARTUP TESTING INDIAN BASIN REMEDIATION PROJECT NEW MEXICO

Project No. 023350173

April 2, 1997

Prepared for: **Marathon Oil Company** P.O. Box 552 Midland, Texas 79702

RECEIVED

AUG 2 8 1997

Environmental Bureau **Oil Conservation Division**

Fluor Daniel GTI, Inc. Written by:

ord CL Kyle/W. Rutherford, P.E.

Lead Engineer

Fluor Daniel GTI, Inc. Reviewed by:

<u>riskt(TB)</u>. .E.

Curtis S. Wright, P.E. Senior Engineer

Susan Fields, P.E. **Project Manager**

i

CONTENTS

Figures	•••••••••••••••••••••••••••••••••••••••	I
Tables	••••••••••••	1
Append	lixes	I
1.0		I
2.0	SCOPE OF WORK 2.1 Construction Verification 2.2 Startup Testing 2.2	222
3.0		ł
4.0	DATA EVALUATION	5
5.0	CONCLUSIONS AND RECOMMENDATIONS 8 5.1 System Analysis and Future Strategy	

Figures

- 1. BVES Layout
- 2. Effluent Concentration versus Time
- 3. Induced Vacuum in MW-66
- 4. Step Test
- 5. Barometric Pressure versus Time
- 6. Proposed VE Test along Arroyo

Tables

1. Analytical Results of Air Samples Collected During Start-up Testing

Appendixes

- A. Field Data
- B. Lab Data
- C. Barometric Pressure Data

Assessment at the Indian Basin Remediation Project identified dissolved hydrocarbons in Lower Queen groundwater at large distances downgradient of the known free-phase condensate plume. Since it's involvement in the project in 1994, Fluor Daniel GTI has worked to define the mechanism for these downgradient impacts to groundwater. It was postulated that migration of vapors from the free-phase condensate far exceeded the advancement of the free-phase itself. Theoretically, vapors could travel relatively large distances, condense and impact groundwater downgradient of the advancement of the free-phase. Pilot tests conducted in January 1995 to evaluate the effectiveness of vapor extraction for remediation of the vadose zone suggested effects of barometric pumping. This was an indication that vapor phase transport might be responsible for expansion of the dissolved contaminant plume.

Design of a Barrier Vapor Extraction System (BVES) was initiated in late 1995 to mitigate impacts to groundwater through the postulated vapor-transport mechanism. The system is intended to intercept, and remove from the subsurface, migrating vapors that could potentially condense and impact currently clean groundwater. The proposed system design includes several equipment compounds installed along the perimeter of the downgradient edge of the dissolved-phase plume (Figure 1).

In August 1996, Fluor Daniel GTI conducted a project summary to confirm that the regulatory and remediation strategy for the project remained appropriate. Existing data were reviewed, new information was collected, and the feasible regulatory exit strategies for the project were evaluated. The results of the project summary are documented in a report dated August 29, 1996.

Review of the vapor-transport mechanism and the BVES were components of the project summary. Several laboratory tests were conducted to test the ability of vapors to impact groundwater at the site. The tests showed that condensate in the more downgradient portion of the free-phase plume (MW-72) is orders of magnitude less volatile than more upgradient product (MW-86). This indicates a degraded, or weathered, product in areas distant from the source. As the condensate weathers, it is less able to impact groundwater because the more soluble components are lost. This suggested that vapor-phase migration may not be a major contributor to the spread of groundwater impacts at this site.

The BVES remained a recommended approach, but a phased installation with testing was proposed before full implementation of the system. This report documents construction of the first blower station, the startup testing and results.

2.0 SCOPE OF WORK

Marathon Oil Company (Marathon) completed installation of the northernmost blower station of the BVES. The layout of the system is shown on Figure 1.

The system consists of a Suterbilt 6L, 25 horsepower, 460 V blower with a 88-gallon moisture knockout, an outlet silencer, an inlet filter, and a vacuum relief valve. All vapor extraction components are trailer mounted. The system is designed to run continuously unless there is a power outage, or the high temperature sensor, high vacuum, or high level sensors in the knockout are triggered. The system is currently attached to five vapor extraction wells, VE-1 through VE-5, plus one monitor well, MW-61A. All vapor extraction piping is either 6" or 8" diameter. The vapor extraction wells are 7 7/8" diameter open-hole completions with an 8 5/8" conductor casing extending from depths ranging from 57.5 feet to 77.5 feet below ground surface (bgs) to just above ground surface. The total depths of the wells range from 168 feet to 214 feet bgs.

2.1 Construction Verification

Fluor Daniel GTI and a representative from Marathon verified construction of the system as described above on January 14, 1997. In addition, inspection of the system on January 20, 1997 prior to beginning the startup testing, revealed that a fresh air dilution valve had not been installed on the unit and the exhaust stack was shorter than air permit conditions allowed. Upon initiation of the startup testing on VE-1, a buried valve leading to a moisture pump-out line was identified to have not been closed during construction, allowing fresh air to enter the system. All other components of the vapor extraction system appeared to be operational.

On January 21, 1997, Marathon installed a fresh air dilution valve, closed and capped the pump-out line on the VE-1 pipe, lengthened the exhaust stack, and made various other minor system repairs.

2.2 Startup Testing

Testing of the system consisted of four distinct tests.

- Test 1: Short-term tests of individual extraction wells.
- Test 2: Long-term test on VE-1, including a step test.
- Test 3: Balancing the system flow rates.
- Test 4: Testing formation respiration.

Each test is described below.

<u>Test 1: Short-term tests on extraction wells.</u> Vacuum and contaminant concentrations at each extraction wellhead were taken prior to testing. The first short-term test was conducted on VE-1 on January 20, 1997. The valves to all wells except VE-1 were closed and the system was turned on. The

-
April 1997

test was proposed to run until a steady state concentration of extracted vapors was reached. Steady state was reached almost immediately and the test was run for 90 minutes for confirmation. Start-up testing recommenced at 10:25 on January 21, 1997 with a short-term test on VE-3. Short-term tests on VE-2, VE-4, and VE-5 followed.

During the short-term testing, vacuum at the well head, influent flowrate and temperature, and effluent concentrations were all measured at 30-minute intervals. The concentration of oxygen, carbon dioxide, and methane were measured with a LandTech GA-90. Petroleum hydrocarbons, oxygen, and hydrogen sulfide were measured with a GasTech GT-302. The results of the short-term tests are given in Appendix A. An air sample was also collected at the conclusion of each short-term test and was sent to AEN Laboratories for analysis of TPH, BTEX by TO-14, and n-hexane by GC/FID. Analytical results are discussed in Section 3.0 and the lab reports are in Appendix B.

<u>Test 2: Long-term test on VE-1</u>. At 18:00 on January 21, 1997 the long-term test on VE-1 commenced. The test was conducted under full vacuum (dilution valve was 100% closed) and lasted 21.5 hours. Based on flow and photoionization detector (PID) concentration measurements, it appeared that the system reached steady state within the first three hours of operation. After 15 hours of operation, field monitoring detected methane in the effluent stream. Methane was present during the remainder of the test.

Pressure was measured at the wellhead of MW-66 and VE-2 during the test to determine if the vapor extraction system was causing influence. The vacuum reading upstream and downstream of the butterfly valve at the wellhead was reading approximately the same. It is likely that the valves on the VE-2 vapor extraction leg were leaking slightly. Therefore, the pressure measurements at VE-2 are not considered reliable.

After 21.5 hours, a step test was conducted by opening the fresh air dilution valve and reducing the vacuum at the blower to 2/3 of its full value. The flowrate stabilized almost immediately. The test was conducted for 45 minutes. An additional step test was then run by opening the knockout valve and reducing the blower vacuum to 1/3 of the maximum value. This test was also conducted for 45 minutes and the system appeared to stabilize almost immediately.

The results of the long-term test are shown in Appendix A. Figures 2-4 also contain pertinent information concerning the long-term test. The results presented in the figures are discussed in Section 4.0.

Test 3: Balance system flow rates. On January 23, 1997 all extraction wells were opened and the system was restarted. The intent was to balance the air flow evenly among all five wells. The flow from well VE-1, VE-2, and VE-3 was identical, but the flow from the combined VE-4,5 leg was lower. There was no way to increase the flow from the VE-4,5 leg without decreasing the flow from another leg so the system was left as it was. The steady state vacuum, flows, and concentrations were measured and are shown in Appendix A. An effluent air sample was collected after the balanced system was in operation for 45 minutes and was sent to AEN Laboratories for analysis of TPH, BTEX by TO-14, and n-hexane by GC/FID. The results of the effluent air sample are shown in Section 3.0 and in Appendix B.

Hydrocarbon concentration measured with a PID from the combined system showed a concentration almost equaling the maximum concentration recorded from any of the individual well tests. Additionally, the methane and carbon dioxide concentrations were much higher than in previous tests

April 1997

from individual well, and the oxygen concentration was lower, indicating increased biological activity in the subsurface.

<u>Test 4: Test formation respiration</u>. Concurrent to the startup testing, a Baro-ball[™] was installed on MW-73. A Baro-ball[™] is a check valve that allows subsurface gas to be expelled from a well, while preventing air from entering the well bore through the surface casing. A 30-gallon plastic bag was taped over the effluent port of the device. The well was visited periodically during the day on January 22 to observe whether the bag inflated. Initially the bag was sucked into the device, which indicates that the check valve did not function properly. As the day progressed, the bag did inflate. At the maximum observed rate of inflation, it appeared that the flowrate leaving the Baro-ball[™] was approximately 1 standard cubic foot of air per hour (SCFH).

During the testing on the Baro-ball[™], the barometric pressure was being recorded. A weather station was setup at the Indian Basin Gas Plant which is located nearby. The weather station records the barometric pressure automatically at ten minute intervals. The data could be retrieved and then printed to give a continuous readout of the ambient barometric pressure in the vicinity of the test. Barometric pressure data are required to confirm when the effects of atmospheric pumping should be the most pronounced. Data were also collected during the Baro-ball[™] testing and pilot testing in order to correlate some of the results that were observed. A total of 51 continuous hours of barometric pressure data were collected. The barometric pressure is tabulated in Appendix C. Figure 5 shows a graphical plot of the barometric pressure versus time.

The maximum rate of inflation did not occur at the time the lowest barometric pressure was recorded. It appeared that the maximum subsurface exhalation trailed the minimum barometric pressure by approximately 6-9 hours based on the Baro-ball[™] data and the pressure measurements in well MW-66. It is speculated that up to 12 SCF of air may be expelled from well MW-73 per day, based on data collected during the test.

3.0 LABORATORY RESULTS

A total of six air samples were collected for laboratory analysis, one after each short-term test and one effluent sample with all wells open to the system. All air samples were analyzed by EPA Method TO-14 for volatile organic compounds, including benzene, toluene, ethylbenzene, and xylenes, total petroleum hydrocarbons, and for n-hexane by GC/FID. The pertinent results of the laboratory analyses are shown in Table 1. The complete analytical results are attached as Appendix B.

The laboratory results indicate that benzene, ethylbenzene, and xylenes were not detected. Toluene was detected at an extremely low concentration from the VE-5 sample. N-hexane was detected in all samples, except VE-5. Total petroleum hydrocarbons in the C_4 - C_{12} range, exclusive of n-hexane, were only detected in the VE-1 sample.

There is an incongruity between the n-hexane value established by Method 8015 and TO-14. While EPA Method 8015 used n-hexane for calculations, TO-14 is an estimated value based on the EPA TIC calculation method. In all cases the value for n-hexane is lower by TO-14.

AEN reviewed the chromatograms associated with each method and concluded that the lower nhexane results indicated by TO-14 should be used for air emission calculations. The chromatography is more discriminating and, or course, the mass spectrometer is more selective. Furthermore, the mass spectrometer reconstructed ion chromatograms show that there are substantially more peaks than was indicated by the 8015 methodology.

In future analyses the n-hexane will be quantified by TO-14. Chromatograms and a discussion of the laboratory results are included in Appendix B.

4.0 DATA EVALUATION

The following calculations were made from the field data collected. All calculations are for the steadystate operation of the system with all wells open. A general air flowrate equation was used to calculate the air flow:

(air velocity [ft/min]) x (pipe area [ft²]) x $\frac{(standard temperature [R])}{(air temperature [R])}$ x

<u>(local atmospheric pressure [inches Hg])</u> = air flowrate (scfm) (standard atmospheric pressure [inches Hg])

The steady-state influent flowrate was calculated as the sum of the individual pipe flowrates:

For VE-1

450 ft/min x 0.2 ft² x
$$\frac{528 R}{533 R}$$
 x $\frac{26.32 inches Hg}{29.92 inches Hg}$ = 77 scfm

For VE-2

450 ft/min x 0.2 ft² x $\frac{528 R}{533 R}$ x $\frac{26.32 inches Hg}{29.92 inches Hg}$ = 77 scfm

For VE-3

450 ft/min x 0.2 ft² x
$$\frac{528 \ R}{533 \ R}$$
 x $\frac{26.32 \ inches Hg}{29.92 \ inches Hg}$ = 77 scfm

For VE-4 and VE-5

225 ft/min x 0.35 ft² x
$$\frac{528 \ R}{533 \ R}$$
 x $\frac{26.32 \ inches Hg}{29.92 \ inches Hg}$ = 68 scfm

The total influent flowrate is:

(77 scfm + 77 scfm + 77 scfm + 68 scfm) = 299 scfm

Note: scfm = standard cubic feet per minute The following general equation was used to calculate the mass emission rate based on field PID concentrations:

$$\frac{60 \text{ min}}{1 \text{ hr}} = mass \text{ emission rate } (\frac{lb \text{ TPH}}{hr})$$

The steady state mass emission rate, based on a PID measurement of 40.5 ppmv, was calculated to be:

$$(299 \ [\frac{ft^3}{min}]) \times \frac{1 \ lb \ mol \ TPH}{379 \ ft^3 \ TPH} \times \frac{86 \ lb \ TPH}{1 \ lb \ mol \ TPH} \times (40.5 \ [\frac{ft^3 \ TPH}{1,000,000 \ ft^3}]) \times \frac{60 \ min}{1 \ hr} = 0.165 \ \frac{lb \ TPH}{hr}$$

Note: assumes a molecular weight for TPH of 86 lb/lb mol

7

The steady state mass emission rate can also be calculated using the concentration obtained from the laboratory analysis of the combined effluent stream (1,800 μ g/L TPH). The general equation that is used is:

(air flowrate
$$\left[\frac{ft^3}{min}\right]$$
) x (influent concentration $\left[\frac{\mu g}{L}\right]$) x $\frac{28.32 L}{ft^3}$ x $\frac{1 \ lb}{454 \ x \ 10^6 \ \mu g}$ x $\frac{60 \ min}{hr}$ =

mass emission rate
$$(\frac{lbs}{hr})$$

The calculated mass emission rate is:

$$(299 \ [\frac{ft^3}{min}]) \times (1,800 \ [\frac{\mu g}{L}]) \times \frac{28.32 \ L}{ft^3} \times \frac{1 \ lb}{454 \ x \ 10^6 \ \mu g} \times \frac{60 \ min}{hr} = 2.01 \ \frac{lb \ TPH}{hr}$$

Induced vacuum was not measured in the nearest monitoring well to the BVES (402 ft), so a definitive radius of influence from the BVES was not calculated (Figure 3). The lack of induced vacuum does not mean, however, that there was no air flow, which is the key to vapor extraction. Previous pilot testing indicated measured vacuum 200 feet away.

The following observations were made and results obtained from the startup testing.

- Well VE-1 had the highest field-measured contaminant levels, up to 55.3 ppmv.
- The hydrocarbon concentrations that were measured by the PID during the long-term test on well VE-1 were low and steady (Figure 2) indicating that the mass removal of the system is limited by the time necessary for contaminants to diffuse into continuous fractures.
- The LEL values did not correlate with the PID values. PID levels were low and LEL levels got as high as 52%. There were no analytes detected in the laboratory analyses that would be measured by the LEL and not by the PID. It is likely that methane, which is not detected with a PID, was contributing to the high LEL values. The presence of methane was confirmed by field measurements.
- No H_2S was detected from any well during the test.
- The vapor extraction system was able to deliver high vacuum to each well head.
- Step testing indicated that above 8 inches of mercury vacuum, flowrate increases decline rapidly. In addition, the rated capacity of the blower is 600 cfm, therefore additional wells can be hooked up to the system. Results of the step test are shown in Figure 4.

dg/moc-03/marv0397.upd

- There was no detectable vacuum response at well MW-66 during the test. All pressure fluctuations at the well were likely due to barometric pressure changes and not influenced from VE-1.
- Due to valve leakage, the induced vacuum measurements at VE-2 were not considered reliable.
- There is a significant amount of methane coming from the subsurface, indicating the anaerobic decay of hydrocarbons.
- Vapor extraction appears to be stimulating aerobic biodegradation in the subsurface.
- The mass removal rate from the combined system measured with field instruments during the test was 0.165 lbs/hr and the New Mexico Environment Department (NMED) air permit allows up to 57 lbs/hr to be emitted without vapor controls. The mass emission rate based on the laboratory data was 2.01 lbs/hr.
- The steady state flowrate measured during the test was 299 scfm. The NMED air permit allows up to 600 scfm per blower station.
- The Baro-ball[™] demonstrated the exhalation of air from well MW-73 at a maximum observed rate of 1 SCFH. The check valve did not function properly, however, so air was drawn into the well also.
- No moisture was collected in the knockout drum during the test.
- All equipment functioned properly. The vacuum relief valve is slightly open due to the flow limited, high vacuum, conditions.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The following recommendations are provided to improve the performance and safety of the installed system.

- A filter should be installed on the vacuum relief valve to prevent dirt from being sucked directly into the blower.
- A battery powered sample pump is necessary to overcome vacuum in the lines so vapor samples from each well during combined system operation can be obtained.
- The dilution value size should be increased from a two-inch to a four-inch value to allow greater addition of dilution air.
- A 110 V service utility outlet should be installed at the treatment compound. The 110 V service is necessary to operate hand tools and sampling equipment.
- The components on the vapor extraction trailer downstream of the blower should be labeled with warning stickers alerting of high temperature hazard.

dg/moc-03/marv0397.upd

- A 0-200 inch H₂O magnehelic gauge should be utilized to make wellhead vacuum measurements. This gauge will allow greater accuracy and consistency of readings than the gauges currently installed.
- Based on an average per well flowrate of 70 scfm, approximately 8 wells can be hooked up to each blower station.
- Future equipment installations should follow the piping and instrumentation diagram and schematics that were presented to Marathon in the Draft Barrier Vapor Extraction System Design.

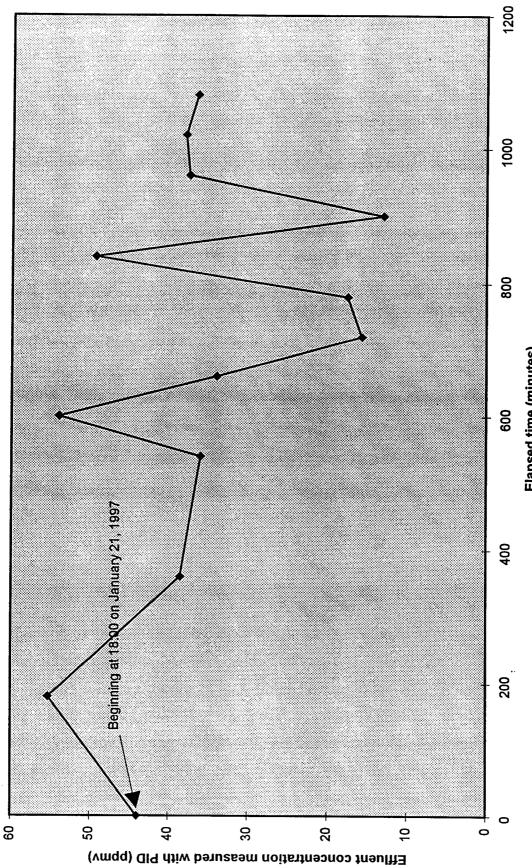
5.1 System Analysis and Future Strategy

The purpose of the BVES is to remove hydrocarbon vapors from the unsaturated zone along the leading edge of the liquid condensate plume in order to mitigate the threat of vapor migration. The northernmost station of the BVES was installed to evaluate mass removal rates, radius of influence, and variability of flowrate and concentration from well to well. The startup test proved that, mechanically, the vapor extraction system is working properly.

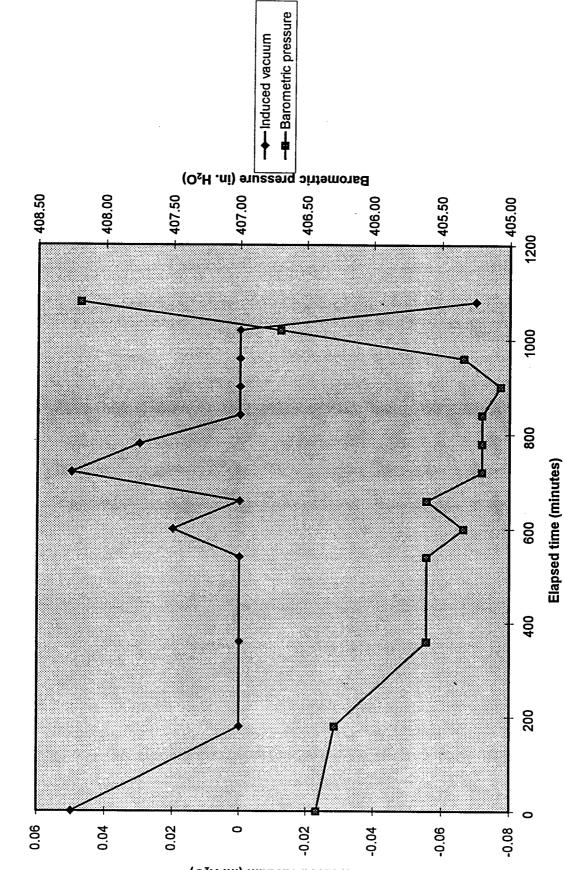
Laboratory testing in August 1996 identified widely varying volatility of the condensate in the free-phase. Along the leading edge of the liquid plume the volatility was low. Startup testing of the BVES confirms this, with low hydrocarbon concentrations in the effluent stream. It is also apparent that the wells connected to the system have a very low overall permeability to air. Therefore, the flowrate of air through the system is limited.

Based on the low ambient and low steady-state concentrations observed during the startup testing, it is concluded that vapor phase transport is not a significant threat to groundwater at the location of the test. To maximize the amount of contaminant mass removed for each dollar spent, remedial efforts should be conducted in the area of highest contaminant concentrations, and most volatile product. Although air flowrate limitations exist at the site, vapor extraction appears to remain the most feasible remedial technology given the geology and nature and distribution of the contaminant. The focus of vapor extraction should shift to removing as much hydrocarbon mass as possible from the fractured bedrock. This, combined with the current groundwater pumping and condensate recovery efforts, is the most effective way to reduce the potential migration of condensate.

To continue to gather technical and economic data on the feasibility of vapor extraction, the next phase of vapor extraction implementation is proposed in an area of the condensate plume where fresh, less degraded product is present. Figure 6 shows the location of five proposed vapor extraction wells along Rocky Arroyo, in the vicinity of MW-65A. It is proposed that the vacuum blower be moved from the existing compound to the proposed testing area along Rocky Arroyo. The system along Rocky Arroyo


dg/moc-03/marv0397.upd

should be operated for a minimum of two months to evaluate mass removal rate over time. Operation of the system in this area will provide valuable information for determination of the feasibility of full-scale vapor extraction.


The existing air permit for the BVES can be used for the allocated blower station. A letter should be submitted to the NMED notifying them of the relocated station.

dg/moc-03/marv0397.upd

Figure 2: Effluent concentration versus time for the long term test on VE-1

Elapsed time (minutes)

(O_sH .ni) muu**sev b**esubnl

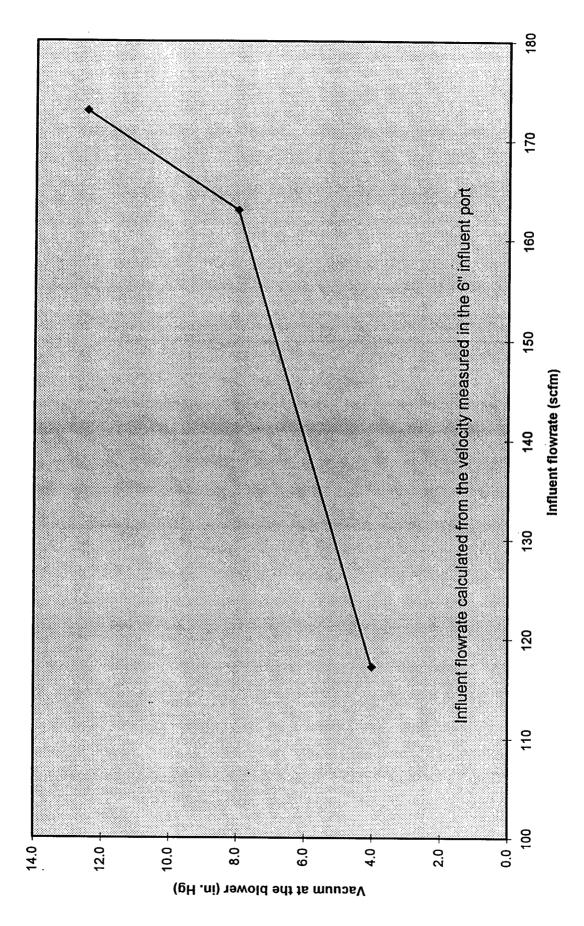


Figure 4: Step test results for VE-1



Figure 5: Barometric pressure at Indian Basin during start-up testing

apseu

	VE-1	VE-2	VE-3	VE-4	VE-5	Combined Effluent
Benzene	<1.7	<0.07	<0.07	<0.1	<0.07	<0.03
Toluene	<1.7	<0.07	<0.07	<0.1	0.1	<0.03
Ethylbenzene	<1.7	<0.07	<0.07	<0.1	<0.07	<0.03
Xylenes	<1.7	<0.07	<0.07	<0.1	<0.07	<0.03
ТРН	1,590	960	680	390	<50	1,800
n-hexane	900	960	680	390	<50	1,800

Table 1 Analytical results of air samples collected during start-up testing

All concentrations are in µg/L

Samples collected on January 20-23, 1997

Analyses conducted by American Environmental Network. See Appendix B for reports.

Barrier Vapor Extraction System Startup Testing Indian Basin Remediation Project Marathon Oil Company P.O. Box 552, Midland, TX 79702

April 1997

APPENDIX A

FIELD DATA

	e	
	Per	
	RG	
	8 X	
	C. Briscoe, K. Rutherford	
	Ċ	
	à	
	ured	
	/east	
L		1

TEST WELL VE-1 Lover Queen Bedrock

Distance from test well to moniforing point (P) MW-66 VE2 402' 758'

10 VE-2							ß	8	£	ß	0.1	1.0	1.2	2	ñ	۳ ۲	8	ß	15	4	۲	∢	۲	4	۲	٩				[
lonaortrig O) VE- 15							0.65	0.65	0.45	0.85	*	-	4	1.2	0.85	0.35	8 0 0	9	-0.15	A/A	N/A	Ż	A/A	A/A	AN	A/A									
Vacum # Moreofug Points (In H/A) MV-66 VV 15							0.05	0	0	0	0.02	0	0.05	0.03	0	0	0	0	-0.07	AN	N/A	A/A	N/A	A/A	A/A	N/A									
Emuart Tamp (of)																																			
Efficient CHL (36)	0	0	0	0	0	0	0	0	0	0	0	0	0.7	1.0	1.2	0.8	0.7	0.8	1.0	0.9	0.3	0.5	0.7	0.2	0.2	0.3	0	0	0	0	0	0	0	0	0
Effluent H-S (%)	0	0	0	•	0	0	0	0	meter malf.	meter malf.	meter malf.	meter malf.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Emer S S	21.7	21.7	21.7				21.7	21.7	21.7	21.0	21.2	20.5	20.5	20.6	20.5	20.5	20.5	20.5	20.5	20.5	20.8	20.5	20.5	20.5	20.5	20.5									
Elliner CC2	0	0	0	0	0	0	0	0.3	0.0	0.1	0.1	0.1	0.2	0.2	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Emiliant LEI	16	19	16	0	0	0	28	30	30	30	52	24	17	19	19	22	21	22	22	23	12	13	14	8	5	5 .	0	0	0	5.0	10.0	10.0	0	10.0	10.0
Emtuari PID CPTTV)				1.1	2.3	0.9	44	55.3	38.5	36.0	54.0	34.0	15.7	17.5	49.4	13.0	37.5	38.0	36.5	33.1	31.0	28.0	33.3	32.4	40.0	44.0	0.8	0.7	1.2	3.1	3.8	4.1	2.3	2.3	4.1
thfluent Temp (oF)	64	61	59	60	61	64	49	4	38	32	28	41	49	58	65	68	70	70	67	ន	62	62	ଞ	59	59	57	67	20	68	74	73	20	64	8	57
Filow from Task Well 6 pipe (in FPM)	650	800	650	600	600	600	650	750	750	750	750	750	750	750	750	750	750	750	750	750	700	700	200	500	500	200	650	650	650	650	650	650	650	850	650
Vacuum at Blowar (ft, Hg)	8.25	8.0	8.25	13.7	13.75	13.5	12.0	10.4	10.5	9.5	9.6	10.0	11.7	12.0	12.8	13.3	13.3	13.4	13.5	13.0	8.0	8.0	7.7	4.0	4.0	3.9	13.5	13.75	13.5	13.5	13.3	13.5	13.0	13.0	13.0
Vacuum at Teat Well (hr.Hg)			8	14	14.5	14	12.0	11.5	11.5	11.5	15	12.5	13.7	12.25	12.5	12.5	12.25	12.2	12.0	N/A	12.5	12.5	AN	11.5	11.5	11.5	12.5	12.5	12.5						
Time	03:35	04:05	04:35	10:55	11:25	11:55	21:00	00:00	03:00	06:00	00:20	08:00	00:60	10:00	11:00	12:00	13:00	14:00	15:00	15:25	15:45	16:00	16:15	16:30	16:45	17:00	12:50	13:20	13:50	14.50	15:20	15:50	16:30	17:00	17:30
Wei	VE-1			VE-3			VE-1																				VE-2			VE-4			VE-5		
Date	1/20/97 VE-1						1/21/97 VE-1	1/22/97																											

dg/moc-02/resit397.xis

•

10:15 Started balancing system.

VELLS	225 fpm	
VE3	450 fpm	
VE-2	450 fpm	
	450 fpm	
	Anometer Reading	

Effluent 02% Discharge		
8	2	
0		
202		
C 2	LL.	
a a	2	
= 0	3	
	-	
		l
		l
202	730F	
<u>)</u> 5	8	
	~	

	Lo	
H	5	
0	١¥.	l
H2S PID	í	
		ļ
		j
5		l
		l
3		
********	-	
		l
CH4 %		
	ko	
9	N.	l
	r .	l
500000000000	-	
ò		
0	2	
		l
	1	
	1	
		l
		l
m ::::::		l
æ	8	
28	6	l
C ±		
S X	1	
E P	Q	
2 2	B	
	-	
		l
		l
Vac.@		ļ
		ĺ
G 5	9	I
		ĺ
Vac.@ Blower	2	ĺ
S m	3	I
	- T	Í
		Í
a	_	
a	_	
a	_	
a	_	
a	_	
ime	_	
a	_	

Sampled VES EFF taken @ 11:00

Vacuum at wells - Vacuum in In. Hg

	_	_
VES	12.75	
VE4	12.5	
VE3	12.2	
VE-1 VE-2 VE-3 VE-4) 11.5 12.2 12.5 12.75	
VE-1	12.0	

Notes:

1. There was water and/or sediment at the Tee where flow splits from VE-4 to VE-5

There was no good way to increase flow from VE-4 to VE-5 without restricting flow from other wells.
 We did not have any instruments that would overcome the vacuum so we couldn't get individual leg concentrations.

Barrier Vapor Extraction System Startup Testing Indian Basin Remediation Project Marathon Oil Company P.O. Box 552, Midland, TX 79702

April 1997

APPENDIX B

LAB DATA

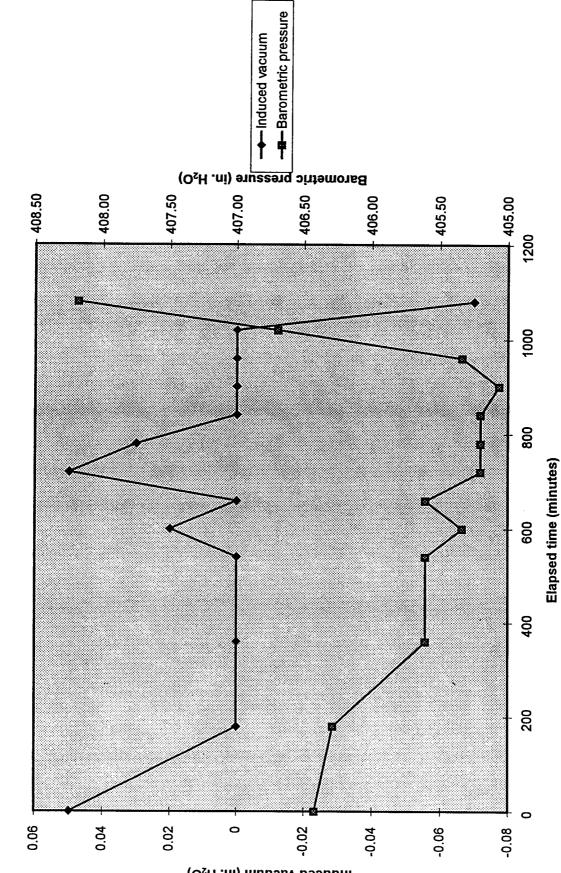


Figure 3: Induced vacuum in MW-66 for the long term test on VE-1

(O_sH .ni) muuɔɕv bəɔubnl

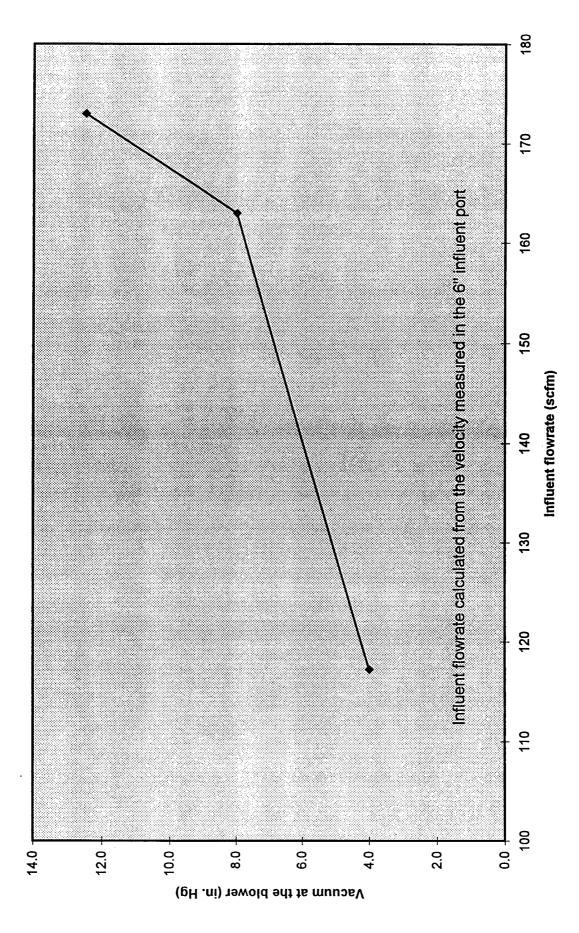


Figure 4: Step test results for VE-1

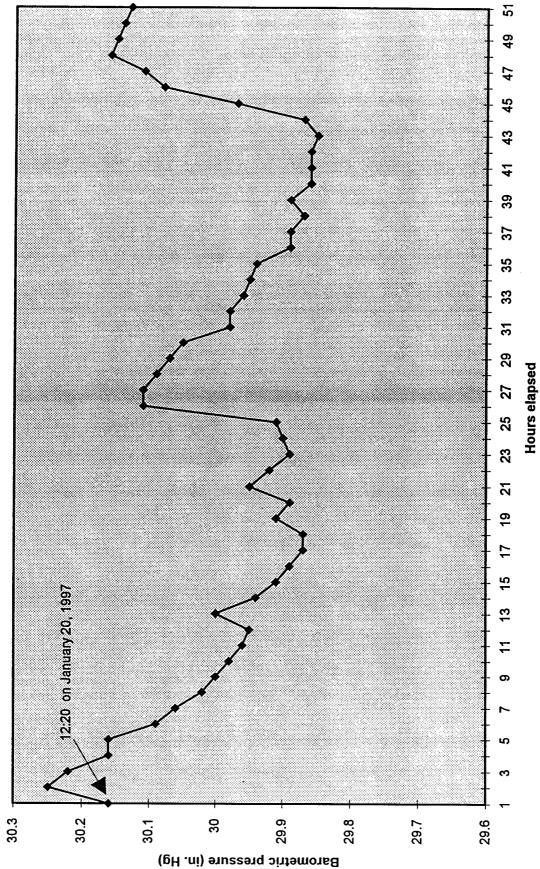


Figure 5: Barometric pressure at Indian Basin during start-up testing

lls elaps

	VE-1	VE-2	VE-3	VE-4	VE-5	Combined Effluent
Benzene	<1.7	<0.07	<0.07	<0.1	<0.07	<0.03
Toluene	<1.7	<0.07	<0.07	<0.1	0.1	<0.03
Ethylbenzene	<1.7	<0.07	<0.07	<0.1	<0.07	<0.03
Xylenes	<1.7	<0.07	<0.07	<0.1	<0.07	<0.03
ТРН	1,590	960	680	390	<50	1,800
n-hexane	900	960	680	390	<50	1,800

Table 1 Analytical results of air samples collected during start-up testing

All concentrations are in µg/L

Samples collected on January 20-23, 1997

Analyses conducted by American Environmental Network. See Appendix B for reports.

Barrier Vapor Extraction System Startup Testing Indian Basin Remediation Project Marathon Oil Company P.O. Box 552, Midland, TX 79702

April 1997

APPENDIX A

FIELD DATA

đơnhg VE-2 15							0.65	0.65	0.45	0.85	1.0	1.0	1.2	1.2	0.85	0.35	0.00	-0.20	-0.15	N/A															
Vacuum at Montaring Points (In HAO) MW 55 Vi							0.05	0	0	0	0.02	0	0.05	0.03	0	0	0	0	-0.07	N/A															
Effuert Tarro (of)																																			
Effuert CH.(%)	0	0	0	0	0	0	0	0	0	0	0	٥	0.7	1.0	1.2	0.8	0.7	0.8	1.0	0.9	0.3	0.5	0.7	0.2	0.2	0.3	0	0	0	0	0	0	0	0	0
Efficient H/S (%)	0	0	0	0	0	0	0	0	meter malf.	meter maif.	meter malf.	meter matt.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Effect S 2	21.7	21.7	21.7				21.7	21.7	21.7	21.0	21.2	20.5	20.5	20.6	20.5	20.5	20.5	20.5	20.5	20.5	20.8	20.5	20.5	20.5	20.5	20.5									
1888 1988 1988 1988 1988 1988 1988 1988	0	0	0	•	0	0	0	0.3	0.0	0.1	0.1	0.1	0.2	0.2	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Embert LED	16	19	16	0	0	0	28	8	8	8	52	24	17	19	19	ឌ	21	ន	ង	33	12	13	14	8	5	5 .	0	0	0	5.0	10.0	10.0	0	10.0	10.0
Efficient PID (ppm)				1.1	2.3	0.9	44	55.3	38.5	36.0	54.0	34.0	15.7	17.5	49.4	13.0	37.5	38.0	36.5	33.1	31.0	28.0	33.3	32.4	40.0	44.0	0.8	0.7	1.2	3.1	3.8	4.1	2.3	2.3	4.1
Influent Temp (of)	64	61	ß	8	61	64	49	64	38	32	28	41	49	58	65	88	٩	2	67	ខ	62	62	80	59	59	57	67	20	89	74	73	70	64	8	57
Flow from Text Well 6" pipe (In FPM)	650	009	650	600	600	600	650	750	750	750	750	750	750	750	750	750	750	750	750	750	700	700	700	500	500	500	650	650	650	650	650	650	650	650	650
Vacuum at Blover (fn. Hg)	8.25	8.0	8.25	13.7	13.75	13.5	12.0	10.4	10.5	9.5	9.6	10.0	11.7	12.0	12.8	13.3	13.3	13.4	13.5	13.0	8.0	8.0	7.7	4.0	4.0	3.9	13.5	13.75	13.5	13.5	13.3	13.5	13.0	13.0	13.0
Vacuum at Teet Weit (hr Hg)			8	14	14.5	14	12.0	11.5	11.5	11.5	15	12.5	13.7	12.25	12.5	12.5	12.25	12.2	12.0	N/A	12.5	12.5	AN	11.5	11.5	11.5	12.5	12.5	12.5						
Time	03:35	04:05	04:35	10:55	11:25	11:55	21:00	0 0:00	03:00	00:90	00:20	08:00	00:60	10:00	11:00	12:00	13:00	14:00	15:00	15:25	15:45	16:00	16:15	16:30	16:45	17:00	12:50	13:20	13:50	14:50	15:20	15:50	16:30	17:00	17:30
Well	1/20/97 VE-1			VE-3			97 VE-1	26																			VE-2			VE-4			VE-5		
Date	1/20/5						1/21/97	1/22/97																											

dg/moc-02/resit397.xls

TESTWELL VE-1 Lover Queen Bedrock

Measured by C. Briscoe, K. Rutherford

Distance from test well to moniforing point (P.) MW-65 VE-2 402' 758'

10:15 Started balancing system.

VE4.6	225 fpm	
VE-1 VE-2 VE-3 VE-4.6	450 fpm	
Vi=2	450 fpm	
VE3	450 fpm	
	Anometer Reading	

	_	
02%		
*	പ	
δ.	÷	
Bue Bue	щÌ	
ffluen schar	ខ្ល	
	-	
- 6		
Ē.		
3 5	b.	
EE	~	
<u>o</u>	2	
9	4	
	_	l
SS		
	익	
*		l
		ł
22 % CH4 % H2S PID Influent Temp	2.6 0 0 40.5	
.		
Ū.	2	l
*		
	-	
2		
8	~	l
2	~	
		ĺ
Щ		
*	4	
	_	
	- [
55.	5	
	21	
5 × 1	×	
	-	
		8
0000000000		
ac.@	Ĕ	1
<u> 8</u> ≦ ;	5	
	÷ [
		ļ
		i
Пе		
e e	2	
E	-	
		k

Sampled VES EFF taken @ 11:00

Vacuum at wells - Vacuum in in. Hg

VE-6	13 7E	1 12:10
VE-4	ľ	2·51
VE3	T	
VE-2	1 115 1	
VE-1	1_	

Notes:

1. There was water and/or sediment at the Tee where flow splits from VE-4 to VE-5

There was no good way to increase flow from VE-4 to VE-5 without restricting flow from other wells.
 We did not have any instruments that would overcome the vacuum so we couldn't get individual leg concentrations.

•

...

Barrier Vapor Extraction System Startup Testing Indian Basin Remediation Project Marathon Oil Company P.O. Box 552, Midland, TX 79702

April 1997

APPENDIX B

LAB DATA

March 20, 1997

To:Bob Menzie/Kyle RutherfordFrom:Mitch Rubenstein

Subject: Review of TO-14 Data Vs. Mod. 8015 Data for Hexane

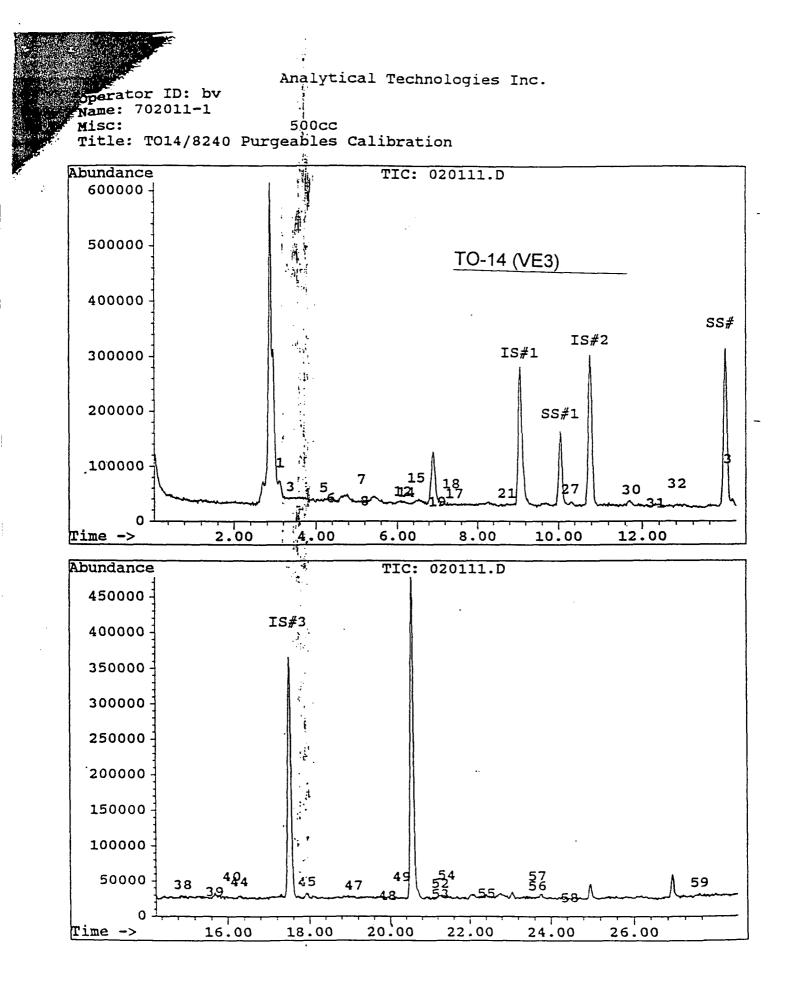
Bob,

The following table compares the 8015 data to an estimated value derived by a TIC search by GCMS.

menican Enouronmenual Neuvork, In

	Marathon Oil Company Data			
	Comparison of 8015 (7	TO12) vs TO14 (estima	ted) Data	
SAMPLE	8015(Total)	8015(hexane)	TO14	
	ug/L (=Mg/M ³)	ug/L (=Mg/M ³)	Mg/M ³	
70351-01(VE3)	680	680	0.34	
70351-02(VE1)	1590	900	8.00	
70351-03(VE2)	960	960	0.41	
70351-04(VE4)	390	390	0.47	
70351-05(VE5)	ND	ND	N/A	
70351-06(VE5 EFF)	1800	1800	12	

As illustrated in the Table, there is an incongruity between the hexane value established by Method 8015 and TO14. While EPA Method 8015 used n-hexane for calculations, TO-14 is an estimated value based on the EPA TIC calculation method. In all cases the value for n-hexane is lower by TO-14.

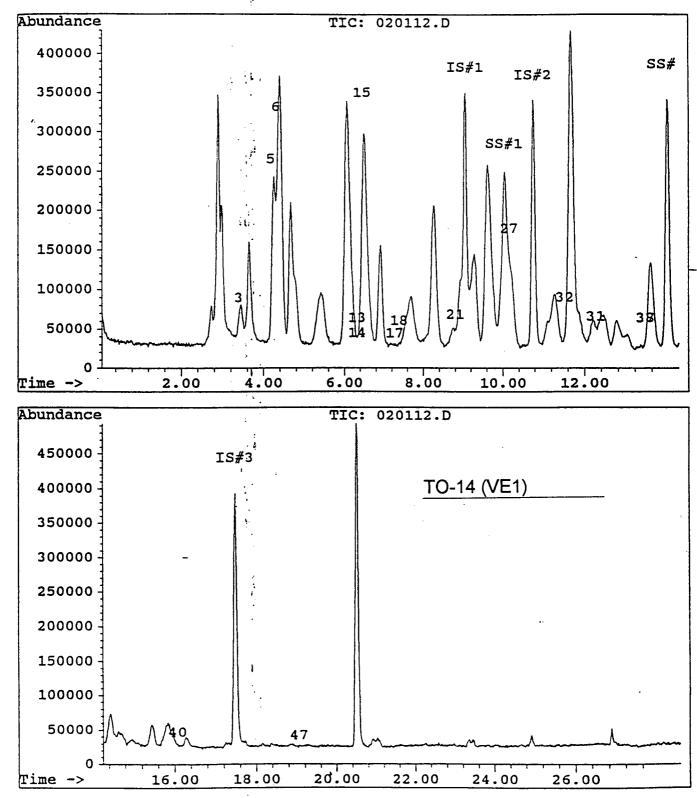

In review of the chromatograms associated with each method, I believe that the lower n-Hexane results indicated by TO-14 should be used for air emission calculations. My rationale is that I believe that the chromatography was more discriminating and, of course, the mass spectrometer is more selective. Furthermore, in reviewing the mass spectrometer reconstructed ion chromatograms it is obvious that there are substantially more peaks than was indicated by the Mod. 8015 methodology. American Environmental Network, Inc.

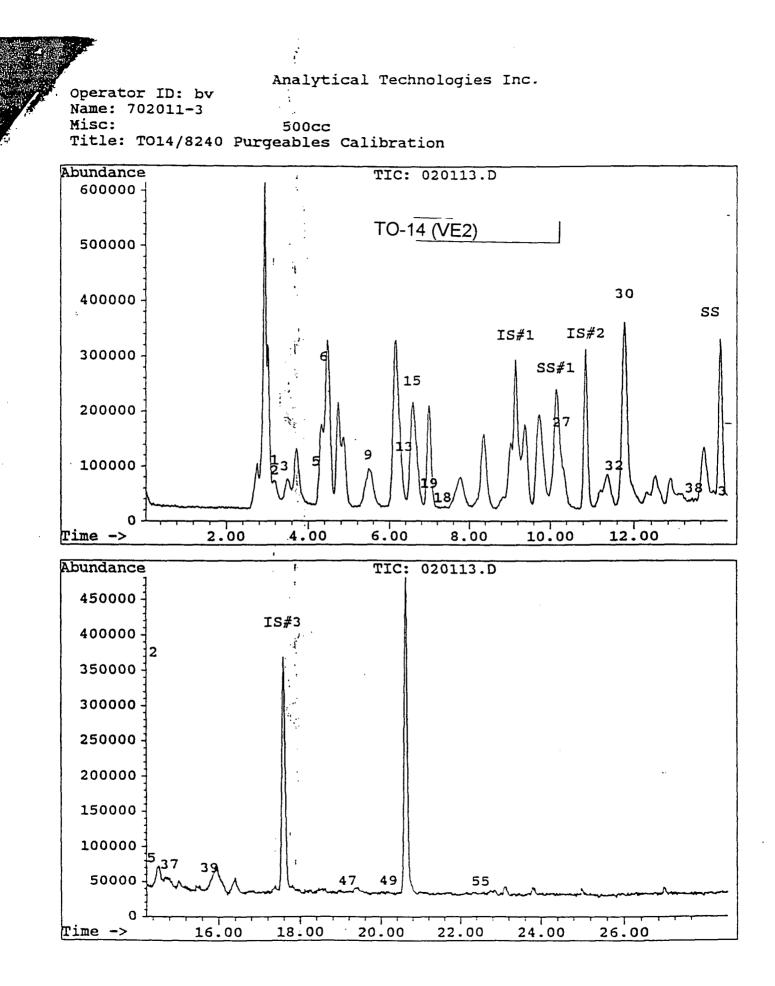
In future analyses I will recommend that the n-hexane be quantified by TO-14.

If you have any questions or suggestions please do not hesitate to contact me at (505) 344-3777. I have attached and labeled the chromatograms for your review.

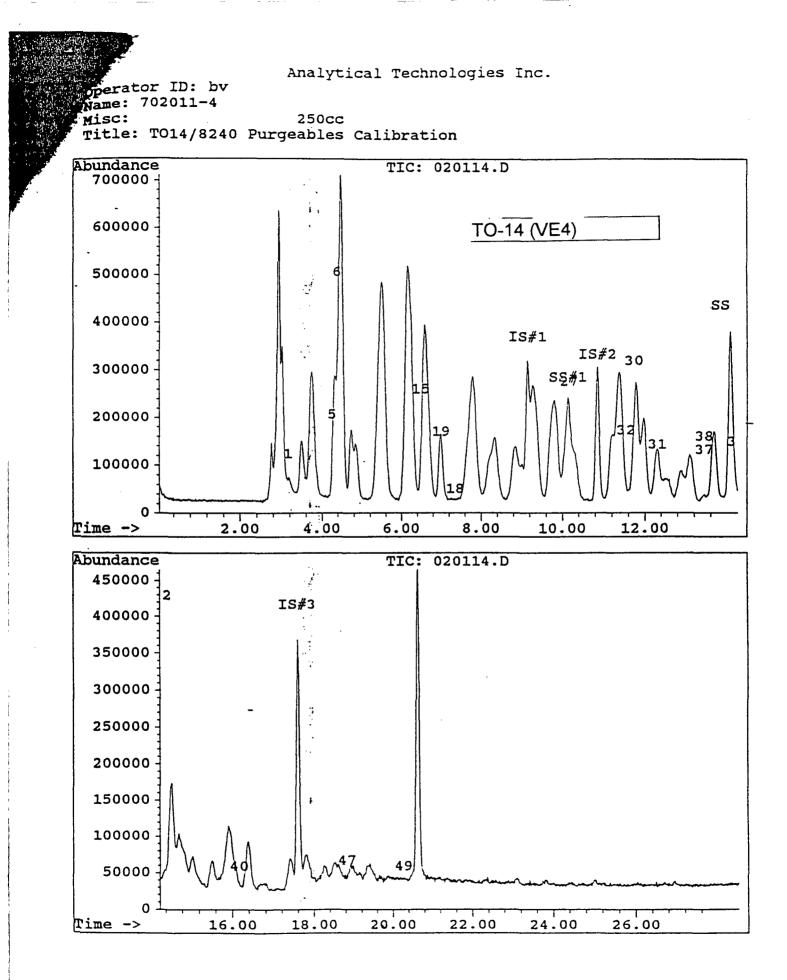
Sincerely, Mitch

Mitch Rubenstein, Ph.D. General Manager

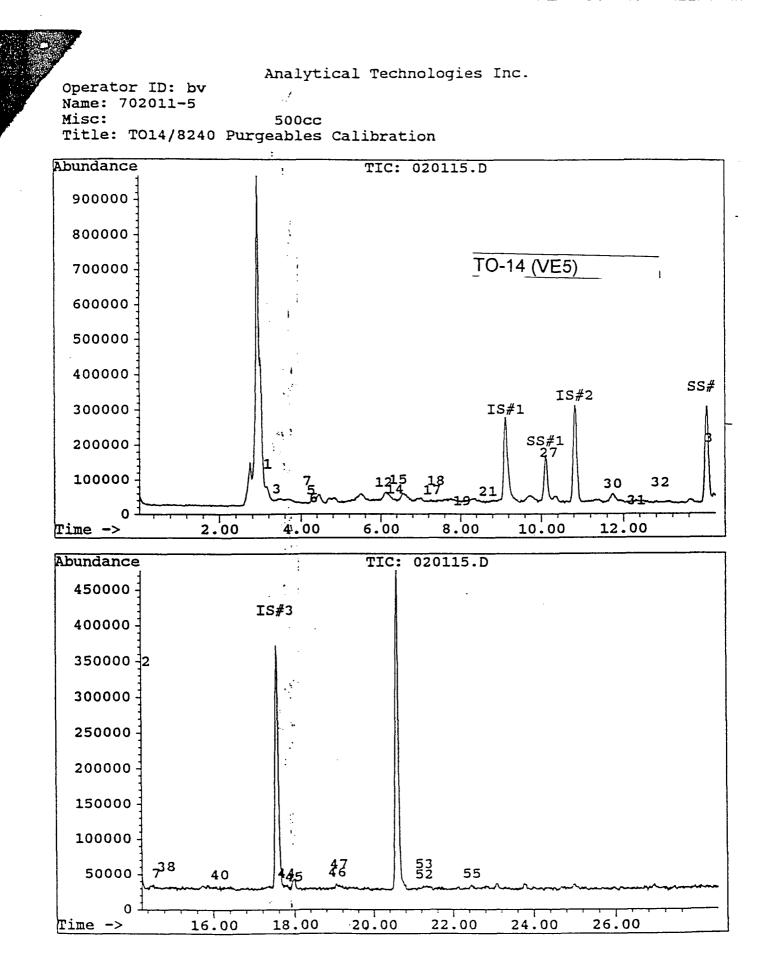

Page 1

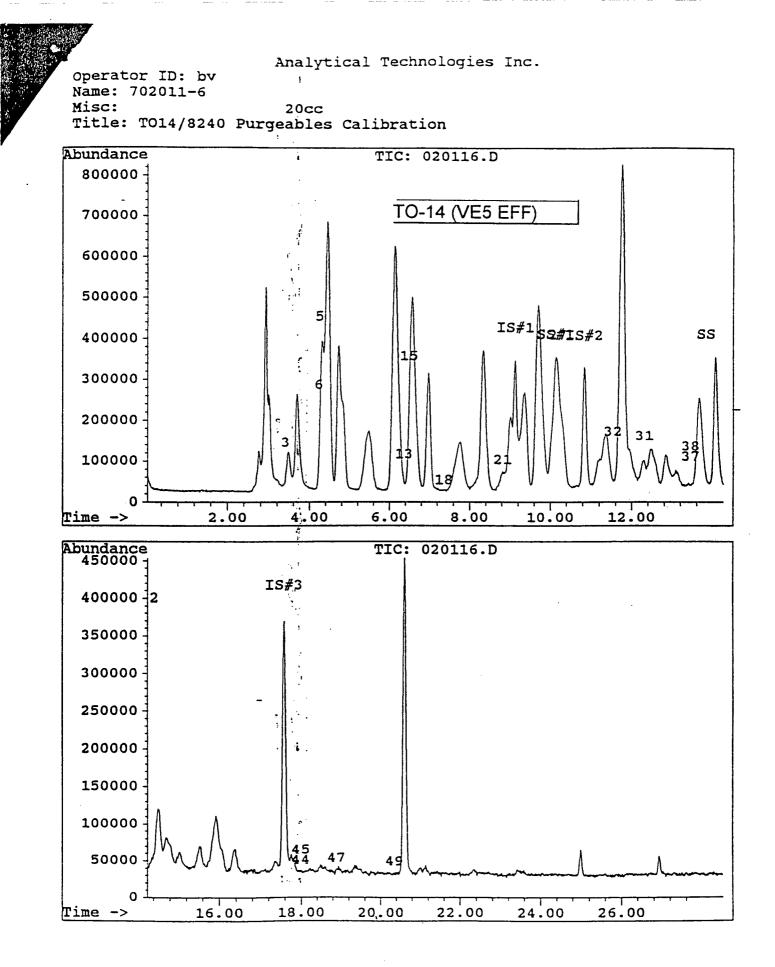

Analytical Technologies Inc.

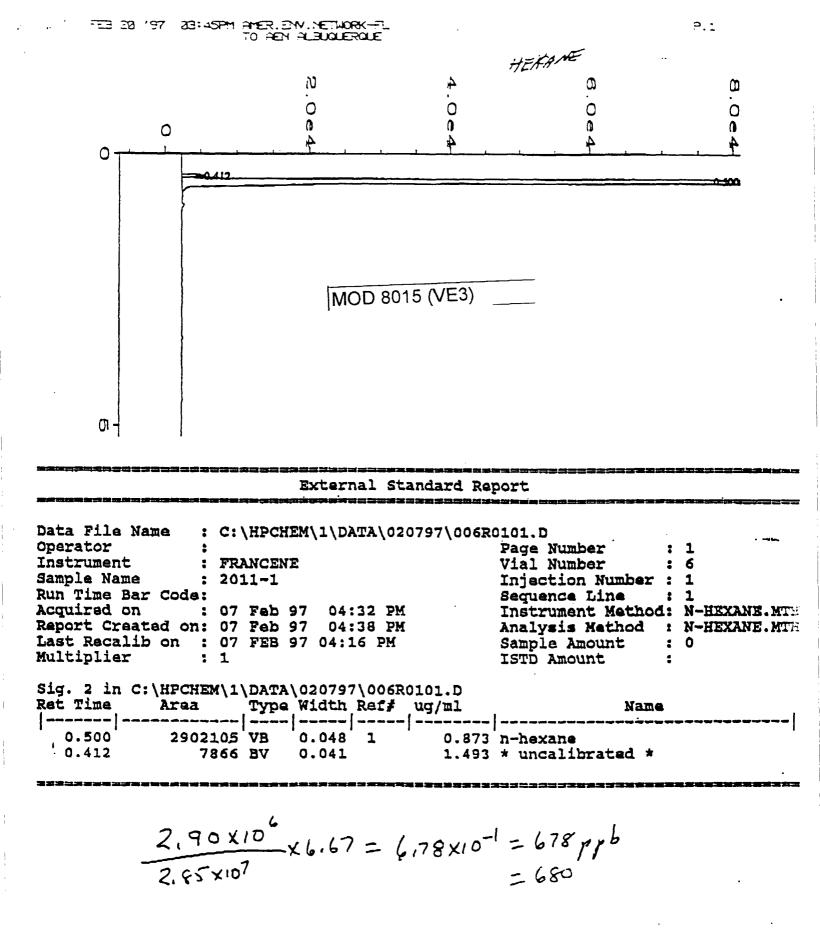
operator ID: bv Name: 702011-2 Misc:

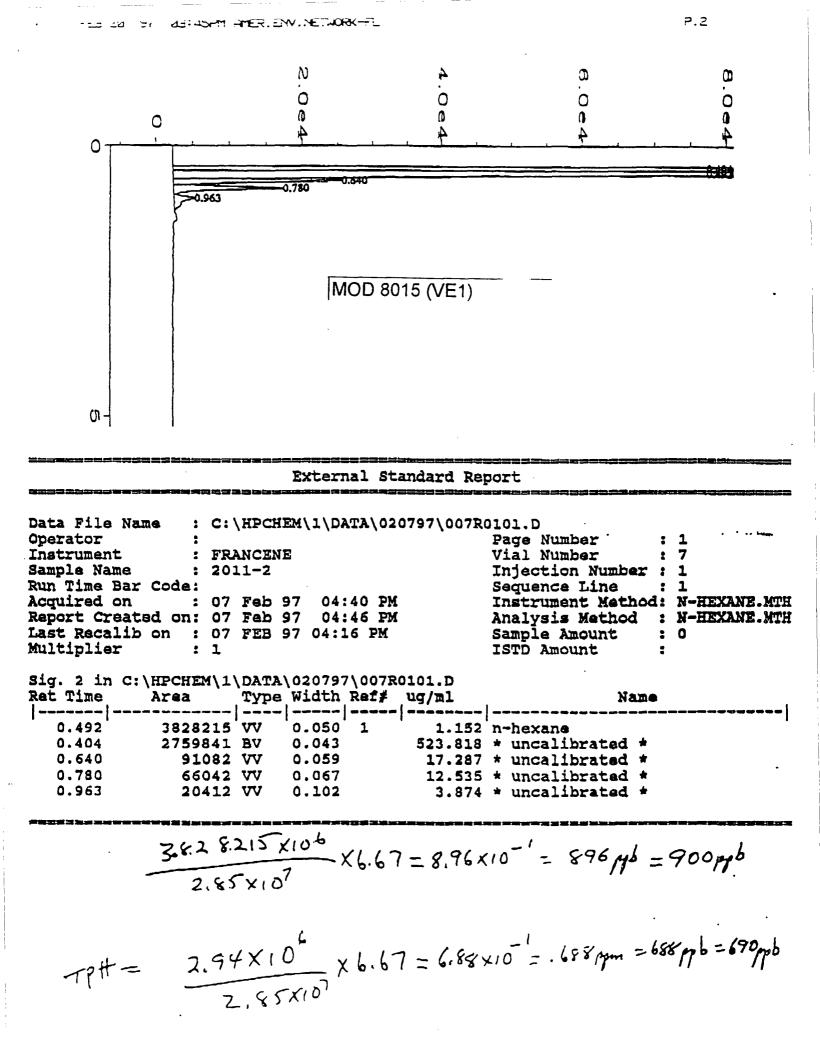

20cc

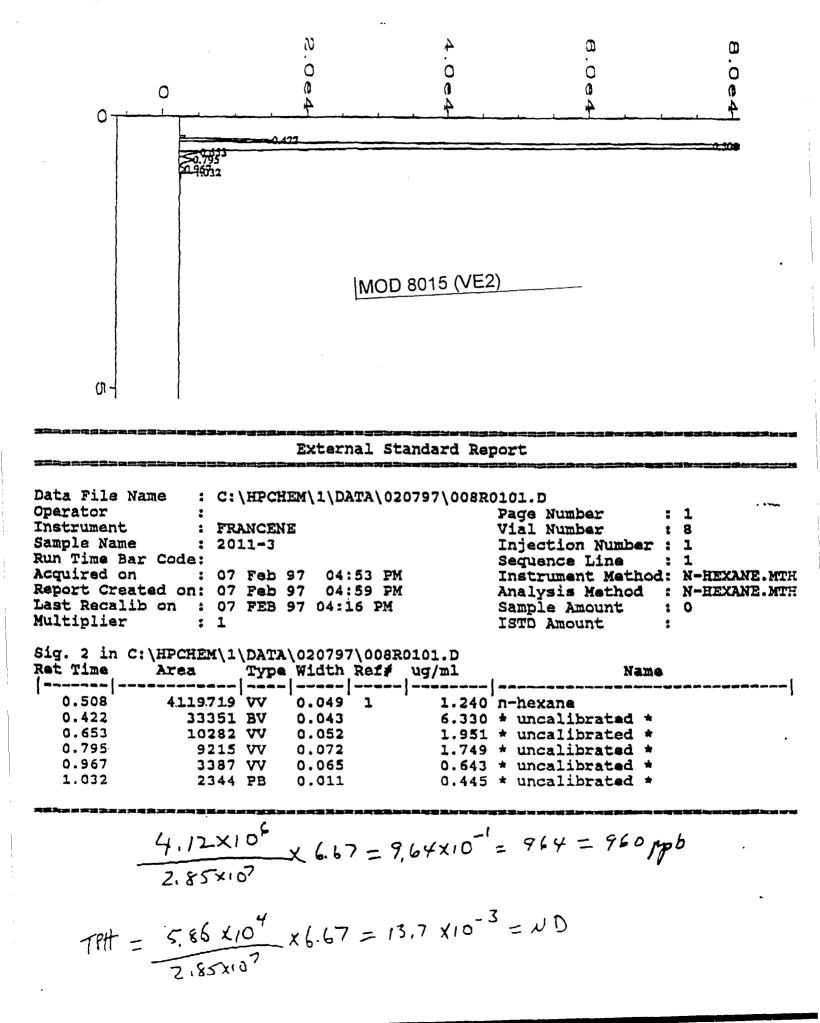
Title: TO14/8240 Purgeables Calibration



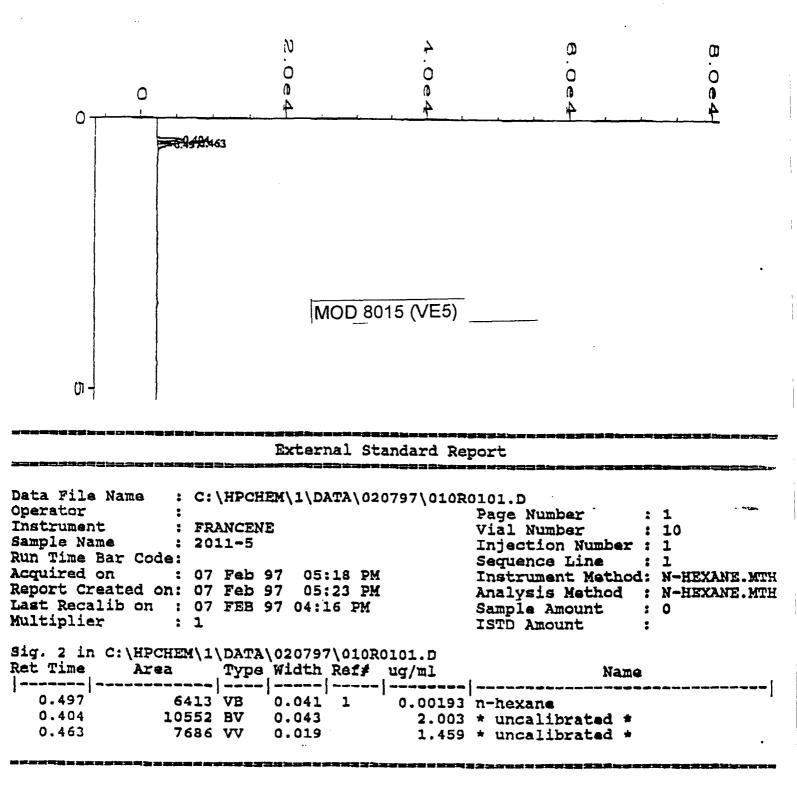

and the second second

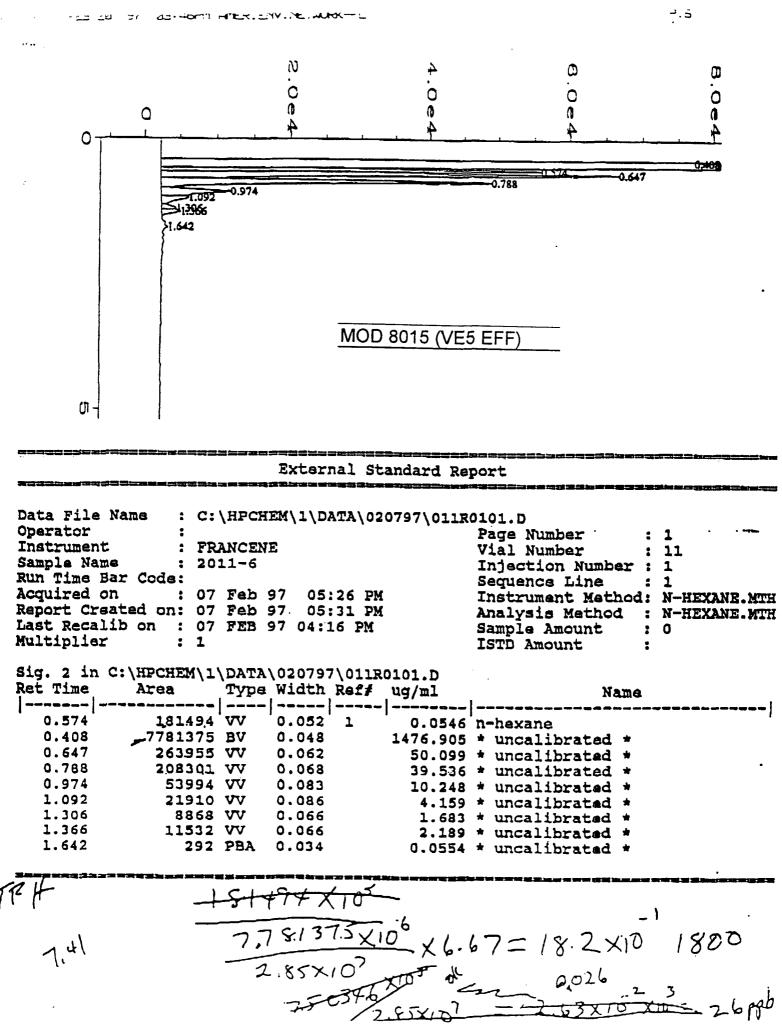



Page 1



Page 1




E 78' 82 EF	LASPM AMER. ENV. NETWORK-	· <u>·</u>		F.4
0		4.0 e 4	0 0 e 4	8 0 • 4
	MOD	8015 (VE4)		
Data File Name Operator Instrument Sample Name Run Time Bar Code Acquired on Report Created or Last Recalib on Multiplier	: C:\HPCHEM\1\DATA : : FRANCENE : 2011-4 3: : 07 Feb 97 05:11 1: 07 Feb 97 05:16 : 07 FEB 97 04:16	PM 5 PM	ĴĨŒĸĸĸĸŢŢŸĔĸĸĸŢŢĨĨĔĬĬ	N-HEXANE.MTH
Sig. 2 in C:\HPCH Ret Time Area	HEM\1\DATA\020797\0 Type Width Re 5344 VV 0.044 1	009R0101.D 1≢ ug/ml	Name	
0.585 0.417 167 0.658	5344 VV 0.044 1 71909 BV 0.037 4567 VV 0.055	0.00161 317.328 0.867	n-hexane * uncalibrated * * uncalibrated *	
/, 6	7×106 ×6.6	7=10,391	= 390 mb	

TEE 28 197 BE: 45PM AMER. BW. NETWORK-TL

- - -

P.4

mennoan Engeronmennal Neuroork. E

MECEIVED MAR 2 1 1997

AEN I.D. 701371

March 21, 1997

MARATHON OIL COMPANY PO BOX 552 MIDLAND TX, 79702

Project NameIB REMEDIATIONProject Number23350173.60

Attention: BOB MENZIE

On 1/24/97 American Environmental Network (NM), Inc. (ADHS License No. AZ0015), received a request to analyze air samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

All analyses were performed by American Environmental Network (FL) Inc., 11 East Olive Road, Pensacola, FL.

If you have any questions or comments, please do not hesitate to contact us at (505)344-3777.

Kimberly D. McNeill Project Manager

MR: mt

Enclosure

HM: Ehell

H. Mitchell Rubenstein, Ph. D. General Manager

CLIENT	: MARATHON OIL COMPANY	AEN I.D.	: 701371
PROJECT #	: 23350173.60	DATE RECEIVED	: 1/24/97
ROJECT NAME	; IB REMEDIATION	REPORT DATE	: 3/21/97
NEN .			DATE
D. #	CLIENT DESCRIPTION	MATRIX	COLLECTED
1	VE3	AIR	1/21/97
2	VE1	AIR	1/20/97
3	VE2	AIR	1/21/97
4	VE4	AIR	1/21/97
5	VE5	AIR	1/21/97
6	VE5 EFF	AIR	1/23/97

1

"FINAL REPORT FORMAT - SINGLE"

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	TO14 TO14/SIM/Compend			,	June 1988.
Lab Id: Client Sample Id:	001 701371-01		Sample Date Received Da		21-JAN-97 1155 01-FEB-97
Parameter:		Units:	Results:	Rpt Lm	ts: Q:
TRICHLOROTRIFLUORC 4 - ETHYLTOLUENE BROMOFLUOROBENZENE 1,2-DICHLOROETHANE TOLUENE-D8 ANALYST		MG/M3 MG/M3 %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND 107 97 107 BV	0.07 0.07 90-111 85-115 85-111	

"FINAL REPORT FORMAT - SINGLE"

Accession: Client: Project Number: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	702011 AMERICAN ENVIRONMENTAL NE 701371 MARATHON OIL CO. IB REMEDIATION TO14 TO14/SIM/Compendium of Me N/A AIR I		June 1988.		
Lab Id: Client Sample Id:	001 701371-01	Sample Date/Time: Received Date:	21-JAN-97 1155 01-FEB-97		
"Sample Tic Report"					

Number of Tics Found: 1 Concentration Units: MG/M3

Cas Number:	Compound Name:	RT:	Est Conc:	Q:
000110-54-3	N-HEXANE	6.90	0.3	J

. '

į

{0} Page 1
Date 11-Feb-97

Accession: 702011 Client: AMERICAN ENVIE Project Number: 701371 Project Location: IB REMEDIATION Teat: GENERIC GROUP	CO. N	ETWORK (NEW MEXICO) INC.	
Parameter:	Units;	Results:	Rpt Lmts:	Qı
Sample Number:001 Dry Weight N-HEXANE TOTAL PETROLEUM HYDROCARBON	*:N/A UG/L UG/L	Client Id: 701371 680 ND	-01 50 50	
Comments: ANALYST: SW				
Sample Number:002 Dry Weight N-HEXANE TOTAL PETROLEUM HYDROCARBON	* N/A UG/L UG/L	Client Id: 701371 900 690	-02 50 50	
Comments: ANALYST: SW				
Sample Number:003 Dry Weight N-HEXANE TOTAL PETROLEUM HYDROCARBON	*:N/A UG/L UG/L	Client Id: 701371 960 ND	-03 50 50	
Comments: ANALYST: SW				
Sample Number:004 Dry Weight N-HEXANE TOTAL PETROLEUM HYDROCARBON	≵ N/A UG/L UG/L	Client Id: 701371- 390 ND	-04 50 50	
Comments: ANALYST: SW				
Sample Number:005 Dry Weight N-HEXANE TOTAL PETROLEUM HYDROCARBON	¥:N/A UG/L UG/L	Client Id: 701371- ND ND	-05 50 50	
Comments: ANALYST: SW				
Sample Number:006 Dry Weight N-HEXANE TOTAL PETROLEUM HYDROCARBON	t:N/A UG/L UG/L	Client Id: 701371- 1800 ND	-06 50 50	
Commonte: Analyst: Sw				

1

: '

"FINAL REPORT FORMAT - SINGLE"

L

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	IB REMEDIATION TO14 TO14/SIM/Compe	20. N			June	1988.
Lab Id: Client Sample Id:	001 701371-01		Sample D Received	ate/Time: Date:	21-JA 01-FE	N-97 1155 B-97
Batch: MAB017 Blank: B	Dry Weight %:	N/A		on Date: Date:	N/A 09-FE	B-97
Parameter:		Units:	Results:	Rpt Lm	ts:	Q:
AL PHA-CHLOROTOLUEN BENZENE BROMOMETHANE CARBON TETRACHLORI CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROFORM CHLORODIFLUOROMET 1, 2 DICHLOROETHANE 1, 2 DICHLOROETHANE 1, 2 DICHLOROETHANE 1, 2 DICHLOROETHANE 1, 2 DICHLOROETHANE 1, 2 DICHLOROETHANE 1, 2 DICHLOROPROPANE CIS-1, 3 DICHLOROPRO TRANS-1, 3 DICHLOROPRO TRANS-1, 3 DICHLOROPRO TRANS-1, 3 DICHLOROPRO DICHLOROTETRAFLUORO ETHYL BENZENE HEXACHLOROBENZENE M-DICHLOROBENZENE M-DICHLOROBENZENE METHYLENE CHLORIDE O-DICHLOROBENZENE STYRENE 1, 1, 2, 2 TETRACHLORO TETRACHLOROETHYLENE TOLUENE 1, 1, 2 -TRICHLOROETHY VINYL CHLORIDE 1, 2 - DIBROMOETHANE (1, 2, 4 TRICHLOROBENZENE 1, 1, 2, 5 -TRIMETHYLBENZ 1, 1 - DICHLOROETHENE 1, 1, 1 - TRICHLOROETHE	DE HYLENE THANE DPENE PROPENE DETHANE E DETHANE E NNE HANE EDB) EENE EENE	MG/M3 MG/M3	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.07 0.07		

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	TO14 TO14/SIM/Compe	0.			June 1	L988.
Lab Id: Client Sample Id:	002 701371-02		Sample Da Received	te/Time: Date:	20-JAN 01-FEE	
Batch: MAB017 Blank: A	Dry Weight %:	N/A	Extractic Analysis		N/A 08-FEB	3-97
Parameter:		Units:	Results:	Rpt Lm	ts:	Q:
ALPHA-CHLOROTOLUENI BENZENE BROMOMETHANE CARBON TETRACHLORII CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROMETHANE CIS 1,2 DICHLOROETH DICHLORODIFLUOROMET 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROP TRANS-1,3-DICHLOROF DICHLOROTETRAFLUORO ETHYL BENZENE HEXACHLOROBUTADIENE M-DICHLOROBENZENE M-DICHLOROBENZENE M-DICHLOROBENZENE M-DICHLOROBENZENE M-DICHLOROBENZENE D-XYLENE P-DICHLOROBENZENE STYRENE 1,1,2,2-TETRACHLORO TETRACHLOROETHYLENE TOLUENE 1,2-TRICHLOROETHYLENE TRICHLOROFLUOROMETH VINYL CHLORIDE 1,2,4 TRICHLOROENZENE 1,1-2,4-TRIMETHYLBENZ 1,1-DICHLOROETHANE 1,1-TRICHLOROETHANE 1,1-TRICHLOROETHANE 1,1-TRICHLOROETHANE 1,1-TRICHLOROETHANE	DE HYLENE FHANE DEPENE DETHANE DETHANE S DETHANE S DETHANE S DETHANE S DETHANE S DETHANE S DETHANE S DETHANE S DETHANE	MG/M3 MG/M3	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.7 1.7		·

"FINAL REPORT FORMAT - SINGLE"

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	702011 AMERICAN ENVIRON 701371 MARATHON OIL CO. IB REMEDIATION TO14 TO14/SIM/Compend N/A AIR I				June	1988.	
Lab Id: Client Sample Id:	002 701371-02		Sample Date Received Da	e/Time: ate:	20-JA 01-FE	N-97 163 B-97	30
Parameter:		Units:	Results:	Rpt Lm	ts:	Q:	
TRICHLOROTRIFLUORO 4 - ETHYLTOLUENE BROMOFLUOROBENZENE 1,2-DICHLOROETHANE TOLUENE-D8 ANALYST		MG/M3 MG/M3 %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND 102 98 103 BV	1.7 1.7 90-111 85-115 85-111			

"FINAL REPORT FORMAT - SINGLE"

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	702011 AMERICAN ENVIRONMENTAL NETWORN 701371 MARATHON OIL CO. IB REMEDIATION TO14 TO14/SIM/Compendium of Methods N/A AIR I		June 1988.			
Lab Id: Client Sample Id:	002 701371-02	Sample Date/Time: Received Date:	20-JAN-97 1630 01-FEB-97			
"Sample Tic Report"						
Number of Tics Found: 1						

Concentration Units: MG/M3

Cas Number:	Compound Name:	RT:	Est Conc:	Q:
000110-54-3	N-HEXANE	6.92	8	

"FINAL REPORT FORMAT - SINGLE"

;

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	TO14 TO14/SIM/Compen				June 198	38.
Lab Id: Client Sample Id:	003 701371-03		Sample Da Received	te/Time: Date:	21-JAN-9 01-FEB-9	
Batch: MAB017 Blank: B	Dry Weight %:	N/A	Extractio Analysis		N/A 09-FEB-9	97
Parameter:		Units:	Results:	Rpt Lm	ts: Q:	:
ALPHA-CHLOROTOLUEN BENZENE BROMOMETHANE CARBON TETRACHLORI CHLOROBENZENE CHLOROETHANE CHLOROFORM CHLOROMETHANE CIS 1,2 DICHLOROET DICHLORODIFLUOROME 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPAN CIS-1,3-DICHLOROP TRANS-1,3-DICHLORO DICHLOROTETRAFLUOR ETHYL BENZENE HEXACHLOROBUTADIEN M-DICHLOROBENZENE METHYLENE CHLORIDE O-XYLENE METHYLENE CHLORIDE O-XYLENE P-DICHLOROBENZENE STYRENE 1,1,2,2-TETRACHLOR TCLUENE 1,1,2-TRICHLOROETHYLENE TRICHLOROFLUOROMETHY VINYL CHLORIDE 1,2-DIBROMOETHANE 1,2,4-TRIMETHYLBEN 1,1-DICHLOROETHYLENE	DE HYLENE THANE DPENE PROPENE DETHANE E S DETHANE E ANE HANE (EDB) ZENE ZENE	MG/M3 MG/M3	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$\begin{array}{c} 0 & 07 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 &$		

i.

"FINAL REPORT FORMAT - SINGLE"

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:		·.			June	1988.	
Lab Id: Client Sample Id:	003 701371-03		Sample Dat Received D			AN-97 1 EB-97	350
Parameter:		Units:	Results:	Rpt Lm	its:	Q:	
TRICHLOROTRIFLUORC 4 - ETHYLTOLUENE BROMOFLUOROBENZENE 1, 2 - DICHLOROETHANE TOLUENE - D8 ANALYST		MG/M3 MG/M3 %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND 107 100 102 BV	0.07 0.07 90-111 85-115 85-111			

"FINAL REPORT FORMAT - SINGLE"

Accession: 702011 Client: AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC. Project Number: 701371 Project Name: Project Location: MARATHON OIL CO. IB REMEDIATION Test: TO14 Analysis Method: TO14 Extraction Method: N/A TO14/SIM/Compendium of Methods, EPA-600/4-87-006, June 1988. AIR Matrix: QC Level: Ι Lab Id: 003 Sample Date/Time: 21-JAN-97 1350 Client Sample Id: 701371-03 Received Date: 01-FEB-97

"Sample Tic Report"

Number of Tics Found: 1 Concentration Units: MG/M3

Cas Number:	Compound Name:	RT:	Est Conc:	Q:
000110-54-3	N-HEXANE	7.00	0.4	J

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	IB REMEDIATION TO14 TO14/SIM/Compen).			June 1988).
Lab Id: Client Sample Id:	004 701371-04	_	Sample Receive	Date/Time: d Date:	21-JAN-97 01-FEB-97	
Batch: MAB017 Blank: B	Dry Weight %:	N/A		ion Date: s Date:	N/A 09-FEB-97	,
Parameter:		Units:	Results:	Rpt Lm	ts: Q:	
ALPHA-CHLOROTOLUEN BENZENE BROMOMETHANE CARBON TETRACHLORI CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROFORM CHLORODIFLUOROMET 1, 2 DICHLOROETHANE 1, 2 DICHLOROBENZENE HEXACHLOROBUTADIENE M-DICHLOROBENZENE METHYLENE CHLORIDE O-DICHLOROBENZENE METHYLENE P-DICHLOROBENZENE 5TYRENE 1, 1, 2, 2 TETRACHLOROETHY TOLUENE 1, 1, 2 TRICHLOROETHYLENE TRICHLOROETHYLENE TRICHLOROETHYLENE 1, 2 DIBRCMOETHANE (1, 2, 4 TRICHLOROBENZENE 1, 2, 4 TRIMETHYLBENZ 1, 1 DICHLOROETHENE 1, 1, 1 TRICHLOROETHENE 1, 1, 1 TRICHLOROETHENE	DE HYLENE THANE DPENE PROPENE DETHANE S DETHANE S DETHANE S DETHANE S DETHANE S DETHANE S DETHANE S DETHANE S DETHANE	MG/M3 MG/M3	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$\begin{array}{c} 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\$		

"FINAL REPORT FORMAT - SINGLE"

Project Name: Project Location: Test:	702011 AMERICAN ENVIRON 701371 MARATHON OIL CO IB REMEDIATION TO14 TO14/SIM/Compense N/A AIR I	•			June 19	88.
Lab Id: Client Sample Id:	004 701371-04		Sample Date Received Da		21-JAN- 01-FEB-	
Parameter:		Units:	Results:	Rpt Lm	ts: Q	:
TRICHLOROTRIFLUORO 4 - ETHYLTOLUENE BROMOFLUOROBENZENE 1,2-DICHLOROETHANE TOLUENE-D8 ANALYST		MG/M3 MG/M3 %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND 106 96 104 BV	0.1 0.1 90-111 85-115 85-111		

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	702011 AMERICAN ENVIRONMENTAL NETWORK 701371 MARATHON OIL CO. IB REMEDIATION TO14 TO14/SIM/Compendium of Methods N/A AIR I		, June 1988.		
Lab Id: Client Sample Id:	004 701371-04	Sample Date/Time: Received Date:	21-JAN-97 1545 01-FEB-97		
"Sample Tic Report"					
Number of Tics Found: 1 Concentration Units: MG/M3					
Cas Number: Co	ompound Name:	RT:	Est Conc: Q:		

000110-54-3	N-HEXANE	6.99	0.5

Accession: Client: Project Number: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	IB REMEDIATIO TO14 TO14/SIM/Comp	CO. N			June 1988.
Lab Id: Client Sample Id:	005 701371-05		Sample Da Received	ate/Time: Date:	21-JAN-97 1730 01-FEB-97
Batch: MAB017 Blank: B	Dry Weight %:	N/A	Extractic Analysis	on Date: Date:	N/A 09-FEB-97
Parameter:	·	Units:	Results:	Rpt Lm	ts: Q:
ALPHA-CHLOROTOLUEN BENZENE BROMOMETHANE CARBON TETRACHLORI CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROMETHANE CIS 1,2 DICHLOROETH DICHLORODIFLUOROMET 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANI CIS-1,3-DICHLOROF TRANS-1,3-DICHLOROF TRANS-1,3-DICHLOROF DICHLOROTETRAFLUORO ETHYL BENZENE HEXACHLOROBENZENE METHYLENE CHLORIDE O-DICHLOROBENZENE METHYLENE CHLORIDE O-XYLENE P-DICHLOROBENZENE STYRENE 1,1,2,2-TETRACHLORO TETRACHLOROETHYLENE TOLUENE 1,1,2-TRICHLOROETHY VINYL CHLORIDE 1,2,4 TRICHLOROBENZENZ 1,3,5-TRIMETHYLBENZ 1,1-TRICHLOROETHANE 1,1,1-TRICHLOROETHANE	DE HYLENE THANE DPENE PROPENE DETHANE DETHANE E DETHANE E E E E E E E E E E E E E E E E E E	MG/M3 MG/M3	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.07 0.07	

"FINAL REPORT FORMAT - SINGLE"

Accession: 702011 AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC. Client: 701371 Project Number: Project Name: MARATHON OIL CO. IB REMEDIATION Project Location: Test: TO14 Analysis Method: TO14/SIM/Compendium of Methods, EPA-600/4-87-006, June 1988. Extraction Method: N/A Matrix: AIR QC Level: Ι. Sample Date/Time: 21-JAN-97 1730 01-FEB-97 Lab Id: 005 Client Sample Id: 701371-05 Received Date: Units: Parameter: Results: Rpt Lmts: Q: MG/M3 TRICHLOROTRIFLUOROETHANE ND 0.07 MG/M3 4 - ETHYLTOLUENE ND 0.07 %REC/SURR BROMOFLUOROBENZENE 105 90-111 %REC/SURR
%REC/SURR 1,2-DICHLOROETHANE-D4 97 85-115 85-111 TOLUENE-D8 104 INITIALS вv ANALYST

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	702011 AMERICAN ENVIRONMENTAL NETWORK 701371 MARATHON OIL CO. IB REMEDIATION TO14 TO14/SIM/Compendium of Methods N/A AIR I		, June 1988.
Lab Id: Client Sample Id:	005 701371-05	Sample Date/Time: Received Date:	21-JAN-97 1730 01-FEB-97
	"Sample Tic Repo	ort"	
Number of Tics Fou Concentration Unit			
Cas Number: Co	mpound Name:	RT:	Est Conc: 0:

"FINAL REPORT FORMAT - SINGLE"

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	702011 AMERICAN ENVIRO 701371 MARATHON OIL CO IB REMEDIATION TO14 TO14/SIM/Compen- N/A AIR I			-,	June	1988.	
Lab Id: Client Sample Id:	006 701371-06		Sample Dat Received D			AN-97 1 EB-97	100
Parameter:		Units:	Results:	Rpt Lm	ts:	Q:	
TRICHLOROTRIFLUORO 4 - ETHYLTOLUENE BROMOFLUOROBENZENE 1,2-DICHLOROETHANE TOLUENE-D8 ANALYST		MG/M3 MG/M3 %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND 100 99 103 BV	2 2 90-111 85-115 85-111			

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	TO14 TO14/SIM/Compendium of Methods		, June 1988.	
Lab Id: Client Sample Id:	006 701371-06	Sample Date/Time: Received Date:		
	"Sample Tic Repo	rt"		
Number of Tics Found: 1 Concentration Units: MG/M3				
Cas Number: Co	mpound Name:	RT:	Est Conc: Q:	
000110-54-3 N-	HEXANE	6.98	12	

"Method Report Summary"

Accession Number: 702011 Client: AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC. Project Number: 701371 Project Name: MARATHON OIL CO. Project Location: IB REMEDIATION Test: T014

Client Sample Id:	Parameter:	Unit:	Result:
701371-05	TOLUENE	MG/M3	0.10

Title: Bag/Can Bla Batch: MAB017 Analysis Method: TO14/SIM/Ca Extraction Method: N/A	"QC Rep ank ompendium of 1	ort" Methods, EPA-600,	/4-87-006, June 1988.
Blank Id: B Date Analyzed:	09-FEB-97	Date Extracted:	N/A
Parameters:	Units:	Results:	Reporting Limits:
ALPHA-CHLOROTOLUENE ACROLEIN ACETONE ACRYLONITRILE BENZENE BROMOMETHANE BROMOFORM 2-BUTANONE BROMODICHLOROMETHANE CARBON TETRACHLORIDE CARBON TETRACHLORIDE CARBON DISULFIDE CHLOROBENZENE CHLOROBENTENE CHLOROFORM CHLOROMETHANE CHLOROFORM CHLOROMETHANE CIS 1,2 DICHLOROETHYLENE DICHLORODIFLUOROMETHANE DIBROMOCHLOROMETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE DICHLOROTETRAFLUOROETHANE 1,4-DICHLORO-2-BUTENE ETHYL BENZENE HEXACHLOROBUTADIENE 2-HEXANONE MEDICHLOROBENZENE M.P-XYLENE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE O-DICHLOROBENZENE METHYLENE CHLOROBENZENE 1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE TRACHLOROETHYLENE TOLUENE 1,1,2-TRICHLOROETHANE TRICHLOROFLUOROMETHANE VINYL ACETATE	MG/M3 MG/M3	ND ND	Nepolecting Himits: 0.03 1.0 0.1 1.0 0.03
VINYL ACETATE 1,2-DIBROMOETHANE (EDB)	MG/M3 MG/M3	ND ND	0.03

"QC Report"

"QC Report" Title: Bag/Can Blank Batch: MAB017 Analysis Method: TO14/SIM/Compendium of Methods, EPA-600/4-87-006, June 1988. Extraction Method: N/A

Parameters:	Units:	Results:	Reporting Limits:
1,2,4 TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,3,5-TRIMETHYLBENZENE 1,1-DICHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROTRIFLUOROETHANE 4-ETHYLTOLUENE BROMOFLUOROBENZENE 1,2-DICHLOROETHANE-D4 TOLUENE-D8 ANALYST	MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND ND ND ND 105 98 105 BV	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

	"QC Repo:	rt"	
Title: Bag/Can E Batch: MAB017	lank		
Batch: MAB017			
Analysis Method: TO14/SIM/	Compendium of M	ethods EPA-60	0/4 - 87 - 0.06 Tupe 1999
Extraction Method: N/A	componiariam or in	ceneus, BIA-00	0/4-07-000, buile 1988.
Exclusion Method: N/A			
, <u> </u>			
Blank Id: A Date Analyzed	1: 09-FEB-97	Date Extracted	: N/A
Parameters:	Units:	Results:	Reporting Limits:
			1 5
ALPHA-CHLOROTOLUENE	MG/M3	ND	0.03
ACROLEIN	MG/M3	ND	1.0
ACETONE	MG/M3	ND	0.1
ACRYLONTTRILE	MG/M3	ND	1.0
BENZENE	MG/M3		0.03
BDOMOMETUNIE	MG/M3		
DROHOHETHANE	MG/M3	ND	0.03
	MG/M3	ND	0.03
Z-BUTANONE	MG/M3	ND	0.10
BROMODICHLOROMETHANE	MG/M3	ND	0.03
CARBON TETRACHLORIDE	MG/M3	ND	0.03
CARBON DISULFIDE	MG/M3	ND	0.03
CHLOROBENZENE	MG/M3	ND	0.03
CHLOROETHANE	MG/M3	ND	0.03
CHLOROFORM	MG/M3	ND	0.03
ALPHA-CHLOROTOLUENE ACROLEIN ACETONE ACRYLONITRILE BENZENE BROMOMETHANE BROMOFORM 2-BUTANONE BROMODICHLOROMETHANE CARBON DISULFIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROMETHANE CLS 1 2 DICHLOROFTHYLENE	MG/M3	ND	0.03
CIS 1,2 DICHLOROETHYLENE	MG/M3	ND	0.03
	MG/M3	ND	0.03
TRANS 1,2 DICHLOROETHYLENE DICHLORODIFLUOROMETHANE	MG/M3	ND	0.03
DIRECMOCULOROMETUNNE	MG/M3	ND	0.03
	MC/MO	ND	0.03
1 2 DICHLOROETHANE		ND	
1, 2-DICHLOROEIHANE	MG/M3		0.03
1,2-DICHLOROPROPANE	MG/M3	ND	0.03
CIS-1, 3-DICHLOROPROPENE	MG/M3	ND	0.03
TRANS-1, 3-DICHLOROPROPENE	MG/M3	ND	0.03
DICHLOROTETRAFLUOROETHANE	MG/M3	ND	0.03
1,4-DICHLORO-2-BUTENE	MG/M3	ND	0.03
ETHYL BENZENE	MG/M3	ND	0.03
HEXACHLOROBUTADIENE	MG/M3	ND	0.03
2-HEXANONE	MG/M3	ND	0.10
DICHLOROBENZENE DICHLOROBENZENE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE 1, 1-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROFROPANE CIS-1, 3-DICHLOROPROPENE TRANS-1, 3-DICHLOROPROPENE DICHLOROTETRAFLUOROETHANE 1, 4-DICHLOROE 2-BUTENE ETHYL BENZENE HEXACHLOROBUTADIENE 2-HEXANONE M-DICHLOROBENZENE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE O-DICHLOROBENZENE D-XYLENE P-DICHLOROBENZENE	MG/M3	ND	0.03
M. P-XYLENE	MG/M3	ND	0.03
METHYLENE CHLORIDE	MG/M3	ND	0.07
4 - METHYL - 2 - PENTANONE	MG/M3	ND	0.10
A-DICULODOBENZENE	MG/M3	ND	0.03
O VVIENE	MC /M2	ND	
	MG/M3		0.03
	MG/M3	ND	0.03
	MG/M3	ND	0.03
1, 1, 2, 2-TETRACHLOROETHANE	MG/M3	ND	0.03
TETRACHLOROETHYLENE	MG/M3	ND	0.03
TOLUENE	MG/M3	ND	0.03
TOLUENE 1,1,2-TRICHLOROETHANE TRICHLOROETHYLENE TRICHLOROFLUOROMETHANE VINYL CHLORIDE	MG/M3	ND	0.03
TRICHLOROETHYLENE	MG/M3	ND	0.03
TRICHLOROFLUOROMETHANE	MG/M3	ND	0.03
VINYL CHLORIDE	MG/M3	ND	0.03
VINYL ACETATE	MG/M3	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.03
1,2-DIBROMOETHANE (EDB)	MG/M3	ND	0.03
	· · · · · · · · · · · · · · · · · · ·		

"QC Report"

"QC Report" Title: Bag/Can Blank Batch: MAB017 Analysis Method: TO14/SIM/Compendium of Methods, EPA-600/4-87-006, June 1988. Extraction Method: N/A

Parameters:	Units:	Results:	Reporting Limits:
1,2,4 TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,3,5-TRIMETHYLBENZENE 1,1-DICHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROTRIFLUOROETHANE 4-ETHYLTOLUENE BROMOFLUOROBENZENE 1,2-DICHLOROETHANE-D4 TOLUENE-D8 ANALYST	MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND ND ND ND 105 96 105 BV	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

"QC Report" Title: Bag/Can Reagent Batch: MAB017 Analysis Method: TO14/SIM/Compendium of Methods, EPA-600/4-87-006, June 1988. Extraction Method: N/A									
RS Date Analyzed: 08-FEB-97 RS Date Extracted: N/A RSD Date Analyzed: 08-FEB-97 RSD Date Extracted: N/A									
Parameters: 1,1-DICHLOROETHENE TRICHLOROETHENE BENZENE TOLUENE CHLOROBENZENE	Spike Added 2.0 2.0 2.0 2.0 2.0 2.0	Sample Conc <0.03 <0.03 <0.03 <0.03 <0.03 <0.03	RS Conc 2.0 1.8 1.9 2.0 2.1	RS %Rec 100 90 95 100 105	RSD Conc 1.8 1.8 1.9 1.9 2.0	RSD %Rec 90 95 95 100	RPD 11 0 5 5	RPD Lmts 20 20 20 20 20 20	Rec Lmts 36-134 65-130 61-140 70-130 77-137
Surrogates: 1,2-DICHLOROETHANE-D4 TOLUENE-D8 BROMOFLUOROBENZENE				100 105 104		96 105 99			85-115 85-111 90-111

i

Comments: DUE TO THE NATURE OF THE SAMPLE MATRIX, MATRIX SPIKE/MATRIX SPIKE DUPLICATE CANNOT BE ANALYZED.

Notes:

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT MG/M3 = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

Common notation for Organic reporting

1

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUTUG/L = PARTS PER BILLION. UG/KG = PARTS PER BILLION. MG/KG = PARTS PER MILLION. MG/L = PARTS PER MILLION. MG/M3 = MILLIGRAMS PER CUBIC METER. NG = NANOGRAMS UG = MICROGRAMS. PPBV = PARTS PER BILLION/VOLUME. < = LESS THAN DETECTION LIMIT. x = LESS THAN DETECTION LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS J = THE REPORTED VALUE IS EITHER LESS THAN THE REPORTING LIMIT BUT GREATER THAN ZERO, OR QUANTITATED AS A TIC; THEREFORE, IT IS ESTIMATED. JJ = REPORTED VALUE IS ESTIMATED DUE TO MATRIX INTERFERENCE. ND = NOT DETECTED ABOVE REPORT LIMIT. RPT LIMIT = REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES. RPD = RELATIVE PERCENT DIFFERENCE (OR DEVIATION) SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD. ORGANIC SOILS ARE REPORTED ON A DRY WEIGHT BASIS. DUE TO THE NATURE OF THE SAMPLE MATRIX, MATRIX SPIKE/MATRIX SPIKE DUPLICATE ANALYSIS CANNOT BE PERFORMED FOR AIR ANALYSIS.

CLP SOW 1991, USEPA CONTRACT LABORATORY PROGRAM, STATEMENT OF WORK FOR ORGANICS ANALYSIS, DOCUMENT NUMBER OLM01.8, AUGUST 1991.

LP =	LEVERNE PETERSON	RW =	RITA WINGO
LD =	LARRY DILMORE	LL =	LANCE LARSON
PL =	PAUL LESCHENSKY	BV =	BEN VAUGHN
DWB =	DAVID BOWERS		

BLANK ANALYSIS

DATE: <u>07-FEB-97</u>

METHOD: AEN/GC/FID

BATCH: GEA011

COMPOUND	UNITS	REPORTING LIMIT	RESULT
N-HEXANE	UG/L	50	ND

<u>, (</u>.e.

DUPLICATE SAMPLE ANALYSIS

DATE: <u>07-FEB-97</u>

METHOD: AEN/GC/FID

BATCH: <u>GEA011</u>

COMPOUND	SAMPLE RESULT	DUPLICATE RESULT	%RPD	QC LIMITS
N-HEXANE	680	620	9	50

ALL RESULTS REPORTED IN UG/L.

ND = NOT DETECTED NC = NOT CALCULABLE

SOURCE FOR CONTROL LIMIT IS INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND AEN/GC/FID.

	"QC Repo:	rt"	
Title: Bag/Can Bl.	ank		
Batch: MAB017 Analysis Method: TO14/SIM/C	ompendium of M	athode EDA COC	// 87 006 Turne 1000
Extraction Method: N/A	ompendium of 14	echous, EFA-600	/4-8/-008, Julie 1988.
Blank Id: B Date Analyzed:	00 555 07		N7 ()
Blank IU: B Date Analyzeu:	09-166-97	Dale Extracted:	N/A
Parameters:	Units:	Results:	Reporting Limits:
ALPHA-CHLOROTOLUENE	MG/M3	ND	0.03
ACROLEIN ACETONE ACRYLONITRILE BENZENE BROMOMETHANE BROMOFORM 2-BUTANONE BROMODICHLOROMETHANE CARBON TETRACHLORIDE CARBON DISULFIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROMETHANE CIS 1,2 DICHLOROETHYLENE TRANS 1,2 DICHLOROETHYLENE	MG/M3	ND	1.0
ACETONE	MG/M3	ND	0.1
ACRYLONITRILE	MG/M3	ND	1.0
BENZENE	MG/M3	ND	0.03
BROMCMETHANE	MG/M3	ND	0.03
BRCMOFORM	MG/M3	ND	0.03
2-BUTANONE	MG/M3	ND	0.10
BROMODICHLOROMETHANE	MG/M3	ND	0.03
CARBON TETRACHLORIDE	MG/M3	ND	0.03
CARBON DISULFIDE	MG/M3	ND	0.03
CHLOROBENZENE	MG/M3	ND	0.03
CHLOROETHANE	MG/M3	ND	0.03
CHLOROFORM	MG/M3	ND	0.03
CIC 1 2 DICULODOFTUYIENE	MG/M3	ND	0.03
TEANS 1 2 DICHLOROETHILENE	MC /M2	ND	0.03
		ND ND	0.03
DIRDONODIFICONCOMETIMALE	MC /M3	ND	0.03 0.03
1 1-DICHLOROFTHANE	MG/M3	ND	0.03
1.2-DICHLOROETHANE	MG/M3	ND	0.03
DICHLORODIFLUOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE DICHLOROTETRAFLUOROETHANE 1,4-DICHLORO-2-BUTENE ETHYL BENZENE HEXACHLOROBUTADIENE 2-HEXANONE M-DICHLOROBENZENE M.P-XYLENE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE	MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 MG/M3	ND	0.03
CIS-1, 3-DICHLOROPROPENE	MG/M3	ND	0.03
TRANS-1, 3-DICHLOROPROPENE	MG/M3	ND	0.03
DICHLOROTETRAFLUOROETHANE	MG/M3	ND	0.03
1,4-DICHLORO-2-BUTENE	MG/M3	ND	0.03
ETHYL BENZENE	MG/M3	ND	0.03
HEXACHLOROBUTADIENE	MG/M3	ND	0.03
2-HEXANONE	MG/M3	ND	0.10
M-DICHLOROBENZENE	MG/M3	ND	0.03
M, P-XYLENE	MG/M3	ND	0.03
METHYLENE CHLORIDE	MG/M3	ND	0.07
		ND	0.10
O-DICHLOROBENZENE	MG/M3	ND	0.03
O-XYLENE	MG/M3	ND	0.03
P-DICHLOROBENZENE	MG/M3	ND	0.03
STYRENE	MG/M3	ND	0.03
1, 1, 2, 2 - TETRACHLOROETHANE	MG/M3 MG/M3	ND ND	0.03
TETRACHLOROETHYLENE TOLUENE		ND ND	0.03
TRICHLOROETHANE TRICHLOROETHYLENE TRICHLOROFLUOROMETHANE VINYL CHLORIDE	MG/M3	ND	0.03 0.03
TRICHLOROETHYLENE	MG/M3	ND	0.03
TRICHLOROFLUOROMETHANE	MG/M3	ND	0.03
VINYL CHLORIDE	MG/M3	ND	0.03
VINYL ACETATE	MG/M3	ND	0.03
1,2-DIBROMOETHANE (EDB)	MG/M3	ND	0.03
-,/			- ,

"QC Report" Title: Bag/Can Blank Batch: MAB017 Analysis Method: TO14/SIM/Compendium of Methods, EPA-600/4-87-006, June 1988. Extraction Method: N/A

Parameters:	Units:	Results:	Reporting Limits:
1,2,4 TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,3,5-TRIMETHYLBENZENE 1,1-DICHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROTRIFLUOROETHANE 4-ETHYLTOLUENE BROMOFLUOROBENZENE 1,2-DICHLOROETHANE-D4 TOLUENE-D8 ANALYST	MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND ND ND ND 105 98 105 BV	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Comments:

Title: Bag/Can Blank Batch: MAB017 TO14/SIM/Compendium of Methods, EPA-600/4-87-006, June 1988. Analysis Method: Extraction Method: N/A Blank Id: A Date Analyzed: 08-FEB-97 Date Extracted: N/A Parameters: Units: Results: Reporting Limits: MG/M3 ALPHA-CHLOROTOLUENE ND 0.03 MG/M3 ACROLEIN ND 1.0 MG/M3 ACETONE ND 0.1 ACRYLONITRILE MG/M3 ND 1.0 BENZENE MG/M3 ND 0.03 BROMOMETHANE MG/M3 ND 0.03 BROMOFORM MG/M3 ND 0.03 2-BUTANONE MG/M3 ND 0.10 BROMODICHLOROMETHANE MG/M3 ND 0.03 CARBON TETRACHLORIDE CARBON DISULFIDE MG/M3 ND 0.03 MG/M3 ND 0.03 CHLOROBENZENE MG/M3 ND 0.03 CHLOROETHANE MG/M3 ND 0.03 CHLOROFORM MG/M3 ND 0.03 MG/M3 ND CHLOROMETHANE 0.03 CIS 1,2 DICHLOROETHYLENE TRANS 1,2 DICHLOROETHYLENE MG/M3 ND 0.03 MG/M3 ND 0.03 DICHLORODIFLUOROMETHANE MG/M3 ND 0.03 MG/M3 MG/M3 DIBROMOCHLOROMETHANE ND 0.03 ND 1,1-DICHLOROETHANE 0.03 1,2-DICHLOROETHANE MG/M3 ND 0.03 1,2-DICHLOROPROPANE ND MG/M3 0.03 CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE DICHLOROTETRAFLUOROETHANE MG/M3 ND 0.03 MG/M3 ND 0.03 MG/M3 ND 0.03 MG/M3 1,4-DICHLORO-2-BUTENE ND 0.03 MG/M3 ND ETHYL BENZENE 0.03 HEXACHLOROBUTADIENE MG/M3 ND 0.03 MG/M3 MG/M3 2-HEXANONE ND 0.10 ND M-DICHLOROBENZENE 0.03 M, P-XYLENE MG/M3 ND 0.03 MG/M3 MG/M3 METHYLENE CHLORIDE 4-METHYL-2-PENTANONE ND 0.07 ND 0.10 O-DICHLOROBENZENE MG/M3 ND 0.03 MG/M3 MG/M3 **O-XYLENE** ND 0.03 **P-DICHLOROBENZENE** ND 0.03 STYRENE MG/M3 ND 0.03 1, 1, 2, 2-TETRACHLOROETHANE TETRACHLOROETHYLENE MG/M3 MG/M3 ND 0.03 ND 0.03 MG/M3 ND 0.03 TOLUENE MG/M3 MG/M3 1, 1, 2-TRICHLOROETHANE ND 0.03 TRICHLOROETHYLENE ND 0.03 0.03 MG/M3 ND TRICHLOROFLUOROMETHANE MG/M3 0.03 ND VINYL CHLORIDE MG/M3 VINYL ACETATE ND 0.03 MG/M3 1,2-DIBROMOETHANE (EDB) ND 0.03

"QC Report"

"QC Report" Title: Bag/Can Blank Batch: MAB017 Analysis Method: TO14/SIM/Compendium of Methods, EPA-600/4-87-006, June 1988. Extraction Method: N/A

Parameters:	Units:	Results:	Reporting Limits:
1,2,4 TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,3,5-TRIMETHYLBENZENE 1,1-DICHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROTRIFLUOROETHANE 4-ETHYLTOLUENE BROMOFLUOROBENZENE 1,2-DICHLOROETHANE-D4 TOLUENE-D8 ANALYST	MG/M3 MG/M3 MG/M3 MG/M3 MG/M3 %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND ND ND ND 105 96 105 BV	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Comments:

			"QC Repo	ort"									
Title: Bag/Can Reagent Batch: MAB017 Analysis Method: TO14/SIM/Compendium of Methods, EPA-600/4-87-006, June 1988. Extraction Method: N/A													
	Analyzed: Analyzed:	08-FEB-97 08-FEB-97					racted: tracted		-				
Parameters: 1,1-DICHLOROETHENE TRICHLOROETHENE BENZENE TOLUENE CHLOROBENZENE		Spike Added 2.0 2.0 2.0 2.0 2.0 2.0	Sample Conc <0.03 <0.03 <0.03 <0.03 <0.03	RS Conc 2.0 1.8 1.9 2.0 2.1	RS %Rec 100 90 95 100 105	RSD Conc 1.8 1.8 1.9 1.9 2.0	RSD %Rec 90 95 95 100	RPD 11 0 5 5	RPD Lmts 20 20 20 20 20 20	Rec Lmts 36-134 65-130 61-140 70-130 77-137			

100

105

104

96

99

105

85-115 85-111

90-111

Surrogates: 1,2-DICHLOROETHANE-D4 TOLUENE-D8 BROMOFLUOROBENZENE

Comments: DUE TO THE NATURE OF THE SAMPLE MATRIX, MATRIX SPIKE/MATRIX SPIKE DUPLICATE CANNOT BE ANALYZED.

Notes:

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT MG/M3 = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

Common notation for Organic reporting

N/S = NOT SUBMITTEDN/A = NOT APPLICABLE D = DILUTED OUTUG/L = PARTS PER BILLION. UG/KG = PARTS PER BILLION. MG/KG = PARTS PER MILLION. MG/L = PARTS PER MILLION. MG/M3 = MILLIGRAMS PER CUBIC METER. NG = NANOGRAMS. UG = MICROGRAMS PPBV = PARTS PER BILLION/VOLUME. < = LESS THAN DETECTION LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS
 J = THE REPORTED VALUE IS EITHER LESS THAN THE REPORTING LIMIT BUT GREATER THAN ZERO, OR QUANTITATED AS A TIC; THEREFORE, IT IS ESTIMATED. JJ = REPORTED VALUE IS ESTIMATED DUE TO MATRIX INTERFERENCE. ND = NOT DETECTED ABOVE REPORT LIMIT. RPT LIMIT = REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES. RPD = RELATIVE PERCENT DIFFERENCE (OR DEVIATION) SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD. ORGANIC SOILS ARE REPORTED ON A DRY WEIGHT BASIS. DUE TO THE NATURE OF THE SAMPLE MATRIX, MATRIX SPIKE/MATRIX SPIKE DUPLICATE ANALYSIS CANNOT BE PERFORMED FOR AIR ANALYSIS.

CLP SOW 1991, USEPA CONTRACT LABORATORY PROGRAM, STATEMENT OF WORK FOR ORGANICS ANALYSIS, DOCUMENT NUMBER OLM01.8, AUGUST 1991.

LP =	LEVERNE PETERSON	RW =	RITA WINGO
LD =	LARRY DILMORE	LL =	LANCE LARSON
PL =	PAUL LESCHENSKY	BV =	BEN VAUGHN
DWB =	DAVID BOWERS		

	PLE															HA	DE	DA	RE	AS	ARE FOR LAB USE ONLY.	\sum	
4/1/96 AEN Inc.: American Environmental Network (NM), Inc. • 2709-D Pan American Freeway, NE • Abuquerque, New Mexico 87107	BLUE ICENCE	AECEIVEDINTAOT	dustody seals	A A A A A A A A A A A A A A A A A A A	SHIPPED VIA:	P.O. NO.:	PROJ. NAME: TD	PROJ. NO.: 0233	PROJECT						VES EFF	VES	VEY	VEL	VEI	VE3	SAMPLE	ARE FOR LAB USE ONLY. PROJECT MANAGER: B.D. COMPANY: MALARTA ADDRESS: PO Bex PHONE: (1)5) (0 BILL TO: COMPANY: (1)5) (0 ADDRESS: (1)5) (0	American Environmental Network (NM.
can Environmental Netv	NO CX	SW 1		E HEUSINI SA			Rendertion	023350173,60	PROJECT INFORMATION								1			1		· Pensacola · Por Mininarhou) (Po bux 55) (915) (087- (915) (087- (915) (087-	ivironment
rock (NM), t					COM	METH	CERT	(RUS)	PR						Luss	191	refred	191 197	20/97	2 6/19/1	DATE	1 · Portland ·	al Ne
nc. • 2709-D					COMMENTS:	METHANOL PRESERVATION	CERTIFICATION REQUIRED: UNM	(RUSH) (124hr	PRIOR AUTHORIZATION IS						MUD	1730	1545	1350	اله عن	1122	TIME	Illand · Pleasant Hills	twort
) Pan Ameri					FIXED FEE	SERVATION	REQUIRED	[]] 48hr	HORIZA						4				F	P.	MATRIX		VN) ?
can Freeway						ā		[]] 72hr			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			مىلەر مەلەر يەر	- 2	-05	20-	202	- 02	-01	LAB I.D.	Columbia	1), Inc.
NE N								C) 1 WEEK	REQUIRED		. 3			\$200 X	14. 35%						+	troleum Hydrocarbons (418.1) TRPH	_
anting							M	.		╟	4			┝				k		\mathbf{k}		OD.8015) Diesel/Direct/Inject	CHAIN OF CII
rque, 1									FOR RUSH PROJEC		+				ř	ļΩ		\vdash	\sim	p		8015) Gas/Purge & Trap	
New N						ł			RU	╟	+							<u> </u>	-	-		Isoline/BTEX & MTBE (M8015/8020)	Ζ
Nexico							B		SH		\uparrow					<u>├</u> ──		<u> </u>				XE/MTBE (8020)	2
0 8710								RON	PRO												ВТ	EX & Chlorinated Aromatics (602/8020)	
7								(NORMAL)	JEC		_				<u> </u>	<u> </u>	<u> </u>			 	· · · · ·	EX/MTBE/EDC & EDB (8020/8010/Short)	2
					ĺ				TS	╢┝	\downarrow			·	ļ		<u> </u>				Ch	lorinated Hydrocarbons (601/8010)	ק
	8	<u>ې</u>	N Si	<i>94</i>	8	5	<u>s</u> t	<u>Š</u>		╟╴	+				<u> </u>	 				<u> </u>	504		5
			Contraction of the second	RECEIVED, BY	Company:	Kuch	inted Name:	Signature:	RELINQUISHED BY:		+									┢─			j
	in Darel	Z ame	$\mathcal{D}_{\mathbf{s}}$	ENE	er.	hele Inscar	lame	18	NOU		+				<u> </u>			<u> </u>		-	· · · · ·	Iynuclear Aromatics (610/8310) And	<
	O _{A-4}			VB,	Ane	KGAC -	,	1.	ISHE		\uparrow							\square			ŧ	latile Organics (8260) GC/MS	
	e	g		1	nel	11	5	\mathcal{M}^{\perp}	08														AEN LAB I.D.
	6	Date:	Time:				Date:	Time:			\bot			•							_	sticides/PCB (608/8080)	5
DIST	67F	12yler	C		R	170	-	2			\downarrow	_			 			ļ	 			rbicides (615/8150)	8
UBIN		3			,	67	-	200	_	-	+							<u> </u>			Bas	se/Neutral/Acid Compounds GC/MS (625/8270)	
TION		1	-						÷		+				┣──			┟┈긎			Ge	eneral Chemistry:	
White	American		Signal	REC	Company: Frud F	Kens ast	nin le	Signalurer	RELI	┠┝	+			-							<u> </u>		
e, Car	can E			EIVE	a any:	2 B	Nan	ung	NQU		+	-			<u>├</u> ──			<u> </u>		-			
DISTRIBUTION: White, Canary - AEN	Enviror	N .		RECEIVED BY:	PANel	×	°	~	RELINQUISHED												Pric	ority Pollutant Metals (13)	
AEN	Tients	R							ED BY:	IL											· · · · · · · · · · · · · · · · · · ·	rget Analyte List Metals (23)	
	l Net	N.F.		LAB)	677		Date	Time.		_	-	_									1	CRA Metals (8)	
1- OR	ntal Network (NM),	\mathbb{N}				14	1			╏┝				<u> </u>								CRA Metals by TCLP (Method 1311)	
Pink - ORIGINATOR	NM),	2	12			197	- [5		╏┝╴				\vdash							Me	etais:	
TOR	3	E.	M	Ν					?		T				E	-		-		-	NU	MBER OF CONTAINERS	

LICH, Mille, Callery - ACH

	11 East Olive Road		Pensacola			(904)474-1001			<u></u>
	PROJECT S	AN	IPLE	INS	PECT	ION FORM	1		
Ac	cession #:				Date	Received: 21	27		
1.	Was there a Chain of Custody? Yes	No		7.	•··	les preserved? (Check ₂ O except 40ml vials)*	Yes	No	
2.	Was Chain of Custody properly (Yes) relinquished?	No		8.		ufficient volume for equested?	res	No	
3.	Were samples received cold? Yes (Check Temperature of Cooler)	No	NA	9.	Were sam Holding T	ples received within ime?	es	No	
4.	Were all samples properly labeled and identified?	No		10.	ls Headsp diameter i headspac	ace visible > ¼ [*] in in 40ml vials? [*] If any e is evident, comment control section.	Yes	No	N74A
5.	Were samples received in Fes	No		11.		ere matrix spike	Yes	No	NFA
6.	requested? Were all sample containers	No							
Air	bill Number: 277)57683	2		S	hipped By	y: felce		•	
	oler Number: 278257563	.1		-	hinning (harges: NA			
			<u></u>	-					
60	oler Weight:P_A			_ 0	ooler i er	np. (°C): <u>Λ(Λ</u>			
Ou	t of Control Events and Inspection	n Co	mment	1	,				
	Cano received	(Oh	<u> </u>	31/27				
	-Cit recend		20-	Ż	457	·.			
2	le discount rote	01	n I	<u>wo</u> ,	1090,	when the 1.	nom	. <u></u>	
1	590,					· · · · · · · · · · · · · · · · · · ·			
						·····			
•									
Ins	spected By: Dat	e:	1.6	<u>)</u> _L	ogged By	:Date	<u>. 2/</u>	h)
+	All preservatives for the State of North Carol results (SOP 938, section 2.2.9.	in a an	d the Stati	e of Nev	r York are to	be recorded on the sheat pro	vided to i	record	рH
•	According to EPA, Ye ⁻ of headspace is allow (SOP 938, section 2,2,12,	od in -	40mi viels,	howave	er, AEN meko	s it policy to record any head	ispace es	ourt-ol	-control

х + :

Labs: San Diego (619) 458-9141 • Phoen	SPECIAL CERTIFICATION REQUIRED: UYES	nush sunonange:		INI (SINIUNATT) RUSHI	IT OUTTEEL ANS	OCIEVEL SID IV	MOJECTHAME Marathon Oil		PROJECT INFORMATION		-06 11		-04 -1	-03 1/-	-02 1/	10-156105	SAMPLE ID D	Kim McNeill	CHIFHT PROJECT MANAGER:	COMPANY: American Environmental ADDRESS: 2709-D Pan American Freeway, NE Albuquerque, NM 87107	NETWORK PROJECT MANAGER: KIN	0 5
Labs: San Diego (619) 458-9141 • Phoenia (602) 498-4400 • Seattle (206) 228-8335 • Pensacola (904) 474-1001 • Portland (503) 684-04	CINO				RECEIVED GOOD COND /COLD	INIACT?	Co. CHAIN OF CUSTODY SEALS	TOTAL NUMBER OF CONTAINERS	SAMPLE RECEIPT		123 1100 V 6	21 12 22 12	21 1545 4	21 100 3	20 1630 1 2	u/g2 1155 Air 1	DATE TIME MATRIX LABID			rironmental Network an Freeway, NE 17107	KIMBERLY D. McNEILL	Network
ensacola (904) 474-1001 • Portland (503) 684				PHOENIX		PENSACOLA K	RENTON				X	X	X	X		X	Me RC SO TO TO	tals - RA N (5, 4) C X C	PP Lis RCRA	by TCLP (1311) To Son range colc y @ C3-C3-C BJEX + pheyane		Interlab Chain of C
-0447 • Albuquerque (505) 344-3777	Comparity:	Printen Name: Printen	- Signature:	VED BY:		T John Ce Johned 129/192	Etipled Name: / pale: //// P	- Signalutz (Collection 1 1 co	NQUISHED BY: 1.								BO CO Pe: Her Bas Voi Poi	D sticid rbicid se/Net atile	les (61 utral Acu Organio lear Arc	B (608/8080) 5/8150) d Compounds GC/MS (625/8270) cs GC/MS (624/8240) comatics (610/8310) B11) ZHE	ANALYSIS REQUEST	ustody
	company: ALJART	Philed Name: Date; Durance (TUX 71, 157)	Summer In Ind	ED BY: (LA		Company	Printed Hame 214 pale	Signature	UISHED BY								827 TO Gro	-14 -14 	CLP 13	311)		124. TAGE 1 OF 1

	PLE	ASE	E FIL	.L ⁻	THIS	S F(DR	M II	NC	ОМ	PLE	ETE	ELY	•	S	HA	DE	D A	RE	AS	ARE FOR LAB USE ONLY.	
4/1/98 AEN Inc.: American Environmental Network (HM), Inc. • 2709 D Pan American Freeway, NE • Albuquerque, New Mexico 87107		nedeved wikkor	CUSTODY BEALS 17 - 1449		SHIPPED VIA:	P.O. NO.:	MOJ. HAME: I'D Rome	0), E.LIA SEETO :: OH TONIL	10					VES EFF	VES	VEY	VEL	VEI	VES	SAMPLE ID	Albuquerque · Phoenix · Pensaci PROJECT MANAGER: P COMPANY: MALA ADDRESS: Po box INICA INICA PROJECT MANAGER: P COMPANY: MALA INICA I	
mmental Network (NM), Inc.					COMMENTS:	METHN	Rondantion CERTIFI							11986	11/11	refredi	101 197	1/20/92	<u></u>	DATE	15111111011111111111111111111111111111	
• 2709 D Pan American F					ENTS: FIXED FEE (.)	METHANOL PRESERVATION	CERTIFICATION REQUIRED: ()	(NUSH) [] 24hr [] 48hr [] 72hr	PHIOR AUTHORIZATION IS REQUIRED								1350	1630 1 5	1155 Mrc -	TIME MATRIX L		(J 27 8 / J
eeway, NE • Albuquerq					IJ		LINM LISDWA	2hr (] 1 WEEK	I IS REQUIRED F					OG X	:05 X	<i>≍ σγ</i> Χ	-03 X	.02	o(X		troleum Hydrocarbons (418.1) TRPH OD.8015) Diesel/Direct/Inject	•
He, New Mexico 8710								RON)	FOR AUSH PROJECT											(M8 Ga: BT,	8015) Gas/Purge & Trap Isoline/BTEX & MTBE (M8015/8020) XE/MTBE (8020)	-
77	Q	<u> </u>	N. 50	1200	1 7			NORMAL)	S.				·							Chl	EX/MTBE/EDC & EDB (8020/8010/Short)	
	Parel (the Date:	lyshure: Time:	RECEIVED BY:	Plur Parel 612	cac-	Printed Name: Date: /	Signature: Time:	RELINQUISHED BY:											Vola Vola Pes	A EDB / DBCP / DBCP / ANALYSIS REOUTS Avoualear Aromatics (610/8310) atile Organics (624/8240) GC/MS atile Organics (8260) GC/MS stitc:des/PC3 (608/8080) roic:des (615/8150) a/Neutral/Acid Compounds GC/MS (625/8270)	
STRIBUTION: White	American	1/24/67 Tale	Signature	1. RECE		1/2 1/24.		Campadis 000	t. RELI											Basi	erNeutravAcid Comcounds GC/MS (625/8270)	
DISTRIBUTION: While, Canary - AEH Pink - ORIGINATOR	can Environental Network	Mame: Loute	and Aller	RECEIVED BY: (LAB)	mel	auf.	Name Dale	uley Lime	RELINQUISHED BY:											Tar	prity Poilutant Metals (13) get Analyte List Metals (23) EA Metals (8)	
w . ONIGINATON	that (NM), he	"// / w/E	1245	2		1/24/57		1.07	2						-		-			RC:	RA Metals by TCLP Method (311) (315) MBER OF CONTAINERS	

UISTRIBUTION: White, Canary - Acre Part - OrthjirtArOn