GW - 1

WORK PLANS

July 15, 2005

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Frances Dr. Santa Fe, New Mexico 87505 Ms. Hope Monzeglio NMED Hazardous Waste Bureau 2905 Rodeo Park Dr. East. BLDG 1 Santa Fe, New Mexico 87505

Re: Giant Refining Company's – Bloomfield's River Terrace Voluntary Corrective Measures Work Plan

Mr. Price & Ms. Monzeglio:

As requested in our June 29, 2005 telephone call, Giant is submitting the enclosed information related to the proposed amendments to the May 25, 2005 VCM Work Plan (Work Plan), and additional information that supplements the Work Plan. The information is summarized below.

Bioventing Well Layout

As we discussed, Giant plans to use vertical bioventing wells on an approximate 40-foot grid in lieu of the trenches presented in the Work Plan. Figure 1 shows the approximate locations of the bioventing wells. Figure 2 shows the approximate area of influence of the bioventing wells. The bioventing pilot test at the Bloomfield Crude Station concluded a 30-foot radius of influence could be achieved at that site. We have conservatively assumed a 20-foot radius of influence will be achieved at the river terrace.

River Terrace Groundwater Conditions

Figure 3 presents an estimated isocontour map of benzene concentrations in the river terrace groundwater. The contours are based on an average composite of the groundwater sampling data collected between October 2004 and April 2005. This figure was developed to determine the area of focus for the bioventing system as shown in Figure 2.

Bioventing Piping Concept

Figure 4, which supersedes Figure 9 of the Work Plan, shows the conceptual layout of the bioventing and dewatering piping, and the general location of the treatment equipment area. Figure 5 and Figure 6 show the conceptual piping connections to the bioventing and dewatering wells.

Well Design

Figure 7 shows a schematic of the bioventing wells. Each well will be outfitted with two casings, one to ventilate the upper portion of the interval of interest during the initial stages of dewatering, and the other to ventilate the lower portion as dewatering progress occurs.

Page 2 of 2

Giant Bloomfield River Terrace VCM Work Plan Amendments July 15, 2005

The change between casings will be made manually using a flexible venting hose from the main air header.

Figure 8 shows a schematic of the dewatering wells (DW-1 and DW-2).

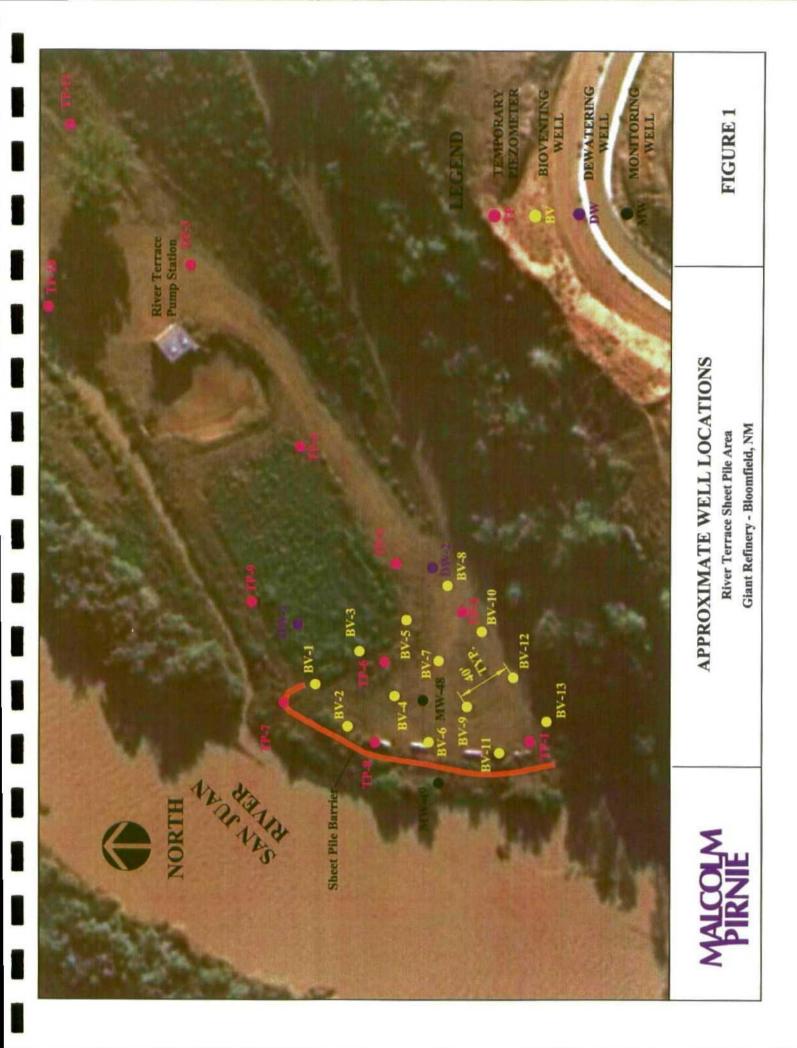
Temporary Piezometers TP-9 Through TP-13

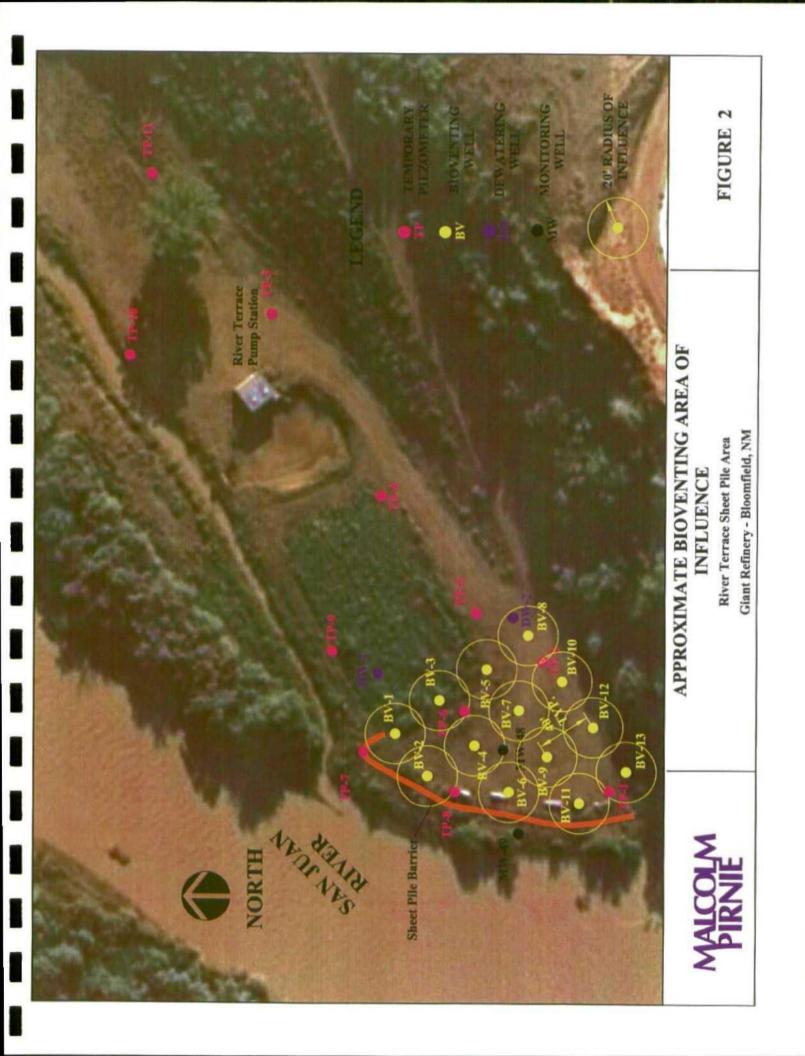
Appendix A contains the well logs for TP-9 through TP-13, which were installed in April 2005. Appendix B contains the laboratory reports for groundwater samples obtained from TP-9 through TP-13 shortly after their installation.

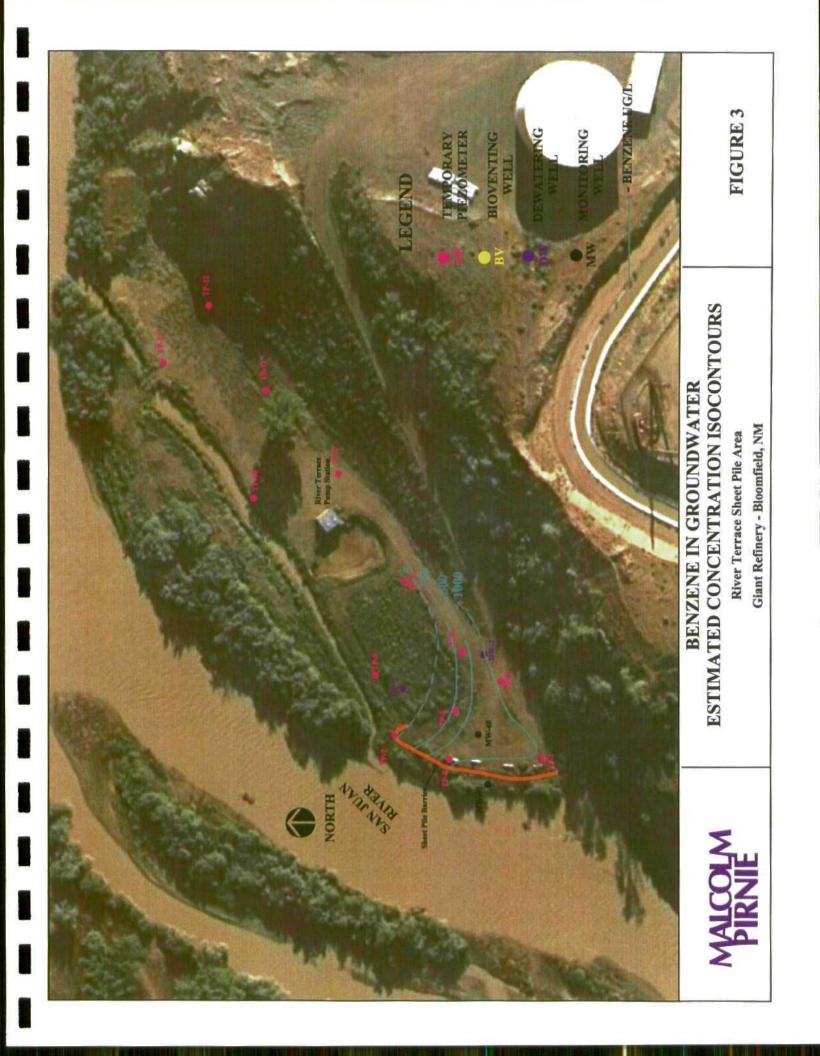
VCM Major Equipment

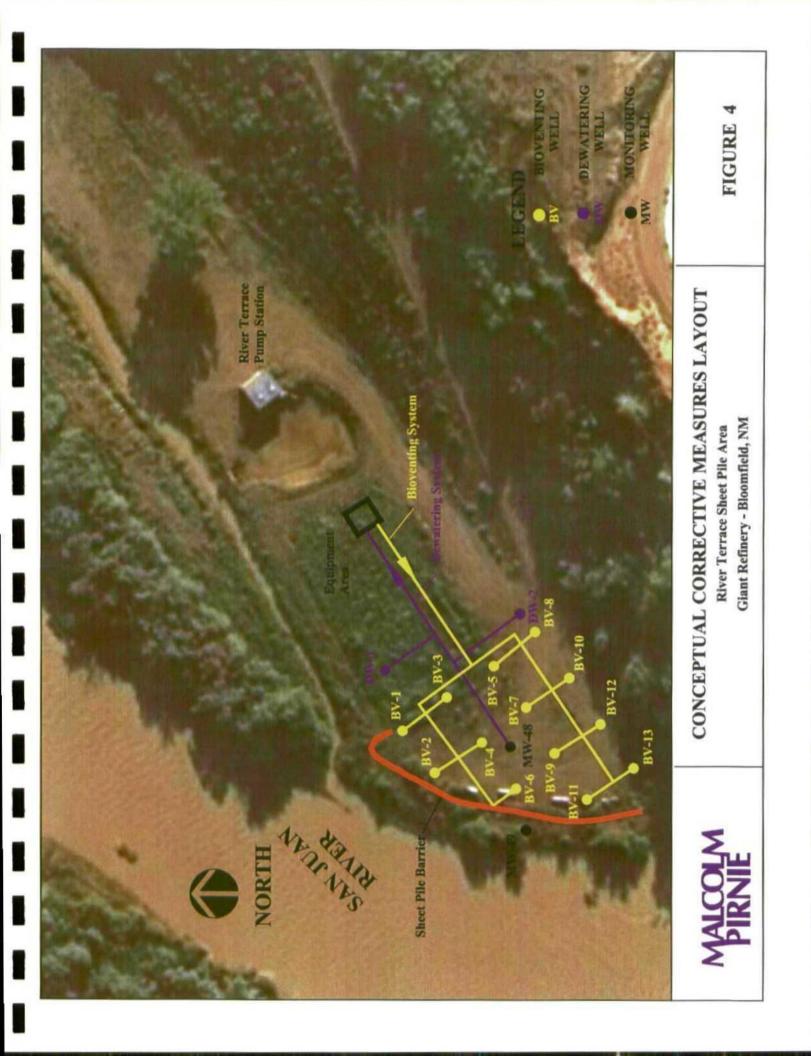
The following table lists the preliminary equipment selection. Manufacturers' equipment data sheets are contained in Appendix C.

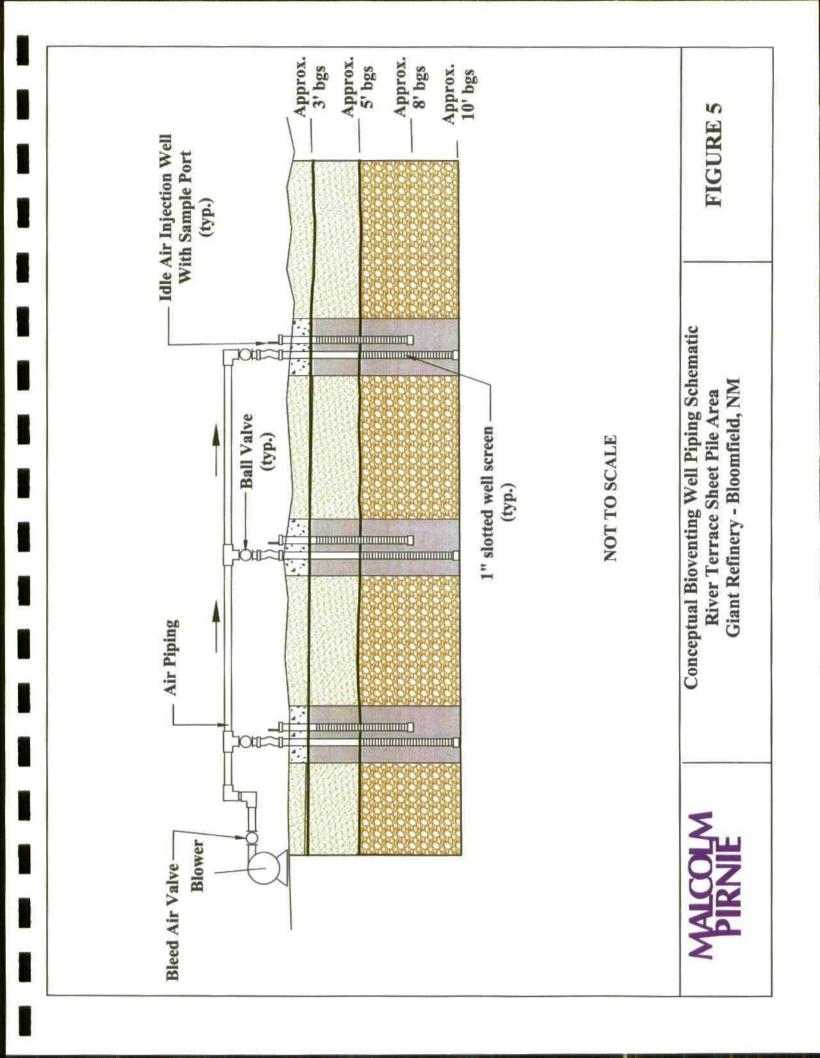
Description	Equipment	Design Condition
Groundwater pump, MW-48 and DW-2	Grundfos 5S03-9 (1/3 hp)	5 to 7 gpm
Groundwater pump, DW-1	Grundfos 16S05-5 (1/2 hp)	15 to 20 gpm
Liquid-phase GAC treatment	US Filter/Westates ASC 2000	40 gpm
Bioventing blower	Rotron DR 808, 7.5 hp	10 to 20 scfm per well at 10 inches water column wellhead pressure.

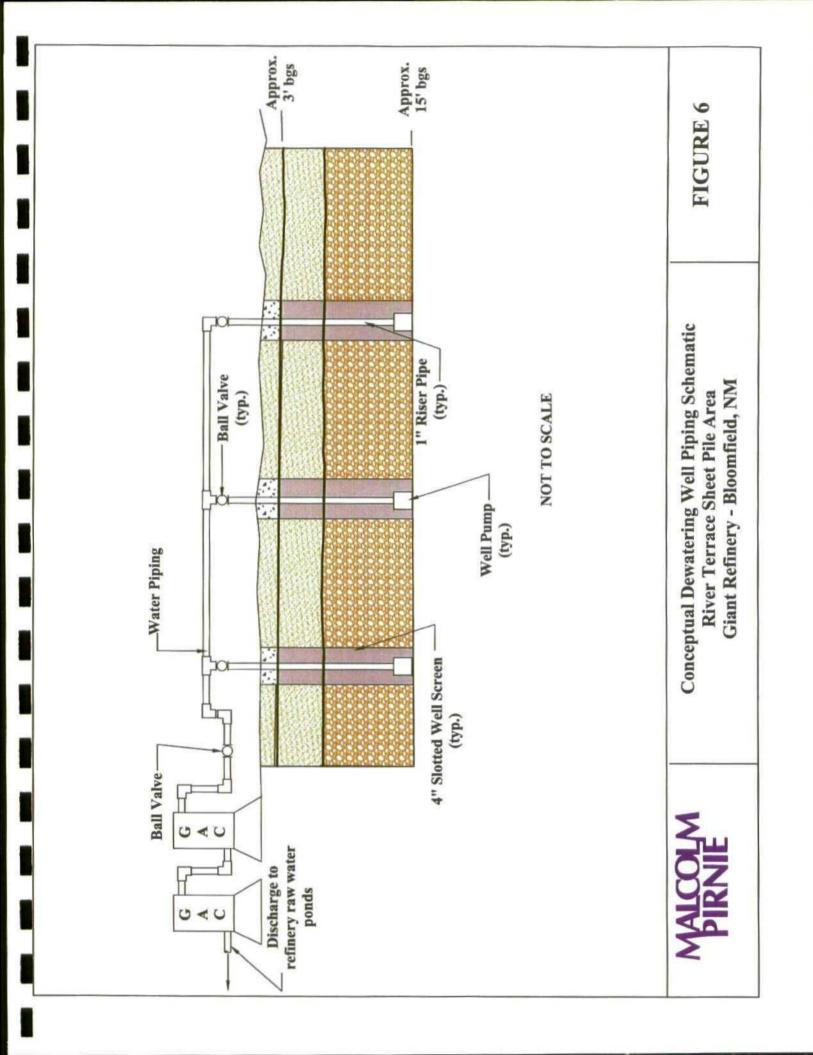

VCM Implementation Schedule

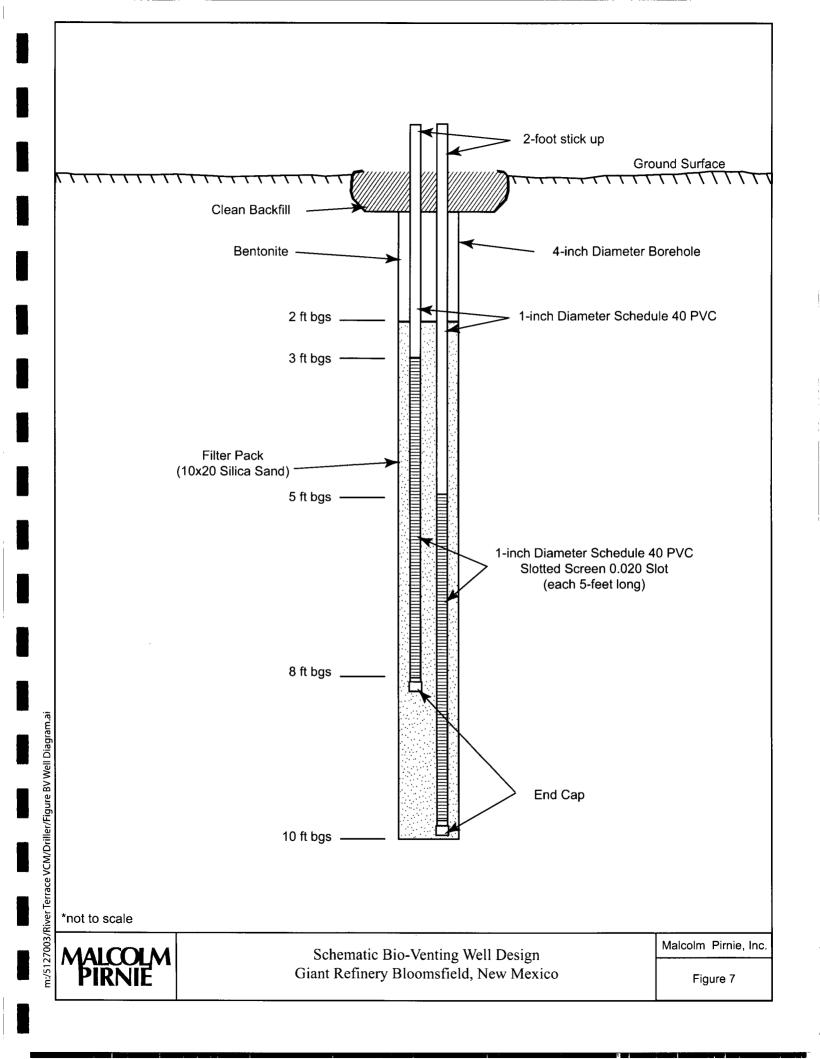

Figure 9 shows the revised estimated VCM implementation schedule.

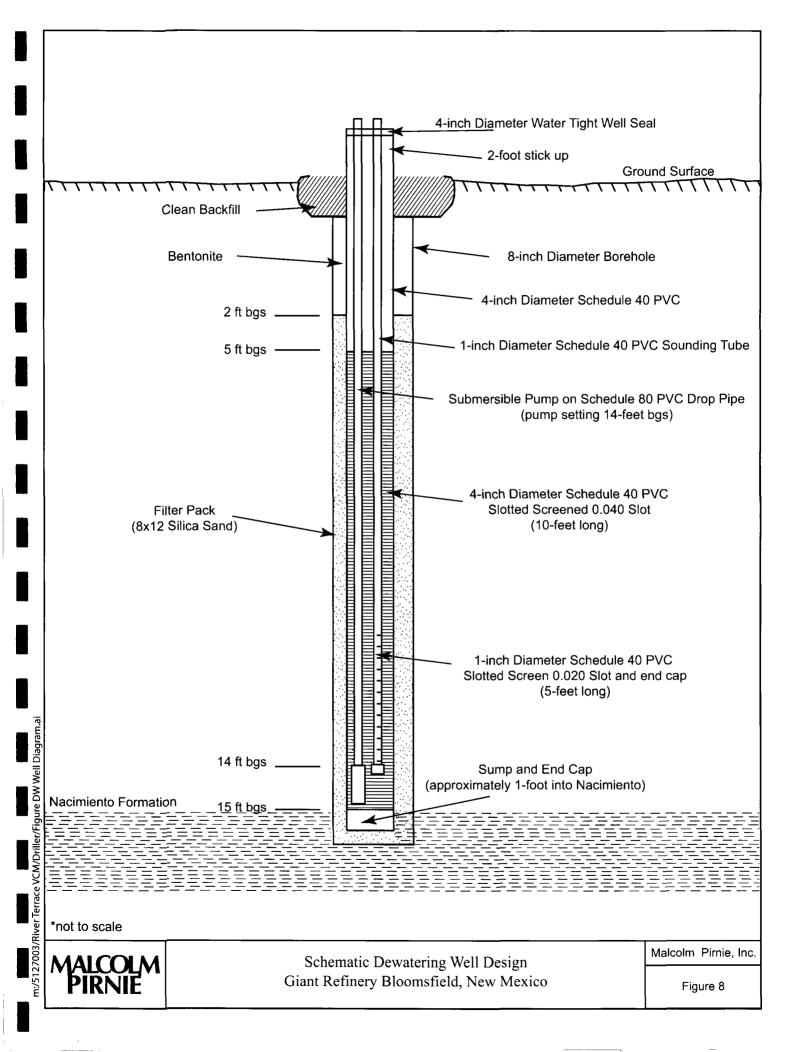

Please feel free to call me if you have any questions.

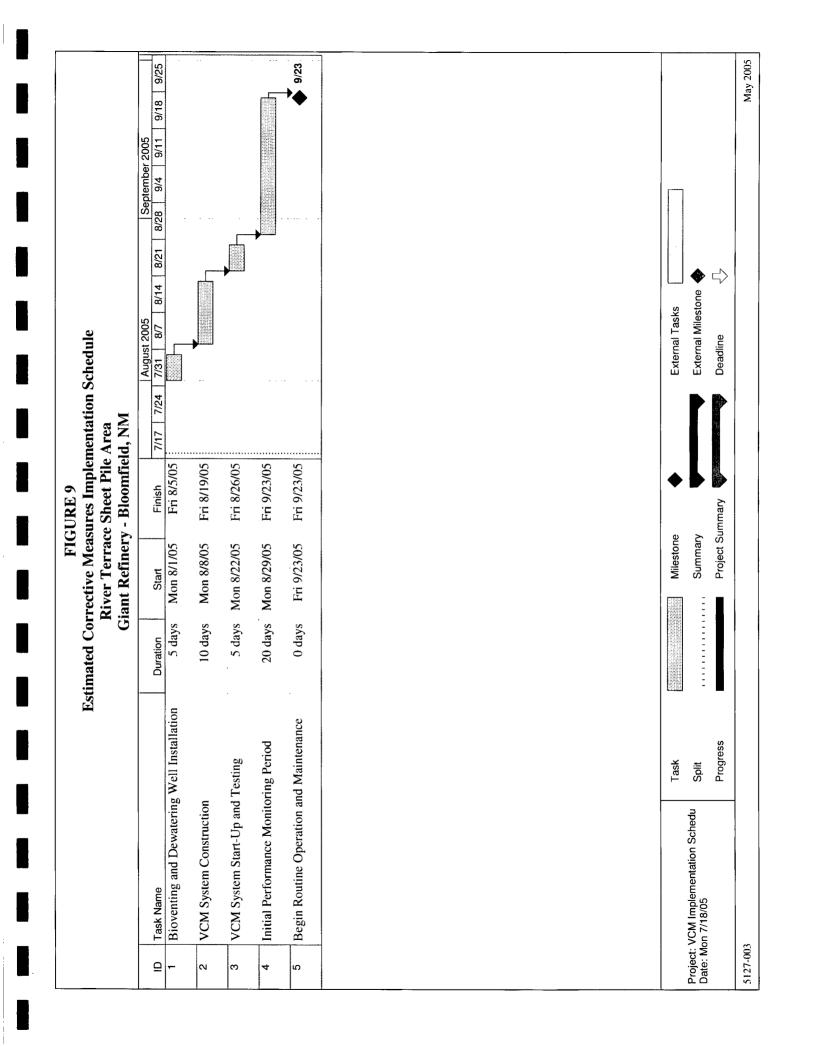

Sincerely,


James R. Schmaltz Environmental Manager Giant Refining Company – Bloomfield









APPENDIX A

Soil Boring Logs for TP-9 through TP-13

Sheet: 1 OF 5 Bore Point: River Terrace Water Elevation: 7.0' Boring No.: TP-9

Precision Engineering, Inc. P.O. Box 422 Las Cruces, NM 88004 505-523-7674

File #: 05-038 Site: Bloomfield Giant Refining Elevation: EXISTING Date: 4/5/2005

111

1

Log of Test Borings

		BLOW			MATERIAL CHARACTERISTICS				
LAB #	DEPTH	COUNT	PLOT	SCALE		%M	LL	ΡI	CLASS.
	0.0-7.5		///**///		Clay, Slightly Sandy, Very Fine, Brown,				
			///**///		Moist, Gravel, Cobbles				
			///**///						
			///**///						
			///**///	<u>2.5</u>					
			///**///						
			///**///						
			///**///						
			///**///						
			///**///	<u>5.0</u>					
			///**///						
			///**///						
	7.0		///**///		Water				
	7.0		///**/// ///**///	<u>7.5</u>					
	7.5-10.0		******	<u> </u>	Sand, Very Fine, Grey, Water Bearing				
	7.0 10.0		*****		i i i i i i i i i i i i i i i i i i i				

			******	<u>10.0</u>					
	10.0				TD				
					Set 2" Well @ 10.0'				
					5' of Screen, 6' of Riser				
					Top of Sand 3.1'				
					Top of Bentonite 1.5'				
				15.0					
				<u>15.0</u>					
				<u>20.0</u>					
			L						1 4 4 4 4
					V STEMMED AUGER r Terrace Work Plan\Wor	LOGO	iED	BA:	KMM

Sheet: 2 OF 5 Bore Point: River Terrace Water Elevation: 4'2" Boring No.: TP-10

Precision Engineering, Inc. P.O. Box 422 Las Cruces, NM 88004 505-523-7674

File #: 05-038 Site: Bloomfield Giant Refining Elevation: EXISTING Date: 4/5/2005

Log of Test Borings

LAB #	DEDTU	BLOW COUNT		SCALE		0/ NA		וח	
	DEPTH 0.0-2.0	COUNT	PLOT **	SCALE	(MOISTURE, CONDITION, COLOR, ETC.) Silt, Sandy, Very Fine, Brown, Gravel, Cobbles	%M	LL	PI	CLASS
	0.0-2.0		**		Moist				
			**						
	2.0-8.5		******		Sand, Very Fine to Fine, Silty, Brown, Gravel,				
			******	<u>2.5</u>	Cobbles, Damp				

			****** ******		14/ .				
			******	5.0	Water				
			 ******	<u>5.0</u>					

			******	<u>7.5</u>					

	8.5				TD				
				10.0					
				<u>10.0</u>	Set 2" Well @ 8.5' 5' of Screen, 5' of Riser				
					Top of Sand 2.5'				
					Top of Bentonite 1.5'				
				<u>15.0</u>					
				<u>20.0</u>					
						!			
			ļ		V STEMMED AUGER	LOGO	L		

Sheet: 3 OF 5 Bore Point: River Terrace Water Elevation: 5.3' Boring No.: TP-11

Precision Engineering, Inc. P.O. Box 422 Las Cruces, NM 88004 505-523-7674

File #: 05-038 Site: Bloomfield Giant Refining Elevation: EXISTING Date: 4/5/2005

Log of Test Borings

LAB #	DEPTH	BLOW COUNT	PLOT	SCALE		%M	LL	ΡI	CLASS
LAD #	0.0-2.0		<u> </u>	SUALE	(MOISTURE, CONDITION, COLOR, ETC.) Clay, Brown, Moist, Gravel, Cobbles	-70IVI	LL	ГІ	ULASS
	0.0 2.0		////////						
			///////						
	2.0-3.5		***//***		Sand, Clayey, Brown, Moist, Gravel, Cobbles				
			// ***//***	<u>2.5</u>					
	3.5-5.0		*** <u>-</u> ***		Sand, Silty, Brown, Damp, Gravel, Cobbles				
	0.0 0.0		******		Dana, Oity, Diown, Danip, Glavel, Obbles				

			******	<u>5.0</u>					
	5.0-9.5		*******		Sand, Fine to Coarse, Tan, Damp, Wet				
	5.3'		*******		Water				

			******	<u>7.5</u>					

	9.5		******		ТD				
	9.5			<u>10.0</u>					
					Set 2" Well @ 9.5'				
					5' of Screen, 5' of Riser				
					Top of Sand 3.5'				
					Top of Bentonite 1.4'				
				<u>15.0</u>					
								,	
				<u>20.0</u>					

Sheet: 4 OF 5 Bore Point: RiverTerrace Water Elevation: 7.5' Boring No.: TP-12

1

Precision Engineering, Inc. P.O. Box 422 Las Cruces, NM 88004 505-523-7674

File #: 05-038 Site: Bloomfield Giant Refining Elevation: EXISTING Date: 4/5/2005

l

Log of Test Borings

		BLOW			MATERIAL CHARACTERISTICS				
LAB #	DEPTH	COUNT	PLOT	SCALE	(MOISTURE, CONDITION, COLOR, ETC.)	%M	LL	PI	CLASS
	0.0-3.0		******		Sand, Very Fine to Fine, Slightly Silty, Brown,				
			******		Gravel, Cobbles, Moist				

			****** ******	0.5					
	3.0-4.5		////**///	<u>2.5</u>	Clay, Sandy, Very Fine, Brown, Some Gravel/				
	3.0-4.5		//// ///		Cobbles, Moist				
			////**///						
	4.5-9.0		***//***		Sand, Very Fine to Fine, Clayey, Brown,				
			//	<u>5.0</u>	Moist, Some Gravel				
			//						
			//						
			//						
			//	-					
			// *******	<u>7.5</u>	Water				
			******		Water				
	9.0-13.0		******		Sand, Fine to Coarse, Tan, Water Bearing				
	0.0 10.0		******		<u>bana</u> , The to obtable, Full, Water Boaring				
		:	******	<u>10.0</u>					

	13.0				тр				
					Set 2" Well @ 12.0'				
				<u>15.0</u>	5' of Screen, 8' of Riser				
					Top of Sand 5'2"				
					Top of Bentonite 4'2"				
			i i						
				<u>20.0</u>					
0175									
					V STEMMED AUGER	LOGO	ιΕD	BA:	KMM

\\Phoenix\Projects\5127003\River Terrace VCM\River Terrace Work Plan\Wor

Sheet: 5 OF 5 Bore Point: River Terrace Water Elevation: 6.0' Boring No.: TP-13

Precision Engineering, Inc. P.O. Box 422 Las Cruces, NM 88004 505-523-7674

File #: 05-038 Site: Bloomfield Giant Refining Elevation: EXISTING Date: 4/5/2005

Log of Test Borings

		BLOW			MATERIAL CHARACTERISTICS				
LAB #	DEPTH	COUNT	PLOT	SCALE		%M	LL	PI	CLASS.
	0.0-1.5		**		<u>Silt</u> , Sandy, Very Fine to Fine, Brown, Moist,				
			**		Gravel, Cobbles				
	1.5-8.5		***//***		Sand, Very Fine, Clayey, Brown, Moist,				
			//		Gravel, Cobbles				
			// ***//***	<u>2.5</u>					
			//						
			// ***//***						
			//						
			//	<u>5.0</u>					
			//						
			//						
	6.0		***//***		Water Level 6.0'				
			//						
			//	<u>7.5</u>					
			//						
	8.5-14.0		///////		<u>Clay</u> , Grey/Black, Moist, No Hydrocarbon				
			////////		Odor				
				10.0					
			1///////	<u>10.0</u>					
			11111111						
			////////						
			////////						
			///////						
			///////						
			////////						
	14.0				TD				
				<u>15.0</u>					
					Set 2''' Well @ 14.5'				
					10' of Screen, 5' of Riser				
					Top of Sand 2.5'		:		
					Top of Bentonite 1.5'				
				<u>20.0</u>					
							Ì		
SIZE	& TYPE (LOGO	ED	BY:	KMM

APPENDIX B

Laboratory Reports for April 2005 Groundwater Samples from TP-9 through TP-13

COVER LETTER

April 19, 2005

Cindy Hurtado San Juan Refining #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4161 FAX (505) 632-3911

RE: River Terrace Investigation TP9-TP13

Order No.: 0504087

Dear Cindy Hurtado:

Hall Environmental Analysis Laboratory received 5 samples on 4/8/2005 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

4901 Hawkins NES Suite DE Albuquerque, NM 87109 505.345.3975 E Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	San Juan Refining		C	lient Sample	ID: TP-9	
Lab Order:	0504087			Collection I	Date: 4/7/20	005 2:00:00 PM
Project:	River Terrace Investig	gation TP9-TI	P13			
Lab ID:	0504087-01			Ma	trix: AQU	EOUS
Analyses		Result	PQL Qu	l Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE					Analyst: SCC
Diesel Range C	Organics (DRO)	ND	1.0	mg/L	1	4/13/2005 8:22:05 AM
Motor Oil Rang	e Organics (MRO)	ND	5.0	mg/L	1	4/13/2005 8:22:05 AM
Surr: DNOP		113	58-14D	%REC	1	4/13/2005 8:22:05 AM
EPA METHOD	8015B: GASOLINE RAN	GE				Analyst: NSB
Gasoline Rang	e Organics (GRO)	0.67	0.050	mg/L	1	4/8/2005 11:26:46 PM
Surr: BFB		103	78.3-120	%REC	1	4/8/2005 11:26:46 PM
EPA METHOD	8021B: VOLATILES					Analyst: NSB
Methyl tert-buty	/I ether (MTBE)	ND	2.5	μg/L	1	4/8/2005 11:26:46 PM
Benzene		3.3	0.50	µg/L	1	4/8/2005 11:26:46 PM
Toluene		5.0	0.50	µg/L	1	4/8/2005 11:26:46 PM
Ethylbenzene		7.0	0.50	µg/L	1	4/8/2005 11:26:46 PM
Xylenes, Total		22	0.50	µg/L	1	4/8/2005 11:26:46 PM
Surr: 4-Brom	ofluorobenzene	116	83.3-121	%REC	1	4/8/2005 11:26:46 PM

Hall Environmental Analysis Laboratory

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 19-Apr-05

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 1 of 5

1/12

Hall	En	vi	ror	ime	enta	al .	An	al	ys	is	L	/a	b	01	a	to)r	у

		A											11.000	1.000	1000			

0504087

CLIENT:

Project:

Lab Order:

San Juan Refining Client Sample ID: TP-10 Collection Date: 4/7/2005 2:20:00 PM River Terrace Investigation TP9-TP13

Date: 19-Apr-05

Lab ID: 0504087-02			Ma	trix: AQUI	EOUS
Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	GE				Analyst: SCC
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/13/2005 9:22:37 AM
Molor Oil Range Organics (MRO)	ND	5.0	mg/L	1	4/13/2005 9:22:37 AM
Surr: DNOP	90.4	58-140	%REC	1	4/13/2005 9:22:37 AM
EPA METHOD 8015B: GASOLINE R.	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/8/2005 11:56:47 PM
Surr: BFB	101	78.3-120	%REC	1	4/8/2005 11:56:47 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Methyl tert-butyl ether (MTBE)	ND	2.5	μg/L	1	4/11/2005 1:01:27 PM
Benzene	ND	0.50	μg/L	1	4/11/2005 1:01:27 PM
Toluene	ND	0.50	µg/L	1	4/11/2005 1:01:27 PM
Ethylbenzene	ND	0.50	µg/L	1	4/11/2005 1:01:27 PM
Xylenes, Total	0.56	0.50	µg/L	1	4/11/2005 1:01:27 PM
Surr: 4-Bromofluorobenzene	98.6	83.3-121	%REC	1	4/11/2005 1:01:27 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank * - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 2 of 5

2/12

Hall Environmental Analysis Laboratory

San Juan Refining

0504087

River Terrace Investigation TP9-TP13

CLIENT:

Project:

Lab Order:

Date: 19-.4pr-05

Client Sample ID: TP-11 Collection Date: 4/7/2005 1:00:00 PM

Matrix: AQUEOUS

Lab ID: 050408	7-03			Matrix: A	QUEO	US
Analyses	Result	PQL	Qual Units	D	F	Date Analyzed
EPA METHOD 8015B: DI	ESEL RANGE					Analyst: SCC
Diesel Range Organics (DR	.O) ND	1.0	mg/L	1		4/13/2005 9:52:33 AM
Motor Oil Range Organics (MRO) ND	5.0	mg/L	1		4/13/2005 9:52:33 AM
Surr: DNOP	124	58-140	%REC	1		4/13/2005 9:52:33 AM
EPA METHOD 8015B: GA	SOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO) 0.082	0.050	mg/L	1		4/9/2005 12:26:49 AM
Surr: BFB	101	78.3-120	%REC	1		4/9/2005 12:26:49 AM
EPA METHOD 8021B: VO	DLATILES					Analyst: NSB
Methyl tert-butyl ether (MTE	BE) ND	2.5	µg/L	1		4/9/2005 12:26:49 AM
Benzene	1.5	0.50	µg/∟	1		4/9/2005 12:26:49 AM
Toluene	1.6	0.50	µg/L	1		4/9/2005 12:26:49 AM
Elhylbenzene	ND	0.50	µg/L	1		4/9/2005 12:26:49 AM
Xylenes, Total	2.7	0.50	µg/L	1		4/9/2005 12:26:49 AM
Surr. 4-Bromofluorobenz	ene 103	83.3-121	%REC	1		4/9/2005 12:26:49 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

11

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

3/12

Page 3 of 5

CLIENT:	San Juan Refining			Client San	iple ID: 🗍	FP-12	
Lab Order:	0504087			Collect	ion Date:	4/7/20	005 1:20:00 PM
Project:	River Terrace Invest	igation TP9-TI	213				
Lab ID:	0504087-04				Matrix:	AQU	EOUS
Analyses		Result	PQL	Qual Units		DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE						Analyst: SCC
Diesel Range C	Drganics (DRO)	ND	1.0	mg/L		1	4/13/2005 10:22:31 AM
Motor Oil Rang	e Organics (MRO)	ND	5.0	mg/L		1	4/13/2005 10:22:31 AM
Surr: DNOP		112	58-140	%REC		1	4/13/2005 10:22:31 AM
EPA METHOD	8015B: GASOLINE RAI	NGE					Analyst: NSB
Gasoline Rang	e Organics (GRO)	ND	0.050	mg/L		1	4/9/2005 12:56;46 AM
Surr: BFB		99.2	78.3-120	%REC		1	4/9/2005 12:56:46 AM
EPA METHOD	8021B: VOLATILES						Analyst: NSB
Methyl tert-buty	/I elher (MTBE)	ND	2.5	µg/L		1	4/9/2005 12:56:46 AM
Benzene		0.75	0.50	µg/L		1	4/9/2005 12:56:46 AM
Toluene		0.80	0.50	µg/L		1	4/9/2005 12:56:46 AM
Ethylbenzene		ND	0.50	µg/L		1	4/9/2005 12:56:46 AM
Xylenes, Total		1.0	0.50	µg/L		1	4/9/2005 12:56:46 AM
Surr: 4-Brorr	ofluorobenzene	103	83.3-121	%REC		1	4/9/2005 12:56:46 AM

Hall Environmental Analysis Laboratory

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits

Date: 19-Apr-05

- R RPD outside accepted recovery limits
- E Value above quantitation range

Page 4 of 5

4/12

Qualifiers:

CLIENT: San Juan Refining Lab Order: 0504087 **Project:** River Terrace Investigation TP9-TP13

0504087-05

Lab ID:

Client Sample ID: TP-13 Collection Date: 4/7/2005 2:45:00 PM

Date: 19-Apr-05

Matrix: AQUEOUS

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	Ę				Analyst: SCC
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/13/2005 10:52:24 AM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	4/13/2005 10:52:24 AM
Sur: DNOP	128	58-140	%REC	1	4/13/2005 10:52:24 AM
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/9/2005 1:26:44 AM
Surr. BFB	102	78.3-120	%REC	1	4/9/2005 1:26:44 AM
EPA METHOD 8021B: VOLATILES					Analysi: NSB
Melhyl tert-butyl ether (MTBE)	ND	2.5	µg/L	1	4/9/2005 1:26:44 AM
Benzene	2.3	0.50	μg/L	1	4/9/2005 1:26:44 AM
Toluene	2.2	0.50	µg/L	1	4/9/2005 1:26:44 AM
Ethylbenzene	0.55	0.50	µg/L	1	4/9/2005 1:26:44 AM
Xylenes, Total	3.6	0.50	μ g/L	1	4/9/2005 1:26:44 AM
Surr: 4-Bromofluorobenzene	101	83.3-121	%REC	1	4/9/2005 1:26:44 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

5/12

CLIENT: San.	San Juan Refining				a valaa Addin minaa mahaya a ta'a a maana					TM M	OC SIIMMARY REPORT	Tac
ler:	0504087 River Terrace Investigation TP9-TP13	on TP9-1	P13						5))		Method Blank	Blank
Sample ID MB-7741	Batch ID: 7741		Test Code: SW8015	: SW8015 Units	Units: mg/L		Analysis Sector	is Date 4/13/20	Analysis Date 4/13/2005 5:23:14 AM Section:		Prep Date 4/11/2005	μ Ω
Client IU: Analyte	L.	Result	POL	SPK value	SPK Ref Val	%REC	Ľ		HighLimit RPD Ref Val	%КРО	D RPDLimit	Qual
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP		ND ND 1.079	1 0	-	0	108	8	140	0		·	
Sample ID Reagent Blank 5m Client ID:	ik 5m Balch ID: R15047	147	Test Code: SW8015 Run ID: PIDFID	: SW8015 U PIDFID 050408A	Units: mg/L 408A		Analysis SeqNo:	is Date 4/8/200 1: 350502	Analysis Date 4/8/2005 8:25:08 AM SeqNo:		Prep Date	
Analyte	Ŀ	Result	Pal	SPK value	SPK Ref Val	%REC	2	HighLimit	RPD Ref Val	%RРD	D RPDLimit	Qual
Gasoline Range Organics (GRO) Surr: BFB		ND 19.39	0.05 D	20	o	96.9	78.3	120	0			
Sample ID Reagent Blank 5m	k 5m Batch ID: R15061	161	Test Code:	Test Code: SW8015	Units: mg/L		Analysi	is Date 4/11	Analysis Date 4/11/2005 9:28:42 AM		Prep Date	
Client ID:			Run (D:	PIDFID_050411A	111A		SeqNo:	350886	B6			
Analyte	LL.	Result	PoL	SPK value	SPK Ref Val	%REC	LowLimit		HighLimit RPD Ref Val	%RPD	D RPDLimit	Qual
Gasoline Range Organics (GRO) Surr: BFB		18.94	0.05 D	20	C	94.7	78.3	120	D			
Qualifiers: ND - N	ND - Not Detected at the Reporting Limit	ing Limit		s - S	S - Spike Recovery outside accepted recovery limits	side accepted rea	covery limits		B • Analyte deter	ted in the ass	 B + Analyte detected in the associated Method Blank 	3lank
1 1.00		•										

6/12

l

Sample ID Reader Test Cude. Yeng J. Test Cude. Yeng J. Test Cude. Yeng J. Yeng J.	CLIENT: San Juan Work Order: 0504087 Project: River Te	San Juan Refining 0504087 River Terrace Investigation TP9-TP13	-TP13						QC SUMMARY REPORT Method Blank	AMAR	Y REPORT Method Blank	JRT 3lank
Real PQL SPK value SPK Ret Val MREC Low Init RPD Ret Val MPD RPD Ret Val <			Test Code: Run ID:	: SW8021 PIDFID_0504	Units: µg/L 108A		Analysis SeqNo:	s Date 4/8/2 35049	005 8:25:08 AM 19	Prep Da	ate	
etcholityl effet (MTBE) ND 23 etcholityl effet (MTBE) ND 03 zette ND 03 zette ND 03 Total ND 20 20 ID Test Code: MDI Analysis Dia 4/1/2005 9.28:42 MI Prep Date ID Result POL SPK value SPK rel'Val MRD PRD Test Code: ID Result POL SPK value SPK rel'Val MRD PRD Test Code: ID 25 POL SPK value SPK rel'Val MRD PRD Test Code: ID 25 POL SPK value SPK rel'Val MRD SPRD Rel'Val ID 25 POL SPK value SPK rel'Val SPRD SPD rel'Val ID 0 25 S33 121 O	Analyte	Result	PQL	SPK value		%REC	LowLimit	HighLimit	RPD Ref Val	%КРО		Qual
D Reagent Blank 5m Test Code: WB021 Units: J01 Analysis Date 411/2005 9:28:42 AM Prep Date Run ID: Run ID: PIDFID_060411A SeqNo: 350865 SE3:42 AM Prep Date Arbutyl ether (MTBE) ND 2.5 SPK value SPK Ref Val %REC LowLimit HghLimit RPD Ref Val %RPD RPD Limit Arbutyl ether (MTBE) ND 0.5 SR	Aethyl tert-butyl ether (MTBE) Benzene Oluene cihylbenzene Kylenes, Total Surr. 4-Bromofluorobenzene		2.5 0.5 0.5 0.5 0	20		96.1	83.3	121	o			
Result PQL SPK kalf val MREC Low/Timit HghLimit RPD Ref Val MRD RPD Limit str-butyl ether (MTBE) ND 0.5 0.5 ND 0.5 ND	ample ID Reagent Blank 5m ilent ID:		Test Code: Run ID:		Units: µg/L 111A		Analysis SeqNo:	5 Date 4/11/2 35088.	2005 9:28:42 AM 5	Prep Da	ite	
yf ether (MTBE) ND 2.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0 MO 0.5 ND 0 MO 0.5 ND 0 MD 0 MD<-Not Detected at the Reporting Limit	nalyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPDLimit	Qual
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	ieithyl lert-butyl ether (MTBE) enzene oluene thylbenzene ylenes, Total Surr: 4-Bromofluorobenzene		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.000000	20	o	9 9 9 9	8 5 6	121	o			
		steeted at the Reporting Limit		S - Sp	ike Recovery outsid	le accepted rec	overy limits		B - Analyte detected	in the associa	ated Method B	tlank

ł

Hall Environmental Analysis Laboratory	Analysis Laborau	JIY				and an			Date	cn-14w-21	
CLIENT: San Juan Refining	Refining							QC SUMMARY REPORT	AIMAR	Y REP(ORT
Work Order: 0504087 Project: River Terr	0504087 River Terrace Investigation TP9-TP13	P13							Sample	Sample Matrix Spike	Spike
Sample ID 0504087-02a ms	Batch ID: R15047	Test Code: SW8015	SW8015	Units: mg/L		Analysi	s Date 4/9/2	Analysis Date 4/9/2005 2:56:36 AM	Prep Date	ate	
		Run ID:	PIDFID_050408A	08A		SeqNo:	350590	00			
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Oual
Gasoline Range Organics (GRO) Surr: BFB	0.5284 24.25	0.05 0	0.5 25	0.0158	103 97.0	82.6 78.3	114	00			
Sample ID 0504087-02a msd	Batch ID: R15047	Test Code:	SW8015	Units: mg/L		Analysi	s Date 4/9/2	Analysis Date 4/9/2005 3:26:38 AM	Prep Date	ate	
Client ID: TP-10		Run ID:	PIDFID_050408A	08A		SeqNo:	350593	EE			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) Surr: BFB	0.4692 23.55	0.05	0.5 25	0.0158	90.7 94.2	82.6 78.3	114	0.5284 24.25	11.9 2.95	15 0	
Cample ID_0504087.01a mc	Batch ID: R15047	Test Cride.	SWR021	Lhits: nn/l		Analvsis Date	a Date 4/9/2	4/4/2005 1-56-44 AM	Pren Date	ate	
		Run ID:	PIDFID_050408A	08A		SeqNo:		0)) -)	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	UARPD	RPDLimit	Qual
Methyl (ert-butyl ether (MTBE)	28.94	2.5	40	0	72.3	64.5	133	0			
Benzene	24.18	0.5	20	3.293	104	8B.7	114	0			
Toluene	25.66	0.5	20	4.956	104	89.3	112	0			
Ethylbenzene	27.64	0.5	20	7.037	103	38.6	113	0			
Xylenes, Total	85.02	0.5	60	22.34	104	89.4	112	٥			
Surr: 4-Bromofivorobenzene	25.41	o	24	0	106	83.3	121	O			
Qualifiers: ND - Not Dete	ND - Not Detected at the Reporting Limit		s - Spi	S - Spike Recovery outside accepted recovery limits	accepted reco	overy limits		B - Analyte detected in the associated Method Blank	in the associa	iated Method E	llank
J - Analyte det	J - Analyte detected below quantitation limits	S	R - RF	R • RPD outside accepted recovery limits	ecovery limit	S					1

8/12

San Juan Refining 0504087 River Terrace Inve	San Juan Refining 0504087 River Terrace Investigation TP9-TP13	-TP13						QC SUN Sample I	C SUMMARY REPORT Sample Matrix Spike Duplicate	QC SUMMARY REPORT Sample Matrix Spike Duplicate	RT icate
0504087-01a msd	Batch ID: R15047	Test Code:	Code: SW8021	Units: ug/L		Analysis	Date 4/9/20	Analysis Date 4/9/2005 2:26:39 AM	Prep Date	Φ	
		Run ID:	PIDFID_050408A	08A		SeqNo:	350570	a			
	Result	Par	SPK value	SPK Ref Val	%REC	LawLimit	HighLimit	HighLimit RPD Ref Val	%RPD	RPOLimit	Qual
Methyl tert-butyl ether (MTBE)	28.3	2.5	40	0	70.7	64.5	133	28.94	2.25	28	
Ĩ	23.47	0.5	20	3.293	101	88.7	114	24.18	3.00	27	
	25.25	0.5	20	4.956	101	89.3	112	25,66	1.61	19	
	27.72	0.5	20	7.037	103	88.6	113	27.64	0.284	10	
	82.62	0.5	60	22.34	100	89.4	112	85.02	2.86	13	
Not Detec	ND - Not Detected at the Reporting Limit		s - Sp	S - Spike Recovery outside accepted recovery limits	le accepted reci	overy limits	H	B - Analyte detected in the associated Method Blank	in the associat	ted Method B	lank
alvte dete	1 - Analyte detected helow quantitation limits	mite	R-RJ	R - RPD outside accepted recovery limits	recovery limit	s					ڊ <i>ٺ</i>

F

9/12

CLIENT: San Ju	San Juan Refining						QCS	QC SUMMARY REPORT	MARY	REPO	RT
Work Order: 0504087 Project: River Te	0504087 River Terrace Investigation TP9-TP13	TP13					La	Laboratory Control Spike - generic	ontrol Sp	ike - ger	neric
											1
Sample ID LCS-7741	Batch ID: 7741	Test Code:	Code: SW8015	Units: mg/L		Analysis	Analysis Date 4/13/2005 5:53:08 AM	5:53:08 AM	Prep Date 4/11/2005	4/11/2005	
Client ID:		Run ID:	FID(17A) 2_050412A	50412A		SeqNo:	351426				
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	Ref Val	%RPD R	RPDLimit	Qual
Diesel Range Organics (DRO)	0) 6.687	-	2	0	134	81.2	149	0			
Sample ID LCSD-7741	Batch ID: 7741	Test Code:	Code: SW8015	Units: mg/L		Analysis	Analysis Date 4/13/2005 5:12:01 PM	5:12:01 PM	Prep Date 4/11/2005	4/11/2005	
Client ID:		Run ID:	FID(17A) 2_050412A	50412A		SeqNo:	351565				
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD	RPD Ref Val	%ярр R	RPDLimit	Qual
Diesel Range Organics (DRO)	0) 5.592	-	S	D	112	B1.2	149	6.687	17.8	23	
Sample ID GRO Ics 2.5ug	Batch ID: R15047	Test Code:	Code: SW8015	Units: mg/L		Anafysis	Analysis Date 4/9/2005 3:56:36 AM	:56:36 AM	Prep Date		
Client ID:		Run ID:	PIDFID_050408A	D 8 A		SeqNo:	350595				
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	Ref Val	%RPD R	RPDLimit	Qual
Gasoline Range Organics (GRO)	SRO) 0.4986	0.05	0.5	0	99.7	82.6	114	0			
Sample ID GRO Ics 2.5ug	Batch ID: R15061	Test Code:	Code: SW8015	Units: mg/L		Analysis	Analysis Date 4/12/2005 1:05:11 AM	1:05:11 AM	Prep Date		
Client ID:		Run ID:	PIDFID_050411A	11A		SeqNo:	350892				
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LawLimit	HighLimit	RPD Ref Val	%RPD R	RPDLimit	Ouai
Gasoline Range Organics (GRO)	SRO) 0.4896	0.05	0.5	0	97.9	82.6	114	a			

10/12

~

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

Qualifiers:

od Blank	sociated Meth	in the as	B - Analyte detected in the associated Method Blank		overy limits	e accepted rec	S - Spike Recovery outside accepted recovery limits	S - Spike Recovery outside accepted reco	ND - Not Detected at the Reporting Limit	ND - Not Detected at the Reporting Limit		Qualifiers;
			5	112	89.4	104	0	60	0.5	62.29	Fotal	Xylenes, Total
			5 0	211	89.0 7	011	0 (5 2	0.5	22.01	ene	
			0	112	89.3	3		20	!			thylbenz
			0	114		104	¢		0.5	20.71		oluene Ihylbenz
			ĉ		88.7	105 104	00	20	0.5 0.5	21.07 20.71		enzene oluene hylbenz
nit Qual	D RPDLimit	%RPD	c	133	64.5 88.7	96.5 105 104	000	40 20	2.5 0.5 0.5	38.6 21.07 20.71	Methyl tert-butyl ether (MTBE) Benzene Toluene	ethyl ter enzene oluene Ihylbenz
			RPD Ref Val	HighLimit 133	LowLimit 64.5 88.7	%REC 96.5 105	SPK Ref Val 0 0	SPK value 40 20	P.O.L. 2.5 0.5	Result 38.6 21.07 20.71	t-butyl ether (MTBE)	nalyte lethyl ter enzene oluene thytbenz
	Prep Date	Prep	PD Ref V	35086 HighLimit 133	SeqNo: LowLimit 64.5 88.7	%REC 96.5 105	K Ref V	PIDFID_050411A SPK value SP 40 20	Run ID: POL 2.5 0.5	Result 38.6 21.07 20.71	t-butyl ether (MTBE)	llent ID: nalyte ethyl ter enzene oluene
			05 11:04: PD Ref V		Analysis Date SeqNo: LowLimit High 64.5 88.7	%REC 96.5 105	nlts: µg	SWB021 PIDFID_0504 SPK value 40 20		Batch ID: R15061 Result 38.6 21.07 20.71) BTEX ics 100ng t-butyl ether (MTBE)	ample IC lent ID: nalyte ethyl ter anzene óluene hylbenz
			0 2005 11:04:48 PM 89 RPD Ref Val		89.4 Analysis SeqNo: CowLimit 64.5 88.7	97.2 %REC 96.5 105	nlts: µgu K Ref Va	50 SW8021 PIDFID_0504 SPK value 40 20	0.5 Test Code: Run ID: PQI 2.5 0.5	58.33 Batch ID: R15061 Result 38.6 21.07 20.71	Total D BTEX Ics 100ng t-butyl ether (MTBE)	/lenes, 1 ample IC llent ID: valyte ethyl ter anzene siuene siuene
			0 0 2005 11:04:48 PM 89 RPD Ref Val		88.6 89.4 Analysis SeqNo: 64.5 64.5 88.7	104 97.2 96.5 105	nlts: µg/ K Ref V	20 50 50 50 50 70 50 40 50 40 50 40 50 50 50 50 50 50 50 50 50 50 50 50 50	0.5 0.5 Run ID: P.Q.L 2.5 0.5	20.82 58.33 58.33 Batch ID: R15061 Result 38.6 21.07 20.71	ene Fotal D BTEX Ics 100ng t-butyl ether (MTBE)	/Jenez. /Jenes. 7 ample IC ample IC: alphe alphe ethyl ter snzene fluene fluene
			0 0 2005 11:04:48 PM 39 RPD Ref Val		89.3 88.5 89.4 Analysis SeqNo: CowLimit 64.5 88.7	98.6 104 97.2 97.2 96.5 105	nlts: µg. K Ref V:	20 20 50 500 500 700 800 700 800 800 800 800 800 800 8	0.5 0.5 0.5 0.5 Run ID: PQL 2.5 0.5	19.71 20.82 58.33 58.33 Batch ID: R15061 Result 38.6 21.07 20.71	ene Fotal D BTEX Ics 100ng t-butyl ether (MTBE)	Indene Invibuenz Invibuenz Intene Invibue Invibue Invibuenz Invibuenz Invibuenz
			0 0 2005 11:04:48 PM 39 RPD Ref Val		88.7 89.3 88.5 89.4 Analysis SeqNo: 5eqNo: 64.5 64.5 88.7	98.5 98.6 104 97.2 97.2 96.5 105	nlis: µg. K Ref V:	20 20 20 50 50 60 50 8 8 8 8 7 8 7 8 7 8 7 8 7 8 20 20 20	0.5 0.5 0.5 0.5 0.5 Run ID: PQL 2.5 0.5	19.64 19.71 20.82 58.33 58.33 Batch ID: R15061 Result 38.6 21.07 20.71	ene Fotal D BTEX Ics 100ng t-butyl ether (MTBE)	anzene iluene hylbenz Alenes, 1 ample IC ient ID: allyte sinzene sinzene viluene hylbenz
ht Qual	D RPDLimit		0 0 0 2005 11:04:48 PM 2005 11:04:48 PM 89 RPD Ref Val		64.5 88.7 89.3 89.4 89.4 Analysis SeqNo: LowLimit 64.5 88.7	90.3 98.2 98.6 104 97.2 97.2 96.5 105	nlis: µgu K Ref V	40 20 20 20 20 80 80 80 80 80 80 80 80 80 80 80 80 80	2.5 0.5 0.5 0.5 0.5 Test Code: Run ID: PQI 2.5 0.5	36.12 19.64 19.71 20.82 58.33 58.33 Batch ID: R15061 Result 23.6 21.07 20.71	Methyl tert-butyl ether (MTBE) Benzene Toluene Ethylbenzene Xylenes, Total Sample ID BTEX Ics 100ng Client ID: Analyte Analyte Methyl tert-butyl ether (MTBE) Benzene Toluene	ethyl ter anzene hylbenz hylbenz, ¹ flenes, ¹ lent ID: allyte sinzene sinzene bylbenz
		%RPD	RPD Ref Val 0 0 0 2005 11:04:48 PM 89 RPD Ref Val		LowLimit 64.5 88.7 88.5 89.4 89.4 Analysis SeqNo: LowLimit 64.5 88.7	%REC 90.3 98.6 104 97.2 97.2 96.5 105 105	K Ref Vc	SPK value 40 20 20 20 50 50 50 80 80 70 90 90 90 90 80 80 80 80 80 80 80 80 80 80 80 80 80	PQL 2.5 0.5 0.5 0.5 0.5 Run ID: PQL 2.5 0.5	Result 36.12 19.64 19.71 20.82 58.33 58.33 Batch ID: R15061 Result 23.6 21.07 20.71	t-butyl ether (MTBE) ene fotal D BTEX tcs 100ng t-butyl ether (MTBE)	alyte ethyl ter arzene hylbenz hylbenz Alenes, 1 lent ID: arrple IE ethyl ter sirzene biuene hylbenz
	Prep Date	%КР	8 RPD Ref Val 0 0 0 2005 11:04:48 PM 89 RPD Ref Val		SeqNo: LowLimit 64.5 88.7 88.3 88.6 89.4 Analysis SeqNo: LowLimit 64.5 88.7	%REC 90.3 98.6 104 97.2 96.5 105	K Ref Vc nlls: µg	PIDFID_050408A SPK value SP 20 20 20 20 60 60 50 80 80 80 80 80 80 80 80 80 80 80 80 80	Run ID: PQL 2.5 0.5 0.5 0.5 0.5 0.5 0.5 2.5 0.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Result 36.12 19.64 19.71 20.82 58.33 58.33 Batch ID: R15061 Result 23.07 21.07 20.71	t-bulyl ether (MTBE) ene fotal D BTEX ics 100ng t-butyl ether (MTBE)	ient ID: nalyte ethyl ter anzene hylbenz //enes, 7 //enes, 7 //enes, 7 /enes, 1 /enes, 1 /ene
Relicit		Prep %RP	4/8/2005 7:55:35 PM 350578 Jimit RPD Ref Val 114 0 112 0 112 0 113 0 112 0 113 0 112 0 113 0 112 0 113 0 112 0 113 0 112 0 113 0 112 0 113 0 112 0 113 0 112 0 112 0 113 0 0 0	Date 4/8/2 35057 HighLimit 133 114 112 112 112 113 35086 HighLimit HighLimit	Analysis Date SeqNo: LowLimit Highl 64.5 88.7 88.3 88.6 89.4 89.4 Analysis Date SeqNo: LowLimit Highl 64.5 88.7	%REC 90.3 98.6 104 97.2 96.5 105 105	nits: pg K. Ref V: nits: pg	SW8021 PIDFID_0504 SPK value 40 20 20 20 20 50 60 50 8021 PIDFID_0504 8PIDFID_0504 20 20 20	Test Code: Run ID: PQL 2.5 0.5 0.5 0.5 0.5 Run ID: Run ID: 2.5 0.5	Batch ID: R15047 Result 36.12 19.64 19.71 20.82 58.33 Batch ID: R15061 Result Result 20.71 20.71	D BTEX Ics 100ng t-butyl ether (MTBE) ene fotal D BTEX Ics 100ng t-butyl ether (MTBE)	ample IC ient ID: nalyte ethyl ter nazene hylbenz //enes, ' /enes, ' ample IC invibenz arryte ethyl ter sirzene biuene
oneneo	and a	Prep		Date 4/8/2 35057 HighLimit 113 113 112 112 112 Date 4/11/ Date 4/11/ Date 4/11/ 133	Analysis SeqNo: 54.5 64.5 89.3 88.6 89.4 89.4 Analysis SeqNo: LowLimit 64.5 88.7	%REC 90.3 98.2 98.5 104 97.2 96.5 105	nits: µg/ K Ref V: K Ref V:	SW8021 PIDFID_0504 SPK value 40 20 20 20 20 80021 PIDFID_0504 80521 20 50 20 50 20 50 20 20 20 20 20 20 20 20 20 20 20 20 20		River Terrace Investigation TP9-TP13 a 100ng Batch ID: R15047 Tesl Result (MTBE) 36.12 19.64 19.71 20.82 58.33 58.33 51.00ng Batch ID: R15061 Tesl Run Result r (MTBE) 38.6 21.07 20.71	River Te BTEX Ics 100ng (-butyl ether (MTBE) ene fotal D BTEX Ics 100ng -t-butyl ether (MTBE)	roject: ample IC ient ID: alyte ethyl ter ihylbenz ylenes, 1 alytens, 1 itent ID: tert ID: tert ter ethyl ter ethyl ter ethyl ter invibenz
	ol Spike -	Prep	Laboratory Control Spike - generic 8 RPD Ref Val %RPD RPDLimit Qual 0 0 0 0 0 0 0 0 0 0 0 2005 11:04:48 PM Prep Date 89 RPD Ref Val %RPD APDLimit Qual	Date 4/8/2 35057 HighLimit 114 114 112 112 113 35086 HighLimit	Analysis SeqNo: LowLimit 64.5 88.7 89.3 89.4 Analysis SeqNo: LowLimit 64.5 88.7 88.7	%REC 90.3 98.6 104 97.2 96.5 105 105	nits: µgu K Ref Vc K Ref Vc	SW8021 FIDFID_0504 SPK value 20 20 20 20 50 8W8021 FIDFID_0504 20 20 20 20 20 20 20 20 20 20 20 20 20		0504087 River Terrace Investigation TP9- s 100ng Batch ID: R15047 Result (MTBE) 36.12 19.64 19.71 20.82 58.33 58.33 58.33 58.01 Result Result r (MTBE) 38.6	rder: 0504087 River Te River Te t-butyl ether (MTBE) ene fotal D BTEX Ics 100ng D BTEX Ics 100ng t-butyl ether (MTBE)	Work Order: Project: Sample ID BTE Client ID: Analyte Methyl tert-butyl Benzene Toluene Ethylbenzene Xylenes, Total Sample ID BTE Client ID: Analyte Client ID: Analyte Client ID: Analyte Ethylbenzene Ethylbenzene Ethylbenzene

1

11/12

Hall Environmental Analysis Laboratory

	Sample Receipt Ch	ecklist	
Client Name SJR		Date and Time Received:	4/8/2005
Work Order Number 0504087		Received by GLS	
Checklist completed by Signature	PPC 4-8 Daie	8-05	
Matrix	arrier name <u>UPS</u>		
Shipping container/cooler in good condition?	Yes 🗹	No 🗌 Not Present 🗌]
Custody seals intact on shipping container/cooler?	Yes 🗌	No 🗆 Not Present 🗹] Not Shipped 🗌
Custody seals intact on sample bottles?	Yes 🗌	No 🗖 N/A 🗹	1
Chain of custody present?	Yes 🔽	No 🗖	
Chain of custody signed when relinquished and received	? Yes 🗹	No 🗔	
Chain of custody agrees with sample labels?	Yes 🗹	No	
Samples in proper container/bottle?	Yes 🔽	No 🗖	
Sample containers intact?	Yes 🔽	No 🗔	
Sufficient sample volume for indicated test?	Yes 🗹	No 🗍	
All samples received within holding time?	Yes 🔽	No 🗆	
Water - VOA vials have zero headspace? No V	DA vials submitted	Yes 🗹 No 🗌	
Water - pH acceptable upon receipt?	Yes 🗍	No □ N/A 🗹	
Container/Temp Blank temperature?	3°	4° C ± 2 Acceptable If given sufficient time to cool.	
COMMENTS:			
=======================================			
Client contacted Date of	ontacted:	Person contacted	
Contacted by: Regard	ing		
Comments:	an 18 de feis al e constante e constante de 1 8 de secondo de 18 anis anos est		
Corrective Action			

	(V no Y) sosqabseH no asldduB niA			
HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 Tel. 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com				
HALL ENVIRONME ANALYSIS LABOR 4901 Hawkins NE, Suite D Albuquerque, New Mexico 8 Tel, 505.345.3975 Fax 50 www.hallervironmental.com	(AOV) 80358 (AOV-im92) 0758			
ILAE NE, S B975 nment	(S808) 2'809 \ Pesticides / PC8			
HALL ENVIRC ANALYSIS LA 4901 Hawkins NE. Albuquerque, New N Tel. 505.345.3975 www.hallenvironmer NALYSIS REO	Aniona (F, Cl, NO ₃ , NO ₂ , PO ₄ , SO ₄)			
ALL I JALL J JALL J JAL JAL J JAL JAL J JAL JAL JAL JAL JAL JAL JAL JAL JAL JAL	(HAA oo AVA) 88.00 (PAB of AB) AB)			
	EDC (Method 8021)			
	(1.402 bodtaM) 803			
	TPH Method 80158 (Gas/Diesel) TPH (Method 418.1)	xx	XXX	
	BTEX + MTBE + TPH (Gasol) Hot + X3TB			;;y
	(1508) 2 . 2. 2. 2. 1 8	XX	XXX	Hemarks:
Dther: Project Name: Project Name: Project Name: Project Marce Twest Forthory Project #:	Project Manager: Sampler, A. V. Made / Magla Fo /L Sample Temperature: / Sample Temperat		4-104 × 4-10A × 4-10A × 1-10A ×	Received by: (Signature)
CHAIN-OF-CUSTODY RECORD Dient: Stud Man Refunction		, 10 cm	11-97 21-97	Relinquished By: (Signature) Relinquished By: (Signature)
CHAIN-OF-CU Dient:Si JJMan	Blann	2pm 220pm	120pm	Time: 330 m
CHAIN- Dient:	Phone #	4040L		Horie Date: Date:

APPENDIX C

VCM Equipment Data Sheets

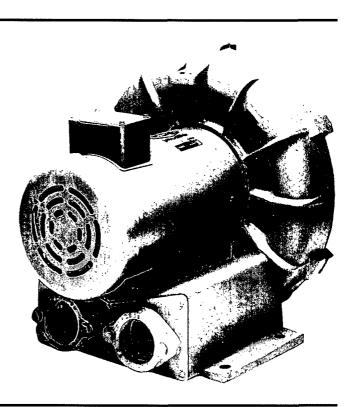
ROTRON® Regenerative Blowers

DR 808 & CP 808 **Regenerative Blower**

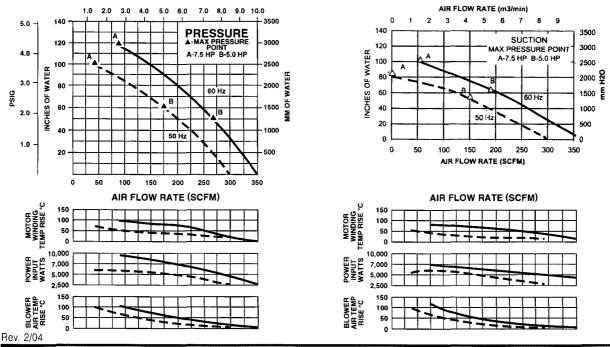
FEATURES

- · Manufactured in the USA ISO 9001 compliant
- · CE compliant Declaration of Conformity on file
- Maximum flow: 350 SCFM
- Maximum pressure: 116 IWG
- Maximum vacuum: 6.9" Hg (93.9 IWG)
 Standard motor: 7.5 HP, TEFC
- · Cast aluminum blower housing, impeller & cover; cast iron flanges (threaded)
- UL & CSA approved motor with permanently sealed ball bearings
- Inlet & outlet internal muffling
- Quiet operation within OSHA standards

MOTOR OPTIONS


- International voltage & frequency (Hz)
- · Chemical duty, high efficiency, inverter duty or industry-specific designs
- · Various horsepowers for application-specific needs

BLOWER OPTIONS


- · Corrosion resistant surface treatments & sealing options
- · Remote drive (motorless) models
- · Slip-on or face flanges for application-specific needs

ACCESSORIES (See Catalog Accessory Section)

- Flowmeters reading in SCFM
- Filters & moisture separators
- Pressure gauges, vacuum gauges & relief valves
- Switches air flow, pressure, vacuum or temperature
- External mufflers for additional silencing
- Air knives (used on blow-off applications)
- Variable frequency drive package

BLOWER PERFORMANCE AT STANDARD CONDITIONS AIR FLOW RATE (M3/MIN)

AMETEK Technical and Industrial Products, Kent, OH 44240 • e mail: rotronindustrial@ametek.com • internet: www.ametektmd.com

ROTRON® Regenerative Blowers

DR 808 & CP 808 Regenerative Blower

SPECIFICATIONS

MODEL	DR808AY72MX	DR808AY86MX	DR808D89MX	CP808FG72MXLR	HiE808AY72MX
Part No.	038722	038724	038725	038734	038728
Motor Enclosure – Shaft Material	TEFC – CS	TEFC - CS	TEFC – CS	Chem TEFC - SS	TEFC – CS
Horsepower	7.5	7.5	5.0	Same as	
Voltage 1	230/460	575	230/460	DR808AY72MX -	
Phase – Frequency 1	Three - 60 Hz	Three - 60 Hz	Three - 60 Hz	038722	Same as
Insulation Class ²	F	F	F		DR808AY72MX -
NEMA Rated Motor Amps	22.2/11.1	7.2	17.3-15.6/7.8	except add Chemical Processing	038722
Service Factor	1.15	1.15	1.15		except add High Efficiency
Locked Rotor Amps	120/60	60	152/76] (CP)	motor
Max. Blower Amps 3	27.0/13.5	10.8	17.0/8.5	features	motor
Recommended NEMA Starter Size	1/1	1	1/0	from catalog	
Shipping Weight	294 lb (134 kg)	262 lb (119 kg)	294 lb (134 kg)	inside front cover	

¹ Rotron motors are designed to handle a broad range of world voltages and power supply variations. Our dual voltage 3 phase motors are factory tested and certified to operate on both: 208-230/415-460 VAC-3 ph-60 Hz and 190-208/380-415 VAC-3 ph-50 Hz. Our dual voltage 1 phase motors are factory tested and certified to operate on both: 104-115/208-230 VAC-1 ph-60 Hz and 100-110/200-220 VAC-1 ph-50 Hz. All voltages above can handle a ±10% voltage fluctuation. Special wound motors can be ordered for voltages outside our certified range.

² Maximum operating temperature: Motor winding temperature (winding rise plus ambient) should not exceed 140°C for Class F rated motors or 120°C for Class B rated motors. Blower outlet air temperature should not exceed 140°C (air temperature rise plus inlet temperature). Performance curve maximum pressure and suction points are based on a 40°C inlet and ambient temperature. Consult factory for inlet or ambient temperatures above 40°C.

³ Maximum blower amps corresponds to the performance point at which the motor or blower temperature rise with a 40°C inlet and/or ambient temperature reaches the maximum operating temperature.

Specifications subject to change without notice. Please consult your Local Field Sales Engineer for specification updates.

AMETEK Technical and Industrial Products, Kent, OH 44240 • e mail: rotronindustrial@ametek.com • internet: www.ametektmd.com

Rev. 2/04 **B-32**

USFILTER WESTATES CARBON ASC-SERIES LOW PRESSURE LIQUID PHASE ADSORBERS

- Rugged carbon steel construction; internally/ externally welded seams
- SSPC-SP5 surface preparation, fusion bonded epoxy internal lining: rust preventative/urethane exterior coat. (ASC-1000/2000)
- Approved for the transport of hazardous spent carbon
- ASC-1000/2000 can be easily moved with a forklift
- Adapters are available to reduce the inlet/outlet to 1" FNPT (ASC-2000) and 2" FNPT (ASC-1000/2000)
- Cartridge and bag prefilters available
- ASC-1000/2000's available for rental or purchase
- Piping Manifold (Optional)
- 2"/3" sch 80 PVC piping and valves (optional carbon steel and stainless steel piping)
- Series or parallel operation.
- Clean utility water connection for manual backflush.
- Sampling ports and pressure gauges
- Flexible hoses with Kamlock fittings allow easy installation and removal during service exchange operations.

ASC-Series Adsorbers are designed to provide uniform water flow for consistent treatment and to ensure efficient carbon usage. The ASC-Series Adsorbers can be cost effectively used in applications including:

- Groundwater remediation
- Wastewater filtration
- Pilot testing
- Leachate treatment
- Dechlorination
- Spill cleanup

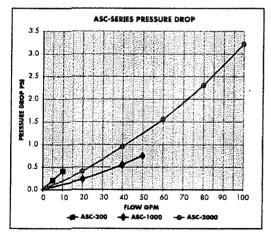
Installation, Start Up and Operation

The ASC-Series Adsorbers are shipped filled with dry activated carbon that must be properly wetted and deaerated prior to use.

Your USFilter sales representative can assist with details on installation, preferred operating conditions and carbon usage calculations using our extensive isotherm database.

At the time of purchase or rental of the ASC-Series Adsorbers, arrangements should be made for the reactivation of the spent carbon. USFilter Westates will provide instructions and assistance to obtain acceptance of RCRA or non-RCRA spent carbon for reactivation.

ASC-Series Adsorbers must be drained and the inlet/outlet plugged prior to shipment. Spent carbon cannot be received until the acceptance process has been completed.



DATA SHEET

ASC-SERIES LOW PRESSURE LIQUID PHASE ADSORBERS

SPECIFICATIONS							
	ASC-200	ASC-1000	ASC-2000				
Dimensions, diameter x overall height	22" x 34"	48" x 56"	48" x 96"				
Vessel Construction	Carbon Steel	Carbon Steel	Carbon Steel				
Inlet/Outlet Connection	2" FNPT/2"MNPT	4" FNPT	4" FNPT				
Manway	Тор	18*	16"				
Internal Piping	PVC	PVC	PVC				
Interior Coating	Ероху	Fusion Banded Epoxy	Fusion Bonded Epoxy				
Exterior Coating	Enamel	Epoxy/Urethane	Epoxy/Urethane				
Carbon Bed Volume (cu.ft.)	6.8	34	68				
Cross Section (sq.ft.)	2.6	12.3	12.3				
Vessel Weight (lbs.):							
Shipping (carbon)	250	1890	3190				
Operating (approx)	500	4280	7250				
Flow, gpm (max)	10	50	100				
Pressure, psig (max)	3	25	25				
Temperature °F. (max)	140°	140°	140°				
Pounds of Carbon	200	1000	2000				
Contact time @ max flow/min:	5.1	5.1	5.2				
Backflush rates (GPM)	15	75	75				

For detailed specifications or dimensional information or drawings, contact your local USFilter Westates sales representative.

All information presented herein is believed reliable and in accordance with accepted engineering practice. USFilter Westates makes no warranties as to completeness of information. Users are responsible for evaluating individual product suitability for specific applications. USFilter Westates assumes no liability whatsoever for any special, indirect or consequential damages arising from the sale, resale or misuse of its products.

USFilter reserves the right to change the specifications referred to in this literature at any time, without prior notice. ASC-Series is a trademark of United States Filter Corporation or its affiliates.

WS-AQSB-DS-0704

Westates Customer and Technical Service Network:

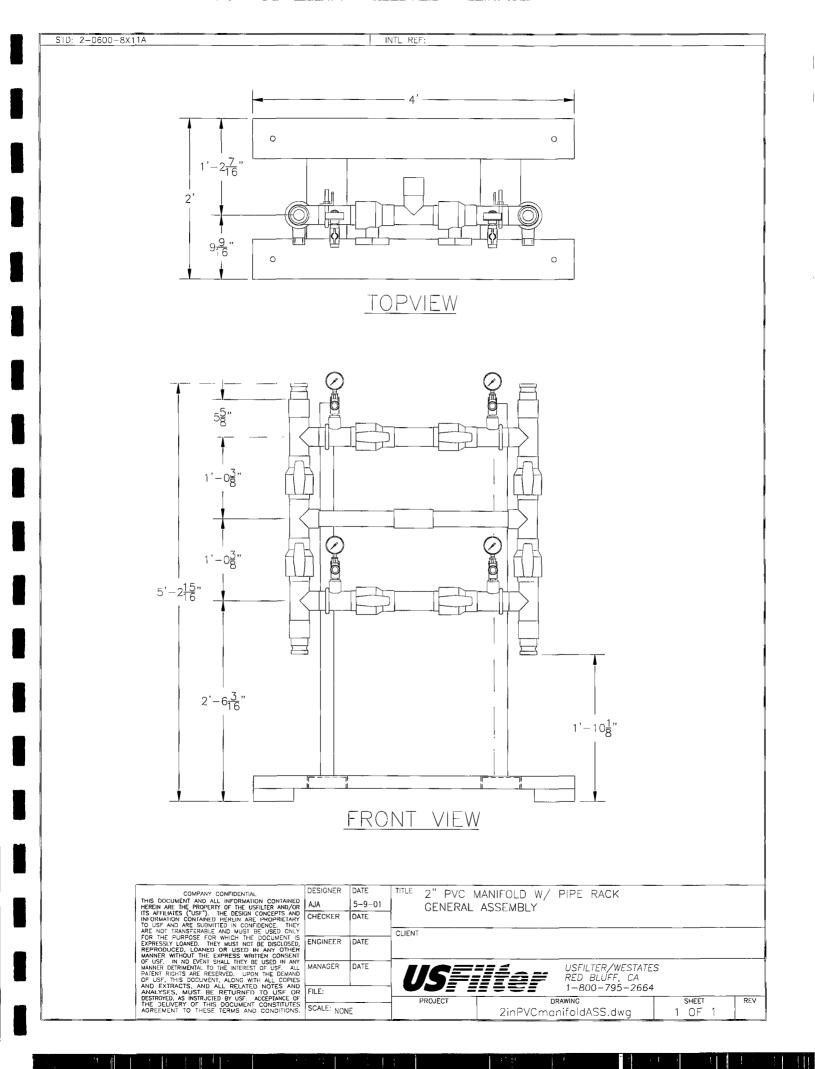
 Gulf Coast Region
 800.659.1723

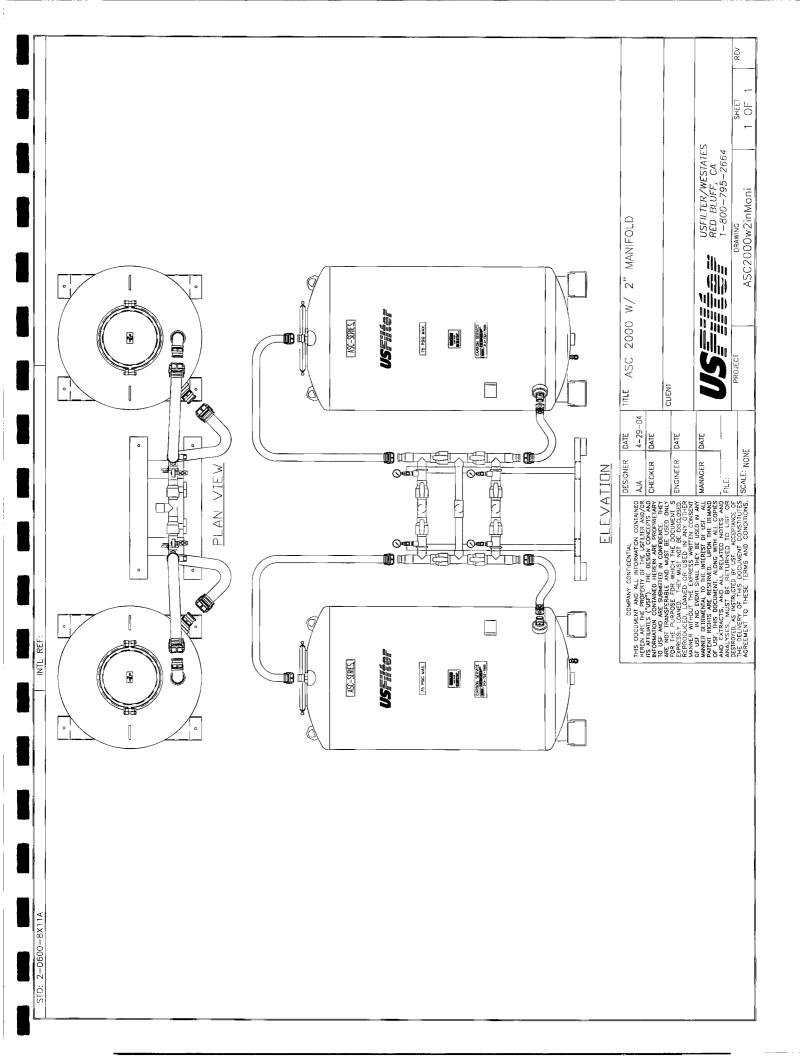
 (Louisiana)
 225.744.3153

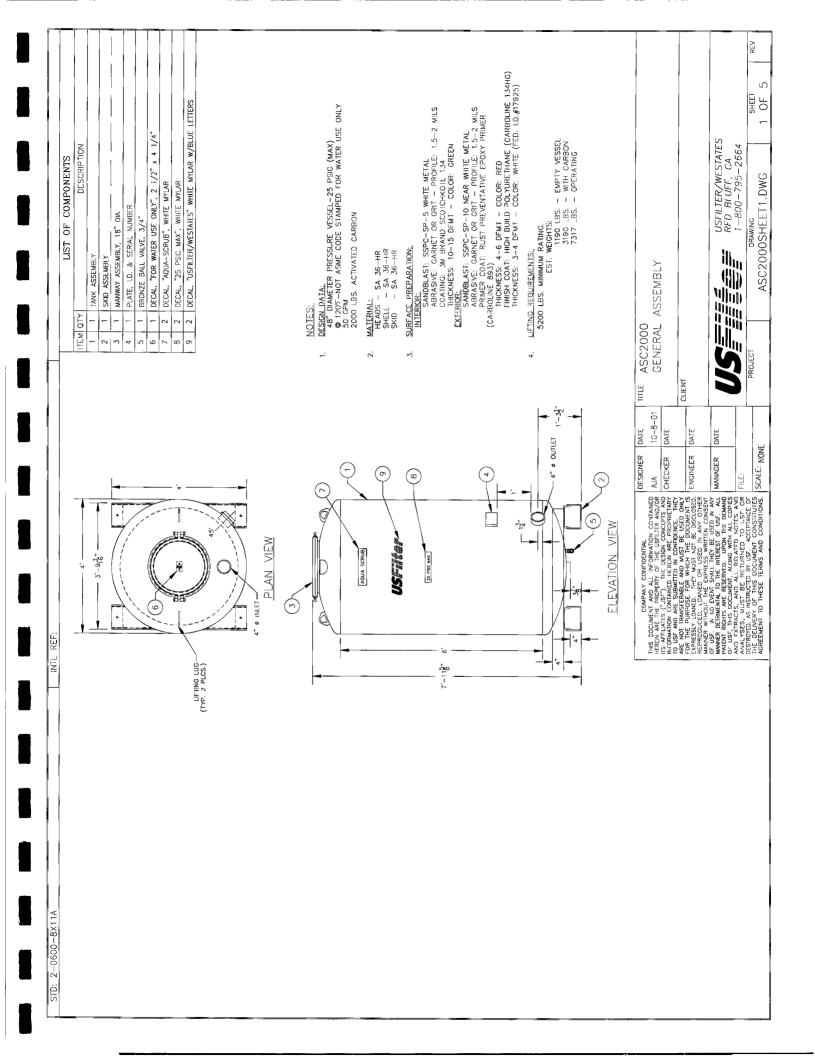
 Southwest Region
 800.659.1771

 Mid-Atlantic Region
 800.659.1717

 Midwest Region
 708.345.7290


 Northwest Region
 800.659.1718


 Southeast Region
 800.659.1718


 Southeast Region
 800.659.1717

www.usfilter.com

©2004 United States Filter Corporation

Westates 11711 Reading Road Red Bluff, CA 96080

Telephone (530) 527-2664 Facsimile (530) 527-8724

> WENDI water company

ASC2000

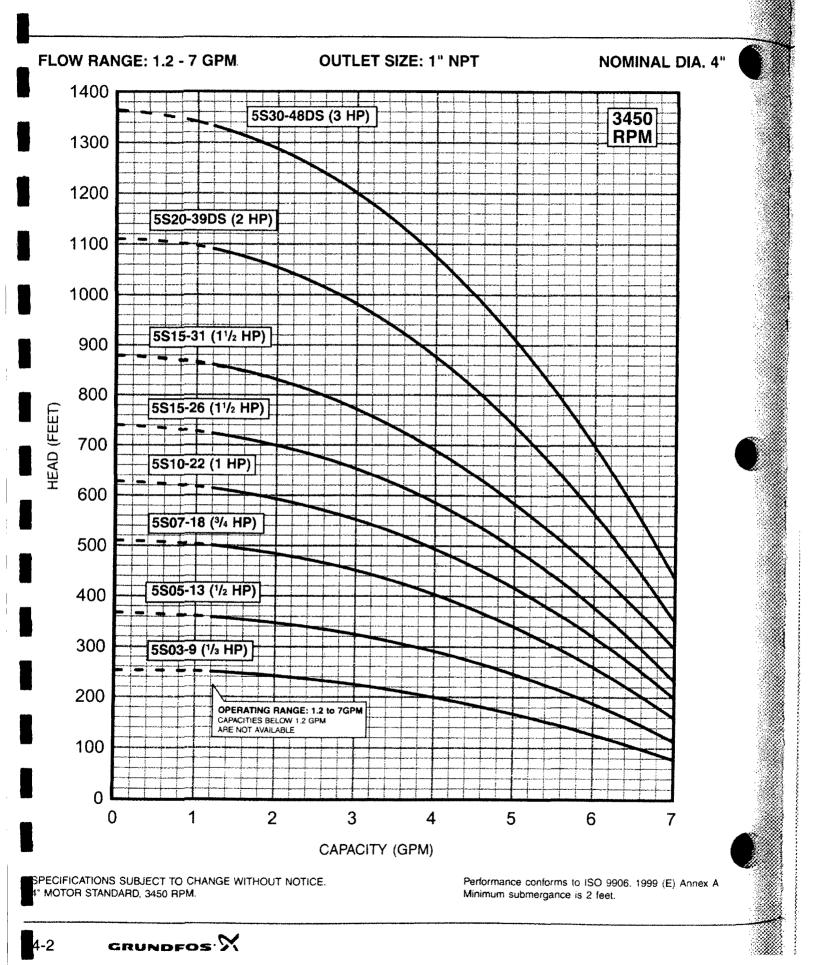
SPECIFICATION SUMMARY

ASC2000 Liquid Phase Adsorption Systems are designed to treat a wide range of contaminated process streams. With piping and valves can be configured for series, parallel, or vessel isolation flows. The adsorber is equipped with a carbon retention system capable of maximum flow rate of 100 gpm.

EACH VESSEL:

Vessel Diameter	48"
Side Shell Height	
Overall Height (Approx.)	
Total Empty Weight / Vessel	
Maximum Working Pressure	15 psig @ 150 °F
Manway at head	
Vessel Volume	660 gal.
Carbon Capacity	
Carbon Bed Volume-Typical	
Maximum Flow	
Empty Bed Contact Time	
Material	
Supports	Skid mounted
Lifting	Lifting Lugs
Seismic	
Interior Surface Prep	
Interior Surface Coating	
Exterior Surface Primer Carboline 893 Rust	•
Exterior Surface CoatingCarboline 134 H	•
Standard Color	White (Federal Standard 17925)

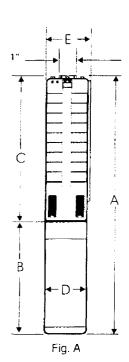
CONNECTIONS:


Influent and Effluent	.4" FNPT (SS)
-----------------------	---------------

SCREEN:

WEIGHT:

Shipping weight (vessel)	1,190 lb
Operating weight (vessel & carbon)	3,190 lb


MODEL 5S

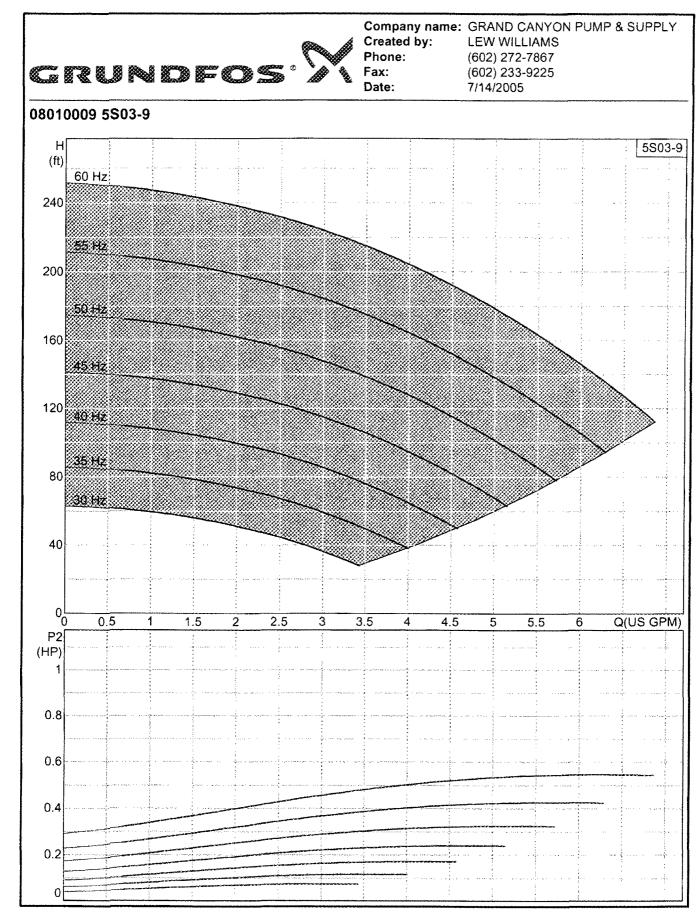
DIMENSIONS AND WEIGHTS

			MOTOR	DISCH.	DIMENSIONS IN INCHES					APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	A	В	С	D	ε	SHIP WT.
5S03-9	A	1/3	4"	1" NPT	22.3	8.8	13.5	3.8	3.9	27
5S05-13	A	1/2	4"	1" NPT	26.4	9.5	16.9	3.8	3.9	31
5S07-18	A	3/4	4"	1" NPT	31.7	10.7	21.0	3.8	3.9	34
5S10-22	A	1	4"	1" NPT	36.1	11.8	24.3	3.8	3.9	42
5S15-26	A	1 1/2	4"	1" NPT	41.2	13.6	27.6	3.8	3.9	46
5S15-31	A	1 1/2	4"	1" NPT	47.1	13.6	33.5	3.8	3.9	58
5S20-39DS	A	2	4"	1" NPT	55.2	15.1	40.1	3.8	3.9	65
5S30-48DS	A	3	4"	1" NPT	70.0	20.6	45.8	3.8	3.9	90

NOTES: All models suitable for use in 4" wells Weights include pump end with motor in lbs.

MATERIALS OF CONSTRUCTION

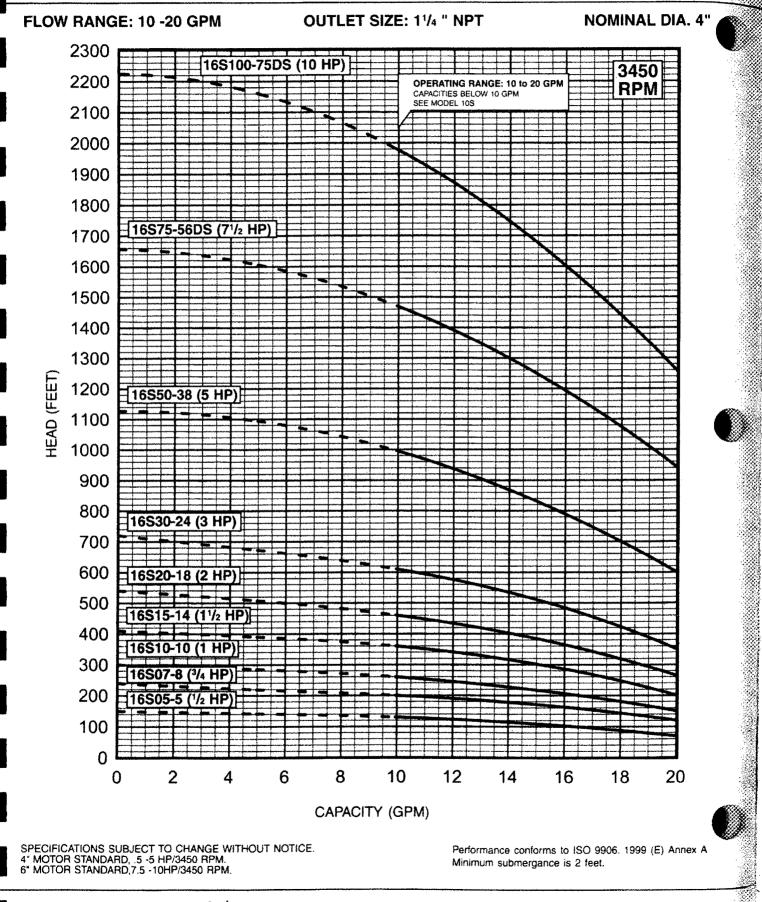
COMPONENT	SPLINED SHAFT (9-26 Stgs.)	CYLINDRICAL SHAFT (31-48 Stgs.)
Check Valve Housing	304 Stainless Steel	304 Stainless Steet
Check Valve	304 Stainless Steel	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel	304 Stainless Steel
Impeller	304 Stainless Steel	304 Stainless Steel
Suction Interconnector	304 Stainless Steel	304 Stainless Steel
Inlet Screen	304 Stainless Steel	304 Stainless Steel
Pump Shaft	304 Stainless Steel	431 Stainless Steel
Straps	304 Stainless Steel	304 Stainless Steel
Cable Guard	304 Stainless Steel	304 Stainless Steel
Priming Inducer	304 Stainless Steel	316 Stainless Steel
Coupling	329/420/431 Stainless Steel	329/420/431 Stainless Steel
Check Valve Seat	NBR/304 Stainless Steel	NBR/316 Stainless Steel
Top Bearing	NBR/304 Stainless Steel	NBR/316 Stainless Steel
Impeller Seal Ring	NBR/PBT (Valox®)	NBR/PPS (Ryton®)
Intermediate Bearings	NBR	304 Stainless Steel
Shaft Washer	Not Required	LCP (Vectra®)
Split Cone	Not Required	304 Stainless Steel
Split Cone Nut	Not Required	316 Stainless Steel


NOTES: Specifications subject to change without notice.

Valox® is a registered trademark of General Electric Co.

Vectra® is a registered trademark of Hoechast Calanese Corporation.

Ryton® is a registered trademark of Phillips 66.

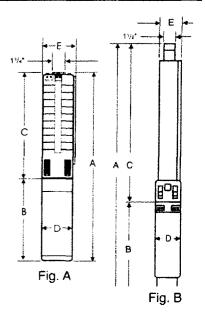


1/1

16 GPM

GRUNDFOS

4-8


DIMENSIONS AND WEIGHTS

	T		MOTOR	DISCH.	DISCH. DIMENSIONS IN INCHES					APPROX.
MODEL NO.	FIG.	HP	SIZE	SIZE	A	В	С	D	E	SHIP WT.
16S05-5	A	1/2	4"	1 1/4" NPT	19.7	9.5	10.2	3.8	3.9	27
16S07-8	A	3/4	4°	1 1/4" NPT	23.4	10.7	12.7	3.8	3.9	29
16S10-10	A	1	4"	1 1/4" NPT	26.2	11.8	14.4	3.8	3.9	32
16S15-14	A	1 1/2	4"	1 1/4" NPT	32.8	15.1	17.7	3.8	3.9	36
16S20-18	A	2	4"	1 1/4" NPT	36.0	15.1	20.9	3.8	3.9	40
16S30-24	A	3	4"	1 1/4" NPT	46.5	20.6	25.9	3.8	3.9	64
16S50-38	A	5	4"	1 1/4" NPT	61.1	23.6	37.5	3.8	3.9	94
16S75-56DS*	В	7 1/2	6"	1 1/4" MPT	93.0	24.2	68.8	5.4	4.6	220
16S100-75DS*	В	10	6"	1 1/4" MPT	109.9	25.4	84.5	5.4	4.6	245

NOTES: All models suitable for use in 4" wells, unless otherwise noted.

Weights include pump end with motor in lbs.

* Built into sleeve 11/4" MPT discharge, 6" min. well dia.

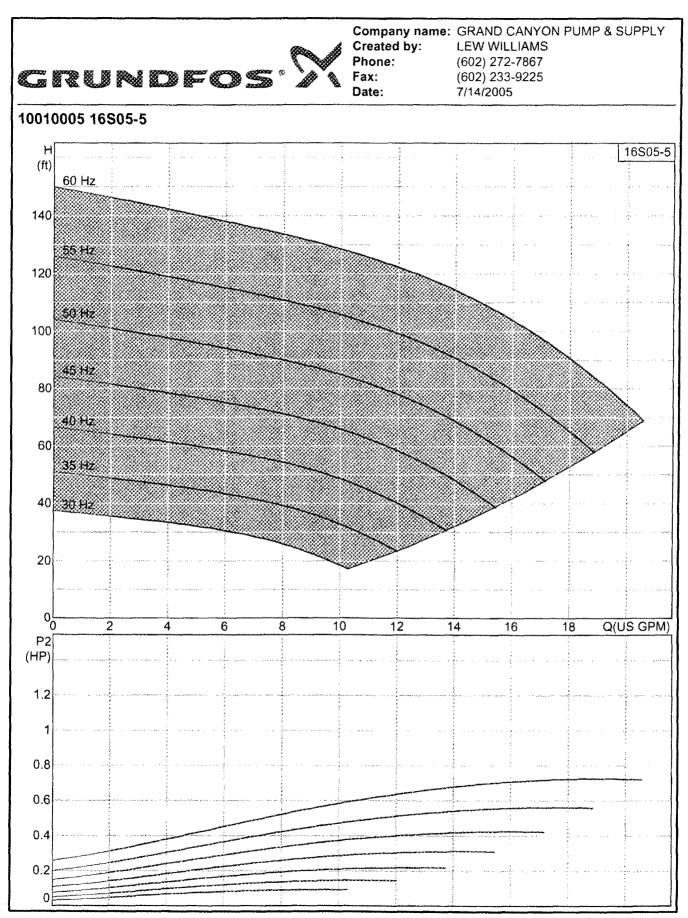
MATERIALS OF CONSTRUCTION

COMPONENT	SPLINED SHAFT (5-24 Stgs.)	CYLINDRICAL SHAFT (38 Stgs.)	DEEP SET (56-75 Stgs)
Check Valve Housing	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Check Valve	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Diffuser Chamber	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Impeller	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Suction Interconnector	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Inlet Screen	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Pump Shaft	304 Stainless Steel	431 Stainless Steel	431 Stainless Steel
Straps	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Cable Guard	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Priming Inducer	304 Stainless Steel	304 Stainless Steel	304 Stainless Steel
Coupling	316/431 Stainless Steel	316/431 Stainless Steel	329/416 Stainless Steel**
Check Valve Seat	NBR/304 Stainless Steel	NBR/316 Stainless Steel	NBR/316 Stainless Steel
Top Bearing	NBR	NBR/316 Stainless Steel	NBR/316 Stainless Steel
Impeller Seal Ring	NBR/PBT (Valox®)	NBR/PPS (Ryton®)	NBR/PPS (Ryton®)
Intermediate Bearings	NBR	304 Stainless Steel	NBR/316 Stainless Steel
Shaft Washer	Not Required	LCP (Vectra®)	LCP (Vectra®)
Split Cone	Not Required	304 Stainless Steel	304 Stainless Steel
Split Cone Nut	Not Required	316 Stainless Steel	304 Stainless Steel
Sleeve	Not Required	Not Required	316 Stainless Steel
Sleeve Flange	Not Required	Not Required	304 Stainless Steel
Coupling Key	Not Required	Not Required	302/304 Stainless Steel**

NOTES: Specifications are subject to change without notice.

Valox® is a registered trademark of General Electric Co.

Vectra® is a registered trademark of Hoechast Calanese Corporation.


Ryton® is a registered trademark of Phillips 66.

*Stainless Steel option available.

** If using 4" non-standard motors, refer to 329/420/431 Stainless Steel for coupling. A coupling key is not required.

1/1