GW - 28

MONITORING REPORTS

DATE: 1977 - 1994

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

December 9, 1994

2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-185

Mr. Darrell Moore Environmental Specialist Navajo Refining Company P.O. Box 159 Artesia, New Mexico 88211-0159

RE: ADDITIONAL GROUND WATER MONITOR WELLS NAVAJO ARTESIA REFINERY EDDY COUNTY, NEW MEXICO

Dear Mr. Moore:

The New Mexico Oil Conservation Division (OCD) has completed a review of Navajo Refining Company's September 22, 1994 "WORKPLAN TO SATISFY GW-28 MODIFICATION CONDITIONS". This document contains Navajo's proposal install additional ground water monitor wells in response to the OCD's July 25, 1994 conditional approval of the modification of discharge plan GW-28.

The above referenced work plan is approved under the conditions contained in the enclosed attachment.

Please be advised that OCD approval does not relieve Navajo of liability should the ground water investigation fail to completely define the extent of contamination related to Navajo's activities. In addition, OCD approval does not relieve Navajo of responsibility for compliance with any other federal, state or local laws and/or regulations.

If you have any questions, please contact me at (505) 827-7154.

Sincerely

William C. Olson Hydrogeologist Environmental Bureau

xc: OCD Artesia District Office Richard D. Mayer, EPA Region VI

APPROVAL CONDITIONS GROUND WATER MONITOR WELL INSTALLATION WORK PLAN NAVAJO REFINING COMPANY ARTESIA REFINERY

(December 9, 1994)

1. Additional Monitor Wells

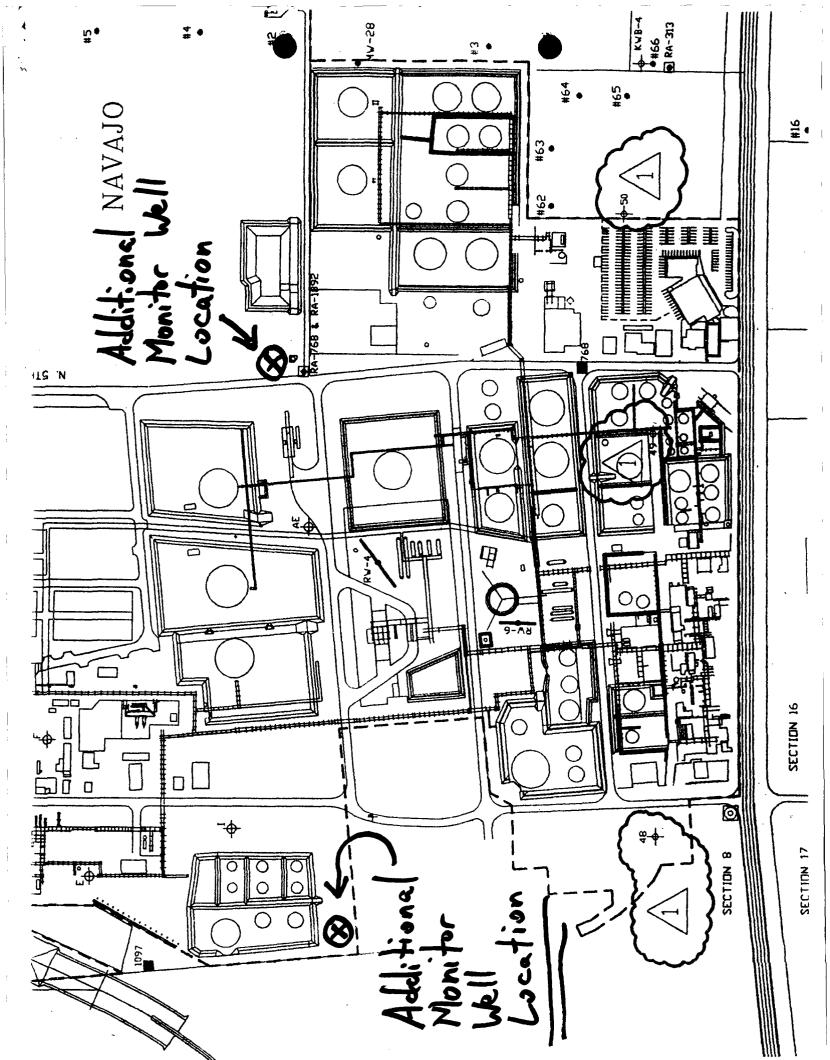
In addition to the monitor well locations proposed, Navajo will install two (2) additional monitor wells in the locations illustrated on the attached figure.

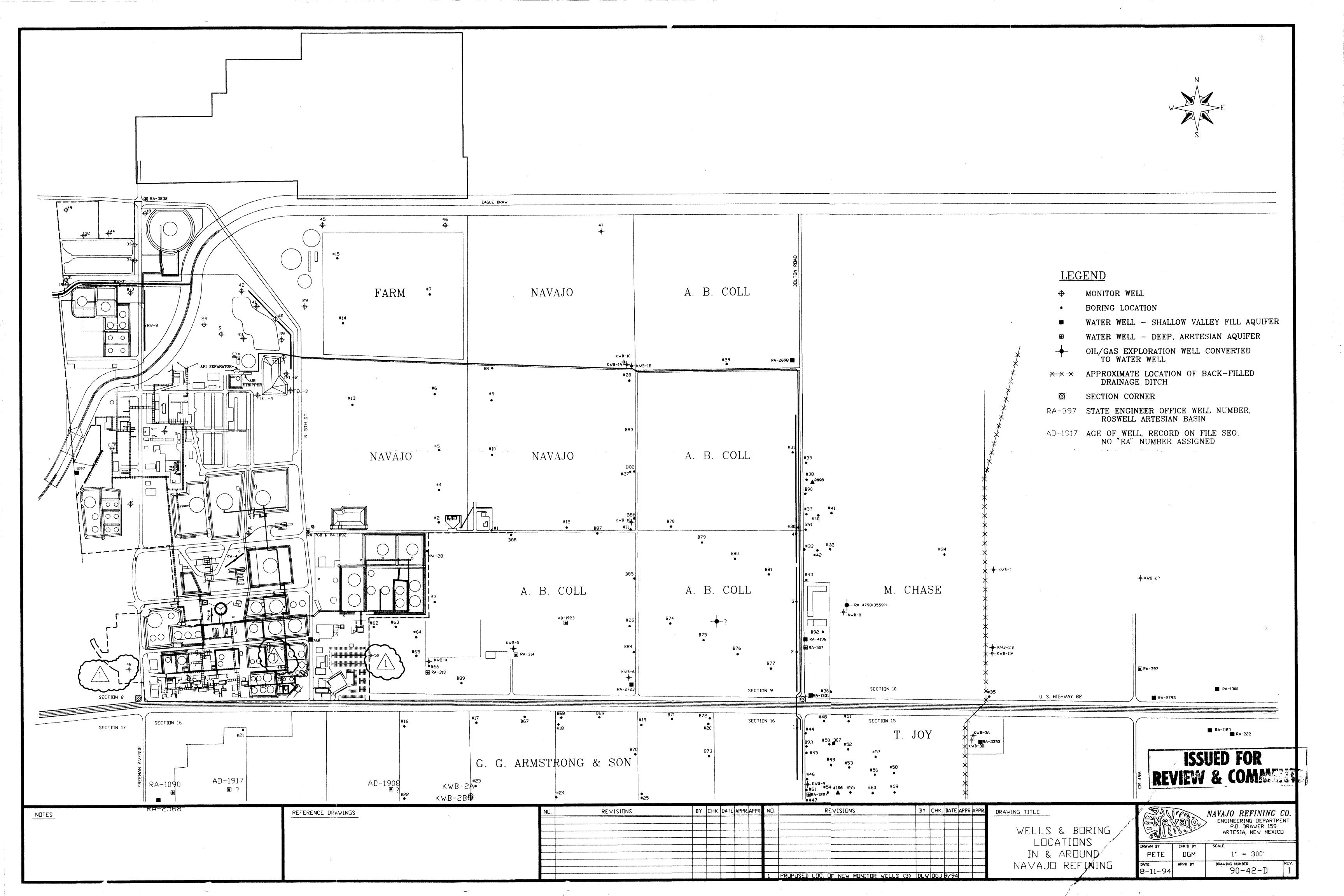
2. Monitor Well Construction

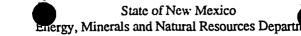
All monitor wells will be constructed with a minimum of 15 feet of well screen. At least 5 feet of well screen will be located above the water table and 10 feet of well screen below the water table

3. <u>Product and Waste Disposal:</u>

All wastes generated during the investigation activities will be recycled and/or disposed of at an OCD approved facility.


4. Ground Water Sampling And Analysis


Ground water from all monitor wells will initially be sampled and analyzed for aromatic and halogenated volatile organics, polynuclear aromatic hydrocarbons (PAH's), heavy metals and major cations and anions. All water quality sampling will be conducted according to EPA approved sampling and analysis methods.


5. Investigation Report:

An investigation report will be submitted to the OCD by April 1, 1995. The investigation report will contain:

- a. A map showing the location of all monitoring wells.
- b. Well logs for each well, including monitor well construction diagrams.
- c. A summary of the field measurements and the laboratory analytic results of water quality sampling of the monitor wells.
- d. A water table elevation map using the water table elevation of the ground water in all refinery monitor wells (excluding monitor wells around the refinery's disposal ponds).
- e. A product thickness map based on the thickness of free phase product on ground water in all refinery monitor wells.

SUBMIT 2 COPIES TO APPROPRIATE DISTRICT OFFICE IN ACCORDANCE WITH RULE 116 PRINTED ON BACK SIDE OF FORM

TELEPHONE #

P.O.Box 1980, Hobbs, NM 88241-1980 DISTRICT II P.O. Drawer DD, Artesia, NM 88211-0719

1000 Rio Brazos Rd, Aztec, NM 87410

DISTRICTI

DISTRICT III

OPERATOR

REPORT

OF

OIL CONSERVATION DIVISION

P.O. Box 2088

Santa Fe, New Mexico 87504-2088

ADDRESS Navajo Refining Company 748-3311 501 E. Main, Artesia, NM BREAK SPILL LEAK BLOWOUT **OTHER*** FIRE Х

NOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS, AND BLOWOUTS

TYPE OF	DRLG	PROD	TANK	PIPE	GASO	OIL	OTHER	•	
FACILITY	WELL	WELL	BTRY	LINE	PLNT	RFY X			
		·	• •						
FACILITY N	AME: Nava	ajo Refin	ing Compa	ny – Tank	106				
LOCATION	OF FACILITY					SEC.	TWP.	RGE.	COUNTY
Qu/Qu Sec. o	r Footage 51	01 E. Mai	ı St., Ar	tesia, NM		9	17.S	26. E	Eddy
DISTANCE A	AND DIRECTI	ON FROM NE	EAREST						
TOWN OR P	ROMINENT L	ANDMARK							
DATE AND	HOUR				DATE A	ND HOUR			
OF OCCURR	ENCE 11,	/22/94	7:00 AM		OF	DISCOVERY	11/22/	94 7:00	<u>AM</u>
WAS IMMEI	DIATE	YES	NO	NOT RE-	IF YES,				
NOTICE GIV	'EN?	X		QUIRED	TO WHO	<u>DM Mark</u>	Ashley		
BY					DATE				
WHOM	David (Griffin			AND HO	$\frac{11}{2}$	22/94 1	0:45 AM	
TYPE OF					QUANT			LUME RE-	
FLUID LOST	: Gasoli	าย			OFLOS	s1000	3bls co	VERED	0
DID ANY FL	UIDS REACH	YES	NO		ANTITY				
A WATERCO	DURSE?			X					
IF YES, DES	CRIBE FULLY	[**							
					NOV 2	8.'94			
					101				

DESCRIBE CAUSE OF PROBLEM AND REMEDIAL ACTION TAKEN**

Gauging and meter calculations done during the blending and pipeline shipment of a batch of 87 octane Unleaded Gasoline which was passing through Tank 106 revealed a loss. A check performed 2 hours later confirmed losses occuring in Tank 106. Visual inspection around the tank also confirmed staining from a leak. Immediately water was introduced into the tank to float the gasoline off the floor of the tank. Blending was halted into the tank DESCRIBE AREA AFFECTED AND CLEANUP ACTION TAKEN**

شابيه ماديا

while the pipeline continued to suck the gasoline out. Tank was gasoline free at 7:00 PM same day. Opening and inspection of tank will follow. There was no free hydrocarbon to recover but Navajo is beginning an investigation to determine if the existing recovery well network will intercept this product.

DESCRIPTION OF AREA	FARMING	GRAZING	URBAN		OTHER* X	Heavy Indust	rial
SURFACE	SANDY	SANDY	CLAY	ROCKY	WET	DRY	SNOW
CONDITIONS		LOAM	X		_X		
DESCRIBE GENERA	AL CONDITION	S PREVAILING (TEMPERATURE, PI	RECIPITATION	N, ETC.)**		
Light to mode							
I HEREBY CERTIFY	THAT THE IN	FORMATION AB	OVE IS TRUE AND	COMPLETE T	O THE BEST OF I	MY KNOWLEDGE	AND BELIEF
D	N.D	01	PRINTED NAME	David C	. Griffin A & QC		

INCIDENT SUMMARY

LOCATION: Artesia New Mexico DATE OF INCIDENT: December 5, 1994 DATE OF SUMMARY: December 7, 1994

US-USFIL NERLE 17 INC.

TIME: 11:45 P.M.

m. c/ 4

BACKGROUND

At Hickson Kerley's Artesia New Mexico plant, H_2S gas is received from Navajo Refinery. This gas is absorbed into hydroxide solutions and any unabsorbed gas is returned to the refinery. If the Hickson Kerley process is shutdown, the refinery gas is flared.

SYNOPSIS OF EVENTS

ENVIRONMENTAL RELEASE

At approximately 11:45 p.m. on Dec. 5, approximately 1,900 gallons of ammonium sulfide was spilled, because of a piping mechanical failure. Fumes from the spill were contained by water fog spray from the fire monitors.

The area containment capacity is approximately 3,000 gallons; but, due to addition of the water and overspray of water from the fire monitors, a small amount of liquid spilled to a storm drainage area. The spill did not leave refinery property. The drain area channels storm water to the Pecos river approximately 4 miles distant.

INJURIES

Two employees received injuries. Operator Gary Smith received a silver dollar size second degree chemical burn on his right arm and a half dollar size first degree chemical burn above his right ankle. He was treated and released.

Operator Reggie Turner was climbing the tower ladder with an SCBA. He could not advance in the ladder cage and momentarily removed his face mask. He became dizzy from fumes but on receiving fresh air recovered fully.

DETAILS LEADING TO RELEASE

Gary Smith was having pressure problems in the plant. He had called Navajo Refinery several times and had decided to have the refinery shut down the sour water gas flow. The unit was steamed through the vent line and the pressure dropped at approximately 11:30 P.M. Shortly, Gary noticed that the ammonia eductor piping was leaking and climbed up to tighten the connection. In the process of tightening, the line broke behind the connection at the pipe threads. He was sprayed in the face and body and climbed down and used the safety shower. The plant was isolated and shutdown.

COMMUNITY COMPLAINTS

There were none reported.

REGULATORY CONTACTS

Statutory authorities were contacted between 4:45 A.M. and 6:00 A.M. by plant manager Jim Cooper.

National Response Center State Emergency Response State Police (the state police contacted the LEPC)

The State Police dispatched a HAZMAT officer to the site shortly after 6:00 A.M. to file a report.

The plant was contacted at 9:00 A.M. by Frank Sanchez of New Mexico Emergency Response who wanted to know control action being taken. He was later contacted (9:15 A.M.) and the remediation plan was discussed with him.

MEDIA CONTACTS

Ken Gagon prepared release statement with contact/guidance from Steve Young at Leeds.

Statements were made with Daniel Russel from the Artesia Daily Press at 10:45 A.M. and Nicola Giacchetti from the Carlsbad Current Argus at 11:40 A.M. by Ken Gagon following referral from the plantsite.

Copies of the news reports of December 7 are attached.

CLEANUP STATUS

The liquid contained in the bermed area was recovered by vacuum truck. The majority of liquid which left the berm was contained in a concrete lined portion of the drainage system and was also recovered. In the areas which were not concrete, the soil is being placed in a lined containment area for oxidation to a nonhazardous material by local contractor and will likely be completed December 8.

CAUSE OF FAILURE

Carbon steel "swedge" reducer (threaded on one end, welded on one end) failed due to erosion/corrosion. There was not an isolation valve to prevent drainage of the tower contents so that the leak was plugged manually.

CORRECTIVE ACTIONS:

The piping "swedge" was replaced with welded stainless steel.

Isolation valving will be installed.

Use of proper protective equipment will be reinforced.

Plants will be reviewed for similar piping hazards and appropriate measures taken.

winword/ken/attine.doc

REMEDIATION PLAN

1. RECOVERY

24 USTIOFIC NERLELT INC.

A. Utilize vacuum trucks to pick up all pooled areas of annonium sulfide/water and to clean up small stream of material in Ragle Draw (concrete lined). Discharge vacuum truck contents to storage tanks for reuse in plant.

سوب ہے ہے۔ بات ایک ایک ایک کے انہا کے

- B. Construct a contaminated dirt containment area approximately 1 1/2' deep X 12' X 24' at the south end of plant, away from spill area. Line the area with heavy duty 6 mil plastic to prevent further soil contamination.
- C. Utilize bobcat, wheel barrel, showels and five HAZMAT trained personnel to pickup remaining contaminated soil and place in containment area treating the soil with dilute hydrogen peroxide (5-7%) during this clean up.

2. TREATMENT

- A. Contaminated soil will exhibit two hazard waste characteristics, reactive sulfides and a corrosive pH (9-10). The treatment with dilute hydrogen peroxide will oxidize any remaining reactive sulfides to sulfates. This same reaction reduces the pH to near neutral (7-7.5). The end result of this treatment is a mixture of dirt and amnonium sulfate, a recognized commercial fertilizer.
- B. Once chemical lab analysis has verified the sulfides are gone, we propose to spread the resulting fartilizer soil on the organic landfarm maintained by Navajo Refining Company. This will not present a transportation problem as our facility is already located on Navajo Refining property. The addition of a fertilizer to their landfarm should actually enhance their organic treatment process.

	State of New Mexico
Energy.	Minerals and Natural Resour

DISTRICT I P.O.Box 1980, Hobbs, NM 88241-1980

DISTRICT II P.O. Drawer DD, Artesia, NM 88211-0719 DISTRICT III 1000 Rio Brazos Rd, Aztec, NM 87410

*SPECIFY

OIL CONSERVATION DIVISION

P.O. Box 2088 Santa Fe, New Mexico 87504-2088 SUBMIT 2 COPIES TO APPROPRIATE DISTRICT OFFICE IN ACCORDANCE WITH RULE 116 PRINTED ON BACK SIDE OF FORM -+-

NOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS, AND BLOWOUTS

OPERATOR	Navajo	Refin	ing Co	mpany	,		AI	DRESS 501 E.	. Main,	Artes	ia, NM	TELEPHONE # 748-3311
REPORT OF	FIRE	BREAK		SPILL		LEAK	X	BLOW		OTHER		
TYPE OF	DRLG	PROD	TA	NK	PIPE	1	SO	OIL		OTHER	*	
FACILITY	WELL	WELL	BT	RY	LINE	PL	NT	RFY	<u>X</u>			
FACILITY N			fining	Compa	ny - Ta	ank 10	6	1				
LOCATION								SEC.	TW		RGE.	COUNTY
Qu/Qu Sec. o	r Footage 5	<u>UI E.</u>	Main S	t., Ar	tesia,	NM	· · · · · · · · ·	<u></u>	9	17.S	26. E	Eddy
DISTANCE A TOWN OR PI				251								
DATE AND H	HOUR			0 4 M	<u></u>			AND HO		11/22/	01 7.00	Δ.Μ.
OF OCCURR		/22/94		0 AM	NOTE			DISCOV	/ERY	11/22/	94 7:00	AM
WAS IMMEI NOTICE GIV		YES	X NC		NOT RE		IF YES, TO WH		Mark As	hley		
BY		·					DATE					
WHOM TYPE OF	David	Griffi	n	<u></u>	<u> </u>		AND H		11/22/		0:45 AM	
FLUID LOST	' Gasoli	ne				#	OFLOS		000 Bb1:			0
DID ANY FL			S	NO		QUANT		<u> </u>				
A WATERCO					Χ							
IF YES, DESC	CRIBE FULL	Y**						-				
							NON S	R.°94				
								÷				
DECODIDE		ODIEN										
DESCRIBE C												
Gauging	and meter	rcalcu	latior	is done	e durin	g the	blend	ing an	d pipel	ine_sh	ipment of	f a batch of
87 octan	e Unleade	ed Gase	line w	hich y	vas pas	sing t	hrough	n_lank	106 re	vealed	d a loss.	A check
performe	a 2 nour:	slater	cont1	rmed	losses	occuri	ng in	lank	106. 1	'isua l	inspectio	on around
the tank	also col	itirmed	stair	ing fr	romal	eak.	Immea.	lately	water	was ir	ntroduced	into the
							tank.	BIe	nding w	as ha	lted into	the tank
DESCRIBE A								- - -			· · · · · · · ·	+ 7.00 DM
												at 7:00 PM
											ree hydrod	
							οπ το σ	ieterm	ine it	che ex	kisting re	ecovery
weitnet	work wil	inter	cept (inis pr	roauci.							
DESCRIPTIC	N FA	RMING	GR	AZING		URBAN	I	- Ia	THER*			
OF AREA						0.0.1				X Hea	avy Indust	trial
SURFACE		NDY	SANDY	,	CLAY		ROCK	ζ	WET		DRY	SNOW
CONDITION			LOAM			<u>X</u>	<u> </u>			Χ		
DESCRIBE C												
						h, son	ie show	vers b	ut no a	ppreci	lable prec	cipitation.
Light to	moderate	e winds	trom	the NM	W .							
INFREE										05.00	WWWW FDO	
I HEREBY C	ERTIFY THA	T THE IN	FORMAT	TON ABO	OVE IS TH	UE ANI	COMPL	EIE TO	THE BEST	OF MY	KNUWLEDGI	E AND BELIEF
	h		$' \square$	1								
	¥ · /]	IN.	Nº 4			D NAME	; Dav	id G.	Griffin	l	•	
SIGNED 1	brief	ϵ (, ϵ	Loff		AND TT	TLE	Sup	t. EA	a UC		DATE	11/23/94

INCIDENT SUMMARY

LOCATION: Artesia New Mexico DATE OF INCIDENT: December 5, 1994 DATE OF SUMMARY: December 7, 1994

00.00711 NERLEI, INC.

TIME: 11:45 P.M.

H. C/4

BACKGROUND

At Hickson Kerley's Artesia New Mexico plant, H₂S gas is received from Navajo Refinery. This gas is absorbed into hydroxide solutions and any unabsorbed gas is returned to the refinery. If the Hickson Kerley process is shutdown, the refinery gas is flared.

SYNOPSIS OF EVENTS

ENVIRONMENTAL RELEASE

At approximately 11:45 p.m. on Dec. 5, approximately 1,900 gallons of ammonium sulfide was spilled, because of a piping mechanical failure. Fumes from the spill were contained by water fog spray from the fire monitors.

The area containment capacity is approximately 3,000 gallons; but, due to addition of the water and overspray of water from the fire monitors, a small amount of liquid spilled to a storm drainage area. The spill did not leave refinery property. The drain area channels storm water to the Pecos river approximately 4 miles distant.

INIURIES

Two employees received injuries. Operator Gary Smith received a silver dollar size second degree chemical burn on his right arm and a half dollar size first degree chemical burn above his right ankle. He was treated and released.

Operator Reggie Turner was climbing the tower ladder with an SCBA. He could not advance in the ladder cage and momentarily removed his face mask. He became dizzy from fumes but on receiving fresh air recovered fully.

DETAILS LEADING TO RELEASE

Gary Smith was having pressure problems in the plant. He had called Navajo Refinery several times and had decided to have the refinery shut down the sour water gas flow. The unit was steamed through the vent line and the pressure dropped at approximately 11:30 P.M. Shortly, Gary noticed that the ammonia eductor piping was leaking and climbed up to tighten the connection. In the process of tightening, the line broke behind the connection at the pipe threads. He was sprayed in the face and body and climbed down and used the safety shower. The plant was isolated and shutdown.

COMMUNITY COMPLAINTS

There were none reported.

DEC OF 34 MORBONI NERLET, INC.

6

1

REGULATORY CONTACTS

Statutory authorities were contacted between 4:45 A.M. and 6:00 A.M. by plant manager Jim Cooper.

National Response Center State Emergency Response State Police (the state police contacted the LEPC)

The State Police dispatched a HAZMAT officer to the site shortly after 6:00 A.M. to file a report.

The plant was contacted at 9:00 A.M. by Frank Sanchez of New Mexico Emergency Response who wanted to know control action being taken. He was later contacted (9:15 A.M.) and the remediation plan was discussed with him.

MEDIA CONTACTS

Ken Gagon prepared release statement with contact/guidance from Steve Young at Leeds.

Statements were made with Daniel Russel from the Artesia Daily Press at 10:45 A.M. and Nicola Giacchetti from the Carlsbad Current Argus at 11:40 A.M. by Ken Gagon following referral from the plantsite.

Copies of the news reports of December 7 are attached.

CLEANUP STATUS

The liquid contained in the bermed area was recovered by vacuum truck. The majority of liquid which left the berm was contained in a concrete lined portion of the drainage system and was also recovered. In the areas which were not concrete, the soil is being placed in a lined containment area for oxidation to a nonhazardous material by local contractor and will likely be completed December 8.

CAUSE OF FAILURE

Carbon steel "swedge" reducer (threaded on one end, welded on one end) failed due to erosion/corrosion. There was not an isolation value to prevent drainage of the tower contents so that the leak was plugged manually.

CORRECTIVE ACTIONS:

The piping "swedge" was replaced with welded stainless steel.

Isolation valving will be installed.

Use of proper protective equipment will be reinforced.

Plants will be reviewed for similar piping hazards and appropriate measures taken.

winword/ken/artine.doc

REMEDIATION PLAN

1. RECOVERY

USTIDELL KERLED INC.

A. Utilize vacuum trucks to pick up all pooled areas of ammonium sulfide/water and to clean up small stream of material in Ragle Draw (concrete lined). Discharge vacuum truck contents to storage tanks for reuse in plant.

ليوني بي من مرضف المرد الا المرض الم

- B. Construct a contaminated dirt containment area approximately 1 1/2' deep X 12' X 24' at the south end of plant, away from spill area. Line the area with heavy duty 6 mil plastic to prevent further soil contamination.
- C. Utilize bobcat, wheel barrel, shovels and five HAZMAT trained personnel to pickup remaining contaminated soil and place in containment area treating the soil with dilute hydrogen peroxide (5-7%) during this clean up.

2. TREATMENT

- A. Contaminated soil will exhibit two hazard waste characteristics, reactive sulfides and a corresive pH (9-10). The treatment with dilute hydrogen peroxide will oxidize any remaining reactive sulfides to sulfates. This same reaction reduces the pH to near neutral (7-7.5). The end result of this treatment is a mixture of dirt and ammonium sulfate, a recognized commercial fertilizer.
- B. Once chemical lab analysis has verified the sulfides are gone, we propose to spread the resulting fertilizer soil on the organic landfarm maintained by Navajo Refining Company. This will not present a transportation problem as our facility is already located on Navajo Refining property. The addition of a fertilizer to their landfarm should actually enhance their organic treatment process.

Į.

NEW MEXICO OIL CONSERVATION COMMISSION NOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS AND BLOWOUTS

NAME OF OF						ADDRESS		deces	Toxes 70	760
GPM Gas C						4044 Penbro	JOK U			102
REPORT OF:	FIRE	BREAK	SPILL	LEAK		BLOWOUT		OTHER	X *	
TYPE OF	DRLG WELL	PROD WELL	TANK BTTY	PIPELI	NE	GASO PLNT	OIL RF	Y	OTHER*	
FACILITY:									Booster St	ation
NAME OF FA	CILITY	· ·	1	1					·	
GPM Gas C		Burton Flats E	looster							
LOCATION C			JARTER SECTIC	N OR FO	OTAGE	DESCRIPTIO	SEC	TWP	RGE COU	JNTY
NW/NW							1	21	27 Edd	
			REST TOWN C		MINEN	T LANDMARK	ζ.			
	OUR OF OCC				DATE /	AND HOUR OF	F DISC	OVERY	,	
	approximately					-94, approxir				
WAS IMMED			REQ'D IF YES	S, TO W						· · · · · · · · · · · · · · · · · · ·
NOTICE GIV		X N/A		N/A						
BY WHOM?						AND HOUR				
N/A						N/A			·	
TYPE OF FL		• • • • • • • • • • • • • • • • • • • •				TITY OF LOSS		VOUU	ME RECOV	
	Juced Water	•				bls P/W, 5 bl		120 b		
DID ANY FLU		YES	NO			013 17 / 14 / 15 01		1200	610	
A WATERCO		TES	X	QUAN						
		-	<u> </u>	1	· · ·					
IF YES, DES	CRIBE FULLY	•								
l										
	·									
							·			
			REMEDIAL AC							
PROBLEM	CAUSE: Pro	ducer's Oil W	ell Equipment	Malfun	ction				5 % OG/	
				-				Tiel		
REMEDIAL	ACTION: Pr	oducer called	gang to the s	ite and	repaire	ed the equipm	nent.	<u>}</u>		•••• · · · · · · · · · · · · · · · · ·
			34.1.3 10 1.1.0 1					· ·		•
										۲
						· · ·				
					_,					
			NUP ACTION	TAKEN						
AREA: Slop T	ank Containment									
CLEAN UP: V	acuum truck rece	overed 120 bbls.								
			· · · · · · · · · · · · · · · · · · ·							
						·····				
DESCRIPTIC	ON OF AREA	FARM	ING GRAZ	ING	URBA	N OTHE	R*			
				<						
SURFACE C	ONDITIONS	SANDY	SANDY	ICLAY	·	ROCKY	WET		DRY	SNOW
		X	LOAM				1		X	
DESCRIPE								<u>~ **</u>		J
	and the second state of the second					REGITIATIC		0.)		
34 aegrees F,	wind NW. @ 2	u mpn, U precipi								
·		-								
			· · · · · ·							
THEREBY C	ERTIFY THAT	THE INFORM	ATION ABOVE	IS TRU	E AND	COMPLETE	TO THE	Ë BEST	OF MY KN	OWLEDGE
AND BELIEF		ΛΛ								
1 .	<u>()</u>			•						
SIGNED A	hondol	When I	TITLE	Agency	Complia	nce Assistant			DATE 12-0	2-94
*SPECIFY	· winder V	**ATACH A	DDITIONAL SH							
		U		,.,						
										1

Energy, Minerals and Natural Resources Department **OIL CONSERVATION DIVISION** P.O. Box 2088 59.QQ 1000 Rio Brazos Rd, Aztec, NM 87410 Santa Fe, New Mexico 87504-2088

SUBMIT 2 COPIES TO APPROPRIATE DISTRICT OFFICE IN ACCORDANCE WITH RULE 116 PRINTED ON BACK SIDE OF FORM

+

NOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS, AND BLOWOUTS

State of New Mexico

OPERATOR	01		De	-	~		A	DDRESS	- ,			LEPHONE #
REPORT	/Vau		<u>Ketini</u>	SPILL	<u></u>	LEAK		BLOWO	01	C. Main OTHER*	1	
OF	FIRE	BREA	K.	SMILL		LEAK		BLUWU	01	OTHER*		
TYPE OF	DRLG	PROD	TA	NK	PIPE	GA	SO	OIL		OTHER*		
FACILITY	WELL	WELL			LINE	PL		RFY		Sump	overt	(on)
		0		, ,		l			·	<u>/</u>		
FACILITY N		<u>Bees</u>	n li	Lugs	Staf	Lion		<u></u>				
LOCATION				•				SEC.	TW			UNTY
Qtr/Qtr Sec. o				of 1	vw y	4		5		85 30	EE	ldy
DISTANCE . TOWN OR P					1/2 .	m, ks	-5	FO	L 1	oco Hils		·
DATE AND			/ /		· T		DATE	AND HOUR	2			
OF OCCURE		prox.	1/Am	12.	-4-9	4		F DISCOVE	RY 👌	P:30 pm.	12. 4	1-94
WAS IMME		"YES	NO		NOT RE		IF YES			/		
NOTICE GIV	/EN?	<u> </u>			QUIRE	D	TOW		NM	1. 00	0	
BY WHOM	A	11 1	$\mathcal{D}_{\mathcal{A}}$	_			DATE		0,	20 000	. 7	1-91
TYPE OF	/	13-en T	<u> </u>	125			QUAN	IOUR	<u> </u>	30 pm		- + - 14
FLUID LOST	r Cr	rde .	»."/				OFLO	1111	85 W	6/, COVERED	17	0 651.
DID ANY FL		CH Y	ES ES	NO		QUANT						0 011.
A WATERCO								NIA				
IF YES, DES	CRIBE FUL	LY**						/				
DESCRIBE (CAUSE OF I	ROBLEM	AND REM	IEDIAL A	CTION 1	TAKEN**	54.0	wa	5 04	verrun or nus clo.	acc	onat
OF Val	ve bein	a lef	t Ja	rtiall.	ч <i>о</i>	pen			,	uns ala	cod c	and
		J	1	2.1		· ·	50	mp vai				4
sund .	nes p	ruped	0	0.1	was		vver	6 4 6	7 43	ins ave	rc uun	mach
DESCRIBE	AREA AFFE	CTED AN	D CLEAN	JP ACTIO	N TAKE	N** <	(1 .		all lig		10.5
		1				J.	and	aunes	-	an lig	, n, a c	
picked	np	64	vacuu	m t	muck	c an	d,	soil u	la s	excavate	h an	~
set up	ion p	lastic	to	preve	ent	furt	her	migra	-tion	excavated of of	1.	
· ·	•			•	•			•				
					• · ·			na n		* . *		-
DESCRIPTION	ON I	ARMING	GR	AZING		URBAN	[OTI	IER*		11 .	
OF AREA				· · · ·		1	813.		_	Sand 1ti	42	
SURFACE		ANDY	SANDY		CLAY		ROCK	Y	WET	DRY		SNOW
CONDITION			LOAM									
DESCRIBE	GENERAL (CONDITIC	NS PREVA	ULING (T)	EMPERA	ATURE, P	RECIPI	FATION, EI	°C.)**	Approx	40'	- slight
braeze	-	A lass	skie	5.		- MO	eL.	~ ~		-		
		0.007	222	-	10	~ ~ ~ ~	57~~	~ C .				
				-								
I HEREBY C	ERTIFY TH	AT THE I	NFORMAT	ION ABO	VE IS TI	RUE AND	COMP	LETE TO TH	IE BEST	OF MY KNOWL	EDGE AN	D BELIEF
			2									
	011				DD D		AIL	hat ê	م مرد ب			
SIGNED		+1	/ _		AND		171	2 - 1 - F	-70	rewiss- D	ATE /	7-0-94
SIGNED	Mu	∧ A	yos.	. <u></u>			nde	Jystems	Jug	red use D	ALE /	- 1 //
*SPECIFY	ال لاسرة	G.T. /)	/ **A					NECESSAR				
-	le.											

DISTRICT I P.O.Box 1980, Hobbs, NM 88241-1980

DISTRICT II

P.O. Drawer DD, Artesia, NM 88211-0719

DISTRICT III

State of New Mexico ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT Santa Fe, New Mexico 87505 STREET OF U.CO NSERVICTION COP MEMORANDUM OF MEETING OR CONVERSATION Telephone Time Date 94 1050 Personal Originating Party Other Parties ßĭ L Burenn -hvir Kare 1.000 nin Subject 6 tesia Discussion 437 16m k 0 lac rei SUMP Main UNTO 41 1'sa < rohr ko a OX ſΤ OCALLET & e the Cecnir 10 5100 Crow 54 TN Trin Dicho 11 res 6c rd TATIS e Conclusions ðr Agreements fe TPI NTEX Con innetion ei OCP 21215 ()C hrri WN R -20 6 Distribution Signed

501 EAST MAIN STREET ° P. O. BOX 159 ARTESIA, NEW MEXICO 88211-0159 EASYLINK 62905278 FAX (505) 746-6410 ACCTG (505) 746-6155 EXEC (505) 748-9077 ENGR (505) 746-4438 P / L

TELEPHONE (505) 748-3311

June 23, 1994

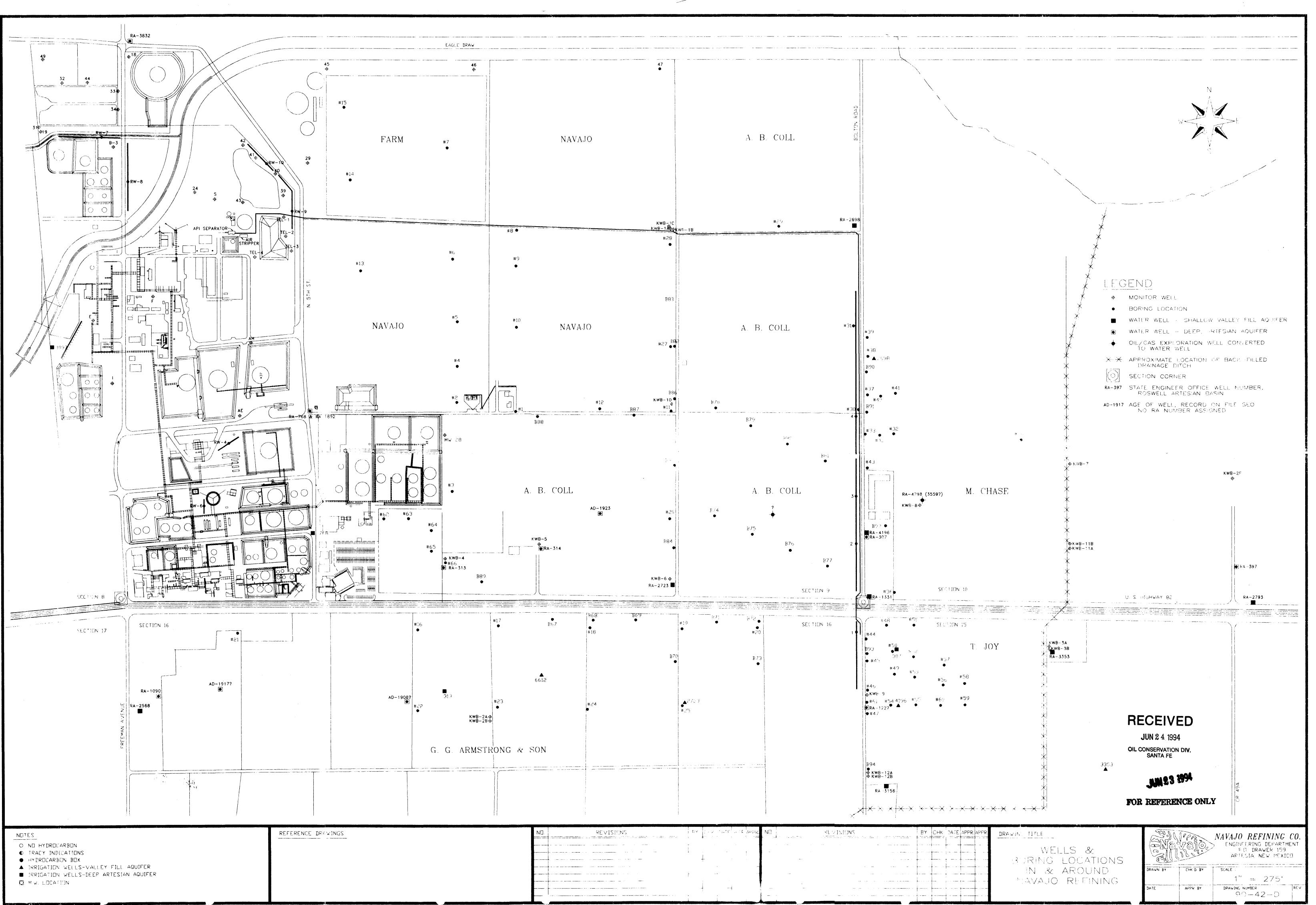
Mr. Bill Olson, Hydrogeologist Oil Conservation Division Environmental Bureau Land Office Bldg. P.O. Box 2088 Santa Fe, NM 87501

'JUL 2 4 1994

OIL CONSERVATION DIV. SANTA FE

Dear Bill,

Enclosed is the map of our facility showing all monitor wells, discharge points, air stripper, recovery well locations along Bolton Rd., and other recovery well locations inside the plant that we would also like to put through the stripper. As I said in previous letters, the piping from and along Bolton Rd. is below ground and was tested after installation.


Hopefully, this map will satisfy OCD's requests for information concerning this modification to our discharge plan. If you have any questions concerning this matter, please call me at 505-748-3311.

Sincerely,

well More

Darrell Moore Environmental Specialist

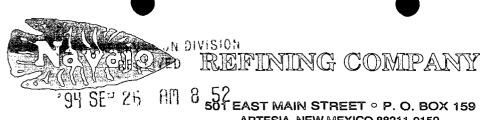
Encl.

キャ DISTRICT I P.O.Box 1980, Hobbs, NM 88241-1980

DISTRICT II P.O. Drawer DD, Artesia, NM 88211-0719 DISTRICT III 1000 Rio Brazos Rd, Aztec, NM 87410

State of New Mexico Energy, Minerals and Natural Resources Departm.

SUBMIT 2 COPIES TO APPROPRIATE DISTRICT OFFICE IN ACCORDANCE WITH RULE 116 PRINTED ON BACK SIDE OF FORM


+-

OIL CONSERVATION DIVISION

P.O. Box 2088 Santa Fe, New Mexico 87504-2088

NOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS, AND BLOWOUTS

OPERATOR	Nava	in Ref	ining Co	mnanv			4		RESS	Mai	n Av	ctor	ia, NM		ELEPHONE # 3-3311
REPORT	FIRE	BRE		SPILL		LEAK			BLOW			THER		7 40	- 5511
OF	Inc	DKL	A 1 A	STILL		LEAK	Х			001		IILK			
TYPE OF	DRLG	PRO	D TA	NK	PIPE		SO		JIL	···	0	THER	*		
FACILITY	WELL	WEL		RY	LINE	PL			RFY	X					
FACILITY N	AME-	avaio	Refining	Compa	nv - T	ank 10	6								
LOCATION			iter ming	oompu	<u> </u>		<u> </u>	Ĩs	EC.		TWP.		RGE.	C	DUNTY
Qu/Qu Sec. c			. Main S	t. Ar	tesia.	NM			9			7.S	26.		Eddy
DISTANCE A	AND DIRE	CTION FI	ROM NEAR	EST				<u>L</u>		d 				<u> </u>	
TOWN OR P		IT LAND	ARK_												
DATE AND		11/00/		<u> </u>			1		D HOU				~ -	~~ ^	
OF OCCURR		11/22/		O AM	1.100				SCOV	ERY	/11	/22/	94 /:	00 AI	<u>1</u>
WAS IMMEI		YES	X NC)	NOT RE		IF YE		<i>г</i> М	lank .	Achle				-
NOTICE GIV	EN?		<u>^</u>		QUIREI)	DAT		<u>1 Pi</u>	lark /	451116	y		. <u></u>	
WHOM	Davi	d Grif	fin				AND		R	11/2	2/94	1	0:45 AM		
TYPE OF		<u>a arr</u>					QUA			11/2			LUME RE		
FLUID LOST	' Gaso	line					OFL		- 10	00 BI	bls		VERED	0	
DID ANY FL			YES .	NO		QUANT									
A WATERCO			alaren T	:	Χ	[
IF YES, DES	CRIBE FU	LLY**		,											
						·									
		-	~ 600												
		$C.\overline{O}$	128.34												
			,												
			D. C. D.							<u></u>					
DESCRIBE C	CAUSE OF	PROBLE	M-AND'REN	IEDIAL /	ACTION T	'AKEN**									
Gauging	and me	ter cal	culatior	is done	e durin	a the	blen	dind	a and	d pip	elin	e sł	nipment	of a	batch of
87 octan															
performe															
the tank	also (confirm	ed stair	ina fi	rom a l	eak.	Imme	diat	telv	wate	r wa	s ir	troduce	ed in	to the
tank to															
DESCRIBE A														<u></u>	
while th							ne o	ut.	Tar	nk wa	s da	soli	ne free	e at	7:00 PM
same day	. Oper	ning an	d inspec	tion o	of tank	will	foll	ow.	The	ere w	asn	o fr	ree hvdr	rocar	bon to
recover	but Nav	aio is/	beainni	ng an	invest	igatic	on to	det	termi	ine i	fth	e ex	istina	reco	verv
well net	work w	ill int	ercept t	his p	roduct.							0.07			,
				···- F											
DESCRIPTIC)N	FARMIN		AZING		URBAN	Į		101	THER*					
OF AREA						CIUII	•				Х	Hea	ivy Indu	ıstri	al
SURFACE		SANDY	SANDY	,	CLAY	1	ROC	KY –		WET	1		DRY		SNOW
CONDITION			LOAM			Χ					<u>X</u>		<u> </u>		
DESCRIBE C															,
Cold and						h, som	ıe sh	ower	rs bi	ut no	app	reci	able pr	recip	itation.
Light to	modera	ate win	ds from	the NN	VW.										:
1	•		, in 1997, and 1997,												1
I HEREBY C	ERTIFY T	HAT THE	INFORMAT	TON ABO	OVE IS TR	RUE AND	COMI	PLET	ETOT	THE BE	ST OF	MY	KNOWLED	GE AN	ID BELIEF
	6	\sim	$\Lambda \wedge$	/											
	\mathcal{N}	111		1			~		<u> </u>						
avenue //	1/	$\mathcal{I}\mathcal{M}$	T'M.	~		D NAME	, Da	vid Int	EA (Griff & OC	٦n				(00/04
SIGNED U	ong	61.	J/K		AND TT	TLE	50	· · · ·	<u>ь</u> л				DAT	E 1.	./23/94
*SPECIFY			\mathcal{D}_{**}	TTACH	ADDITIO	NAL SHE	EETS II	FNEC	CESSA	RY					

TELEPHONE (505) 748-3311 ARTESIA, NEW MEXICO 88211-0159

EASYLINK 62905278 FAX (505) 746-6410 ACCTG (505) 746-6155 EXEC (505) 748-9077 ENGR (505) 746-4438 P / L

September 22, 1994

Mr. Bill Olson **Oil Conservation Division Environmental Bureau** Land Office Bldg. P.O. Box 2088 Santa Fe, NM 87504

RE: Workplan to Satisfy GW-28 Modification Conditions

INTRODUCTION:

Navajo Refinery, located in Artesia, New Mexico, is working under a discharge plan (GW-28) that is regulated by the Oil Conservation Division. As a condition of permitting the underground injection of water into wells RW-4 and RW-6, the OCD has requested a workplan be submitted for the installation and sampling of additional monitor wells. These wells, which will help monitor the hydraulic gradient in the area of injection, will be placed in areas of the refinery where there is a lack of ground water monitoring points.

Enclosed is a map of the Artesia refinery with all monitor wells located. The location of three proposed new wells is also shown on this map in the "clouded" areas and designated as monitor wells number 48, 49, and 50. These points were selected based on accessibility for the drilling rig, lack of underground lines, and hydrogeologic value based on the problem at hand.

MONITOR WELL INSTALLATION PROCEDURES

Once injection begins, the objective of the additional monitor wells will be to determine the effect, if any, the injected water has on the natural hydraulic gradient and to supplement the existing monitoring well network.

Drilling will be conducted using a CME 75 truck-mounted rig (or equivalent) with 12 inch hollow-stem augers. Visual observations of discoloration, odors, and hydrocarbons will be noted and logged. Prior to drilling, each site will be inspected and cleared as necessary to allow access by the drilling rig and crews. Public utilities will be advised of the drilling operations and locations beforehand so that those entities affected can do a site inspection to locate their particular lines.

A geologist will be present at each location to log samples, monitor drilling operations, record depth to water table and other ground water data, prepare borehole logs and well construction diagrams, and record well installation procedures. All soil cuttings produced during the installation of monitoring wells will be collected and placed in the appropriate containers for disposal by refinery personnel.

Monitor wells will be designed to:

1.

• •

allow sufficient ground water flow for well sampling;

minimize the passage of formation materials (turbidity); and

provide sufficient structural integrity to prevent the collapse of the intake structure.

After drilling, well casing, screen, filter pack, bentonite seal, and grout are placed within the borehole, and the wellhead is completed with a cement seal and locking surface casing. A typical installation is shown in the enclosed diagram.

Monitoring wells will be completed with 2 inch (ID) stainless steel or schedule 40 PVC casing with 0.01 inch machine slotted screen using 12 inch (OD) augers. Casing sections will be flush threaded with screw joints. The screened interval will range from 5-10 ft and intercept the water table (allowing for seasonal fluctuations). A 6 inch sediment sump will be included below the screen. A sand pack consisting of 20/40 silica sand and extending from the base of the boring to 2 ft. above the top of the screen will be placed directly in the annular space between the casing and borehole and added at a rate to prevent bridging. A tremie pipe may be used to insure complete filling of the annular space. The volume of filter material needed to fill the annular space will be calculated and the thickness of emplaced sand will be monitored using a weighted probe. A bentonite seal with a minimum thickness of 2 ft will be placed in the annular space above the sand pack using a tremie pipe and allowed to set-up for at least 30 minutes prior to grouting. The well will then be grouted from the top of the bentonite seal to within 3 ft of the ground surface using a tremie pipe. The grout mixture will be a 10:1 ratio of Portland cement to bentonite powder (by weight) and will contain only enough water for a lump free pumpable mix. At least 24 hours will then be allowed before surface completion.

Monitoring wells will be completed at the surface with the well casing extending approximately 3 ft above grade. A steel protective cover with locking cap will be placed over the riser and extend 2 ft below grade. The well head will be surrounded by a 4 ft x 4 ft x 4 in cement pad which slopes away from the center. The wells will be developed using a combination of bailing, surging, and pumping.

To prevent the possibility of cross-contamination, all drilling equipment will be thoroughly steam-cleaned between boreholes and prior to use at each monitor well. All steam cleaning will be performed at the refinery steam rack and all run-off will enter the refinery wastewater system.

The elevation and location of all well installations will be determined by a land surveyor at the close of fieldwork. The elevation at the top of each new well casing will be determined to 0.01 ft and be traceable to, and previously established from, a survey marker. Both the elevation of the ground surface and the elevation of the top of the well casing will be measured. All surveyed points will be recorded on both site-specific and project maps, as will the locations of benchmarks and permanent markers.

MEASUREMENTS AND SAMPLING

The depth to groundwater is important in determining changes in horizontal and vertical flow gradients. Depth to groundwater will be measured by the use of a Keck oil/water interface meter. Measurements of both depth to product and depth to water will be taken to the nearest 0.01 ft and will be made from a clearly marked reference point on the top of each well casing. In addition, total depth of the well will be taken to determine total casing water volume.

Prior to sampling a well, a minimum of three well casing volumes will be removed to ensure that the sample will be representative of groundwater conditions. The pH, conductivity, and temperature of the groundwater will be monitored during purging. A sample will be collected when these parameters have stabilized. All fluids produced during purging for sample collection will be placed in barrels and disposed of in the refinery wastewater system.

Immediately after purging of the well is complete, a groundwater sample will be taken. A disposable Teflon bailer and nylon twine will be used to collect samples which will be poured directly from the bailer into appropriate sample containers. Samples will then be placed in a cooler with ice. Latex gloves will be worn to prevent cross-contamination between wells.

Each sample will be recorded on a chain of custody record. An identifying code will be assigned to each sample and this code will be used on the chain of custody. A brief description of the sampling point will also be placed on the chain of custody form. A copy of this form will be retained at the refinery in a secure area. The sample will then be shipped via Fed-X to an approved lab.

The three new monitor wells will be sampled on an annual basis for PAH's, cations/anions, and heavy metals. They will also be incorporated into the quarterly water table elevation map and product thickness map that is being added to Navajo's reporting schedule per OCD's July 25, 1994 letter.

This workplan will be approved and implemented before commencing injection into monitor wells RW-4 and RW -6. At the present time, Navajo is sending all water from recovery wells to the API separator which eventually ends up in the ponds. As you know, we are currently working on a project to get a customized air stripper at this location to treat the water prior to injecting it or putting it on one of our farms for agricultural use. I hope this work plan will meet your needs as we try to reach our larger goal of discontinuing use of the evaporation ponds. If you have any questions or comments, please call me at 505-748-3311. Thank you for your time in this matter.

Regards,

Darrell Moore Environmental Specialist

Design Specifications	teter. □ PVC Sched. 40 □ Stoinless Steel 11. 22 □ 4* □ 6' 10.008 ⊠0.010 □ ∑Machine Stot □ 1 S.S.L. 20/40	Bentonite Seol: 1/4" Pellets 1/2" Pellets 1/2" Chips Hole Plug	Date D-T-W D-T-P Prod Thick Field Eld 2/10/93 18.58 - - - - 2/10/93 18.58 - - - Comments: Example of single cased monitoring Mell/piezometer. - - - - -	Project: 622093001-115 (EC-P4)
Monitoring Well Piezometer Protective Casing 2 Lip 2 Lip 74 Surface			24.5	33.5 34.0 34.0 Depths in Feet from Ground Surface (Not to Scale)
				· · ·
Geologic Description 0-11.5' SILTY GRAVELS, sand and silt are tan, dry, gravel is well rounded.	 11.5-19' SANDY CLAY, reddish/brown, moist, plastic, clay content increasing with depth. 19-25' CLAY, brown, moist, plastic. 25-29' SANDY CLAY, brown, saturated. 	29-34' SILTY SAND, brown, saturated, fine grained. TD = 34.0'		Sample Method Symbols A RB=Recovery Barrel 🛛 5' 🗍 ST=Shelby Tube SS=Shilt Smoot C=Cutting

. .

TELEPHONE (505) 748-3311

8 AL CONSERVE FON DIVISION RECEIVED

194 DC 25 AM 8 52

REFINING COMPANY

501 EAST MAIN STREET ° P. O. BOX 159 ARTESIA, NEW MEXICO 88211-0159 FAX (505) 746-6410 ACCTG (505) 746-6155 EXEC (505) 748-9077 ENGR (505) 746-4438 P / L

October 12, 1994

Mr. Bill Olson, Hydrogeologist Oil Conservation Division Environmental Bureau Land Office Bldg. P.O. Box 2088 Santa Fe, NM 87501

Dear Bill,

Recently we had a spill at our tank 437 and we made notification both by phone and in writing. Subsequently, the spill has been cleaned up and hauled off. Enclosed are some supporting documents to detail where the contaminated soil was sent and the TPH levels in the cleaned area.

Please find copies of two manifests for contaminated soil shipped to USPCI's Lone Mountain landfill. This is the material that was dug up in the area of the spill. Secondly, I have enclosed the lab analysis of the soil in the area after the clean-up was completed. This was a composite sample taken by filling a five gallon bucket with soil from several different areas and mixing them together.

I hope this will finalize this particular spill. If you have any questions regarding this matter, please call me at 505-748-3311. Thank you for your time in this matter.

Regards,

Mare

Darrell Moore Environmental Specialist

Encl.

		-			Â			
	4 t & Cool	Prest TEX IPA	795					
	9/28/9 /26/94 Intaci y: JW	-		TO	0 4 0			
œ	ate: 0 ate: 09 äition: gired b me: NA	M, P XYLE (pp	0.6	0	1 4 1	TRPHC.		
X 806 • 794 • 123	Analysis Da Bampling Da Sample Cond Sample Rece Project Nam	BTHYL- BENZENB (PPm)	1.278 0.240	0.001	100 68 120	53.880 ppm	,	
		(mdd) Englidene	1.308	0.001	98 100 115	E OFGANICS. ked with 10	66-51-	e e
506•794•1 OR ANY MOOFE		(DDW) BENZGNE	0.118 0.216	0.001	99 106 108	CH VOLATIL Blank spí	-0)	Date
35 79424 UESULTS F FING COMI	88210	TRPHC (ppm)	17.985 1.000	010.0		O ppm IA RPCH and		
670: Aberdeen Averue Lubtock, Tex ANALYTICAL NAYAJO REFI Attention:		ield Code	pill TK 437 uality Control			20; Modified 8015. p.e and Blank Spiked with 0.20 mple spiked with 327.760 ppm 1	St	Blair Leftwich Bruce McDonell
	October 04, 1994 Receiving Date: 09/27/94 Sample Type: Soil Project No: WA Project Location: NA	Ŀ¥	126411 Sp Oc Ou	Detection Limit	<pre>% Precision % Extraction Accuracy % Instrucent Accuracy</pre>	METHODS: EPA SW 846-802 BTEX SPIKE AKD QC: Samp TRPHC SPIKE AND QC: Sam		Director, Dr. Director, Dr.
	Luctock, Texa ANALYTICAL R NAYAJO REFIN Attention:	670: Aberdeen Avenue lunbock, Texas 79424 506-794-1296 FAX 806-794-1298 ANALYTICAL RESULTS FOR ANALYTICAL RESULTS FOR NAYAJO REFINING COMPANY Attention: Darrell Moore 501 E. Main 501 E. Main 500 E.	6/01: AberGeen Avenue Lustock, Texas 79424 506.0794.01296 FAX 806.0794.01298 ANALYTICAL RESULTS FOR ANALYTICAL RESULTS FOR MAYAJO REFINING COMPANY Analysis Date: 09/28/94 Ober 04, 1994 Attention: Darrell Moore Analysis Date: 09/26/94 Ober 04, 1994 501 E. Main Sampling Date: 09/26/94 Ober 04, 1994 Attention: Darrell Moore Analysis Date: 09/26/94 Ober 04, 1994 Attention: Darrell Moore Analysis Date: 09/26/94 Ober 101 Artesia, NM 88210 Sampling Date: 09/26/94 Oper 101 Artesia, NM 88210 Sampling Date: 09/26/94 Ject No: IIA Artesia, NM 88210 Sampling Date: 09/26/94 Ject Location: NA Artesia, NM 88210 Sample Received by: JW Ject Location: NA Froject Name: NA Project Name: NA Foolect Location: NA Froject Name: NA Project Name: NA Field Code (ppm) (ppm) (ppm)	6/01: Aberdeen Avenue luctock, Texas 79424 806+794+1296 FAX 806+794+1298 Amalrytical RESULTS FOR Amalrytical RESULTS FOR Amalrytical RESULTS FOR Amalrytical Results For Amalrytical Results For Amalrytical Results For Abtention: Darrell Moore Ber 04, 1994 Strention: Diving Date: 09/27/94 Attention: Darrell Moore Solut Ex Main Sampling Date: Ject No: IRA Attention: Ject No: IRA Sampling Date: Ject Location: IRA Sample Condition: Ject Location: IRA Sample Received by: Ject Location: IRA Sample Received by: Ject Location: IRA Sample Received by: Ject Location: IRA IRAPER Ject Location: IRA Sample Received by: Ject Location: IRA Sample Received by: Ject Location: IRA Sample Received by: Ject Location: IRA IRAPER Ject Location: IRA IRAPER	500: Aberdeen AvenueLubtock, Texas 794:4506.+794.1296 $f_{AMALYTTCAL RESULTS FORAMALYTTCAL RESULTS FORAMALYTTCAL RESULTS FORAMALYTTCAL RESULTS FORAMALYTTCAL RESULTS FORANALYTTCAL RESULTS FORANALYTTCAL RESULTS FORAMALYTTCAL RESULTS FORANALYTTCAL RESULTS FORANALYTTCAL RESULTS FORANALYTCAL RESULTS FOR$	6707. Aberdeen Arenue Luchtok, Taxas 73424 306+794+1296 FAX 806+794+1296 FAX 806+794+1296 Averation: Averation: Averation: Barell Moore Avalysis Date: $09/29/94$ Der 04, 1994 Averation: Date: $09/29/94$ Averation: $07/29/94$ Der 04, 1994 Averation: Date: $09/29/94$ Averation: $07/29/94$ Der 10, 194 Averation: $07/21/94$ Averation: $07/29/94$ $07/29/94$ Der 10, 17 Averation: $07/21/94$ Averation: $07/20/94$ $07/20/94$ Der 10, 18 Averation: Averation: $07/20/94$ $07/20/94$ $07/20/94$ Der 10, 18 Averation: Averation: $07/20/94$ $07/20/94$ $07/20/94$ Der 10, 18 Frend 1 $07/20/94$ $07/20/94$ $07/20/94$ $07/20/94$ Ject 100: 18 Averation $07/20/94$ $07/20/94$ $07/20/94$ $07/20/94$ Ject 100: 18 Freed 1 $07/20/94$ $07/20/94$ $07/20/94$ $07/20/94$ Ject 100: 18 Spill 7K $07/20/94$ $07/20/94$ $07/20/94$ $07/20/94$ 411 Spill 7K $07/20/94$ $07/20/94$ $07/20/94$	FOIT (Deriven Number (Littor): Larcell Moore ELLOTOR, Texas 73/34 ERL-73/4 ERL-74/4 E	501. Abronance Luchock Tases 742.4 500 - 594 = 1296 5AX 500 = 794 = 1296 Amaintricut serurts for ber 04, 1994 Amaintricut serurts for Amaintricut serurts for Amaintricut serurts for Amaintricut serurts for aiving Dates 199/27/94 Amaintricut serurts for Amaintricut serurts for Amaintricut serurts for Amaintricut serurts for Amaintricut serurts for Artesis, NN 88210 Amaintricut serurts for Serurts ample condition: Interct & Sample condition: Interct & Sample condition: Interct & Sample constron: NA jett Iocation: NA Artesis, NN 88210 Sample secoled by 200 (Ferm) Mainterct & Sample condition: Interct & Sample condition: Interct & Sample areaction: INA fett Iocation: NA Field Code INPEC [Str Name: INA Sample areaction: INA fett Iocation: NA Artesis, NN 88210 INPEC [Str Name: INA fett Iocation: NA Field Code INPEC [Str Name: INA fett Iocation: NA Field Code INPEC [Str Name: INA fett Iocation: NA Field Code INPEC [Str Name: INA fett Iocation: NA Field Code INPEC [Str Name: INA fett Iocation: NA Field Code INPEC [Str Name: INA fett Iocation: NA Field Code INPEC [Str Name: INA fett Iocation: NA INPEC [Str Name: INA INPEC [Str Name: INA fett Iocation: NA INPEC [Str Name: INA INPEC [Str Name: INA fett Iocation INPEC [Str Na INPEC [Str Name

TRACEANALYSIS

TEL:806-7941296

Uct :

Oct 14 94 14:10 No.014 P.01

Form Approved. OMB No. 2050-0039. ... (Form designed for use on elite (12 typewriter.) se print or type. Manifest Information in the shaded areas 1. Generator's US EPA ID No. 2. Page 1 of this not required by Federal laws UNIFORM HAZARDOUS Document No. NMD048918817100056 **WASTE MANIFEST** A. State Manifest Document Number 3. Generator's Name and Mailing Address Adava in Rotation of P.D. Brower 154 SHIFPED Alterra Aun -28214 B. State Generator's ID 14 4. Generator's Phone (505) 748 331 C: State Transporter's ID US EPA ID Number 5. Transporter 1 Company Name D. Transporters Phone 110 - 4132 ORD9118883 57.4 Iransbor. Triad E. State Transporter's ID US EPA ID Number Transporter 2 Company Name 8: F. Transporter's Phone TR 9. Designated Facility Name and Site Address G. State Facility's ID US EPA ID Number 10. SB 47002 H. Facility's Phone -177-3500 OKD065438376 Waynokai 0k 73860 199. 4 12. Containers 13 Total Total Quantity Wt/Vol Ny Waste No. 11. US DOT Description (Including Proper Shipping Name, Hazard Class and ID Number) No. Type - 84 G Non Herordeus Waste, which, rontommatica Ε a. N solls and special waster m.c.s. Ch 201 E Ð. т 0 HOLD LE MERTE ET - 10 12 -R St. Sansin unda C. Distantion is crimated to average 37 miles for gentary 415 - 3 mote state and a second Present storeer and disposed termines. This male des time for remaining a store the terminant. Sto Hoter NO. 100 的法律的 33.6 an order of South and the Construction of the weather and the should be the determinent of the action of the second d. Grama ortanio 8904 und bir 0.0 .osta K. Handling Codes for Wastes Listed Above J. Additional Descriptions for Materials Listed Above culture tran \$ 77824 Steram \$ 10099 6295 10 S Martin The second second 15. Special Handling Instructions and Additional Information: Phone # 505 - 748 3311 16. GENERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed, marked, and labeled, and are in all respects in proper condition for transport by highway. according to applicable international and national government regulations. If I, am a large quantity generator, I certify that I have a program in place to reduce the volume and toxicity of waste generated to the degree I have determined to be. economically practicable, and that I have selected the practicable, method of treatment, storage, or disposal currently available to me which minimizes the present and future threat to human health and the environment; OR, if I am a small quantity generator, Dhave made a good faith effort to minimize my waste generation and select. the best waste management method that is available to me and that I can afford. Month Dav Year Signature Printed/Typed Name 7 17. Transporter 1 Acknowledgement of Receipt of Materials Month : Day Year Signature Printed/Typed Name Ο 1 AREN KOBERTS 18. Transporter 2 Acknowledgement of Receipt of Materials Month Day Year Signature Printed/Typed Name 19. Discrepancy Indication Space 20. Facility Owner or Operator: Certification of receipt of hazardous materials covered by this manifest except as noted in Item 19.3550 Month Day Signature Printed/Typed Name 8700-22 (Rev. 9-88) Previ Style F15 REV-6 Labelmaster, An American Labelmark Co.; Chicago, IL 60646 (800)621-5808 GENERATOR COPY

-\$./s

Ċ,

	NIFORM HAZARDOU WASTE MANIFEST	Sea the car start .	US EPA ID No.	Manifest Document No Document No	· · · · · · · · · · · · · · · · · · ·	age 1 Inform	nation in th required t	he shaded by Federal
	erator's Name and Mailing Add	iress Noveria 12	chung to			tate Manifest D	ocument l	Number
1. 196-196		-Artesna A	un erro		B. S	tate Generator	s ID	
5. Tran	erator's Phone (C. L. MART		ID Number		tate Transporte		5445
· · · ·	Isporter 2 Company Name	the state and state the	8. US EPA	S 8 8 7 9 ID Number	. E. S	ransporter's Ph tate Transporte	rs.ID	r• 926
) (X NO,) 9.) Desi	ignated Facility Name and Site		10. US EPA	ID Number		ransporter's Phi tate Facility's IC)	
	2.207 170	ور به در م به میکند در در میکند میز ور	an a	and a state of the second s	H.F	acility's Phone	2	
1	ynaka, Ok 7386		06206	12. Co	E ntainers	905 647	14.	l.
G HM	DOT Description (Including Pro			umber) No.	Туре	Total Quantity	Unit- Wt/Vol	Waste
- a. N E	Non Horardous, Soils and speed				100	24321		
A T D.								
O tarte area		and a second						in son in Arry An Arry Arry Anna Airmeine
C.	مر الجربية من من عبال	anni afe saesa		nonning harder		ABANG BRANCH		aa A Borne Air staal a
	i the lience goigner, soluti	in an indineria legadine in an entre legadine in classical and the second	and third, significant	an brits (10) (12) (10)		Parisentian Aug		
1 1 2074 (ited (conterts and contailon of		00000000000000000000000000000000000000			9 10 10 10 10 10 10 10 10 10 10 10 10 10	na n
∎÷ - J. Add	itional Descriptions for Materia	Is Listed Above			K H	andling Codes f	or Wastes	Listed Abr
a da an	for an a line +	1186 - 21.	com tim?	1-0295		a a shara a sh I shara a shara	a selation de la sel Antima de la selation de la selation Antima de la selation	an a
15. Sp	ecial Handling Instructions and	and the second		and a start of the second s The second se				and Singer
7. 14 J. Qr	24 h	. Phone	\$ 505-	748 32	11			
	NERATOR'S CERTIFICATION: I here per shipping name and are classified,	by declare that the content	s of this consignment are f	ully and accurately de	scribed ab	ove by. by highway	م میں اور	<u>يابيد العامين.</u> معالية معادمة مولياتي الله مع
16. GEN		national government regula	ations.	volume and toxicity	of waste	penerated to the d	legree, I. hav	ve determine
,	ording to applicable international and		en allenatio devisionation data d	diamonal diamonal	currenny: a	Hort to minimizar	www.wasterio	eneration and
acco	ording to applicable international and	ive selected the practicab environment; OR, if I am	a small quantity generate	storade. or disposal	od faith e		C L	
eco futu	ording to applicable international and "am a large quantity generator, I con- nomically practicable, and that I have the threat to human, health and the best waste management method that inted/Typed Name	ive selected the practicab environment; OR, if I am	a small quantity generate	storade. or disposal	od faith e	in the minimum of the second s	C OF ALC	Nonth Day
, prop , acco , if i , geo occ , futu the Pri 17. Tra	ording to applicable international and am a large quantity generator. Lee nomically practicable, and that it is ire threat to human health and the best waste management method tha inted/Typed Name Galler ansporter 1 Acknowledgemen	ive selected, the practicab environment, OR, if J am It is available to me and tha	ie method of treatment a small quantity generate t i can afford Gignature	storaĝe, or disposal ,r, i have made a g Distuti	od faith e	100.00		101
T T T7. Tra	ording to applicable international and am a large quantity generator, i.c. nomically practicable and that i ha are threat to human health and the best waste management method tha inted/Typed Name Gattic ansporter 1 Acknowledgemen inted/Typed Name	we selected the practicab environment, OR, if J am it is available to me and tha tof Receipt of Materia	ie method of treatment a small quantity generati t-l.can afford IGCC IS IS	storaĝe, or disposal ,r, i have made a g Distuti		loon lette,		101
T 17. Tra	ording to applicable international and am a large quantity generator, i.c. nomically practicable and that i.h are threat to human health and the best waste management method tha inted/Typed Name Gattion ansporter 1 Acknowledgemen inted/Typed Name	we selected the practicab environment, OR, if J am it is available to me and tha tof Receipt of Materia	ie method of treatment a small quantity generati t-l.can afford IGCC IS IS	storagë, of disposal or, i have made a g Dituut U Herting		lieto		Aonth Day <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u>
rtance reaction	ording to applicable international and am a large quantity generator. I ce nomically practicable, and that I ha ire threat to human health and the best waste management method tha inted/Typed Name ansporter 1 Acknowledgemen inted/Typed Name Additional and the second second second inted/Typed Name	we selected the practicab environment, OR, if J am it is available to me and tha tof Receipt of Materia	IS method of treatment a small quantity generate I lcan afford I G G G G G G G G G G G G G G G G G G G	storagë, of disposal or, i have made a g Dituut U Herting	od faith (e D Z D	leto		1 4 1 Nonth Day 1 9 1
rtance reaction	ording to applicable international and am a large quantity generator. I con- nomically practicable, and that I is a re threat to human health and the best waste management method tha inted/Typed Name CALLEN ansporter 1 Acknowledgemen inted/Typed Name Addates Acknowledgemen inted/Typed Name	we selected the practicab environment, OR, if J am it is available to me and tha tof Receipt of Materia	IS method of treatment a small quantity generate I lcan afford I G G G G G G G G G G G G G G G G G G G	storagë, of disposal or, i have made a g Dituut U Herting		letto		1 9 1 Nonth Day 1 9 1
Prop accc accc accc accc accc futu the Pri Pri Pri Pri Pri Pri Pri Pri	ording to applicable international and am a large quantity generator. I con- nomically practicable, and that I is a re threat to human health and the best waste management method tha inted/Typed Name CALLEN ansporter 1 Acknowledgemen inted/Typed Name Addates Acknowledgemen inted/Typed Name	verselected, the practicab environment, OR, if J am it is available to me and tha t of Receipt of Materia	III: method. Off Freetment, a.small quantity generate (I.I.can afford (I.I.Can afford) III: III: III: Signature Signature Signature	storage, of disposal or, i have made a g		lett,	л А А А А А А А А А А А А А А А А А А А	L A L :
T 17. Tra R T 17. Tra R T 17. Tra R T 17. Tra R T 17. Tra R Pri N S P 18. Tra R R T 19. Dis F C C 1. 20. Fa	ording to applicable international and am a large quantity generator. Lice nomically practicable, and that it is in the threat to human health and the best waste management method that inted/Typed Name Call Call ansporter 1 Acknowledgemen inted/Typed Name Add Call Call ansporter 2 Acknowledgemen inted/Typed Name screpancy Indication Space	verselected, the practicab environment, OR, if J am it is available to me and tha t of Receipt of Materia	III: method. Off Freetment, a.small quantity generate (I.I.can afford (I.I.Can afford) III: III: III: Signature Signature Signature	storage, of disposal or, i have made a g		loon lett,	A A A I I I I I I I I I I I I I I I I I	L A L :

I.

T

1

ŀ

Ŧ", ''

- ----

TELEPHONE (505) 748-3311

ĵ

ŝ,

EASYLINK 62905278

501 EAST MAIN STREET ° P. O. BOX 159 ARTESIA, NEW MEXICO 88211-0159

October 12, 1994

FAX (505) 746-6410 ACCTG (505) 746-6155 EXEC (505) 748-9077 ENGR (505) 746-4438 P / L

Mr. Bill Olson, Hydrogeologist Oil Conservation Division Environmental Bureau Land Office Bldg. P.O. Box 2088 Santa Fe, NM 87501

RE: Third Quarter Sampling Results, Offsite Plume, Navajo Refining, Eddy County, NM

Dear Bill:

Enclosed are the results from our quarterly sampling of the offsite plume along with the other bi-weekly samples that you have not received. As you can see, KWB-7 has 3 ppb MTBE and 2 ppb benzene. RA-1227 came up clean on this sampling event, but KWB-9, which is about 20 ft. northwest of RA-1227, shows to have 3 ppb benzene.

As per your letter of October 8, 1992, we also checked the product thickness in monitor wells KWB-5 and KWB-8. Again, KWB-5 had no product that could be measured with our instrument. It is accurate down to 1/8 inch. KWB-8 had a product thickness of 1.1'.

The samples labeled RA-5000 are not actually wells. They are Navajo's samples sent to double check the lab's results. We fill two VOA's with deionized water and carry them around during sampling.

Thank you for your time in this matter. If you have any questions, call me at 748-3311.

Regards, and Moore

Darrell Moore Environmental Specialist

encl.

1 1 102 101 104 101 100 98	NOT VETT E ODGANTOS	Blank Spiked with 200 ppb EACH VOLATILE	METHODS: EPA SW 846-8020. BTEX SPIKE AND QC: Sample and Blank S
	101 108 104 1	.98 113 100	Precision Extraction Accuracy Instrument Accuracy
	1	Þ	Detection Limit
<1 <1 200 196	<1 207 2	te) <1 199	RA 2723 (Offsite) Quality Control
ETHYL- M, P, O LUENE BENZENE XYLENE (PPb) (PPb) (PPb)	BENZENE TOLUENE (ppb) (ppb)	(طرق) BE	Field Cod
FAX 806⇔794∘1298 Analysis Date: 07/22/94 Sampling Date: 07/19/94 Sample Condition: Intact Sample Received by: MS Project Name: NA	806°794°1296 FOR PANY Moore	Lubbock, Texas 79424 ANALYTICAL RESULTS 1 NAVAJO REFINING COM Attention: Darrell 501 E. Main Artesia, NM 88210	5/UT Aberdeen Avenue July 25, 1994 Receiving Date: 07/20/94 Sample Type: Water Project No: NA Project Location: NA
	SIS, INC.	MTRACEANALYS	

Director, Dr. Bruce McDonell

ĩ

t 1

OUVERHUEED AVAILUTE LUNDOCK, IEKGS //44.4 RMALYTICAL RESULT REGOVERAVY ANALATICAL RESULT RECOVERANY ALTERIAL RESULT RECOVERANY ALTERIAL RESULT RECOVERANY ALTERIAL MADATE SOI E. MAIN Artesia, NM 88210 Field Cod MTHE BENZENE TOLUEN (ppb) Field Cod (ppb) (ppb) (ppb) RA-1331 <1 <1 <1 RA-1396 <1 <1 <1 RA-2723 <1 <1 <1 RA-21227 3 <1 <1 RA-1313 <1 <1 <1 RA-1227 3 <1 <1 RA-1212 3 <1 <1 RA-1214 <1 <1 <1 RA-5000 1 1 <1 Quality Control 228 206 20 Quality Control 1 1 <1 1 1 1 1 <1 80200. 114 103 10 80200. 114 103 10	104 105 [CS.		-	Dr. Blair Leftwich	Director, I
COLUMEDEDINATIONAL PARSING BUDING COMPANY Attention: Darrell Moore MANLATICAL RESULTS FOR MANLATO REFINING COMPANY Attention: Darrell Moore Analysis Date: 08/01/94 Antesia, NM 88210 Sample received by is sample received by is object Location: NA Artesia, NM 88210 Sample received by is sample condition: Intact & sample received by is per spect No: NA # Field Cod (ppb) (ppb	4 105	لر - ک - ک		1 St	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	105	,	200 ppb	and	EPA SW 846 AND QC:
		103	114		Instrument
	105	108	116	·	Extraction
$ \begin{array}{c} \text{DUITAUEUUEUIAVETUEUE INVOLUEUS 5924 \\ \text{ANALYTICAL RESULTS FOR} \\ \text{Attention: Darrell Moore} \\ \text{Sol E. Main} \\ \text{Sample Condition: Int} \\ \text{Solect Normal Sample Condition: Int} \\ Solect Normal Sample Condition: $	100	100	66		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	1		etection Limit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	210	206	228		Q
OUULAUEULEEULAVEILLE LUDGUCL, IRXXS /94/4 BUD® /94 0 1/29b FAX BU6® /94 0 1/29b FAX BU6® /94 0 1/29b ANALYTICAL, RESETINING COMPANY NAVAJO REFINING COMPANY Attention: Darrell Moore Analysis Date: 08/01 Analysis Date: 08/01 elving Date: 06/01/94 Artesia, NM 88210 Sampling Date: 07/29/ Sample Condition: Int Sample Condition: Int Sample Received by: B Sample Condition: Int Sample Received by: B ject Location: NA Field Cod (ppb) (ppb) (ppb) (ppb) ETHYL- M,P,O 163 RA-1131 <1<	<1 <1	^ 1	<1	RA-5000	24172
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<1 <1	<1	<1	RA-314	24171
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<1 <1	<1	ω	RA-1227	24170
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<1 <1	ហ	<1	RA-313	24168
DYULAUEUEUHAVEIUE LUDDOCK, 1233 /94.4 806*/94*1/28 FAX 806*/94*1/28 ANALYTICAL RESULTS FOR NAVAJO REFINING COMPANY Attention: Darrell Moore Analysis Date: 08/01 siving Date: 08/01/94 Artesia, NM 88210 Sampling Date: 07/29/ Sample condition: Int Sample Received by: B ject No: NA Artesia, NM 88210 ETHYL- Mitter M.P.O. ject Location: NA Field Cod (ppb) (ppb) (ppb) (ppb) 163 RA-1331 <1	<1 <1	4	<1	RA-4798	24167
DUCE AUBLICED FOR UNDERGY ANALYTICAL RESULTS FOR MAVAJO REFINING COMPANY ARTESIA, RESULTS FOR MAVAJO REFINING COMPANY Attention: Darrell Moore Soli E. Main Soli E. Main Artesia, NM 88210 Analysis Date: 08/01 Sample Condition: Int Sample Condition: Int Sample Condition: Int Sample Received by: B Project Mame: NA ject No: NA ject Location: NA Field Cod MTBE BENZENE (ppb) FILL M.P.O (ppb) ETHYL- (ppb) M,P.O (ppb) 163 RA-1331 <1	<1 <1	^ 1	<1	RA-2723	24166
DUIT AUBILIDE LUDDOCK, IEX3S /94.4 Subs /94 ol ZSB FAX 806 olgo 1/25B ANALYTICAL RESULTS FOR NAVAJO REFINING COMPANY Antention: Darrell Moore Analysis Date: 08/01 Sol E. Main Sol E. Main Sampling Date: 08/01/94 Antesia, NM 88210 Sampling Date: 07/29/ Sample condition: Int Sample condition: Int Sample Received by: B Ject No: NA Artesia, NM 88210 ETHYL- Project No: NA Field Cod ETHYL- (ppb) M, P, O Field Cod Field Cod San 1331 Cl Cl Cl Cl 163 RA-1331 Cl Cl Cl Cl Cl Cl 164 RA-307 Cl Cl Cl Cl Cl Cl Cl	<1 <1	^1	<1	RA-4196	24165
DUUL AUGUGEEN AVEILUE LUDDOCK, IEX3S /94.4 8Ub*/94*I/296 FAX 8Ub*/94*I/296 ANALYTICAL RESULTS FOR NAVAJO REFINING COMPANY Attention: Darrell Moore Analysis Date: 08/01 sampling Date: 08/01/94 Artesia, NM 88210 Sample condition: Int Sample Condition: Int ject No: NA ject Location: NA Field Cod MTBE BENZENE TOLUENE Field Cod RA-1331 <1	<1 <1	<1	<1	RA-307	24164
D/UT AUGUGEEN AVEILIE LUDDOCK, IEX3S /94/4 BUD®/94°1/29 HAX 8UB®/94°1/29 ANALYTICAL RESULTS FOR NAVAJO REFINING COMPANY Attention: Darrell Moore Analysis Date: 08/01 eiving Date: 08/01/94 S01 E. Main Artesia, NM 88210 Analysis Date: 08/01 Sampling Date: 07/29/ Sample Condition: Int Sample Condition: Int Sample Received by: B Project No: NA ject Location: NA Field Cod MTBE BENZENE TOLUENE ETHYL- BENZENE M, P, O	-1	4	5	RA-1331	24163
Dynamic <t< td=""><td>ETHYL- M, P, O BENZENE XYLENE (ppb) (ppb)</td><td></td><td>мтве (ррb)</td><td>Field Cod</td><td>д#</td></t<>	ETHYL- M, P, O BENZENE XYLENE (ppb) (ppb)		мтве (ррb)	Field Cod	д #
DYUT ADBITUBILIT AVBILIT LUDDOCK, JEXAS /94/4 806@/94@1296 FAX 806@/94@1298 ANALYTICAL RESULTS FOR ANALYTICAL RESULTS FOR NAVAJO REFINING COMPANY 3, 1994 Attention: Darrell Moore Analysis Date: 08/01/94 1ng Date: 08/01/94 501 E. Main Sampling Date: 07/29/94 Type: Water Artesia, NM 88210 Sample Condition: Intact NO: NA Sample Received by: BL	Project Name: NA				
DYUT ADBITUBELL AVENUE LUDDOCK, JEXAS /94/4 806@/94@1296 FAX 806@/94@1298 ANALYTICAL RESULTS FOR ANALYTICAL RESULTS FOR NAVAJO REFINING COMPANY 3, 1994 Attention: Darrell Moore Analysis Date: 08/01/94 1ng Date: 08/01/94 501 E. Main Sampling Date: 07/29/94 Type: Water Artesia, NM 88210 Sample Condition: Intact					• •
08/01/94 Artesia, NM 88210 FAX 806°/94°1296 FAX 806°/94°1298	Condition: Intact				Туре:
or under define Lubbock, fexas /9424 806@/94@1296 FAX 806@/94@1298 ANALYTICAL RESULTS FOR NAVAJO REFINING COMPANY Attention: Darrell Moore 3, 1994 501 E. Main Analysis Date:	Date: 0			/94	
LUDDOCK, 10X3S /9424 8000/9401296 ANALYTICAL RESULTS FOR NAVAJO REFINING COMPANY	Date:	Moore	þ		з,
LUDDOCK, 1EXAS /94/4 800@/94@1/296		OR ANY	INR		
	FAX 806 © 794 º 1298	806°794°1296	Lubbock, Texas 79424	6/01 Aberdeen Avenue	

August 15, 1994 Receiving Date: 08/12/94 Sample Type: Water Project No: NA Project Location: NA	/94	ANALYTICAL RESULTS FOR NAVAJO REFINING COMPANY Attention: Darrell Moo 501 E. Main Artesia, NM 88210	ESULTS FOR IING COMPANY Darrell Moore 88210	OOre Oore	ਕੇ ਨੇ ਨੇ ਨੇ	Analysis Date: 08/14/ Sampling Date: 08/11/9 Sample Condition: Inta Sample Received by: BL Project Name: NA	Date: 08/14/94 Date: 08/11/94 Dndition: Intact preived by: BL Name: NA	/14/94 /11/94 Intact & Cool r: BL
тд#	Field Cod		MTBE (ppb)	(dđđ)	TOLUENE (ppb)	ETHYL- BENZENE J	M,P,O XYLENE (ppb)	TOTAL BTEX (ppb)
T24504 QC	RA-2723 Quality Control		<1 236	<1 211	<1 211	<1 205	<1 620	1
Detection Limit			ц	ы	ц		1	
% Precision			94 111 118	100 107 106	100 109 106	100 108 103	100 106 103	

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

.

i I

g/15/94 Date

METHODS: E BTEX SPIKE	<pre>% Precision % Extraction % Instrument</pre>	Detection Limit	QC QC	T25270	T25269	T25268	T25267	T25266	T25265	T25264	ТА#	Receiving Mace Sample Type: Project No: NA Project Locati	september 0	
EPA SW 846-8020. AND QC: Sample and Blank Spiked	n Accuracy t Accuracy	imit	kA-5000 Quality Control	RA-1227	RA-307	RA-1331	RA-314	RA-313	RA-4798	RA-2723	Field Cod	Sample Type: Water Project No: NA Project Location: NA	02, 1994	6701 Aberdeen Avenue
with 200 ppb	100 106 116	1	<1 232	Δ. Δ	<1	^1	<1	<1	<1	<1	МТВЕ (фр)	Arcesia, MM 00210		Lubbock, Texas 79424 806•7
EACH VOLATILE OR $\mathcal{G}_{-}\mathcal{E}_{-}$ Date	100 110 107	н. Н	<1 214	<u>.</u>	^1	^1	<1	^1	<u>^1</u>	<1	BENZENE (PPb)		OR ANY Moore	806•794•1296
organics. $\delta - \mathcal{F} \gamma$	100 109 108	1	<1 216	<u> </u>	<1	^1	^1	^1	^ i	4	TOLUENE (dqq)	ម្ម ស្គ្រ ស្គ្ម ស្គ្ម ស្គ្ម ស្គ្ម	:	MUL
	100 104 105	L.	210	: <u>^</u>	<1	~1	<1	^ 1	<u>^1</u>	4	ETHYL- BENZENE (PPb)	sampling bate: 08/30/94 Sample Condition: Intac Sample Received by: YL Project Name: NA	Analysis Date:	4006079401298
	100 103 105	1	629	<u>.</u>	1	4	1	4	<u>۵</u>	<u>^</u>	M, P, O XYLENE (PPb)	: 08/ ion: ed by NA	te: 09/01/94	UMMULJULA
			Â	<u>.</u>	^1	^1	4	^ -	Å i	6	TOTAL BTEX (PPb)	ישט/שי Intact & Cool י: YL	1/94	

			te	Date		Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell	
			5-12-94	5		R	
			ORGANICS.	EACH VOLATILE ORGANICS.	200 ppb	METHODS: EPA SW 846-8020. BTEX SPIKE AND QC: Sample and Blank Spiked with	METHODS: BTEX SPI
	106 104	105 104	107 103	104 99	131 106	Extraction Accuracy Instrument Accuracy	% Extra % Instr
	101	100	100	100	66	sion	% Precision
	1	Ľ	щ	, L	ц	Detection Limit	Detecti
^	<1 623	<1 208	<1 205	, 198 ,	211	RA-2723 Quality Control	T25717 QC
(वेवेर्वे)	(वेर्वेते)	(dđđ)	(dđđ)	(dđđ)	(व्येर्वे)	Field Cod	TA#
TOTAL BTEX	M, P, O XYLENE	ETHYL- BENZENE	TOLUENE	BENZENE	МТВЕ		
(cD	ived by: M Ne: NA	Sample Received by: McD Project Name: NA	H TA			: No: NA : Location: Artesia, NM	Project Project
act & Cool	lition: Intact	Sample Condition:	70			Type: Water	Sample Type:
94	te: 09/09/	Sampling Date: 09/09/94	50		Artesia, NM 88210	Receiving Date: 09/10/94	Receivi
/94	te: 09/10/94	Analysis Date:	ų.		501 E. Main	oer 12, 1994	September
				ANY	IN F		
	2	FAX 806 • 794 • 1298		806•794•1296	Lubbock, Texas 79424	b/UT Aberdeen Avenue	
			NC	YSIS, II			
						_	

I

i

	57C1 Aberdeen Avenue	leon Avenue Lubbock, Texas 73424 806+	73424	806•794•1296		FAX 806 • 794 • 1298		
		2 2	NG COMPAN	8.3				
October [4, 1994		501 B. Main	Darfell Poore	2 F (A	Analysis Date:	ce: 09/29/94	194
ng Di	/94	Artesia, MM	88210		S	Sampling Date:	0	94
Sample Type: Water					S	Sample Condition: Intact	ition: Int	act & Cool
Project No: NA					ŝ	Sample Received by: JW	lved by: J	
Project Location: NA					ជ	Project Name:	»: NA	
						BTHYL-	M,P,O	TOTAL
			MTBS	BENZENB	TOLUENE	BRNZENE		BTEX
TA. #	Field Code		(đđđ)	(ppb)	(ddd)	(dđđ)	(ppb)	(ppb)
T26395	RA-5000		4	4	<1	^	\$	
T26396	RA-2723		₽	^1	4	<1	4	4
T26397	RA-1227		<u>^1</u>	4	<1	-1	4	4
T26398	KWB - 9		4	ω	4	<1	4	ω
T26399	RA-3156		4	^ <u>1</u>	<1	1>	4	^1
T26400	RA-1331		4	4	<1	4	<1	۵
T 26401	RA-307		4	<1	<1	۲	^1	<1
T26402	RA-4196		₽	4	4	<1	<1	<1
T26403	RA-4798		4	12	4	<1	≏	<1
T26404	kwb - 3a		^1	<1	1	^1	^1	<1
T26405	RA-3353		<1	12	1	^ 1	4	4
Ω.	Quality Control		241	213	215	204	612	
Detection Limit			ş •	,	4	1	1	
Precision			86	100	100	97	66	
Extraction Accuracy			117	111	109	100	101	
Instrument Accuracy			120	107	108	102	102	
METHODS: EPA SW 846-8020. BTEX S?IKE AND QC: Sample		and Blank Spiked with 200 ppb EACH VOLATILE	pb EACH V		ORCAMICS.			
·	22				I			
	/ 1			-01	45-01-			

MRTHODS: BTEX SPI	<pre>% Precision % Extraction % Instrument</pre>	Detectio	126409 QC	T26408	T26405 T26407	ТЪ₽	October 04, Receiving Dat Sample Type: Project No: 1 Project Locat	
EPA SW 846-8020. KE AND QC: Sample and Blank Director, Dr. Blair Leftwi	sion ction Accuracy ument Accuracy	Detection Limit	KA - 319 Quality Control	1	$\frac{1}{2}$	ā	04, 1994 ng Date: 09/27/94 Type: Water No: NA Location: NA	6701 Aberdeen Avenue
Spiked with 200 ppb EACH	98 117 120	т	<1 241	<u>к</u> Д	~1 ~1	(वर्तते) इभ्राप्त	ANALYTICAL RESULTS FOR NAVAJO REFINING COMPANY Attention: Darrell Moore 501 E. Main Artesia, MM 88210	Lubbock, Texas 79424
opb EACH VOLATILE ORGANICS.	100 111 167	ħ	<1 213	1	4 2		ANY Moore	YSIS, INC
-/o-gy	100 109 108	د ا	<1 215	. <u>↑</u>	<u>^</u> <u>^</u>	TOLUENE (PPb)	5	
Ň	97 102	ц	<1 204	Δ	۵ ۵	STHYL- BENZENE (ppd)	Analysis Date: 09/29/94 Sampling Date: 09/26/94 Sample Condition: Intact Sample Received by: JW Project Name: NA	
	99 101 102	ц	579 1>	Δ	^1 ^1	M, P, O XYLENE (ppb)	ce: 09/29/94 ce: 09/26/94 ce: 09/26/94 ltion: Intact ltved by: JM E: NA	
			4	. <u>∩</u>	∆ ·N	TOTAL BTEX {ppb}	19/94 5/94 лtact & Cool ли	

I

ļ

EASYLINK 62905278 UN DIVISION FAX ED (505) 746-6410 ACCTG (505) 746-6155 EXEC (505) 746-9077 ENGR (505) 746-4438 P / L

TELEPHONE (505) 748-3311 501 EAST MAIN STREET 2 910160大日59日月 8 (55) 746-0155 EAEC ARTESIA, NEW MEXICO 88211-0159 (505) 746-4438 P / L

REFINING COMPANY

August 8, 1994

Mr. Bill Olson, Hydrogeologist Oil Conservation Division Environmental Bureau Land Office Bldg. P.O. Box 2088 Santa Fe, NM 87501

RE: Quarterly Sampling Results Offsite Plume, Navajo Refining, Eddy County, NM

Dear Bill:

Enclosed are the results from our quarterly sampling of the offsite plume along with the other bi-weekly samples that you have not received. In the future, we will hold the bi-weekly samples and send the complete quarter's samples at one time. As you can see, KWB-7 has 3 ppb MTBE and we are still seeing small amounts of MTBE in RA-1227.

As per your letter of October 8, 1992, we also checked the product thickness in monitor wells KWB-5 and KWB-8. Again, KWB-5 had no product that could be measured with our instrument. It is accurate down to 1/8 inch. KWB-8 had a product thickness of 1.2".

Thank you for your time in this matter. If you have any questions, call me at 748-3311.

Regards,

Daul Moore

Darrell Moore Environmental Specialist

encl.

		TRACEANALYSIS, INC. WILLING HILLING WILLING	VI SISY					
	6701 Aberdeen Avenue	Lubbock, Texas 79424 806 ANALYTICAL RESULTS FOR NAVAJO REFINING COMPANY Attention: Darrell Moore	806-794-1296 POR PANY	296 FA)	FAX 806 • 794 • 1298			
July 05, 1994 Receiving Date: 06/30/94	06/30/94			7	Analysis Da	Date: 07/01/94	1/94	
Sample Type: Wa Project No: NA	Water					y vare: vo/29/94 Condition: Intac	Intact & Cool	
Project Locatio	Location: Artesia, NM			ы	Sample Receiv Project Name:	ed by: NA	МСD	
		MTBE	BENZENE	TOLUENE	ETHYL- BENZENE	M, P, O XVI, FNF	TOTAL RTRX	
TA#	Field Cod	(ಇರಡ)	(qđđ)	(qđđ)	(qdd)	(qdd)	(qdđ)	
T23025	RA-3156	<1	1~	1	↓	↓	1	
T23026	RA-3353	<1>	77	<1	- 1	1	; ↓	
T23027	KWB-2A	1	1	1 ∧	<br 1	~ 7	- 1 >	
T23028	KWB–3A	<1	<1	<1	<1	<1	- 1>	
TZ3029	RA-313	<1	<1	41	1	<1	√1 ^	
TZ3030	RA-314	12	41	1	<1	<1	<1	
Т 5 0 5 7 T	RA-1331	<1	1 2	<br -	<1	<1	<1	
123032	RA-307	1	41	<1	<1	<1	<1	
	KWB-7	m	<1	1	<1	<1	<1.	
12303 1 T23035	57277 57272	^1	↓	<1>	^1	<1	<1	
00	1771-177 11110	1.0	1 2 2 2	7	< 1	1	<1	
e A	Kanticy Colletor	710	607	202	199	599		
Detection Limit			Ч	Ч	Ч	1		
% Precision		67	66	98	97	go		
Extraction	Accuracy	102	102	96	95	96 96		
<pre>% Instrument Acc</pre>	Accuracy	105	105	101	100	100		
METHODS: EPA SW 8. BTEX SPIKE AND QC:	EPA SW 846-8020. : AND QC: Sample and Blank Spiked wi	th 200	ppb EACH VOLATILE ORGANICS.	RGANICS.				
	St		, C	5-34				

4

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

.2-(-/

Date

	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TRACEANALYSIS Lubbock, Texas 79424 806 ANALYTICAL RESULTS FOR NAVAJO REFINING COMPANY	(SIS, INC 806-794-1296 or any Moore		FAX 806 • 794 • 1298	ALMULULA	
June 13, 1994 Receiving Date: 06/10/94 Sample Type: Water Project No: NA Project Location: Artesia,	WN	C 51		4,000 H	Analysis Date Sampling Date Sample Condit Sample Receiv Project Name:	: 06/ : 06/ ion: ed by NA	//12/94 09/94 Intact & Cool : MS
TA#	Field Cod	(dqq)	(qdd) BENZENE	TOLUENE	(qdd) BENZENE -TXHTE	M, P, O XYLENE (Ppb)	TOTAL BTEX (ppb)
T22221 QC	RA-2723 Quality Control	<1 196	<1 191	<1 190	<1 187	<1 554	₽
Detection Limit		1	-1	1	ч		
<pre>% Precision % Extraction Accuracy % Instrument Accuracy</pre>	curacy curacy	98 97 98	100 92 95	99 95	99 91 93	99 91 92	
METHODS: EPA SW 84 BTEX SPIKE AND QC:	EPA SW 846-8020. AND QC: Sample and Blank Spiked with	With 200 ppb EACH VOLATILE ORGANICS	VOLATILE (DRGANICS.			
		·	``				

I

.

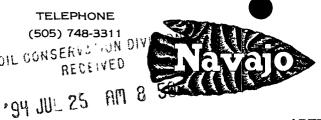
T T

K

6-14-94 Date l

.

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell


6/01 Aberdeen Avenue						
		xas 79424	806•794•1296		FAX 806 • 794 • 1298	ũ
	ANALYTICAL RESULTS NAVAJO REFINING Attention: Darrell	CAL RESULTS FOR REFINING on: Darrell Moore	FOR L Moore			
May 19, 1994	501 E. Main			A	Analysis Da	Date: 05/18/94
Receiving Date: 05/17/94		4 88210		ŝ		
				Ω.	Sample Cond	Condition: Intact & Cool
rroject No: NA Project Location: NA				ΩΩ	Sample Receive Project Name:	Received by: JC Name: Strinner &
				1		Recoverv
				ЕТНҮГ–	M, P, O	TOTAL
TA# FIRID CODE	MTBE	BENZENE	TOLUENE	BENZENE	XYLENE	BTEX
11111	(add)	(qđđ)	(qđđ)	(qđđ)	(qdd)	(qdd)
T21444 RA - 2723	41	4	1	1	12	.<1
RA –	2	1	1 ≻	41	<br 1	<1
RA -	4	1	1	1 ≻	1 ∧	<1
RA -	₽	1 2	<1	41	41	<1
RA -	√	41	1 ≻	1	41	<1
RA -	4	4	<1	4	1	<1
RA -	₽	1 >	<1	₽	4	<1
	4	۲> ۲	1	1	41	<1
T21452 Trip Blank		1	1	41	^ 1	<1
Quality Control	209	206	202	207	620	
Detection Limit	H	1	ч	Ч	Ч	•
Precision	114	106	107	107	107	
Extraction Accuracy	104	102	103	103	103	
Instrument Accuracy	105	103	104	104	103	
METHODS: EPA SW 846-8020. BTEX SPIKE AND QC: Sample and Blank	Spiked with	200 ppb EÀCH VOLATILE	VOLATILE O	ORGANICS.		
L.			Ľ	55-61		
Director, Dr. Blair Leftwich	Leftwich	I	Date	e		

<i>k</i> ,	Relinquished by:		Relinquished by:	wennikanske by:	Dallmanishad bu	101	RI		2	X	K		R		6		(LAB USE)	LAB #		Project Location:	Project #:	Company Name & Address:	r roject Manager:]	
					101		1-1331	<u>A_314</u>	RA 313	KWB-3H	KWB. 2M	111 3353	RA 3156	BDAT without	SDAT W/Lim	ea RO Pr		FIELD CODE				k Address:	anell Moore		raceA	
	Date:		Date:	Date:										line	0	ect		ĎE					re	CTC CTC	raceAnalycic	
		•*			S.	υ	K	N	N	N	N	N	R	ee a		6	# CON	ITAIN	ERS						ł	
	Times:		Times:	1 Imes:				1	1								Volume	e/Amoi	unt						3	
	es:			53:	5	×	×	×	X	×	X	X	\mathbf{x}	+	+-	×	WATE	R							>	
					F	_		1	1	1	1		1	X	X		SOIL		M		ļ]			1
												1		1			AIR		MATRIX	Sam	Pro		Phone # FAX #:		67	·
1.					Γ												SLUDO	SE .	×	npler	Project Name :		Phone #: FAX #:	Tel	01 A	
																	OTHER	R		Sig	Nam			(80	berd	1
	Rec		Rec	Kec	T												HCL		PĮ	Sampler Signature:				Tel (806) 794 1296	6701 Aberdeen Avenue	
	Received by Laboratory:		Received hy:	Keceived by:	· [·			ниоз		PRESERVATIVE METHOD	G			· .	4 125	Avei	
	by			1 by:	۶Þ	<	X	\succ	\times	\times	\times	\succ	\succ	X	×	\times	ICE		ESERVATI						We	{
	Lab																NONE								L	
	Drate																OTHER	र	VE				j	8) X	oqqı	
	:Yr					1. r		:	1	:			129/14	=	5/84		DATE		SAMP					Fax (806) 794 1298	Lubbock, Texas	
		2	۷ د	REMARKS	<u>10.3017</u>	14.27		9:45	9:30			6:30	6:00	=	7:00	14:00	TIME		PLING			·		86	79424	
		Do Princt Ina	Volatiles and RCI	ARKS BDAT w/Lime	12	<u><</u>	*	×	×	\times	\times	×	\times			ļ	BTEX,	MTBE						CH CH		
	<u> </u>	3.	1.1			_								-		<u> </u>	ТРН							AN AN		
		5	C.	3_								 		×	X						r Pb Hg			ģ		
		\sim	6 11.	12	\vdash	-	·								de-	-					Pb Hg S			C C C		
		ŝ	12	- HI C	\vdash	\rightarrow									H.	<u>}</u>	TCLP		eletiler				AN	I OT		
		~	22)	\vdash	\rightarrow	·								TH	<u>-</u>	TDS			·			ALY	DY R		
		c T	{	TCL		-+									擹	ĸ	RCI						SIS	ECC		
1		was hop		~	F	+										X	Some	R	ORA	ect Al	Tesu G	Hilyn	REOS	Fond	Col	o Rach
		7-		÷		+								\vdash				<u> </u>		<u> </u>		-7-	UES	ANI		
		~		2											1								H	Â		
		0		2 2																						
				, U																				/SIS		
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		P Mielels, Velalits,		1											Tum a		d #o	f days				CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST		
		. ,			L	$\square$											Fax A						SP	QUE		
1				· ~	L	_									<u> </u>		Report	TW	C dire	ect			ECI	ST		
]				Uranj Vranj		_									ļ		Hold				·		SPECIAL			1
				ž																						

Image: Second system     Source Analysis, Inc.     Find Nume: Training Nut isso     Second
SOIL     AVAIVAGE       Tel (990) 794 1296     Fax (990) 794 1296       Fold Alardeen Avenue       Projet Nume:       Avenue:       Avenue:       Avenue:       Avenue:       Avenu
SOIL     AVAIVAGE       Tel (990) 794 1296     Fax (990) 794 1296       Fold Alardeen Avenue       Projet Nume:       Avenue:       Avenue:       Avenue:       Avenue:       Avenu
1 Aberdeen Ayenee     Libbed, Texas 7924       1 A kerdeen Ayenee     Libbed, Texas 7924       1 A kerdeen Ayenee     Libbed, Texas 7924       1 A kerdeen Ayenee     HCL       1 A kerdeen Ayenee     HCL       1 Akerdeen Ayenee     Annonee
1 Aberdeen Ayenee     Libbed, Texas 7924       1 A kerdeen Ayenee     Libbed, Texas 7924       1 A kerdeen Ayenee     Libbed, Texas 7924       1 A kerdeen Ayenee     HCL       1 A kerdeen Ayenee     HCL       1 Akerdeen Ayenee     Annonee
Received by:     R
velue
velue
Theorem     Theory     Image: Solution of the solution of t
Theorem     Theory     Image: Solution of the solution of t
REMARKS     CHAINOF CUSTORY AND ANALYSIS RECORD ANALYSIS REC
REMARKS     CHAINOF CUSTORY AND ANALYSIS RECORD ANALYSIS REC
ARKS
Image: Solution of the soluti
Image: State of the state o
M     M     TCLP Metals Ag As Ba Cd     Cr Pb Hg Se       N     Total Metals Ag As Ba Cd     Cr Pb Hg Se       TCLP Volatiles     TCLP Volatiles       TCLP Semi Volatiles     NALYSIS REQUEST
Image: Second
TCLP Volatiles     ANALYSIS REQUEST       TCLP Semi Volatiles     ANALYSIS REQUEST       TCLP Semi Volatiles     ANALYSIS REQUEST       RCI     RCI       Turn around # of days       Fax ASAP       Report TVVC direct       Hold
TCLP Semi Volatiles       TDS       RCI       <
Image: state of the state o
RECI     RECI     RECI     RECUUEST       REQUEST     REQUEST     REQUEST       Report TWC direct     HANDLING       Hold     Hold
AND ANALYSIS REQUEST AND ANALYSIS ANALYSI
ST     ST       ST     OANALYSIS REQUEST       ST     ST       ST     Turm around # of days       ST     Fax ASAP       Report TWC direct     HANDLING       Hold     Hold
Turn around # of days Fax ASAP Report TWC direct Hold
Tum around # of days     Special       Image: Strength of the strengt of the strength of the strength of the strength of the s
Turn around # of days     Report TWC direct     Report TWC direct     Report TWC direct
Pax ASAP     Asap       Report TWC direct     DECLAR       Hold     Hold
Hold Hold

æ

TELEPHONE (505) 748-3311 OIL CONSERVE ON DIV RECEIVED



# **REFINING COMPANY**

EASYLINK 62905278

FAX (505) 746-6410

501 EAST MAIN STREET . P. O. DRAWER 159

ARTESIA, NEW MEXICO 88210

July 21, 1994

Mr. Roger Anderson, Chief Environmental Bureau N. M. Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87501

**RE: EMERGENCY PIT - FIRE TRAINING GROUNDS** 

Dear Roger:

Navajo Refining is requesting your approval for use of an "Emergency Pit" to hold overflow water generated six (6) times per year, during fire training exercises at Navajo's Artesia Refinery.

The emergency pit will be constructed on the North side of the Fire Training Center, where the oil/water separators are located. These separators are designed to keep the fuels used during training within the confines of the training facility, while allowing excess water to drain away to the pit. The water collected in this pit will be removed within 24 hours of each training session.

An analysis of the fire training water collected during our June 22, 1994 training event is enclosed for your review. Navajo appreciates your attendance during that exercise and anxiously awaits your approval of this facility so that future exercises can be planned. If you have any questions please call me at 505-748-3311.

Sincerely,

David G. Griffin Supt. Environmental Affairs/Quality Control

DGG/pb

enclosure

6701 Aberdeen Avenue						
Lubback, Texas 79424						
				·		
806+794+1296						
FAX 806 • 794 • 1298	ANALYTICAL RESULTS FOR					
	NAVAJO REFINING COMPANY				•	
	Attention: Darrell Moore 501 E. Main		PAGE	1 of 3	5	
July 19, 1994	Artesia, NM 88210	Analysis I		•	•	
Receiving Date: 06/23/94		Sampling I		•	•	
Sample Type: Water		Sample Cor				
Project No: NA		Sample Rec		•	8L	
Project Location: Artesia,		Project Na	me: h	A		
	T22833					
	Fire Training	Detection	òa	<b>a B</b>	0.98.2	
EPA 8240 Compounds (ppb)	Pond	Limit	QC.	*P	%EA	<b>%</b> ]
Dichlorodifluoromethane.		10	43			8
Chloromethane	ND	10	51 .			1(
Vinyl chloride	ND	20	59			1:
Bromomethane	ND	10	59			1
Chloroethane	ND	10	74			1
Trichlorofluoromethane	ND	10	44		_	8
1,1-Dichloroethene	ND	20	52	97	116	10
Iodomethane	ND	10	51			1(
Carbon disulfide	ND	10	50			10
Methylene chloride	ND	10	47			9
trans-1,2-Dichlorosthene	ND	10	42			8
1,1-Dichlorosthane	ND	10	44			8
Vinyl acetate	ND	10	51			1
2-Butanone	ND	200	55			1:
Chloroform	ND	10	41			8
1,1,1-Trichloroethane	ND	10	52			10
1,2-Dichloroethane	ND	20	47	~~		9
Benzene	820	2	69	98	180	13
Carbon Tetrachloride	ND	20	46 47			g
1,2-Dichloropropane	ND	20		105	110	
Trichloroethene	ND	20	47 54	105	112	9 10
Bromodichloromethane	ND	10	54			6 1
cis-1,3-Dichloropropene	ND	20	43			1
4-Methyl-2-pentanone	ND	100	58 46	95	88	2
trans-1,3-Dichloropropene	ND 610	20 5	46 52	70	99	1
	610 ND	5 10	5∡ 48			ē.
1,1,2-Trichloroethane 2-Hexanone	ND	100	*0 53			1

MTRACEANALYSIS, INC. 1 MILLING MILLING

94 19 TOLL

11:34 No.008 P.01



NAVAJO REFINING COMPANY Project Location: Artesia, NM

PAGE 2 of 3

	T22833					
EPA 8240 Compounds	Fire Training	Detection				
(वद्य)	Pond	Limit	õc	€₽	\$ea	81A
Dibromochloromethane	ND	10	47			94
Tetrachloroethene	ND	20	58			116
Chlorobenzene	ND	10	51	100	112	102
Ethylbenzene	110	5	53			106
m & p-Xylene	320	5	108			108
Bromoform	ND	10	35			70
Styrene	ND	5	48-	-		96
o-Xylene	170	5	57			114
1,1,2,2-Tetrachloroethane	ND	10	48			96
1,4-Dichloro-2-butene	ND	50	48			96
1,4-Dichlorobenzene	ND	20	51			102
1,3-Dichlorobenzene	ND	20	49			98
1,2-Dichlorobenzene	ND	20	48			96
Acentonitrile	ND	300				
Acetone	ND	100				
3-Chloropropionitrile	ND	100				
Ethanol	ND	500				
Acrylonitrile	ND	300				
Allyl chloride	ND	50				
Methyl tert-Butyl Ether	ND	100				
Propionitrile	ND	50				
Allyl alcohol	ND	500				
Propargyl alcohol	ND	300				
Methacrylonitrile	ND	100				
1,2-Dichloroethene	ND	100				
2,2-Dichloropropane	ND	100				
Isobutyl alcohol	ND	500				
1,1-Dichloropropone	ND	100				
2-Hydroxypropionitrile	ND	200				
Acrolein	ND	300				
2-Chloroethyl vinyl ether	ND	100				
Dibromomethane	ND	1				
1,4-Dioxane	ND	10				
Methyl methacrylate	ND	100				
2-Chloroethanol	аи	500				
Epichlohydrin	ND	100				
Pyridine	ND	300				

TRACEANALYSIS

NAVAJO REFINING COMPANY Project Location: Artesia, NM

PAGE 3 of 3

EPA 8240 Compounds (ppb)	T22833 Fire Training Pond	Detection Limit Q0		₹EA	¥IA
	FUIG	Linit V	- 6 <u>.</u> E	4ea	21A
1,3-Dichloropropane	ND	100			
Ethyl methacrylate	ND	100			
1,2,3,5-Diepoxybutane	ND	200			
1,2-Dibromoethane	ND	1			
2-Picoline	ND	10			
1,1,1,2-Tetrachloroethane	ND	10			
1,2,3-Trichloropropane	ND	10		_	
Isopropylbenzene	ND	10			
Bromobenzene	ND	10			
n-Propylbenzene	ND	10			
2-Chlorotoluene	ND	10			
4-Chlorotoluene	ND	10			
1,3,5-Trimethylbenzene	200	10			
Pentachloroethane	ND	1			
1,2,4-Trimethylbenzene	220	10			
tert-Butylbonzene	ND	10			
Benzyl chloride	ND	50			
sec-Bulylbenzene	20	10			
Isopropyl toluene	20	10		•	
n-Butylpenzene	ND	10			
1,3-Dichloro-2-propanol	ND	50			
1,2-Dibromo-3-chloropropane	ND	50			
1,2,3-trichlorobenzene	ND	100			
Naphthalene	90	10			
1,2,4-trichlorobenzene	ŃD	100			
Hexachlorobutadiene	ND	100			

1,2-Dichloroethane-d4 SURR	
Toluene-d8 SURR	
4-Bromofluorobenzene SURR	

RECOVE	IRY	
94		~

108 96

*ND = Not Detected METHODS: EPA SW 846-8240.

Director, Dr. Blair Leftwich

7/19/94 DATE

Director, Dr. Bruce McDonell

TELEPHONE (505) 748-3311



#### EASYLINK 62905278

501 EAST MAIN STREET ° P. O. BOX 159 ARTESIA, NEW MEXICO 88211-0159

**REFINING** COMPANY

May 23, 1995



Mark Ashley Geologist Environmental Bureau Oil Conservation Division 2040 S. Pacheco St. Santa Fe, NM 87505-5472

#### RE: HYDROTEST WATER FROM TK 106, NAVAJO REFINING CO., ARTESIA, NM

Dear Mark,

We are currently in the process of hydrotesting our Tank 106. This tank was in gasoline service. The floor was patched; a new roof, man-way, and primary and secondary seals were added. After repairs, this tank was filled with fresh water on May 8-9, 1995. It was then sampled on May 10, 1995 and those results are enclosed. A total of 56,800 barrels of water were needed to fill this tank. We are requesting to be allowed to discharge this water to our farm.

As you can see, we had no busts on any WQCC ground water parameters. If there are any questions, please call me at 505-748-3311. As usual in these instances, we are in a rush to return this tank to service. Thank you for your time and attention to this matter. We truly appreciate it.

Sincerely,

NAVAJO REFINING CO.

well More

Darrell Moore Environmental Specialist

Encl.

FAX (505) 746-6410 ACCTG (505) 746-6155 EXEC (505) 748-9077 ENGR (505) 746-4438 P / L

	SULFATE SPIKE AND QC: Sample and Blank spiked with 10.0 mg/L SULFATE.	່ ເກ	FLUORIDE SPIKE AND QC: Sample and Blank spiked with 1.0 mg/L FLUORIDE. CHLORIDE SPIKE AND CC: Sample and Blank spiked with 500 mg/L CHLORIDE.	SPIKE AND QC: S	SPIKE AND QC:	Â	METHODS: EPA SW 846-3510, 8060; EPA 150.1, 420.2, 353.3, 340.2, 160.1,	Reporting limit 1 1 0.	§ Instrument Accuracy 100 113 9	126	101	QC Quality Control 499 12.6 0.		(mg/L) (mg/L) (mg/L)	CHLORIDE SULFATE CYA	REPORTING LIMIT 0.0001 0	% Instrument Accuracy 100 121 1	% Extraction Accuracy 9C 1	<b>%</b> Precision 100 100 1	QC Quality Control 7.0 0.006 0	T35790 TK 106 7.4 <0.0001 <0	pH TOTAL PCB'3 PH TOTAL PCB'3 PH (mg/L) (mg		Project No: MA Artesia, NM 88210	Sample Type: Water 501 E. Main	Receiving Date: 05/11/95 Attention: Darrel: Moore	May 19, 1995 Navajo Refining	670° Abe:deen Avenus Lustock, Texas 79424 806+734+1236	ALI KACEANALYS
	re.			nk spiked with 1.	, <b>(</b> , <b>)</b>	ed with 0.005 mg/	0.1, SM 4500 Cl-B,	0.02	96	86	86	0,035	<0.02	(mg/L)	CYANIDE	0.01 0.01	100 103	112 108	100 101	0,79 103		PHENOI NO3-NO2 (mg/L) (mg/L)				loore	ä	1236	
5-17-73	1- 10 cm			0 mg/L N03-N02.		L PCB.	1, 335.2, 375.4.									1 0.1	3 101 .		100	3 1.04		L) (mg/L)	Project	Sample Received by: McD	Sample Condition: Intact	Sampling Date: 05/10/95	Analysis Date: 05/12/95	FAX 806•794•1296	
																L		1 1 1	100	1	D68	TDS (mg/L)		McD	Intact & Cool	0/95	2/95		J.L. M.LU

May-23-95 07:54A TraceAnalysis Inc.

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

Date

806-794-1298

P.02

6701 Aberdeen Avonue Lubbock, Toxas 79424 805•794•1290 FAX 806•794•1298

Ŧ

ANALYTICAL RESULTS FOR NAVAJO REFINING Attention: Darrell Moore 501 E. Main Artesia, NM 88210



May 19, 1995 Receiving Date: 05/11/95 Sample Type: Water Sample Condition; Intact & Cool Sample Received by: McD Project Location; Artesia, NM Analysis Date: 05/15/95

PAH's	Reporting	T35790				
EPA 8270 (ppm)	Limit	TK 106	QC	%P	%EA	%IA
Naphthalene	0.0004	0.0011	49.9			100
Acenaphthylene	0.0004	ND	48.7			97
Acenaphthene	0,0004	ND	49.7	94	76	99
Fluorene	0.0004	ND	49.5			99
Phenanthrene	0.0004	ND	45.4			91
Anthracene	0.0004	ND	49.6			99
Fluoranthene	0.0004	ND	49.3			99
Pyrene	0.0004	ND	50.6	88	113	101
Benz[a]anthracene	0.0004	ND	49.6			99
Chyrsene	0.0004	ND	49.8			100
Banzo(b)fluoranthene	0.0004	ND	51.9			104
Banzo[k]fluoranthene	0.0004	ND	48.9			98
Benzo(a)pyrene	0.0004	ND	50.0		1	100
Indeno[1,2,3-cd]pyrene	0.0004	ND	51.9			104
Dibenz(a,h)anthracene	0.0004	ND	50.8			102
Benzo[g,h,i]perylene	0.0004	ND	51,4			103

*ND = Not Detected

	% RECOVERY
2-Fluorophenol SURR	55
Phenol-d6 SURR	32
Nitrobenzene-d5 SURR	75
2-Fluorobiphenyl SURR	74
2,4,6-Tribromophenol SURR	69
Terphenyl-d14 SURR	100

Director, Dr. Blair Leftwich

Director, Dr. Bruce McDoneil

METHODS: EPA 8270.

-75

DATE

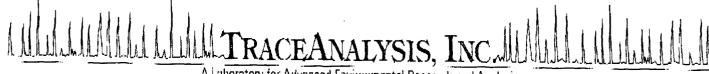
A Laboratory for Advanced Environmental Research and Analysis

**0701** Aberdeen Avenue Lubbock, Jexas 79424 806 • 794 • 1296 FAX 806 • 794 • 1298

Ŧ

5

ANALYTICAL RESULTS FOR NAVAJO REFINING Attention: Darrell Moore 501 E. Main Artesia, NM 88210


PAGE 1 of 2

May 19, 1995 Receiving Date: 05/11/95 Sample Type: Water Project No: NA Project Location: Artesia, NM

Analysis Date: 05/11/95 Sampling Date: 05/10/95 Sample Condition: Intact & Cool Sample Received by: McD Project Name: NA

EPA 8240 Compounds (ppb)	T35790 TK 106	Reporting Limit
Dichlorodifluoromethane	ND	2
Chloromethane	ND	2
Vinyl chloride	ND	2
Bromomethane	ND	10
Chloroethane	ND	2
Trichlorofluoromethane	ND	2

		2	
Trichlorofluoromethane	ND	- 2	
1,1-Dichloroethene	ND	2	
Iodomethane	ND	20	
Carbon disulfide	ND	2	
Methylene chloride	ND	25	
trans-1,2-Dichloroethene	ND	2	
1,1-Dichloroethane	ND	2	
Vinyl acetate	ND	2	
2-Butanone	ND	100	
Chloroform	ND	2	
1,1,1-Trichloroethane	ND	2	
1.2-Dichloroethane	ND	2	
Benzene	ND	2	
Carbon Tetrachloride	ND	- 2	
1,2-Dichloropropane	ND	2	
Trichloroethene	ND	2	
Bromodichloromethane	ND	2	
cis-1,3-Dichloropropene	ND	2	
4-Methyl-2-pentanone	ND	100	
trans-1,3-Dichloropropene	ND	2	
Toluene	ND	2	
1,1,2-Trichloroethane	ND	2	
2-Héxanone	ND	100	



A Laboratory for Advanced Environmental Research and Analysis

NAVAJO REFINING Project Location: Artesia, NM

1 1 7



EPA 8240 Compounds (ppb)	T35790 TK 106	Reporting Limit
Dibromochloromethane	ND	2
Tetrachloroethene	ND	2
Chlorobenzene	ND	2
Ethylbenzene	ND	2
m & p-Xylene	ИД	2
Bromoform	UN	2
Styrene	ND	2
o-xylene	ND	2
1,1,2,2-Tetrachloroethane	ND	2
trans 1,4-Dichloro-2-butene	ND	10
cis 1,4-Dichloro-2-butene	ND	10
1,4-Dichlorobenzene	ND	4
1,3-Dichlorobenzene	ND	4
1,2-Dichlorobenzene	ND	4

surrogates	\$ RECOVERY
Dibromofluoromethane	10,2
Toluene-d8	100
4-Bromofluorobenzene	99

*ND = Not Detected

METHODS: EPA 8240.

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

5-19-95

Date

8621-467-908

.DNI 212V[6NA9D6YT A48:VO 88-85-V6M

METHODS: EPA 200.7, 239.2, 270.2, 272.2. QC: B_ank Spiked with 0.025 mg/L Se, Pb; 9.8 mg/L U; 0.0050 mg/L Hg; Zn, Ni, Fe, Co, Mn, Cu.	<pre>% Precision % Extraction Accuracy % Instrument Accuracy</pre>	T35790 TK 1C6 QC Quality Control REPORTING LIMIT	<pre>% Precision % Extraction Accuracy % Instrument Accuracy</pre>	T35790 TK 106 QC Quality Control REPORTING LIMIT	670° Aberceri Avenue       Lubbock, Texas /9424       806 • 794 • 1296         May 19, 1995       Receiving Date: 05/11/95       AMALYTICAL RESULTS FOR         Sample Type: Water       Attention: Darrell Moore         Project No: NA       501 E. Main         Project Location: Artesia, NM       Artesia, NM         May 19, 1995       Artesia, NM         Project Location: Artesia, NM       Artesia, NM         May 19, 1995       Artesia, NM         May 19, 1995       Artesia, NM         Project Location: Artesia, NM       Artesia, NM         May 19, 1995       Artesia, NM         May 19, 1000E       As         Na       May 19, 1000E         May 19, 1000E       As         Na       May 19, 1000E
, 272.2. Se, Pb;	97 84 97	<b>Cu</b> ( <b>mg/L</b> ) <0.05 4.85 0.05	107 102 92	0.1 4.62 0.1	kvenue As (mg/L)
9.8 mg/	93 82 93	<b>al</b> ( <b>mg/L</b> ) 0.11 4.66 0.05	101 76 88	<0.05 4.41 0.05	Lubbock, Texas /942 ANALYTICAL RESU NAVAJO REFINING Attention: Dar 501 E. Kain Artesia, NM 88 Artesia, NM 88 Mo Cr (mg/L) (mg/L)
V	95 86 95	B <0.05 4.73 0.05	106 86 89	0.05 4.43 0.01	Likbork, Texas /94/24 B ANALYTICAL RESULTS FOR ANAVAJO PEFINING Attention: Darrell Mod 501 E. Main Artesia, NM 88210 Artesia, NM 88210 Artesia, NM 88210 Cr Zn (mg/L) (mg/L) (mg/J
50 mg/L H	103 82 86	Ba ( <u>mg/L)</u> <0.05 4.32 C.05	98 98 98	<0.01 4.89 0.01	//9424 BOG•794•1 RESULTS FOR Darrell Moore 88210 88210 Gr En Gr En g/L) (mg/L) (m
ψ <b>ι</b>	102 93 98	u (mg/L) <0.5 9.63 0.5	105 85 88	0.02 4.42	BOG • 794 • 1296 R OOTE NETTALS /L) (mg/L)
Ng/L As, (	100 124 104	Hg (mg/L) 0.0052 0.0010	98 76 97.	<0.05 4.86 0.05	~
γ.a.	100 92 92	Se (mg/L) 0.001 0.023 0.001	9 9 1 4	0.08 4.86 0.05	FAX 806•794•1298 Analysi Samplin Sample : Sample : Project Project <b>g/L) (mg/L) (</b>
d, Ba, Ag, 5-17-95	100 92 96	215 (119(/L) 0.001 0.024 0.001	97 77 96	<0.05 4.79 0.05	•794•1298 Analysis Data: O Sampling Data: O Sample Condition Sample Received ) Project Name: MA Project Name: MA Fe Co W (mg/L) (mg/L) (mg
-O mg/L As, Cr, Cd, Ba, Ag, Al, B, Mo,	100 86 87	Pb         Ag           (mg/L)         (mg/L)           0.001         <0.01	96 72 96	<0.05 4.82 0.05	FAX 806*794*1293 Analysis Data: 05/11/95 Sampling Data: 05/10/95 Sample Condition: Intact & Cool Sample Received by: McD Project Name: NA Project Name: NA Mi Fe Co Mn Mi Fe Co Mn

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

-

May-23-95 07:54A TraceAnalysis Inc.

806-794-1298

P.06

L





EASYLINK 62905278 FAX (505) 746-6410 ACCTG (505) 746-6155 EXEC (505) 748-9077 ENGR (505) 746-4438 P / L

501 EAST MAIN STREET ° P. O. BOX 159 ARTESIA, NEW MEXICO 88211-0159

June 15, 1994

Mr. Roger Anderson, Chief Environmental Bureau N. <u>M. Oil Conservation Division</u> P.O. Box 2088 Santa Fe, NM 87501

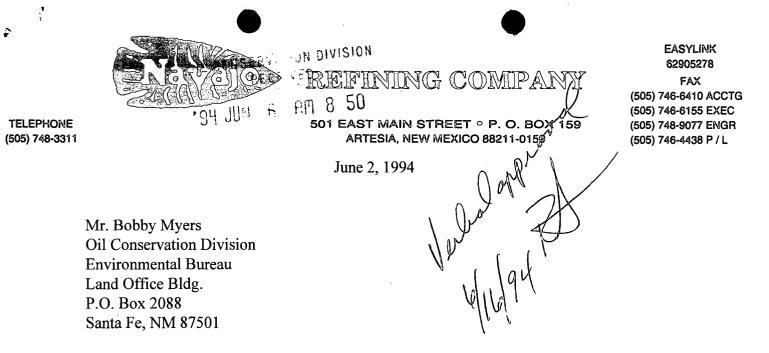
#### **RE: WATER SAMPLING AT FIRE TRAINING EXERCISE**

Dear Roger:

TELEPHONE

(505) 748-3311

Per our discussion during your last visit to Artesia, Navajo Refining is scheduling a Fire Training Exercise for 2:00 p.m., June 22, 1994. During this exercise, Navajo will collect samples of any run-off resulting from the training. These samples will be analyzed, using EPA Methods 8010 & 8020, for haloginated volatile organics and aromatic volatile organics.


It is Navajo's understanding that the results of this sampling event will help you in determining adequate secondary containment requirements for this fire training run-off. When reviewing this data and reaching a decision on containment requirements, keep in mind that the NMED Air Permit for this facility requires Navajo to remove <u>all</u> fluids from the site within 24 hours of a training event. In addition, Navajo can hold no more than 6 training sessions a year, such that the secondary containment basin will only be active for a very few days each year.

We are looking forward to your attendance at this training exercise. You should see a spectacular demonstration of the types of fires the petroleum industry must deal with, along with the specialized techniques necessary to extinguish them.

Sincerely,

David G. Griffin Supt. Environmental Affairs/Quality Control

DGG/pb



## RE: Hydrotesting of Tank 110, Navajo Refining Co., Eddy County, New Mexico

Dear Bobby,

Navajo Refining is in the process of working over our Tank 110 which is in asphalt service. This includes cleaning the coils and inside of the tank by sandblasting, removing the old floor, and replacing the floor with new materials. This tank will be returned to asphalt service.

We will hydrotest this tank by filling it with approximately 54000 bbls. of well water. We would like to dispose of the water by discharging it to our adjacent farm. The water will be pumped to the farm through above ground fas-line. Since the tank has been cleaned and was in asphalt service, which is a very heavy hydrocarbon, Navajo feels that no additional testing will need to be done on this water. We know by process knowledge that no volatiles or semi-volatiles will be present. Also, because of analysis that has been done on our asphalt (included) we know that no metals will leach out of the asphalt in quantities that will trip the TCLP limits. Therefore, by process knowledge and analysis, this water will pass WQCC and RCRA standards.

Your prompt attention to this matter will be greatly appreciated. If you have any questions, please call me at 748-3311. Thank you for your time.

Regards,

ull Moser

Darrell Moore Environmental Specialist

Encl.



Sample Description: Asphalt DAF Sample Date: 1/28/93

F

<

Laboratory ID: D0129510

## TCLP EXTRACT (SW846/1311)

TEST	Value	Units	Spike % Recovery	Detection Limits	EPA Method
Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	0.68/ < 0.05% / < 0.20 % / < 0.20 % / < 0.0002' / < 0.20 x / < 0.20 x /	mg/L	97.0 112 100 100 103 106 113 110	0.20 0.50 0.05 0.20 0.20 0.0002 0.05 0.05	6010 6010 6010 6010 6010 7470 6010 6010
	1 det	lettor	Rimit > Ste	erdard (waa	(c)



Sample Description: Asphalt DAF Sample Date: 1/28/93 Analyst: RW

Bromofluorobenzene

7

¢

9

Laboratory ID: D0129510 Date Analyzed: 2/15/93 22:32 Dilution: 1:5

VOLATILE ORGANICS (TCLP 8240)

Compound	Value-ug/L*	Spike % Recovery
Benzene Methyl ethyl keytone Carbon Tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethene Tetrachloroethylene Trichloroethylene Vinyl chloride	< 25 × < 500 [500] < 25 × < 25 / < 25 / < 25 × < 25 ×	91.0 80.0 101 93.0 100 105 107 105 99.0 102
*Limit of Practical Q noted in brackets. Surrogate Rec 1,2-Dichloroe	overy: Reco	
Toluene-d8		8-110 %

99 %

86-115 %



Sample Description: Asphalt DAF Sample Date: 1/28/93 Analyst: RW Laboratory ID: D0129510 Date Analyzed: 2/15/93 22:32 Dilution: 1:5

## VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Compound Name	Retention Time (min.)	Est. Concentration ug/L
Ethylbenzene Toluene Xylenes Carbon Disulfide		ND ND ND ND ND
• •	dele-	



Sample Description: Asphalt DAF Date Sampled: 1/28/93 Date Analyzed: 3/2/93 00:59 Dilution: 1:4 Laboratory ID: D0129510 Date Extracted: 2/16/93 Analyst: MA

TCLP ACID EXTRACTABLE ORGANICS (EPA 8270)

Compound	Value-ug/L*	'Spike % Recovery
o-Cresol	< 40	83.0
m,p-Cresol	< 40	83.0
Pentachlorophenol	< 200 [200] /	100
2,4,5-Trichlorophenol	< 40 /	104
2,4,6-Trichlorophenol	< 40 /	100

*Limit of Practical Quantitation is 40 ug/L, unless otherwise noted.

Surrogate Recovery:		Limits:
2-Fluorophenol	75 %	10 - 94 %
Phenol-d5	70 %	25 - 121 %
2,4,6-Tribromophenol	84 %	10 - 123 %

TCLP BASE/NEUTRAL EXTRACTABLE ORGANICS (EPA 8270)

Compound	Value-ug/L*	Spike % Recovery
1,4-Dichlorobenzene	< 40	81.0
2,4-Dinitrotoluene	< 40	93.0
Hexachlorobenzene	< 40	146
Hexachlorobutadiene	< 40	83.0
Hexachloroethane	< 40	79.0
Nitrobenzene	< 40 /	81.0
Pyridine	< 40 /	52.0

*Limit of Practical Quantitation is 40 ug/L, unless otherwise noted.

Surrogate Recovery:		Recovery Limits
Nitrobenzene-d5	78 %	35 - 114 %
2-Fluorobiphenyl	86 %	43 - 116 %
Terphenyl-d14	92 %	33 - 141 %



Sample Description: Asphalt DAF Date Sampled: 1/28/93 Date Analyzed: 3/2/93 00:59 Dilution: 1:4

Laboratory ID: D0129510 Date Extracted: 2/16/93 ( Analyst: MA

SEMI-VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Compound Name	Retention Time (min.)	Est. Concentration ug/L
Anthracene Benzo(a) anthracene Benzo(a) pyrene Bis(2-ethylhexyl) phtha Chrysene Di-n-butyl phthalate Fluorene Naphthalene Phenanthrene Phenol Pyrene 2,4-Dimethyl phenol		ND ND ND ND ND ND ND ND ND ND ND ND ND
	Je technor	

「国家」「MALYTICAL SERVICES	ANALYTIC	CAL SERVICI	ES	C	Chain of Custody
بر P.O. Box 4300 • 9669 Grogans Mill Road • The Woodlands, TX 77380 • 713-367-6201 • Fax 713-367-3189	Road • The Woodlands, TX	77380 • 713-367-6201 • Fax 7	ر. 713-367-3189		•
Client Name/Address: Navæjo	ijo Retining in St. Artsia	tesia NM	N 01888	Send Report to:	Moore
Invoice	slo: SAME –		A. A.		
Samplers (Signature)	Project Number	Der		///	
Rendy Bren					
Statue Date Time CO	Grab	Station Location	Zumbar Z Conta		Remarks
1 1/25/93 10:20	X DAF EI	Effluent	2 1	7 day turnarow	round
Z (25/93 10:00	3	DAF	7	Ň	d semi volatiles only
					-
Relinquished by (Signature)	Date / Time	Received by (Signature)	Relinquished by (Signature)	e) Date / Time	Received by (Signature)
Ranky Brenn	1/28/43 11:15				
Relinquisher (Signature)	Date / Time	Received by ( <i>Signature</i> )	Relinquished by ( <i>Signature</i> )	-	Received by (Signature)
Relinquished by (Signature)	Date / Time	Received for Laboratory by (Sig.)	Sig.) Date / Time  -, ユワーパシ // 2. 0,0	Sample condition upon receipt:	-
Method of Shipment: 7				Cooler temperature upon receipt $q_{ik} b_{ikm}$	sceipt grup scent
LAB 170 9206 (3 part)			:		

· · · · · · · · · · ·

-



EASYLINK 62905278 FAX (505) 746-6410 ACCTG (505) 746-6155 EXEC (505) 748-9077 ENGR (505) 746-4438 P / L

TELEPHONE (505) 748-3311 ' ዓዛ ጠብረ ዓ በጠ 501 ይሉST MAIN STREET ° P. O. BOX 159 ARTESIA, NEW MEXICO 88211-0159

May 4, 1994

Mr. William Olson, Hydrogeologist Environmental Bureau Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87504

Dear Bill,

Enclosed are the remainder of the test results we talked about on the phone on May 3, 1994. These are in reference to our modification of our discharge plan GW-28 which has requested permission to inject the trench water into RW-4 and/or RW-6 or to put the water on our adjacent farm.

Currently, the water is being routed to our waste water API. As of today the rate to the API is about 45 gpm or 65000 gallons per day. This could conceivably increase once the irrigation water has a chance to migrate down into our recovery trenches.

Thank you for your time in this matter. If I can be of any help in processing this modification, please call me at 505-748-3311.

Sincerely,

ull Moore

Darrell Moore Environmental Specialist

encl.

TRACEANALYSIS	TEL:806-7941296	May 03 94	14:48 No.011 P.08
6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296			
FAX 806∙794∙1298	ANALYTICAL RESULTS FOR NAVAJO REFINING Attention: Darrell Moore 501 E. Main		
May O3, 1994 Receiving Date: Sample Type: Wat Project No: NA Project Location:	er	Sampling D Sample Con	ate: 05/02/94 ate: 04/18/94 dition:Intact & Cool reived by: JC me: NA
TA# FI	ELD CODE	PHENOLIC (mg/L)	28
T20473 RW	- 4 Ality Control	0.35 0.80	
DETECTION LIMIT		0.05	
<pre>% Precision % Extraction Accu % Instrument Accu</pre>	-	95 90 99	
Methods: EPA 420	).2.		
	133	5-3-94	
	tor, Dr. Blair Leftwich D tor, Dr. Bruce McDonell	ATE	

1 MULLIN TRACEANALYSIS, INC. MULLING MULLING

A Laboratory for Advanced Environmental Research and Analysis

TRACEANALYSIS	TEL:806-7941296	May 03 94 14:48 No.011	P.07
<ul> <li>6701 Aberdeen Avenue</li> <li>Lubbock, Texas 79424</li> <li>806 • 794 • 1296</li> </ul>			
FAX 806●794●1298	ANALYTICAL RESULTS FOR NAVAJO REFINING Attention: Darrell Moore 501 E. Main		
May 03, 1994 Receiving Date: ( Sample Type: Wate Project No: NA Project Location:	≩r	Analysis Date: 05/02/94 Sampling Date: 04/18/94 Sample Condition:Intact & Sample Received by: JC Project Name: NA	Cool
<b>TA#</b> FIE	LD CODE	PHENOLICS (mg/L)	
	- 6. lity Control	0.50 0.80	
DETECTION LIMIT		0.0 <u>5</u>	
<pre>% Precision % Extraction Accur % Instrument Accur</pre>	•	95 90 99	

METHODS: EPA 420.2.

-----

 $\sim$ 

L

Director, Dr. Blair Leftwich

Director, Dr. Bruce McDonell

5-3-94

DATE

YSIS, INC. **FRACEANAL** M. A Laboratory for Advanced Environmental Research and Analysis

TRACEANALYSIS	TEL:806-794	1296	Apr 29 94	17:29 No.018 P.03
s cool	CN- (mg/L)	0.031 100 93 98	0.0	
Lane: 04/21/94 19 Date: 04/21/94 19 Date: 04/21/94 19 Date: 04/18/94 Condition: Intact Received by: JC	ALKALINITY Sector Jan (mg/L)		0	Date 54
AX806-794-1298 AX806-794-1298 Analysis Date: Sampling Date: 0 Sample Received Project Name: WA	ECCH (MAR)			2 2
	۲.	19.9 96 98	m	
(SIS, INC 806-734-296 FOR 1 MODE	FLUORIDE (mg/L) C.67	2.03 97 103	L.0	20.0 mg/L SULFATS
RACHANALY Lubbock, Texas 73424 ANALYTICAL RESULTS 1 NAVAJO REFINING Attention: Jarrell 501 E. Main Artesia, NM 88210	CHLORIDE (mg/L) 28	505 101 101		FLUORIDE;
TUULUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU		Quali Accuracy Accuracy	MIT	DS: E2A 375.4, 310.1, 340.2, 335.2; 4500 Cl-B. Blank Spiked with 500 mg/L CHLORIDE; 2.0 mg/L F Director, Dr. Blair Leftwich Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell
April 27, 1994 April 27, 1994 Receiving Date: 04/19/94 Sample Type: Water Project No: NA	TA#	eccision B Precision B Extraction F Instrument	DETECTION LIMIT	QC: Blank Sp

--....

04/21/94 118/94 Intact & Cool	TEL:806-794	C.031		or 29 94	17:30 No.018 P.04
-794-1298 -794-1298 Analysis Date: 04/21/94 sampling Date: 04/18/94 sample Received by: JC Project Name: NA			~	10	4. 20-94
FAX 806-794-1298 FAX 806-794-1298 Analysis sample o sample o sample o	SULFATE (mg/L) 29.6	6, 6 6	906 86		, .*
(SIS, INC BIGe-754-1236 FOR MODE	FLUORIDE (mg/L) 0.65	2.03	66 103	0.1	20.0 mg/L SULFATE
RACHANALYSIS, Lubbock Texas 79424 806. ANALYTICAL RESULTS FOR MAVAJO REFINING ALTENION: DATTEIL MOOTE 501 E. MAIN Artesia, NM 88210	CHLORIDE (mg/L)	5 05 1 CO	101 101	-4	S. FLUORIDE;
April 27, 1994       6701 Aberdeen Avenue       Lubbock Texas 79424       806-754-1296       FAX 806-794-1298         April 27, 1994       6701 Aberdeen Avenue       Lubbock Texas 79424       806-754-1296       FAX 806-794-1298         April 27, 1994       analysis Date: 04/19/94       Attention: Darrell Moore       Attention: Darrell Moore       Analysis Date: 04/19/94         Sample Type: Water       attention: Darrell Moore       Sample Condition: Intact & Co sample Received by: JC         Project Location: Artesia, NM       B2210       Sample Received by: JC	Field Code FW - 6		a Accuracy t Accuracy	IMIT	DS: EPA 375.4, 310.1, 340.2, 335.2; 4500 Cl-I Blank Spiked with 500 mg/L CHLORIDE; 2.0 mg/L
April 27, 1994 April 27, 1994 Receiving Date: 04 Sample Type: Water Project No: NA Project Location:	TB# T20474	e de la companya de la company La companya de la comp		DEFECTION LIMIT	METHODS: E OC: Blank

ومصوفا والمتحاد فالمتحمور والا

TRACEANALYSIS	TEL:806-7941296	May 03 94 14:47 No.011 P.06
<ul> <li>6701 Abordoon Avenue</li> <li>Lubbock, Texas 79424</li> <li>806•794•1296</li> </ul>	,	
FAX 806 • 794 • 1298	ANALYTICAL RESULTS FOR NAVAJO REFINING Attention: Darrell Moore 501 E. Main	
	Artesia, NM 88210	
May 03, 1994		Analysis Date: 05/02/94
Sample Type:	ute: 04/19/94 Water	Sampling Date: 04/18/94 Sample Condition:Intact & Cool
Project No:		Sample Received by: JC
Project Loca	tion: Artesia, NM	Project Name: NA
		PHENOLICS
TA#	FIELD CODE	(mg/L)
T20475	Influent Air Stripper	0.74
õc	Quality Control	0.80
	NT D	0.05
DETECTION LI	<b>M</b> 11	0.05
% Precision		95
<pre>% Frectation</pre>	Accuracy	90
% Instrument	-	99
Methods: Ep	A 420.2.	
	01	

18 G

•

ļ

*1.4

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

5-3-94

DATE

YSIS, INC. MILLIUM RACEANAL

A Laboratory for Advanced Environmental Research and Analysis

TRACEANALYSIS	TEL:806-7941296	May 03 94 14:47 No.011 P.05
6701 Aberdeen Avenue	$\bullet$	
Lubbock, Texas 79424		
806•794•1296		
FAX 806•794•1298	ANALYTICAL RESULTS FOR	
	NAVAJO REFINING	
	Attention: Darrell Moore 501 E. Main	
	Artesia, NM 88210	
May 03, 1994		Analysis Date: 05/02/94
Receiving Dat Sample Type:		Sampling Date: 04/18/94 Sample Condition:Intact & Cool
Project No:	NA	Sample Received by: JC
Project Locat	ion: Artesia, NM	Project Name: NA
		PHENOLICS
TA#	FIELD CODE	(mg/L)
<b>T20476</b>	Effluent Air Stripper	<0.1
õc	Quality Control	0.80
DETECTION LIM	IT	0.1
* Precision	_	95
% Extraction : % Instrument .	-	90 99
	·····	.,
METHODS: EPA	420.2.	
	19.19	
	187 3	-3-54
	irector, Dr. Blair Leftwich Di	ATE
Di	irector, Dr. Bruce McDonell	

A Laboratory for Advanced Environmental Research and Analysis

I

ANALITICAL RESULTS FOR
NAVAJO REFINING Attention: Dari 501 3. Main Artesia, NM 88: Artesia, NM 88:
2, 335.2; 4500 C1-B. CHLORIDE; 2.0 mg/L FLUORIDE; 20.0 mg/L SULFAIE. R Dr. Blair leftwich Dr. Bruce McDonell

÷.

ł

Ì

TRACEANALYSIS TEL:806-7941296 May 02 94 13:29 No.012 P.03

		(F)	31	0 m m	E	<u> </u>
International and the second state of the second	<pre>Ls Date: 04/21/94 Ig Date: 04/18/94 Condition: Intact &amp; Cool Received by: JC : Name: NA</pre>	13) CM- 13 (ang/L)	0 0.031	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- 0.01	
	us Date: 04/21 ng Date: 04/18/9 Condition: Inta Received by: JC : Name: NA	ALKALINITY 3/L as cac03) 03 CO3		0011	l l	24
1298	Analysis Date: 04/21/ Sampling Date: 04/18/94 Sample Condition: Intac Sample Received by: JC Project Name: NA	ALK? (mg/L HCO3	803		10	4-28-54 Date
FAX 806●734●1298	Analysi Sampli Sample Sample Project	SULFATE (mg/l.)	388 19.9	96 96 86	F	۱
806+794+1295 From	Koore	FLUORIDE (mg/L)	1.68 2.04	100 106 107	0.1	ng/L SULFATE
Lubbock, Texas 75424 80 Analytical results for Navajo refining		CHLORIDE (mg/L)	205 505	100 101	<del>, 1</del>	4500 Cl-B. 2.0 mg/L FLUORIDE; 20.0 mg/L SULFATE S S Leftwich McDonell
6701 Aberdeen Avenue Lu <b>AN</b>	Ŵ	Field Code	Influent Air Stripper Quality Control	uracy uracy	· · ·	OS: EPA 375.4, 310.1, 340.2, 335.2; 4500 Cl-B. Blank Sriked with 500 mg/L CHLORIDB; 2.0 mg/L F A Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell
	April 27, 1994 Receiving Date: 04/19/94 Sample Type: Water Project No: NA Project Location: Arresia,	TAF	120475 QC	% Precision & Extraction Accuracy % Instrument Accuracy	DETECTION LIMIT	METHODS: EPA 37 QC: Blank Spike

1

i

T

į

1

May 02 94 13:30 No.012 P.04

1EC:806-7941296

IBACEANALYSIS

| .

ļ

1

ł



TELEPHONE (505) 748-3311 
 Ave: Conserve to the second second

501 EAST MAIN STREET ° P. O. BOX 159 ARTESIA, NEW MEXICO 88211-0159

April 29, 1994

KEFANAKG C

Mr. Bill Olson, Hydrogeologist Oil Conservation Division Environmental Bureau Land Office Bldg. P.O. Box 2088 Santa Fe, NM 87501

Dear Bill:

Enclosed please find the analysis from RW-4 and RW-6 and the influent and effluent to and from the air stripper. To refresh your memory, Navajo has applied for a modification to our discharge plan GW-28. In a letter dated February 10, 1994, OCD asked for information and analysis to further this request. Previously, we submitted all requests except the analysis that is included today.

Also, in our original letter, we had included RW-5 as a possible point of re-injection. After further study and analysis, we have decided that this well should be kept as a recovery well and we would like to withdraw it from consideration as an injection point.

Presently, we are discharging the effluent from the air stripper to our waste water API and it eventually ends up in the evaporation ponds. We would like to open up the options of re-injection or discharging to the farm as soon as possible. If you have any questions or further needs, please call me at 748-3311.

Regards,

Danell More

Darrell Moore Environmental Specialist

encl.

		METHODS: BTEX SPIJ	% Precision % Extraction % Instrument	ጠ	120473 120474 120475 120476 9C	TÀ₽	April 21, Receiving Sample Ty Project N
Director, Dr. Blair Leftwich	A Contraction	METHODS: EPA SW 846-8020. BTEX SPIKE AND QC: Sample and Blank Spiked with 200 ppb EACH VOLATILE ORGANICS.	icn tion Accuracy ment Accuracy	n Limit	RW - 4 RW - 6 Influent Air Stripper Effluent Air Stripper Quality Control	FIELD CODE	April 21, 1994 Receiving Date: 04/19/94 Sample Type: Rater Project No: WA Project Location: Artesia, NM
	~ /	ked with 200	99 98	н Н	82,071 95,561 1,855 <1 196	NTBE	TRACEANAL Lubback, Texas 75424 ANALYTICAL RESILTS NAVAJO REFINING Attention: Darrel 501 E. Main Artesia, NN 83210
		ppb EACH	100 102 100	н Н	16,337 19,028 6,358 <1 201	(ddd) (qdd)	AVALYSIS as 75424 806 RESULTS FOR MING Darrell Moore 83210
Date	4-2	VOLATILE OR	66 101 001	ц	5,774 6,745 2,188 <1 197	Tolusne ( dqg )	NC NOR BUG • 794 • 7296 FOR FOR
	1-94	GANICS.	86 66 001	ц	984 1,391 1,766 <1 196	ethyl- Benzene ( ppd )	
			96 66 001	1	2,162 3,447 2,658 <1 588	M, P, O XYLENE (ppb)	FAX 806+794+1298 FAX 806+794+1298 Analysis Date: O Sampling Date: O Sample Condition Sample Received J Project Name: NA
			·	•	25,257 30,611 12,970 <1	TOTAL BTEX (ppb)	Analysis Date: 04/20/94 Sampling Date: 04/20/94 Sample Condition: Intact & Cool Semple Received by: JC Project Name: NA

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

، ء ۽

н 5

i

ļ

|

ļ

I

**TRACERNALYSIS** 

L

į

| | |

i

i i

4bL 53 34

1EF:800-5041296

10.9 810.0N 12:11

	METHOLS: EPA	<pre>% Precision % Extraction # % Instrument #</pre>	T20473 QC	TA#	April 27, 1994 Receiving Date: 04/19/94 Sample Type: Water Project No: NA Project Location: Artesia,	
Director, Dr. Blair 1 Director, Dr. Bruce 1	EPA 150.1; 353.3; 120.1; 160.1.	Accuracy Accuracy	RW - 4 Quality Control	Field Code		6701 At ardee Avenue Lubbor & Texas 79424 806-7
Blair Leftwich Bruce McDonell		100	7.76 7.01	(-n-s) Hđ	ANALYTICAL RESULTS FOR NAVAJC REFINING Attention: Darrell Moore 501 E. Main Artesia, NM 88210	TRACEANALY
			1,487	TDS (mg/L)	FOR Moore	<b>SIS, INC</b> 806•794•1295
I		100 98 101	<0.01 1.02	(NO2-NO3)-N (mg/L)		
4 - 27 - 94 Date		99	2,201	SPECIFIC CONDUCTIVITY (WMHOE/CM)	Analysis Date: 04/21/94 Sampling Date: 04/18/94 Sample Condition: Intact & Cool Sample Received by: JC Project Name: NA	
2 No.013 P.02	5:11 10 57	, nqA	 11589	762-908:7	SIS	твясевияст

. . . . .

• ;

METHOUS: EPA 150.1; 353.3; 120.1; 160.1.	Precision Extraction Accuracy Instrument Accuracy	T20474 RW - 6 QC Quality Control	Field Code	April 27, 1994 Receiving Date: 04/19/94 Sample Type: Water Project No: NA Project Location: Artesia, NM
1000 -	100	7.71 7.01	Б <b>й</b> В	ANALYTICAL RESULTS FOR NAVAJO REFINING Attention: Darrell Mo 501 E. Main Artemia, NM 88210
		1,496	TDS (mg/L)	ESULTS FOR IING Darrell Moore 83210
	100 98 101	<0.01 1.02	(NO2-NO3)-N (mg/L)	Analysis Sampling Sample C Sample R Project 1
4-12-64	99 	2,226	SPECIFIC CONDUCTIVITY (uMHOs/cm)	Analysis Date: 04/21/94 Sampling Date: 04/18/94 Sample Condition: Intact & Ccol Sample Received by: JC Project Name: NA

• 2

Ω0

÷ .,

6701 Aberdeon Avenue Lubbock, Texas 79424 806 • 794 • 1296 HAX 806+794+1298

• . .

# TEL:806-7941296

LYTICAL RESULTS FOR NAVAJO REFINING Attention: Darrell Moore 501 E. Main Artesia, NM 88210

....

#### Apr 29 94 11:53 No.013 P.04



EPA 8270 (ppm)	DL	RW-4	QC	%P	%EA	%IA
Naphthalene	0.001	0.067	0.555	NR	NR	111
Acenaphthylene	0.001	ND	0.499	NR	NR	99
Acensphthene	0.001	ND	0.488	100	90	97
Fluorene	0.001	0.002	0.492	NR	NR	98
Phenanthrene	0.001	0.003	0.507	NR	NR	101
Anthracene	0.001	ND	0.495	NR	NR	99
Fluoranthene	0.001	ND	0.475	NR	NR	95
Pyrene	0.001	ND	0.543	100	104	108
Benz[a]anthracene	0.001	ND	0.518	NR	NR	103
Chyrsene	0.001	ND	0.520	NR	NR	104
denzojbjiluoranthane	0.001	ND	0.535	NR	NR	107
Benzo[k]fluoranthene	0.001	ND	0.575	NR	NR	115
Benzo(a)pyrene	0.001	ND	0.568	NR	NR	113
ndeno[1,2,3-cd]pyrene	0.001	ND	0.448	NR	NR	89
Dibenz[a,h]anthracene	0.001	ND	0.372	NR	NR	74
Bonzojg,h,ijporylene	0.001	ND	0.451	NR	NR	90

*ND = Not Detected

	% RECOVERY
2-Fluorophenol SURR	76
Phenol-d5 SURR	118
Nitrobenzene-d5 SURR	124
2-Fluciobiphismyl SUKR	120
2,4,6-Tribromophenol SURR	101
Terphenyi-d14 SUKK	121

METHODS: EPA SW 848-8270.

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

4-27-94

DATE

**FRACEANALYSIS, INC.** A Laboratory for Advanced Environmental Research and Analysis

1 1

6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 FAX 806+794+1298

## TEL:806-7941296 LYTICAL RESULTS FOR O REFINING Attention: Darrell Moore

501 E. Main Artesia, NM 88210

ril 27, 1004 Receiving Date: 04/19/94 Gample Type: Water Sample Condition: Intact & Cool

Sample Received by: JC Analysis Date: 04/26/94

		T20474				
EPA 8270 (ppm)	DL	RW-6	QC	%P	%EA	%IA
Naphthalene	0.001	0.008	0.555	NR	NR	111
Acenaphthylene	0.001	ND	0.499	NR	NR	99
Acenaphihene	0.001	0.002	0.488	100	90	97
Fluorene	0.001	0.002	0.492	NR	NR	98
Phenanthrene	0.001	0.005	0.507	NR	NR	101
Anthracene	0.001	ND	0.495	NR	NR	89
Fluoranthene	0.001	ND	0.475	NR	NR	95
Pyrene	0.001	ND	0.543	100	104	108
Benz[a]anthracene	0.001	ND	0.518	NR	NR	103
Chyrsene	0.001	ND	0.520	NR	NR	104
Banzo[b]iluoranthene	0.001	ND	0.535	NR	NR	107
Benzo[k]fiuoranihene	0.001	ND	0.575	NR	NR	115
Benzoja)pyrene	0.001	ND	0.568	NR	NR	113
indeno[1,2,3-cd]pyrene	0.001	ND	0.448	NR	NR	89
Dibenz[a,h]anthracene	0.001	ND	0.372	NR	NR	74
Benzojg, h, ijperviene	0.001	ND	0.451	NR	NR	90

"NO = Not Detected

#### 2-Fluorophenol SURR 126 123 Phenol-d5 SURR Nitrobenzene-d5 SURR 127 125 2-Fluorobiphenyi SURR 101 2,4,6-Tribromophenol SURR 120 Terphenyl-d14 SURR

METHODS: EPA SW 846-8270.

4-27-94

Director, Dr. Blair Leftwich

% RECOVERY

DATE

11:53 No.013 P.05 Apr 29 94

Director, Dr. Bruce McDonell A Laboratory for Advanced Environmental Research and Analysis

6701 Aberdoon Avenue Lubbock, Texas 79424 806+794+1296

FAX 806 • 794 • 1298

# TEL: 806-7941296 AMAJO REFINING Attention: Darrell Moore 501 E. Main Artesia, NM 88210

T20475

Apr 29 94

# 4 11:54 No.013 P.06

April 27, 1994 Receiving Date: 04/19/94 Sample Type: Water Sample Condition: Intact & Cool Sample Received by: JC Analysis Date: 04/26/94

EPA 8270 (ppm)	DL	Stripper	QC	%P	%EA	%IA
Naphthalene	0.001	0.007	0.555	NR	NR	111
Acenaphthylene	0.001	ND	0.499	NR	NR	99
Acenaphthene	0.001	ND	0.488	100	90	97
Fluorene	0.001	ND	0.492	NR	NR	98
Phenanthrene	0.001	ND	0.507	NR	NR	101
Anthracene	0.001	ND	0.495	NR	NR	99
Fluoranthene	0.001	ND	0.475	NR	NR	95
Pyrono	0.001	ND	0.543	100	104	108
Benziajanthracene	0.001	ND	0.518	NR	NR	103
Chyrsene	0.001	ND	0.520	NR	NR	104
Benzo(b)fluoranthene	0.001	ND	0.535	NR	NR	107
Benzo[k]fluoranthene	0.001	ND	0.575	NR	NR	115
Benzo(a)pyrene	0.001	ND	0.588	NR	NR	113
indeno[1,2,3-cd]pyrene	0.001	ND	0.448	NR	NR	89
Dibenz[a,h]anthracene	0.001	ND	0.372	NR	NR	74
Benzo[g,h,i]perylene	0.001	ND	0.451	NR	NR	90

*ND = Not Detected

	% RECOVERY
2-Fluorophenol SURR	89
Phenol-d5 SURR	100
Nitrobenzena-d5 SURR	107
2-Fluorobiphenyi SURR	124
2,4,6-Tribromophenol SURR	89
Terphenyl-d14 SURR	128

METHODS: EPA SW 846-8270.

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

4-27-94

DATE

LILLAND MUM TRACEANALYSIS	, INC. MUMULUUUU	

A Laboratory for Advanced Environmental Research and Analysis

6704 Abordoon Avonue Lubbook, Texas.79424 806+794+1296 FAX 806+794+1298

# TEL:806-7941296

ANALYTICAL RESULTS FOR ANALYTICAL RESULTS FOR AUXION AJO REFINING Attention: Darrell Moore 501 E. Main Artesia, NM 88210

T20476

rii 27, 1994 Receiving Date: 04/19/94 Sample Type: Water Sample Condition: Intact & Cool Sample Received by: JC Analysis Date: 04/26/94

		Effluent Air				
EPA 8270 (ppm)	DL	Stripper	QC	%P	%EA	%IA
Naphthalene	0.001	ND	0.555	NR	NR	111
Acenaphthylene	0.001	ND	0.499	NR	NR	99
Acenaphthene	0.001	ND	0.488	100	90	97
Fluorene	0.001	ND	0.492	NR	NR	98
Phenanthrene	0.001	ND	0.507	NR	NR	101
Anthracene	0.001	ND	0.495	NR	NR	99
Fluoranthene	0.001	ND	0.475	NR	NR	95
Pyrena	0.001	ND	0.543	100	104	108
Benz(a)anthracene	0.001	ND	0.518	NR	NR	103
Chyrsene	0.001	ND	0.520	NR	NR	104
Benzolbjiluoranthene	0.001	ND	0.535	NR	NR	107
Banzo[k]fluoranihene	0.001	ND	0.575	NR	NR	115
Benzo[a]pyrene	0.001	ND	0.568	NR	NR	113
Indeno[1,2,3-cd]pyrene	0.001	ND	0.448	NR	NR	89
Dibenzja,h]anthracena	0.001	ND	0.372	NR	NR	74
Benzo[g,h,l]perviene	0.001	ND	0.451	NR	NR	90

*ND = Not Detected

### % RECOVERY

2-Fluorophenol SURR	97
Phenol-d5 SURR	99
Nitrobenzene-d5 SURR	108
2-Fluorobiphenyl SURR	127
2,4,6-Tribromophenol SURR	84
Terphenyl-d14 SURR	95

METHODS: EPA SW 846-8270.

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

4-27-94

DATE

LULULULULULULULTRACEANALYSIS, INC. MUUUUUUUUUUUU
A Laboratory for Advanced Environmental Research and Applying

A Laboratory for Advanced Environmental Research and Analysis

Apr 29 94 11:54 No.013 P.07

TRACEANALYSIS	TEL:806-7941296	Apr 29 94	11:55 No.013 P.08
، . و 4			
QC: Blank Spiked with	Detection Limit % Precision % Extraction Accuracy % Instrument Accuracy METHODS: EPA 200.7.	TA# 120473 120474 120474 120475 120475 120476 20	April 28, 1994 Receiving Date: 04/19/94 Sample Type: Water Project No: MA Project Location: Artesia, NM
100.0 mg/L POTASSIUM; Director, Dr. Blair Le Director, Dr. Bruce Mc	Υ Υ	Pield Code RW - 4 RW - 6 Influent Air Stripper Effluent Air Stripper Quality Cortrol	STOI Aberteen Avenue Lubbock, Tex NAVAJO REF 9/94 501 E. Hali sol E. Hali sol E. Hali Artesia, WA
M; 20.0 mg/L MAGNESIUM, CALCIUM, Leftwich McDonell	0.1 96 107	POTASSIUM (mg/L) 2.4 2.5 2.1 2.2 102.4	RACEANALYSIS, INC. Lubbo:k, Texas 79424 806.0.794.0.1295 ANMALYTICAL RESULTS FOR NAVAJO REFINING Attention: Darrell Moore 501 E. Main Artesia, MM 38210
CALCIUM, SODIUM.	0.1 103 104 97	MAGNESION (mg/L) 145 144 138 128 19.4	
IUM.	0.05 98 99 101	CALCIUN (mg/L) 134 112 227 170 20.2	FAX E06•794•1298 FAX E06•794•1298 Sampling Date: 04/27/ Sample Condition: Intac Sample Received by: JC Project Name: NA
4-28-54 Date	0.1 95 92 100	SODIUM (mg/L) 2C0 1E4 147 140 20.0	EDG•794•1298 Analysis Date: 04/27/94 Sampling Date: 04/18/94 Sample Condition: Intact & Cool Sample Received by: JC Project Name: NA

4-22-54										ŕ
	412					N al			B; 9.7 ppm U; 0.020 ppm Hg.	÷
100.0 ppm Ba; 10.0 ppm Al,	; 100.	Cu, Ag	Co, Mn, V, Cu, Ag;	Fe,	, Ni, Be,	Cd, Pb,	, Cr, Zn,	s, Se, Mo,	METHODS: EPA 200.7, 245.1. QC: Blank Spiked with 5.0 ppm As,	<b>2 2</b>
100	66	105	104	86	100	66	<b>76</b>	96	Instrument Accuracy	æ
	96	101	103	96	101	94	96	86	Extraction Accuracy	ضر
	92	100	100	100	100	100	100	100	Frecision	<b>a</b> a
5 0,001	0.5	0.05	0.05	<i>ù</i> .05	C.1	0.01	0.05	0.05	DETECTION LIMIT	н
	9.7	5.25	5.21	4.92	9.96	4.97	4.71	4.82	QC Quality Control	5
	А 6 5	<0.05	0.34	<0.05	<0.1	<0.01	<0.05	<0.05	T20476 Effluent Air Stripper	
		<0.05	0.77	<0.05	<b>€).</b> 1	<0.01	0.08	<0.05	T20475 Influent Air Stripper	
5 <0.001		<0.05	<0.05	<0.05	€.1	<0.01	<0.05	<0.05	T20474 RW - 6	
٨		<0.05	0.05	<0.05	<0.1	<0.01	<0.05	<0.05	1720473 RW - 4	4
	(IDDau)	(madd)	(ppm)	(ppm)	(ppm)	(ppn)	(maid)	(ppm)		I
Bg	đ	Ň	Ma	8	Ł	Zn	1	5		
1 97 97	101	102	103	96	100	101	102	86		æ
94 101	86	104	<b>5</b> 6	103	102	86	66	97	Extraction Accuracy	e po
100 100	100	100	100	100	100	100	100	100	Precision	æ
5 0.05 0.05	0.05	0.01	0.2	<b>10.</b> C	0,01	0.05	0.1	0.1	DETECTION LIMIT	п
4.86	5.06	5.18	5.2	4.81	5.02	100.6	5.1	4.88	QC Quality Control	~
<0.05	<0.05	<0.01	<0.2	<0.01	<0.01	0.14	<b>~0.1</b>	<0.1	T20476 Effluent Air Stripper	5
15 <0.05 <0.05	<0.05	<0.01	<0.2	<0.01	<0.01	0.22	<0.1	<0.1	<b>T20475</b> Influent Air Stripper	<b>_</b> 3
)5 <0.05 <0.05	<0.05	<0.01	<0.2	<0,01	<0.01	2.80	0.3	<0.1	T20474 RW - 6	ف
<0.05		<0.01	<0.2	<0.01	<0.01	2.91	υ <b>.</b> 3	<0 <b>.</b> 1	120473 NG - 4	ا ها
v) (bôm) (bôm)	(mõd)	( mර්ග් )	(Indid)	(ppm)	( mcd )	(ppm)	(mđđ)	( කය්ය් )	TAF FIELD CODE	
∄e v	Mi	. Mg	Se	Ċ,	6	Ba	As	qđ		
				ALS	TOTAL METALS	.5				
ue: NA	Project Name: NA	Proje							Project Location: Artesia, NM	_
Sample Received by: JC	∍ Rece	Sample			Ö	NM 88210	Artesia, NM	•	Project No: NA	
Condition: Intact & Cool	e Cond.	Sample				Main	501 B. Ma		Sample Type: Water	-
Sampling Date: 04/18/94	ing Da	Sampl:			11 Moore	1: Darrell	Attention:	•	Receiving Date: 04/19/94	
te: 04/26/94	Analysis Date:	Analys					NAVAJO REFINING		April 28, 1994	<b>b</b>
	į				FOR	L RESULTS	ANALYTICAL			
•754•1298	•1298	FAX 836+754+1298		16●,794●1296	24 806	Lubbook. Texas 79424	Lubbo	en Averue	6701 Aperceen Averue	1





EASYLINK 62905278 FAX (505) 746-6410 ACCTG (505) 746-6155 EXEC (505) 748-9077 ENGR (505) 746-4438 P / L

501 EAST MAIN STREET ° P. O. BOX 159 ARTESIA, NEW MEXICO 88211-0159

April 5, 1994

Mr. William Olson, Hydrogeologist Environmental Bureau Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87504

### RE: SAMPLING SCHEDULE - OFFSITE PLUME 2ND QUARTER 1994 NAVAJO REFINING

Dear Bill:

Below is the sampling schedule for the offsite plume for the 2nd quarter of 1994:

April 6, 1994	RA-2723
April 20, 1994	RA-2723
	RA-4196
	RA-4798
	RA-313
	RA-314
	RA-1331
	RA-307
	RA-1227
May 6, 1994	RA-2723
May 18, 1994	RA-2723
-	RA-4196
	RA-4798
	RA-313
	RA-314
	RA-1331
	RA-307
	RA-1227
June 8,1994	RA-2723
June 22, 1994	Quarterly Sampling

This letter will satisfy our requirement to provide 2 weeks notice to OCD, in case you would like to split samples with us. If you have any questions please call me at 748-3311.

Regards,

Darrell Moore Environmental Specialist

An Independent Refinery Serving . . . NEW MEXICO • ARIZONA • WEST TEXAS





EASYLINK 62905278 FAX (505) 746-6410 ACCTG (505) 746-6155 EXEC (505) 748-9077 ENGR (505) 746-4438 P / L

501 EAST MAIN STREET ° P. O. BOX 159 ARTESIA, NEW MEXICO 88211-0159

March 10, 1994



Mr. William Olson, Hydrogeologist Environmental Bureau Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87504

MAR 1 4 1994

OIL CONSERVATION DIV. SANTA FE

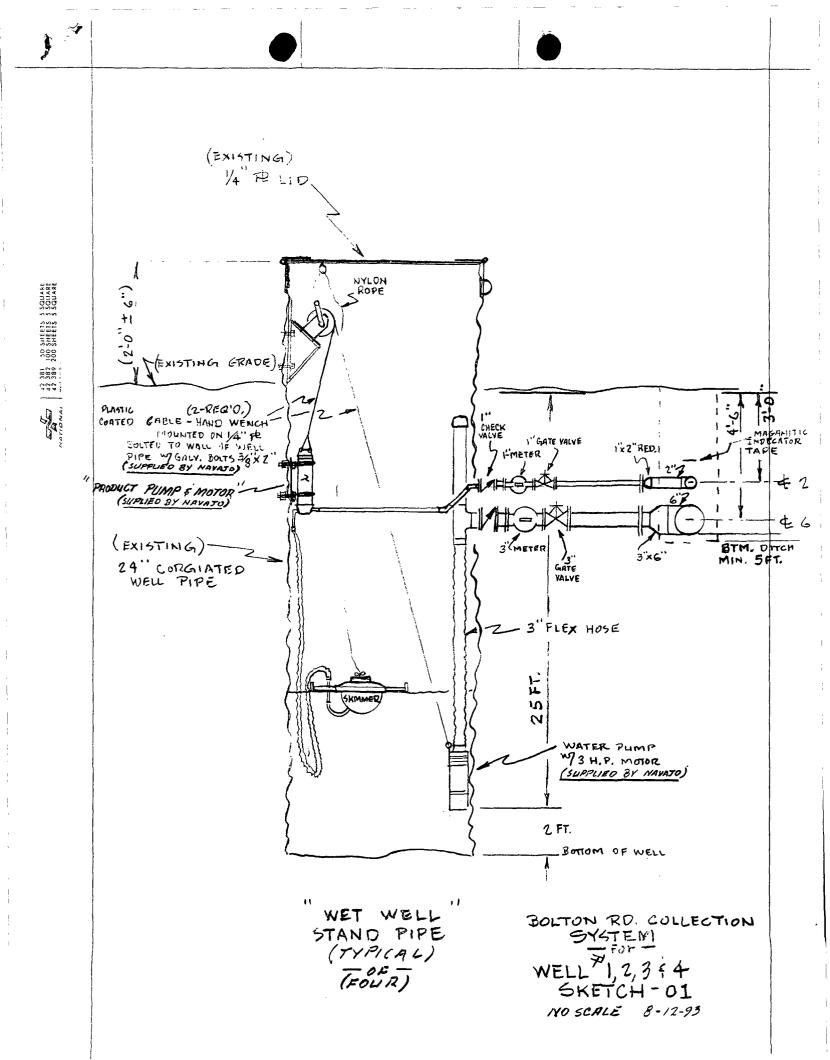
Re: Modification To Discharge Plan GW-28, Navajo Refinery, Eddy County, New Mexico

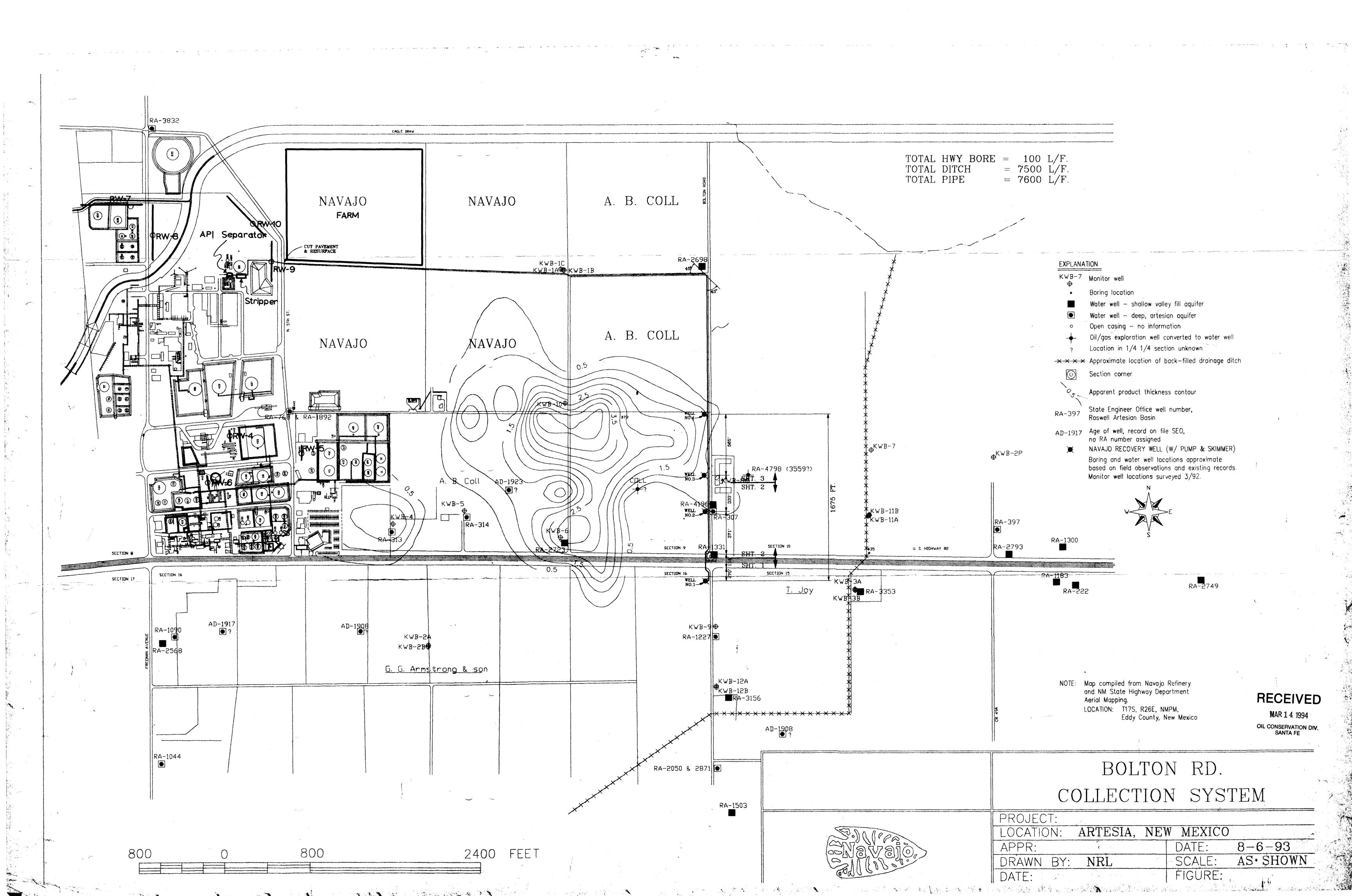
Dear Mr. Olson:

TELEPHONE

(505) 748-3311

Enclosed, please find a map showing the location of all piping and proposed discharge points where treated water will be routed. These points include RW-4, RW-5, RW-6 and the Farm. The piping from Bolton Rd. to the plant is below grade and was pressure tested after installation. Also enclosed is a drawing of a typical recovery well in the trenches along Bolton Rd. Finally, we are in the process of analyzing the water from RW-4, RW-5 and RW-6. Those results will be forwarded to you as soon as they are received. Once the air stripper is operational, Navajo will sample the effluent weekly for VOC's and PAH's. We will also initially test for WQCC heavy metals and major cations and anions and annually thereafter.


Navajo would also like to add another modification to GW-28. On the enclosed map, we have identified **RW-7**, **RW-8**, **RW-9**, and **RW-10**. Currently, water from these recovery wells is discharged into the API separators and eventually ends up at the ponds. We would like to have the option of also putting the recovered water from these wells through the air stripper and then discharging it to the farm or re injecting it into RW-4, RW-5, RW-6 and/or any new trenches that would be constructed especially for this purpose. This water at no time would be discharged to Eagle Draw. In addition, all of the options listed above would be affecting the same aquifer that the water is being pumped from in the recovery trenches.


Thank you for your prompt attention to this matter. If you have any questions, please call me at 748-3311.

Regards,

Darrell Moore Environmental Specialist

encl.





._____

------

STATE OF NEW MEXICO



ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

**OIL CONSERVATION DIVISION** 

DRUG FREE

BRUCE KING GOVERNOR February 10, 1994

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

ANITA LOCKWOOD CABINET SECRETARY

> CERTIFIED MAIL RETURN RECEIPT NO. P-667-241-902

Mr. Darrell Moore Environmental Specialist Navajo Refining Company P.O. Box 159 Artesia, New Mexico 88211-0159

RE: MODIFICATION TO DISCHARGE PLAN GW-28 NAVAJO REFINERY EDDY COUNTY, NEW MEXICO

Dear Mr. Moore:

The New Mexico Cil Conservation Division (OCD) is in the process of reviewing Navajo Refining Company's January 31, 1994 "MODIFICATION TO NAVAJO REFINING COMPANY'S DISCHARGE PLAN GW-28". This document proposes to modify Navajo's previously approved discharge plan for the Navajo Refinery to include the discharge of treated ground water from the remediation of contaminated ground water at the facility.

The OCD has the following comments and requests for information regarding the above referenced discharge plan modification request:

- 1. Please provide a map showing the exact location of all proposed discharge points including the farmland where treated ground water would be used for irrigation purposes.
- 2. Please provide the results of the most recent analysis of t ground water from recovery wells RW-4, RW-5 and RW-6.
- 3. The request does not indicate whether the piping between the air stripper system and the pumping well system will be installed above ground or below grade. Please provide this information and a map showing the proposed location of all piping including piping to the discharge points. Please be aware that the OCD requires that all below grade piping

Mr. Darrell Moore February 10, 1994 Page 2

> carrying fluids which exceed New Mexico Water Quality Control Commission (WQCC) ground water standards be pressure tested to three (3) psi above operating pressure prior to operation.

4. In addition to the proposed air stripper effluent water quality sampling, the OCD requires that the effluent also be sampled initially for WQCC heavy metals and major cations and anions and annually thereafter. Please provide a commitment to perform these analyses.

Receipt of the above information will allow the OCD to complete a review to this discharge plan modification.

If you have any questions, please contact me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

xc: Ray Smith, OCD Artesia District Office Richard D. Mayer, EPA Region VI

J 702 Mail Receipt Coverage Provided International Mail			\$						\$		envelope to the raddress.
P BB7 24 Certified No Insurance Do not use for	& No.	State & ZIP Code	808	Certified Fae	Special Delivery Fee	Restricted Delivery Fee	Return Receipt Showing	o Whom a concept Showing to Whom. Return Receipt Showing to Whom.	Jale, a menunger TOTAL Postage	k rees Postmark or Date	at line over top of right of the retur
BENTE Sent to	Street & No.	P.O. 9	Postage	Certit	Spec	Rest	_			orm 3800	I Sd DI

STATE OF NEW MEXICO



ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR February 10, 1994

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

ANITA LOCKWOOD CABINET SECRETARY

> CERTIFIED MAIL RETURN RECEIPT NO. P-667-241-902

Mr. Darrell Moore Environmental Specialist Navajo Refining Company P.O. Box 159 Artesia, New Mexico 88211-0159

RE: MODIFICATION TO DISCHARGE PLAN GW-28 NAVAJO REFINERY EDDY COUNTY, NEW MEXICO

Dear Mr. Moore:

The New Mexico Oil Conservation Division (OCD) is in the process of reviewing Navajo Refining Company's January 31, 1994 "MODIFICATION TO NAVAJO REFINING COMPANY'S DISCHARGE PLAN GW-28". This document proposes to modify Navajo's previously approved discharge plan for the Navajo Refinery to include the discharge of treated ground water from the remediation of contaminated ground water at the facility.

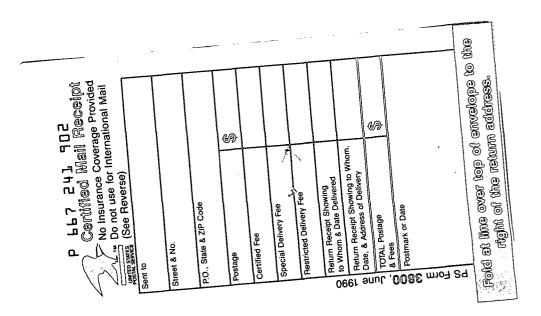
The OCD has the following comments and requests for information regarding the above referenced discharge plan modification request:

- 1. Please provide a map showing the exact location of all proposed discharge points including the farmland where treated ground water would be used for irrigation purposes.
- 2. Please provide the results of the most recent analysis of  $\checkmark$  ground water from recovery wells RW-4, RW-5 and RW-6.
- 3. The request does not indicate whether the piping between the air stripper system and the pumping well system will be installed above ground or below grade. Please provide this information and a map showing the proposed location of all piping including piping to the discharge points. Please be aware that the OCD requires that all below grade piping

Mr. Darrell Moore February 10, 1994 Page 2

> carrying fluids which exceed New Mexico Water Quality Control Commission (WQCC) ground water standards be pressure tested to three (3) psi above operating pressure prior to operation.

4. In addition to the proposed air stripper effluent water quality sampling, the OCD requires that the effluent also be sampled initially for WQCC heavy metals and major cations and anions and annually thereafter. Please provide a commitment to perform these analyses.


Receipt of the above information will allow the OCD to complete a review to this discharge plan modification.

If you have any questions, please contact me at (505) 827-5885.

Sincerely,

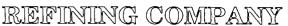
William C. Olson Hydrogeologist Environmental Bureau

xc: Ray Smith, OCD Artesia District Office Richard D. Mayer, EPA Region VI



State of New Mexico ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT Santa Fe, New Mexico 87505						
STATE OF NEW MEXICO OL CONSERVITION OVVISION MEMORANDUM OF MEETI	NG OR CONVERSATION					
Telephone Personal Time 1430	Date 2/8/94					
Originating Party	Other Parties					
Dave Griffih - Marcis Refining	Bill Olson - Envir. Bureau					
Subject						
Alwajo Refinery UST						
Discussion						
Mario previously purchased property on A UST, when excertish, in oren. C Hank yake. Tople soil sandes to	lorth rite of Rether, Recently discoursed ontented UST and inspector writnessed					
Told him UST Bureau Chief (Bearzi						
because it OCD, ongoing remed	ial works at rethery					
Conclusions or Agreements						
Nevajo will submit report on 45T to OCD						
	~					
<u>Distribution</u> S	igned All Ion					

FI	EB- 4-94 FRI 13:27 NMED DISTRICT 4 5056242023	P.02
	UTIAL INCIDENT REPORT FORM	
st	CONTACT INFORMATION DISCRICL # 4 Field OFFICEROSURUS	L.
Ly I	Caller: McMillan Phone: (124-6123	
P	Facility Name: Shop County Eddy	
Å.	Address East Etto Artean NM 80010	
34	(FUT CHECK MARK IN FRONT OF PRINCIPLE CONTACT IF ONE IS DESIGNATED)	
TU TU	X Facility Owner J N' Hightower Phone	
F	Address 908 South oth Artesia NM 88210	
·	Address P.O. Box 159 Artesia NM 88210	
	DISCHARGE INFORMATION	
	(check one) Suspected Release Confirmed release	
	Cause of Discharge holes in tank	
	Date/Time of discharge unk Durationunk Volume lost	
	Circle one: Unleaded gasoline Regular gasoline Diesel Waste Oil Other	
	Tank	ı
	Has further discharge been prevented? If so, describe YLO Romou Have fire authorities been notified? If so, give name/phone W	Ø
-	Has P/I inspector informed RP of immediate responsibilities? U.O Are highly contaminated soils present? Describe Removal 100	
	HNU- 340 ppm at ~ 5-10 ft. HYDROGEOLOGIC INFORMATION	
	Depth to water 18 Direction of GW flow	
	Surface water endangered NO Soil types Clark POSSIBLE IMPACTS FROM DISCHARGE	
	Well locations, depths, types Utility Corridors Vapors in Homes, buildings;	
	Other	
	Call received by BRZ Date 2/4/94	
	Assignment OCD Referral Date	•
	Phone #	
	Revised 1/9/92	


ì

1

i.

ì





EASYLINK 62905278 FAX (505) 746-6410 ACCTG (505) 746-6155 EXEC (505) 748-9077 ENGR (505) 746-4438 P / L

501 EAST MAIN STREET ° P. O. BOX 159 ARTESIA, NEW MEXICO 88211-0159

January 31, 1994

Mr. Bill Olson, Hydrogeologist Oil Conservation Division Environmental Bureau Land Office Bldg. P.O.Box 2088 Santa Fe, NM 87501



FEB 0 2 1994

OIL CONSERVATION DIV. SANTA FE

### **RE: Modification to Navajo Refining Company's Discharge Plan GW-28**

Dear Bill:

This letter is sent to make application for release of 140,000 gpd of treated water from our recovery trenches on Bolton Road. The water will be air stripped and then polished through carbon to achieve State groundwater standards. This used carbon will be disposed of as hazardous waste by Navajo Refining. The stripping unit itself will be placed on the south side of the water treatment plant beside the wastewater API.

This treated water will then be disposed of in one of the following ways:

(1) Used as irrigation water on our adjacent farm.

(2) Injected into one of several recovery wells inside the refinery. The most likely well would be RW-5 but we would like to keep RW-4 and RW-6 and possibly others as options. These wells are no longer pumping product.

(3) Injected into a new trench or well that would be constructed especially for this purpose.

This water at no time would be put into Eagle Draw. Also, all these options would be affecting the same aquifer that the water is being pumped out of in the recovery trenches.

Navajo will monitor the water that is being disposed of by testing it weekly for VOC's and PAH's. This would ensure that the constituents that are present in the untreated water are being removed. The stripping unit itself will be monitored by refinery personnel on a regular basis to insure that it is working correctly.

Your prompt attention to this matter will be greatly appreciated. Please feel free to contact me at 505-748-3311 if you have any questions.

water freating? No puddling (degth) French dearger (degth)

Regards,

will More Darrell Moore

Environmental Specialist

An Independent Refinery Serving ... NEW MEXICO • ARIZONA • WEST TEXAS

TELEPHONE (505) 748-3311

ENERGY, MINERALS and NAT	f New Mexico <b>URAL RESOURCES DEPARTMENT</b> lew Mexico 87505
STATE OF NEW MEXICO CONSERVITION OVVISION MEMORANDUM OF MEE	FING OR CONVERSATION
Telephone Personal Time 09	00 Date $\frac{12}{2}\sqrt{2}\sqrt{9}$
Originating Party	Other Parties
Obry Moore - Newap Refling	Bill Olson - OCD
Subject	
Artesic Refinery	
Discussion	
Navajo, will be sampling pom	etfluent and Mar's groum
· currently shimming product from off · NG vajo will be doin, guesterly 56	site wellon malin at affsite well
- the early January	
· DCD would like to pall split sa	nyole, on affito well
Conclusions or Agreements	/
I will get back with him on	date for altsite melli
Distribution	Signed Dill Olm

	propriate District Office	State of New Mex	ico	Verbal	fo# 38492 -1
	ba, NM 88241-1980.	gy, Minerals and Natural Res			Form C-117 A Revised 4-1-91
<u>DISTRICT II</u> P.O. Drawer DD, A	Antesia, NM 88211-0719, 8 393	OIL CONSERVATION	DIVISION		
DISTRICT III	d, Aztec, NM 87410	P.O. Box 2038 Santa Fe, New Mexico &	i	PERMIT	NO. <u><i>A- 1163</i></u>
TANK CLE/	MING, SEDIMENT OIL REMOVA	IL, TRANSPORTATION OF MIS	CELLANEOUS IIY	DINOCARDONS A	ND DISPOSAL PERMIT
Operator or Owner	EDDY POTASH IN	с	Address P.O.		rlsbad,N.M. 882
Lease or Facility Nan	1¢		Location_		off Hobbs Hwy.
	O BE PERFORMED:		vortation of Miscellau	eous Hydrocarbons	
	Operator or Owner Representative aut	horizing work Mr. Co	nnie Day,	Company Ma	an
	Date Work to be l'erfonned	8/93	۰ · ·		
	TANK CLEANING DATA Ta	nk Number	Volu	me	
	]'a	nk Type	Volu	me Below Load Line_	
	SEDIMENT OIL OR MISCEI				
·	Sediment Oil from:	Cellor Duher			
	MISCELLANEOUS OIL Tank Bottoms From: [7] Pir	wline Station 🛄 Crude Terminal	X Refinery	Other*	
	Catchings From:  Gasoline Plan		•	tem 🔲 Öthe	۲ ⁴
	Pipeline Break Oil or Spill		- · ·		
	• •	y Oil From Navajo	Refinery	in Artesia	3
<u>YOLUME ANI</u>	DESTINATION: Es	timated Volume120	_Bbls. Field	test volume of good o	
•	Destination (Name and Location of		ddy Pota	(Not required prior to sh Mine Si	
•		, <u>, , , , , , , , , , , , , , , , , , </u>	······································	· · ·	
DESTRUCTIO	N OF SEDIMENT OIL BY:		] Pit Disposal	Use on Roads o	r firewalls 📋 Other
	Location of Destruction				
	Justification of Destruction				
	ION : (APPLICATION MAY BE M				
I hereby	certify that the infomation above is tru			TENT	
	Owner		Transporter		
	By		Address	P.O. Box	98 Vî
	Title	······			-
	Date		TidePu	usher	Date28/93
OIL CONSERV	VATION DIVISION	,			
Approved By	Betty Rollin	A Tille Il	ch	Date	OCT 2 9 1993
	0		<b>--</b>	•	DISTRIBUTION BY OCD
A COPY OF THIS F	ORM MUST BE ON LOCATION DU HYDROCARBONS, AND MUST BE	RING TANK CLEANING, REMO	AL OF SEDIMENT	OILOR	Santa Fe
OR MISCELLANEC	DUS HYDROCARBONS, AND MUST BE	EATING PLANT TO WHICH IT IS	OMS, SEDIMENT C DELIVERED.	ЛС	File
					Operator Transmisser (2)
					Transporter (2)

I

1

State of New Mexico ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT Santa Fe, New Mexico 87505						
STATE OF NEW MEXICO OIL CONSERVITION OIVISION MEMORANDUM OF MEETING	OR CONVERSATION					
Telephone Personal Time 1915	-hrs. Date 9/18/93					
Originating Party	Other Parties					
Pave Grotten - Navajo Repiling 365-8365 Celluter)	Bill Olson - Envir. Bureau					
<u>Subject</u>						
Discharge of hydrotest with from	a crude tank #437					
Discussion						
Faxed test results for Dengene & M	972 5					
THE HISTONE NO	to week in chemin was stean derned.					
Want to discharge to farm plat	week for RO discharse weter					
Hydrotest writes from At plant food 4	ater (fresh with)					
Conclusions or Agreements Based upon fast Of I save OK to discharge to Gondation that there be no disch						
Distribution file Sig	ned Will Oson					

	-	9/18/93	NAVAJO REFIN	ING CO	001	
	. 1					
			time.	NASIA IA DEEINIINA	001001200	
				NAVAJO REFINING P.O. DRAWER 159	· - • • · · ·	
		A GATCI		501 EAST MAIN STI ARTESIA, NEW ME.		
				PHONE: (505) 7081		
					-	
				ENGINEERING DEF		
	、			FAX: (505) 748-9077	•	
		D'AD	BA			
	SENDING TO:	HAME_5211	alter	1		
		ORGANIZATION/FIRM	Bil Cone	wation Di	vicion	
		TELECOPY # 83	27-5741	······································		
			A Dist	<del>ݥݘݜݷݷݵݚݕݾݙݷݵݚݵݥݵݿݸݷݚݵݖݑݬݿݿݵݑݵݑݿݿݤݛݕݵ</del> ݾݪݷݕݕݵ		
	SENDING FROM:	NAME Danial	Krittin			
		9/18/	Igiz D.		ŕ)	
		DATE	NUM	BER OF PAGES, INCLUDING THE	IS COVER PAGE	
		17 YOU DO NOT RECEIVE AN	LL PAGES. PIFASE CALL TR	15H AT EXT. 270, OR PATTE A	NT FRT. 202	
	MESSAGE:	.00				
	بە ل ۷ 	$\mathcal{A}$ ,				
		11- mu de	· analysis	of the higo	hobert	
	1. motor 1	Tele	427. a	, 7	100	
	<u>Lacorne</u>	A M	11 10	s you la	A	
	we me	et all app	decable a	searing -	Claudardy.	
	Navajos	Chemist the	lie Ebarb o	and I did.	the analysis	
	her at	- Navajor +	aboration .	The Rame	the later a	
	ATLANA. Ida	ing EPS: N	nge and tr	ap GC meth	2	
	the the f			1	out and	
	-mo. Melas		- long too	nur Adzorptu		
	Inte awa	it your all	Thomas The -	t inicharge	- Navajo	
	can wai	t mille to a	paropinated	y. 8 m this en	rening and	
<u>`</u>	NOTE: Unle	ss otherwise indicated o	or obvious from the n	ature of the transmittal,	the information	Λ
ł	the individual	l or entity named above.	If the reader of this m	ential information intende lessage is not the intende	ed recipient, you Allowed	K
	ara hereby ne	otified that any dissemin	ation, distribution or a	copying of this communi	ication is strictly	~. ~~
I	hisaza tuwet	diately notify us by tele	phone and return th	er or are not sure whether e original message to t	is at the above	
	address via ti	he U.S. Postal Service.	-			

Thank you!



NAVAJO REFINING CO

12:40

SAMPLE: TANK 437 HYDROTEST WATER SAMPLE DATE: 9-17-93 ANALYSIS STARTED: 9-17-93 ANALYSIS COMPLETE: 9-18-93

BENZENE, ppb 4.0

ARSENIC, ppm	ND
BARIUM, ppm	0.02
CADMIUM,ppm	ND
CHROMIUM, ppm	ND
LEAD, ppm	0.01

Note: Detection himits for Metals Analysis = 0.01 ppm Detection himit for BENJON Analysis = 2 ppb





NAVAJO REFINING CO



NAVAJO REFINING COMPANY P.O. DRAWER 159 501 EAST MAIN STREET ARTESIA, NEW MEXICO 88210 PHONE: (505) 748-3311

ENGINEERING DEPARTMENT FAX: (505) 748-9077

Kathy SENDING TO: NAME ORGANIZATION/FIRM 1-827- 5741 TELECOPY # Moore rrell SENDING FROM: NAKE NUMBER OF PAGES, INCLUDING THIS COVER PAGE DATE IF YOU DO NOT RECEIVE ALL PAGES, PLEASE CALL TRISH AT EXT. 270, OR PATTI AT EXT. 202 **MESSAGE:** The 437 after the analysis 15 rom **h**15 been centri bo Homs have

NOTE: Unless otherwise indicated or obvious from the nature of the transmittal, the information contained in this facsimile message is privileged and confidential information intended for the use of the individual or entity named above. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error or are not sure whether it is privileged, please immediately notify us by telephono and return the original message to us at the above address via the U.S. Postal Service.

Thank you!

001

80 _ _ Analytical Services

# Page 2

Sample Description: Centrifuge 437 TK Laboratory ID: D0604512 Sample Date: 6/3/93

TCLP EXTRACT (SW846/1311)

TEST	Value	Units	Spike % Recovery	Detection Limits	EPA Method
Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	< 0.20 < 0.50 < 0.05 < 0.20 < 0.20 < 0.0002 < 0.20 < 0.005	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	99 109 89 91 88 114 83 96	0.20 0.50 0.05 0.20 0.20 0.0002 0.20 0.20	6010 6010 6010 6010 7470 6010 6010

002





Page 4

Sample Description: Centrifuge Date Sampled: 6/2/93 Date Analyzed: 6/21/93 8:59pm Dilution: 1:4 Laboratory ID: D0604512 Date Extracted: 6/16/93 Analyst: WK

# TCLP ACID EXTRACTABLE ORGANICS (EPA 8270)

Compound	Value-ug/L*	Spike % Recovery
o-Cresol	< 40	84
m,p-Cresol	< 40	88
Pentachlorophenol	< 200 [200]	76
2,4,5-Trichlorophenol	< 40	96
2,4,6-Trichlorophenol	< 40	81

*Limit of Practical Quantitation is 40 ug/L, unless otherwise noted.

Surrogate Recovery:		Limits:
2-Fluorophenol	77 ቄ	10 - 94 %
Phenol-d5	86 %	21 - 100 %
2,4,6-Tribromophenol	97 %	10 - 123 %

# TCLP BASE/NEUTRAL EXTRACTABLE ORGANICS (EPA 8270)

Compound	Value-ug/L*	Spike % Recovery
1,4-Dichlorobenzene	< 40	67
2,4-Dinitrotoluene	< 40	88
Hexachlorobenzene	< 40	100
Hexachlorobutadiene	< 40	71
Hexachloroethane	< 40	72
Nitrobenzene	< 40	76
Pyridine	< 40	91

*Limit of Practical Quantitation is 40 ug/L, unless otherwise noted.

Surrogate Recovery:		Recovery Limits
Nitrobenzene-d5	80 %	35 - 114 %
2-Fluorobiphenyl	75 %	43 - 116 %
Terphenyl-d14	84 %	33 - 141 🕏

13:59 08/02/93 (

۰ ۲ × ۵ NAVAJO REFINING (

003



Page 3

boratory ID:	D0604512
te Analyzed: lution: 1:5	6/21/93 15:33

## VOLATILE ORGANICS (TCLP 8240)

Compound	Value-ug/L*	Spike % Recovery
Benzene	< 25	99
Methyl ethyl keytone	< 500 [500]	100
Carbon Tetrachloride	< 25	105
Chlorobenzene	< 25	100
Chloroform	< 25	104
1,2-Dichloroethane	< 25	93
1,1-Dichloroethene	< 25	88
Tetrachloroethylene	< 25	107
Trichloroethylene	< 25	107
Vinyl chloride	< 50 [50]	83

*Limit of Practical Quantitation is 25 ug/L, unless otherwise noted in brackets.

Surrogate Recovery:			Recovery	Limits
1,2-Dichloroethane-d4	91	\$÷	84-113	*
Toluene-d8	88	*	82-113	aja A
Bromofluorobenzene	97	*	91-109	P.5

ENERGY, MINER	State of Ne ALS and NATUR Santa Fe, New	AL RESOL	JRCES DEPARTMENT 05
STATE OF NEW MEXICO OR CONSERVICTION DIVISION MEMORAN	DUM OF MEETIN	G OR CON	VERSATION
Telephone Personal	Time 1500	) hrs	Date 3/1/93
Originating Party		1	Other Parties
Durrell Moore - Navajo Refi	nihi	Billo	150n - Environmantal Burean
Subject Marajo Refiley Remediation Discussion Expert to begin constru- Thursday 3/4 Lill stake approximately	trench tin of 3 weeks	) fre	niches m
Conclusions or Agreements Distribution File NMOCD Artesia	S1	gned Z	interior

1

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

**OIL CONSERVATION DIVISION** 



POST OFFICE BOX 2088

STATE LAND OFFICE BUILDING

SANTA FE, NEW MEXICO 87504

(505) 827-5800

BRUCE KING GOVERNOR

February 22, 1993

ANITA LOCKWOOD CABINET SECRETARY

> CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-320

Mr. Darrell Moore Environmental Specialist Navajo Refining Company P.O. Drawer 159 Artesia, New Mexico 88210

RE: OFFSITE GROUND WATER REMEDIATION NAVAJO REFINERY EDDY COUNTY, NEW MEXICO

Dear Mr. Moore:

The New Mexico Oil Conservation Division (OCD) has reviewed Navajo Refining Company's proposal to control and remediate the leading edge of petroleum contaminated ground water downgradient of Navajo's Refinery in Artesia, New Mexico. This proposal is contained in Navajo's January 21, 1993 and February 17, 1993 correspondence with OCD.

The above referenced remediation proposal is hereby approved with the following conditions:

- 1. Saturated contaminated soils removed from the ground during excavation of the recovery trenches will not be placed directly on or drained onto the ground surface.
- 2. Contaminated ground water produced from trenches during excavation will either remain within the excavations or placed in tanks for proper disposal.
- 3. Navajo will design the underground piping which conveys contaminated ground water to the refinery such that it can be pressure tested to a minimum of three (3) psi above operating pressure. All underground piping will subsequently be pressure tested prior to operation with the results of the tests submitted to OCD.

1

Mr. Darrell Moore February 22, 1993 Page 2

- 4. Navajo will provide the following items to OCD within 30 days of completion of the recovery trenches.
  - A. A completion report containing:
    - i. A map showing the actual locations of the completed trenches and all underground piping.
    - ii. The volume and disposition of all fluids and soils generated during the trench installations.
    - iii. Any deviations from the proposed construction design.
  - B. A proposed monitoring schedule for the remediation system.
- 5. Navajo will notify OCD of the date of initiation of the trench construction such that OCD may have the opportunity to witness the activities.

Please be advised that OCD approval does not limit Navajo to the work proposed should the trench system fail to effectively contain and remediate petroleum contaminated ground water emanating from the refinery. In addition, OCD approval does not relieve Navajo of responsibility for compliance with any other federal, state, or local laws and/or regulations.

If you have any questions, please contact me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

xc: Mike Williams, OCD Artesia District Supervisor David G. Boyer, K.W. Brown Environmental Services Richard D. Mayer, EPA Region VI

	P 667 242 Certified M No Insurance Co Do not use for in ANTERSANS (See Reverse) Sent to	ail Receipt
	Street & No.	
	P.O., State & ZIP Code	
	Postage	\$
	Certified Fee	
Ì	Special Delivery Fee	
	Restricted De 3	
066	Return Receipt Showing to Whom & Date Delivered	
Ine 16	Return Receipt Showing to Whom, Date, & Address of Delivery	
יר 0	TOTAL Postage & Fees	\$
PS Form <b>3800</b> , June 1990	Postmark or Date	
Fole	l at line over top of a "fight of the return (	

Summer States and such

.

İ

TELEPHONE (505) 748-3311



EASYLINK 62905278

REFINING COMPANCY VED (505) 746-6410

501 EAST MAIN STREET . P. O. DRAWER 159

'93 FER 24 AM 8 51

ARTESIA, NEW MEXICO 88210

February 22, 1993

Mr. William Olson, Hydrogeologist Environmental Bureau Oil Conservation Division P.O. Box 2088 Santa Fe, N.M. 87504

Re: OFFSITE GROUNDWATER CONTAMINATION, NAVAJO REFINERY, EDDY COUNTY, NEW MEXICO.

Dear Bill:

Last week I talked to you about the possibility of our having to move our interceptor trench out of the pecan orchard. The Chase family, which owns the orchard, does not want the trench on their land. Therefore, this letter is to inform you that we are moving the trench to a location along the west right-of-way of Bolton Road. This is directly across the road from the pecan orchard. We have already acquired all necessary permits from the county and tentative construction of the trench is set to start on March 1, 1993.

If you have any questions, please call me at 748-3311, extension 281. Thank you for your time.

Regards,

Daniel Moore

Darrell Moore Environmental Specialist

DGM/te

TELEPHONE (505) 748-3311



EASYLINK 62905278

FAX

501 EAST MAIN STREET . P. O. DRAWER 1859 . VED

EFINING COMPANY

ARTESIA, NEW MEXICO 88210

'93 FEH 22 AM 9 42

February 17, 1993

Fax recieved 2/17/93 mo

Mr. Bill Olson, Hydrogeologist Environmental Bureau Oil Conservation Division P.O. Box 2088 Santa Fe, NM. 87504

Re: Offsite Groundwater Contamination, Navajo Refinery, Eddy County, New Mexico.

Dear Bill:

In our telephone conversation on February 15, 1993, you brought up several items that you needed clarified on our recovery trench. Following is an item by item response:

1. <u>Disposition of Soils - Topsoil</u> (top 18 to 24 inches) will be placed in a segregated area to be put back as topsoil on the trench.

<u>Backfill Soil</u> - (24 inches to top of vapor contamination) will be placed in a separate area to be used as backfill in the trench.

<u>Contaminated Soil</u> - will be placed in dump trucks and brought back to the refinery to be placed on the Truck By Pass Landfarm. Whatever precautions necessary to keep the truck from leaking will be taken. No leaking trucks will be on the roads.

- 2. <u>Fluids Handling</u> all fluids will be piped straight back to the refinery. Water will be put through our wastewater system and hydrocarbons will be reprocessed.
- 3. <u>Diagram of Piping</u> for several reasons, the recovery trenches are being constructed in two phases. The first phase is the actual digging and construction of the trenches and the second phase is the piping, electricity, pumps, etc. For that reason, our drafting and engineering departments have not yet done the piping diagrams. Generally, piping will cross under U.S. 82 and go north along Bolton Road to approximately where our effluent line crosses Bolton Road. From there the piping will turn west and go straight to our north API separator at the wastewater plant. When drafting gets us actual diagrams of the piping we will get those to you.

4. <u>Plastic on top of gravel</u> - there will be a layer of 8 mil polypropylene plastic overlying the gravel along the entire length of the trench. I hope this answers your questions.

Finally, due to recalcitrant landowners, the trench may have to be put on the west right-of-way of Bolton Road. The Chases are not very receptive to the trench. If we cannot convince them, we'll have to move it. The county has been very open to us putting the trench along Bolton Road in county right-of-ways.

If you have any questions concerning this matter, please call me at 748-3311, extension 281. Thank you for your time.

and Moore

Darrell Moore Environmental Specialist

DGM/te

:3



K. W. Brown Environmental Services A Division of AMEC Environmental Services, Inc. 500 Graham Road, College Station, TX 77845 Telephone: (409) 690-9280, Fax: (409) 690-7310

January 21, 1993

Mr. William C. Olson, Hydrogeologist Environmental Bureau New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87504-2088

RE: Offsite Groundwater Contamination Investigation, Navajo Refinery, Artesia, New Mexico By/// Dear Mr. Olson: JAN 2 2 1992 3 20

OIL CONSERVATION DIV. SANTA FE

As you know, K. W. Brown Environmental Services (KWBES) continues to perform work for Navajo Refining Company in the matter of their offsite hydrocarbon contamination investigation. At their request and in response to your October 8, 1992, letter, we are providing you with information and copies of analytical data generated as a result of this work. The information is organized in the same format as your letter, but only those numbered items to which we are responding are shown.

### **Recommendations for Immediate Action**

2. Water analyses for these wells are included in the package. Please note that well RA-3156 is also called the "Gurley well" and RA-3353 is the "Truman Joy well". Product thicknesses for all wells are presented in the table below:

		N	leasurement Dat	e	
Well #	3/10/92	5/22/92	8/5/92	9/29/92	11/20/92
KWB-4	2.11 ft.	1.25 ft.	1.24 ft.	1.61 ft.	0.99 ft.
KWB-5	LT 1/16 inch	LT 1/16 inch	Sheen	Sheen	Sheen
KWB-6	3.28 ft.	0.67 ft.	0.80 ft.	0.83 ft.	3.55 ft.
KWB-8	LT 1/16 inch	LT 1/16 inch	LT 1/8 inch	Sheen	Sheen

LT - Less than.

6. The preliminary design for the recovery trench has been completed and is submitted with this package. The final design will be provided after consultation with Navajo and affected landowners and after comments are received from OCD. We are hoping to begin trench installation within the next several weeks, therefore review of the design at your earliest convenience would be appreciated.

### **Recommendations for Long-term Actions**

1. The required analyses are enclosed. Please note that low level detections of 1,2dichloroethane (EDC) were seen in several monitor wells, but only one detection (KWB- William C. Olson letter Navajo Offsite Groundwater Contamination Investigation January 21, 1993

> 9) was confirmed using the mass spectrophotometer. These wells will be checked again for this compound at the next regular sampling. Also, heavy metal analyses were performed only for selected metals, mainly for comparison by Navajo of the results seen in the RCRA analyses performed in the evaporation pond area. Please notify us if further metals analyses are required.

- 2. Wells RA-4922, RA-6550 and RA-7180 are located in the NW 1/4 of Section 10 and were not field-located as part of this study. However, RA-6550 was located and sampled as part of the Navajo RCRA study last month and the results will be provided to you in the next several weeks when they are received. Similarly, wells RA-4684 and RA-4765 were not field-located for the initial study because they are in the SE 1/4 of the NW 1/4 of Section 15 and away from the current area of concern. The latter two wells will be field-located and sampled if future information indicates a threat to water quality from the offsite contamination.
- 3. A revised Table 3 is included with this package.
- 4. A copy of the KWBES workplan for additional plume definition is included with this package. The workplan includes the information on proposed well locations and well construction methods requested in your letter. As originally presented to Navajo, the plan proposed additional work elements that have not yet been authorized by them. Accordingly, the package submitted to OCD includes only the approved work. At Navajo's request, KWBES proceeded with additional plume definition work that began prior to the receipt of the your October 8 letter. Accordingly, we are including information on additional monitor well locations and the results of the water quality sampling conducted on these new wells.

As mentioned elsewhere in this letter, Navajo is being required by EPA to conduct an extensive soil and groundwater investigation of the Three-Mile Ditch area and the area of the evaporation ponds. Accordingly, the evaporation pond monitor wells required to be sampled as a condition of the WQCC Discharge Plan approval were sampled during that investigation, and the results will be provided to you when analyses are complete, sometime in the next few days. All required analyses will be submitted to you by February 1.

If you have any questions regarding the information provided in or with this letter, please do not hesitate to contact me, at (409) 690-9280.

Sincerely, David G. Bover **Project Manager** 

DGB/jc Enclosure File: 622092003-236 cc: David Griffin VIA Federal Express

Table 3. Bor	Boring and monitoring well product thickness at the Navajo Refinery.	ll product thickness	at the Navajo R	effnery.
Boring no.	HC thickness (ft)	Taken by	Date	Comments
чоочооса 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sheen sheen sheen sheen sheen none -0.25 -0.25 -0.25 none sheen none none none none none none none	Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S.	10/3/91 10/3/91 10/4/91 10/4/91 10/4/91 10/4/91 10/4/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91 10/11/91	HC product thickness too thin to measure, field notes Field notes Field notes HC product thickness too thin to measure, field notes HC product thickness too thin to measure, field notes Field notes
•	ł 	<b>.</b>		

i, j î

•

; ] .

T

Т

|

Table 3. Continued.

ļ

ł

Comments			) product thickness
Cor	NFMR b NFMR b NFMR b NFMR b NFMR b NFMR b NFMR b	NFMR b NFMR b NFMR b NFMR b NFMR b NFMR b NFMR b NFMR b	NFMR b NFMR b
Date	10/15/91 a N 10/15/91 a N 10/15/91 a N 10/16/91 a N 10/16/91 a N 10/16/91 a N 10/16/91 a N		
Taken by	Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S.	Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S.	Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S. Navajo-Z.R.S.
HC thickness (ft)	none none sheen sheen none sheen	none none, slight HC odor sheen sheen none, slight HC odor sheen none none sheen	none, slight HC odor none sheen none none none none none none none
Boring no.	40 38 39 39 49 58 39 58 58 69 60 50 50 50 50 50 50 50 50 50 50 50 50 50	41 45 45 45 49 49 49 49	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Continued.	
Table 3.	

Comments																																		
	.e. : 																												NFMR b					
Date	3/4/92	3/4/92	3/4/92	3/4/92	3/4/92	3/4/92	3/4/92	3/5/92	3/5/92	3/5/92	3/5/92	3/6/92	3/6/92	3/6/92	3/6/92	3/6/92	3/6/92	3/7/92	3/7/92	3/7/92	3/7/92	3/8/92	3/8/92	3/8/92	3/8/92	3/10/92	3/10/92	3/10/92	۲ ۲	2/19/92	2/19/92	2/19/92	2/19/92	2/19/92
Taken by	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES	Navajo-Z.R.S.	KWBES	KWBES	KWBES	KWBES	KWBES
HC thickness (ft)	sheen	sheen	0.56	0.04	2.22	0.02	sheen	2.91	0.21	0.01	sheen	4.64	2.47	2.56	2.35	sheen	none	2.93	3.77	2.49	4.56	2.58	0.03	none	1.04	0.78	0.5	none	>1.0"	none	none	none	none	none
Boring no.	67	88	69	20	12	72	73 .	74	75	76	77	78	62	8	81	82	83	<b>2</b> 8	85	86	87	88	89	8	16	<b>92</b>	<b>6</b> 3	94	KWB-28	KWB-1A	KWB-1B	KWB-2A	KWB-2B	KWB-3A

Continued Table 3.  $\leq_{i \in I} i$ ŧ ۱

1

!

|

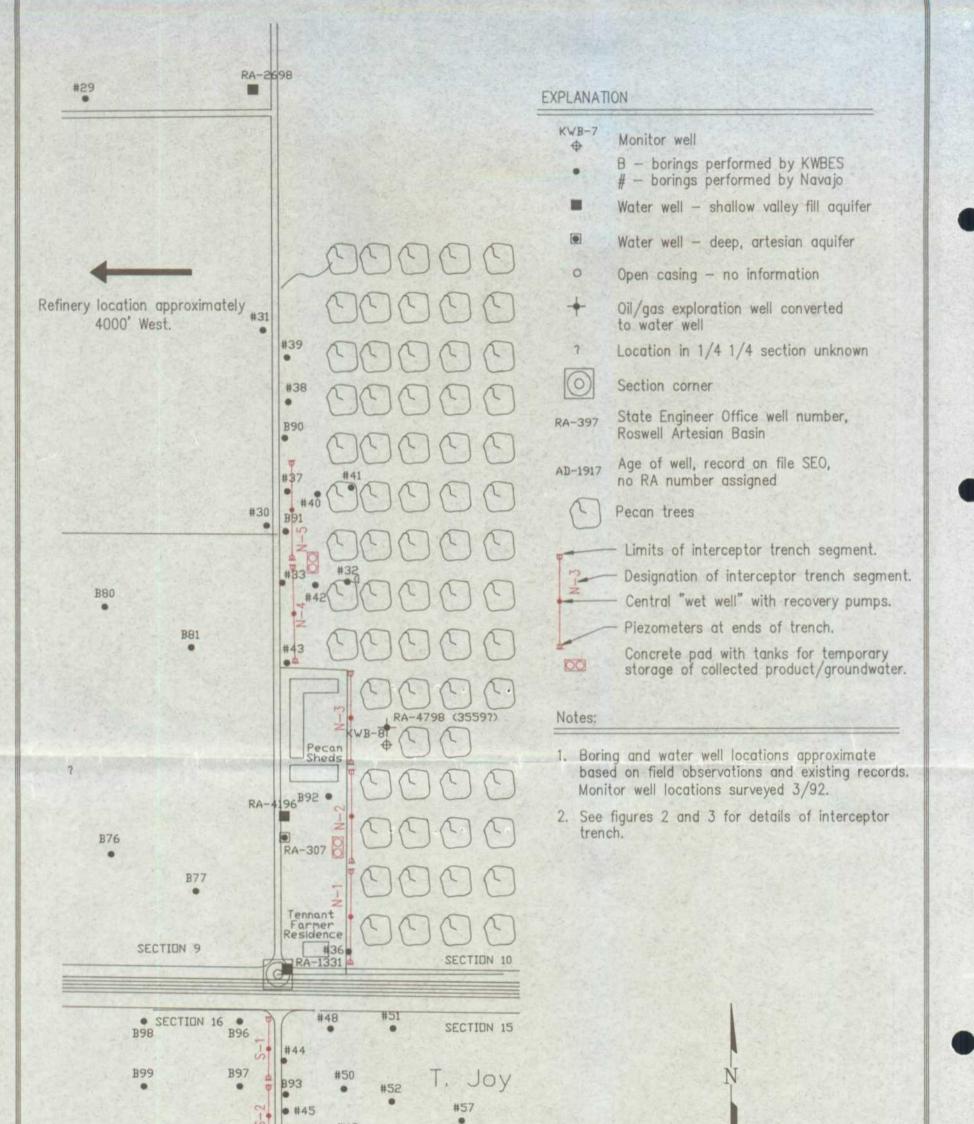
ł

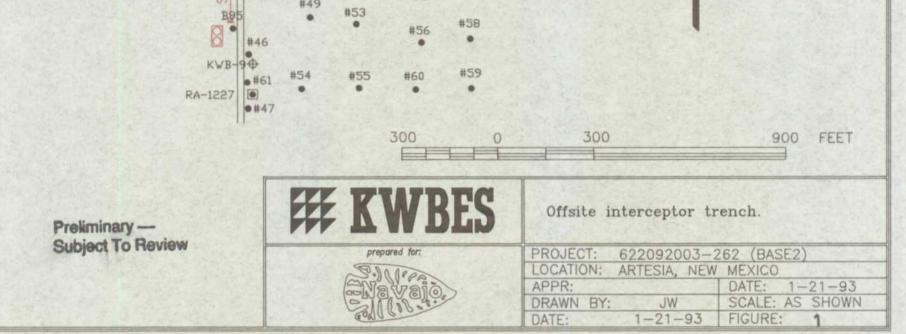
1

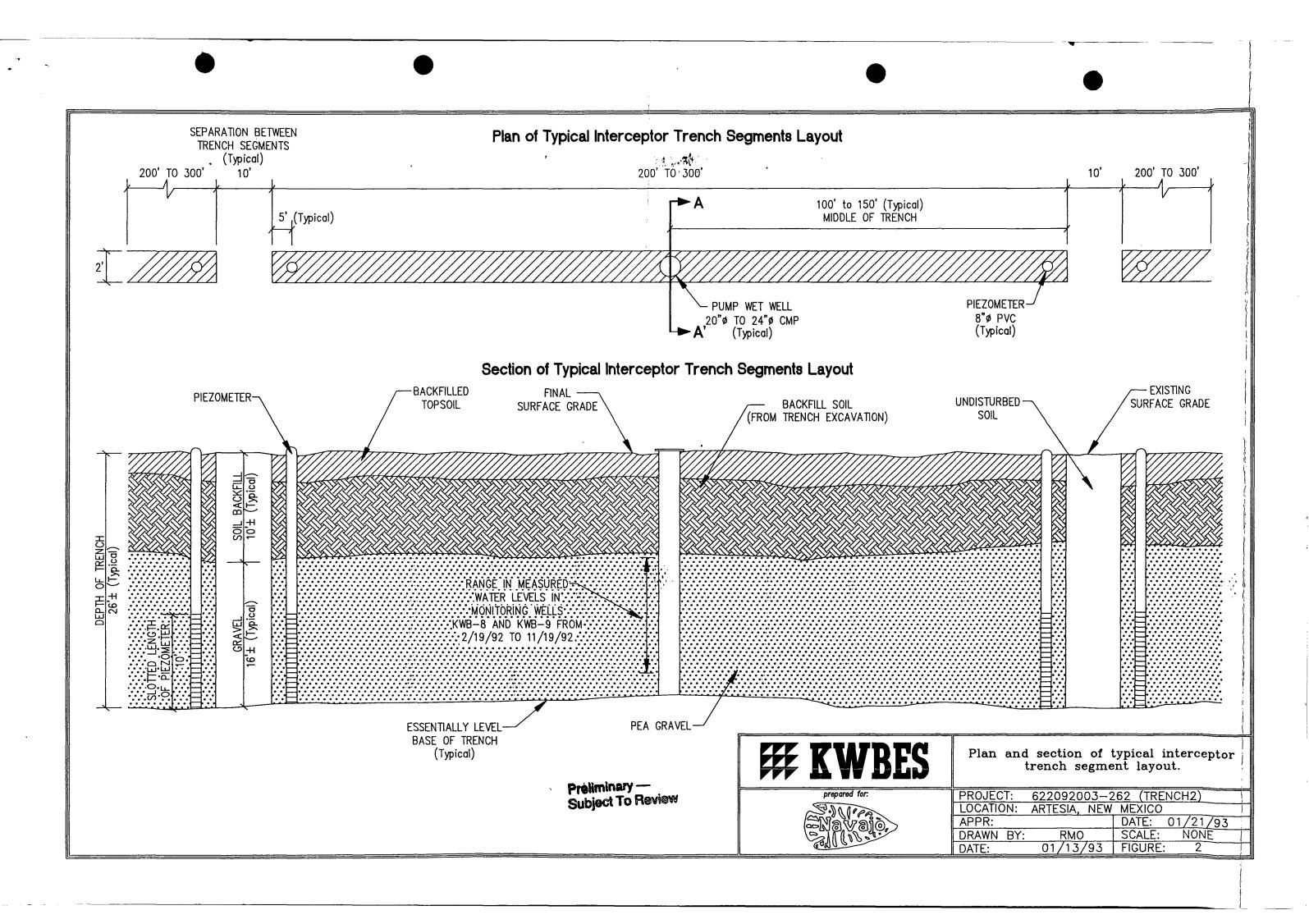
1

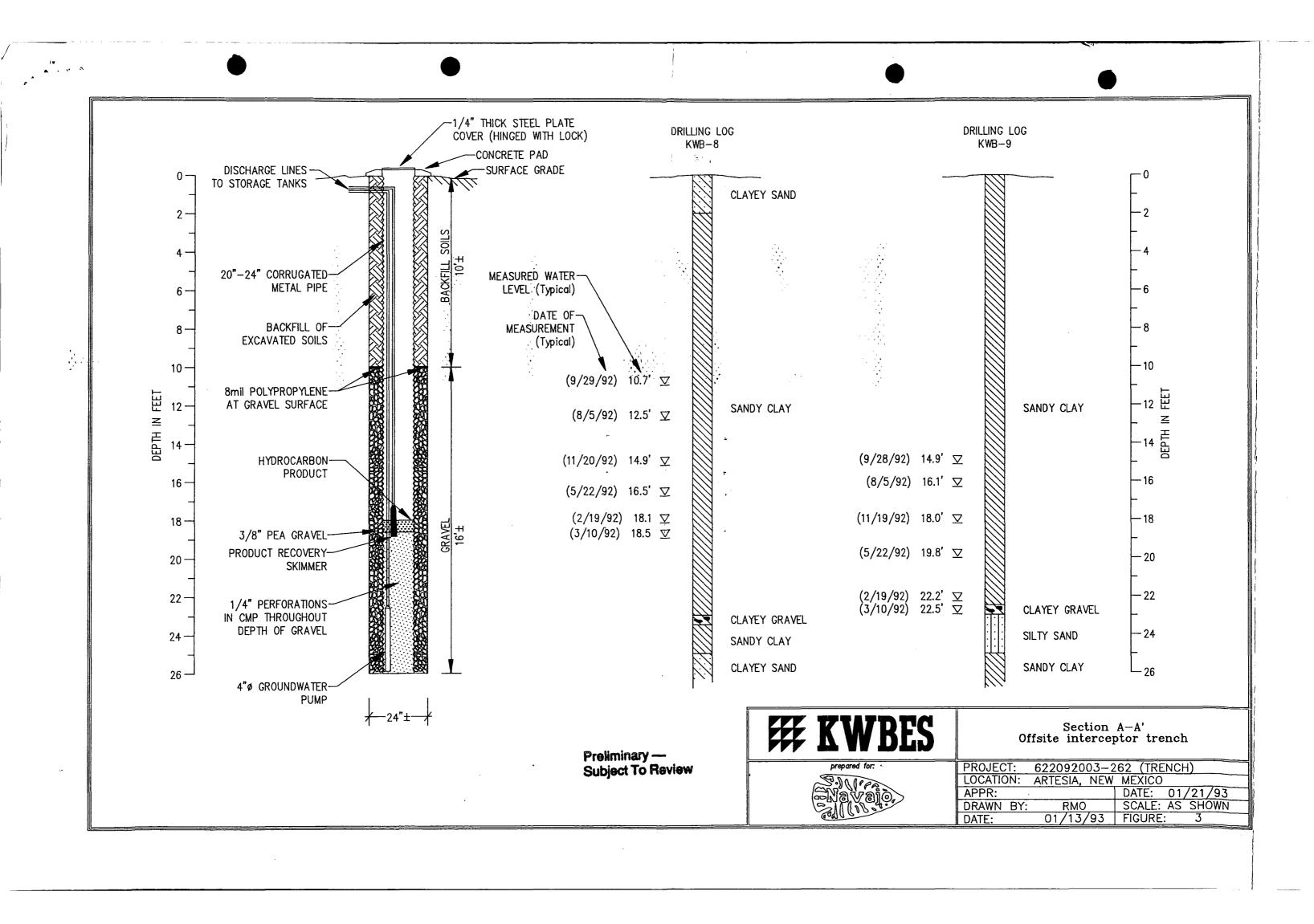
÷

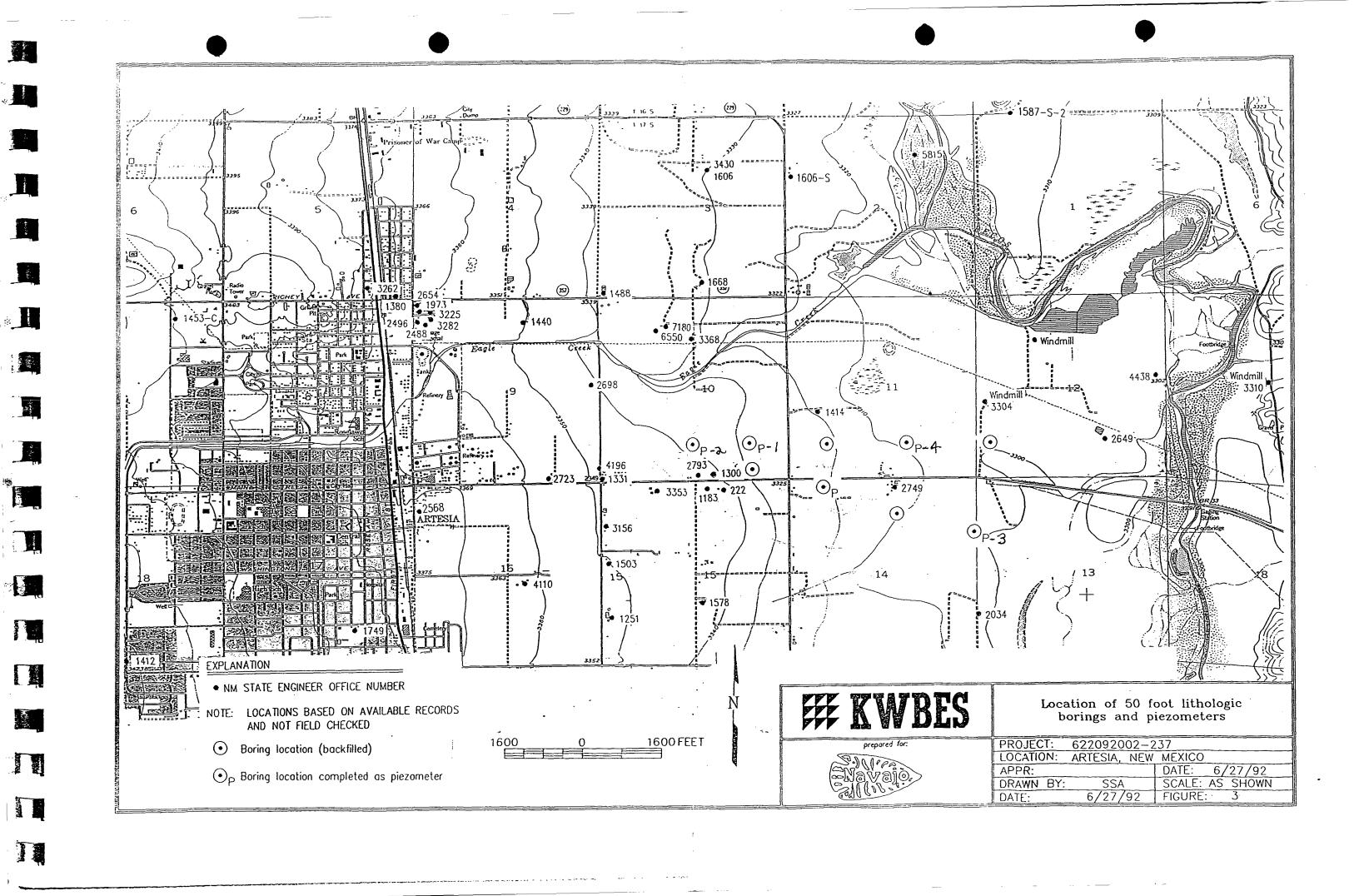
-


1


ents								- <b>·</b> ·													
Comments									۰ ۲	•											
<u>.</u>		•																			
Date		7/19/92	2/19/92	2/19/92	2/19/92	2/19/92	2/19/92	2/19/92		3/10/92	3/10/92	3/10/92	3/10/92	3/10/92	3/10/92	3/10/92	3/10/92	3/10/92	3/10/92	3/10/92	3/10/92
Taken by	ou ultr	<b>KWBES</b>	KWBES	KWBES	KWBES	KWBES	KWBES	KWBES		KWBES	KWBES										
HC thickness (ft)		none	none	none	3.25	none	none	none		none	none	none	none	none	none	2.11	< 0.06"	3.28	none	< 0.06 [°]	none
Boring no.		RWB-3B	KWB-4	KWB-5	KWB-6	KWB-7	KWB-8	KWB-9		KWB-1A	KWB-1B	KWB-2A	KWB-2B	KWB-3A	KWB-3B	KWB-4	KWB-5	KWB-6	KWB-7	KWB-8	KWB-9


Date given is the date of boring completion rather than date of measurement.
 NFMR - No field measurement recorded.


م م


ļ











3304 Longmire College Station, Texas 77845

Mr. David Boyer K. W. Brown Environmental Services 500 Graham Road College Station, TX 77845

January 8, 1993

Dear David,

On November 21, 1992, one soil sample and thirteen water samples were received by Inter-Mountain Laboratories - College Station. The samples were received cool and intact. Two trip blanks accompanied the samples. The samples were identified by Project Name "Navajo". Analyses for Volatiles (Methods 8020/ 8010), Semivolatiles (Method 8100), Dissolved Metals by ICP, Total Metals, pH, EC and Oii and Grease were performed according to the accompanying chain of custody forms and per Lisa Mayfield's phone conversation with you on November 23, 1992.

It is the policy of this laboratory to employ, whenever possible, preparatory and analytical methods which have been approved by regulatory agencies. The methods used in the analysis of samples reported herein are found in "Test Methods for Evaluating Solid Waste", SW-846, USEPA, 1986. All reports in this package reference methods utilized. Quality control within the laboratory includes analyse of method blanks, duplicates and spikes with each analytical batch.

Methods used for each analysis are listed on the reports. All detection limits are practical quantification limits (PQLs). PQLs have been corrected for the dry weight of the sample, dilutions, weight or volume of the sample analyzed, and the final volume of the extract analyzed.

Methyl tert-butyl Ether was requested December 9, 1992. MTBE was reported based on the original run if possible, since holding time had been exceeded. Hits were confirmed by GC/MS, Method 8240. If the hit exceeded the calibration range, an estimated concentration was reported based on the 8240 confirmation. On January 6, 1992 you requested we confirm the 1,2-Dichloroethane hits. KWB-9 confirmed at 7ug/L. KWB-11, KWB-11B, KWB-7 and KWB-12B did not confirm. KWB-7 and KWB-12B had headspace in the vials. Normal detection limit for GC/MS is 5ug/L.

Quality Control reports have been included for your information and use. These reports appear at the end of the analytical package and may be identified by title. If you have any questions regarding the information in this package, please feel free to call at your convenience.

Sincerely,

Uland Mlog-

Ulonda M. Rogers Lab Manager

encl.

KWBE2428

٠.	r			T				— ₁	<u> </u>	1		 [ <b></b> ]		 		Ô					
·				SW	ivol.										Tme	1430	Time	Time		) 0 1	11./36
· .		syr.		MDM	for Su										Data .	CH (C))	. Date	Date		7	
	ANALYSES / PARAMETERS	Pemarks Remarks	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X X Chech	X X Boyer	K X method	XX	XXX	XIX	XIX				 		here					X 3304 Longmire Drive 3304 Station, TX 77845 Telephone (409) 774-4999
RD	ANALYS		208 021 10421 208 028 57410/01	$ X  \times  S $	XX	XX	X X	$ X  \times  \delta $		XX						m hoge	nature)	atory: (Signature)			□ Route 3, Box 256 College Station, TX 77845 Telephone (409) 776-8945
CHAIN OF CUSTODY RECORD	-	613	No. of Containe	5	<b>n</b>	\$	γ	S	5	5				 	Becelved hv: (Signature)	Wender 7	Received by: (Signature)	Received by laboratory: (Signature)		ones, mc.	
<b>DISUC</b>	n NN	o No.	Matrix	her											Time	1625	Time	Time		Labural	910 Technology Blvd. Suite B Bozeman, Montana 59715 Telephone (406) 586-8450
OF (	t Location	stody Tape		Mat						7					Date	9/22/8		Date		ULIIAIII	
CHAIN	Project	Chain of Custody Tape No	Lab Number	C922428	622429	C922430	C922431	C922432	C922433	6922434									Lator AAC	Inter-Injournant Laboratories,	☐ 2506 West Main Street Farmington, NM 87401 Telephone (505) 326-4737
······· .		•	Time	1725	1320	1235	0zh1	1135	1555	2560	-		·	 ×.π							rcle 19 82716 ) 682-8945
·	sià Nh		Date	26/61/11		<u> </u>	11/20/92	11/20/92	11/17/92	2						•				<b>Ľ</b>	T14 Phillips Circle Gillette, Wyoming 82716 Telephone (307) 682-8945
Inter-Mountain Laboratories, Inc.	Client/Project Name Navajo / Antcsia	Sampler: (Signature)	Sample No./ Identification	KW8-1C	KWB -4	KwB - S	Kw3-6	KwB-8	15 W 0 - 9	Kwg - 10					Dollarutehod h/Slanda	the hard here	Relinquished by: (Signature)	Relinquished by: (Signature)			L 1633 Terra Avenue Sheridan, Wyoming 82801 Telephone (307) 672-8945

· · · · · · · · · · · · · · · · · · ·	 												 	·					-
		rks		the preserved	Mercuriè Chlocide			for a	atic method.		10 00	10, (0) 11, EC		~	2000 (5/c/11	Date Time 11/21/42 1430	Date Time		11727
; .	ANALYSES / PARAMETERS	A	w dost	VOA duplica	X WYA Mer		X Chack	X Amuer	Semivolatik		Soil Nr.	12/ax							X 3304 Longmire Drive College Station, TX 77845 Telephone (409) 774-499
		ક્રિ	ICP Mer [1940] 1940] 1990,2008				$\times$ $\times$ $\times$ $\times$							e)	Z	ev Leg	: (Signature)		□ Route 3, Box 256 3302 College Station, TX 77845 Coll Telephone (409) 776-8945 Tele
CHAIN OF CUSTODY RECORD	·		No. of Contain Volietrics	~~~		e R	xx ve	2 X X			 			ece/ved by: (Signature)	WA Kon	Received by: (Signahure) LLONAL 7M, L	Received by laboratory: (Signature)	ies, Inc.	
	" NN	e No.	Matrix											Time	1 0060 24	Time 1/500	Time	Laboratories,	910 Technology Blvd. Suite B Bozeman, Montana 59715 Telephone (406) 586-8450
V OF C	Project Location	istody Tap		Water	Nater	Water	Water	NAJE 1		,	1.er			Date	r1/2019.	Date 11/2015	Date	ountain	1
CHAIN	Pro	Chain of Custody Tape	Lab Number	C922436	0922437	C922438	Case 439	14/2000			(42244)							Inter-Mountain	☐ 2506 West Main Street Farmington, NM 87401 Telephone (505) 326-4737
			Tme T	0915	0915	025	1200	1445		.	One /		 		·	- 17 - 742.000 - 1	NI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ircle ing 82716 7) 682-8945
	Fineru	140	Date	51/19/92	25/61/11			11/19/2	1	$\downarrow$	c6/2e/n				7			-	Telephone (307) 682-8945
Inter-Mountain Laboratories, Inc.	Cilent/Project Name	Sampler: (Signature)	Sample No./ Identification	KWB-118 dup	1	KWB - 11 A	KW8 - 7	Vull - 17 d	2		EC-51)-007			Relinquished by: (Signature)	The Manie	Relinquished by: (Signature)	shed		1633 Terra Avenue 1633 Terra Avenue Sheridan, Wyoming 82801 Telephone (307) 672-8945

-

I I

3304 Longmire College Station, Texas 77845

#### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

**Client:** 

**K W. Brown Environmental Services** 

Project Name: Sample ID: Sample Number: C922443 Sample Matrix: Preservative: Condition:

Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico **Travel Blank** Water Cool, HCI Intact, pH=2

Report Date:	12/14/92
Date Sampled:	NA
Date Received:	11/21/92
Date Analyzed:	12/04/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ŇD	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	41.9 B	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

B - Analyte detected in blank

3304 Longmire College Station, Texas 77845

#### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Client:	K W. Brown Environmental Services		
Project Name:	Navajo - Artesia, New Mexico	Report Date:	12/14/92
<b>Project Location:</b>	Artesia, New Mexico	Date Sampled:	NA
Sample ID:	Travel Blank	Date Received:	11/21/92
Sample Number:	C922443	Date Analyzed:	12/04/92
Sample Matrix:	Water		
Preservative:	Cool, HCI		
Condition:	Intact, pH=2		

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	102%	75-125%
	Bromochloromethane	97%	75-125%

 Reference:
 Method 5030, Purge and Trap

 Method 8010, Halogenated Volatile Organics
 Method 8020, Aromatic Volatile Organics

 SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental
 Protection Agency, September 1986.

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

Man Analyst

Ulman M log Review

3304 Longmire College Station, Texas 77845

#### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Client:

**K W. Brown Environmental Services** 

Project Name: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico Travel Blank C922435 Water Cool, HCI Intact, pH=2

Report Date:	12/10/92
Date Sampled:	NA
Date Received:	11/21/92
Date Analyzed:	12/03/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	17.2 B	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

ND - Analyte not detected at stated detection limit. B - Analyte detected in blank

3304 Longmire College Station, Texas 77845

#### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Client:	K W. Brown Environmental Services		
Project Name:	Navajo - Artesia, New Mexico	Report Date:	12/10/92
Project Location:	Artesia, New Mexico	Date Sampled:	NA
Sample ID:	Travel Blank	Date Received:	11/21/92
Sample Number:	C922435	Date Analyzed:	12/03/92
Sample Matrix:	Water		
Preservative:	Cool, HCI		
Condition:	Intact, pH=2		

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	117%	75-125%
	Bromochloromethane	114%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8010, Halogenated Volatile Organics<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

Th Undy/

Uloud M lag-

3304 Longmire College Station, Texas 77845

#### QUALITY CONTROL REPORT - MATRIX SPIKE METHOD 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Sample Number: Sample Matrix: Preservative: Condition:

i

C922432 Spike Water Cool, HCI Intact, pH=2 Date Sampled:11/20/92Date Received:11/21/92Date Analyzed:12/01/92

	Spike Added	Sample Result	Spike Result	Percent	Acceptance
Analyte	(ug/L)	(ug/L)	(ug/L)	Recovery	Limit
Benzene	200	429	589	80%	39-150%
Bromodichloromethane	200	ND	209	105%	42-172%
Bromoform	200	ND	195	98%	13-159%
Bromomethane	NA	ND	NA	NA	D-144%
Carbon tetrachloride	200	ND	218	109%	43-143%
Chlorobenzene	400	ND	433	108%	38-150%
Chloroethane	NA	ND	NA	NA	46-137%
2-Chloroethylvinylether	200	ND	150	75%	14-186%
Chloroform	200	ND	206	103%	49-133%
Chloromethane	NA	ND	NA	NA	D-193%
Dibromochloromethane	200	ND	216	108%	24-191%
1,2-Dichlorobenzene	400	ND	460	115%	D-208%
1,3-Dichlorobenzene	400	ND	453	113%	7-187%
1,4-Dichlorobenzene	400	ND	474	119%	42-143%
Dichlorodifluoromethane	NA	ND	NA	NA	47-132%
1,1-Dichloroethane	200	ND	204	102%	51-147%
1,2-Dichloroethane	200	ND	230	115%	28-167%
1,1-Dichloroethene	200	ND	333	167%	38-155%
trans-1,2-Dichloroethene	200	ND	204	102%	44-156%
1,2-Dichloropropane	200	ND	214	107%	22-178%
trans-1,3-Dichloropropene	200	ND	224	112%	22-178%
Ethylbenzene	200	286	473	94%	32-160%
Methylene Chloride	200	250 B	136 B	57%	25-162%
1,1,2,2-Tetrachloroethane	200	ND	220	110%	8-184%
Tetrachloroethene	200	ND	238	119%	26-162%
Toluene	200	120	325	103%	46-148%
1,1,1-Trichloroethane	200	36.5	213	88%	41-138%
1,1,2-Trichloroethane	200	ND	229	115%	39-136%
Trichloroethene	200	ND	211	106%	35-146%
Trichlorofluoromethane	NA	ND	NA	NA	21-156%
Vinyl chloride	NA	ND	NA	NA	28-163%
p, m - Xylene	400	107	529	106%	50-150%
o - Xylene	200	45.4	268	111%	50-150%

ND - Analyte not detected at stated detection limit.

B - Analyte detected in blank

#### **QUALITY CONTROL REPORT - MATRIX SPIKE** METHOD 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2

Sample Number: Sample Matrix: Preservative: Condition:

C922432 Spike Water Cool, HCI Intact, pH=2

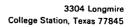
Date Sampled: 11/20/92 Date Received: 11/21/92 Date Analyzed: 12/01/92

**Quality Control:** 

Surrogate 1-Chloro-2-Fluorobenzene Bromochloromethane

Percent Recovery 99% 102%

Acceptance Limits 75-125% 75-125%


**Reference:** 

Method 5030, Purge and Trap Method 8010, Halogenated Volatile Organics Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

**Comments:** 

In Mady

Ulonde M Log Review



#### Inter Mountain Laboratories, Inc.

3304 Longmire College Station, Texas 77845

#### QUALITY CONTROL REPORT - MATRIX SPIKE DUPLICATE METHOD 8010/8020

#### HALOGENATED/AROMATIC VOLATILE ORGANICS

Sample Number: Sample Matrix: Preservative: Condition: C922432 Spike Duplicate Water Cool, HCl Intact, pH=2 Date Sampled:11/20/92Date Received:11/21/92Date Analyzed:12/01/92

	Spike	Spike Dup	Percent
Analyte	(%)	(%)	Difference
Benzene	80%	84%	4.3%
Bromodichloromethane	105%	114%	8.2%
Bromoform	98%	106%	7.4%
Bromomethane	NA	NA	NA
Carbon tetrachloride	109%	109%	0.0%
Chlorobenzene	108%	110%	1.4%
Chloroethane	NA	NA	NA
2-Chloroethylvinylether	75%	79%	4.6%
Chloroform	103%	107%	3.8%
Chloromethane	NA	NA	NA
Dibromochloromethane	108%	111%	2.7%
1,2-Dichlorobenzene	115%	116%	1.1%
1,3-Dichlorobenzene	113%	114%	1.1%
1,4-Dichlorobenzene	119%	119%	0.2%
Dichlorodifluoromethane	NA	NA	NA
1,1-Dichloroethane	102%	107%	4.8%
1,2-Dichloroethane	115%	116%	0.9%
1,1-Dichloroethene	167%	198%	17.0%
trans-1,2-Dichloroethene	120%	106%	12.4%
1,2-Dichloropropane	107%	107%	0.5%
trans-1,3-Dichloropropene	112%	113%	0.9%
Ethylbenzene	94%	97%	3.1%
Methylene Chloride	57%	52%	10.1%
1,1,2,2-Tetrachloroethane	110%	117%	5.7%
Tetrachloroethene	119%	118%	1.3%
Toluene	103%	105%	1.4%
1,1,1-Trichloroethane	88%	91%	3.1%
1,1,2-Trichloroethane	115%	113%	1.8%
Trichloroethene	106%	108%	1.4%
Trichlorofluoromethane	NA	NA	NA
Vinyl chloride	NA	NA	NA
p, m - Xylene	106%	107%	0.9%
o - Xylene	111%	113%	1.6%

METHOD 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2

**QUALITY CONTROL REPORT - MATRIX SPIKE DUPLICATE** 

Sample Number: Sample Matrix: Preservative: Condition: C922432 Spike Duplicate Water Cool, HCI Intact, pH=2

Date Sampled: 11/20/92 Date Received: 11/21/92 Date Analyzed: 12/01/92

**Quality Control:** 

<u>Surrogate</u> 1-Chloro-2-Fluorobenzene Bromochloromethane Percent Recovery 100% 102% <u>Acceptance Limits</u> 75-125% 75-125%

Reference:

Method 5030, Purge and Trap Method 8010, Halogenated Volatile Organics Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

Comments:

un Waduff

Ulma Mlog

3304 Longmire College Station, Texas 77845

3304 Longmire College Station, Texas 77845

#### QUALITY CONTROL REPORT - MATRIX SPIKE METHOD 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Sample Number: Sample Matrix: Preservative: Condition: C922438 Spike Water Cool, HCI Intact, pH=2

Date Sampled: 11/19/92 Date Received: 11/21/92 Date Analyzed: 12/02/92

	Spike Added	Sample Result	Spike Result	Percent	Acceptance
Analyte	(ug/L)	(ug/L)	(ug/L)	Recovery	Limit
Benzene	20.0	ND	20.0	100%	39-150%
Bromodichloromethane	20.0	ND	19.6	98%	42-172%
Bromoform	20.0	ND	19.7	99%	13-159%
Bromomethane	NA	ND	NA	NA	D-144%
Carbon tetrachloride	20.0	ND	23.4	117%	43-143%
Chlorobenzene	40.0	ND	41.1	103%	38-150%
Chloroethane	NA	ND	NA	NA	46-137%
2-Chloroethylvinylether	20.0	ND	4.5	23%	14-186%
Chloroform	20.0	ND	23.4	117%	49-133%
Chloromethane	NA	ND	NA	NA	D-193%
Dibromochloromethane	20.0	ND	18.8	94%	24-191%
1,2-Dichlorobenzene	40.0	ND	40.4	101%	D-208%
1,3-Dichlorobenzene	40.0	ND	41.1	103%	7-187%
1,4-Dichlorobenzene	40.0	ND	41.0	103%	42-143%
Dichlorodifluoromethane	NA	ND	NA	NA	47-132%
1,1-Dichloroethane	20.0	ND	24.2	121%	51-147%
1,2-Dichloroethane	20.0	2.9	21.9	95%	28-167%
1,1-Dichloroethene	20.0	ND	25.1	126%	38-155%
trans-1,2-Dichloroethene	20.0	ND	23.0	115%	44-156%
1,2-Dichloropropane	20.0	ND	19.7	99%	22-178%
trans-1,3-Dichloropropene	20.0	ND	19.4	97%	22-178%
Ethylbenzene	20.0	ND	20.6	103%	32-160%
Methylene Chloride	20.0	4.7 B	20.4 B	79%	25-162%
1,1,2,2-Tetrachloroethane	20.0	ND	20.3	102%	8-184%
Tetrachloroethene	20.0	ND	19.3	97%	26-162%
Toluene	20.0	ND	20.5	103%	46-148%
1,1,1-Trichloroethane	20.0	ND	23.3	117%	41-138%
1,1,2-Trichloroethane	20.0	ND	19.9	100%	39-136%
Trichloroethene	20.0	ND	20.4	102%	35-146%
Trichlorofluoromethane	NA	ND	NA	NA	21-156%
Vinyl chloride	NA	ND	NA	NA	28-163%
p, m - Xylene	40.0	ND	41.3	103%	50-150%
o - Xylene	20.0	ND	20.6	103%	50-150%

ND - Analyte not detected at stated detection limit.

B - Analyte detected in blank

QUALITY CONTROL REPORT - MATRIX SPIKE METHOD 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2

Sample Number: Sample Matrix: Preservative: Condition: C922438 Spike Water Cool, HCl Intact, pH=2

Date Sampled: 11/19/92 Date Received: 11/21/92 Date Analyzed: 12/02/92

Quality Control:

Surrogate 1-Chloro-2-Fluorobenzene Bromochloromethane Percent Recovery 107% 116% Acceptance Limits 75-125% 75-125%

**Reference:** 

Method 5030, Purge and Trap Method 8010, Halogenated Volatile Organics Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

**Comments:** 

KUladanff

Ulend Mlog Review



3304 Longmire College Station, Texas 77845

#### 3304 Longmire College Station, Texas 77845

#### **QUALITY CONTROL REPORT - METHOD BLANK** METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Sample Number: MB1129V1 Sample Matrix:

Inter Mountain Laboratories, Inc.

Water

Date Sampled: NA Date Received: NA Date Analyzed: 11/29/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	1.5	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

ND - Not detected at stated detection limit

**QUALITY CONTROL REPORT - METHOD BLANK METHODS 8010/8020** HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 Date Analyzed: 11/29/92 Sample Number: MB1129V1 Sample Matrix: Water Acceptance Limits Quality Control: Surrogate Percent Recovery 75-125% 1-Chloro-2-Fluorobenzene 98% Bromochloromethane 92% 75-125% Method 5030, Purge and Trap **Reference:** Method 8010, Halogenated Volatile Organics

Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

Madul

Ulman M Ray

Inter Mountain Laboratories, Inc.

#### QUALITY CONTROL REPORT - METHOD BLANK METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Sample Number: MB1201V1 Sample Matrix:

Water

Date Sampled: NA Date Received: NA Date Analyzed: 12/01/92

	Career trains (meth)	
Analyte Benzene	Concentration (ug/L) ND	Detection Limit (ug/L) 0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	3.9	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

#### 3304 Longmire College Station, Texas 77845

QUALITY CONTROL REPORT - METHOD BLANK

#### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2

Sample Number: MB1201V1 Sample Matrix: Water Date Analyzed:

12/01/92

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	102%	75-125%
	Bromochloromethane	107%	75-125%

 Reference:
 Method 5030, Purge and Trap

 Method 8010, Halogenated Volatile Organics
 Method 8020, Aromatic Volatile Organics

 SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental
 Protection Agency, September 1986.

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

May Analyst

Ulmah M Rog-Review

#### QUALITY CONTROL REPORT - METHOD BLANK METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Sample Number: MB1202V1 Sample Matrix:

Water

Date Sampled:	NA
Date Received:	NA
Date Analyzed:	12/02/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chiorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	9.3	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

ND - Not detected at stated detection limit

3304 Longmire College Station, Texas 77845 **QUALITY CONTROL REPORT - METHOD BLANK METHODS 8010/8020** HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 Date Analyzed: 12/02/92 Sample Number: MB1202V1 Water Sample Matrix: Percent Recovery Acceptance Limits Quality Control: Surrogate 1-Chloro-2-Fluorobenzene 104% 75-125% 100% 75-125% Bromochloromethane Method 5030, Purge and Trap **Reference:** Method 8010, Halogenated Volatile Organics Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986. Methylene Chloride is a common laboratory contaminant. Analytical results **Comments:** should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

Wede

Ulmd Mlog Review

#### QUALITY CONTROL REPORT - METHOD BLANK METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Sample Number: MB1204V1 Sample Matrix:

Water

Date Sampled:	NA
Date Received:	NA
Date Analyzed:	12/04/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	. 5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	2.5	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

ND - Not detected at stated detection limit

College Station, Texas 77845

QUALITY CONTROL REPORT - METHOD BLANK

#### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2

Sample Number: MB1204V1 Sample Matrix: Water Date Analyzed:

12/04/92

3304 Longmire

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	101%	75-125%
	Bromochloromethane	98%	75-125%

 Reference:
 Method 5030, Purge and Trap

 Method 8010, Halogenated Volatile Organics

 Method 8020, Aromatic Volatile Organics

 SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental

 Protection Agency, September 1986.

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

. Wada

<u>Ulma Mlog</u> Review

#### Inter Mountain Laboratories, Inc.

Water

3304 Longmire College Station, Texas 77845

#### QUALITY CONTROL REPORT - METHOD BLANK Method 8100 - POLYNUCLEAR AROMATIC HYDROCARBONS

Client: Project Name: Sample I.D.: Sample Number: Sample Matrix:

t,

K.W. Brown Environmental Services, Inc. Navajo Refinery Method Blank MB794

Date Extracted: 11/26/92 Date Analyzed: 12/17/92

Analyte	Concentration	Detection Limit
	(ug/L)	(ug/L)
Naphthalene	ND	5.0
Acenaphthylene	ND	5.0
Acenaphthene	ND	5.0
Fluorene	ND	5.0
Phenanthrene	ND	5.0
Anthracene	ND	5.0
Fluoranthene	ND	5.0
Pyrene	ND	5.0
Benzo(a)anthracene	ND	5.0
Chrysene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzo(a)pyrene	ND	5.0
Ideno(1,2,3-cd)pyrene	ND	5.0
Dibenzo(a,h)anthracene	ND	5.0
Benzo(ghi)perylene	ND	5.0
Dibenz(a,j)acridine	ND	5.0
3-Methylcholanthene	ND	5.0
Dibenz(a,h)acridine	ND	5.0
Dibenz(a,j)acridine	ND	5.0
7H-Dibenz(c,g)carbazole	ND	5.0
Dibenzo(a,e)pyrene	ND	5.0
Dibenzo(a,i)pyrene	ND	5.0
Dibenzo(a,h)pyrene	ND	5.0

ND - Analyte not detected at stated detection limit

**References:** 

Method 8100: Polynuclear Aromatic Hydrocarbons

Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency, Volume IB, September 1986.

I han Wigginbotham Analyse

3. Mr. Shylu

Review

es, Inc. Date E

Water

3304 Longmire College Station, Texas 77845

#### **QUALITY CONTROL REPORT - METHOD BLANK** Method 8100 - POLYNUCLEAR AROMATIC HYDROCARBONS

Client: Project Name: Sample I.D.: Sample Number: Sample Matrix:

K.W. Brown Environmental Services, Inc. Navajo Refinery **Method Blank MB797** 

Date Extracted: 11/27/92 Date Analyzed: 12/18/92

Analyte	Concentration	Detection Limit
	(ug/L)	(ug/L)
Naphthalene	ND	5.0
Acenaphthylene	ND	5.0
Acenaphthene	ND	5.0
Fluorene	ND	5.0
Phenanthrene	ND	5.0
Anthracene	ND	5.0
Fluoranthene	ND	5.0
Pyrene	ND	5.0
Benzo(a)anthracene	ND	5.0
Chrysene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzo(a)pyrene	ND	5.0
Ideno(1,2,3-cd)pyrene	ND	5.0
Dibenzo(a,h)anthracene	ND	5.0
Benzo(ghi)perylene	ND	5.0
Dibenz(a,j)acridine	ND	5.0
3-Methylcholanthene	ND	5.0
Dibenz(a,h)acridine	ND	5.0
Dibenz(a,j)acridine	ND	5.0
7H-Dibenz(c,g)carbazole	ND	5.0
Dibenzo(a,e)pyrene	ND	5.0
Dibenzo(a,i)pyrene	ND	5.0
Dibenzo(a,h)pyrene	ND	5.0

ND - Analyte not detected at stated detection limit

**References:** 

Method 8100: Polynuclear Aromatic Hydrocarbons

Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency, Volume IB, September 1986.

Many Migginbotham Analyst

5. Vin Syle

3304 Longmire College Station, Texas 77845

### **QUALITY CONTROL REPORT - MATRIX SPIKE**

#### **Polynuclear Aromatic Hydrocarbons**

Sample I.D.: Sample Number: Sample Matrix:

Matrix Spike DI 869 Water

Date Extracted: 12/28/92 Date Analyzed: 01/05/93

Analyte	Spike Added (ug/L)	Sample Result (ug/L)	Spike Result (ug/L)	Percent Recovery	Acceptance Limit (%)
Naphthalene	100	ND	61.0	61%	D-122
Acenaphthylene	100	ND	68.0	68%	D-139
Acenaphthene	100	ND	68.9	69%	D-124
Fluorene	100	ND	66.9	67%	D-142
Indeno(1,2,3)pyrene	100	ND	69.7	70%	D-116

ND - Analyte not detected at stated detection limit **D** - Detection

**Reference:** 

Method 8100 - Polynuclear Aromatic Hydrocarbons SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

Likninbr

3. Ven She

11183 SH 30 College Station, Texas 77845

#### WATER QUALITY REPORT TRACE METALS QUALITY CONTROL REPORT-MATRIX SPIKE ANALYSIS

#### CLIENT: K.W. BROWN ENVIRONMENTAL SERVICES

NAVAJO - #622092005

Sample ID:KWB-12BLaboratory Number:C922440/15742Sample Matrix:WATERPreservative:HNO3, COOLCondition:INTACT

**PROJECT:** 

 Report Date:
 12/30/92

 Date Sampled:
 11/19/92

 Date Received:
 11/23/92

 Date Extracted:
 11/30/92

	Unspiked	Spiked	Saika	Percent	Detection	Method
Analyte	Sample Concentration	Sample Concentration	Spike Amount	Recovery	Limit	Reference
	(mg/L)	(mg/L)	(mg/L)		(mg/L)	
Dissolved Arsenic	ND	0.012	0.010	120	0.005	7061
Dissolved Chromium	ND	0.06	0.05	120	0.02	7191
Dissolved Lead	ND	0.04	0.05	80	0.02	7421
Dissolved Nickel	0.07	0.51	0.50	89	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE: Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

Reviewed by:

Mitch Swan Supervisor--Water Operations



11183 SH 30 College Station, Texas 77845

#### 3050 DIGESTION TRACE METAL CONCENTRATIONS QUALITY CONTROL REPORT - METHOD BLANK

# CLIENT:KW BROWN ENVIRONMENTAL SERVICESPROJECT:NavajoJOB NUMBER:622092005

Laboratory Number:	MB120792	Report Date:	12/31/92
Sample Matrix:	WATER	Date Extracted:	12/07/92

Analyte	Concentration (mg/L)	Detection Limit (mg/L)	Method Reference
Arsenic	NR	0.005	7061
Barium	NR	0.5	7080
Cadmium	NR	0.005	7131
Chromium	ND	0.02	7190
Lead	ND	0.01	7421
Nickel	NR	0.01	7520
Selenium	NR	0.002	7741
Silver	NR	0.01	7760

ND - Parameter Not Detected at stated detection level.

NR - Parameter Not Requested for analysis.

**REFERENCE:** 

Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", United States Environmental Protection Agency, November, 1986.

Reviewed by:

Toelit. airo

David N. Poelstra Laboratory Manager

Phone (409) 776-8945 FAX (409) 774-4705

Inter-Muntain Laboratories, Inc.

11183 SH 30 College Station, Texas 77845

#### 3050 DIGESTION TRACE METAL CONCENTRATIONS QUALITY CONTROL REPORT - METHOD BLANK

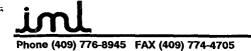
# CLIENT:KW BROWN ENVIRONMENTAL SERVICESPROJECT:NavajoJOB NUMBER:622092005

Laboratory Number:	MB123092	Report Date:	12/31/92
Sample Matrix:	WATER	Date Extracted:	12/30/92

Analyte	Concentration (mg/L)	Detection Limit (mg/L)	Method Reference
Arsenic	NR	0.005	7061
Barium	NR	0.5	7080
Cadmium	NR	0.005	7131
Chromium	ND	0.02	7190
Lead	ND	0.01	7421
Nickel	NR	0.01	7520
Selenium	NR	0.002	7741
Silver	NR	0.01	7760

ND - Parameter Not Detected at stated detection level.

NR - Parameter Not Requested for analysis.


**REFERENCE:** 

Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", United States Environmental Protection Agency, November, 1986.

Reviewed by:

rid a foelto

David N. Poelstra Laboratory Manager



11183 SH 30 College Station, Texas 77845

#### WATER QUALITY REPORT QUALITY CONTROL REPORT-REFERENCE STANDARD ANALYSIS

## CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

Analyte	Found Concentration (mg/L)	Known Concentration (mg/L)	Standard Reference ID	Method Reference
Arsenic	0.0101	0.0100	SPEX	SW-846 7061
Chromium	0.049	0.050	ERA 9947	SW-846 7190
Lead	0.039	0.040	SPEX	SW-846 7421
Nickel	0.25	0.25	ERA 9947	SW-846 7520

REFERENCE: SW-846 - "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

Reviewed by:

*Mrth* 

Mitch Swan Supervisor--Water Operations

Phone (409) 776-8945 FAX (409) 774-4705

#### 11183 SH 30 College Station, Texas 77845

## CLIENT: PROJECT:

#### K.W. BROWN ENVIRONMENTAL SERVICES NAVAJO - #622092005

Sample ID:		KWB-1B	KWB-2A	KWB-3A	METHOD
Laboratory Number:		C922030/15211	C922031/15212	C922032/15213	REFERENCE
Date Sampled:		09/26/92	09/28/92	09/28/92	
Dissolved Aluminum	mg/L	6.2	12.3	2.2	6010
Dissolved Arsenic	mg/L	0.005	0.005	<0.005	7061
Dissolved Barium	mg/L	<0.2	<0.2	<0.2	6010
Dissolved Boron	mg/L	0.72	0.31	0.15	6010
Dissolved Cadmium	mg/L	<0.005	0.013	<0.005	6010
Dissolved Chromium	mg/L	<0.02	<0.02	<0.02	6010
Dissolved Cobalt	mg/L	<0.02	<0.02	<0.02	6010
Dissolved Copper	mg/L	<0.01	<0.01	<0.01	6010
Dissolved Iron	mg/L	6.05	6.46	1.93	6010
Dissolved Manganese	mg/L	0.16	0.20	0.04	6010
Dissolved Molybdenum	mg/L	<0.05	<0.05	<0.05	6010
Dissolved Lead	mg/L	<0.01	<0.01	<0.01	7421
Total Mercury	mg/L	0.002	<0.002	<0.002	7470
Dissolved Nickel	mg/L	<0.05	<0.05	<0.05	6010
Dissolved Selenium	mg/L	0.006	0.011	0.023	7741
Dissolved Silver	mg/L	<0.01	<0.01	<0.01	6010
Dissolved Zinc	mg/L	0.09	0.05	0.05	6010
Fluoride	mg/L	1.2	0.8	0.4	EPA 340.2

**REFERENCE:** 

Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

EPA - "Methods for Chemical Analysis of Water and Wastes," US EPA, EPA 600/4-79-020, Revised March 1983.

Reviewed by:

Mitch Swan Supervisor--Water Operations

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client:K. W. BroProject Name:Navajo - /Project Number:62209200Login Number:9210003Sample ID:KWB - 1BSample Number:C922030Sample Matrix:WaterPreservative:Cool, pHCondition:Intact

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 KWB - 1B C922030 Water Cool, pH < 6 Intact

Report Date:	10/14/92
Date Sampled:	09/26/92
Date Received:	10/08/92
Date Analyzed:	10/08/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	1.5	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	98%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

im Warden

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client:K. W. BroProject Name:Navajo - AProject Number:62209200Login Number:9210003Sample ID:KWB - 1 DSample Number:C922040Sample Matrix:WaterPreservative:Cool, pHCondition:Intact

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 KWB - 1 Deep (IC)C922040 A A AWater Cool, pH < 2 Intact

Report Date:	10/14/92
Date Sampled:	10/01/92
Date Received:	10/08/92
Date Analyzed:	10/13/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	6.4	0.5
Toluene	12.2	0.5
Ethylbenzene	6.1	0.5
p,m-Xylene	11.5	0.5
o-Xylene	4.7	0.5

ND - Analyte not detected at stated detection limit.

Quality Control: <u>Surrogate</u> 1-Chloro-2-Fluorobenzene Percent Recovery 91% Acceptance Limits 75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

Maduf

3304 Longmire College Station, Texas 77845

#### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

**Client:** 

#### **K W. Brown Environmental Services**

Project Name: Sample ID: Sample Number: C922428 Sample Matrix: Preservative: Condition:

Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico **KWB - 1C** Water Cool, HCI Intact, pH=2

Report Date:	12/10/92
Date Sampled:	11/19/92
Date Received:	11/21/92
Date Analyzed:	11/29/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	26.2	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	. 5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	1.3 B	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	0.9	0.5
o - Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

3304 Longmire College Station, Texas 77845

> 12/10/92 11/19/92 11/21/92 11/29/92

B - Analyte detected in blank

## METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Client:	K W. Brown Environmental Services	
Project Name:	Navajo - Artesia, New Mexico	Report Date:
Project Location:	Artesia, New Mexico	Date Sampled:
Sample ID:	KWB - 1C	Date Received:
Sample Number:	C922428	Date Analyzed:
Sample Matrix:	Water	
Preservative:	Cool, HCI	
Condition:	Intact, pH=2	

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	94%	75-125%
	Bromochloromethane	88%	75-125%

Reference:	Method 5030, Purge and Trap
	Method 8010, Haiogenated Volatile Organics
	Method 8020, Aromatic Volatile Organics
	SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental
	Protection Agency, September 1986.

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

Analyst

Uland M Kog

3304 Longmire College Station, Texas 77845

# EPA Method 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

#### K.W. Brown Environmental Services, Inc.

Project Name: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

Client:

Navajo Refinery KWB-1C C922428 Water Cool Intact

Report Date: 12/18/92 Date Sampled: 11/19/92 Date Received: 11/21/92 Date Extracted: 11/26/92 Date Analyzed: 12/18/92

Analyte	Concentration	Detection Limit
	(ug/L)	(ug/L)
Naphthalene	ND	5.0
Acenaphthylene	ND	5.0
Acenaphthene	ND	5.0
Fluorene	ND	5.0
Phenanthrene	NĎ	5.0
Anthracene	ND	5.0
Fluoranthene	ND	5.0
Pyrene	ND	5.0
Benzo(a)anthracene	ND	5.0
Chrysene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzo(a)pyrene	ND	5.0
Dibenzo(a,h)anthracene	ND	5.0
Ideno(1,2,3-cd)pyrene	ND	5.0
Benzo(ghi)perylene	ND	5.0
Benzo(j)fluoranthene	ND	5.0
3-Methylcholanthene	ND	5.0
Dibenz(a,h)acridine	ND	5.0
Dibenz(a,j,)acridine	ND	5.0
7H-Dibenz(c,g)carbazole	ND	5.0
Dibenzo(a,e)pyrene	ND	5.0
Dibenzo(a,i)pyrene	ND	5.0
Dibenzo(a,h)pyrene	ND	5.0

#### **References:**

Method 8100: Polynuclear Aromatic Hydrocarbons Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency, September 1986.

I Non Hyginbotham Analyst)

3. Vhi Stylen

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client:K. W. BroProject Name:Navajo - JProject Number:62209200Login Number:9210003Sample ID:KWB - 2ASample Number:C922031Sample Matrix:WaterPreservative:Cool, pHCondition:Intact

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 KWB - 2A C922031 Water Cool, pH < 4 Intact

10/14/92
09/28/92
10/08/92
10/08/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Filalyic	ounceimanon (og/c)	
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control: Surrogate

Surrogate 1-Chloro-2-Fluorobenzene Percent Recovery 111% Acceptance Limits 75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

Wadal

3304 Longmire College Station, Texas 77845

#### BTEX **VOLATILE AROMATIC HYDROCARBONS**

Client: **Project Name:** Project Number: Login Number: Sample ID: Sample Number: C922032 Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003  $\cap$ KWB - 3A Water Cool, pH < 4Intact

Report Date:	10/14/92
Date Sampled:	09/28/92
Date Received:	10/08/92
Date Analyzed:	10/09/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	97%	75-125%

**Reference:** Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

M Ward my Analyst

3304 Longmire College Station, Texas 77845

#### BTEX **VOLATILE AROMATIC HYDROCARBONS**

**Client:** Project Name: Project Number: Login Number: Sample ID: Sample Number: C922033 Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 KWB - 4 Water Cool, pH < 4 Intact

Report Date:	10/14/92
Date Sampled:	09/29/92
Date Received:	10/08/92
Date Analyzed:	10/09/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	2500
Benzene	10900	250
Toluene	6690	250
Ethylbenzene	913	250
p,m-Xylene	1690	250
o-Xylene	585	250

ND - Analyte not detected at stated detection limit.

Quality Control: Surrogate Percent Recovery Acceptance Limits 1-Chloro-2-Fluorobenzene 99%

**Reference:** Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

**Comments:** 

75-125%

#### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Client: Project Name: Sample ID: Sample Number: C922429 Sample Matrix: Preservative: Condition:

**K W. Brown Environmental Services** Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico KWB - 4 Water Cool, HCI Intact, pH=2

Report Date:	12/10/92
Date Sampled:	11/20/92
Date Received:	11/21/92
Date Analyzed:	11/29/92

	-	
Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	52500	1250
Bromodichloromethane	ND	500
Bromoform	ND	500
Bromomethane	ND	2500
Carbon tetrachloride	ND	500
Chlorobenzene	ND	500
Chloroethane	ND	2500
2-Chloroethylvinylether	ND	2500
Chloroform	ND	500
Chloromethane	ND	2500
Dibromochloromethane	ND	500
1,2-Dichlorobenzene	ND	500
1,3-Dichlorobenzene	ND	500
1,4-Dichlorobenzene	ND	500
Dichlorodifluoromethane	ND	2500
1,1-Dichloroethane	ND	500
1,2-Dichloroethane	ND	500
1,1-Dichloroethene	ND	500
trans-1,2-Dichloroethene	ND	500
1,2-Dichloropropane	ND	500
trans-1,3-Dichloropropene	ND	500
Ethylbenzene	4590	250
Methylene Chloride	629 B	500
tert-Butyl methyl ether *	2740 J	250
1,1,2,2-Tetrachloroethane	ND	500
Tetrachloroethene	ND	500
Toluene	41400	1250
1,1,1-Trichloroethane	ND	500
1,1,2-Trichloroethane	ND	500
Trichloroethene	ND	500
Trichlorofluoromethane	ND	2500
Vinyl chloride	ND	2500
p, m - Xylene	9210	250
o - Xylene	3990	250

ND - Analyte not detected at stated detection limit.

B - Analyte detected in blank

J - Estimated concentration

## QUALITY CONTROL REPORT - METHOD BLANK METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Sample Number: MB1203V1 Sample Matrix:

Water

Date Sampled: NA Date Received: NA Date Analyzed: 12/03/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	7.8	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

ND - Not detected at stated detection limit

**QUALITY CONTROL REPORT - METHOD BLANK METHODS 8010/8020** HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 Sample Number: MB1203V1 Date Analyzed: Water Quality Control: Surrogate Percent Recovery Acceptance Limits 1-Chloro-2-Fluorobenzene 117% 75-125% Bromochloromethane 85% 75-125% **Reference:** Method 5030, Purge and Trap Method 8010, Halogenated Volatile Organics Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

Protection Agency, September 1986.

Wand

Ulmah M Kog Review

#### Inter Mountain Laboratories, Inc.

College Station, Texas 77845

Sample Matrix:

12/03/92

3304 Longmire

3304 Longmire College Station, Texas 77845

## METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Client:	K W. Brown Environmental Services		
Project Name:	Navajo - Artesia, New Mexico	Report Date:	12/10/92
Project Location:	Artesia, New Mexico	Date Sampled:	11/20/92
Sample ID:	KWB - 4	Date Received:	11/21/92
Sample Number:	C922429	Date Analyzed:	11/29/92
Sample Matrix:	Water		
Preservative:	Cool, HCl		
Condition:	Intact, pH=2		

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	94%	75-125%
	Bromochloromethane	101%	75-125%

 Reference:
 Method 5030, Purge and Trap

 Method 8010, Halogenated Volatile Organics
 Method 8020, Aromatic Volatile Organics

 SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental
 Protection Agency, September 1986.

Comments:Methylene Chloride is a common laboratory contaminant. Analytical results<br/>should not be considered reliable unless the sample result exceeds five<br/>times the reporting limit or ten times the blank concentration.<br/>* MTBE analyzed outside of holding time by Method 8240 GC/MS

in Wady

Ulend Mlog Review

3304 Longmire College Station, Texas 77845

# EPA Method 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

# K.W. Brown Environmental Services, Inc.

Project Name:Navajo ReSample ID:KWB-4Sample Number:C922429Sample Matrix:WaterPreservative:CoolCondition:Intact

**Client:** 

Navajo Refinery KWB-4 C922429 Water Cool Intact

Report Date:	12/29/92
Date Sampled:	11/20/92
Date Received:	11/21/92
Date Extracted:	11/27/92
Date Analyzed:	12/23/92

Analyte	Concentration	Detection Limit
	(ug/L)	(ug/L)
Naphthalene	613.8	25.0
Acenaphthylene	ND	25.0
Acenaphthene	ND	25.0
Fluorene	ND	25.0
Phenanthrene	ND	25.0
Anthracene	ND	25.0
Fluoranthene	ND	25.0
Pyrene	ND	25.0
Benzo(a)anthracene	ND	25.0
Chrysene	ND	25.0
Benzo(b)fluoranthene	ND	25.0
Benzo(k)fluoranthene	ND	25.0
Benzo(a)pyrene	ND	25.0
Dibenzo(a,h)anthracene	ND	25.0
Ideno(1,2,3-cd)pyrene	ND	25.0
Benzo(ghi)perylene	ND	25.0
Benzo(j)fluoranthene	ND	25.0
3-Methylcholanthene	ND	25.0
Dibenz(a,h)acridine	ND	25.0
Dibenz(a,j,)acridine	ND	25.0
7H-Dibenz(c,g)carbazole	ND	25.0
Dibenzo(a,e)pyrene	ND	25.0
Dibenzo(a,i)pyrene	ND	25.0
Dibenzo(a,h)pyrene	ND	25.0

**References:** 

Method 8100: Polynuclear Aromatic Hydrocarbons Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency, September 1986.

**Comments:** Increased detection limit is due to dilution of the sample needed for analysis.

Mary Higginbotham Analysi

Braken MM Stre Review

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 KWB - 5 C922034 Water Cool, pH < 2 Intact

Report Date:	10/14/92
Date Sampled:	09/30/92
Date Received:	10/08/92
Date Analyzed:	10/08/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	2500
Benzene	19600	500
Toluene	9200	250
Ethylbenzene	2960	250
p,m-Xylene	5310	250
o-Xylene	2050	250

ND - Analyte not detected at stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	101%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

1 Kn Walder

3304 Longmire College Station, Texas 77845

#### BTEX **VOLATILE AROMATIC HYDROCARBONS**

Client: **Project Name:** Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 (mB-5) KWB - Dup C922039 Water Cool, pH < 6Intact

Report Date:	10/14/92
Date Sampled:	09/29/92
Date Received:	10/08/92
Date Analyzed:	10/09/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	2500
Benzene	13900	500
Toluene	5380	250
Ethylbenzene	2520	250
p,m-Xylene	4170	250
o-Xylene	1540	250

ND - Analyte not detected at stated detection limit.

Quality Control: Surrogate Percent Recovery Acceptance Limits 1-Chloro-2-Fluorobenzene 95% 75-125%

**Reference:** Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

Analyst

#### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Client: **Project Name:** Sample ID: Sample Number: C922430 Sample Matrix: Preservative: Condition:

**K W. Brown Environmental Services** Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico KWB - 5 Water Cool, HCI Intact, pH=2

Report Date:	12/10/92
Date Sampled:	11/20/92
Date Received:	11/21/92
Date Analyzed:	11/29/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	11800	250
Bromodichloromethane	ND	50
Bromoform	ND	50
Bromomethane	ND	250
Carbon tetrachloride	ND	50
Chlorobenzene	ND	50
Chloroethane	ND	250
2-Chloroethylvinylether	ND	250
Chloroform	ND	50
Chloromethane	ND	250
Dibromochloromethane	ND	50
1,2-Dichlorobenzene	ND	50
1,3-Dichlorobenzene	ND	50
1,4-Dichlorobenzene	ND	50
Dichlorodifluoromethane	ND	250
1,1-Dichloroethane	ND	50
1,2-Dichloroethane	ND	50
1,1-Dichloroethene	ND	50
trans-1,2-Dichloroethene	ND	50
1,2-Dichloropropane	ND	50
trans-1,3-Dichloropropene	ND	50
Ethylbenzene	2510	250
Methylene Chloride	66.9 B	50
tert-Butyl methyl ether *	867 J	100
1,1,2,2-Tetrachloroethane	ND	50
Tetrachloroethene	ND	50
Toluene	1390	25
1,1,1-Trichloroethane	ND	50
1,1,2-Trichloroethane	ND	50
Trichloroethene	ND	50
Trichlorofluoromethane	ND	250
Vinyl chloride	ND	250
p, m - Xylene	922	25
o - Xylene	310	25

ND - Analyte not detected at stated detection limit.

B - Analyte detected in blank

J- Estimated concentration

3304 Longmire College Station, Texas 77845

## METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Client:	K W. Brown Environmental Services		
Project Name:	Navajo - Artesia, New Mexico	Report Date:	12/10/92
Project Location:	Artesia, New Mexico	Date Sampled:	11/20/92
Sample ID:	KWB - 5	Date Received:	11/21/92
Sample Number:	C922430	Date Analyzed:	11/29/92
Sample Matrix:	Water		
Preservative:	Cool, HCI		
Condition:	Intact, pH=2		

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	97%	75-125%
	Bromochloromethane	100%	75-125%

 Reference:
 Method 5030, Purge and Trap

 Method 8010, Halogenated Volatile Organics
 Method 8020, Aromatic Volatile Organics

 SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental
 Protection Agency, September 1986.

Comments: Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration. *MTBE analyzed outside of holding time by Method 8240 GC/MS

in Wady

Ulend Mlog Review

3304 Longmire College Station, Texas 77845

# EPA Method 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

#### K.W. Brown Environmental Services, Inc.

Client: **Project Name:** Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

Navajo Refinery KWB-5 C922430 Water Cool Intact

Report Date: 12/29/92 Date Sampled: 11/20/92 Date Received: 11/21/92 Date Extracted: 11/27/92 Date Analyzed: 12/24/92

Analyte	Concentration	Detection Limit
	<u>(ug/L)</u>	(ug/L)
Naphthalene	677.3	25.0
Acenaphthylene	ND	25.0
Acenaphthene	ND	25.0
Fluorene	ND	25.0
Phenanthrene	ND	25.0
Anthracene	ND	25.0
Fluoranthene	ND	25.0
Pyrene	ND	25.0
Benzo(a)anthracene	ND	25.0
Chrysene	ND	25.0
Benzo(b)fluoranthene	ND	25.0
Benzo(k)fluoranthene	ND	25.0
Benzo(a)pyrene	ND	25.0
Dibenzo(a,h)anthracene	ND	25.0
Ideno(1,2,3-cd)pyrene	ND	25.0
Benzo(ghi)perylene	ND	25.0
Benzo(j)fluoranthene	ND	25.0
3-Methylcholanthene	ND	25.0
Dibenz(a,h)acridine	ND	25.0
Dibenz(a,j,)acridine	ND	25.0
7H-Dibenz(c,g)carbazole	ND	25.0
Dibenzo(a,e)pyrene	ND	25.0
Dibenzo(a,i)pyrene	ND	25.0
Dibenzo(a,h)pyrene	ND	25.0

**References:** 

Method 8100: Polynuclear Aromatic Hydrocarbons Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency, September 1986.

**Comments:** Increased detection limit is due dilution of the sample needed for analysis.

Many Hyginbotham Analyst

Brachen Minisque

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 KWB - 6 C922035 Water Cool, pH < 5 Intact

Report Date:	10/14/92
Date Sampled:	09/29/92
Date Received:	10/08/92
Date Analyzed:	10/12/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	2500
Benzene	12300	250
Toluene	4450	250
Ethylbenzene	1810	250
p,m-Xylene	2830	250
o-Xylene	1000	250

ND - Analyte not detected at stated detection limit.

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	102%	75-125%

Reference:Method 5030, Purge and TrapMethod 8020, Aromatic Volatile OrganicsSW-846, Test Methods for Evaluating Solid Wastes, United States EnvironmentalProtection Agency, September 1986.

**Comments:** 

um Water

Review

## METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Client:

Project Name: Sample ID: Sample Number: C922431 Sample Matrix: Preservative: Condition:

K W. Brown Environmental Services Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico KWB - 6 Water Cool, HCi Intact, pH=2

Report Date:	12/10/92
Date Sampled:	11/20/92
Date Received:	11/21/92
Date Analyzed:	11/30/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	11500	250
Bromodichloromethane	ND	200
Bromoform	ND	200
Bromomethane	ND	1000
Carbon tetrachloride	ND	200
Chlorobenzene	ND	200
Chloroethane	ND	1000
2-Chloroethylvinylether	ND	1000
Chloroform	ND	200
Chloromethane	ND	1000
Dibromochloromethane	ND	200
1,2-Dichlorobenzene	ND	200
1,3-Dichlorobenzene	ND	200
1,4-Dichlorobenzene	ND	200
Dichlorodifluoromethane	ND	1000
1,1-Dichloroethane	ND	200
1,2-Dichloroethane	ND	200
1,1-Dichloroethene	ND	200
trans-1,2-Dichloroethene	ND	200
1,2-Dichloropropane	ND	200
trans-1,3-Dichloropropene	ND	200
Ethylbenzene	2030	100
Methylene Chloride	3708	200
tert-Butyl methyl ether *	ND	250
1,1,2,2-Tetrachloroethane	ND	200
Tetrachloroethene	ND	200
Toluene	2770	100
1,1,1-Trichloroethane	ND	200
1,1,2-Trichloroethane	ND	200
Trichloroethene	ND	200
Trichlorofluoromethane	ND	1000
Vinyl chloride	ND	1000
p, m - Xylene	2920	100
o - Xylene	1010	100

ND - Analyte not detected at stated detection limit.

3304 Longmire College Station, Texas 77845

## METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Client:	K W. Brown Environmental Services		
Project Name:	Navajo - Artesia, New Mexico	Report Date:	12/10/92
Project Location:	Artesia, New Mexico	Date Sampled:	11/20/92
Sample ID:	KWB - 6	Date Received:	11/21/92
Sample Number:	C922431	Date Analyzed:	11/30/92
Sample Matrix:	Water		
Preservative:	Cool, HCl		
Condition:	Intact, pH=2		

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	106%	75-125%
	Bromochloromethane	108%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8010, Halogenated Volatile Organics<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

Comments:Methylene Chloride is a common laboratory contaminant. Analytical results<br/>should not be considered reliable unless the sample result exceeds five<br/>times the reporting limit or ten times the blank concentration.<br/>*MTBE analyzed outside of holding time by Method 8240 GC/MS

in Waduff

Ulmah M Kog-Review

3304 Longmire College Station, Texas 77845

# EPA Method 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

#### K.W. Brown Environmental Services, Inc.

**Project Name:** Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

**Client:** 

Navajo Refinery KWB-6 C922431 Water Cool Intact

Report Date: 12/29/92 Date Sampled: 11/20/92 Date Received: 11/21/92 Date Extracted: 11/27/92 Date Analyzed: 12/24/92

Analyte	Concentration	Detection Limit
	(ug/L)	(ug/L)
Naphthalene	393.9	25.0
Acenaphthylene	ND	25.0
Acenaphthene	ND	25.0
Fluorene	ND	25.0
Phenanthrene	ND	25.0
Anthracene	ND	25.0
Fluoranthene	ND	25.0
Pyrene	ND	25.0
Benzo(a)anthracene	ND	25.0
Chrysene	ND	25.0
Benzo(b)fluoranthene	ND	25.0
Benzo(k)fluoranthene	ND	25.0
Benzo(a)pyrene	ND	25.0
Dibenzo(a,h)anthracene	ND	25.0
Ideno(1,2,3-cd)pyrene	ND	25.0
Benzo(ghi)perylene	ND	25.0
Benzo(j)fluoranthene	ND	25.0
3-Methylcholanthene	ND	25.0
Dibenz(a,h)acridine	ND	25.0
Dibenz(a,j,)acridine	ND	25.0
7H-Dibenz(c,g)carbazole	ND	25.0
Dibenzo(a,e)pyrene	ND	25.0
Dibenzo(a,i)pyrene	ND	25.0
Dibenzo(a,h)pyrene	ND	25.0

**References:** 

Method 8100: Polynuclear Aromatic Hydrocarbons Test Methods for Evaluating Solid Waste, SW-846, United States Environmental

Protection Agency, September 1986.

Increased detection limit is due to dilution of the sample needed for analysis. **Comments:** 

Analyst Bigginbotham

Bouden An Silve Review

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client:K. W. BroProject Name:Navajo - AProject Number:62209200Login Number:9210003Sample ID:KWB - 7Sample Number:C922036Sample Matrix:WaterPreservative:Cool, pHCondition:Intact

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 KWB - 7 C922036 Water Cool, pH < 3 Intact

Report Date:	10/14/92
Date Sampled:	09/26/92
Date Received:	10/08/92
Date Analyzed:	10/09/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:SurrogatePercent RecoveryAcceptance Limits1-Chloro-2-Fluorobenzene99%75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

Vaduy Analyst

#### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Client:

#### **K W. Brown Environmental Services**

Project Name: Sample ID: Sample Number: C922439 Sample Matrix: Preservative: Condition:

Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico KWB - 7 Water Cool, HCI Intact, pH=2

Report Date:	12/14/92
Date Sampled:	11/19/92
Date Received:	11/21/92
Date Analyzed:	12/02/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	5.4	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	2.9 B	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

B - Analyte detected in blank

3304 Longmire College Station, Texas 77845

### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Client:	K W. Brown Environmental Services		
Project Name:	Navajo - Artesia, New Mexico	Report Date:	12/14/92
Project Location:	Artesia, New Mexico	Date Sampled:	11/19/92
Sample ID:	KWB - 7	Date Received:	11/21/92
Sample Number:	C922439	Date Analyzed:	12/02/92
Sample Matrix:	Water		
Preservative:	Cool, HCI		
Condition:	Intact, pH=2		

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	105%	75-125%
	Bromochloromethane	96%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8010, Halogenated Volatile Organics<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

Waduff

<u>Ulmah M Rog</u>

ND - Analyte not detected at stated detection limit

NA - Value not applicable or calculated

B - Analyte detected in blank

## QUALITY CONTROL REPORT - MATRIX DUPLICATE METHOD 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Sample Number: Sample Matrix: Preservative: Condition:

C922439 Duplicate Water Cool, HCI Intact, pH=2 
 Date Sampled:
 11/19/92

 Date Received:
 11/21/92

 Date Analyzed:
 12/02/92

	Sample Result	Duplicate Result	
Analyte	(ug/L)	(ug/L)	Percent Difference
Benzene	ND	ND	NA
Bromodichloromethane	ND	ND	NA
Bromoform	ND	ND	NA
Bromomethane	ND	ND	NA
Carbon tetrachloride	ND	ND	NA
Chlorobenzene	ND	ND	NA
Chloroethane	ND	ND	NA
2-Chloroethylvinylether	ND	ND	NA
Chloroform	ND	ND	NA
Chloromethane	ND	ND	NA
Dibromochloromethane	ND	ND	NA
1,2-Dichlorobenzene	ND	ND	NA
1,3-Dichlorobenzene	ND	ND	NA
1,4-Dichlorobenzene	ND	ND	NA
Dichlorodifluoromethane	ND	ND	NA
1,1-Dichloroethane	ND	ND	NA
1,2-Dichloroethane	5.4	5.4	0.0%
1,1-Dichloroethene	ND	ND	NA
trans-1,2-Dichloroethene	ND	ND	NA
1,2-Dichloropropane	ND	ND	NA
trans-1,3-Dichloropropene	ND	ND	NA
Ethylbenzene	ND	ND	NA
Methylene Chloride	2.9 B	3.8 B	6.7%
1,1,2,2-Tetrachloroethane	ND	ND	NA
Tetrachloroethene	ND	ND	NA
Toluene	ND	ND	NA
1,1,1-Trichloroethane	ND	ND	NA
1,1,2-Trichloroethane	ND	ND	NA
Trichloroethene	ND	ND	NA
Trichlorofluoromethane	ND	ND	NA
Vinyl chloride	ND	ND	NA
p, m - Xylene	ND	ND	NA
o - Xylene	ND	ND	NA

Inter Mountain Laboratories, Inc.

#### **QUALITY CONTROL REPORT - MATRIX DUPLICATE** METHOD 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2

Sample Number: Sample Matrix: Preservative: Condition:

C922439 Duplicate Water Cool, HCI Intact, pH=2

Date Sampled: 11/19/92 Date Received: 11/21/92 Date Analyzed: 12/02/92

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	106%	75-125%
	Bromochloromethane	96%	75-125%

**Reference:** Method 5030, Purge and Trap Method 8010, Halogenated Volatile Organics Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

un Madul Analyst

<u>Ulind M log</u>

3304 Longmire College Station, Texas 77845

# EPA Method 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

## K.W. Brown Environmental Services, Inc.

Client: Project Name: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

Navajo Refinery KWB-7 C922439 Water Cool Intact

Report Date:	12/18/92
Date Sampled:	11/19/92
Date Received:	11/21/92
Date Extracted:	11/26/92
Date Analyzed:	12/18/92

Analyte	Concentration	Detection Limit
	(ug/L)	(ug/L)
Naphthalene	ND	5.0
Acenaphthylene	ND	5.0
Acenaphthene	ND	5.0
Fluorene	ND	5.0
Phenanthrene	ND	5.0
Anthracene	ND	5.0
Fluoranthene	ND	5.0
Pyrene	ND	5.0
Benzo(a)anthracene	ND	5.0
Chrysene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzo(a)pyrene	ND	5.0
Dibenzo(a,h)anthracene	ND	5.0
Ideno(1,2,3-cd)pyrene	ND	5.0
Benzo(ghi)perylene	ND	5.0
Benzo(j)fluoranthene	ND	5.0
3-Methylcholanthene	ND	5.0
Dibenz(a,h)acridine	ND	5.0
Dibenz(a,j,)acridine	ND	5.0
7H-Dibenz(c,g)carbazole	ND	5.0
Dibenzo(a,e)pyrene	ND	5.0
Dibenzo(a,i)pyrene	ND	5.0
Dibenzo(a,h)pyrene	ND	5.0

#### **References:**

Method 8100: Polynuclear Aromatic Hydrocarbons Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency, September 1986.

(Many Higginbotham Analyst)

B- Van Style_ Review

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition: K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 KWB - 8 C922037 Water Cool, pH < 5 Intact

Report Date:	10/14/92
Date Sampled:	09/29/92
Date Received:	10/08/92
Date Analyzed:	10/12/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	250
Benzene	1160	25.0
Toluene	393	25.0
Ethylbenzene	697	25.0
p,m-Xylene	306	25.0
o-Xylene	120	25.0

ND - Analyte not detected at stated detection limit.

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	106%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

m Uldeling

#### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Client:

K W. Brown Environmental Services

**Project Name:** Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico KWB - 8 C922432 Water Cool, HCI Intact, pH=2

Report Date:	12/10/92
Date Sampled:	11/20/92
Date Received:	11/21/92
Date Analyzed:	12/01/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	429	10
Bromodichloromethane	ND	20
Bromoform	ND	20
Bromomethane	ND	100
Carbon tetrachloride	ND	20
Chlorobenzene	ND	20
Chloroethane	ND	100
2-Chloroethylvinylether	ND	100
Chloroform	ND	20
Chloromethane	ND	100
Dibromochloromethane	ND	20
1,2-Dichlorobenzene	ND	20
1,3-Dichlorobenzene	ND	20
1,4-Dichlorobenzene	ND	20
Dichlorodifluoromethane	ND	100
1,1-Dichloroethane	ND	20
1,2-Dichloroethane	ND	20
1,1-Dichloroethene	ND	20
trans-1,2-Dichloroethene	ND	20
1,2-Dichloropropane	ND	20
trans-1,3-Dichloropropene	ND	20
Ethylbenzene	286	10
Methylene Chloride	250 B	20
tert-Butyl methyl ether *	ND	5
1,1,2,2-Tetrachloroethane	ND	20
Tetrachloroethene	ND	20
Toluene	120	10
1,1,1-Trichloroethane	36.5	20
1,1,2-Trichloroethane	ND	20
Trichloroethene	ND	20
Trichlorofluoromethane	ND	100
Vinyl chloride	ND	100
p, m - Xylene	107	10
o - Xylene	45.4	10

ND - Analyte not detected at stated detection limit. B - Analyte detected in blank

3304 Longmire College Station, Texas 77845

### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Client:	K W. Brown Environmental Services		
Project Name:	Navajo - Artesia, New Mexico	Report Date:	12/10/92
Project Location:	Artesia, New Mexico	Date Sampled:	11/20/92
Sample ID:	KWB - 8	Date Received:	11/21/92
Sample Number:	C922432	Date Analyzed:	12/01/92
Sample Matrix:	Water		
Preservative:	Cool, HCI		
Condition:	Intact, pH=2		

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	99%	75-125%
	Bromochloromethane	95%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8010, Halogenated Volatile Organics<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

Comments:Methylene Chloride is a common laboratory contaminant. Analytical results<br/>should not be considered reliable unless the sample result exceeds five<br/>times the reporting limit or ten times the blank concentration.<br/>*MTBE analyzed outside of holding time by Method 8240 GC/MS

in Moder Analýst

<u>Ulma M log</u> Review

# EPA Method 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

K.W. Brown Environmental Services, Inc.

Client: Project Name: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

Navajo Refinery KWB-8 C922432 Water Cool Intact

Report Date:	12/29/92
Date Sampled:	11/20/92
Date Received:	11/21/92
Date Extracted:	11/27/92
Date Analyzed:	12/24/92

Analyte	Concentration	Detection Limit
	(ug/L)	(ug/L)
Naphthalene	29.1	5.0
Acenaphthylene	ND	5.0
Acenaphthene	ND	5.0
Fluorene	ND	5.0
Phenanthrene	ND	5.0
Anthracene	ND	5.0
Fluoranthene	ND	5.0
Pyrene	ND	5.0
Benzo(a)anthracene	ND	5.0
Chrysene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzo(a)pyrene	ND	5.0
Dibenzo(a,h)anthracene	ND	5.0
Ideno(1,2,3-cd)pyrene	ND	5.0
Benzo(ghi)perylene	ND	5.0
Benzo(j)fluoranthene	ND	5.0
3-Methylcholanthene	ND	5.0
Dibenz(a,h)acridine	ND	5.0
Dibenz(a,j,)acridine	ND	5.0
7H-Dibenz(c,g)carbazole	ND	5.0
Dibenzo(a,e)pyrene	ND	5.0
Dibenzo(a,i)pyrene	ND	5.0
Dibenzo(a,h)pyrene	ND	5.0

**References:** 

Method 8100: Polynuclear Aromatic Hydrocarbons Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency, September 1986.

any Higginbotham Analyst

Um Style_

Review

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client:K. W. BroProject Name:Navajo - AProject Number:62209200Login Number:9210003Sample ID:KWB - 9Sample Number:C922038Sample Matrix:WaterPreservative:Cool, pHCondition:Intact

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 KWB - 9 C922038 Water Cool, pH < 5 Intact

Report Date:	10/14/92
Date Sampled:	09/28/92
Date Received:	10/08/92
Date Analyzed:	10/09/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	100%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

Analyst

#### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Client:

K W. Brown Environmental Services

**Project Name:** Sample ID: Sample Number: C922433 Sample Matrix: Preservative: Condition:

Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico KWB - 9 Water Cool, HCI Intact, pH=2

Report Date:		12/10/92
Date Sampled:		11/19/92
Date Received:	•	11/21/92
Date Analyzed:		12/01/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	9.4	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	2.0 B	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

ND - Analyte not detected at stated detection limit. B - Analyte detected in blank

3304 Longmire College Station, Texas 77845

### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Client:	K W. Brown Environmental Services		
Project Name:	Navajo - Artesia, New Mexico	Report Date:	12/10/92
<b>Project Location:</b>	Artesia, New Mexico	Date Sampled:	11/19/92
Sample ID:	KWB - 9	Date Received:	11/21/92
Sample Number:	C922433	Date Analyzed:	12/01/92
Sample Matrix:	Water		
Preservative:	Cool, HCI		
Condition:	Intact, pH=2		

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	105%	75-125%
	Bromochloromethane	113%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8010, Halogenated Volatile Organics<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

In Waldry

Wind Mlag-Review

3304 Longmire College Station, Texas 77845

# EPA Method 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

## K.W. Brown Environmental Services, Inc.

**Project Name:** Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

**Client:** 

1

Navajo Refinery KWB-9 C922433 Water Cool Intact

Report Date: 12/18/92 Date Sampled: 11/19/92 Date Received: 11/21/92 Date Extracted: 11/26/92 Date Analyzed: 12/18/92

Analyte	Concentration	Detection Limit
	(ug/L)	(ug/L)
Naphthalene	ND	5.0
Acenaphthylene	ND	5.0
Acenaphthene	ND	5.0
Fluorene	ND	5.0
Phenanthrene	ND	5.0
Anthracene	ND	5.0
Fluoranthene	ND	5.0
Pyrene	ND	5.0
Benzo(a)anthracene	ND	5.0
Chrysene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzo(a)pyrene	ND	5.0
Dibenzo(a,h)anthracene	ND	5.0
Ideno(1,2,3-cd)pyrene	ND	5.0
Benzo(ghi)perylene	ND	5.0
Benzo(j)fluoranthene	ND	5.0
3-Methylcholanthene	ND	5.0
Dibenz(a,h)acridine	ND	5.0
Dibenz(a,j,)acridine	ND	5.0
7H-Dibenz(c,g)carbazole	ND	5.0
Dibenzo(a,e)pyrene	ND	5.0
Dibenzo(a,i)pyrene	ND	5.0
Dibenzo(a,h)pyrene	ND	5.0

**References:** 

Method 8100: Polynuclear Aromatic Hydrocarbons Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency, September 1986.

<u>Analyst</u>

B. Kun Skylanne

3304 Longmire College Station, Texas 77845

### BTEX **VOLATILE AROMATIC HYDROCARBONS**

**Client: Project Name:** Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 9210003 Coll Deep (Kいら-10) C922041 の大学 Water Cool, pH < 2Intact

Report Date:	10/14/92
Date Sampled:	10/05/92
Date Received:	10/08/92
Date Analyzed:	10/14/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	34.0	5.0
Benzene	64.5	2.5
Toluene	97.0	2.5
Ethylbenzene	51.5	2.5
p,m-Xylene	86.7	2.5
o-Xylene	35.8	2.5

ND - Analyte not detected at stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	94%	75-125%

Method 5030, Purge and Trap **Reference:** Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

In Widney Analyst

### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Client: **Project Name:** Sample ID: Sample Number: C922434 Sample Matrix: Preservative: Condition:

K W. Brown Environmental Services Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico KWB - 10 Water Cool, HCI Intact, pH=2

Report Date:	12/10/92
Date Sampled:	11/20/92
Date Received:	11/21/92
Date Analyzed:	12/01/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	4.1	2.5
Bromodichloromethane	ND	5.0
Bromoform	ND	5.0
Bromomethane	ND	25.0
Carbon tetrachloride	ND	5.0
Chlorobenzene	ND	5.0
Chloroethane	ND	25.0
2-Chloroethylvinylether	ND	25.0
Chloroform	ND	5.0
Chloromethane	ND	25.0
Dibromochloromethane	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
Dichlorodifluoromethane	ND	25.0
1,1-Dichloroethane	ND	5.0
1,2-Dichloroethane	ND	5.0
1,1-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Ethylbenzene	12.3	2.5
Methylene Chloride	16.8 B	5.0
tert-Butyl methyl ether *	4400 J	250
1,1,2,2-Tetrachloroethane	ND	5.0
Tetrachloroethene	ND	5.0
Toluene	5.4	2.5
1,1,1-Trichloroethane	ND	5.0
1,1,2-Trichloroethane	ND	5.0
Trichloroethene	ND	5.0
Trichlorofluoromethane	ND	25.0
Vinyl chloride	ND	25.0
p, m - Xylene	11.3	2.5
o - Xylene	ND	2.5

ND - Analyte not detected at stated detection limit.

B - Analyte detected in blank

J - Estimated concentration

Client[.]

3304 Longmire College Station, Texas 77845

## METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Project Name:	Navajo - Artesia, New Mexico		Report Date:	12/10/92
Project Location:	Artesia, New Mexico		Date Sampled:	11/20/92
Sample ID:	KWB - 10		Date Received:	11/21/92
Sample Number:	C922434		Date Analyzed:	12/01/92
Sample Matrix:	Water			
Preservative:	Cool, HCl			
Condition:	Intact, pH=2			
	-			
Quality Control:	Surrogate	Percent Recovery	Acceptance Limits	
	1-Chloro-2-Fluorobenzene	90%	75-125%	

111%

K W. Brown Environmental Services

Bromochloromethane

Reference:Method 5030, Purge and Trap<br/>Method 8010, Halogenated Volatile Organics<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

Comments:Methylene Chloride is a common laboratory contaminant. Analytical results<br/>should not be considered reliable unless the sample result exceeds five<br/>times the reporting limit or ten times the blank concentration.<br/>*MTBE analyzed outside of holding time by Method 8240 GC/MS

jin Varan

Ulend In log-

75-125%

## EPA Method 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

Client:

K.W. Brown Environmental Services, Inc.

Project Name: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

Navajo Refinery KWB-10 C922434 Water Cool Intact

 Report Date:
 12/18/92

 Date Sampled:
 11/20/92

 Date Received:
 11/21/92

 Date Extracted:
 11/26/92

 Date Analyzed:
 12/17/92

Analyte	Concentration	Detection Limit
	(ug/L)	(ug/L)
Naphthalene	ND	5.0
Acenaphthylene	ND	5.0
Acenaphthene	ND	5.0
Fluorene	ND	5.0
Phenanthrene	ND	5.0
Anthracene	ND	5.0
Fluoranthene	ND	5.0
Pyrene	ND	5.0
Benzo(a)anthracene	ND	5.0
Chrysene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzo(a)pyrene	ND	5.0
Dibenzo(a,h)anthracene	ND	5.0
Ideno(1,2,3-cd)pyrene	ND	5.0
Benzo(ghi)perylene	ND	5.0
Benzo(j)fluoranthene	ND	5.0
3-Methylcholanthene	ND	5.0
Dibenz(a,h)acridine	ND	5.0
Dibenz(a,j,)acridine	ND	5.0
7H-Dibenz(c,g)carbazole	ND	5.0
Dibenzo(a,e)pyrene	ND	5.0
Dibenzo(a,i)pyrene	ND	5.0
Dibenzo(a,h)pyrene	ND	5.0

**References:** 

Method 8100: Polynuclear Aromatic Hydrocarbons Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency, September 1986.

Many Myginbotham Analysi

Bichay Um Shu

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client:	K. W. Brown Environmental Services		
Project Name:	Navajo - Artesia		
Project Number:	622092003	Report Date:	10/14/92
Login Number:	9210003	Date Sampled:	10/01/92
Sample ID:	Pecan Shallow $(K \cup i - 1 A)$ C922042 $W i $	Date Received:	10/08/92
Sample Number:	C922042 AV	Date Analyzed:	10/08/92
Sample Matrix:	Water		
Preservative:	Cool, pH < 4		

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	3.0	0.5
Toluene	2.3	0.5
Ethylbenzene	0.8	0.5
p,m-Xylene	1.7	0.5
o-Xylene	0.9	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:SurrogatePercent RecoveryAcceptance Limits1-Chloro-2-Fluorobenzene109%75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

**Comments:** 

Condition:

Intact

UnWadnel

### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Client:

K W. Brown Environmental Services

Project Name:
Project Location:
Sample ID:
Sample Number:
Sample Matrix:
Preservative:
Condition:

Navajo - Artesia, New Mexico Artesia, New Mexico KWB - 11 A C922438 Water Cool, HCl Intact, pH=2

12/14/92
11/19/92
11/21/92
12/02/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	2.9	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	4.7 B	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

B - Analyte detected in blank

3304 Longmire College Station, Texas 77845

## METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Client:	K W. Brown Environmental Services		
Project Name:	Navajo - Artesia, New Mexico	Report Date:	12/14/92
Project Location:	Artesia, New Mexico	Date Sampled:	11/19/92
Sample ID:	KWB - 11 A	Date Received:	11/21/92
Sample Number:	C922438	Date Analyzed:	12/02/92
Sample Matrix:	Water		
Preservative:	Cool, HCi		
Condition:	Intact, pH=2		

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	104%	75-125%
	Bromochloromethane	86%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8010, Halogenated Volatile Organics<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

the Value

Ulmb Mlag Review

3304 Longmire College Station, Texas 77845

# EPA Method 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

#### K.W. Brown Environmental Services, Inc.

**Project Name:** Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

Client:

Navajo Refinery KWB-11A C922438 Water Cool Intact

Report Date: 12/18/92 Date Sampled: 11/19/92 Date Received: 11/21/92 Date Extracted: 11/26/92 Date Analyzed: 12/18/92

Analyte	Concentration	Detection Limit
	(ug/L)	(ug/L)
Naphthalene	ND	5.0
Acenaphthylene	ND	5.0
Acenaphthene	ND	5.0
Fluorene	ND	5.0
Phenanthrene	ND	5.0
Anthracene	ND	5.0
Fluoranthene	ND	5.0
Pyrene	ND	5.0
Benzo(a)anthracene	ND	5.0
Chrysene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzo(a)pyrene	ND	5.0
Dibenzo(a,h)anthracene	ND	5.0
Ideno(1,2,3-cd)pyrene	ND	5.0
Benzo(ghi)perylene	ND	5.0
Benzo(j)fluoranthene	ND	5.0
3-Methylcholanthene	ND	5.0
Dibenz(a,h)acridine	ND	5.0
Dibenz(a,j,)acridine	ND	5.0
7H-Dibenz(c,g)carbazole	ND	5.0
Dibenzo(a,e)pyrene	ND	5.0
Dibenzo(a,i)pyrene	ND	5.0
Dibenzo(a,h)pyrene	ND	5.0

**References:** 

Method 8100: Polynuclear Aromatic Hydrocarbons Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency, September 1986.

Many Higginbotham Analyst

B. Van Sylm Review

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition: K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 Pecan Deep  $(\mathcal{K} \cup \mathcal{K} - \mathcal{I} \setminus \mathcal{K})$ C922043  $\mathcal{K} \setminus \mathcal{K}$ Water Cool, pH < 2 Intact

10/14/92
10/06/92
10/08/92
10/08/92

Ansiyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	2.5	0.5
Toluene	7.1	0.5
Ethylbenzene	3.3	0.5
p,m-Xylene	6.2	0.5
o-Xylene	2.6	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	102%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

Mading

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

#### K. W. BROWN ENVIRONMENTAL SERVICES

:	Navajo Refinery - Artesia, NM		
ber:	622092003	Report Date:	11/06/92
er:	9210009	Date Sampled:	10/29/92
	KWB - 11B	Date Received:	10/30/92
ber:	C922170	Date Analyzed:	11/02/92
x:	Water	-	
	Cool, HCl		
	Intact, pH<2		
	•		

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Toluene	0.8	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	0.6	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control: Surrogate

Surrogate 1-Chloro-2-Fluorobenzene Percent Recovery 89% Acceptance Limits 75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

in Waden

<u>Ulande Mlog</u> Review

3304 Longmire College Station, Texas 77845

### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Client: **Project Name:** Sample ID: Sample Number: C922437 Sample Matrix: Preservative: Condition:

K W. Brown Environmental Services Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico KWB - 11 B Water Cool, HCI Intact, pH=2

Report Date:	12/14/92
Date Sampled:	11/19/92
Date Received:	11/21/92
Date Analyzed:	12/02/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	· 1.1	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	13.1 B	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

1

B - Analyte detected in blank

3304 Longmire College Station, Texas 77845

## METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Client:	K W. Brown Environmental Services		
Project Name:	Navajo - Artesia, New Mexico	Report Date:	12/14/92
Project Location:	Artesia, New Mexico	Date Sampled:	11/19/92
Sample ID:	KWB - 11 B	Date Received:	11/21/92
Sample Number:	C922437	Date Analyzed:	12/02/92
Sample Matrix:	Water		
Preservative:	Cool, HCl		
Condition:	Intact, pH=2		

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	104%	75-125%
	Bromochloromethane	112%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8010, Halogenated Volatile Organics<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

n Uadn/ Analy

<u>Ulmh m log</u> Review

3304 Longmire College Station, Texas 77845

## METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

**Client: Project Name:** Sample ID: Sample Number: C922436 Sample Matrix: Preservative: Condition:

K W. Brown Environmental Services Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico KWB - 11 B Dup Water Cool, Mercuric Chloride Intact, pH=6

12/14/92
11/19/92
11/21/92
12/02/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	1.0	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	7.3 B	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

B - Analyte detected in blank

3304 Longmire College Station, Texas 77845

## METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

K W. Brown Environmental Services		
Navajo - Artesia, New Mexico	Report Date:	12/14/92
Artesia, New Mexico	Date Sampled:	11/19/92
KWB - 11 B Dup	Date Received:	11/21/92
C922436	Date Analyzed:	12/02/92
Water		
Cool, Mercuric Chloride		
Intact, pH=6		
	Navajo - Artesia, New Mexico Artesia, New Mexico KWB - 11 B Dup C922436 Water Cool, Mercuric Chloride	Navajo - Artesia, New MexicoReport Date:Artesia, New MexicoDate Sampled:KWB - 11 B DupDate Received:C922436Date Analyzed:WaterCool, Mercuric Chloride

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	103%	75-125%
	Bromochloromethane	100%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8010, Halogenated Volatile Organics<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

Indy

Ulmb M kg

3304 Longmire College Station, Texas 77845

# EPA Method 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

## K.W. Brown Environmental Services, Inc.

Client: Project Name: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

Navajo Refinery KWB-11B C922437 Water Cool Intact

Report Date:	12/18/92
Date Sampled:	11/19/92
Date Received:	11/21/92
Date Extracted:	11/26/92
Date Analyzed:	12/18/92

Analyte	Concentration	Detection Limit
	(ug/L)	(ug/L)
Naphthalene	ND	5.0
Acenaphthylene	ND	5.0
Acenaphthene	ND	5.0
Fluorene	ND	5.0
Phenanthrene	ND	5.0
Anthracene	ND	5.0
Fluoranthene	ND	5.0
Pyrene	ND	5.0
Benzo(a)anthracene	ND	5.0
Chrysene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzo(a)pyrene	ND	5.0
Dibenzo(a,h)anthracene	ND	5.0
Ideno(1,2,3-cd)pyrene	ND	5.0
Benzo(ghi)perylene	ND	5.0
Benzo(j)fluoranthene	ND	5.0
3-Methylcholanthene	ND	5.0
Dibenz(a,h)acridine	ND	5.0
Dibenz(a,j,)acridine	ND	5.0
7H-Dibenz(c,g)carbazole	ND	5.0
Dibenzo(a,e)pyrene	ND [.]	5.0
Dibenzo(a,i)pyrene	ND	5.0
Dibenzo(a,h)pyrene	ND	5.0

#### **References:**

Method 8100: Polynuclear Aromatic Hydrocarbons

Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency, September 1986.

<u>Analyst</u>

Review

## QUALITY CONTROL REPORT - MATRIX DUPLICATE

## **Polynuclear Aromatic Hydrocarbons**

Client: Projec Samp Labora Sampl Preser Condi

K.W. Brown Environmental Services, Inc.

ect Name:	Navajo Refinery	Report Date:	12/18/92
ple ID:	KWB-11B	Date Sampled:	11/19/92
ratory ID:	C922437DUP	Date Received:	11/21/92
ple Matrix:	Water	Date Extracted:	11/26/92
ervative:	Cool	Date Analyzed:	12/18/92
dition:	Intact		

	Duplicate	Original	Percent
Analyte	Result (ug/L)	Result (ug/L)	Difference
Naphthalene	ND	ND	NA
Acenaphthylene	ND	ND	NA
Acenaphthene	ND	ND	NA
Fluorene	ND	ND	NA
Phenanthrene	ND	ND	NA
Anthracene	ND	ND	NA
Fluoranthene	ND	ND	NA
Pyrene	ND	ND	NA
Benzo(a)anthracene	ND	ND	NA
Chrysene	ND	ND	NA
Benzo(b)fluoranthene	ND	ND	NA
Benzo(k)fluoranthene	ND	ND	NA
Benzo(a)pyrene	ND	ND	NA
Dibenzo(a,h)anthracene	ND	ND	NA
Ideno(1,2,3-cd)pyrene	ND	ND	NA
Benzo(ghi)perylene	ND	ND	NA
Benzo(j)fluoranthene	ND	ND	NA
3-Methylcholanthene	ND	ND	NA
Dibenz(a,h)acridine	ND	ND	NA
Dibenz(a,j)acridine	ND	ND	NA
7H-Dibenz(c,g)carbazole	ND	ND	NA
Dibenzo(a,e)pyrene	ND	ND	NA
Dibenzo(a,i)pyrene	ND	ND	NA
Dibenzo(a,h)pyrene	ND	ND	NA

ND - Analyte not detected at established detection limit NA-Value not applicable

**References:** 

Method 8100: Polynuclear Aromatic Hydrocarbons Test Methods for Evaluating Solid Waste, SW-486, United States Environmental Protection Agency, Volume IB, September 1986.

I havy Hyginbothem Analyst

B. Ju Sylan Review

3304 Longmire College Station, Texas 77845

### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: K. W. Brown Environmental Services **Project Name:** Navajo - Artesia Project Number: 622092003 Report Date: 10/14/92 Login Number: 9210003 Date Sampled: 10/05/92 Gurley Shallow (KWパーレA) Sample ID: Date Received: 10/08/92 C922044 Sample Number: Date Analyzed: 10/13/92 Water Sample Matrix: Preservative: Cool, pH < 3Condition: Intact

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
tert-butyr meanyr ether		
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	99%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

1 m U aday

3304 Longmire College Station, Texas 77845

### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Client: **Project Name:** Sample ID: Sample Number: C922441 Sample Matrix: Preservative: Condition:

**K W. Brown Environmental Services** Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico KWB - 12 A Water Cool, HCI Intact, pH=2

Report Date:	12/14/92
Date Sampled:	11/19/92
Date Received:	11/21/92
Date Analyzed:	12/02/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	^r ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	8.4 B	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

B - Analyte detected in blank

3304 Longmire College Station, Texas 77845

## METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Client:	K W. Brown Environmental Services		
Project Name:	Navajo - Artesia, New Mexico	Report Date:	12/14/92
Project Location:	Artesia, New Mexico	Date Sampled:	11/19/92
Sample ID:	KWB - 12 A	Date Received:	11/21/92
Sample Number:	C922441	Date Analyzed:	12/02/92
Sample Matrix:	Water		
Preservative:	Cool, HCI		
Condition:	Intact, pH=2		

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	96%	75-125%
	Bromochloromethane	102%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8010, Halogenated Volatile Organics<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

Mady

Ulmah M Rog Review

3304 Longmire College Station, Texas 77845

# EPA Method 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

## K.W. Brown Environmental Services, Inc.

Client: Project Name: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

Navajo Refinery KWB-12A C922441 Water Cool Intact

 Report Date:
 12/18/92

 Date Sampled:
 11/19/92

 Date Received:
 11/21/92

 Date Extracted:
 11/26/92

 Date Analyzed:
 12/18/92

Analyte	Concentration	Detection Limit
	(ug/L)	(ug/L)
Naphthalene	ND	5.0
Acenaphthylene	ND	5.0
Acenaphthene	ND	5.0
Fluorene	ND	5.0
Phenanthrene	ND	5.0
Anthracene	ND	5.0
Fluoranthene	ND	5.0
Pyrene	ND	5.0
Benzo(a)anthracene	ND	5.0
Chrysene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzo(a)pyrene	ND	5.0
Dibenzo(a,h)anthracene	ND	5.0
Ideno(1,2,3-cd)pyrene	ND	5.0
Benzo(ghi)perylene	ND	5.0
Benzo(j)fluoranthene	ND	5.0
3-Methylcholanthene	ND	5.0
Dibenz(a,h)acridine	ND	5.0
Dibenz(a,j,)acridine	ND	5.0
7H-Dibenz(c,g)carbazole	ND	5.0
Dibenzo(a,e)pyrene	ND	5.0
Dibenzo(a,i)pyrene	ND	5.0
Dibenzo(a,h)pyrene	ND	5.0

**References:** 

Method 8100: Polynuclear Aromatic Hydrocarbons Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency, September 1986.

Mary Migginbotham Analyst

B. Van Span

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 Gurley Deep  $(\mathcal{K}\omega\mathcal{R} - \mathcal{I} \neq \mathcal{I})$ C922045 Water Cool, pH < 2 Intact

Report Date:	10/14/92
Date Sampled:	10/05/92
Date Received:	10/08/92
Date Analyzed:	10/14/92

	Opposite the first the	
Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	3.5	0.5
Toluene	5.2	0.5
Ethylbenzene	1.9	0.5
p,m-Xylene	3.7	0.5
o-Xylene	1.4	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:SurrogatePercent RecoveryAcceptance Limits1-Chloro-2-Fluorobenzene101%75-125%

Reference:Method 5030, Purge and TrapMethod 8020, Aromatic Volatile OrganicsSW-846, Test Methods for Evaluating Solid Wastes, United States EnvironmentalProtection Agency, September 1986.

M aduly

3304 Longmire College Station, Texas 77845

### BTEX **VOLATILE AROMATIC HYDROCARBONS**

Client: **Project Name:** Project Number: Login Number: Sample ID: Sample Number: C922171 Sample Matrix: Preservative: Condition:

K. W. BROWN ENVIRONMENTAL SERVICES Navajo Refinery - Artesia, NM 622092003 9210009 KWB - 12B Water Cool, HCI Intact, pH<2

Report Date:	11/06/92
Date Sampled:	10/29/92
Date Received:	10/30/92
Date Analyzed:	11/02/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Toluene	0.7	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control: Surrogate

1-Chloro-2-Fluorobenzene

Percent Recovery 88%

**Acceptance Limits** 75-125%

**Reference:** 

Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

um Uselen Analyst

<u>Ulend M Rog</u> Review

3304 Longmire College Station, Texas 77845

### METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS

Client:

#### **K W. Brown Environmental Services**

**Project Name:** Sample ID: Sample Number: C922440 Sample Matrix: Preservative: Condition:

Navajo - Artesia, New Mexico Project Location: Artesia, New Mexico KWB - 12 B Water Cool, HCI Intact, pH=2

Report Date:	12/14/92
Date Sampled:	11/19/92
Date Received:	11/21/92
Date Analyzed:	12/02/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	5.0
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	1.0
Chloromethane	ND	5.0
Dibromochloromethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Ethylbenzene	ND	0.5
Methylene Chloride	6.1 B	1.0
tert-Butyl methyl ether	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	0.5
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	5.0
Vinyl chloride	ND	5.0
p, m - Xylene	ND	0.5
o - Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

B - Analyte detected in blank

3304 Longmire College Station, Texas 77845

## METHODS 8010/8020 HALOGENATED/AROMATIC VOLATILE ORGANICS Page 2 - Quality Control

Client:	K W. Brown Environmental Services		
Project Name:	Navajo - Artesia, New Mexico	Report Date:	12/14/92
Project Location:	Artesia, New Mexico	Date Sampled:	11/19/92
Sample ID:	KWB - 12 B	Date Received:	11/21/92
Sample Number:	C922440	Date Analyzed:	12/02/92
Sample Matrix:	Water		
Preservative:	Cool, HCI		
Condition:	Intact, pH=2		

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	114%	75-125%
	Bromochloromethane	87%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8010, Halogenated Volatile Organics<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

**Comments:** Methylene Chloride is a common laboratory contaminant. Analytical results should not be considered reliable unless the sample result exceeds five times the reporting limit or ten times the blank concentration.

Madry

Ulind Mlog-Review

3304 Longmire College Station, Texas 77845

T

# EPA Method 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

#### K.W. Brown Environmental Services, Inc.

Project Name: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

Client:

Navajo Refinery KWB-12B C922440 Water Cool Intact

Report Date: 12/18/92 Date Sampled: 11/19/92 Date Received: 11/21/92 Date Extracted: 11/26/92 Date Analyzed: 12/18/92

Analyte	Concentration	Detection Limit
	(ug/L)	(ug/L)
Naphthalene	ND	5.0
Acenaphthylene	ND	5.0
Acenaphthene	ND	5.0
Fluorene	ND	5.0
Phenanthrene	ND	5.0
Anthracene	ND	5.0
Fluoranthene	ND	5.0
Pyrene	ND	5.0
Benzo(a)anthracene	ND	5.0
Chrysene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzo(a)pyrene	ND	5.0
Dibenzo(a,h)anthracene	ND	5.0
Ideno(1,2,3-cd)pyrene	ND	5.0
Benzo(ghi)perylene	ND	5.0
Benzo(j)fluoranthene	ND	5.0
3-Methylcholanthene	ND	5.0
Dibenz(a,h)acridine	ND	5.0
Dibenz(a,j,)acridine	ND	5.0
7H-Dibenz(c,g)carbazole	ND	5.0
Dibenzo(a,e)pyrene	ND	5.0
Dibenzo(a,i)pyrene	ND	5.0
Dibenzo(a,h)pyrene	ND	5.0

#### **References:**

Method 8100: Polynuclear Aromatic Hydrocarbons Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency, September 1986.

Higginbetham

B. Vin Sple

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 6220920039210003 Water Well at KWB - 6 (RA-272-3) C922050 Water Cool, pH < 2 Intact

Report Date:	10/14/92
Date Sampled:	09/30/92
Date Received:	10/08/92
Date Analyzed:	10/12/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control: <u>Surrogate</u> 1-Chloro-2-Fluorobenzene Percent Recovery 107% Acceptance Limits 75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

MMUdding

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 6220920039210003Water Well at KWB - 8 (RA- 4798) C922051 Water Cool, pH < 3 Intact

Report Date:	10/14/92
Date Sampled:	09/30/92
Date Received:	10/08/92
Date Analyzed:	10/12/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	107%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

(n Waduz

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 6220920039210003Gurley House Well (AA - 315) C922052 Water Cool, pH < 2 Intact

Report Date:	10/14/92
Date Sampled:	09/30/92
Date Received:	10/08/92
Date Analyzed:	10/12/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control: <u>Surrogate</u> 1-Chloro-2-Fluorobenzene Percent Recovery 107% Acceptance Limits 75-125%

Reference:Method 5030, Purge and TrapMethod 8020, Aromatic Volatile OrganicsSW-846, Test Methods for Evaluating Solid Wastes, United States EnvironmentalProtection Agency, September 1986.

Maday

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 6220920039210003 Joy House Well ( $\mathcal{R}A - 3355$ ) C922053 Water Cool, pH < 2 Intact

0/14/92
09/30/92
0/08/92
0/12/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control: S

Surrogate 1-Chloro-2-Fluorobenzene Percent Recovery 103% Acceptance Limits 75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

<u>Win Ulad mill</u>

3304 Longmire College Station, Texas 77845

### BTEX VOLATILE AROMATIC HYDROCARBONS

#### K. W. BROWN ENVIRONMENTAL SERVICES

Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

**Client:** 

Navajo Refinery - Artesia, NM 622092003 9210009 KWB - 1P  $(\mathcal{K}\omega\mathcal{R} - \mathcal{P} - \mathcal{I})$ C922166 Water Cool, HCl Intact, pH=3

Report Date:	11/06/92
Date Sampled:	10/28/92
Date Received:	10/30/92
Date Analyzed:	10/30/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control: Surrogate

Surrogate 1-Chloro-2-Fluorobenzene Percent Recovery 98% Acceptance Limits 75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

Auts Wadry

<u>Uland M Kg</u> Review

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client:K. W. BroProject Name:Navajo - AProject Number:62209200Login Number:9210003Sample ID:P - 2Sample Number:C922046Sample Matrix:WaterPreservative:Cool, pHCondition:Intact

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 P - 2 C922046 Water Cool, pH < 2 Intact

Report Date:	10/14/92
Date Sampled:	10/07/92
Date Received:	10/08/92
Date Analyzed:	10/08/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chioro-2-Fluorobenzene	103%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

m Maduff

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 P - 3 C922047 Water Cool, pH < 2 Intact

Report Date:	10/14/92
Date Sampled:	10/06/92
Date Received:	10/08/92
Date Analyzed:	10/08/92

	<u> </u>	<b>N</b>
Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	13.1	0.5
Toluene	21.0	0.5
Ethylbenzene	3.7	0.5
p,m-Xylene	12.4	0.5
o-Xylene	6.4	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	102%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

Madur

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

#### K. W. BROWN ENVIRONMENTAL SERVICES

Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

Client:

Navajo Refinery - Artesia, NM 622092003 9210009 KWB - 3P (人いき P- 3) C922167 みずま Water

Cool, HCI

Intact, pH=6

Report Date:	11/06/92
Date Sampled:	10/29/92
Date Received:	10/30/92
Date Analyzed:	10/30/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:

Surrogate 1-Chloro-2-Fluorobenzene Percent Recovery 98% Acceptance Limits 75-125%

**Reference:** 

: Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

mUrduff Anályst

<u>Ulmah M ka</u> Review

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 P - 4 C922048 Water Cool, pH < 3 Intact

Report Date:	10/14/92
Date Sampled:	10/07/92
Date Received:	10/08/92
Date Analyzed:	10/08/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	1.1	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	1.6	0.5
o-Xylene	1.5	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:SurrogatePercent RecoveryAcceptance Limits1-Chloro-2-Fluorobenzene101%75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

mUdding

3304 Longmire College Station, Texas 77845

#### BTEX **VOLATILE AROMATIC HYDROCARBONS**

### K. W. BROWN ENVIRONMENTAL SERVICES

**Project Name:** Project Number: Login Number: Sample ID: Sample Number: C922168 Sample Matrix: Preservative: Condition:

**Client:** 

Navajo Refinery - Artesia, NM 622092003 9210009 KWB-4P(KWBP-4)Water Cool, HCI Intact, pH=6

Report Date:	11/06/92
Date Sampled:	10/29/92
Date Received:	10/30/92
Date Analyzed:	10/30/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:

Surrogate 1-Chloro-2-Fluorobenzene Percent Recovery 98%

Acceptance Limits 75-125%

**Reference:** 

Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

Analyst

<u>Ulond M Log</u> Review

3304 Longmire College Station, Texas 77845

### BTEX VOLATILE AROMATIC HYDROCARBONS

#### K. W. BROWN ENVIRONMENTAL SERVICES

Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

**Client:** 

Navajo Refinery - Artesia, NM 622092003 9210009 KWB-5P Equip. Blank at C922169 KWB-11B location Water Cool, HCI Intact, pH<2

Report Date:	11/06/92
Date Sampled:	10/29/92
Date Received:	10/30/92
Date Analyzed:	10/30/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Toluene	0.5	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	97%	75-125%

Reference:Method 5030, Purge and TrapMethod 8020, Aromatic Volatile OrganicsSW-846, Test Methods for Evaluating Solid Wastes, United States EnvironmentalProtection Agency, September 1986.

un Wadun /

<u>Ulond M Rog</u> Beview

Inter-Mointain Laboratories, Inc.

11183 SH 30 College Station, Texas 77845

### Client: K. W. BROWN ENVIRONMENTAL SERVICES

10/29/92

500 GRAHAM ROAD

COLLEGE STATION, TEXAS 77845

P.O. #43562

#### PROJECT: NAVAJO-ARTESIA - #622092003

IML Lab No.		C922040/15220	C922041/15221	C922042/15222	C922043/15223
Sample ID.		KWB-1 Deep	Coll Deep	Pecan Shallow	Pecan Deep
Date Sampled		10/1/92	10/5/92	10/1/92	10/6/92
Date Received		10/9/92	10/9/92	10/9/92	10/9/92
рН	s.u	7.9	11.7	7.3	7.8
Conductivity	umhos/cm	1360.	2620.	3710.	1550.
Calcium	mg/L	182.	265.	386.	172.
Magnesium	mg/L	59.	0.6	164.	69.
Potassium	mg/L	1.3	139.	26.	15.
Sodium	mg/L	19.	78.	158.	38.
Total Alkalinity	mg/L	193.	280.	469.	68.
Chloride	mg/L	21.	35.	305.	72.
Sulfate	mg/L	484.	681.	1120.	602.
Total Dissolved Solids	mg/L	948.	1400.	2690.	1140.
Total Arsenic	mg/L	<0.005	< 0.005	<0.005	<0.005
Total Chromium	mg/L	<0.02		<0.02	
Total Lead	mg/L	<0.02	<0.02	<0.02	

KWB-IC KWB-ID KWB-IID KWR-IIB

Reviewed by:

Inter-Mountain Laboratories, Inc.

11183 SH 30 College Station, Texas 77845

#### Client: K. W. BROWN ENVIRONMENTAL SERVICES

10/29/92

500 GRAHAM ROAD

COLLEGE STATION, TEXAS 77845

P.O. #43562

PROJECT: NAVAJO-ARTESIA - #622092003

IML Lab No.		C922044/15224	C922045/15225	C922046/15226	C922047/15227
Sample ID.		Gurley Shallow	Gurley Deep	P-2	P-3
Date Sampled		10/5/92	10/5/92	10/7/92	10/6/92
Date Received		10/9/92	10/9/92	10/9/92	10/9/92
pН	s.u	7.2	7.7	7.4	7.3
Conductivity	umhos/cm	4940.	3270.	5650.	8660.
Calcium	mg/L	576.	348.	553.	546.
Magnesium	mg/L	242.	140.	321.	606.
Potassium	mg/L	2.6	36.	3.0	5.1
Sodium	mg/L	248.	148.	240.	620.
Total Alkalinity	mg/L	320.	151.	228.	282. 7
Chloride	mg/L	125.	77.	602.	782.
Sulfate	mg/L	2480.	1540.	2130.	3870.
Total Dissolved Solids	mg/L	4220.	2610.	4590.	7440.
Total Arsenic	mg/L	<0.005	<0.005	<0.005	0.005
Total Chromium	mg/L	<0.02		<0.02	<0.02
Total Lead	mg/L	<0.02		<0.02	<0.02

KWB-12A KWB-12R

**Reviewed by:** 

ι'n,

Mitch Swan Supervisor--Water Operations

#### Client: K. W. BROWN ENVIRONMENTAL SERVICES

500 GRAHAM ROAD

COLLEGE STATION, TEXAS 77845

#### P.O. #43562

PROJECT: NAVAJO-ARTESIA - #622092003

11183 SH 30 College Station, Texas 77845

10/29/92

IML Lab No.		C922048/15228	C922043/15230	
Sample ID.		P-4	Pecan Deep Dup	
Date Sampled		10/7/92	10/6/92	
Date Received		10/9/92	10/9/92	
pH	s.u	7.6	7.7	
Conductivity	umhos/cm	9170	1550.	
Calcium	mg/L	605.	176.	
Magnesium	mg/L	554.	71.	
Potassium	mg/L	5.4	15.	
Sodium	mg/L	620.	36.	
Total Alkalinity	mg/L	326.	74.	
Chloride	mg/L	1120.	72.	
Sulfate	mg/L	3210.	606.	
Total Dissolved Solids	mg/L	7450.	1160.	
Total Arsenic	mg/L	0.005	<0.005	
Total Chromium	mg/L	<0.02		
Total Lead	mg/L	<0.02		

KWB-11B

Reviewed by:

Mitch Swan Supervisor-Water Operations

ني:

Inter-Mountain Laboratories, Inc.

11183 SH 30 College Station, Texas 77845

#### Client: K. W. BROWN ENVIRONMENTAL SERVICES

10/29/92

`....

500 GRAHAM ROAD

COLLEGE STATION, TEXAS 77845

#### P.O. #43562

PROJECT: NAVAJO-ARTESIA - #622092003

<u></u>				······································	
IML Lab No.		C922030/15211	C922031/15212	C922032/15213	C922033/15214
Sample ID.		KWB-1B	KWB-2A	KWB-3A	KWB-4
Date Sampled		9/26/92	9/28/92	9/28/92	9/29/92
Date Received		10/5/92	10/5/92	10/5/92	10/5/92
Total Arsenic	mg/L	0.005	0.009	<0.005	
Total Chromium	mg/L	<0.02			
Total Lead	mg/L	<0.02			<0.02
IML Lab No.		C922034/15215	C922035/15216	C922036/15217	C922038/15218
Sample ID.		KWB-5	KWB-6	KWB-7	KWB-9
Date Sampled		9/30/92	9/29/92	9/26/92	9/28/92
Date Received		10/5/92	10/5/92	10/5/92	10/5/92
Total Arsenic	mg/L			<0.005	<0.005
Total Chromium	mg/L				
Total Lead	_mg/L	0.04	<0.02		
IML Lab No.		C922039/15219	C922030/15229		
Sample ID.		KWB-Dup	KWB-1B (Dup)		
Date Sampled		9/29/92	9/26/92		
Date Received		10/5/92	10/5/92		
Total Arsenic	mg/L		0.006		<u>.</u>
Total Chromium	mg/L		< 0.02		
Total Lead	_mg/L	0.03	<0.02		

Reviewed by:

KWB-S

11183 SH 30 College Station, Texas 77845

### WATER QUALITY REPORT TRACE METALS

# CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

Sample ID:	KWB-1C	Report Date:	12/30/92
Laboratory Number:	C922428/15732	Date Sampled:	11/19/92
Sample Matrix:	WATER	Date Received:	11/23/92
Preservative:	HNO3, COOL	Date Extracted:	11/30/92
Condition:	INTACT		

Analyte	Concentration	Units	Detection Limit	Method Reference
Dissolved Arsenic	ND	mg/L	0.005	7061
Dissolved Chromium	ND	mg/L	0.02	7191
Dissolved Lead	ND	mg/L	0.02	7421
Dissolved Nickel	0.07	mg/L	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE: Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

Reviewed by:

11183 SH 30 College Station, Texas 77845

### WATER QUALITY REPORT TRACE METALS QUALITY CONTROL REPORT-MATRIX SPIKE ANALYSIS

### CLIENT: K.W. BROWN ENVIRONMENTAL SERVICES

**PROJECT:** 

NAVAJO - #622092005

Sample ID:	KWB-1C
Laboratory Number:	C922428/15732
Sample Matrix:	WATER
Preservative:	HNO3, COOL
Condition:	INTACT

Report Date:	12/30/92
Date Sampled:	11/19/92
Date Received:	11/23/92
Date Extracted:	11/30/92

Analyte	Unspiked Sample Concentration (mg/L)	Spiked Sample Concentration (mg/L)	Spike Amount (mg/L)	Percent Recovery	Detection Limit (mg/L)	Method Reference
Dissolved Arsenic	ND	0.011	0.010	110	0.005	7061
Dissolved Chromium	ND	0.06	0.05	120	0.02	7191
Dissolved Lead	ND	0.05	0.05	100	0.02	7421
Dissolved Nickel	0.07	0.51	0.50	89	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE: Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

Reviewed by:

11183 SH 30 College Station, Texas 77845

### WATER QUALITY REPORT TRACE METALS

# CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

Sample ID:	KWB-4	Report Date:	12/30/92
Laboratory Number:	C922429/15733	Date Sampled:	11/20/92
Sample Matrix:	WATER	Date Received:	11/23/92
Preservative:	HNO3, COOL	Date Extracted:	11/30/92
Condition:	INTACT		

Analyte	Concentration	Units	Detection Limit	Method Reference
Dissolved Arsenic	0.007	mg/L	0.005	7061
Dissolved Chromium	ND	mg/L_	0.02	7191
Dissolved Lead	ND	mg/L	0.02	7421
Dissolved Nickel	0.06	mg/L	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE: Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

**Reviewed by:** 

11183 SH 30 College Station, Texas 77845

### WATER QUALITY REPORT TRACE METALS

# CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

Sample ID:	KWB-5	Report Date:	12/30/92
Laboratory Number:	C922430/15734	Date Sampled:	11/20/92
Sample Matrix:	WATER	Date Received:	11/23/92
Preservative:	HNO3, COOL	Date Extracted:	11/30/92
Condition:	INTACT		

Analyte	Concentration	Units	Detection Limit	Method Reference
Dissolved Arsenic	ND	mg/L	0.005	7061
Dissolved Chromium	ND	mg/L	0.02	7191
Dissolved Lead	ND	mg/L	0.02	7421
Dissolved Nickel	0.05	mg/L	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE: Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

Reviewed by:

11183 SH 30 College Station, Texas 77845

### WATER QUALITY REPORT TRACE METALS

# CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

Sample ID:	KWB-6	Report Date:	12/30/92
Laboratory Number:	C922431/15735	Date Sampled:	11/20/92
Sample Matrix:	WATER	Date Received:	11/23/92
Preservative:	HNO3, COOL	Date Extracted:	11/30/92
Condition:	INTACT		

Analyte	Concentration	Units	Detection Limit	Method Reference
Dissolved Arsenic	0.007	mg/L	0.005	7061
Dissolved Chromium	ND	mg/L	0.02	7191
Dissolved Lead	ND	mg/L	0.02	7421
Dissolved Nickel	0.05	mg/L	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE:

Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

Reviewed by:

11183 SH 30 College Station, Texas 77845

### WATER QUALITY REPORT TRACE METALS

# CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

Sample ID:	KWB-7	Report Date:	12/30/92
Laboratory Number:	C922439/15741	Date Sampled:	11/19/92
Sample Matrix:	WATER	Date Received:	11/23/92
Preservative:	HNO3, COOL	Date Extracted:	11/30/92
Condition:	INTACT		

Analyte	Concentration	Units	Detection Limit	Method Reference
Dissolved Arsenic	ND	_mg/L	0.005	7061
Dissolved Chromium	ND	mg/L	0.02	7191
Dissolved Lead	ND	mg/L	0.02	7421
Dissolved Nickel	0.07	mg/L	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE: Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

Reviewed by:

11183 SH 30 College Station, Texas 77845

### WATER QUALITY REPORT TRACE METALS QUALITY CONTROL REPORT-DUPLICATE ANALYSIS

## CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

Sample ID:	KWB-7	Report Date:	12/30/92
Laboratory Number:	C922439/15744	Date Sampled:	11/19/92
Sample Matrix:	WATER	Date Received:	11/23/92
Preservative:	HNO3, COOL	Date Extracted:	11/30/92
Condition:	INTACT		

Analyte	Original Concentration (mg/L)	Duplicate Concentration (mg/L)	Relative Percent Difference	Reporting Limit (mg/L)	Method Reference
Dissolved Arsenic	ND	ND	NC	0.005	7061
Dissolved Chromium	ND	ND	NC	0.02	7191
Dissolved Lead	ND	ND	NC	0.02	7421
Dissolved Nickel	0.07	0.07	0.0	0.01	7520

NC - Noncalculable RPD due to value(s) less than RL.

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE: Analysis performed according to SW-846 "Test Methods for

Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

Reviewed by:

Mitch Swan

11183 SH 30 College Station, Texas 77845

#### WATER QUALITY REPORT TRACE METALS

# CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

Sample ID:	KWB-8	Report Date:	12/30/92
Laboratory Number:	C922432/15736	Date Sampled:	11/20/92
Sample Matrix:	WATER	Date Received:	11/23/92
Preservative:	HNO3, COOL	Date Extracted:	11/30/92
Condition:	INTACT		

Analyte	Concentration	Units	Detection Limit	Method Reference
Dissolved Arsenic	0.016	mg/L	0.005	7061
Dissolved Chromium	ND	mg/L	0.02	7191
Dissolved Lead	ND	mg/L	0.02	7421
Dissolved Nickel	0.07	mg/L	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE: Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

Reviewed by:

TTA

11183 SH 30 College Station, Texas 77845

#### WATER QUALITY REPORT TRACE METALS

# CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

Sample ID:	KWB-9	Report Date:	12/30/92
Laboratory Number:	C922433/15737	Date Sampled:	11/19/92
Sample Matrix:	WATER	Date Received:	11/23/92
Preservative:	HNO3, COOL	Date Extracted:	11/30/92
Condition:	INTACT		

Analyte	Concentration	Units	Detection Limit	Method Reference
Dissolved Arsenic	ND	mg/L	0.005	7061
Dissolved Chromium	ND	mg/L.	0.02	7191
Dissolved Lead	ND	mg/L	0.02	7421
Dissolved Nickel	0.06	mg/L	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE:Analysis performed according to SW-846 "Test Methods for<br/>Evaluating Solid Waste: Physical/Chemical Methods," United States<br/>Environmental Protection Agency, November, 1986.

Reviewed by:

11183 SH 30 College Station, Texas 77845

### WATER QUALITY REPORT TRACE METALS

# CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

Sample ID:	KWB-10	Report Date:	12/30/92
Laboratory Number:	C922434/15738	Date Sampled:	11/20/92
Sample Matrix:	WATER	Date Received:	11/23/92
Preservative:	HNO3, COOL	Date Extracted:	11/30/92
Condition:	INTACT		

Analyte	Concentration	Units	Detection Limit	Method Reference
Dissolved Arsenic	0.113	mg/L	0.005	7061
Dissolved Chromium	ND	mg/L_	0.02	7191
Dissolved Lead	ND	mg/L	0.02	7421
Dissolved Nickel	0.06	mg/L	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE: Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

Reviewed by:

 $M_{t}$ 

11183 SH 30 College Station, Texas 77845

### WATER QUALITY REPORT TRACE METALS

# CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

Sample ID:	KWB-11A	Report Date:	12/30/92
Laboratory Number:	C922438/15740	Date Sampled:	11/19/92
Sample Matrix:	WATER	Date Received:	11/23/92
Preservative:	HNO3, COOL	Date Extracted:	11/30/92
Condition:	INTACT		

Analyte	Concentration	Units	Detection Limit	Method Reference
Dissolved Arsenic	ND	mg/L	0.005	7061
Dissolved Chromium	ND	mg/L	0.02	7191
Dissolved Lead	ND	mg/L_	0.02	7421
Dissolved Nickel	0.06	mg/L	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE: Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

Reviewed by:

11183 SH 30 College Station, Texas 77845

### WATER QUALITY REPORT TRACE METALS

# CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

Sample ID:	KWB-11B	Report Date:	12/30/92
Laboratory Number:	C922437/15739	Date Sampled:	11/19/92
Sample Matrix:	WATER	Date Received:	11/23/92
Preservative:	HNO3, COOL	Date Extracted:	11/30/92
Condition:	INTACT		

Analyte	Concentration	Units	Detection Limit	Method Reference
Dissolved Arsenic	ND	mg/L	0.005	7061
Dissolved Chromium	ND	mg/L	0.02	7191
Dissolved Lead	ND	mg/L	0.02	7421
Dissolved Nickel	0.06	mg/L	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE:Analysis performed according to SW-846 "Test Methods for<br/>Evaluating Solid Waste: Physical/Chemical Methods," United States<br/>Environmental Protection Agency, November, 1986.

**Reviewed by:** 

11183 SH 30 College Station, Texas 77845

### WATER QUALITY REPORT TRACE METALS

# CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

Sample ID:	KWB-12A	Report Date:	12/30/92
Laboratory Number:	C922441/15743	Date Sampled:	11/19/92
Sample Matrix:	WATER	Date Received:	11/23/92
Preservative:	HNO3, COOL	Date Extracted:	11/30/92
Condition:	INTACT		

Analyte	Concentration	Units	Detection Limit	Method Reference
Dissolved Arsenic	ND	mg/L	0.005	7061
Dissolved Chromium	ND	mg/L	0.02	7191
Dissolved Lead	ND	mg/L	0.02	7421
Dissolved Nickel	0.08	mg/L	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

REFERENCE:

Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.

**Reviewed by:** 

11183 SH 30 College Station, Texas 77845

### WATER QUALITY REPORT TRACE METALS

# CLIENT:K.W. BROWN ENVIRONMENTAL SERVICESPROJECT:NAVAJO - #622092005

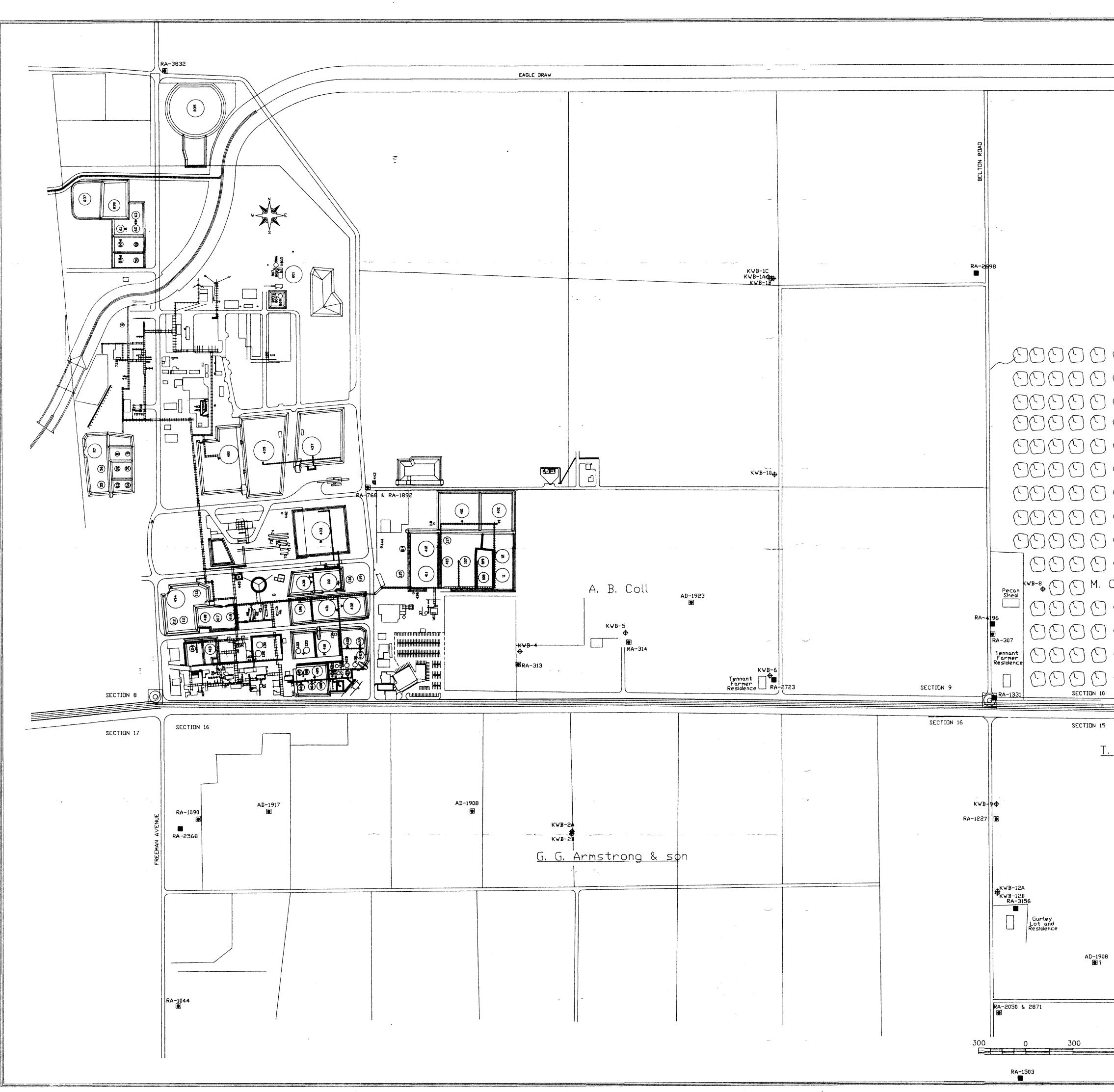
Sample ID:	KWB-12B	Report Date:	12/30/92
Laboratory Number:	C922440/15742	Date Sampled:	11/19/92
Sample Matrix:	WATER	Date Received:	11/23/92
Preservative:	HNO3, COOL	Date Extracted:	11/30/92
Condition:	INTACT		

Analyte	Concentration	Units	Detection Limit	Method Reference
Dissolved Arsenic	ND	mg/L	0.005	7061
Dissolved Chromium	ND	mg/L	0.02	7191
Dissolved Lead	ND	mg/L	0.02	7421
Dissolved Nickel	0.07	mg/L	0.01	7520

ND - Parameter not detected at stated detection limit. Detection limits are derived from practical quantitation levels.

**REFERENCE:** 

Analysis performed according to SW-846 "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods," United States Environmental Protection Agency, November, 1986.


Reviewed by:

ENERGY, MINE	State of Ne <b>RALS and NATUR</b> Santa Fe, New	AL RESOL	JRCES DEPARTMENT 05
STATE OF NEW MEXICO OIL CONSERVISION MEMOR/	ANDUM OF MEETING	G OR CON	VERSATION
Telephone Personal	Time 1945		Date 1/26/23
Originating Party			Other Parties
Darrel Moore - Navio Ile	Fining	Bill	Obon
Subject Navijo Nofhery Tank Hydre	stast Discherg	e 4 (	Ground Water Remarkation
Discussion			
diesel tank to adja	ent faca l a Gachysis of PAH's, 1	or app veta/s a	opricte TC and that
on upsrading side of		ty en	njert treated affile 6W
Conclusions or Agreements			
He will submit hydrotest	analysis to	B. 1	lyers for goppoirs Wen recieve
He will submit workple	for air s	trippes	+ reinjection by next Wed.
Distribution	Si	gned	all Chin

.....

ļ

I



------

			· · ·		
-	EXF				
		w ^{B-7} Monitor well			
		Boring location ■ Water well —		Illey fill aquifer	
. *		<ul> <li>Water well –</li> </ul>			
		Open casing -			
				converted to water well ction unknown	
	(	Section corner			
		State Enginee Roswell Artesi		ell number,	
		Age of well, r			
90000	$\square$	no RA numbe	r assigned	j	
-0000	$\bigcirc$	Pecan trees			
	Notes			ocations approximate	
90000		based on field Monitor well la		ions and existing records. urveyed 3/92.	
		2. See figures 2	through 4	4 for detals of interceptor tren	ch.
		Designation of	intercept	ench segment. or trench segment.	
YUUUU		Piezometers a	t ends of		
00000		Concrete pad of collected p	with tank roduct/gr	s for temporary storage oundwater.	
	3-7		K₩B-2P		
00000			·		
hase () ()					
90000			RA-397		
900000	U.S. HIG	HWAY 82	RA-279	RA-1300 3	
Truman Ho					
	45C			RA-1183 RA-222	
7 KWB-3B-RA-3	353				
	an a				
					新
					•
-			CR 49A	RECEIVED	
an	p compiled from No d NM State Highway			JAN 2 2 1992 3 mg	
	rial Mapping. CATION: T17S, R26	E, NMPM,		OIL CONSERVATION DIV. SANTA FE	•
		nty, New Mexico	1 ! 		
,		<b>XWBE</b>	S	MONITORING AND WATER WELL LOCATION	S
900 FEET		prepared for:	PRO	DJECT: 622092003-262 (BASE2) CATION: ARTESIA, NEW MEXICO	
		ENAVAJO.	APF DRA DAT	PR: DATE: 5/6/9 WN BY: JW SCALE: AS SHO	2 WN

(505) 748-3311



## REFINING COMPANY

EASYLINK 62905278 FAX

(505) 746-6410

501 EAST MAIN STREET • P. O. DRAWER 159

ARTESIA, NEW MEXICO 88210

January 21, 1993

RECEIVED JAN 22 19923 200 OIL CONSERVATION DIV. SANTA FE

Mr. William Olson, Hydrogeologist Environmental Bureau Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87504

## RE: OFFSITE GROUNDWATER CONTAMINATION, NAVAJO REFINERY, EDDY COUNTY, NEW MEXICO

Dear Bill:

Navajo received OCD's letter of January 7, 1993 regarding our failure to submit required information on our plume east of the refinery. Due to lack of communication and misunderstandings on my part, this was not taken care of. I would like to apologize for the lack of attention to this matter.

In your letter of October 8, 1992 you gave Navajo some conditions of approval on the remediation of the plume. Several steps have been taken, but I would like to go through each condition and let you know where we are at this time.

#### Immediate Actions:

- 1. Private wells, RA-2723, RA-4196 and RA-4798 are the domestic wells to be sampled for BTEX. As I mentioned in our phone conversation of November 9, 1992, Navajo looked into the possibility of providing these users with city water thereby alleviating the necessity for frequent testing. However, after looking into the feasibility of this it was decided that this probably wasn't a good option, for several reasons. First of all, the City would put certain stipulations on the landowners that they would not accept. Secondly, RA-4196 has no residential use and RA-4798, which is an abandoned oil and gas well, is double cased making it highly unlikely that this water could get contaminated. Therefore, Navajo would like to re-propose that RA-4196 and RA-4798 be sampled monthly, with RA-2723 on a twice monthly schedule. Since we are already behind in sampling, Navajo will sample these wells immediately and get the results to OCD as soon as possible, while awaiting your decision on our proposal.
- 2. Dave Boyer with K. W. Brown has agreed to send the sample analysis for wells RA-3156, RA-3353, KWB-2A, KWB-3A, KWB-7 and KWB-9 to the OCD. These wells were sampled in November, 1992 as per your additional requirements. However the lab (Inter Mountain Labs) has had some trouble getting results to us due to the large number of Navajo's RCRA samples being processed simultaneously.

Mr. William Olson Page 2

- 3. Irrigation wells; RA-313, RA-314, RA-1331, RA-307 and RA-1227 <u>will</u> be sampled monthly for BTEX once the irrigation season begins in the spring.
- 4. Navajo and K.W. Brown are in the process of designing a recovery trench for the area along Bolton Road to stop the front of the plume. Several options are being considered for the other areas, including modeling to check radius of influence to give us a better idea on how to proceed.
- 5. All recovered fluids will be piped back to the refinery. Water will be put through our waste water system and hydrocarbons will be re-processed.
- 6. As mentioned above in #4, the preliminary design of the recovery trench along Bolton Road has been completed. This will be submitted to OCD by Dave Boyer. Other systems will be submitted shortly thereafter. Navajo and K. W. Brown are working on stopping the leading edge of the plume first, then recovering the product where it is concentrated back to the east.
- 7. Dave Boyer notified OCD of our November sampling. Unfortunately, that is the only sampling that has been done. Our next quarterly sampling is due April 1, 1993. As for the biweekly and monthly sampling we will be glad to give OCD notice.
- 8. The quarterly sampling that was done in November should be to your office by the time you receive this letter. It will be forwarded by Dave Boyer. I realize it is late but the lab seems to have gotten overloaded.
- 9. Obviously, some of this has been missed. Again I apologize.

#### Long Term Actions:

- 1. Dave Boyer discussed this condition with you over the phone, and as a result of that conversation selected wells were sampled. It is my understanding that after these results are analyzed, we will have a better idea of how to proceed. These results will be in a packet you receive from Dave on or before the January 22, 1993 deadline.
- 2. I could find nothing in the State Engineer's files that shows these wells ever existed. I also found no evidence of them in the field.
- **3.** Information from borings 62 66 will be sent by Dave Boyer.
- 4. A work plan for additional plume definition with detailed information on monitor wells, monitor well construction, sampling procedures, and analytical methods has been completed and will be forwarded by Dave Boyer. The work plan for long term remediation hasn't been approved yet by Navajo. However, when finished it will be forwarded.

Mr. William Olson Page 3

Hopefully this letter will ease some of the concerns you have about this project. Again, I'm truthfully sorry about the confusion surrounding this. I can assure you that Navajo regards this situation with the seriousness that it deserves and I will be more diligent in implementing the procedures to insure it's success. If you have any questions please contact me at 748-3311, extension 281.

Sincerely,

Danell Moore

Darrell Moore Environmental Specialist

DGM/pb

cc: Dave Boyer K. W. Brown Engineering Services 500 Graham Road College Station, TX 77845

State of New Mexico ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT Santa Fe, New Mexico 87505 STATE OF N MEXICO MEMORANDUM OF MEETING OR CONVERSATION VISION Time Date Telephone 1530 Personal Originating Party Other Parties Unirell *(*Bill puir. 400 loh er 16 48 - 33 Subject 0 ln ren 10 Discussion (9cL)guest/h 65 Diarl -9 mer a 2 Ļ (eno 50, ,91 A ٢. 2 Hon 500 12 saturate Q. Vecale lor 7 3 k 11 be er 4. Tor los M.M. in 41 2 5. Rasue ALL 6 DIAN Ariar  $\nabla n$ a Conclusions or Agreements H He responsa ce Signed Distribution

STATE OF NEW MEXICO



ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

DRUG FREE

BRUCE KING GOVERNOR January 7, 1993

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

ANITA LOCKWOOD CABINET SECRETARY

> CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-317

Mr. David G. Griffin Superintendent of Environmental Affairs and Quality Control Navajo Refining Company P.O. Drawer 159 Artesia, New Mexico 88210

RE: OFFSITE GROUND WATER CONTAMINATION NAVAJO REFINERY EDDY COUNTY, NEW MEXICO

Dear Mr. Griffin:

On October 8, 1992, the New Mexico Oil Conservation Division (OCD) sent Navajo Refining Co. a letter of review of Navajo Refinery's May 1992 "INVESTIGATION OF THE SUBSURFACE HYDROCARBON PLUME AT THE NAVAJO REFINERY, ARTESIA, NEW MEXICO". In this letter, OCD approved Navajo's "Recommendations For Immediate Action" which were to be implemented by November 8, 1992. The OCD also required that Navajo submit a work plan for additional plume definition, a work plan for long term remediation of contaminated ground water and further information on water quality by December 8, 1992. To date, the OCD has not received any of the required information nor has OCD been notified of implementation of required immediate actions.

You are hereby notified that Navajo Refinery will be found to be out of compliance with New Mexico Water Quality Control Commission (WQCC) Regulation 1-203 unless Navajo provides OCD with information on implementation of the required "Immediate Actions" and submits all other information required in OCD's October 8, 1992 correspondence by January 22, 1992.

If you have any questions, please contact me at (505), 827-5812.

Sincerely,

ogu

Rogér C. Anderson Environmental Bureau Chief

xc: Mike Williams, OCD Artesia District Supervisor David G. Boyer, K.W. Brown Environmental Services Richard D. Mayer, EPA Region VI

3304 Longmire College Station, Texas 77845

Mr. David Boyer K.W. Brown Environmental Services 500 Graham Road College Station, Texas 77845

November 6, 1992

Dear David,

On October 30, 1992, six water samples were received by Inter-Mountain Laboratories - College Station. The samples were received cool, intact and in good condition. The samples was identified by Project Name "Navajo Refinery". Analyses for Benzene-Toluene-Ethylbenzene-Xylenes (BTEX) was performed according to the accompanying chain of custody form. RUSH

It is the policy of this laboratory to employ, whenever possible, preparatory and analytical methods which have been approved by regulatory agencies. The methods used in the analysis of samples reported herein are found in 40 CFR Part 261, Appendix II, USEPA, July 1, 1990, and "Test Methods for Evaluating Solid Waste", SW-846, USEPA, 1986. All reports in this package reference methods utilized.

Low level hits were found in three of the samples: KWB-5P, KWB-11B, and KWB-12B. Quality Control reports have been included for your information and use. These reports appear at the end of the analytical package and may be identified by title. If you have any questions regarding the information in this package, please feel free to call at your convenience.

Sincerely,

Wenda Mlog

Ulonda M. Rogers Manager

KWB2166

		<b>.</b>				-										 - 	en 12 ge				•		
				-												·.		Time	0960	en la compañía de la comp	emit		710
			N N	l, ks			172	·				-					÷	-	R	Date	Date		11
		ANALYSES / PARAMETERS		A market and the second s			70 2922				-								~				X 3304 Longmire Drive College Station, TX 77845 Telephone (409) 774-4999
1 		INALYS				-							    .		 				How		nature)		
ORD						-+	×	×	×	×	×	×						 lgnature)	X	: (Signature)	Received by laboratory: (Signature)		□. Houte 3, Box 256 College Station, TX 77845 Telephone (409) 776-8945
CUSTODY RECORD		, co	/ · #		to .ov nistroC	í						7			 			 Received by: (Signature)	Jaris	Received 13/13	ived by lab	es, Inc.	
		Mexico	/ 00 in	. P		×													-		1	Laboratories,	☐ 910 Technology Blvd. Sutte B Bozeman, Montana 59715 Telephone (406) 586-8450
CUST		. New	e No.	ļ		Matrix	Jater				/	· •						_	12/1000	1 Ime	Time	Labo	) Technolog zeman, Mor lephone (40
-	Drolood 1 coollon	Actoric	stody Tap	9210009			4			-								 Date Id / /	. 1	Date	Date	untain	
CHAIN OF		A.	Chain of Custody Tape No.	92		Lab Number	6922166	<b>6922167</b>	C 522/68	0922169	<i><b>2922170</b></i>	2922171										Inter-Mountain	Telephone (505) 326-4737
···		•.		-9280		Time	1540	950	840	1300	1235				 			 		 -			cle g 82716 682-8945
		Refineru	D	(409)690-9280		Date	10/28/92	24/62/01	26/62/01	10/29/92								 •					Telephone (307) 682-8945
Inter-Mourtain Approximation	Clant/Brolant Name	Mava is Ref	EI O	Tord Welom	Sample No./	_	KWB-1P	KWB-3P	KWB-4P	KWB-SP	KWB-11B	KWB-12B						by: (	/add Ullim	Relinquished by: (Signature)	Relinquished by: (Signature)		Telephone (307) 672-8945

I

-

I

ļ

I

3304 Longmire College Station, Texas 77845

#### QUALITY CONTROL REPORT - MATRIX SPIKE AROMATIC AND HALOGENATED VOLATILE ORGANICS

Sample Number:	C922169 Spike	Report Date:	11/06/92
Sample Matrix:	Water	Date Sampled:	10/29/92
Preservative:	Cool, HCl	Date Received:	10/30/92
Condition:	Intact, pH<2	Date Analyzed:	11/02/92

Analyte	Spike Added (ug/L)	Sample Result (ug/L)	Spike Result (ug/L)	Percent Recovery	Acceptance Limit
Benzene	10.0	ND	10.8	108%	39-150%
Toluene	10.0	0.5	11.2	107%	46-148%
Ethylbenzene	10.0	ND	11.1	111%	32-160%
p,m-Xylenes	20.0	ND	22.0	110%	50-150%
o-Xylenes	10.0	ND	10.9	109%	50-150%

ND - Analyte not detected at stated detection limit.

**Quality Control:** 

Surrogate 1-Chloro-2-Fluorobenzene Percent Recovery 83% Acceptance Limits 75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

**Comments:** 

Analyst

<u>Ulma M log</u> Review

3304 Longmire College Station, Texas 77845

#### QUALITY CONTROL REPORT - MATRIX DUPLICATE AROMATIC AND HALOGENATED VOLATILE ORGANICS

Sample Number:C922170 DuplicateSample Matrix:WaterPreservative:Cool, HCICondition:Intact, pH<2</td>

 Date Sampled:
 10/29/92

 Date Received:
 10/30/92

 Date Analyzed:
 11/02/92

Analyte	Sample Result (ug/L)	Duplicate Result (ug/L)	Percent Difference
Analyte	(ug/r.)	<u>[u</u> g/r.)	Dilielence
Benzene	ND	ND	NA
Toluene	0.8	0.8	0.9%
Ethylbenzene	ND	ND	NA
p,m-Xylenes	0.6	0.5	15.6%
o-Xylenes	ND	ND	NA

ND - Analyte not detected at stated detection limit.

**Quality Control:** 

Duplicate acceptance limit set at 20% difference.

SurrogatePercent RecoveryAcceptance Limits1-Chloro-2-Fluorobenzene89%75-125%

Reference:Method 5030, Purge and TrapMethod 8020, Aromatic Volatile OrganicsSW-846, Test Methods for Evaluating Solid Wastes, United States EnvironmentalProtection Agency, September 1986.

**Comments:** 

e/m Waam/ Analyst

Ulind M log-

### QUALITY CONTROL REPORT - METHOD BLANK **VOLATILE AROMATIC HYDROCARBONS**

Sample Number: MB1102V2 Sample Matrix:

Water

Date Analyzed:

11/02/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	90%	75-125%

Method 5030, Purge and Trap **Reference:** Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, November 1986.

Comments:

Mr. Madruff

<u>Ulind Mleg</u> Review

### Client: K. W. BROWN ENVIRONMENTAL SERVICES 500 GRAHAM ROAD

COLLEGE STATION, TEXAS 77845

#### P.O. #43562

PROJECT: NAVAJO-ARTESIA - #622092003

#### QUALITY ASSURANCE/QUALITY CONTROL

	EPA I.D.	FOUND	KNOWN
Arsenic	SPEX	0.0112	0.0100
Chromium	ICP 19	0.10	0.10
Lead	ICP 19	0.10	0.10

7

Reviewed by:

NIK

Mitch Swan Supervisor--Water Operations

10

11183 SH 30 College Station, Texas 77845

Inter-Muntain Laboratories, Inc.

10/29/92

11

3304 Longmire College Station, Texas 77845

Mr. David Boyer K.W. Brown Environmental Services 500 Graham Road College Station, Texas 77845

October 30, 1992

Dear David,

On October 8, 1992, twenty-four water samples were received by Inter-Mountain Laboratories -College Station. The samples were received cool and in good condition. The samples were identified by Project Name "Navajo - Artesia" Analyses for Benzene - Toluene - Ethylbenzene - Xylenes (BTEX), tert-Butyl methyl ether (MTBE) and inorganics were performed according to the accompanying chain of custody form. A trip blank also accompanied the shipment.

Analysis for MTBE was requested on four samples only, however MTBE has been reported on all sample reports. The reason being is that MTBE is a routine calibration compound and is included in our BTEX analysis, if requested, at no extra charge. If the MTBE results are not desired on all the reports please let us know and corrected copies will be sent.

It is the policy of this laboratory to employ, whenever possible, preparatory and analytical methods which have been approved by regulatory agencies. The methods used in the analysis of samples reported herein are found in 40 CFR 136, Part 261, Appendix II, USEPA, July 1, 1990, and "Test Methods for Evaluating Solid Waste", SW-846, USEPA, 1986. All reports in this package reference methods utilized.

Quality Control reports have been included for your information and use. These reports appear at the end of the analytical package and may be identified by title. If you have any questions regarding the information in this package, please feel free to call at your convenience. Thank you for using Inter-Mountain Laboratories.

Sincerely,

Project Manager

				1EU(												· · · · ·	· · · · ·
	}													. ]			
P.O. No. 43562	Comments	3\$	/ 8	2	0		2	e	2	8	35	Ø		2	5/		TBE
БОО	   	6922030	C522031	C922032	C922033	C522Ø34	C922035	C922036	C922037	C922038	C922 035	X C922040	X 6922041	XXXXC522042	C922043	Analyses:	BTEX + MI BTEX + MI Pb As GWC
Login No.	Analyses . Requested	XXXXXX	×	X X	X X X	XXX	XXX	X		X	XXX	XXXX	XXXX		X	<	
P.M.G. R	Preser- vative	HCI													$\rightarrow$	Received By (Signature)	Multan
	Sample Type (Liquid, Soil, etc.)	Water	-												$\geq$	Recei	March 2.
Project Name Novajo - Artesi	Sample Container (Size/Material)	2x40mL VOA 1x250mL plastic	"	"	ľ	//	//	"	1	"	"	2x 40 mL VOA 1x 250mL Disstic 1x 11 Plastic	"		ŝ	Time	0915
Name	Time	5#11	1545	lips	1550	H 5	1755	0021	1135	1220	1650	1550	1555	1655	1300	Date	26/6
Project	Date	92/2	82/6	9/28	9/29	9/30	62/6	92/8	9/29	87/6	9/29	10/1	10/5	10/1	10/6		,/ <i>a</i>
Project No.622092003	Sample Identification	KWR-18	KWB- 2A	KWB-3A	kw0 - 4	KWB-J	KWB-6	KwB-7	kwl-8	KwB-9	Kw8 - Dup	KWB-1 Deep	Coll Deep	Mo		Relinquished By	All Aussieg

24

CHAIN OF CUSTODY RECORD

CHAIN	N OF CUS	STO	DY R	ECO	RD				· · · · ·	••• • • • • • • • • • • • • • • • • •					····	
		. <u>.</u>			· · · ·	· · ·			 							
Login No. 921.0003 P.O. No.43562	Analyses Requested B C D E F Comments	XXXX CARZENU	X X cq2ad45			XXX CSRAD46	XXXX C922047	XXXX cgaad48	C922049		C922050	[232051	C982Ø52	C922053/TB#C92054	Analyses: A <u>BTEX</u> CPb	
1	<u>ч</u> Ц <u>–</u>	×	$\mathbf{X}$			X	X	X	 X		X	X	X	X	Ň	
PGB	Preser- vative	IICI Nitrič						$\rightarrow$	ЧСI					$\geq$	Received By (Signature)	
íà.	Sample Type (Liquid, Soil, etc.)	Wicter												~	Bec (Sig	
Navajo-Artesi	Sample Container (Size/Material)	2×40 mL VOA 1×250 mL Plashi 1×1L Plashic	11			11	1	ľ	2×40mr VOA	<b>*</b>	//	(	~	ľ	Time 07/5	
	Time	0191	1820		1525	1525	1650	1135	1650		1020	0955	1630	0001	Date 1 / 92	
Project Name	Date	10/5 1	10/5 11		1 2/01	10/7 1:	10/6	10/2			1/30	9130 0	9/30 1	9/30 1	<u>в/ог</u>	
ā		0	2		4	0	0	01	 10/6		4	16	6	4		
² roject No.622092003	Sample Identification	Surley Shallow	Gurley Deep		4	2-2	P-3	P-4	Field Blank		Nater well at KWB-6	When hed at KNB-8	Surley Hause well	Toy House Well	Relinquished By (Signature) 10/9/92	

**7**. – .

÷

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client: Project Name: Project Number: Login Number: Sample ID: Sample Number: Sample Matrix: Preservative: Condition:

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 Field Blank C922049 Water Cool, pH < 2 Intact

Report Date:	10/14/92
Date Sampled:	10/06/92
Date Received:	10/08/92
Date Analyzed:	10/14/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chloro-2-Fluorobenzene	97%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

**Comments:** 

1/ Adug Analyst

3304 Longmire College Station, Texas 77845

#### BTEX VOLATILE AROMATIC HYDROCARBONS

Client:K. W. BroProject Name:Navajo - AProject Number:62209200Login Number:9210003Sample ID:Trip BlankSample Number:C922054Sample Matrix:WaterPreservative:Cool, pHCondition:Intact

K. W. Brown Environmental Services Navajo - Artesia 622092003 9210003 Trip Blank C922054 Water Cool, pH < 2 Intact

Report Date:	10/14/92
Date Sampled:	NA
Date Received:	10/08/92
Date Analyzed:	10/14/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)	
tert-Butyl methyl ether	ND	5.0	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
p,m-Xylene	ND	0.5	
o-Xylene	ND	0.5	

ND - Analyte not detected at stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	1-Chioro-2-Fluorobenzene	101%	75-125%

Reference:Method 5030, Purge and Trap<br/>Method 8020, Aromatic Volatile Organics<br/>SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental<br/>Protection Agency, September 1986.

Comments:

Waduf

## **QUALITY CONTROL REPORTS**

- * Method Blank Analyses
- * Matrix Spike Analyses
- * Duplicate Analyses

#### QUALITY CONTROL REPORT - MATRIX DUPLICATE VOLATILE AROMATIC HYDROCARBONS

Sample Number: Condition: Conditi

C922040 Duplicate Water Cool, pH < 2 Intact 
 Date Sampled:
 10/01/92

 Date Received:
 10/08/92

 Date Analyzed:
 10/13/92

Analyte	Sample Result (ug/L)	Duplicate Result (ug/L)	Percent Difference
tert-Butyl methyl ether	ND	ND	NA
Benzene	6.4	6.7	4.1%
Toluene	12.2	13.6	11.2%
Ethylbenzene	6.1	6.8	11.0%
p,m-Xylene	11.5	12.8	11.3%
o-Xylene	4.7	5.2	11.9%

ND - Analyte not detected at stated detection limit.

**Quality Control:** 

Duplicate acceptance limit set at 20% difference.

SurrogatePercent RecoveryAcceptance Limits1-Chloro-2-Fluorobenzene98%75-125%

**Reference:** 

Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

utin Madul

#### Inter Mountain Laboratories, Inc.

3304 Longmire College Station, Texas 77845

#### QUALITY CONTROL REPORT - MATRIX DUPLICATE VOLATILE AROMATIC HYDROCARBONS

Sample Number: Sample Matrix: Preservative: Condition: C922047 Duplicate Water Cool, pH < 2 Intact 
 Date Sampled:
 10/06/92

 Date Received:
 10/08/92

 Date Analyzed:
 10/08/92

Analyte	Sample Result (ug/L)	Duplicate Result (ug/L)	Percent Difference
tert-Butyl methyl ether	ND	ND	NA
Benzene	13.1	12.9	1.1%
Toluene	21.0	19.5	7.6%
Ethylbenzene	3.7	3.3	10.6%
p,m-Xylene	12.4	11.1	11.6%
o-Xylene	6.4	5.7	12.5%

ND - Analyte not detected at stated detection limit.

**Quality Control:** 

Duplicate acceptance limit set at 20% difference.

SurrogatePercent RecoveryAcceptance Limits1-Chloro-2-Fluorobenzene97%75-125%

**Reference:** 

Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

n Wating Analyst

3304 Longmire College Station, Texas 77845

#### QUALITY CONTROL REPORT - MATRIX SPIKE VOLATILE AROMATIC HYDROCARBONS

Sample Number: Sample Matrix: Preservative: Condition: C922040 Spike Water Cool, pH < 2 Intact

Report Date:	10/14/92
Date Sampled:	10/01/92
Date Received:	10/08/92
Date Analyzed:	10/13/92

Analyte	Spike Added (ug/L)	Sample Result (ug/L)	Spike Result (ug/L)	Percent Recovery	Acceptance Limit
tert-Butyl methyl ether	100	ND	82.1	82.1%	50-150%
Benzene	10	6.402	15.5	91.3%	39-150%
Toluene	10	12.159	20.5	83.6%	46-148%
Ethylbenzene	10	6.066	14.7	86.0%	32-160%
p,m-Xylenes	20	11.464	27.3	79.0%	50-150%
o-Xylene	10	4.66	13.2	85.6%	50-150%

ND - Analyte not detected at stated detection limit.

**Quality Control:** 

Surrogate 1-Chloro-2-Fluorobenzene Percent Recovery 97% Acceptance Limits 75-125%

**Reference:** 

Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

utalladus/

Inter Mountain Laboratories, Inc.

Inter Mountain Laboratories, Inc.

3304 Longmire College Station, Texas 77845

#### QUALITY CONTROL REPORT - MATRIX SPIKE **VOLATILE AROMATIC HYDROCARBONS**

Sample Number: Sample Matrix: Preservative: Condition:

C922042 Spike Water Cool,  $pH \leq 4$ Intact

Report Date: 10/14/92 Date Sampled: 10/01/92 Date Received: 10/08/92 Date Analyzed: 10/09/92

Analyte	Spike Added (ug/L)	Sample Result (ug/L)	Spike Result (ug/L)	Percent Recovery	Acceptance Limit
tert-Butyl methyl ether	NA	NA	NA	NA	50-150%
Benzene	10	3.0	14.0	110%	39-150%
Toluene	10	2.3	12.0	96.6%	46-148%
Ethylbenzene	10	0.8	10.5	97.3%	32-160%
p,m-Xylenes	20	1.7	21.1	97.0%	50-150%
o-Xylene	10	0.9	10.2	93.4%	50-150%

ND - Analyte not detected at stated detection limit.

**Quality Control:** 

Surrogate. 1-Chloro-2-Fluorobenzene Percent Recovery 100%

Acceptance Limits 75-125%

**Reference:** 

Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, September 1986.

Malladus

#### Inter Mountain Laboratories, Inc.

#### QUALITY CONTROL REPORT - METHOD BLANK. **VOLATILE AROMATIC HYDROCARBONS**

Sample Number: MB1008V1 Sample Matrix:

Water

Date Analyzed:

10/08/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:

Surrogate 1-Chloro-2-Fluorobenzene Percent Recovery 102%

Acceptance Limits 75-125%

**Reference:** Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, November 1986.

mUaduy Analvst

#### QUALITY CONTROL REPORT - METHOD BLANK. **VOLATILE AROMATIC HYDROCARBONS**

Sample Number: MB1009V1 Sample Matrix: Water

Date Analyzed:

10/09/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:

Surrogate 1-Chloro-2-Fluorobenzene Percent Recovery 96%

**Acceptance Limits** 75-125%

**Reference:** Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, November 1986.

MM WAND

Inter Mountain Laboratories, Inc.

#### QUALITY CONTROL REPORT - METHOD BLANK. **VOLATILE AROMATIC HYDROCARBONS**

Sample Number: MB1012V1 Sample Matrix:

Water

Date Analyzed:

10/12/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control:

Surrogate 1-Chloro-2-Fluorobenzene Percent Recovery 102%

**Acceptance Limits** 75-125%

**Reference:** Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, November 1986.

<u>Kein Undruf</u>

#### Inter Mountain Laboratories, Inc.

O

#### QUALITY CONTROL REPORT - METHOD BLANK **VOLATILE AROMATIC HYDROCARBONS**

Sample Number: MB1013V1 Sample Matrix:

Water

Date Analyzed:

10/13/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	ND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control: Surrogate Percent Recovery Acceptance Limits 1-Chloro-2-Fluorobenzene 101% 75-125%

**Reference:** Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, November 1986.

**Comments:** 

tillyn Water

Review

#### QUALITY CONTROL REPORT - METHOD BLANK. **VOLATILE AROMATIC HYDROCARBONS**

Sample Number: MB1014V1 Sample Matrix:

Inter-Mountain Laboratories, Inc.

Water

Date Analyzed:

10/14/92

Analyte	Concentration (ug/L)	Detection Limit (ug/L)
tert-Butyl methyl ether	ND	5.0
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
p,m-Xylene	NDND	0.5
o-Xylene	ND	0.5

ND - Analyte not detected at stated detection limit.

Quality Control: Surrogate Percent Recovery 1-Chloro-2-Fluorobenzene 94%

**Acceptance Limits** 75-125%

**Reference:** Method 5030, Purge and Trap Method 8020, Aromatic Volatile Organics SW-846, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, November 1986.

el/m/l/adus

	Navajo Refining Company
	PO Drawer 159
	Artesia, N.M. 88211-0159
	Telephone: (505) 748-3311
2.	Location of the discharge (in Township, Range and Section, $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ , if available).
	32° 50' 51" North Latitude 104° 23' 42" West Longitude
3.	The means of discharge (To a lagoon, Flowing Stream, Water Course, Arroyo, Septic Tank-Leach field, Other - Specify.
	Arroyo - Eagle Draw feeding the Pecos River
4.	The estimated concentration of contaminants in the discharge. Ca-604.9 Mg/L,
	Mg - 146.1 Mg/L, Na - 382.3 Mg/L, CO33 Mg/L, HCO3 - 621.3 Mg/L, SO4 - 2002.0 M
	C1 - 256.1 Mg/L, SiO2 - 39.5 Mg/L, TDS - 3747.0, CO2 - 36.7
5.	The type of operation from which the discharge is derived.
5.	
	Reverse osmosis treatment unit/demineralizer.
6.	The estimated flow to be discharged ter cay. 600,000 gpd.
7.	The estimated depth to ground water (if available). 20 ft.
<del></del> .	

(filltent areas are spaced for ente type, i.	.e., 12 c ters/inch).	OTECTION AGENCY	- In Abbroved CMB No	0. 159-R01/5
	GENERAL INFO		I. EPA I.D. NUMBER	
GENERAL VETA	Consolidated Perm	uts Program	F	
I. EPA I.D. NUMBER			GENERAL INS If a preprinted label has it in the designated space ation carefully; if any o	been provided, affix a, Review the inform-
III. FACILITY NAME	PLEASE PLACE LABEL	IN THIS SPACE	through it and enter the appropriate main on area the preprinted data is ad left of the label space that thoug appears, pie proper till on areass b	e correct data in the Delow wiso, if any of Deant come area to the lists the information dase provide it in the
VI. FACILITY LOCATION			complete and correct, yo Items I, III, V, and VI must be completed regi items if no label has be the instructions for di tions and for the legal	ou need not complete I <i>lexcept VI-B which</i> ardlessi, Complete au en provided. Refer to etailed item descrip-
			which this data is collecte	
II. POLLUTANT CHARACTERISTIC INSTRUCTIONS: Complete A thro questions, you must submit this form if the supplemental form is attached is excluded from permit requirements	ugh J to determine whether you need n and the supplemental form listed in . If you answer "no" to each questions: see Section C of the instructions. See	d to submit any permit applic n the parenthesis following the m, you need not submit any o	e question. Mark "X" in the box f these forms. You may answer "	in the third column
SPECIFIC QUESTIO	NS YESI NO IATTAC	SPECI	FIC GUESTIONS	YESI NO IATTACHE
A. Is this facility a publicly owner which results in a discharge to (FORM 2A)		include a concentra aquatic animal prod	ted animal feeding operation of uction facility which results in of the U.S.? (FORM 2B)	or (
C. Is this a facility which currently to waters of the U.S. other that A or Blabover (FORM 2C)		in A or B above) w waters of the U.S.? (		a X
E. Does or will this facility treat, hazardous wastes? (FORM 3)	store, or dispose of X	municipal effluent c taining, within one	inject at this facility industrial of elow the lowermost stratum con- quarter mile of the well bord of drinking water? (FORM 4)	n•
G. Do you or will you inject at this f water or other fluids which are b in connection with conventional duction, inject fluids used for ei oil or natural gas, or inject fluids hydrocarbons? (FORM 4)	rought to the surface   bill or natural gas pro-   nhanced recovery of	cial processes such process, solution m	inject at this facility fluids for sp as mining of sulfur by the Frasc ining of minerals, in situ combu or recovery of geothermal energy	n   5-
<ol> <li>Is this facility a proposed station one of the 28 industrial catego structions and which will poten per year of any air pollutant Clean Air Act and may affect a attainment area? (FORM 5)</li> </ol>	ries listed in the in- tially emit 100 tons regulated under the	NOT one of the 28 instructions and wh per year of any air p	boosed stationary source which industrial categories listed in the ich will potentially emit 250 tor ollutant regulated under the Clea fect or be located in an attainment	
III. NAME OF FACILITY			e e ser en	
1 SKIP Navajo Refining				
	ME & TITLE (last, first, & titie)		B. PHONE farea coae & no. (	
2 Griffin, David	Supt. of Environment	al_Affairs_&_0_C_	505 748 3311	
V. FACILITY MAILING ADDRESS				
<u>e</u>	A. STREET OR P.O. BOX			
15 £ 16	······································			
		· · · · · · · · · · · · · · · · · · ·	CODE	
4 Artesia			1-0159	
VI. FACILITY LOCATION	0			
501 E. Main Stre	E NO. OR OTHER SPECIFIC IDEN			
/5   14				
8. COU				
Eddy				
Eddy	TY OR TOWN	D.STATEL E. 718	CODE 1 F. COUNTY CODE	ו
Eddy	······································	D.STATEL E. 219	(if known)	1

ONTINUED FROM THE FRONT					
/II. SIC CODES (4-digit, in order of priority)					
A. FIRST	<u></u>		1	B. SECOND	
2911 Petroleum Refiner	у	7	(specify)		
C. THIRD			(specify)	D. FOURTH	
1		7	1		
			te te serve		
Navajo Refining Company	A. NAME		· · · · · · · ·		B. Is the name listed item VIII-A also t owner? X YES C NC
C. STATUS OF OPERATOR (Enter the ap	propriete letter into the ann	war hav (f "Other	manifa		st st no.)
F = FEDERAL M = PUBLIC (other that S = STATE O = OTHER (specify) P = PRIVATE		(specify)	, <i>specity.</i> /	A 505	
ESTREET (	OR P.O. BOX				
P.O. Drawer 159	· · · · · · · · · · · · · ·	· · · · · ·	· · · · · ·	. ·	
F. CITY OR TO	WN	G.STAT	H. ZIP CODE	IX. INDIAN LA	D
Artesia	· · · · · · · · ·	NM	88211		ated on Indian lands?
Artesia		INM .	مرت المرجم المرجم المرجم	YES	🖾 NO
EXISTING ENVIRONMENTAL PERMITS			1		
A. NPDES (Discharges to Surface Water)	D. PSD (Air Emissio				а. 10 март — 100 (це 1000), 10 март — 1
	9 PI				. <u> </u>
B. UIC (Underground Injection of Fluids)	30 13 16 17 10 E. OTH	ER (specify)	30		
<u></u>			(spec	cify)	
	9 195-M-	-4		tate Air Pe	rmit
C. RCRA (Hazardous Wastes)	E OTH				
		ER (specify)			
RI NMD048918817	9 GW-28	AER (specify)	(spe	cijy)	Water Permit
RI NMD048918817	9 GW-28		(sper	ayy) tate Ground	Water Permit
RI NMD048918817 I. MAP Attacn to this application a topographic m the outline of the facility, the location of treatment, storage, or disposal facilities, a	9 GW-28 9 GW-28 10 of the area extending each of its existing and ind each well where it in	to at least one n proposed intake njects fluids unde	ile beyond pro	cury) tate Ground Operty bounderie structures, each	s. The map must show of its hazardous waste
IRI NMD048918817 IL MAP Attach to this application a topographic m the outline of the facility, the location of treatment, storage, or disposal facilities, a water bodies in the map area. See instruction	9 GW-28 10 of the area extending each of its existing and ind each well where it in ons for precise requirement	to at least one n proposed intake njects fluids unde	ile beyond pro	cury) tate Ground Operty bounderie structures, each	s. The map must show of its hazardous waste
RI NMD048918817 I. MAP Attacn to this application a topographic m the outline of the facility, the location of treatment, storage, or disposal facilities, a water bodies in the map area. See instruction	g g g g g g g g g g g g g g g g g g g	to at least one n proposed intake njects fluids unde ents.	ile beyond pro	cuyy) tate Ground operty bounderie structures, each ide all springs, ri	s. The map must show of its hazardous waste vers and other surface
RI NMD048918817 I. MAP Attacn to this application a topographic m the outline of the facility, the location of treatment, storage, or disposal facilities, a water bodies in the map area. See instruction II. MATURE OF BUSINESS (provide a brief des Petroleum Refinery – Produce	g g g g g g g g g g g g g g g g g g g	to at least one n proposed intake njects fluids unde ents.	ile beyond pro	cuyy) tate Ground operty bounderie structures, each ide all springs, ri	s. The map must show of its hazardous waste vers and other surface
RI NMD048918817 I. MAP Attacn to this application a topographic m the outline of the facility, the location of treatment, storage, or disposal facilities, a water bodies in the map area. See instruction II. MATURE OF BUSINESS (provide a brief des Petroleum Refinery – Produ	g g g g g g g g g g g g g g g g g g g	to at least one n proposed intake njects fluids unde ents.	ile beyond pro	cuyy) tate Ground operty bounderie structures, each ide all springs, ri	s. The map must show of its hazardous waste vers and other surface
RI NMD048918817 Attacn to this application a topographic m he outline of the facility, the location of reatment, storage, or disposal facilities, a water bodies in the map area. See instruction II. MATURE OF BUSINESS (provide a brief des Petroleum Refinery – Produce	g g g g g g g g g g g g g g g g g g g	to at least one n proposed intake njects fluids unde ents.	ile beyond pro	cuyy) tate Ground operty bounderie structures, each ide all springs, ri	s. The map must show of its hazardous waste vers and other surface
RI NMD048918817 Attacn to this application a topographic m he outline of the facility, the location of reatment, storage, or disposal facilities, a vater bodies in the map area. See instruction II. WATURE OF BUSINESS (provide a brief des Petroleum Refinery – Produ	g g g g g g g g g g g g g g g g g g g	to at least one n proposed intake njects fluids unde ents.	ile beyond pro	cuyy) tate Ground operty bounderie structures, each ide all springs, ri	s. The map must show of its hazardous waste vers and other surface
RI NMD048918817 Attacn to this application a topographic m the outline of the facility, the location of treatment, storage, or disposal facilities, a water bodies in the map area. See instruction II. MATURE OF BUSINESS (provide a brief des Petroleum Refinery – Produ	g g g g g g g g g g g g g g g g g g g	to at least one n proposed intake njects fluids unde ents.	ile beyond pro	cuyy) tate Ground operty bounderie structures, each ide all springs, ri	s. The map must show of its hazardous waste vers and other surface
RI NMD048918817 I. MAP Attacn to this application a topographic m the outline of the facility, the location of treatment, storage, or disposal facilities, a water bodies in the map area. See instruction II. MATURE OF BUSINESS (provide a brief des Petroleum Refinery – Produ LPG, Asphalt.	g g g g g g g g g g g g g g g g g g g	to at least one n proposed intake njects fluids unde ents.	ile beyond pro	cuyy) tate Ground operty bounderie structures, each ide all springs, ri	s. The map must show of its hazardous waste vers and other surface
RI       NMD048918817         I. MAP       Attacn to this application a topographic methe outline of the facility, the location of treatment, storage, or disposal facilities, a water bodies in the map area. See instruction         II. MATURE OF BUSINESS (provide a brief destruction)         Petroleum Refinery – Producting, Asphalt.         III. CERTIFICATION (see instructions)         III. CERTIFICATION (see instructions)         III. certify under penalty of law that I have attachments and that, based on my innuapplication, I believe that the information	<u>g</u> <u>g</u> <u>g</u> <u>g</u> <u>g</u> <u>g</u> <u>g</u> <u>g</u> <u>g</u> <u>g</u>	to at least one m proposed intake njects fluids unde ints. a products d d am famillar with mediately respondente. I am av	ile beyond pro and discharge rground. Inclu i.e., Gaso	cupy) tate Ground operty bounderie structures, each de all springs, ri line, Jetfu	s. The map must show of its hazardous waste vers and other surface lels, Diesels, this application and all ation contained in the
RI NMD048918817 Attacn to this application a topographic m the outline of the facility, the location of treatment, storage, or disposal facilities, a water bodies in the map area. See instruction (III. WATURE OF BUSINESS (provide a prief des Petroleum Refinery – Produ	<u>g</u> <u>g</u> <u>g</u> <u>g</u> <u>g</u> <u>g</u> <u>g</u> <u>g</u> <u>g</u> <u>g</u>	to at least one m proposed intaka njects fluids under ints. a products f d am famillar with mediately respon- omplete. I am av mt.	ile beyond pro and discharge rground. Inclu i.e., Gaso	cupy) tate Ground operty bounderie structures, each de all springs, ri line, Jetfu	s. The map must show of its hazardous waste vers and other surface els, Diesels, this application and all ation contained in the
RI       NMD048918817         KI. MAP       Attacn to this application a topographic methe outline of the facility, the location of treatment, storage, or disposal facilities, a water bodies in the map area. See instruction (III. WATURE OF BUSINESS (provide a brief das)         Petroleum Refinery – Production (III. WATURE OF BUSINESS (provide a brief das)         Petroleum Refinery – Production (III. WATURE OF BUSINESS (provide a brief das)         Petroleum Refinery – Production (III. WATURE OF BUSINESS (provide a brief das)         Petroleum Refinery – Production (III. CERTIFICATION (see instructions))         I Certify under penalty of law that I have attachments and that, based on my inmapplication, I believe that the information false information, including the possibility         NMME & OFFICIAL TITLE (Proper of print)         Vif Stil State (III. CERTIFICATION (See for (IIII. CERTIFICATION (See for (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	g g g g g g g g g g g g g g	to at least one m proposed intaka njects fluids under ints. a products f d am famillar with mediately respon- omplete. I am av mt.	ile beyond pro and discharge rground. Inclu i.e., Gaso	cupy) tate Ground operty bounderie structures, each de all springs, ri line, Jetfu	s. The map must show of its hazardous waste wers and other surface the system of the surface this application and all ation contained in the remalties for submitting

•

2D . 2	New S	Sources ar Ne	w Dischargers
NPOES	EPA Application for F	Permit to Disch	arge Process Wastewa
I. Outfall Location	II, list the latitude and longitude, and the name of		the Control of the second of the second of the
Outfall Number		ing Water (name)	
(list)	Deg, Min. Sec: Deg: Min: Sec		
01	32 50 511 104 23 42 Peco	s River via Eagle	Draw
	•		
			· ·
II. Discharge Date April 1	/When do you expect to begin discharging?)		
	s of Pollution, and Treatment Technologies		·····································
uted by e if necessa	astewater, sanitary wastewater, coolin ach operation; and (3) The treatment iry.	received by the waster	water. Continue on additional shee
Outfall Number	1. Operations Contributing Flow (list)	2. Average Flow (include units)	3 Treatment (Description or List Codes from Table 20
01	-Reverse Osmosis Water Demineralization	600,000 gpd	None
			····
;			
	-		

5

÷٤

С. E	xcept for :		f, leaks, or	ures. spills, will any of	the discharge	s described in ite	em III-A be interr	nittent c
S S	easonal?	'es <i>(complete l</i>	he following t	ablel 🕅 🕅 No	go to item (VI			
				1. Frequ	ieucy	1	2. Flow	
		Outfall Number	•	a. Davs Per Week (specify average)	b. Months Per Year (specify average)	a. Maximum Daily Flow Rate (in mgd)	b Maximum Total Volume (specify with units)	c Du lin d
	тала с наружна ,			CER Constanting				
]			• • • • • • • • • • • • • • • • • • •	Contraction of the second	Vistike	·		
	•••		· ·	91.07	т. т. шат. ц. год			e.
	A 799 AN 1 A 44 1 A	·*						
	· · · · ·	· .						
1								
]								
<b>.</b>								
[								
1								
}								
		en an						
IV. Pr	oduction		Section 2		man to surver		n kekolanta ke	
actu	al producti	on level, not a	tesign), expre	effluent guideline or issed in the terms an	d units used in tl	he applicable efflue	int guideline or NSP	S. for ea
<b> </b>		a. Quantity	b Units of	likely to vary, you mi		<u></u>		sheet)
	ear	Per Day	Measure		c. Opera	ation, Product, Materia	l, etc (specify)	
3.7	/A	N/A	N/A	N/A				

CONTINUED FROM THE FRONT

EPA IO Number (copy from item 1 of Form 1)

V. Effluent Characteristics

A, and B: These items require you to report estimated amounts (both concentration and mass) of the pollutants to be discharged from each of your outfalls. Each part of this item addresses a different set of pollutants and should be completed in accordance with the specific instructions for that part. Data for each outfall should be on a separate page. Attach additional sheets of paper if necessary.

#### General Instructions (See table 2D-2 for Pollutants)

Each part of this item requests you to provide an estimated daily maximum and average for certain pollutants and the source of information. Data for all pollutants in Group A, for all outfalls, must be submitted unless waived by the permitting authority. For all outfalls, data for pollutants in Group B should be reported only for pollutants which you believe will be present or are limited directly by an effluent limitations guideline or NSPS or indirectly through limitations on an indicator pollutant.

1. Pollutant	2. Maximum Daily Value (include units)	3 Average Daily Value (include units)	4. Source (see instructions)
Biochemical 02 Demand	None	None	
Chemical O2 Demand	None	None	
Total Organic Carbon	None	None	·. ·.
Total Suspended Solids	None	None	
Flow	600,000	600,000	
Ammonia	None	None	
Temperature - Winter	25° C	25° C	
Temperature - Summer	25° C	2 ⁵ ° C	
рН	7.4	7.4	•
Sulfate (SO4)	4,546.5 Kg.	4,546.5 Kg.	
Magnesium (Mg)		331.8 Kg.	
n an			
	•		
			······································
			<u> </u>
584 Form 3510 20 17 001	) 	Page 1 of 5	CONTINUE ON REVE

EPA Form 3510-20 (7-89)

CONTINUE ON REVERSE

01

i	200
	L

# C. Use the space below to list any of the pollutants listed in Table 20-3 of the instructions which you know or have reason to believe will be discharged from any outfall. For every pollutant you list, briefly describe the reasons you believe it will be present.

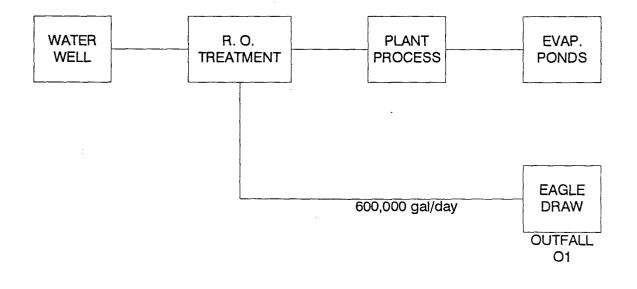
1 Pollutant	2 Reason for Discharge	
None		:
		i
•		
		;
		i
· · · ·		
·	· ··· ·	1 a - 1986 a -
	•	
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·		
VI. Engineering Report on Wastewater Treats A. If there is any technical evaluation conc	nent erning your wastewater treatment, including engineerin	a reports or pilot plant studies, shock th
appropriate box below.		grouports of prior plant studies, check (th
X Report Available		
B. Provide the name and location production facility with respect 1	of any existing plant(s) which, to the best of o production processes, wastewater constitute	your knowledge, resembles this ants, or wastewater treatments.
Name	Location	
1 - 242 245 		
	Page 4 of 5	CONTINUE ON NEXT E

EPA Form 3510-2D (9-86)

VII. Other information (Option Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other information you feel should be considered in establishing permit limitations for the proposed facility Attach additional sheets if necessary.

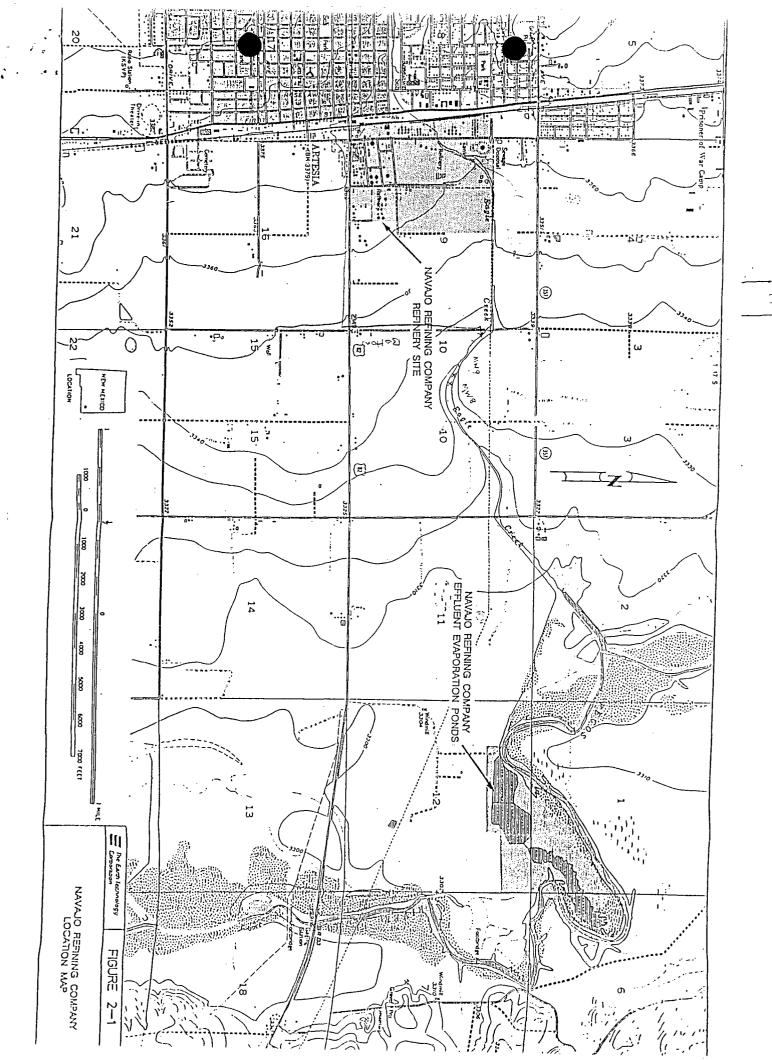
The permit being requested is for a fresh water reverse osmosis demineralization unit. Potable well water will be processed to reduce TDS for plant feed water while the residue water which contains material mineral concentrate will be disposed of in an interstate stream system.

The performance projection information based on Navajo's water quality is enclosed for your information.


VIII. Cartification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A. Name and Official Title (type or print) Pbone N 50S) Vice thes. Retwin 748-331 D. Date Signed C. Signar 9-15 Gavernment Printing Office: 1986-201-203/82978 EPA Forn 3510-2D


### NAVAJO REFINING COMPANY P.O. DRAWER 159 ARTESIA, NM 88211–0159

#### WATER DEMINERALIZATION SYSTEM



Note: The only permit required at this time is for the Reverse Osmosis process concentrate. Engineering studies are in progress to revise the plant process wastewater system.

WATER.WK1



UNIT PERFORMANCE PROJECT (N) usin (C) v 5.0MG (Feb (1992) Provided to SALTECH by Fluid Systems Corporation

Project: NAVAJO	Date: June 25, 1992
The unit has 54 Model TFCL 8829LP Elements	Age = 3 yrs.
Tube Array = $6 / 3$	Elements per Tube = 6
Permeate Flow = 325000. gpd (225.7 gpm)	Recovery = $65.0\%$
Water Temp. = 25.0 C Avg. Annual	Water Temp. = 25.0 C
Feed Press. = 201.4 psi Brine Pre	ess. = 149.5 psi
Feed Osmotic Press. = 7.7 psi Brine Osm	notic Press. = 21.5 psi
This unit. would require 107, pounds per da	ty of 100% H2SO4.

BANK	FEED		CONCENTRATE		AVGE.	ELEMENT	TUBE	FINAL	
	TOTAL	TUBE	TOTAL	TUBE	FLOW	FLUX	DELTA	P	ELEMENT
	gpm	gpm	gpm	gpm	gpd	gfd	psi		BETA
1	347.2	57.9	187.6	31.3	6384.	18.2	23.2		1.084
2	187.6	62.5	121.7	40.6	5276.	15.1	28.7		1.052
SYST	EM				6019.	17.2	51.9		

The ratio of brine molar concentration product to Ksp (brine) for CaSO4 is .98

Brine conc. to saturation conc. ratio for reactive SiO2 is .31 The Stiff-Davis saturation index of the concentrate stream is plus 1.2

	RAW	PRETREATED		
	FEED	FEED	CONCENTRATE	PERMEATE
	mg/1	mg/l	mg/l	mg/l
Са	214.4	214.4	604.9	3.8
Mg	51.8	51.8	146.1	, 9
Na	138.0	138.0	382.3	6.2
K	.0	.0	. 0	.0
NH4	.0	.0	. 0	.0
CO3	.0	.1	. 3	. 0
HCO3	258.6	226.5	621.3	13.6
SO4	683.0	708.2	2002.0	10.3
C1	92.0	92.0	256.1	3.5
NO 3	.0	.0	.0	.0
F	.0	.0	. 0	. 0
SiO2	14.1	14.1	39.5	4
SUM	1451.9	1445.1	4052.6	38.7
TDS	1324.7	1333.7	3747.0	32.0
CO2	13.6	36.7	36.7	36.7
рН	7.5	7.0	7.4	5.8
pHs		6.9	6.3	••••
	2			

This projection is the anticipated performance and is based on nominal properties of the elements. No allowance was made for fouling or for pressure losses in the manifolds.

This computer printout should not be considered a guarantce of system performance unless accompanied by a statement to that effect.

By DON CLINE

TELEPHONE (505) 748-3311



EASYLINK 62905278

זעום ארי 10 M410 VED

501 East Main Street ● P. O. Drawer 159 291 NOH 12

FINING COMPANY

AM 9 31

ARTESIA, NEW MEXICO 88210

 $\mathbf{RE}$ 

November 6, 1991

Mr. Roger C. Anderson **Oil Conservation Division** P.O. Box 2088 Santa Fe, NM 87504-2088

**RE: TANK 419 UNDERGROUND LINE LEAK** 

Dear Mr. Anderson:

Enclosed is a spill report to follow up our conversation of Friday, November 1, 1991. As we discussed, Navajo is optimistic that the product lost will be recovered by an adjacent oil recovery well.

Should you need any additional information please give me a call at 748-3311, extension 223.

Sincerely,

David G. Griffin Supt. Environmental Affairs & Quality Control

DGG/pb

enclosure

# NEW MEXICO OIL CONSERVATION COMMISSION

SF

RECEIVED

NOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS, AND BLOWOUTS

						1-						08, 11 180
NAME OF	nio Do	fining Com	nonz			A	DDRESS	Fort	Ma:-	A	todio ITM	<b>D</b> -
		fining Com			- <u>11 - A 12</u> -			East			tesia, NM	O.C.D
	RE	BREAK	SPI		LEAK		BLOWOU	I.	101	HER*		ALMENA, ORACE
OF TYPE OF DR	LG	PROD.	TANK	<u>X</u>	PIPE	<u>-1</u>	ASO	OIL	_	OTHER	k	
FACILITY WE		WELL	BTTY		LINE		LNT	RFY	Х	UTHER	· .	
NAME OF	<u> </u>	I WELL	DIII			P		IKLI	<u></u>	J		
	avoio P	efinery										
LOCATION OF F			RZOUR	R-				SEC.		TWP.	RGE.	ICOUNTY
FER SECTION O					L East Ma	ain		1000			inde.	COONTI
DISTANCE AND				/// <u>/</u>				L		J.,		<u></u>
EST TOWN OR P					rtesia, N	М						
DATE AND HOUR							DATE ANI	D HOU	R			
OF OCCURENCE	1/5/	/89		5:00 p	p.m.		OF DISCO	OVERY		Same		
WAS IMMEDIATE	Y	ES NO		NOT R	E-		IF YES,					
NOTICE GIVEN?			X	QUIRE	D		TO WHOM	Bett	y Ro	llins –	OCD, Arte	esia, NM
BY							DATE	_				
	<u>vid Grif</u>	<u>fin</u>					AND HOUI		/6/89	)	<u>1:00 p.m.</u>	
TYPE OF			- 101	<u></u>			QUANTIT		<b></b> -		VOLUME F	
FLUID LOST		PI Carbon	_		1000		OF LOSS	28	Bbls		COVERED	10 Bbls
DID ANY FLUID			!	10	QUANTI	. I Y		1				
A WATERCOURSE			x				3 Bb	15				
IF YES, DESCR					•							
hig for	h winds about 3	rtion of the had blown 3 Bbls to es	trasi cape	into i into a	the conta drainage	inr e ar	ment dra rroyo on	ins – I	backi	ing up ti	he spill en	
DESCRIBE CAUS		vere being		,				CBO)	One			od
		rator error				DIC		5007.	One			- CU
	<b>F</b>		-									
				•								
DESCRIBE AREA	AFFEC	TED AND CI	LEAN	JP ACT	ION TAKE	114	*	•				
The	s <b>bill a</b>	ffected Na	vaio':	s rail le	oading fa	cil	ity and a	about	10 to	15 fee	t of a stor	m
		rroyo at the										
		soil was re										
dika	age buil	lt to prever		ture oc	curances					•		
DESCRIPTION .	F/	ARMING		GRAZI	NG		URBAN		OTH	EK*		
OF AREA	<u> </u>					1	ABOOKY					
SURFACE	S	ANDY	SANE		LLAY-I	-01	AMROCKY		WET		DRY	SNOW
CONDITIONS		NOTTIONS	LOAM			0AT		<u> </u>	TATT		$\frac{X}{1 \times 1}$	<u>_</u>
DESCRIBE GENE	NAL CUI	I CHOTITON	TREVP	11LING	VIENPER	vil	URE, PR	CUIPI	1811	UN, EN	••)""	
Тур	i <mark>cal dr</mark> y	winter con	nditic	ons of ∘	sunny day	ys (	(45 – 65°	F) an	d col	d nights	s (20 - 40°)	F).
	-				-					-	۰.	
1 HEREBY CERT	IFY TH	AT THE IN	FORM	TION	ABOVE 15	5 1	RUE AND	COMF	LETE	TO TH	E BEST OF	MY
KNOWLEDGE AND				-		,	· _ · · · · · ·					
	1	nn	$\square$	N			<b>0</b> - 4		•		الصالف لحط فعجت لا	
AI	' • /	'] & J	Ĺ	1.			Supt.	OI EI		menta	∦ງຊຽງ(\∜/	1231111
SIGNED We	<u>rd</u>	X · V	ZX.		T	TL	E Affai	rs α ( <del>rol</del>	ana n		LE-DATE L	<u>14(9/89</u>
*SPECIFY		**ATTACI	A_Adc	DITION	AL SHEET	٢S				111	AN 18 192	39
1-13-89 OK	mc.								1	III ==		JUL
- () 01 -1									Ľ		ERVATION	DIVISICN
									U	il guiva	SANTA FE	

TELEPHONE (505) 748-3311



# **REFINING COMPANY**

TELETYPE

(910) 986-0990

501 EAST MAIN STREET • P. O. DRAWER 159

ARTESIA, NEW MEXICO 88210

January 14, 1986

Mr. David G. Boyer Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87501

Re: 1981 Pipeline Leak East of Artesia

Dear Dave:

Pipeline maintenance personnel remembers a 1981 leak in a new crude line that had just been installed in the area indicated by the representative from Transwestern. The leak amounted to an estimated loss of 5 barrels of crude oil and was confined to the south side of the highway.

Additional discussions with our pipeline division personnel, revealed that there was an old crude oil line that ran on the north side of the highway in the area of the USGS boring. The line was owned by Continental Oil Company (Conoco) and was abandoned from service in the early 1960's. All of our current pipelines in the area in question remain on the south side of the highway for approximately a half mile west of Transwestern's highway crossing point before they cross under the highway.

If you have any further questions, please give me a call.

Sincerely. David G. Griff

DGGr/sg



NEW MEXICO OIL CONSERVATION DIVISION

OCT 09 35

RECEIVED

	THO T	IFICATION	OF FIRE	, BREAKS	5, SPILL	S, LEA	KS, AND	BLOVOU	TG D. Ac OFFICE
WARE OF			Transp	ortatio	ADURESS				
OPERATOR		o Refinir	ng-& Supp	ly Div.		Box 1	<mark>59-Artes</mark> OTHER*	ia, N.M	. 88210
REPORT	FIRE	BREAK	SPILL	LEAK	BLOWOU		UTHER*		
TYPE OF	DRLG	PROD	TALK	3919	Giso	OIL	OTHER*		· · · · · · · · · · · · · · · · · · ·
FACILITY MARE OF	WELL	WELL	BTTY	LINEX	PLINT	REY	l		
FACILITY	Red I	ake Sucti	lon Line						
		ITY (QUARTI				SEC.	TWP:	RGE.	COUNTY
		DTAGE DESCI		<u>SW </u>		20	17	28	Eddy
EST TOWN	OR PROMI	MENT LANDRY		iles ea					
DATE ARD OF OCCURI		N/A			DATE AN OF DISC		9:00 A.	м. 9/2	4/85
WAS IMME		YES NO	) [NOT ]	RE-	IF YES,				
NOTICE G	IVEN?		QUIR	ED	TO WHOM				
В Y МНОМ					DATE AND HOU	R			
TYPE OF					QUANTIT	YAppro	oximatel	VOLUME F	
FLUID LOS		Crude C ACH   YES	NO	QUANTI	OF LOSS	100 1	3bls.	COVERED	75 Bbls.
A MATERCO		• •	x	1.	11		,		
IF YES, I		FULLY**			-		•	· · ·	
		•				·	•		
OFCODIOE	CAUSE OF	PROBLEM AN	ID DEMENTAL	ACTION	AVE11**				
DESCRIPT	CRODE OF	INDELN A	In WEINEDIM	- 701101	TNER				
					•				
Hole	in pipe	/Replace	pipe				•.		
DESCRIBE	AREA AFF	ECTED AND C	LEARUP AC	TION TAKE	1××				
					•				
Pick	un oil	and cover	od look	area wi	-h dward	1			
DESCRIPT		FARMING	GRAZ		TURBAN	1	NER*		
OF AREA	lun	ГЛКРЦИС	- 6KAZ.	X	UNDAR		аек" .		
SURFACE	10	SANDY	SANDY	CLAY	ROCKY	WE	.τΓ	RY	SNOW
CONDITIO: DESCRIBE		CONDITIONS	LOAM PREVAILING	TEMPERA	TURE, PRI		$\frac{X}{10N}$ , EIC.	)**	
				<b>,</b>				,	
Raine Wet &					•				
T HEREBY	CERTIFY	THAT THE II	FORMATION	ABOVE IS	TRUE AND	COMPLET	E TO THE	BEST OF	EY
KNOWLEDGE	I AND BEL								
			M	A.					
	<u>John Cl</u>		m (loe)		LE Foren			DATE 1	0/8/85
*SPECIFY		V	H ADDITIO	WL SHEETS	A DE RECES	SARY	•		
C	K 92 15-85						. •		
10-	15-85					÷	•	•	



CONSERVATION BIVISION CANTA FE

February 25, 1985

Mr. Richard Stamets NMOCD P.O. Box 2088 Santa Fe, New Mexico 87501

Re: Effluent Flow and Chemical Characteristics of Waste Streams Regulated by Discharge Plan

Dear Mr. Stamets:

Navajo Refining Company, Inc. and Geoscience Consultants, Ltd. are pleased to submit our report on effluent characteristics. Our previous submission described the process at the Artesia Refinery and presented chemical data on many individual waste streams. Section 1.0-6.0 of the Discharge Plan also presented chemical analyses of the

evaporation pond fluids which represent the best composite sample of the effluent streams.

In the initial meeting of September 17, 1984 it was decided that all waste streams which are disposed of in the evaporation ponds would be governed by this Discharge Plan. These streams are:

- o Effluent from the oil/water separator
- o Effluent from the water softener
- o Boiler blow down
- o Effluent from the oil recovery system
- o Liquid effluent from the heat exchanger bundle cleaning area
- o Other liquid effluent which may be periodically discharged into the conveyance ditch

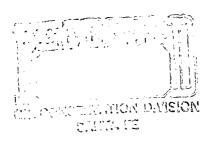
The chemical data on these waste streams were presented in Sections 1.0-6.0 of the Discharge Plan and are presented with this submission. Note that samples from the evaporation ponds were analised for benzene, toluene, xylene and ethylbenzene. Analyses of individual waste streams were included for information only. Regulatory decisions should consider the quality of the final effluent as characterized by analyses of the effluent flowing to the evaporation ponds.

The flow data is shown in the Table. At the present time no data are available for flow rates at the downstream end of the ditch.

500 Copper Avenue N.W. Suite 220, Albuquerque, New Mexico 87102 (505) 842-0001

If you or your technical staff have any questions about this submission please contact me at our Albuquerque office.

Sincerely, GEOSCIENCE CONSULTANTS, LTD. Randall T. Hicks Vice President


RTH/mg

cc: Mr. Dave Griffin, Navajo Mr. Joel Carson, Losee, Carson, Dickerson M. David Boyer, NMOCD (2 copies)

### EFFLUENT FLOW DATA

DATE	GPD	РН
6-6-84	342,720	12.0
6-7-84	361,440	12.5
6-8-84	361,440	11.0
6-9-84	361,440	13.0
6-11-84	361,440	12.0
6-12-84	Cleaning ditch north of the FCC	13.5
6-13-84	303, 384	11.0
6-14-84	342,720	13.0
6-15-84	342,720	13.5
6-18-84	342,720	9.5
6-20-83	361,440	9.0
6-21-84	342,720	9.0
6-22-84	342,720	10.0
6-23-84	381,440	9.5
6-25-84	361,440	8.5
6-26-84	342,720	9.0
6-27-84	419,040	9.5
62884	380,160	10.5
6-29-84	361,440	11.0
6-30-84	380,160	11.5
7-2-84	342,720	12.5
7-3-84	342,720	10.0
7-5-84	342,720	9.5
7-6-84	380,160	9.5

1



DATE	GPD	РН
7-8-84	361,440	9.5
7-10-84	361,440	9.0
7-11-84	342,720	10.0
7-12-84	303,840	10.5
7–15–84	342,720	8.5
7–19–84	380,160	7.5
7-20-84	380,160	9.5
7-23-84	380,160	12.5
7-24-84	361,440	11.0
7-25-84	380,160	12.5
7–27–81	380,160	11.0
7-30-84	361,440	9.0
8–2–84	342,720	9.0
8-3-84	380,160	9.0
8-6-84	342,720	9.0
8-7-84	342,270	10.0
8-8-84	361,440	11.0
8-9-84	361,440	9.0
8-14-84	380,160	8.0
8-15-84	380,160	8,5
8–16–84	419,040	8.0
8–17–84	380,160	8.0
8-20-84	380,160	7.5
8-21-84	380,160	7.5
8–22–84	380,160	8.0

.

7 7

T.

DATE	GPD	РН
8-23-84	380,160	10.0
8-24-84	361,440	9.0
8-27-84	361,440	9.5
8–28–84 8–29 <b>–</b> 84	380,160 361,440	8.5 10.0
8-30-84	380,160	8.0
8-31-84	380,160	7.5
9-5-84	380,160	7.0
9-6-84	380,160	8.0
9-7-84	380,160	8.0
9-10-84	380,160	8.5
9-11-84	361,440	9.5
9-12-84	380,160	11.0
9-13-84	380,160	9.5
9-14-84	361,440	11.0
9–17–84	342,720	11.5
9–18–84	361,440	9.0
9-19-84	380,160	7.0
92084	361,440	9.0
9-21-84	342,720	9.0
9-24-84	342,720	8.5
9–25–84	361,440	8.5
9-26-84	342,720	10.5
9–27–84	342,720	11.0
10-1-84	361,440	10.0
10-2-84	342,720	9.5

DATE	GPD	РН
10-3-84	361,440	10.5
10-4-84	342,720	11.0
10-5-84	342,720	10.0
10-8-84	361,440	8.0
10-9-84	342,720	9.5
10-11-84	342,720	10.5
10-12-84	342,720	10.0
10-15-84	361,440	11.5
10-16-84	419,040	7.5
10-17-84	398,880	8.5
10-18-84	398,880	7.5
10-19-84	419,040	7.5
10-22-84	398,880	10.5
10-23-84	419,040	8.5
10-24-84	419,040	7.0
10-25-84	398,880	9.0
10-26-84	398,880	11.0
10-29-84	419,040	8.0
10-30-84	398,880	9.5
10-31-84	398,880	9.0
11–1–84	398,880	6.0
11-2-84	342,720	8.0
11-5-84	380,160	5.5
11-6-84	303, 384	4.0
11-7-84	303, 384	7.5

...

~ {

DATE	GPD	PH
11-8-84	380,160	8.5
11-9-84	380,160	7.0
11-10-84	342,720	8.0
11-11-84	342,720	9.5
11-12-84	380,160	9.0
11-13-84	342,720	8.5
11-14-84	303,840	8.5
11-20-84	380,160	7.0
11-21-84	380,160	9.0
11-22-84	342,720	10.0
11-23-84	342,720	9.0
11-26-84	380,160	8.5
11-27-84	398,880	10.0
11-28-84	419,040	10.5
11-29-84	419,040	8.0
11-30-84	380,160	10.0
12-3-84	398,880	11.5
124-84	398,880	10.5
12-5-84	380,160	13.0
12-6-84	419,040	9.0
12-7-84	398,880	8.0
12-10-84	380,160	6.5
12-11-84	419,040	11.5
12-12-84	398,880	9.0
12-13-84	419,040	9.0

DATE	GPD	РН
12-14-84	398,880	9.5
12-17-84	380,160	6.0
12-18-84	342,720	7.5
12–19–84	419,040	8.0
12-20-84	380,160	11.5
12-21-84	380,160	10.0
12-26-84	342,720	9.0
12-27-84	342,720	11.0
1-2-85	380,160	9.5
13-85	361,440	6.0
1-4-85	361,440	8.8
1-7-85	342,720	9.5
1885	303,384	10.5
1-9-85	342,720	10.0
1–10–85	342,720	12.0
1-11-85	303, 384	9.0
1-14-85	342,720	10.0
1–15–85	303, 384	8.5
1–16–85	380,160	6.5
1–17–85	342,720	7.5
1–18–85	361,440	8.5
1-21-85	361,440	7.0
1-22-85	342,720	7.0
1-23-85	342,720	8.0
1-24-85	419,040	6.5

:

DATE	GPD	РН
1-25-85	361,440	7.5
1-28-85	380,160	7.0
1-29-85	380,160	7.0
1-30-85	361,440	6.0
1-31-85	342,720	7.5
2-1-85	361,440	8.5
2-4-85	342,720	7.0
2-5-85	242,720	9.0
2685	361,440	9.5

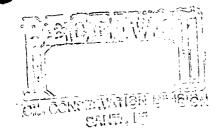



TABLE 5-2 CHEMICAL ANALYSES OF SELECTED WASTE STREAMS AT NAVAJO REFINERY (AFTER BRANVOLD, 1984) (VALUES IN MG/L EXCEPT WHERE NOTED)

KOCC 3-103 Standards	CRUDE UNIT PROCESS (44, \$11, \$13)	CAT. CRACKER PROCESS Before Sour Water Stripper	SOUR KATER STRIFPER EFFLUENT (#17)	ALKY. NEUTRALIZING SEWER (46)	ND & SD DESALTERS (#3, #9)
As					
Ea					
Cd C-					
Cr Ch	<0.1	<0.1	<0.1	7.0	
CA	<0.1	<0.1	<0.1	7.8	
F				<0.1	<1.0
fb	1.3	0.5	0.4	10.8	
Kg					
NO ₃					
Se					
Ag					
U CI					
Cu					
fe					
ňo	<0.1	3.9	17.0	7.8	
S04					
TDS	805	7114			
Zn	(0.1	2160 (0.1	560	2872	2524
pH	6.3	9.0	0.12	18.8	
A1 5			9.5	3.6	
fe Co					
ño					
Ni					
Phenols	9.9				
TSS	7.7	710	250	0.26	
Cond.					
COD	1202	8379	1702		
NH. S	78	2320	256	8870	600
3	64	120	7.7	<1 1.6	5.0 (1.0

• • •

Table 5-2 (continued)

BOILERS

MGCC 2-102	S.D.	K.D.	N.D.
FARANETERS	BOILER BLONDOKN	HIGH PRESSURE	LOK FRESSURE
	(#2)	BOILER ( <b>\$</b> 18)	901LER (#12)

As	.004	2005	.003
Ba	<b>(.1</b>	(.1	<.1
Cd	<.01 ·	<.01	(.01
Cr	<b>&lt;.05</b>	<.05	
CN			<.05
F	3.1	2.2	1.5
fb	- 18	.14	
Hg		• 4 1	.05
NO ₃	.2	.1	45
Se		• •	-05
Ag	<.05	<.05	( AE
U	<.05	<.05	<.05
C1	127	73	<.05
Cu	<.03	<.03	44
Fe	1.9	0.65	<.03
Ka	.07	<.03	0.25
SO	1549	1242	(.03
TDS	4220	2873	693
Zn	.06	<.01	1807
pH	11.6	11.6	<.01
AL	<1.0	<1.0	11.2
B		11.0	<1.0
Co	<.01	.02	4.
ño	<.5	.vz <.5	.01
Ni	<.05	<.05	٢.5
Phenols		1.03	<.05
TSS	20	0	
Cond.	6000	5000	0
COD	116	0	2800
NHa		U .	0
c			

S

## Table 5-2 (continued)

ĩ

#### COOLING TOWERS

	WQCC 3-103 Standards	N.D. COOLING TOWER BLOHDOWN (#10)	S.D. ALKY COOLING TOWER BLOWDOWN (#1)	S.D. TCC COOLINE TOKER BLOWDOWN	N.D. FCC COOLING TOWER BLOXDOWN (#16)
As	5	5. A. /			
Ea	l	.004	<.001		
Cđ		<.1 (.1	(.1	.011	.001
٤r		<.01	<.01	<.1	
CN		.06	1.05	<.01	<.1 ( )
F		,	1. UJ	<.05	<.01
fb	•	1.6	4.4		0.22
Hg		• 05		2.2	
N O ₃			. 05	(.05	1.6
Se		.5			.05
			.75	.2	
Ag		<.05		*4	.3
U		(.05	1.05	<.05	
C1		48	(.05		<.05
Cu		<.03	53	(.05	(.05
fe		.05	<.03	44	47
Na			.5	(.03	<.03
SO		<.03	.07	<.05	<.05
TDS+		1077	1461	<.03	<.03
Zn		1906	2732	1236	
pH		- 48	28	1694	1067
Al		7.6	6.9	<.01	1973
B	(	1.0	(1.0	7.7	.17
Co			1.0	1.0	8.0
Ко	(	1.01	•		<1.0
Ki	<	.5	.01	.02	
	<	. 05	<.5	<.5	.01
Fhenols			<.07	<.05	(.5
TSS	1	3		••••	<.05
Cond.		0	0	(7	
COD	18:		Ú	67	C
NH.		0		108	1800
		v			15

QUALITY OF WATER IN EVAPORATION PONDS

I

Ť.

.:



ANALYTICAL LABORATORIES, INC.

TO: Geo Science 500 Copper Ave. N.W. Albuquerque, NM DATE: 8 November 1984 1080, 1040

#### SAMPLE ID/ANALYTICAL RESULTS ANALYTE 103184 103184 11184 1240 1432 1330 Well 46 Well 45 Well 28 <0.005 mg/l <0.005 mg/1 <0.005 mg/1 Benzene <0.005 mg/1 <0.005 mg/1 <0.005 mg/l Toluene <0.005 mg/l <0.005 mg/1 <0.005 mg/l Echylbenzene <0.005 mg/1 <0.005 mg/1 <0.005 mg/l Xylenes 103184 103184 1550 1520 Well 47 Fire Pond <0.005 mg/l <0.005 mg/l Benzene <0.005 mg/l <0.005 mg/l Toluene <0.005 mg/1 <0.005 mg/1 Echylbenzene <0.005 mg/l <0.005 mg/l Xylenes Well 12 Well 5 Well 3 <0.01 mg/1 <0.01 mg/1 <0.01 mg/1 NO 3 88 N 0.25 mg/1 2.5 mg/1NH 4 1.16 mg/1 < 0.01 mg/1<0.01 mg/l <0.01 mg/1 CN <0.005 mg/l <0.005 mg/l <0.005 mg/l Benzene <0.005 mg/1<0.005 mg/l <0.005 mg/l Toluene <0.005 mg/l <0.005 mg/1 <0.005 mg/l Xylenes <0.005 mg/1 <0.005 mg/l <0.005 mg/l Echylbenzene Pond 3 Pond 1 Well 13 <0.01 mg/1 <0.01 mg/1 <0.01 mg/1 NO 3 BE N 13.87 mg/1 10.6 mg/l NH 4 5.6 mg/1 0.2 mg/10.4 mg/l0.09 mg/1 CN 0.027 mg/l 0.711 mg/10.254 mg/l Benzene <0.005 mg/l 0.588 mg/l 0.345 mg/l Toluene <0.005 mg/l 0.591 mg/1 0.389 mg/1Xylenes <0.005 mg/1 <0.100 mg/1 0.240 mg/l Echylbenzene

TO: Geo Science 500 Copper Ave. N.W. Albuquerque, NM

DATE: 8 November 1984 1080, 1040 Page 2 of 2

ANALYTE

· ·

### SAMPLE ID/ANALYTICAL RESULTS

	Pond #1 floating film	NOMINAL DETECTION LIMIT
NO 3 as N NH 4 CN Benzene Toluene Xylenes Echylbenzene	0.617 mg/1 0.467 mg/1 0.463 mg/1 0.201 mg/1	0.01 mg/1 0.1 mg/1 0.01 mg/1 0.005 mg/1 0.005 mg/1 0.005 mg/1 0.005 mg/1

REFERENCE: "Standard Methods for the Examination of Water and Wastewater", 15th Edition, APHA, N.Y., 1980.

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

Smith

Jennifer V. Smith, Ph.D. Laboratory Director

-CUBIOMER Navajo Refining Col ay ADDRESS Drawer 159 CITY Artesia, NM 88210 ATTENTION Ed Kinney INVOICE NO 104223

OF ANALYSIS Water			
Sample	Type of		
Identification	Analysis	mg/liter	
Navajo West Pond	Acidity	13	
• .	Alkalinity, "P" (as CaCO ₃ )	< 1	
	Barium	0.2	
	Biochemical Oxygen Demand	116	
	Cadmium Chamiani Oxygon Domand	0.003	
	Chemical Oxygen Demand Chloride	102 918	
	Chromium	0.04	-
	Chromium 6+	< 0.01	
	Copper	< 0.001	•
	Fluoride	6.6	
·	Hardness (as CaCO ₃ )	760	
100	Iron	0.06	
	Lead	0.002	
· •••••	Magnesium	60	
	Nickel	0.01	
	pH Units	7'.7	
	Phenols	0.04	
	Alkalinity, "M"	173	
· · ·	Solids, Total Dissolved	2930	
	Sulfate	885	
	Sulfide	25.1	
	Zinc .	< 0.1	-7 <b>3 4</b> } 3 € 3
		· .	
Sample Analysis by: BP			•
Date and Time of Analysis:	BOD ₅ : 4/24/81 @ 1600 hrs.		
pH: 4/30/81 @ 1400 hrs.			
	E day incubation		
Method of Analysis: BOD ₅ -	o uay incubacion .		•
pH:electrode			

 Elmer D. Martinez, Director of Quality Assurance 4/30/81 PAGE 4 OF 13 PAGE

**MERS** 

Controls for Environmental Pollution, Inc.

-CUUTANER ADDRESS CITY ATTENTION NVOICE NO	Navajo Refining Con y Drawer 159 Artesia, NM 88210 Ed Kinney 104223				
SAMPLES RE		OMER ORDER NUMBER P.O. # 201	030		
TTPE OF AN					
	Sample Identification	Type of Analysis		mg/litær	
	Navajo Middle Pond	Acidity Alkalinity, "P" (as CaCO ₃ ) Barium Biochemical Oxygen Demand Cadmium Chemical Oxygen Demand Chloride Chromium Chromium 6+ Copper Fluoride Hardness (as CaCO ₃ ) Iron Lead Magnesium Nickel pH Units Phenols Alkalinity, "M" Solids, Total Dissolved Sulfate Sulfide Zinc	~~ ~~ ~ ~ ~	29 1 0.1 116 0.002 363 1468 0.1 0.01 0.001 7.4 1060 0.06 0.001 96 0.01 7.4 0.027 349 4020 1050 13.4 0.1	
	Sample Analysis by: BP				
	Date and Time of Analysis:	BODr: 4/24/81 @ 1600 hrs.			
•	pH: 4/30/81 @ 1400 hrs.	5			
	Method of Analysis: BOD ₅ - S	5 day incubation	۰.		
	pH:electrode				
		:			

t

Elmer D. Martinez, Director of Quality Assurance 4/30/81 PAGE 3 OF 13 PAGE

Casha ata (an Cautanon anna) Callution Inc.

-CUSIOMER Navajo Refining Com y ADDRESS Drawer 159 CITY Artesia, NM 88210 ATTENTION Ed Kinney INVOICE NO 104223

t

Sample Identification	Type of Analysis	mg/liter
Navajo East Pond	Acidity Alkalinity, "P" (as CaCO ₃ ) Barium Biochemical Oxygen Demand Cadmium Chemical Oxygen Demand Chloride Chromium 6+ Copper Fluoride Hardness (as CaCO ₃ ) Iron Lead Magnesium Nickel pH Units Phenols Alkalinity, "M" Solids, Total Dissolved Sulfate Sulfide Zinc	$ \begin{array}{r} 10\\<1\\<0.1\\72\\0.002\\225\\1632\\0.1\\<0.01\\0.002\\5.8\\1160\\0.1\\<0.001\\110\\<0.001\\110\\<0.01\\7.2\\<0.001\\214\\4920\\1520\\0.36\\<0.1\end{array} $

 APPROVED BY Elmer D. Martinez, Director of Quality Assurance 4/30/81 PAGE 2 OF 13 PAGE

AMEVER

Controls for Environmental Pollution, Inc.

#### REPORT ON WATER DISPOSAL NAVAJO REFINING COMPANY

The Navajo Refining Company operates an oil refinery in Artesia, New Mexico. Fresh water is used in the refining process; part of the water is used to de-salt the incoming crude oil. This saline water and other waste water is delivered via ditch three miles east of the plant to evaporation ponds adjacent to the Pecos River.

The reach of the Pecos River between Acme (16 miles northeast of Roswell) and Artesia is a section of river in which the mineral content of the water increases considerably - especially the chloride and sulfate content. The flow in the river consists of three parts: a.) the base flow. b.) the release of storage water from the reservoirs near Ft. Sumner, N. M.; and c.) runoff from precipitation. Inasmuch as b and c are relatively transitory in time, the measurement of water quality in the river is given by analysis of the base flow (a).

Table #1 shows the chloride and flouride content at Acme and Artesia as well as the chromium, sulfate, and solids at Artesia as analyzed by the United States Geological Survey (USGS) monthly for the water years 1979 and 1980, ending in September, 1980. The data for 1980 is labeled provisional until published. Chart #1 shows the chloride content at the Artesia bridge sampling point. The great variation is due to time of sampling and the mix of a, b, and c, The average chloride content for the two year period is 1846 parts per million (ppm). The water in the Pecos River is not potable; it is brackish and marginal for agriculture.

Bylini

Appriculture. Report not blated when prepared on necessed by OCH I Twas baid by Hydro Science 1 T. O A. , 10, 1981, 248 This is not the

Table #la is a list of minor constituents in the Pecos River water that were analyzed by the USGS.

The Pecos River water quality deteriorates between Acme and Artesia by leaching of the soil on the west by return irrigation water and precipitation runoff and on the east side by precipitation runoff through highly mineralized beds of the Permian (Chalk Bluff Formation).

The valley fill aquifer (30 - 32 feet thick) lies along the river in a narrow belt. The aquifer is composed of fine grained sediments (sand and clay) deposited by the river. The permeability of the formation is low and consequently the transmissibility of water is also low. The aquifer has about 20 feet of saturated zone; the top of which is cut by the river. Water seeps into the river at low flow and outward from the river at high water level. The water in the valley fill is saline like the water in the river. The well #1 is a test of the aquifer water updip 1560 feet northwest of the ponds. This well water tests 8313 ppm chloride, 4920 ppm sulfate, and 19,700 ppm dissolved solids. This is the same irrigation return and precipitation runoff that is found in the river.

In the general area of the ponds, the valley fill water has recharge from the effluent of the City of Artesia's sewage plant. Part of the effluent is used to irrigate pasture located in the  $S_2^1NU_4^1$ Section 12, just southwest of the evaporation ponds. When not used for irrigating, the effluent is discharged into Eagle Draw wherein it ponds adjacent to the river at a distance of  $\frac{1}{2}$  mile northwest of well #1.

The Navajo Refining Company has three ponds containing 85

acres located in Sections 1 & 12, T175, R26E, Eddy County, N. M. Observation wells have been dug around the perimeter of the ponds in order to observe the effects, if any, on the ground water in the valley fill aquifer. Wells 1, 3, and 5, were placed on the north or updip side of the ponds. As previously mentioned well **\$1** is 1560 feet northwest of the ponds and 200 feet from the river. This well measures the water in the valley fill without chance of being effected by the water in the ponds. Wells 7, 9, 12, and 13 were placed to measure the water moving east to the river or south along the water level slope. These wells have slotted casing which allows aquifer water to move through the well bore. Wells 16 and 17 were drilled to test the bottom of the aquifer. In sampling these, the water was drawn from the bottom of the well.

The evaporation ponds have been at this location for several decades. The water in the observation wells has been tested over a period of 4 years. The latest sampling was on April 16, 1931, by the undersigned witnessed by N. Raymond Lamb. The samples were sent by the undersigned to the Controls for Environmental Pollution, Inc., Santa Fe, New Mexico, for analysis. Table #2 is a compilation of the results.

The water levels in observation, wells 1, 3, and 5 indicate a flow to the river and to the south. The level is slightly above low flow water level in the river. Well #7 appears to have an anomalous water level some 7 feet above low flow in the river and 4 feet above the wells to the south. This may be due to a perched water table in an old meander of the river.

The water in the river and the valley fill is saline with high levels of chloride, sulfate, and dissolved solids. The possible industrial contaminants of barium, cadmium, hexavalent chromium, lead and flouride are all low and within the values for potable water much less for saline water.

There is no evidence that the water in the evaporation oonds is contaminating the water in the aquifer. Just south of the west end of the ponds is a water well used by the rancher for watering of his stock. This well is pumped by windmill. This water analyzes to be saline as found in the general quifer. In view of the long time operation of these ponds, if they were contributing industrial pollutants to the aquifer the water being pumped regularly should show a poor analysis.

The ponds have a surface area of 85 acres. Of this amount 70 acres has strong evaporation. The Soil Conservation Service has a map titled Gross Annual Lake Evaporation, New Mexico with contour lines denoting inches of evaporation. To convert these data to Pond Evaporation data a factor of 1.21 is applied to the Lake Surface data. This factor is used because ponds are smaller and dry winds do not saturate in blowing across them as they do over large lake bodies. The contour for Artesia is 80+ inches per year. Using 80 times 1.21 less average rainfall at 12.8 inches per year (the last 5 years) gives a net evaporation rate of 84 inches per year. The average precipitation at Roswell for 1944-67 was 9.66 inches per year. The 7 feet of net evaporation per year from the 70 acres is a total of 490 acre feet per year. The refinery is discharging an average 449457 gallons per day or 503 acre feet per year. There is apparently

a 5% loss in transmission over the three miles; therefore, the net discharge into the evaporation ponds is 478 acre feet per year.

The calculated 100 year flood peak discharge of the Pecos River has been determined in connection with the Brantley Dam project and is 93,200 cubic feet per second (cfs). The flood at the site of the ponds would be 2 miles wide and have a crest of 14 feet above river bottom - 3313 feet above msl according to flood profiles by the US Corps of Engineers - chart #2. The flood profile shows a river bottom of 3299 feet; however, our measurements of low flow water level by registered surveyors is 3297 for an average with the river bottom a bit less. The bank of the river just north of the ponds is 90% covered by thick salt cedar growth. This growth will very materially lessen the floods washing effect against the pond dikes. The peak elevation of 3311 or 3313 may cause water to flow into the ponds. The pond storage is equivalent to 80 seconds of peak flood flow.

Respectfully submitted. Edward E. Kinney, PE&LS #11

	-	2	e	4	5	9	7	8	6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
SOLIDS Res @ 180°C		3900	4860	3820	4690	9290	9380	INBUD	1210	6170	5220	10607	9990	3200	5770	6210	6070	10700	1810	5920	3090	945	4730	2430								
SULFATE Artesia		1400	1300	1200	1500	2500	2300	2700	590	1600	1700	2000	3200	ססנו	2600	1800	1800	2600	970	1600	1500	470	1300	720								
M I U M Artesia			0		,	.02			.03		50				.0.				.03		05											
Сня																														nuhli shad		
R I N E Artesia	8	- 7	- 7	.7	.7		8	B	. 5 _	_ у _	9	Ч,			ω	6	.6		e U	5	6	7	2	ų						not vet		
	8	9	5	5	, Đ	.6		B	Ч	•		у	4		<u>.</u> 4	, 5	. 4	5	,	۲	5	8	. 4	.e						1080 TCAN	1 1	
R I D E Artesia	2700	1500	1500	1200	1500	3500	3400	3700	חוו	7300	חחק ו	2600	3700	770.	860	2100	2100	4200	150	1900	480	74	1600	650						For uston		
	420	130	740	520	740	1000	950	066	130		47	350	97		410	450	460	630		330	490	89	170	34.0						- Consinor	t	
Da te	Dct. 78	1	Dec	Jan 79		Mar	Apr	Mav		ניונ	Aun		1t *	Nov	Dec	Jan 80		Mar	Aor	Mav	unt.	1.1	Aun							*	T	
<b>\</b>	-	8	3	4	5	9	7	8	0	01	=	12	13	14	15	16	17	18	19	20	21	22	23	1	25	26	27	28	29	30	31	

į.

1

I

I

CUVEA BUUN COMPANI, INC. NUKWUUU, MASSACHUSEI13. PRINTED IN U.S.A.

· •

4

Table #1

1

2

o

ļ

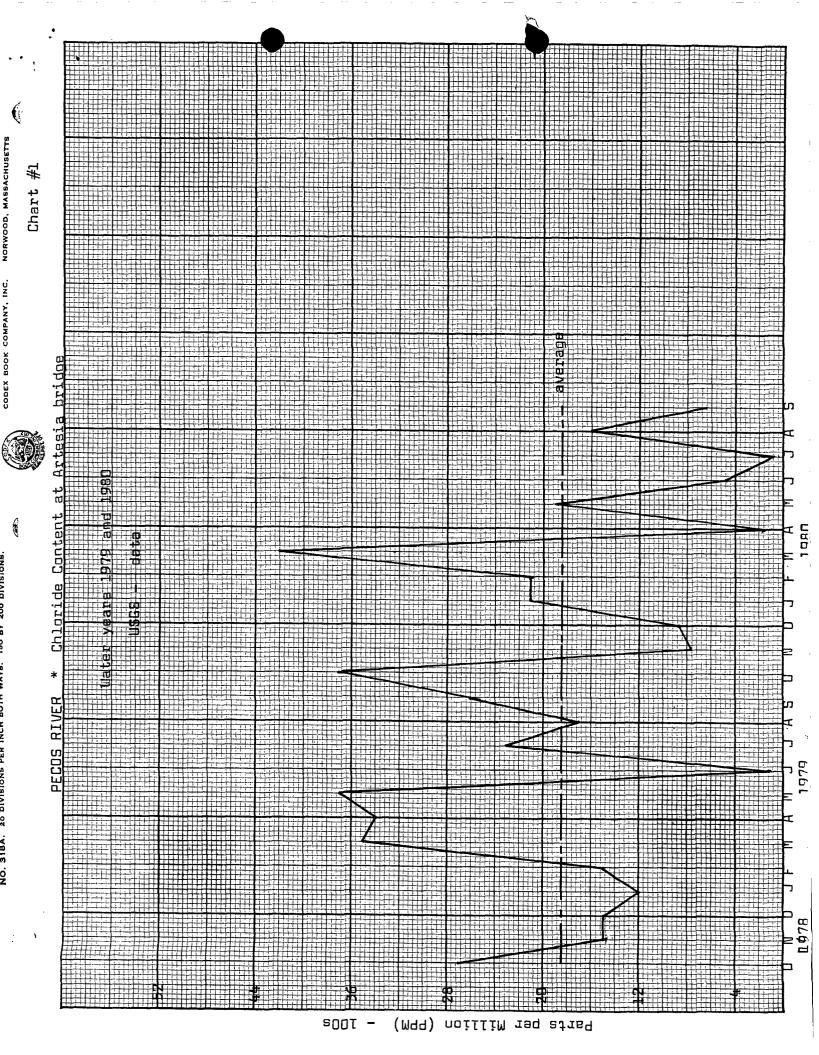

NO. 3110. UAIA SHEEL, UNE MUNIT BY UATS.

Table la

WATER ANALYSIS BY U S GEOLOGICAL SURVEY for water years 1979 & 1980* Sampled at Artesia Bridge on the Pecos River. Mg./L (ppm)

Date	Iron	Barium	Cadmium	Lead	Zinc
Oct 78	.01				
Nov	.02				•
Dec	.03	.1	0	.005	<b>.</b> 04
Jan 79	.04				
Feb	.01				
Mar	.05	0	0	.006	.04
Apr	.06				
May	.04				
Jun	.01	.6	0	0	.09
Jul	.02				
Ацд	.06	0	.001	0	.01
Sep	.02				•
Oct	.05				
Νον	.02				
Dec	.06	• 4	٥	.006	.004
Jan 80	.03				
Feb	.07				
Mar	.05	. 2	.001	.001	.08
Apr	.11	.8	.001	.055	.15
May	:05				•
Jun	.16	1.0	0	.057	.23
Jul	.05				
Aug	.05				
Sep	.84				

*1980 water year data provisional until published

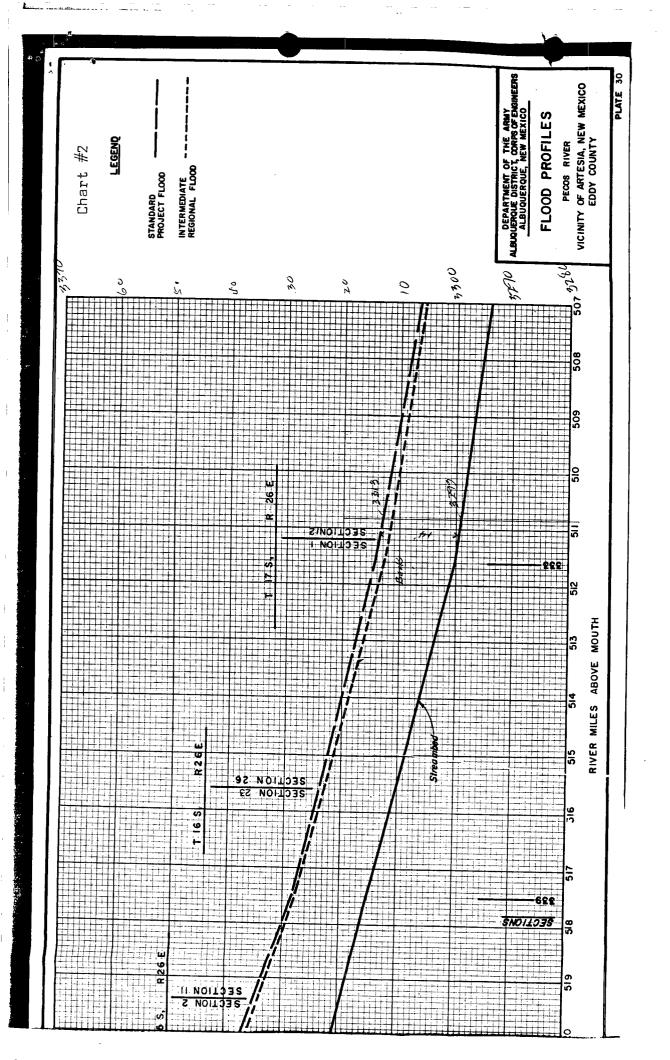


200 DIVISIONS Ă 200 H C A NO. 318A. 20 DIVISIONS PER INCH

#2 Table

> ANALYS.IS COMPANY NING WATER REFI L L N A V A J O REPORT

by Edward E. Kinney and N. Raymond Lamb Sampled 4/16/81 E. Pond Ranch Well Type Analysis Chromium 6+ Alka. "P" Magnestum Alka. "M' Chloride Chromium Flouride Hardness Phenols Sulfide Acidity Sulfate Cadmium Copper Solids Barium Nickel Lead Iron 008 80 핌 0.022 205 0.002 0,002 0,004 0.005 0.25 **D.**06 6,860 2,830 < 0,01 0.03 < 0.01 1632 2400 7.8 0.2 < 0.1 310 ر 1 ک 38 88 ព , 0.002 225 4,920 0,002 T00°0 > < 0,001 < 0.01 < 0.01 0.36 1,520 1632 5.8 1160 0.1 7.2 < 0.1 < 0.1 1. 1. 011 я , 72 Md Pond . 0.002 < 0°001 0.027 < 0°001 unalysis made by: Controls for Environmental Pollution, Inc., Box 5351, Santa Fe, New Mexico 8750: z 0.01 0.06 < 0°01 4,020 1,050 146B 1.0 7.4 1060 7.4 13.4 < 0.1 < 0.1 349 116 116 ч Х 96 29 Well #12 Well #13 Well #16 Well #17 W. Pond 0,003 0.002 < 0.001 0.06 2,930 885 0.04 < 0.01 0.01 10°0 0.2 6.6 7.7 25.1 < 0.1 760 116 n 7 102 918 60 2 0.005 2,930 < 0,001 11,200 0.002 < 0,001 0.03 0.03 < 0.01 0.01 0.03 0.3 4470 7.7 0.1 4692 1.0 470 ч М 198 88 42 17 0.016 425 < 0.001 0.002 0.002 < 0°001 < 0.01 < 0.01 0.44 4,770 0.10 < 0.01 1,890 1173 1610 7.7 0.1 < 0.1 n v 152 140 44 0.003 0.002 0**.**002 100.0 < 0°001 0.02 < 0°01 3,200 1,810 < 0.01 0.04 0**.**1 1.2 1570 7.4 < 0.1 = , 357 146 48 22 79 0.002 0.002 28,900 0,007 100.001 0.07 < 0.01 0°04 0.02 0.05 6*0 8920 1330 7.6 8058 < 0.1 < 0.1 545 256 **6** 1 38 0,006 10,400 4,160 Well #9 0,002 0,001 < 0,001 < 0,01 0.03 0**°**01 10.0 < 0,01 3120 7.7 < 0'I 2703 0.7 < 0,1 370 322 r v 88 36 36 Uell #7 0.002 0.004 100.0 < 0.001 14,200 5,600 0°05 0,05 0.04 < 0,01 < 0,01 0.3 < 0.1 3570 3160 8.0 < 0.1 370 596 136 ۲ ۲ 贸 8 0,002 16,800 4,290 lle11 #5 100.0 0.007 < 0,001 0,05 < 0°01 0,44 t0°0 < 0.01 0.13 < 0.1 7089 4660 1.7 650 506 1.0 ר י 176 24 36 0,009 uell #3 < 0°01 < 0°01 < 0°01 < 0,001 < 0.001 10.0 7,730 2,720 0,10 < 0,01 2652 1**.**6 2760 < 0.1 7.4 < 0.1 250 r v 73 356 ÷0 33 0,006 850 100°0 0.002 0.015 19,700 4,920 lell #1 0**°**05 0.05 0.02 0.21 0.1 8313 0**.**9 5760 7.8 700 0.1 145 179 ž 44 Alka. "P" as CACO3 Solide, Total Dis. rype of Analysis Hardness (CaCO3) Chromium 6+ Magresium Alka. "M" Chromium pH Units Flouride Chloride Phenols Acidity Cadmium Sulfate Sulfide Copper Nickel Barium Iron Lead Zinc 80 000 5


800₅ analysis - 5 day incubation

. 92 ( . .

12:01:01

1.20

pH : electrode All measurements mg/liter (ppm)



TELEPHONE A. C. (505) 746 - 9851





REFINING COMPANY

TELETYPE 910 - 986 - 0990

ARTESIA, NEW MEXICO . 88210

November 20, 1980

Mr. Joe D. Ramey Director, Oil Conservation Division Box 2088 Santa Fe, New Mexico 87501

Dear Mr. Ramey:

Enclosed you will find Navajo Refining Company's reply to your request for a discharge plan under Water Quality Control Commission regulation 3-106.

It is our intention to show with the enclosed information that Navajo does not discharge wastewater to either the shallow aquifer below the evaporation ponds or the Pecos River.

It is my understanding that Mr. Thomas Parkhill of your Division will be reviewing the information provided. If any questions arise during the review, please have Mr. Parkhill contact me.

David G. Gr

David G. Griffin Environmental Coordinator

DGG/jh

Enclosures:

Discharge Report Attachments 1 - 5

Report Separale in file ATR



# ENERGY AND MINERALS DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING

LARRY KEHOE SECRETARY POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87501 (505) 827-2434

TO: R. L. Stamets

MEMORANDUM

FROM: Thomas A. Parkhill

SUBJECT: Tour of Navajo's Artesia Refinery

On June 5, 1980, M. Williams and I represented the O.C.D. on a tour and meetings at the Navajo's Artesia Refinery. The total number of people in attendance was fifteen (15) and included people representing Navajo Refinery, EPA, U. S. Fish and Wildlife Service, EID, and USDI. The area toured included the three (3) waste water ponds, the full length of the ditch and the landform, all located within the refinery property boundaries.

The refinery has an operating capacity of 30,000 barrels/ day. This process produces about three-quarters of a ton of solid sediment per day. About 40 to 60% of the waste water is cooling tower water. Navajo Refinery people estimate that depending on PH of oil, 30 to 400 ppm (1/2 to 5 barrels/day) of oil escapes to waste water ponds. Navajo owns the old Artesia sewage plant and may be able to use it to remove oil and solids from waste water before it is drained to the ponds.

The waste water ditch has been a problem to Navajo Refinery because of very flat grade present along one of its sections and the difficulty of maintaining ditch during periods of wet ground during winter months when heavy equipment cannot be moved in for repairs. This problem has been compounded in this area by the City of Artesia's sewage plant which has frequently dumped raw sewage into a ditch which intersects Navajo's ditch, keeping the ground soft. Navajo did file an oral complaint about this problem to E.I.D personnel. They (E.I.D.) need to do a better surveillance job on Artesia's sewage treatment plant. I believe that Navajo could use a large diameter pipe to move waste water to the ponds if they remove sediments and oil from waste water and construct a pipe using a good grade. A pipe would not be effected by flood waters.

The waste water ponds apparently do not affect the quality of the ground water or the Pecos River water. The water in the Pecos, which varies seasonally, is a poorer quality than the ponds. The six (6) monitor wells, drilled 15 ft. to water table, around the ponds indicate a wide variation in ground water quality and a lack of phenols. This may be due to a simple change in geological formations which outcrop out near surface in this area. The pond bottoms may have a naturally impermeable bottom due to the addition of fine sediments from the oil and the waste waters sodium plus magnesium tend to disperse soil colloids with resultant loss of good tilth and permeability. Navajo personnel have a valid concern about taking ponds of service because of the accumulation of heavy metals at the site, and lack of a New Mexico toxic waste damp to dispose them at. With Navajo's modernizing effot, it may be possible to cut the amount of waste water to about a range of 199,000 to 200,000 gal/day. Building new pits and lining them would cost about 10 1/2 million dollars.

During the tour Jim D. Millsap (EPA) took water samples from the ditch and the waste water ponds. The personnel from the U. S. Fish and Wildlife Service and the U.S.D.I. found three (3) dead birds that had been oiled, and took one (1) for Navajo to run tests to determine cause of death. In addition one (1) dead turtle, covered with oil, was found. Navajo tried to make the Yates Bolton #1, Sec. 9, Township 17 South, Range 26 East, 660 FNL - 2180 FEL into an injection well, but failed. They perforated the Morrow formation with four holes per feet, acidize and frac. the section. Other data on well was 9 BPME at 3500 lb., I.S.I.P. - 700 lbs. It is questionable how long formation would accept fluid and it would not be satisfactory for 100,000 gal/day to 200,000 gal/day for the modified refinery operations.

We did visit Navajo's landform, located on the west side of the North Plant. In this area oil sludge is mixed with soil and allowed to decompose. Oil studge is estimated to decompose in about two (2) to three (3) months depending on moisture, load, temp, and etc. About 80 barrels of studge and solids are added to soil month to increase fertility of soil. The landform is located on Navajo land and is surrounded by a two (2) ft. high dike. I don't think this comes under any O.C.D. rules at this time.

I did talk to David G. Griffin, Navajo Environmental Coordinator about our request for a discharge plan. He stated expansion plans have put a large strain on Navajo's finances because of heavy borrowing. The refinery expansion is taking all the Navajos engineers time and they are currently required to work a six (6) day work week. If refinery not brought on line on schedule Sept. 1, 1980, the company could fold up, causing the loss of 250 jobs in the Artesia area. EPA's new regulations are not complete and final at this time which makes it impossible to justify the expense to come up with a discharge plan which conforms to new regulations. The company will probably ask for an extension of time near the end of the 120 day period. I would recommend that the O.C.D. grant an extension of time, if Navajo requests it, for another 120 day period with the provision that a progress report must be submitted at the end of the first 60 days.

I believe that Navajo Refinery should work on their three (3) biggest problems which are the removal of oil and solids from the waste water, and constructing a limited access chain link fense around ponds. They then could use a large diameter pipe to transport water to the ponds.

June 20, 1980

Joel Carson	Losee, Carson & Dickerson	Artesia, NM
Edward E. Kinney	Consultant	Artesia, NM
Patrick G. Juarez	Refinery Chemist	Artesia; NM
David G. Griffin	Navajo Environmental Coordinator	Artesia, NM
Jim D. Millsap	EPA	Ada , OK
Hans Stuart	U. S. Fish & Wildlife Service	Albuquerque, NM
Wayne McDonald	U. S. Fish & Wildlife Service	Albuquerque, NM
Jack Ellvinger	NM EID	Santa Fe, NM
Trent G. Thomas	NM EID	Santa Fe, NM
Thomas A. Parkhill	NM OCD	Santa Fe, NM
Mike Williams	NM OCD	Artesia, NM
Charlie Sanchez, Jr.	U. S. Fish & Wildlife Service	Albuquerque, NM
W. C. Chamberlain	Navajo Technical Service	Artesia, NM
John C. Robinson	U. S. Fish & Wildlife Service	El Paso, Texas
V. Lee Grover	USDI	Carlsbad, NM

•

lung & 1920 meating list at Navaios Artesia Rofinon

·

from May 30, 19 80. PATRICK G. JUAREZ TO DGGE Subject: Water Samples FROM. Test Holes Nett Ponds SAmple ptl PPM F - ppm Phenol TDS #3. 4.825ppm Oppm 4,286 ppm 7.050 #-5 1.525 ppm 0 ppm 12, 242 ppm 7.045 #7 7.599 1.822ppm 0 ppm 8,532ppm #9 7.313 3.070ppm 0 ppm 8,477ppm 井に 7.424 3.050ppm 0 ppm 15, 824 ppm # 13 7.184 4.150pp 0 ppm 2,511 ppm Patient from EMIL

from -

JAMES L. BROWN 19 80 To BCB- DBG Campled 1-7-80 WWWWW. 511 e. рH 5rel all Peces Rain above ponds 0 162 8.276 2300 1840 1.42 00 0 Pacas Rain at bridge 8.2342330 1860 1.46 0 162 0 0 0 Water not available Well West Poul 7.388 680 810 50.5 54 25+ 0 0 0 middle Peul D 196 7.483 690 950 35.0 0 0 25 Egst Pond 2.442 840 1160 44.0 0 0 4 222 0 Total Effluent 10 238 8.473 1940 1780 34.8 205 20 0 2, P J 0 8.671 680 80 40.0 230 24 eparator 312 16 n.D. Inap 8.185 850 1400 1.98 230 1 192 0 0 158 0 7.264 10400 13200 1.50 170 0 0 184 0 7.178 716 28 1.95 0 Wate 0

Jen Brown

from JAMES L. BROWN 1-7 1980 To Recueto in pom - by AA from Copper nichel Jine Lead Chroming Assenie Pecar Bur allane ponles. 065 .028 .076 .000 .071 .000 Picas River at bridge 1.049 .047 .076 .000 .071 .062 Watu Well West Poul . .098 .000 .030 .0079 .071 .000 Wildle Poul .065 .009 .030 .000 .071 .000 East Peul .147 .009 .030 .000 .071 .000 Sotal Efflicit .065 .000 .106 .000 .142 .000 alI Sepantor .033 .000 .015 .000 .000 .000 n.p. Juge. .033 .000 .030 .000 .000 .000 .180 .028 .287 .1597 .356 .000 Water .000 .009 .000 .3968 .071 .000

*: . . . . . from JAMES L. BROWN 19 30 To BCB .l d 2 Acidity 211 PH ack ack Pecas River above 166 8,159 2310 1830 1.80 0 0 0 0 cos River 166 8.163 2280 1850 1.70 0 ridge 0 0 0 Water Well available not Windmill) West Poul . 7.575 820 1040 82 0 50 0 12 0 niddle 6.785 710 960 92 90 0 0 20 0 Egst foul 144 7.053 770 1090 74 0 0 2 Total Effluent 42 5.921 3200 360 87 0 1.6 0 0 legarator 80 3.417 11200 380 150 3.2 2 0 0 n. Dio 8.404 550 120 4.20 32 6 Irap 180 0 0 1. Din In 178 7.728 930 260 3.85 0 0 0 Ó aly water 7.023 668 32 2.45 174 0 0 0 0 ì

from PA	FRICK	G. JU	AREZ		<u> </u>	2-12	, 19	8
<u></u>	C.A	D.G.G.r	- '7		SAN	pled	2-11- 80	 )
ppm	Fe	Cu	Ni	Cd	Zn	P6	Cr-	
Pecos River above Pouds	0.07	0.06	0.00	0.02	0.01	0.22	0.00	
Pecos River At Bridge	0.03	0.07	0.25	0.03	0.04	0.11	0.00	
Water Well (Wrydmill)		No	- 7	UAILA	BIE			
west Paud	9.51	0.06	0.33	0.01	0.36	0.22	0.14	
Middle Powd	0.44	0.06	0.25	0.12	0.05	0.00	0.07	
EAST PON L	0.12	0.06	0.00	0.02	0.03	0.22	0.07	
Total EFFluent	0.71	0.07	0.17	0.02	0.0/	0.00	0.55	
API Separator	1.20	0.06	0.00	0.01	0.15	0.00	0.51	
N. D. TRAD	0.24	0.07	0.17	0.0]	0.0j	0.11	0.07	
5. Div. TLA	0.17	0.07	0.08	0.01	0.01	0.11	0.17	
C: Franker WAter	0.22	0.08	0.25	0.00	0.42	0.11	0.17	

•

.

from . 3-12, 1980 JAMES L. BROWN To Beb. Fampled 3-11-80 711. pH ack ack fees River and 8034 3520 2600 0.74 0 1381 0 0 0 Pecas Raver at Bridge O 140 1.993 3550 2590 0.69 0 0 0 Water Well West Poul. 7.485 1230 1170 46 0 12+ 0 100 0 Wille Poud 104 7.044 1100 1150 39 0 0 7 0 East Poul 80 7.135 1150 1210 33 0 0 0 0 Total Effluent 1760 3230 0 11.331 180 350 300 806 0 P G Parator 102 482 0 9.064 640 230 10 138 12+ Srap 44 236 0 8.867 1650 1690 1.10 22 6 Trap. 154 0 8,121 1970 900 2.18 0 0 0 Water 0 176 0 1.173 686 26 0.69 0 0 Jim Brown

from F	PATRI	CK G.	JUARE	Z		3-	12	19 8	6
ТО _	BC	. G.					3-/		-
Elements PPm	Cu	Fe	N;	Рb	Zn		C-		-
Péros Riser Above Ponds	\$	}	0.045	C.200	0-00	0.030	0.037		
Peros River At Bridge	0.010	0.200	0.061	0.200	0.000	0.022	0.037		
N'D TRAPS	0,000	0.092	0.045	0.066	0.003	0.011	0.000		
West Pond	0,000	0.308	0.045	0.04	0.021.	0.019	0.037		
Middle Powd	0,000	0.446	0.045	0.066	0.026	C-C34	0.074		
FAST	<i>a</i> 000	T	0.015	·					
Total EFF/vent	01010	0,092	0.061	0.066	D. 09/	0.c <b>07</b>	0.037		
API. Separator	0.000		0.028				6.103		
S D TRAPS	0.000	0.092	0.030	0.066	0.049	D.015	0.000		
City Wither	0.010	0.123	D.061	0.061	0.473	0,000	0.000		4

Fatuit I. Junez

from pril 2 1980 JAMES L. BROWN Sanyeled 4-1-80 General - 1-80 To Samples pH. all all Peces River 118 8.125 2940 3530 0 0 0.3 0 0 Pacas River 00 Brilse 8.125 2880 2820 0.0 0 122 0 Watu mot quailable Well West Poul . 1.350 200 1240 83 0 12+ 0 144 0 Middle 6581 810 1200 81 Keul 102 0 0 0 East 86 Poul 7.020 950 1410 79 0 0 0 0 tel. Elunt 9.030 400 500 80 160 12+ 108 514 0 8.328 680 430 83 128 12+ Eparator 0 352 0 0 8.248 510 300 1 54 10 234 0 0 7.782 420 510 0.8 0 178 0 0 0 180 0 7.044 630 28 0.4 0 0 Water

Fin B.

from

from PA	TRICK	5 G. JU	AREZ			cril à	2, 19_	90
· TO			Wate	1 Sami				<u>d 4-1-82</u>
FECOS RIVER ABOVE PONDS	Fe 0.08	Cu 0.04	Ni 0 87	Zn 0.19	<u>.</u> Pb. 0.25	Cr) 0.00	Cd ) 0.03	
PECOS RIVER AT BRIDGE	0.12	0.05	0.19	0.05	0.40	0.00	0.03	
WEST POND	0-,23	0.02	0.04	0.04	0.19	0.15	0.007	
MIDDLE POND	0.23	0.07	0.04	0.05	0.25	0.13	D.00.5	
EAST FOND	0.23	p.0.0	0.07	0,19	ط1.0	0.05	0.001	
TOTAL EFFLUENT	0.06	0.02	0.05	D.04	0.06	90.0	0:01	
A.F.I. SEFARATOR	0.01	0.003	0.04	0.04	0.04	0.14	0.007	
NORTH DIVISION TRAP	0.07	0.02	006	0.04	0.31	0.33	0.001	
SOUTH DIVISION TRAP	0.03	0.005	0.005	004	0.30	D.18	0.000	
CITY WATER	0.03	D 01	0.01	0.53	0.00	0.0	0.000	· · · · · · · · · · · · · · · · · · ·
Water we	ell —	not	availa	ble	•	,	Patiet	1- IT June

•	PECOS RIVER	<u>C. 6</u> / Fe	<u>cyhorn</u> Cu	Ni	Zn	<u>72 0.7</u> РЪ	Cr	Cd	MAY, 1980
	ABOVE PONDS	0.048	0.000	0.055	0.DI I	0.000	0.000	0.006	
	PECOS RIVER AT BRIDGE	0,053	0.000	0.055	0.000	0.000	0.000	0.024	
	WEST FOND	0.154	.0.000	0.000	0.018	<u>0.000</u>	0.102	0.018	
. *	MIDDLE POND	0.150	0.002	0.018	Ö.028	0.000	0121	0.016	
	EAST FOND	0.505	0.000	0.036	0.044	0.000	0.000	0.032	
	TOTAL EFFLUENT	0.000	0.000	0.040	0.015	0.000	0.000	0.024	
	A.F.I. SEPARATOR	0.040	0.000	0.000	0.020	0 <i>-200</i>	0.000	0.000	
	NORTH DIVISION TRAP	0.000	0.000	0.036	0.000	0.000	0.091	0.011	
	SOUTH DIVISION TRAP	0,335	0.002	0.000	0.016	D.000	0.045	0.017	•
	CITY WATER	0.000	0.002	0.000	0.402	0.000	0.045	0.005	

from JAMES L. BROWN 5-12, 19 80 To BCB - Anny Reidity M βH alk ack Seas River 66 6 8.708 1730 1110 0.68 . Pa 0 0 0 confiver 8 68 8.716 1720 1130 0.68 0 0 Water Well . (Wind mile) not available Weit Pouli 9.641 440 1050 68 84 352 0 0 12 Middle Poul 7.308 890 1250 38 94 0 0 0 0.5 East Poul 0 58 7.326 1230 1730 27 0 0 0.3 Total Effluent ! 10.127 380 330 27 16.0 2 0 76 12 apg Separator 14 50 0 9.474 500 50 17 tu 0.5 n.D. Trap 184 0 9.381 530 130 1.78 19.2 3 36 1. D. Irap 534 662 0 12359 40 110 440 0 0.5 City Water 0 170 0 7.168 620 24 1.25 0 0 Further semples of Pecos River water caught alongside of the game refuge matched the complex from above souds and bridge. This is related to letter David Sriffin received from the environmental people.

175 26E Section 2 Naucho Disposal Ponds Oil + Brin. Filled Ditch Soil Contania tim Ground Watar Pollution Bird Deaths Sighted a juvenile Wheeping Cran. - Feeding with large Flocks of Sandhill Cranes - here - 2-24-70 4-21-80 - Dend Birds Snowy Equit 4 Ducks 1 Crane Grackla Coot unidenti Find Took egnet + Z ducks Also noted many live shorry egents + bl. conned night horas, a fir spotted sand pipers + mandow la-ks Lives tock well to west appears pollated - tast

66 E Section 10 Nauche Refining Company Oil + Brine Filled Ditch Soil Contamination . Ground Water Pollution Bird Deaths Noted a Malla-1 + a Ma-sh Hawk - dead have 2-24-79

40 C . Section 11 Navah. ReFining Company 3 large Disposal Ponds Brine + oil Filled Ditch = Ground Water Pollation Pecos River Pollution Soil Contamination Bind Deaths Livestock Deaths 2-24-79 Bird Deaths Snow Gis. Avocet Pectoral Sind piper * Noti 6 Ruddy Ducks also noted cattle Bonos Endangened Species Sightings: 3-21-79 Bird Donths 2-24-79 Whipping Crane - Sec. 2 4 Lesse- Scarp 1 Green Harry 12-1-74 1 Lesson Yallow lags Peregnine Falcon-Soc. 14 1 Unidentified Sparrow 12-1-79 Wildlife Duths 1 Eard Grebe 1 Hispid Cotton Rat

5-13-80 Crono (mide-fified) 1 Snowy Egut 1 Pied-bill-1 Grebe 5 unidentified ducks

뢵	É	Ĉ	E	ŧ	V	5	Ø	

All	D.	27	19	79
		<i>L</i>		

# NEW MEXICO OIL CONSERVATION COMMISSION

C. C. CNOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS, AND BLOWOUTS

NAME OF OPERATOR	Navajo	o Pipeline	$\checkmark$			ADDRESS Artesia, New Mexico							
REPORT	FIRE	BREAK		L	LEAK	BLOWOU	Γ	OTHER*					
OF TYPE OF	DRLG	PROD	TANK	- IP	<u>{</u>	GASO	011	IOTHER*	· · · · · · · · · · · · · · · · · · ·				
FACILITY	WELL	WELL	BTTY				RFY			•			
NAME OF	Manath	Antonio											
			RZOUAF	?-		· · ·	SEC.	TWP.	IRGE .	ICOUNTY			
TER SECTIO	N OR FOO	TAGE DESCR	IPTION		Sery	Sel4	4	18	S 28E	Eddy			
DISTANCE A	ND DIREC	TION FROM	NEAR-	milo	east of	America	n Detr	ofina off	ice				
		<u>ENT_EANDMA</u>	KN I	mile		DATE ANI	D HOUR			4			
OF OCCUREN	CE					OF DISCOVERY 8/9/79 7:00 A.M.							
		YES NO			-	IF YES,							
BY		<u>L</u>	$\sim n$	UINLD		DATE							
WHOM				<u></u>		AND HOU			•				
	TYPE OF							barrels		έ <b>-</b>			
			INC	)	IQUANTIT				COVERED				
A WATERCOU	RSE?			x	<u> </u>	·		\		••••••••••••••••••••••••••••••••••••••			
IF YES, DE	SCRIBE F	ULLY**						۰°					
		,						(1, 2)		<b>-</b>			
						• • • •	• •						
DESCRIBE C	AUSE OF	PROBLEM AN			ACTION 1	AVEN**							
1					ACTION 1								
2" hose	broke,	new hose p	ut on										
DESCRIBE A	REA AFFE	CTED AND C	LEANU	ACTI	ON TAKEN	**							
Cracat	and cand							·.					
			vered	up.									
-	*			r -				*		•			
REPORT       FIRE       BREAK       SPILL       LEAK       BLOWOUT       OTHER*         OF       TYPE OF       DRLG       PROD       TANK       PIPE       GASO       OIL       OTHER*         FACILITY       WELL       BTTY       LINE       XX       PLNT       RFY       OTHER*         NAME OF       FACILITY       Well       BTTY       LINE       XX       PLNT       RFY         LOCATION OF FACILITY       QUARTER/QUAR-       TER SECTION OR FOOTAGE DESCRIPTION)       Serve Serve       SEC.       4       TWP.       18S       RGE.       COUNTY         Eddy       DISTANCE AND DIRECTION FROM NEAR-       Eddy       SEC.       4       TWP.       18S       RGE.       28E       COUNTY         EST TOWN OR PROMINENT LANDMARK       1 mile east of American Petrofina office       DATE AND HOUR       DATE AND HOUR       0F DISCOVERY       8/9/79       7:00 A.M.         OF DISCOVERY       OF DISCOVERY       8/9/79       7:00 A.M.       OTHER*       DATE         WHOM       AND       ONT RE-       IF YES,       NO       QUIRED       TO WHOM       AND HOUR         BY       WHOM       AND HOUR       OF LOSS       100 barrels       COVERED													
REPORT       FIRE       BREAK       SPILL       LEAK       BLOWOUT       OTHER*         OF       TYPE OF       DALG       PROD       TANK       PIPE       GASO       OIL       IOTHER*         FACILITY       WELL       WELL       HETY       LINE       XX       PLNT       RFY       IOTHER*         FACILITY       North Artesia       COUNTY       COUNTY       COUNTY       Eddy         DISTANCE AND DIRECTION FROM NEAR       1 mile east of American Petrofina office       DATE AND HOUR       RGE.       Eddy         DISTANCE AND DIRECTION FROM NEAR       1 mile east of American Petrofina office       DATE AND HOUR       RGE.       Eddy         DISTANCE AND DIRCTION OR FOOMINENT LANDMARK       1 mile east of American Petrofina office       DATE AND HOUR       RGE.       Eddy         NOTICE GIVEN?       YES       NO       WOT RE-       IF YES.       NO.       AM.         WAST IMEDIATE       YES       NO       QUIRED       TO WHOM       WOM       TO A.M.         WAST MARCHATE       OF       OF LOST       Crude       OF LOST       COVERED       OF LOST       COVERED         DID ANY FLUIDS       REACH       YES       NO       X       QUANTITY       AND REOKERE <t< td=""></t<>													
CONDITIONS		XX	LOAM				j		XX	onon			
DESCRIBE G	ENERAL C	CONDITIONS	PREVAI	ILING	(TEMPERA	TURE, PRI	ECIPITA	ATION, ETC	.)**				
80° and	l drv							•					
	/					·			•				
T HEDERY C	COTTEN T				COVE IS		COMPLE						
			FURMA	I I UN A	BUVE 15	I RUE AND	CUMPLI	LIE IU IHE	RE21 OF	MY			
STONED 2	m. A.	lan	Jav	Alcom	1 <del></del>	- - Gano	er		0475	8/9/79			
	the cert								DATE	5, 5,			
JELUIEL		ALIAG		LITOWA		D IF NEUE:	JOAKI						

5F.

#### DISCHARGE REPORT

3-106.C.1

Quantity = 720,000 gallons per day average

Quality = See Attachment 1, which is monthly analyses for the past 2 years. More monthly data is available upon request if needed.

### Flow Characteristics

Flow is generally steady state, but there are daily fluctuations and seasonal fluctuations which can amount up to an estimated  $\pm$  50% of the average flow. The daily fluctuations are usually brought on by maintenance, clean up, and other increased activity during normal business hours (7:00 AM to 4:00 PM). The season fluctuations are the result of increased cooling loads in the summer and increased steam heating needs in the winter. Since a large part of the waste water generated in the refinery comes from cooling tower blowdown, changes in cooling needs have a significant impact on wastewater volumes. Also, to a lesser extent, blowdown from boilers causes fluctuations in wastewater volumes depending on the amount of steam required.

The other significant factor in wastewater volume is the amount of crude being refined. Refining requires between 20 to 40 gallons of water per barrel (42 gallons) of crude processed, depending on the season and products being made from the crude.

3-106.C.2

See attachment 2, U.S. Geological Survey 7¹/₂ Minute Topographical Maps, Navajo Refining Company Blueprints 55-56-24B and 55-6-24B.

#### 3-106.C.3

Attachment 3 covers the depth to the ground water and includes data from July 1977 through January 1979 on a monthly basis. Attachment 4 consists of analytical data on samples taken from monitor wells surrounding the ponds. This will give the TDS concentration.

3-106.C.4

Elevations of the Pecos River, the evaporation ponds, and the dikes surrounding the ponds are given on the attached drawing no. 55-56-24B. As can be seen on this drawing, the river would have to rise approximately 10 feet before there would be danger of the river breeching the dikes surrounding the ponds.

## DISCHARGE REPORT

Page 2

## 3-106.C.5

The locations of the monitor wells are given on drawing no. 55-56-24B, and the location of a "V" notch weir from which the flow could be calculated is shown on drawing no. 55-6-24B.

# 3-106.C.6

No specific information is available on the rock strata below the evaporation ponds, but included as Attachment 5 is a drawing of cross sections. This drawing gives an idea of the types of formations in the area of the evaporation ponds.

7 - 4 Detertanuled 10-24-50 Date 10- 7-80 0.4 9/0: 1010. 510. E 10.0 201 603 210. 810. 200. SI .03 roi 000. 1000. S, 000' 000. 210. 64. 000.000.82%. 000. Ś 11. 210. 0000. 200. 910. 240. 800. 422. .000 030 . 007 . 000 210: 10. 210. 810. 050. 20, i. 50. Å 710: 200- 201 2/01 022. -110. 210. 210. N N 25 050. 1020. 200% 850' 80. 820. .030 Attachment 1 Ulaste Water (ppm) 74. 1023 1000 800: peo. :03 ,34 0000. .036 60. 201 200: r 045 1001 224 Cho' · 44 20. J'a .18 Bank >60 60 24 560 4/183 370 280 7100 48 260 0 0 0 0 0 0 C 16 λ ľ 21/2 9.6 0 0 0 0 0 0 0 227 .65 50 0.94 3470 2200 .59 7.537 3310 1500 .61 in the 85 30 27 3 Elfennal 191 260 18.124 3490 2180 8.380 1230 950 870 180 160 7.554 1280 580 210 1 Mudraul 2.825 1030 0/2 16.9.8 10:45 430 6.853 1010 218 2.298 121.8 ļ Hd. Orditor . 01 0 0 0. 1200 0 0 0 0 0 0 1034 153 200 184 180 212 152 175 214 m alt 0 104 694 θ 0 30 0 0 LU. 0 0 0 0 P.S. Liderator Rent + when the pille And ital Educent here Bride Level Bur chetu arel its alithe 1. R. Srap icad Prace und foul ast fond . R. Lup of w hat it Budge

ī! ... Date Langled 9-25-80 Date 10-2-80 000. 3.50 5.40 3.60 1.00 .09 and a 2.6 010. 80. 90. 60, Seburg-0.20 070 éé, z .13 or. so. 60. .14 10 01: 10 14 000. :23 20. 100. . . . EÓ r0' 60. 100. 101 with 20 200 Z i. K 20. 10. 40. 09.2 ,000 .03 3.24 0.24 .000 210. 000, 10. 10: 10: Å po: 100 700. 20. 021 12.0 12.0 20, r z 19.2 D120 >500 0.84 2.80 2.4 20. ALT2N 5. 1.00 3.36 2.00 3,00 0.35 0.50 2.18 2.18 0.82 1.40 2.80 ż 0.75 0.85 0.23 0.56 0.74 80.0 0000 0.67 0.77 Ler 2.73 0.78 1.10 Warte White Report 0.32 0.67 macht 50 Mappener L 30 Ъ 0 0 Ò 0 0 0 0 3.2 N " 0 0 0 0 0 0 0 0 00H 01E 56. .65 840 640 25.4 7.530 860 730 20.0 1.32 18.7 Ľ 1.8 PINH <u>9</u>.6 1.12 17 1 Etternale 1450 8.387 19.20 11.20 650 8.093 1660 1620 0fo/ 0221 792. 8.135 1930 1120 9.341 1080 400 38 Wedness H 300 2.571 440 140 3.040 130 804 7.480 2860 8.161 2.116 μ. Dertin . 0 0 0 0 0 0 0 0 0 170 200 196 alk. 232 74 186 89 010 176 • 0 0 P alp 30 0 : 01 0 0 0 0 0 0 0 0 aksue Rende FM 2. P.S. Licerator Picen Buen How Istal Effuent Midale Pond White Wield lity lepto where r Pecar Inner East Pond list Bul M. K. Sug at Budge d. N. Fress

from

110m	•					•			
JAI	MES I	. BRC		. <del></del>	8-1-	3,	198	2.	
To BC	C.L. 1	ne bro	frent			Luna	led 8	-11-80	2
•	1	71.	Relie	ret	* M. M. Minis	Chanks	Ę		1h
feraistruer above. Pouds	0	96	0	1.9.22			0.31	0	0
Bridge.	0	98	0	7. 931	,2110	1070	0.20	0	0
Water Well	. 0	16d	0	7.611	3730	150	0.10	· 0	0
West fourd.	.32	234	D				4:0	•	10
· Middle Poud	0	220	0	7.343	1370	1200	5.4	0	
Eastpul	0	174	0				3.3		0,5
Total Effluent	0.	30	0				0. <u>£</u> 2	•	
a P.J. Separator	0	420	0	7.585	400	120	25,0	226	15
n.d. Iraps	0	130	0				0.24-	1	
S.D. Traps.	0	200	0	8.070	350	200	0.49	. 0	0
lity Water	0	188	0	6.975	640	.28	0.15	0	0

[·._

	TRICK				Aug.	<u>st 13</u>	_, 19 <u></u>		8/11/80
<u>TO</u> _ <u>B</u>	<u>CG</u>	<u>- D</u>	GGr		· · · ·	JATErs	<i>3 Amp</i>		<i>afnfc</i> =
PECOS RIVER ABOVE FONDS	Fe 0.011	Cu ().01 D	Ni 0.028	Zn 0.009	РЬ <i>0-03</i> Р	Cr	Cd D.g.2	Ba- 0,375	• •
PECOS RIVER AT BRIDGE		0.003			0.971	0,000	0.012	0.437	7
WEST POND	0.072	0.000	0.021	0.913	0.000	D.Q.0iD	0.00S	0.000	,
MIDDLE POND	0.078	0.007	0.035	0.018	9.000	D.COO	0.012	0.187	
EAST FOND		0. DI5					0.023	0.187	<b>,</b>
TOTAL EFFLUENT						0.868			
A.P.I. SEPARATCR	0.111	0.000	0.000			0.769			:
NORTH DIVISION TRAP	6:41	<b>D</b> .000	0.033		-	0.165			
SOUTH DIVISION TRAP	0.059					.1.066			
CITY WATER	0.022		· ·			0.000			
WATE	0.022	0.000	0.042	0.182	0.000	0.000	0.029	0.18	9

....

Patrice & Juan

from PA	TRICK	G. JUA	AREZ		27	1y 9	_, 19_2	89	·		
	. Cla	y LIER -	- li	Aste L	c)aters	E EFI	livente		50/2	8, 1	980
PECOS RIVER ABOVE PONDS	Fe 0.027	Cu	Ni 0.028	Zn 0.034	Pb	Cr	Cd 0.000	Ba			
PECOS RIVER AT BRIDGE	0.027	0.000				0.000					
WEST POND	0.090	0.000	0.035	0.043	à.200	0.000	<u>0.000</u>	0.000	÷.		-
MIDDLE POND	0.092	0.01 k	l.270	0.04k	0.000	0.000	0.008	0.000			• .
EAST POND	0,289	0.016	0.000	0.046	0.000	0.000	0.024	0.199			
TOTAL EFFLUENT	0.280	0.000	0.000	0.030	0.000	0.080	0.008	0.000			
A.P.I. SEPARATOR	0.588	0.200	0.000	0.038	0.000	0.139	0.005	0.000			
NORTH DIVISION TRAP	0.045	0.000	0.000	0.010	0.000	0.000	0.012	0.000			
SOUTH DIVISION TRAP	0.027	0.016	0.000	0.122	0.000	1.194	0.000	0.00	-		•
CITY WATER	0.651	0.064	0.000	0.477	0.000	0.000	<u>P.004</u>	0.00			
Detection Limit, ppm	0.027 Ppm	0.016 ppm	0.021 ppm	0.002 FPM		1	0.004 ppm				
Water C Samples						47		0000			
611			- •	<i></i>	-71	$\sim$		, î	,	•	•

**.** 

Copies BCG - DGGr - File

Fetrill June

		· ·	• ••	•		;	- ··		•	
			•							
1 <b>1</b>	••								•	
•	from		•		•		•	•	•	
· ·		MES I	. BRO	OWN			7-1	6	19 8	0
•	То		•			la constante de		<i>C C</i>		
	•.	P. aek	m aek	airing	pti	Harener	Change .	F	5	TA
	Pecas Bien acove Pondo	0	18	0	8.247			0.52	0	
	Bridge	0	78	0			160		0	
·	Water Well	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¦.	vail	•					
	West Poul	. 0	166	0	8.051	1150	930	16.0	0	
•	nicille Poul	0	188	0				24,5	İ	
• ••••	East Poul	0	126	0				20.8		
۔ اُ	Total Effluent	0	54	0	8.147	1090	490	15,8	0	3
4	a P.J.	0	98	0	7.003	660	60	30,0	0	1 4
<b>ب</b> نیا	I. R.C. Iroja L.D.	50	176	0	9,394	1370	1430	1.32		13
	Trap City	0	124	0	8.198	2360	920	2.75	0	2
•	Water	0	188	0	7.255	104	30	0.67	0	Ģ
	•	·			•	(	An	., 、		
	۲.							,		
			•	•						

from	•		•			٠	•		
JAN	MES L	. BR(	OWN			6-10	, ,	19 20	2.
To		•			Sai	naled	6-9-5	80	
•.	P. Ales.	H1. DOB	leidig	pH	K. W. Borner	Stor way	F	5	Renge
feros River apove Pouls	0	.98				3590		· 0	0
Recos Buin Bridge									
Water Well		106	0	8.181	4.230	1520	0.77	0	0
West Poul.			0	9.183	Ga		3115		Cot
Wild's	0	200 64	0				31.8		0.3
East Poul.	0	30	0			• ·	22.8		0
Total Effluent	0	.0	10	2.687				16.0	50
alt. Separator	0	108		6.665			•	64.0	50
N. D. Inap	0	140					1.52	•	i i T
S.D. Inap		1	0				:	•	
Inap City Water	0	168	0	7.19.8	664	30	0.90	: 0	Q

Aine Brown

_ ·	•			·	•	• .		
from PA	TRICK		AREZ		A	une 1	_, 19_2	G ·
<u>TO</u>	Metal: Cunste		And	CFFI	un uts	<b></b>	<u>June</u>	<u></u>
PECOS RIVER ABOVE PONDS	Fe	Cu	Ni	Zn	Fb	Cr	Cd	Ba
PECOS RIVER	D.118	0,041	0,116	0.019	0,346	9:000	0,041	172.9
AT BRIDGE	0,106	0.035	0.072	0,000	0.173	0.000	P:05	0.744
WEST FOND	0,230			۰				
MIDDLE	V. 632	0,000	0.048	0.013	0.000	0.164	61021	0,136
POND	0.274	0.021.	0.058	0.022	0.115	0.046	0.015	DIJL
EAST FOND			•				•	
	1,183	0.021	0.094	0.018	0.087	0.000	0.021	0.134
TOTAL EFFLUENT	0.294	Diajo	0,200	à.22]	0,000	0.842	0,005	0.054
A.P.I. SEPARATOR		•						/
	0.442	0.000	0.000	0.025	0.000	<u>a:137</u>	0.007	0.000
NORTH DIVISION TRAP	0.053	0.000	0.000	0.000		0.128	0 0010	0.000
SOUTH	10,055			1901 Q	10,007	<u>C. 12.0</u>	0.00 %	
DIVISION TRAP	1.631	0.000	0.029	0,786	0.037	2.22	0.003	6.000
CITY WATER	0.088	0.021	0.051	0.442	10.000	0.000	0.002	0.000
	· +	\\	á		1			A

Patrick 77. June -

from JAMES L. BROWN 5-12 . 19 50 To BCB. Amelod 5-12 - Kinghe 741 C eidit, рH alk all Reos Kinco 8.708 1730 1110 0.68 6 66 0 0 0 ecostic 8 68 8.716 1720 1130 0.68 0 0 0 Water Well (relind mile) not available. West Poul: 9.641 440 1050 68 84 352 12 0 Midalle loud 94 7.308 890 1250 38 0 0 0 0.5 East Poul 58 0 7.3.26 1230 1730 27 0 0 0.3 Total Effluent 12 10.127 380 330 27 16.0 2 76 0 apg Separator 50 0 9.474 500 50 17 to 0.5 14 n.D. Jun 184 0 9.381 530 130 1.78 19.2 3 36 S.D. Inop 534 662 0 12.357 40 110 440 0 0.5 ater 0 170 0 7.168 620 24 1.25 0 0 Further semples of Pacar River water caught alongside of the game refuge matched the samples from above pands and hridge. This is related to letter David Briffin received from the environmental people.

•	TO B		GE-)	- 1	Metals_			_, 19 <u><i>80</i></u> 1 <u>015 + EFF</u>	WENTS FOR
• •	PECOS RIVER ABOVE PONDS	Fe	Cu	Ni	- Zn	Pb	Cr	Cd	MAY, 1980
•	PECOS RIVER AT BRIDGE	<u>0.048</u> 0.053	<u>0.000</u> 0.000	<u>0.055</u>	0.000	0.000	0.000 0.000	0.006	
	WEST FOND	0.154	0.000	0.000	0.018	0.000	0.102	0.018	
	MIDDLE POND	9.150	0.002	0.018	0.028	Decor	0121	0.016	
	EAST FOND	0.505	0.000	.0.036	0.044	0.000	0.000	0.032	
	TOTAL EFFLUENT	0.000	0.000	0.040	0 015	0. <i>00</i> 0	0.000	0.024	
• • •	A.P.I. SEPARATOR	0.040	0.000	0.000	0.020	0-200	0.000	0.000	
	NORTH DIVISION TRAF	0.000	0.000.	0.036	0.000	0.000	0-091	0.011	
• '	SOUTH DIVISION TRAP	0,335	0.002	0.000	0.016	0.000	0.045	0.017	•
	CITY WATER	0.000	0.002	0.000	0.402	0.000	0.045	0.005	
•	Sampled 1	MAY 12	,1980	10	days	A Fre	те <i>S</i> ,	hutdown	 /.

Ì

from april 2, 1980 JAMES L. BROWN Dates Samples: Sampled il-1-80 NI Perden pH Fine Para F 5 the To A Gindin 1 Landanaa Ul all ecesticut have 118 1 8.125 2940 3530 0.3 0 0 0 0 Pacas River Bridge 0 122 8.125 2880 2820 0.0 0 0 0 Watu mat puailable Well Weet Poul . 1.350 200 1240 83 0 12+ 144 0 0 Wildle 6581 810 1200 81 0 Keul 102 0 10 East Poul 86 2020 950 1410 29 0 0 0 0 Fotel Elunt 108 514 0 9.030 400 500 80 160 12+ parator 352 0 8328 680 430 83 128 12+ 0 N.D. Inst 23 0 8.318 510 300 1 54 10 0 S. A 178 0 7.782 420 510 0.8 0 0 Incl 0 alater 0 180 0 7.044 630 28 0.4 0 0

Fin B.

from

PATRICK G. JUAREZ

in _

April 2, 19 30

OT		••	Wate	( Sonie	les '	0	Amplad 4-1-	PD
FECOS RIVER ABOVE PONDS	Fe	Cu	NI	Zn C:19	<u>Fb</u> 0.25	Cr	Cd ) 0.03	
PECOS RIVER AT BRIDGE	0.08 0.12	0.04 0.05	0.12	0.05	0.40	0.00 0.2-0	0.03	
WEST POND	0:23	0.02	. 0.04	0.04	0.19	0.15	0.007	
MIDDLE POND	0.23	<u>جه، 0</u>	0.04	0.05	0.25	0.13	0 00 5	·
EAST FOND	0.23	0.04	0.07	0119	afi.0	0.05	0.001	
TOTAL EFFLUENT	0.06	0.02	0.05	9.04	0.56	0 0%	0.01	
A.F.I. SEPARATOR	0.01	0.003	0.04	8.04	0.04	 0.14	0.007	·
NORTH DIVISION TRAP	0.07	0.02	006	0.04	0.31	0.33	0.001	
SOUTH DIVISION TRAP	0.03	0.005	0.005	004	0.30	D.18	0.000	•
CITY WATER	0.03	D.01	0.01	0,53	0.00	0.01	0.000	
Water w	all —	not	availa	the			Patisti ~ J	1
• .				·			action of	

from . 3-12 1980 JAMES L. BROWN To Bels mpled 3-11-80 . 711pff ack. ack feese Bure 8034 3520 2600 0.74 ails 13810 0 0 0 fecos fare at Budge 140 7.993 3550 2590 0.69 0 0 0 0 Water Well West Paul. 7.485 1230 1170 46 1001 0 0 12+ 0 Wille Found 104 0 0 7.044 1100 1150 39 0 .7 East Poul 80 1.135 1150 1210 33 0 0 0 ! 0 Total Effluent 1760 3230 0 11.331 180 350 300 806 0 UP G Parator 102 482 0 9.064 640 230 10 138 12+ Inap 44 236 0 8.867 1650 1690 1.10 22 6 Inap. 154 0 8,121 1970 900 2.18 0 0 0 ater 0 176 0 1.173 686 26 0.69 0

fine Brown

from P	ATRI	CK G.	JUARE	7.		ನ-	12_,	 10 8	20
то _	_	<b>.</b> .			•	-	3-/		
 Elements .PPm	Cu	Fe	N;	РЬ́	Zn	Cd	C-		ţ_
Peros Riser Above Ponds			0.045	C.200	0-00	0.030	0.037		1
 Peros River At Bridge	0.010	0.200	0.061	0.200	0.000	0.022	0.037		
N.D TEAPS	0.000	0.092.	0.045	0.066	0.003	0.011	0.000		
 West Pond	0.000	0.308	0.045	0.04	0.021	0.019	0.037		 
 Middle Powd	0,000	0.444	0.045	0.066	0.026	C 034	0.074		
 FAST	<i>a</i> o	0.231			0.036				
 TotAL EFF/vent	0.010	0,092	0.061	0.066	D.09/	0.007	0.037		
 API Separator			0.028						
S D TRAPS	0.000	0.092	0.030	0.066	D.049	D.015	0.000		·
City When	0.010	0.123	0.061	0.064	0.473	0.000	0.000		4

Fatur 1. Juares

from JAMES L. BROWN 2-12 <u>, 19 30</u> To BCB,ampled 2-11acient 711 To a start PH ack ack Veces River aprice 166 0 8.157 2310 1830 1.80 milo .0 0 0 ecos River 166 8.162 2280 1850 1.70 0 Iridge 0 0 0 Water Well not available Windmill) West Poul . 7.575 820 1040 82 0 0 12 50 0 Wildle Paul 90 6.785 710 960 92 0 0 0 20 East foul 144 7.053 770 1090 74 0 0. 2 0 Total Effluent 5.921 3200 360 87 42 0 1.6 0 0 104 80 3.417 11200 380 150 3.2 2 eguator 0 0 n. Dio. IRAP 0 8.404 550 120 4.20 32 6 180 0 1. Dia 178 Inp 0 7.728 930 260 3.85 0 0 Water 0 7.023 668 32 2.45 0 174 0 0

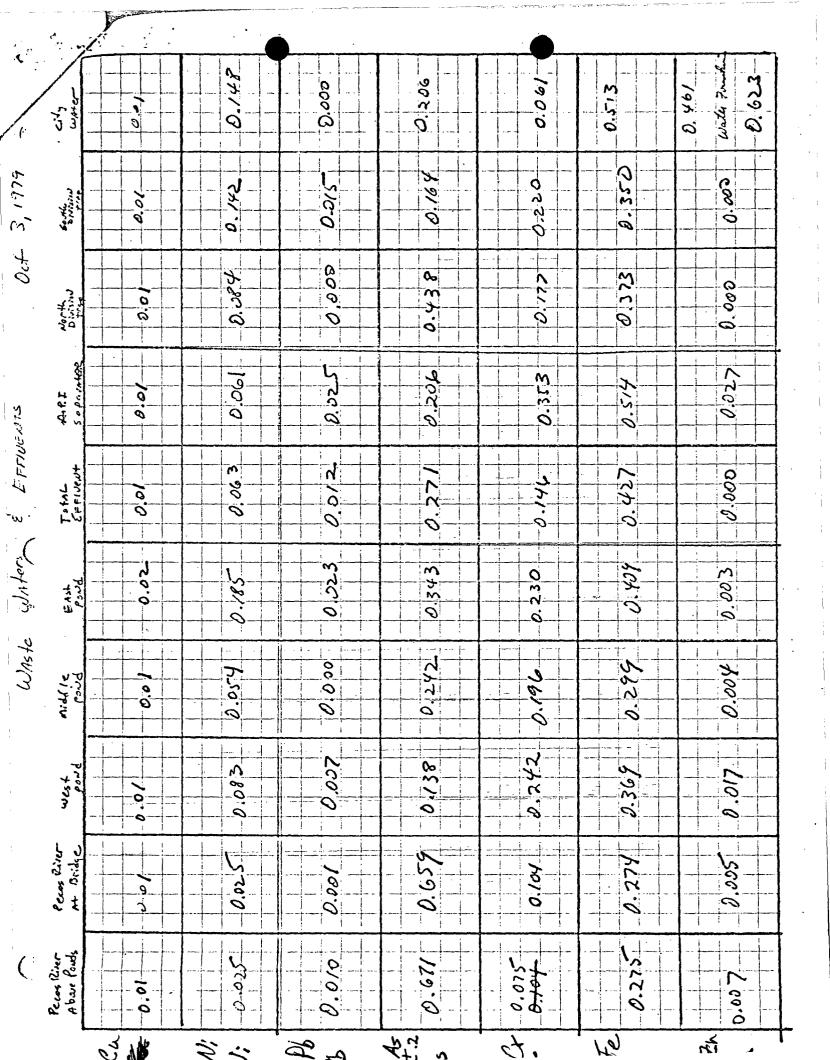
from PATRICK G. JUAREZ, 19											
TO BO	<u>A</u>	D.G.G.r	· · ·	Sample 2-11- 00							
וודקק	Fe	Cu	Ni	C.d.	Zn	Pb	Cr-				
Pecos River about founds	0.07	0.06	0.00	0.02	0.01	0.22	0.00				
Pecos River At Bridge	0.03	0.07	0.25	0.03	0.04	0.11	0.00				
Water Well (wrudmill)		No	i F F	UAILA	BIR						
west Paud	9.5 i	0.06	0.33	0.01	0.36	0.22	0.14	•			
middle Powd	0.44	0.06	0.25	0.12	0.05	0.00	0.07				
EAST FONd	0.12	0.06	0.00	0.02	0.03	0.22	0.07				
Total EFFluent	0.71	0.07	0.17	0.02	0.0]	0.00	0.55				
API Separator	1.20	0.06	0.00	0.01	0.15	0.00	0.51				
N.D. TLAD	0.24	0.07	0.17	0.0]	0.0]	0.1]	0.07				
S. Div. TRA	0.17	0.07	0.08	0.01	0.01	0.11	0.17				
C. Fanilies WAter	0.22	0.08	0.25	0.00	0.42	0.11	0.17	-			

from . 19 80 JAMES L. BROWN 9 To BCB- DBSN 1angled 1-7-30 511 5pH rel alto Keces River above pondo 8.276 2300 1840 1.42 0 162 0 0 0 Pacos Rever at bridge 8.230,2330 1860 1.46 162 0:0 Water not available Well West Poul 7.388 6.80 810 50.5 0 25+ 0 54 0 middle Poul 7.483 690 950 35.0 0 196 0 25 Egst Paul 222 7.442 840 1160 44.0 0 0:4 0 Total Effluent 8.473 1940 1780 34.8 205 20 10 238 0 a'lg eparator 16 0 8.671 680 80 40.0 230 24 312 n.D. Inp 0 8.185 850 1400 1.98 230 1 192 0 1.0. nap 7.264 10400 13200 1.90 170 0 158 0 0 Water 184 17.178. 716. 28 1.95.0 0

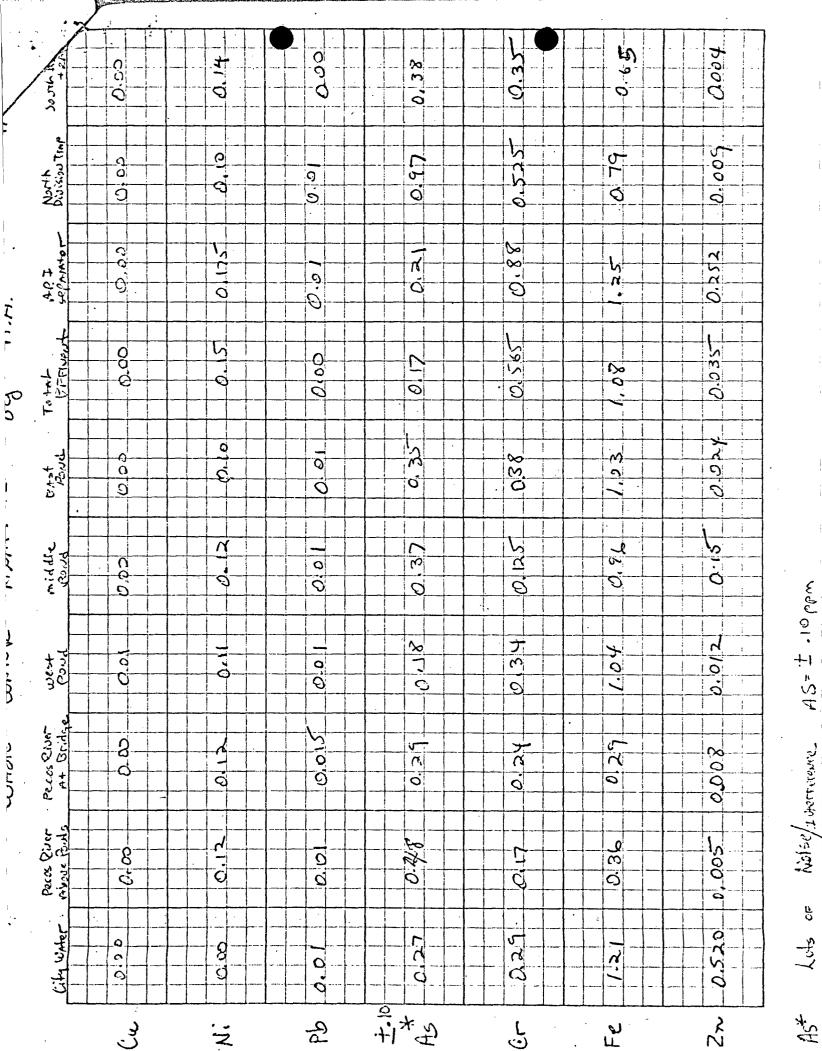
Yen Brown

from JAMES L. BROWN , 19 80 · /-··· To seculto in pom - by AA From Copper nichel zine Fead Chroning Prenie Pecar Bues ahave pouls. .065 .028 .076 .000 .071 .000 Pices River at bridge 1.049 .047 .076 .000 .071 .062 Natu Well Wed Poul . .098 .000 .030 .0079 .071 .000 Wildle 1.065 .009 .030 .000 .071 .0001 louk East Paul .147.009.030.000.071.000 Sold Efflicit .065 .000 ,106 .000 ,142 .000 alI Sepanto .033 .000 .015 .000 .000 .000 .... nil. July .033 .000 .030 .000 .000 .000 -1 ----1. N. .180 .028 .287 .1597 .356 .000 .000 .009 .000 .3968 .071 .000 -Water

from						•		. ·				
JA	MES I	. BRC	OWN				, 19 <i>25</i>					
To				Sampled 12-5-79								
	Leek.	717 Rek	Carling	PH	Henlenan	hericu	F	5	Hund			
Reces Rever above Pouls	. 0	166	0.	8.193	2530	1730	1.4	0	0			
Pecas River at Bridge	0	168	0		20/70		1.2		0			
Watu Well	. 							·				
West Paul .	28	266	0	8.721	190	850	57.3	6.4	3			
mildle Poul	0	318	0	7.766	860	1130	50.0	0	10			
East	0	250	0				44.3	0	0,5			
Total Expluent	0	14	0				83.2	•	30			
a fg Segurator	0	Ó	56	3,785								
N.D. Inap	20	238		8.804		,		9.6				
S Ny ag	0	188	0	7.554	1000	2610	2.8	0	0			
City anti-	0	184	0		736	_	1.9	0	0			


.

from <u>_, 19 22</u> JAMES L. BROWN 11-6 To BOG NGU ale 11-2-29 alicia 1 Chence Chia P SIT. 5 p₩ alk all Recorpcion above Pendo 8.152 1020 4/30 4.5 0'0 Ø 114 Ĉ Elcos Awar 0 8.153 1010 440 2.5 Brille 11.2- $\mathcal{O}$ 0.0 Water not available Well Wift Poul. 8.178 690 1020 28 106 12+ 0 200 0 mildle Parel 7.557 730 1020 28 0 230 0 0 East Hul. 7.516 1100 1350 275 162 0  $\mathcal{C}$ 0 0.3 Jotel Effluent 570 0 8.101 820 2120 30 258 0 0 0 6.868 440 650 52 212 12+ pa:atou 174 0 M.N. 190 0 7.720 9.20 2070 <.5 128 4 Indiges. 0 not applie all JALAS 0 178 0 7.146 710 32 0.5 0 0


an an an an an an an an an an an an an a	•	•	1					· · · ·	··· ·
•		•	•	1 1 1 1	· •	•	-	•	
from	•	•			•	 			о. Г
JAI To <u>BC</u>	MES I <u>B A</u>	G.	•	· · ·	le	10- 4 Ced 1	, 10-3-1	19 <i>29</i> 9	
	all	511.	aidity	<i>pH</i>	4. Andrews	Ciller du,	Æ	5	Paris
Pleces River	. 0	122	0	8.144	3020	2530	1.60	0	0
Bridge Watu	0	122	0	8.1.25	3030 <del>351</del> 0	2580	1.37	0	0
Well West	· 	+ ac	inila	hle -					
foul . Mille	0	180	0	8.185		900	39,3	0	12+
Cast Jour	0	134 110	0	7.385		<u></u>	33.0	0	0.4
Jatal Effluent	34	314	·				17.3	•	0
a pg Separator	0.	292	0				26.8		
M. D. Trap	0	196	0	7.994	840	430	1.97	51,2	5
AN Inep CA	12	160	0			· · ·	2.18		3
Water	0	180	0	7.042	690	24	1.58	0	0

ę.

**).** 



from <u>9-13</u>, 19<u>29</u> JAMES L. BROWN To 66.3-10% empled 9-11-79 Efferter " Il Cher Ching P. 711. 5 pH ack ack المستسر Eles River 881 8.369 1800 1560 .82 ouls 0 0:10 0 ecos hiver 88 0 8.292 1780 1570 .77 Bridge. 0 0 0 Water available 15na Well West ond 8.344 780 760 32.2 41.6 12+ 0 220 0 middle ond 0 7.074 990 1110 30.1 0 0 0 110 East Pond 6.873 1300 1560 29.0 0 0 56 0 0 Total Effluent 6.760 550 800 48.5 32.0 1.2+ 0 0 62 Ŋſ Paraton 0 80 3,573 390 290 74,0 0 12+ 0 Certh Riv SALP 0 9.942 1000 1990 2.40 672 0 206 50 suth Div Jap 174 0 7.738 1550 1400 27.0 0 0 0 0× 6.578 684 34 1.48 0 0 178 Water 0 0



AS= 1 .10 ppm Notse/1 worrerene.

E D

from 1-18, 19.29 JAMES L. BROWN Sampled 1-16-79 To BCB- PH- DQ then le Hendine , 5all alk ptl Reces R. Pondo. no sample - the muchty to get to it . Veces R 0 186 0 8.2.50 1870 1230 3.7 Bridge 0 0 Water Well no sample - hat running West Paul in sangele - tes munday. Middle Pour no sample - to o milefly Each no sample too muddy Total Effluent 0 185 0 8.093 530 270 42 54.4 5 7.057 560 Parkton 10 161 240 115 0 0  $\mathcal{O}$ M. D. Inop. 132 0 8.616 910 710 5.5 5.8 10 :f Insp 130 6,826 37500 36300 3.2 0 0 0 0 7.136 708 36 40 Water 180 0 0 0 0

from . 19 22 2-13 JAMES L. BROWN To Water Samples inglid 2-1.2-7 Flue with Juice . 1 di Chies Gain, pH all dek ELOY Frein Pour 8.18.2 2110 1490 190 0 32 0 0 7.830 2050 1.560 1.9 0 160 0 milse 0 0 Water Well not available puinip N.G. Well 8.672 840 1000 48.0 9.6 Poul 180 0 12+ 30 Midaili Pond 7.492 900 1080 435 170 0 0 12+ 0 Earl Poul 0 150 0 7.170 950 1070 34.5 0 ¢. Jatal Splinent 90 6.956 1650 1170 14.8 35.2 6 0 0 parte 1235 220 440 380 1366 3130 5990 0 0 71. Inapa 8.478 5050 8.150 2.7 351 240 83.2 0 0 7.8.20 940 760 190 3.1 0 0 0 0 7.105 712 28 186 0 3.1 0 0 0 Water

from . JAMES L. BROWN <u>3-15</u>, 19<u>29</u> To BC.B. D.B. 3-12-19 enycled ile . Reilizy 74. Findness Le, pĥ Rek. all. C lices Kin 8.336 2980 2920 0.34 mi 120 0 0 0 0 Budge 0 : 126 8.234 2960 2880 0.74 0 0 0 Water Well not adailable West Fond 28.8 8.837 860 1260 43.0 0 144 0 12+ mille. Poul 118 7.325 890 1210 330 0 0 0 12 Easl Ford 0 108 6943 910 1180 25.5 0 0 0.2 Jatal Effliout 46 660 0 9.047 500 700 52.0 221 0 emotor 18 6.262 310 380 92.0 60.8 12+ 0 0 n.d. JACKER. 9,262 610 3330 0.67 1504 152 2864 0 0 112,77 172 1.08 0 0 7.141.1000 310 0 0 ar, Dille Water 7.054 706 30 0.34 0 178 0 0 0

from -4-9 , 19*.71* JAMES L. BROWN To BCG-1 Empled 4-5-79 -Chan hility Thenef. 74, pH 5= Rek. Rek. Hees K 96 8.544 3550 41.90 0.32 0 0 0 0 CORR 0 104 0 8.427 3600 4580 0.28 ril e 0 0 Water Well not available West 40 172 0 9.103 660 1070 18.2 12.8 12+ foul Middle Poul 7.308 970 1410 28.4 156 10 0 0 0 East 17.049 1190 1430 18.0 Poul 154 0 0 0.2 0 Johl Effluent 20 4.806 600 570 31.0 0 0 0 12+ 2. P.J. 12+ Darator 650 3.00/ 230 230 176 0 0 0 72 364 0 9.655 920 1830 3.0 99.2 Inap . AV. 7.712 390 400 1.0 Incl. 188 0 0 0 0 7.107 702 40 0.68 0 Water 0 186 0 0

from , 19 25 May JAMES L. BROWN To BEL-D. G. 1:pla, 8 = 5-14 1H ach ach Company and 92 2.95 bed? 0 7.632 3620 4460 0  $\mathcal{O}$  $\zeta$ Eco par 96 0 7.453 3570 4300 2.50  $\mathcal{O}$ 0. nedere.  $\bigcirc$ Water Well mit addiedle Wight Poul 8.114 570 920 24.9 Ð 146 0 12+ Med Cle Poul 208 7.104 890 1430 46-5 0 0 2 0 Eggé ford. 14.2 7.04 1350 1940 36.1 0 D  $\mathcal{O}$ 0.3 Total Eplurit ! 0 204.0 8.195 750 710 65.8 6.4 30+ alt Seniator 6270 500 360 640 12.8 30+ 0 64 0 n.D JAG21. 17.538 850 130 3.95 112 0 0 0 0 L. 10. Incer. 170 0 7.550 8100 1610 4.75 0 0 0 7.010 690 32 2.67 0 180 0 0 Water 0

×.,

irom		•									
JAMES L. BROWN, 197											
To BC	G.				Sampled 6-13-79						
	P	M. Rely.	acility	PH	Aren Brith	Chandes	F-	. 5 ⁼	Rence		
Peger Finer Mands	0	94	0	8.153		120	1.27	0	0		
Reception At Bridge	0	92	Ö	7.795	940		1.25		0		
Wind Mill	2	cat,	revai	lable							
West	0	120	0	7.077	900	950	45.5	0	12+		
Middle	0	148	0	7.240	930	1250	33,8	0	3		
East	0	126	0	7.350	1280	1830	24.3	0	0		
Total Efflicat	0	16	0			1390			10		
· afg Seguentor	0	228	0		470		37.0		0		
n.D. Jny	34	208	0			1800	3,1	64.0	0		
S.D. Inep	0.	152	0		· .	ci 470	3.3	0	0		
Citater	0	180	. 0	i	688		1.7	0	0		

,≓ë€

from

1

15

		4				•		•							•
56															
75												· .			Ĵ
//- led_															rozor
Date 7- Date Samp											· 				10
, Da Da		G	0000.	,0000		80.	.05	000.	000.	200'	000.	<i>, o4</i>			
		A.	000.	000.		1000'	,000	1000.	2000.	,0006	000'	000.	·		•
	in ppm	1.2	260.	160.		. 115	141.	016.	Stil.	, 53J	1040.	.974			
	Results in	Tri	00,	00'		.00	00'	00	00'	٤/،	00.	.46			
· · ·	Re	Cu	20.	10.		.06		.05	.03	14	20.	0/'	-		
WATER TESTS		Theirap	0	0		12+	ý	0	0	0	9	12+	· 0		•. •
		1	.35.	15,		37	39	Jet	2.4	6.6	.96	2.9	.88		
		5.	. 0	Ó.		1/2 2/1	0	0	128	201	8.61	0	0		
	•	Mondo.	sijo	860		\$10	1430	3000	460	Opt	180		38		
		12 Chan	1450	1530	4	1.748 2000	7.660 2000	7. 384 1560 2000	140	190	560	23100	016		
· .		PH.	5.233	02.2.8	Cado	7.748	7. 660	7. 284	9.393	8,291	5:025	985.9	7.079		
•		act of the second	0	0		0	0	0	0	0	0	Ò	0	•	• .
		m. Alk	9C	86	Not	196	84	06	366	496	212	78	188		
		Deh.	0	. 0	. K	0	0	0	96	0	21	0	0		
		· ·	ecos Itain	eces trun	d) atu di) ell	Were -	majde	Eart Jour	Jatai Afficant	O. P. S. Liparator	o. blie. Tap.	Due.	arts Water	•	
			lecos khau	eces .	SA	3.1	a lid	4. N 45	1.0 gr	0.0		195	24		

		-								
		•		• .						
	•••••	,		_		•				•
	from									. •
1		MES L	RD	N			8-9		1977	;
				2	•	•			19	-
	To /3		DE	5.	····-	·	·			t.a
		all	74 alk	acity	المرم .	A didne,	Clark	Ĩ	S.	Anne
				/						·
	F. Jun alague Poudo	0	76	0	8.201	1490	15.20	'0,§6	0	0
6	P. Prim					10-10-				·· ·
÷.	Bridge	0	84		8.206	1700	1480	0.70	<u> </u>	0
	Water				·		-		·	
	Well	!	$\vdash$	<u> </u>						
	West									
	Foul	0	150	0	8.033	830	920	37,5	0	12
	Milifle			.•						
•	Found	0	122	0	7.544	860	1060	31.5	0	0
-	East									
	Found	0	44	0	7.347	1200	1540	31.5	0	0
	Total		•							1
	. Effliciat	·0	0	210	3.065	430	560	140	12.8	12+
•	aps						·		•	
	Segurator	0	0	800	2.429	350	350	300	57.6	2
	n.D.								<b>i</b> .	: ) !
	Inop	40	306	0	8.943	570	180	1.65	13.6	0.2
	S.al.								•	
	Inap	0	164	0	8.275	1670	1910	3.1	0	5
	lity Chit	0	182	0	7.040	110	30	1.15	0	0
	. vara	1	l .	-	1 1	•	l .		:	· •

•

•

-Attachment 3

Ś

Н Н Н				2	3	4	5
S WARZ	HOLE	·	T.O.P.	RIVER	WATER	RIVER BTM	$\Delta$
Las A	:NO.	DATE	EL.	Bottom	LEVEL	TO	WATER
č				EL.		WATER LEVEL	LEVEL
· · · 1	1	JULY 15/17	3311.27	3297,85	3300 37	2.51	06
·	2			1)	DRY		- 2
3	.3	<u>k</u>	3311.28		3300.35	2.49	-,00 3
4	4	<b>1</b> ,		<u> </u>	DRY		4
. 5	5	1, li	3312,57	329935	3300.00	.65	-,05 5
6	5	JULY 15/7	7	<u> </u>	Dex 1	<b>-</b>	6
P	7	1,	3309.40	3297 44	3301.18	374	-, D3 1
δ	B	3 •		h	DRY		8
9	9	t ·	330991		3299.70	2.26	07 9
10	10	1)		Υ.	DRY		
11	I. <b>?</b>	JULY 15.		3297,56	PRY		
12		· · · · · · · · · · · · · · · · · · ·	3307.68	<u> </u>	3298,35		<u> </u>
13		<u> </u>	3307.52	11 .	3298.75	.89	-,02,13
14	14	1 <u>1</u> <u> </u>			<u></u>		14
15		JULY 21 *					15
16		<u> </u>	3311.27	3297.36	LEVEL COMES TO BTM OF HOLE	3.53	+ 1.02 16
	2			11			
19	2 4	j 1 	3311.28		3301.01 DRY	3.15	+ 66
20	5	11	3312,57	3299.35		2.53	+1.38 . 20
-77	6	JULY 21/7		11	DRY		
22	. 7	.,	3309.40	3297.44		3.81	+.07 22
23				11	DRY		
24	0	11	3309.41	11	3300.12	2.68	+ . 42 "24
25	10	~~~~		11	DRY		
26	11	JULY 21/7-	7	3297.86	DRY		26
27	12	11	3307.68	11	3298.45	59	7 .10 21
3.38	13	· · · ·	3307.52	[1]	3299.23	1.37	+ + + 3 28
29	14	18		11	DRY		25
30							30
31							31
02				· · · · · · · · · · · · · · · · · · ·			32
33				· · · · · · · · · · · · · · · · · · ·			33
34							
35							3
36		* RIVER LEV	IEL WAS HIGH	ON THIS	PATE .		31
1							3
38							
39							
40							4
I	C WILSON JON	EN COMPANY G'205 GREEN	PAT, APPL.	FOR.			NAUF IN U.S.A.

	* 3 						·
יד ב ניד ב ניד	- · · · ·				· · · · · · · · · · · · · · · · · · ·	•••••	
A A A	HOLE	1977	;	RIVER		RIVER BTM	
COL	No-	DATE		BOTIOM		T.O IATER LEVIE	
1	12	AUG 25		3297-86	DRY	3.50	7.22
4	3		3311-28	Y	3301-16 DRY	3-30	48 3
5	5 6	HUG 25	3312.57	3299.35	3301.28 DRY	1.93	5
O,	7 8		3309.40	32.97 - 44	3301-38	3.94	+-46.
9	9 10		3309-91		3300.24	2-80	- 41_s
10 11		AUG R5	3307-68	3297.86	DRY	.80	+,73
12 13	_12_		3307.52		3298.66	-00 1-64	$\begin{array}{c} 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\$
14 15		¥	25 11 - 2				14
16 17 18	-2-	<u>SEP. 9</u>		3297.86	3301-75 DRY	3.89	17
18	34	· · · · · · · · · · · · · · · · · · ·	3311-28		3301.67 DRY	3.81	<u>+ 51</u> 18
≪∍ 20 21	5 6	SEP 9	3312.57	3299.85	3301.49	1.64	20
22			3309.40	3297.49		4.3	+.36 22
· 24	- 9 10		3309.41		3300 57	3-13	<u>+ 33</u> 24
26	11 12	SEP. 9		3297.86	_32,98 - 79	. 93	+. 13 27
27	13 14	· · · · · · · · · · · · · · · · · · ·	3307-52		3299.63	1.77	<u>+</u> . 13 28
30 31	RIVER	WATERELEVATIO	DN_@#3	3301-58			30
<b>_</b> 2							32
33 34		······································					34
35 36 37		·····					35
38							37
39 40							39
<u>[i</u>							

1 - 1

I.

i Schull in

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				2 <b>1</b> 2	3	4	
C.	HOLE NO.	DATE	T.O. P. EL-	RIVER BOTTOM ELEVATION	WATER	RIVER BTM TO WATER LEVLE	WATER
z 1	1	5EP-19	3311. 27	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	3301-00	3-14	- 75 1
	3		33(1.28		3301.19	3. 33	⁸ 48 ³
5	5	5EP-19	3=12.57	3299.35	3300.72	1-31	27 -
(0)	0			3297.44		4./3	17 7
8 8 9 9	89	{	3309.41		3300-33	2.89	.24 5
	10 11 12 13	5EP-19	3307.68 3307.52		32 98 - 55 32 99 - 14	1.28	
	14	RIVER WATER	ELEVATION	V@#3H	OLE	3301.24	34-,5
	•	SEP 22	3311.27	3297.86	33 00-90	> 3-09	1E - 10 :7
Nor I	2(2)		3311.28	3297.86	3301-13	3-27	7 <u></u> <u>.</u> 06 - 3
	5-		3312.57	3299.35	3300-74	1.39	
	5		3309.40	3297.44	3301-53	4-00	)O4 ⁵² O4 ⁵²
			3309.41	3297.44	3300.23	2.74	24
	- 11 ; 12;		3307.68	32.97.86	3298.48		26 27 
	13	¥ ::	3307.52				30
	**************************************	RIVER WATER	ELEVATIO	N@ #31	404E	3301.02	.2231
		· · · · · · · · · · · · · · · · · · ·					33
							35
		 					37
	, <u>.</u>		• • • • • •				39
 .   .		• • • • • • • • • • • • • • • • • • •	· · · · · ·	· · · · · · · · · · · · · · · · · · ·			

	01E 10.	DATE	11	D.P.	5	RIVER BOTTOM			TER ILE		}	ER B TO ER LE	H H	NA LEV	TER
1	1	SEP 28	3	311	27	3297.	86	3	300.	75		2.	.83	-	.1
2 .	23	· · · · · · · · · · · · · · · · · · ·	3	311.	.28		-	3	300.	95	· - · · · ·	3.	09	-	<b>.</b> 18
	4 5		3	312	- 57	3299.	35	3	300.	63		<u> </u> ].	28		- 11
6    7	6 7 0	SEP 28	3	309.	10	3297.	44	3	301.	55	· · · · · · · · · · · · · · · · · · ·	4.	11	+	. 0;
•	8 9 10	·	3	309	. 41			3	300.	17		2.	73		0
1	11 12,	SEP28	2	307.	10	3297.	86	2	298.	55		-	.49		
	13 14	······		307.					298.	1 1	· •		99	·	-
4 5		RIVER WATE	FREZ	EVA	ATION		3 H	22₫	···   ··· ·		3	300.	86		• . 16
6 7 8	1	Oct 12	3	311.	27	3297.	86		301.	.33		3.	47	<i>t</i>	. 58
9	$\frac{2}{3}$	$\sim$	3	311	28	3297.	86	3	301.	28		3.	12	+	. 3
1	5	Oct -12	3	312.	.57	32.99.	35	3	301.	17		1.	82	+	- 5
2	6 7 8		3	309.	.40	3297.	44	3	302.	.02		4.	58	+	7.
4 5	9		3	309.	. 41:	3297.	44	3	300,	. 41		2.	.97	+	- 2
6 7	10 11	Oct-12		2017	10	2000	01						12		
8	12 13			307 307.	52	3297-	86 35	3	298. 299.	.49 37			63 51		- 5
0	14	RIVER WATE	REL	EVA-	r/0N	@#3	HO	- E.							
2	·			╍┠╍┠╸┼╸┼					· } · ·				╡่ - 		
4 5															···
6 7								 				+ + + +			
8   9													-		
0															-

- . . . . . . .

- - --

-----

**.** .

I.

:

ļ

	··· ·· ·		ONCE PER P	¢	OF RIVER WATER
، بور ب		analyjo	is of #3 1	iver ev	cess quan, all others every score
	HOLE NO.	DATE		IVER OTTOM EL.	WATER KIVER BIM.
1	1 .	NOV 4	3311.27	3297.86	
¢,	3	· · · · · · · · · · · · · · · · · · ·	3311-28		$3301.03$ $3.17$ - $.25_{3}$ DRY
5	5		3312.57	3299.35	
6 ()	6 7 8	_NOY 4	3309. 90	_3297.44	DRY 3302,46 5-02 7 47 7 DRY
9 :0	9	V	3309.41		3300,47 3.03 4 .06 9
11		Nov 4		3297.86	2760 17
12	13		3307-68 3307-52		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
14) 15	. 19	<b>\</b>			
		DEC. S		3297.86	$\frac{3301.114}{3.28} = 0111$
18 19 20	3	$\begin{array}{c} DEC. 8\\ DEC. 8\\ DEC. 8 \end{array}$	3311-78	3297.26 3297.26 3297.26	3301.03 3.17 0.00 19
21	5	DEC.8 DEC.2	3312:57	3299-35	3300-76 1.4308 21 DRY 22
23 [°] 24	7	DEC.8 DEC.8	3369.40	3797-94 3297-44	3302-77 5.33 + 31 23 DRY
25 26	9	DEC-8	3309.41	3297.44	3300-58 3,14 7.11 25 DRY
278	12	DEC. ?	3307.68	3297.26	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
29 - 30 31	_14_	DEC.S DEC.S DEC.	3307-52 RIVER WATER	3297-86 3297-86 ELEVATIO	D.R.Y 30
<b>2</b> 7		JAN 11			
34 35	· · · · ·				
C.,	•	· · · · · · · · · · · · · · · · · · ·			3
<b>38</b> 39	• •				
40	• ·	)			4
· -	C MILSON JON	IES COMPANY G7505 GRFEN	PAT. APPL,	FOR	Made in U.S.A.

معید، با یہ ۲ 					
		TOP	RIVER	WATER RIVER	A
E HOLE NO	DATE	EL.	BOTTON	LEVEL BOTTOM TO WATERLEUD	
1, 1	JAN 1178	3311.27	3247.86	3301.23 3.37	
		3311.28	3297.86 3297.86	DRT 3301·26 3·40	+, 23 3
	· · · · · · · · · · · · · · · · · · ·		3297,86	DRY	· · · · · · · · · · · · · · · · · · ·
: 4		3312.57	3299.35	3500.82 1.47	+, 64 5
ε 6 Γ 7		3309.40	3299.35	DRY 3302,73 5,29	- 07 4- 7
			3297.44	DRY	
5 9		33 09 . 41	3297.44	3300.62 3.18	+.04 9
10 10			3297.44	DRY	1
12 12	-	3307.68	3297.86	3298-85 199	+.05 1
13 13		3307.52	3297.86	3294,54 1.69	+• (51
14 14	-		3297.86		
. 16	March 28/78				1
$C - \frac{1}{2}$		3311.27	3297.86	3302.33 4.53	+ 1.16
18 <u>2</u> 19 <u>3</u>		3311,28	3297.86	DRY 3302.53 4.67	+1.27
20 4				DRY	2
⁵ 21 5		3312.57	3239.35	3302.72 <b>3.</b> 37	
22 <u>6</u> 23 7		3309.40	3237.44	3300.44 3.00	- 2. 29.2
24 8	-			DRY	2
25 B 26 10		3309.41	3297.44	3300.97 3.53 PRY	
				DRY	2
721 11 12 12 12 12 12 12 12 12 12 12 12 1	·   · · · · · · · · · · · · · · · · · ·	3307.68	3297.86	3209.51 1.65	
29 <u>1</u> 3 30 <u>1</u> 4	-	3307,52	3297.86	3300.31 2.45 DRT	+•76 ²
31					3
2 1_					3
33 2 34 3					3
35 4					3
36 · 5 37 · 6	-			┥┼┼┼╸┝╺┥╼╌╟╼╴╏╸┥╌┝╵╽╺┾╍┨╴╌╴	3
38 7					
39 8					3
10 9					
-6 WILDON JO	NES COMPANY G7505 GREEN	PAT. APPL		ante atravanta dos trasfermanidas - atradas das has has a has son	MADE IN U.S A.

1.7

-...

ŵ			•	······	•	· · · · · · · · · · · · · · · · · · ·	······································
OLUM. WRIT	HOLE No.	DATE	TOP ELEVATION	RIVER BOTTOM	WATER LEVEL	RIVER BOTTOM TO	WATER
Ū 1	<b>_</b>	May 8-78	3311 27			WATER LEVEL	<u>LEVEL</u> -2.27 :
C3	23.	· · · · · · · · · · · · · · · · · · ·	3311.28	3297 · 86 3297 · 86 3297 · 86	3301.81	3.95	- 1723
4 5 6	4 5 6		3312.57	······································	3300.88	1.53	-1.84.5
	7 8	· · · · · · · · · · · · · · · · · · ·	3309,40		3302.07	4.63	+1,63,7
9 10	9 10	1 	3309.41	3297.44	PRY	2.97	-•56 9
11. 12	11 12 13		3307.68		3299.26		-, 25 ₁₂ -, 77 ₁₃
13 14 15	1 4-	i i 	3307.52	3297.86 3297.86	1 1 1		······································
16 7	• 1	JUNE-16	3311.27	3297.86		. 3,54	- 1.28 17
18 19 20			3311.28		DR4 3301.78 DR4	3.92	18 
21	5	JUNE - 16	3312.57	3299.35		1.72	<u>t.19</u> 21 22
23	7 8	·	3309.40	3297.44			32 .3
25	9 10	JUNE - 16	3309.91	3297-86	2500.11 DRY DRY	3-27	<u>+ 3</u> 25
28	12		3307.68 3307.52		32.99.24	1.38	
30 31	14	RIVER WI		UATION C	DRY 3 # 3 HO	LĒ 33 (	00-78 31
2 33							32
34 35							35
36 37 38		· · · · · · · · · · · · · · · · · · ·					37
39 40							
	C WILBON JON	EB COMPANY G7505 GREEN	<u>لمر بالمر المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ا</u>	PL. FOR.	میں بیش میں میں میں میں میں میں میں میں میں میں	i Landini di di se di di se di se di se di se di se di se di se di se di se di se di se di se di se di se di s	MADE IN USA.

-----

-----

· .... ... ... ....

· · •

•

.

те (5)	⁻			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
COLUMN	HOLE No.	DATE	TOP ELEVATION	RIVER BOTTOM ELEVATION	LEVLE	ZINER BOTTOM TO VATER LEVLE	WATER LEVLE
1 2 3 4 5	2 3 4 5	Aug 8-1978	3311-27 3311-28 3312.57	3297.86	3301.12 DRY 3301.61 DRY 3300,49	+ 3.26 + 3.75 + 1.14	28 17 4 58 5
6 () 8 9. 10	67		3309.40 3309.41	N N	3300.86 DRY 3300.22 DRY	+ 3.42 + 2.78	89 7 99 9
11 12 13 14	11 12 13 14		3307.68 3307.52	3297-86	D R 4 32 98.93 32 99-17 D R 4	+ 1.07 + 1.31	31 62 13 14
16 17 18 19 20	 2 3 4	DEC. 18-1978	3 3311.27 3311.29	3297.86	3302.31 DRY 3301.57	+ 3.71	10 16 17 18 19 19 10 10 10 10 10 10 10 10 10 10
21 22 23 24	5 474		3312.57 3309.40	1	3301.57 DRY 3304.02 DRY	+ 2.22	+1.08 21 22 +3.16 23 24
25 26 	9 10 11 12 13		3309.411 3307.68 3307.52		3302.20 DKY DKY 3300.37 3300.83	+ 4.76 + 2.51 + 2.97	+ 1, 98 25 26 27 + 1, 44 28 + 1, 66 29
30 31 2 33 34		RIVER	ATER EL	.E VATION @	DRY #3 HOLE	3301.0	30
35 36 37 38 39							35 36 37 38 39
40	(C) WILBON JON	ES COMPANY G7505 GREEN		PFL. FOR.			

the second second second second second second second second second second second second second second second se

.....

-----

-----

.....

нт Е (6). 	• • •		1	2	3	4	5
	HOLE		TOP	RIVER	WATER	RIVER	$\Delta$
10 N	NO.	DATE		BOTTOM	LEVEL	BOTTOM TO	
ŭ				ELEVATION		WATER LEVEL	LEVEL
. 1	1	JAN. 10, 1979	3311.27	3297.86		+4.62	T.17
2 3		· · · · · · · · · · · · · · · · · · ·		••••	DRY		
لا سے کا	3	· • • • • • • • • • • • • • • • • • • •	3311.28		3301.74	+3.88	+.17
4	.4		2212	11	DRY		
5	5		3312.57	32,99,35		+2.80	+.58
6	6 7		2202 110	┊╶╍╸╽╍╺╍╸╴╶┧╴╺╼┱┥╼╸╽╺╍╸╶╽	DRY 2204 20	4 1 94	
()	8		3309.40	3297.44	3304.28 DRY	+ 6.84	+.26
8	9		3309.41	╏━━╸╾╏╺╾┆╌╾┼╌╴┠╼╾╎╼╼┿╾╶┠┑━╸━━╢		+ 4.68	08
9 10	10				DRY	- T. J. O.	······································
11	11			3297.86	<u>}₽</u> }		
12			3307.68	11	3300.37	+ 2.51	.00
13	. 63	V V	3307.52	11	3300.89		
14	14			1	DRY		
15		-					
16.			· · · · · · · · · · · · · · · · · · ·				
C'18		· · ·					
- 19		·					
20 21		· ·					
21							1
23							
24							
25							
26						· · · · · · · · · · · · · · · · · · ·	
·27	. 						
28						• • • • • • • • • • • • • • • • •	
29					-		
30							
31							
3 <u>2</u> 2						· · · · · · · · · · ·	
33 34				╏╾┅╾┠╺╾┦╍╾┿╸┠╍┦╼┎┍╍╂╼╼╴┝			
34							
<u>م</u> يا6		•					
38							· ··· · · · · · · ·
39							
40		· · · · · · · · · · · · · · · · · · ·					
	C						
7.	C WILSON JON	LES COMPANY G7505 GREEN	I РАТ. АР	PPL.FOR.			MADE IN U.S

. .....

- - - 47

• -- ••• ••• ••••

•••

iter Samples from Test H - rea Panlo. 100 CF 2-15-78 Sampled 12-18-78 Fluenide, Pyrm. Plenet, ppm Curce pH____ #1 2.12 0 7.744 #3 . 0.20 0,1 1,190 #5 : O 1.65 7.644 #1 18:0 7.700 2.64 0 #9____ 1.383 3.38 0 #12 7.121 5.64 0 <u>#13 1.434</u> 5-30-50 Water Samples From Test Holes Viera Ponds Sample Pfn Eliscide ppm theos 1 pH Disselved Striss # 3 4.825ppm 0 7.050 4,286 pm # 5 1.525ppm 0 7, 145 12,242 pm H7 1.870 ppm 0 7.599 8,537 pm 11-9 3.070 ppm 0 - .7,313 3,+77ppm # 12 3.050 ppm 0 7.424 ... 15, 824 10 «7.184 - 2,511 pm #13 1.4.150 ppm 0 1. 1. 1. 7. 1. T. V. 1. 2. Tell TANK 1. 1.5: ALL TRANS 1.75 · · · · · · · · 10.5 No 15 10 12 Server -۰۰. . ر 1 · · · ·

ADDRESS 501 CITY Arte	ajo Refining Co. East Main Street esia, NM 88210 . Havener 91	RELEIVED OCT 1 9 1977 NAVAJO REFINERY	REPORT OF
AMPLES RECEIVED	0 <u>10/3/77</u> c	USTOMER ORDER NUMBER 8121915	This col
YPE OF ANALYSIS	Water Analysis -		referit to a
Sam Ider	ple tification	Analysis	mg/1 STRANDA
Well	Water	Fluoride Chloride Phenols Sulfate Total Dissolved Solids pH Units	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	# 3	Fluoride Chloride Phenols Sulfate Total Dissolved Solids pH Units	3.21 ordered 1180 exceed < 0.001 ric (2.86)? ard 6777 ric 6.92 rics
-	# 7	Fluoride Chloride Phenols Sulfate Total Dissolved Solids pH Units	0.46 050 8075 exceed < 0.001 ex 943 exceed 28,050 exceed 6.73 exceed
	# 12	Fluoride Chloride Phenols Sulfate Total Dissolved Solids pH Units	1.49 OK 7300 oxceed < 0.001 OK 893 oxceed 29,840 oxceed 6.85 OK
	<b># 13</b>	Fluoride Chloride Phenols Sulfate Total Dissolved Solids pH Units	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Controls for Environmental Pollution, Inc. P.O. Box 5351 • 1925 Rosina • Santa Fe, New Mexico 87502

Telephone 505/982-9841

APPROVED BY JUN MUN UM Bud Summers, Environmental Sciences Mngr.

10/17/77

PAGE 1 OF 1 PAGE

USTOMER ADDRESS CITY TTENTION VOICE NO.	Navajo Refining ( 501 East Main Street Artesia, NM 88210 C. P. Havner 710115			REPORT OF ANALYSIS
AMPLES RECEI	ved 10/18/77	CUSTOMER ORDER NUMBER		
YPE OF ANALY	sis Water Anal	ysis - Chromium		
		1		
	Sample Identification	· ·	mg/l	
	Well Water ↓#3∽		0.001	
	<#7 <b>~</b>		0.001 0.001	
	⟨#12-		0.001	
	#13	•	0.002	
•	#1 🗸		0.001	
	River #2		0.001	
	#5 Direct #1	•	0.001	
	River #1		0.003	
	EIA Strandard	0.05 mg/l DIL	•	
	ETH Shandara	ords ingre for		
•				-
		123	1910	
	•	24 Hills	130	
•			AA A	
	· .	C' OCT	A TO	
		OCT 25 MIVAJO RETA	192 0	
	( () )	NYAJO RET		
	$/ \alpha'/$		ERY ST	· ·
	$ \langle X \rangle $			
		<u> 191/51</u>	6116:00	
	Ų,			
				· ·
	· · ·			
		$\sim$	0	
			1 + XIIm	
		APPROVED BY LO Bud Summers		men

Controls for Environmental Pollution, Inc.

P.O. Box 5351 • 1925 Rosina • Santa Fe, New Mexico 87502 Telephone 505/982-9841

10/24/77 PAGE 10F 1 PAGE

ADDRESS P.O. CITY Artesi	o Refining Co Drawer 159 ia, NM 88210 Havener 1				
SAMPLES RECEIVED	10/6/77	CUSTOMER ORDER NUMBER			
TYPE OF ANALYSIS	Water Analys	sis -			, 
·		r			
~					
	e Identification	Analysis	mg/l	OK	
#1	. A	Fluoride .	_0.41	- manufactory and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	<u></u>
1 mat	emivaled	Chloride	2495	> exceed	
( UNCORV	anote	Phenols	₹_0.001	OR	-p
	20-5 I	Sulfate	1937	excee	1
		Total Dissolved Solids	4959	012	
•		pH Units	6.59	5K	
•				and the second of the second of the second second second second second second second second second second second	
River	#2	Fluoride	0.43	ok n	
		Chloride	1550	exceed	
		Phenols	< 0.001	ok,	
		Sulfate	1610	exceeds	
		Total Dissolved Solids	7367		
	· ·	pH Units	6.50	ok	
#5		Fluoride	0.59	ok 1	
• •	•	Chloride	4565	exceed	•
		Phenols	<b>⊲</b> 0.001	OK.	
		Sulfate	2747	orcean	
		Total Dissolved Solids	12140	orceed	
		pH Units	6.49	arced arced ok	
		• ¹	-		
		•			
				÷	
• •					
				•	

Controls for Environmental Pollution, Inc.

P.O. Box 5351 • 1925 Rosina • Santa Fe, New Mexico 87502 Telephone 505/982-9841 APPROVED BY A CONTROL APPROVED BY APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED BY A CONTROL APPROVED B

	//	· · · · · · · · · · · · · · · · · · ·		
AMPLES RE	ECEIVED 10/14/77 CUSTOM	IER ORDER NUMBER		
YPE OF AN	VALYSIS Water Analysis -			
	Sample Identification	Analysis	<u>mg/1</u>	<u>_</u>
	River #1	Fluoride Chloride Phenols Sulfate Total Solids (Dissolved) pH Units	0.31 292 ≺ 0.00 758 1706 7.51	exceed 1 ok exceed ok
		· · ·		
			·	
		· · ·		
			·	
		•	-	
	· · ·			

Controls for Environmental Pollution, Inc.

P.O. Box 5351 • 1925 Rosina • Santa Fe, New Mexico 87502 Telephone 505/982-9841 Bud Summers, Environmental Sciences Mgr. 10/31/77 PAGE 1 OF 1 PAGE

	-							•	-				
		v	$\overline{}$				44			M	avajo	o R	efi
			7.5			s (°	3)			/ * 4	avaj.		-
- 1	-++-		12/20	····· .	TDS	22	2160						
Tample	# ID	И	mhur	Eh		С. Ц	× × ×						
	ц –	Pn	23	(MV)	rus	Z C	No.	CI	504	F	Na	К	Mg
out Dividoo ing	2398	7,01	2250	227	2147	1123	70·	3	1077	3.8	44	7.9	88
weitic at 1.007.557									. 7			,	
Diostronsure		10.95	2750	244	1553	3,4	236	44	693	4.2	494	.6	1
1 B-33 3.0			( 000	nnn	211111	62	4136	7/	15-49	n n.	125	E 11	< 1
Es si		11.2	6000	222	5744	7.5	700	16	1371	2.00	110.	3.7	• '
Contain 1982		17	1550	237	1232.	1745	hile	14.6	1236	1.L	44	2.3	106
Calena 78-32		6.7	2110	2.07	2000	1210	<i></i>	110	1 = 90				, -
· _ · Fixylooling	2403	7,15	2800	230	2850	1530	62	24	1461	10.8	63	3.0	131
4,50 Stondown 7-5-5								,	•				
D. 1. Lyn Hessure	2404	11,6	4800	207	2726	3,5	477	83	1242	5.7	860	,65	۲,۱
3 B. 2 5-582	2.												
Division FCC limit		7.6	2500	225	2032	170	108	53	1067	3.8	41	2.5	109
10/ reTowerBlowdu 7-15-82													90
.D ColingTower		6.7	2000	ţ.		1180	42	3	1130		35	2,5	78
landown 6-11-89		1121	7000	1		14	1404	100	1929		1350	£٦	.1
Dir Boiler Bloudown		, 11.7	1000			61	1901	700	. 101			0.0	<i>,</i> ,
6-11-82	-	;		-		:							
		1	:			}		; 					
ForTErporator Water	2408	8,4	7000	i	3574	1794	284	1300	1630	. 33	713	2.35	70
6-11-82													
elf Plant Separator	2409	4.35	- 2950		2446	275		253	1629	,48	538	18	54
outh 6-11-82												<b>.</b>	
. Alky linit		3.9	15,000	1	68 78	1617		42	839	.41	380	27	53
et : zing Sewer 7-98			0		0.0		10	74	(10 Z	07			70
L , E-202 Frocess		5,9	950	l	.912	. 367	19	8 ی	40.5	2.5	1.2	: 7.5	53
first TCC buit 7.8-82		\ \ \ \ \ \	2000		nouu	: : 551	24	403	7</td <td>1,3</td> <td>2.4</td> <td>//</td> <td>50</td>	1,3	2.4	//	50
ath I.s Desalter Aflaint 7.8-82		8,00	2100		2079	:	0.1	200	//		27	//	5.
sith Div-FCCULANT JWE		8.15	5/5000		981	10.0	833		* 2,2	1.10	65	4.5	< , ٩
1+11:510 + 200001 0 1 5 1+11:5-81		010-	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•			•		-				
Ste Phistor Let Murze		7,9	9500	i	225	1 6.0	2043		3.5	.2	5.5	<,5	<,5
FEIRINE FATIMENT 7-15-82	2						-			4		:	
with an jude lowit	2942	4.95	5, 60		67	4.5	- 2.2	15	.66	<.1	. 9	< 5	<.
17F. 5. 11/2 . T 7-158								*	5				·
States Fichart		8.9	14,500	>	670	15	5515	12x	34	.51	140	/	<,•
10 - rser, Efflu. 7-15-8									,		•		
forth I a Drudelawit		7.7	1150		1210	457	,	58	527		28	2.7	20
is Fifthant 7-14-8						<b></b> .	88		*				
i Gradelinit		6.7	420		164	51	88	الملغرا	1,6	,46	1.5	<,5	//.5
The sea Stelanat 744.52			- 710		ANKI		2.Z	7	54	44	1.7.	~~	4.3
17((11)+W 58 7.9-72		ా, రో	<i>2</i> 10		277	72	×. –	/	017	,11	,, 0	,	7.0
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		71	370		87	8.3		119	1.50	.32	2.2	< 5	<
	- : -/	, ,	0 / 4			<u> </u>			-				

ı.

1

I

į

i

TAC 0. Values in ppm أرحك Pb JOA Ca Fe Mn Cr As  $\vee$  N: Cu 9.4 295 .6 < / - .13 1,5 d, 1.4 1.2 41 4.1 - <1 <.5,4 48 37 .9 <1 <,1 - <,1 <,5 .7 176 - - - 1 2.5 ,4 1560 325 2.8 <1 2.0 395 ,4 <1 32.8 - 1 <.5 .6 120 15 .7 <1 <.1 - <1 <5 .4 184 - .13 <.5 .5 232 290,4 21 12.4 312 ~ 25 :160 2.5 576 Quantab Chloride titration 203 45 45 15 21 61 1.0 .2 - <,5 1/88 - .2 4.5 ,2 1960 560 15 <.5 ,9 90 <,5 <,5 ,2 - <.1 <.5 .6 1808 130 <,5 <,5 <,1 - .17 <.5 .8 608 - <1 <.5 .6 1960 Grasmetric Charde 4 3.8 < 5 .2 - <1 <5 .7 1960 Questo schloride Titrators 2.4 < 5 < 5 4.1 1.8 2.5 2.5 2.1 - 6.1 6.5 .6 368 - .1 <.5 .6 1960 Quertabolite to The 1953 6 2.5 2.5 2.1 - < 1 <,5 ,4 384 50 <.5 <.5 <.1 - 1 <.5 .2 1648 " .... Orande Titrala.: 15 4,5 4.5 4.1 10 17 14.2 .3 - 2,1 4,5 ,3 952 13 4.5 4.5 4.1 < ,1 13 3 172