GW - 52

MONITORING REPORTS

June 30, 1999

Mr. William C. Olson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, New Mexico 87505

RE: Phase IV Assessment Report, Ground Water Monitoring Report, & Phase V Ground Water Assessment Work Plan Compressor Station No. 9 -- Roswell, NM Transwestern Pipeline Company Enron Gas Pipeline Group P. O. Box 1188 Houston, TX 77251-1188

RECEIVED

JUL 0 2 1999

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Dear Bill,

Enclosed for your review is the Phase IV Assessment Report, Ground Water Monitoring Report, and Phase V Ground Water Assessment Work Plan for the subject facility.

If you have any questions or comments regarding this report and work plan, please contact me at (713) 646-7644 or George Robinson at (713) 646-7327.

Sincerely,

enduit

Bill Kendrick Director, Environmental Affairs

gcr/BK

c w/attachment: Larry Campbell George Robinson Transwestern Pipeline Company Cypress Engineering

Natural gas. Electricity. Endless possibilities.

PHASE IV ASSESSMENT REPORT, GROUND WATER MONITORING REPORT, & PHASE V ASSESSMENT WORK PLAN FOR

ROSWELL COMPRESSOR STATION NO. 9

Volume I: Report Text, Figures, Tables, & Attachments #1 - #3

> **Prepared for:** Transwestern Pipeline Company

Prepared by: Cypress Engineering Services, Inc. 10235 West Little York Road, Suite 256 Houston, TX 77040

June 1, 1999

TABLE OF CONTENTS

Section

Page

I.

I.

1. INTRODUCTION
2. PHASE IV SOIL ASSESSMENT ACTIVITIES 2 2.1 Characterization of Affected Soil for Remedial Measures Study 2 2.2 Determination of Site-Specific Background Metals Concentrations in Soil 2 2.2.1 Constituents subject to evaluation 2 2.2.2 Soil sampling program 2 2.2.3 Laboratory Results for Background Soil Samples 3 2.2.4 Determination of Mean and Variance 4
 PHASE IV GROUND WATER ASSESSMENT ACTIVITIES
4. RESULTS OF ROUTINE GROUND WATER MONITORING 6 4.1 Quarterly Ground Water Sampling Events 6 4.2 Results/Conclusions from Ground Water Sampling Events 6 4.2.1 Occurrence and Direction of Ground Water Flow 6 4.2.2 Lateral Extent of Phase Separated Hydrocarbon 7 4.3 Condition of Affected Ground Water 7 4.3 Planned Changes to the Ground Water Monitoring Program 12 4.3.1 Inclusion of Additional Monitor Wells 12 4.3.2 Disposal of Monitor Well Purge Water 12 4.3.3 Sampling Frequency 13 4.3.4 Sample Analysis Plan 14 4.3.5 Routine Reporting of Monitoring Activities 14
5. PHASE V GROUND WATER ASSESSMENT PLAN155.1 Installation of Additional Ground Water Monitor Wells155.2 Monitor Well Development Procedures165.3 Ground Water Sampling Procedures175.4 Decontamination Procedures185.5 Management of Investigation-Derived Wastes195.6 Reporting Requirements19

LIST OF FIGURES

Figure

- 1 Monitor Well and Soil Boring Locations
- 2 Potentiometric Surface Elevations in the Uppermost Aquifer October 11, 1998
- 3 Potentiometric Surface Elevations in the Regional Aquifer October 19, 1998
- 4 Potentiometric Surface Elevations in the Regional Aquifer December 21, 1998
- 5 Distribution of Dissolved Phase Organics in the Uppermost Aquifer March, 1999
- 6 Distribution of Dissolved Phase Inorganics in the Uppermost Aquifer March, 1999
- 7 Locations of Proposed Monitor Wells in the Uppermost Aquifer

LIST OF TABLES

Table

- 1 Summary of Ground Water Surface Elevations
- 2 Summary of Ground Water Analyses Organics
- 3 Summary of Ground Water Analyses Inorganics
- 4 Summary of Analytical Results for Additional Organic Compounds Not Listed in Table 2
- 5 Summary of Field Measured Parameters
- 6 Summary of Well Construction Details
- 7 Summary of Abandoned Soil Borings
- 8 Summary of Analytical Results for Phase IV Assessment Soil Samples
- 9 Summary of Analytical Results for Background Soil Samples
- 10 Summary of Detection Frequency for Metal Constituents in Ground Water

LIST OF ATTACHMENTS

Report Volume I

- 1 Soil Boring Log and Well Completion Details for the Additional Monitor Wells
- 2 Completed State Engineer Well Record Forms for the Additional Monitor Wells
- 3 Soil Boring Logs for the Background Soil Sample Soil Borings

Report Volume II

- 4 Laboratory Reports for the May 1998 Ground Water Sampling Event
- 5 Laboratory Reports for the May 1998 Off Site Water Well Sampling Event
- 6 Laboratory Reports for the August 1998 Ground Water Sampling Event

Report Volume III

- 7 Laboratory Reports for the September 1998 Monitor Well Soil Borings and Background Soil Samples
- 8 Laboratory Reports for the October 1998 Ground Water Sampling Event
- 9 Laboratory Reports for the December 1998 Ground Water Sampling Event
- 10 Laboratory Reports for the March 1999 Ground Water Sampling Event

1. INTRODUCTION

This report and work plan has been prepared for the continued investigation and evaluation of hydrocarbon affected soil and ground water at Transwestern Pipeline Company's (TPC) Roswell Compressor Station No. 9.

A phased approach has been implemented for the assessment of potentially affected soil and ground water at the site. In general, the objective of Phase I, completed in August 1995, was to characterize the nature of affected soil immediately beneath the former impoundments. The objective of Phase II of investigation, completed in September 1996, was to evaluate two additional potential source areas and to further assess the lateral and vertical extent of affected soil and ground water. The objective of Phase III of investigation, completed in August 1997, and Phase IV of investigation, completed in September 1998, was to further assess the lateral and vertical extent of affected soil and ground water. The objective of Phase V of investigation will be to complete the assessment of the lateral extent of affected ground water. This phase will include the installation of three additional shallow ground water monitor wells within the uppermost aquifer. Subsequent phases may be required to complete assessment activities and to address corrective actions that may be required to meet soil and ground water cleanup criteria. A scope of work for subsequent phases will be prepared and submitted to the OCD for review and approval.

2. PHASE IV SOIL ASSESSMENT ACTIVITIES

2.1 Characterization of Affected Soil for Remedial Measures Study

This aspect of the Phase IV soil assessment plan was not completed in the course of the most recent assessment activities and will be completed if necessary at a later date.

2.2 Determination of Site-Specific Background Metals Concentrations in Soil

Several of the metal constituents detected in soil samples collected in the course of prior assessments are also known to occur naturally in soil. Therefore, in order to objectively evaluate laboratory analyses for metal constituents in potentially affected soil samples, Transwestern collected soil samples in the course of the Phase IV assessment program for the determination of site specific background concentrations of selected metal constituents.

2.2.1 Constituents subject to evaluation

Background soil concentrations were determined for the following metal constituents: Al, Sb, As, Ba, Be, Cd, Cr (total), Cr (VI), Co, Cu, Pb, Hg, Se, Tl, Ag, Ni, Sn, V, and Zn.

2.2.2 Soil sampling program

Number/frequency of samples

Transwestern collected 16 soil samples from 8 soil borings (two samples from each soil boring) which were presumed to be uncontaminated by facility operations. Each sample was delivered to a laboratory for analysis for each of the 19 metal constituents subject to evaluation.

Location/depths of samples

The eight surface locations are indicated in Figure 1 as soil boring locations BG1 through BG8. Two samples were collected from each boring from the interval of 10-14 feet below ground surface. This sampling depth was chosen to correspond with the depth of the most highly affected soil in the immediate vicinity of the former impoundments.

Consideration was given to the selection of surface sample locations farther removed from the former impoundment area. However, prior soil assessment activities have indicated that the near surface alluvial sediments in the vicinity of the site vary considerably within relatively short distances, laterally as well as vertically. As a result, although samples collected from locations farther removed from the former impoundment area would more assuredly produce "clean" samples, these samples would not likely be representative of affected soil in their elemental makeup. Therefore, Transwestern chose background sample locations at a relatively close distance to the former impoundments and imposed certain criteria on the use of sample data as discussed below.

In order to better assure only "clean" samples are utilized in the determination of background concentrations, samples from each location were submitted to a laboratory for determination of Total Petroleum Hydrocarbons (TPH) by method 418.1. Prior soil assessment activities have indicated that near surface soils (that is, < 15 ft. bgs) outside the immediate vicinity of the former impoundments have been relatively free of organic contaminants. Furthermore, inorganic contaminants would not reasonably be expected to be present at this site in the absence of organic contaminants. Therefore, any samples collected from a location which also contained a reported TPH concentration > 50 mg/kg were excluded from the dataset for determination of background concentrations.

Sample collection methods

Soil sampling was performed by hollow stem auger drilling techniques and a split-barrel sampler as described in Section 3.4 of the Phase IV assessment plan. A soil boring log for each of the eight background soil sample borings is included as Attachment #3.

2.2.3 Laboratory Results for Background Soil Samples

The laboratory results for background soil samples are presented in Table 9 of this report. Three of the sixteen samples collected were excluded from use in the determination of mean and variance due to an elevated concentration of TPH.

2.2.4 Determination of Mean and Variance

The mean and variance was determined for each of the 19 metal constituents using the analytical data obtained from 13 of the background samples (excludes the three which exceeded the TPH criteria for use). The mean and variance calculated for each metal constituent is listed in Table 9.

3. PHASE IV GROUND WATER ASSESSMENT ACTIVITIES

3.1 Installation of Two Additional Monitor Wells into the Uppermost Aquifer

Two additional ground water monitor wells were installed into the uppermost aquifer in September 1998. The locations of the wells are indicated as MW-26 and MW-27 in Figure 1. These wells were installed with the purpose of delineating the lateral extent of dissolved phase contaminants in the uppermost aquifer. A boring log and completion diagram for each monitor well is included as Attachment #1. A completed State Engineer Well Record for each of monitor well is included as Attachment #2. Results for ground water sampling of these two wells is included in Section 4 of this report.

3.2 Installation of Two Additional Monitor Wells into the Regional Aquifer

Two additional ground water monitor wells were installed into the regional aquifer in September 1998. The locations of the wells are indicated as MW-24D and MW-25D in Figure 1. These wells were installed for the purpose of confirming that the vertical extent of dissolved phase contaminants is limited to the uppermost aquifer. A boring log and completion diagram for each monitor well is included as Attachment #1. A completed State Engineer Well Record for each of monitor well is included as Attachment #2. Results for ground water sampling of these two wells is included in Section 4 of this report.

4. RESULTS OF ROUTINE GROUND WATER MONITORING

4.1 Quarterly Ground Water Sampling Events

Five quarterly sampling events have been completed subsequent to the last report of ground water monitoring activities.

Prior to sampling, the depth to water, and the depth to hydrocarbon where phase separated hydrocarbon (PSH) was present, was determined for each monitor well. The measured depth to water and the corresponding water table elevation for each monitor well is presented in Table 1.

In the course of each sampling event, ground water samples were collected from all monitor wells with the exception of those wells with accumulated PSH in the well casing. A measurable thickness of PSH was indicated in five monitor wells in the course of the last sample event, and as a result, ground water samples were not collected from these wells. A summary of field measured ground water quality parameters (pH, temperature, electrical conductivity, dissolved oxygen, and turbidity) obtained in the course of sampling is presented in Table 5.

Ground water samples from each monitor well were delivered to a laboratory for analysis for VOCs, PAHs, major ions, TDS, and those metals regulated under WQCC 82-1 Part 3-103 A & B. An updated summary of analytical results for organic compounds is presented in Table 2. An updated summary of analytical results for inorganic constituents is presented in Table 3. Copies of the laboratory reports for all ground water sampling events are included as attachments to this report.

4.2 Results/Conclusions from Ground Water Sampling Events

4.2.1 Occurrence and Direction of Ground Water Flow

A water table elevation map for the uppermost aquifer based on measurements obtained during the October 11, 1998 sampling event is included as Figure 2. The apparent direction of ground water flow is consistent with water table elevation maps previously developed for this site. Furthermore, the direction of ground water flow indicated in Figure 2 is consistent with the distribution of dissolved phase organic contaminants in the uppermost aquifer.

Water table elevation maps for the regional aquifer based on measurements obtained during the October 19, 1998 sampling event and the December 21, 1998 sampling event are included as Figure 3 and Figure 4, respectively. The measured fluctuations in elevation and flow direction in the regional aquifer are due to natural seasonal fluctuations.

4.2.2 Lateral Extent of Phase Separated Hydrocarbon

The lateral extent of PSH in the uppermost aquifer is currently defined by the occurrence of PSH at the water table in wells MW-1B, MW-2, MW-16, and MW-27, and the absence of PSH in all other wells as shown in Figure 5. The southern extent of PSH in the uppermost aquifer has yet to be defined. This will be addressed by the Phase V work plan.

No PSH has been indicated in any of the regional aquifer monitor wells.

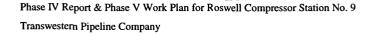
4.2.3 Condition of Affected Ground Water

A summary of analytical results for organic compounds is presented in Table 2. The more recent results are consistent with previous sample events. A map indicating the relative distribution of benzene, 1,1-dichloroethane, 1,1-dichloroethene, and 1,1,1-trichloroethane concentrations in the uppermost aquifer, based on measurements obtained during the March 1999 sampling event, is included as Figure 5.

There have been no detections of organic contaminants in ground water samples collected from the regional aquifer.

A summary of analytical results for inorganic constituents is presented in Table 3. A map indicating the relative distribution of TDS, chloride, sulfate, and arsenic concentrations in the uppermost aquifer, based on measurements obtained during the March 1999 sampling event, is included as Figure 6.

A summary of the detection frequency for metal constituents in ground water is included in Table 10. A brief discussion of the occurrence of each metal constituent is provided as follows:


Arsenic – Of the 164 groundwater samples analyzed for arsenic, 21 analyses indicated the presence of arsenic above the reported detection limit. The maximum detected concentration of arsenic was 0.02 mg/L. None of the 21 reported detections were above the NMWQCC standard of 0.10 mg/L. The 21 reported detections were fairly evenly distributed among samples collected from 15 different monitor wells with the greatest frequency of detection at monitor well MW-23D where 3 of 7 samples were reported with detectable concentrations. These sample results indicate that none of the monitor wells, including the five wells known to be affected by organic contaminants, appear to be affected by potential arsenic contamination associated with facility operations. As a result, arsenic has been excluded from the routine groundwater sample analysis plan as outlined in Section 4.3.4.

Barium – Of the 164 groundwater samples analyzed for barium, 118 analyses indicated the presence of barium above the reported detection limit. The maximum detected concentration of barium was 0.21 mg/L. None of the 118 reported detections were above the NMWQCC standard of 1.0 mg/L. The 118 reported detections were fairly evenly distributed among samples collected from all 22 monitor wells. These sample results indicate that none of the monitor wells, including the five wells known to be affected by organic contaminants, appear to be affected by potential barium contamination associated with facility operations. As a result, barium has been excluded from the routine groundwater sample analysis plan as outlined in Section 4.3.4.

Cadmium – Of the 164 groundwater samples analyzed for cadmium, none of the analyses indicated the presence of cadmium above the reported detection limit. These sample results indicate that none of the monitor wells, including the five wells known to be affected by organic contaminants, appear to be affected by potential cadmium contamination associated with facility operations. As a result, cadmium has been excluded from the routine groundwater sample analysis plan as outlined in Section 4.3.4.

Chromium – Of the 164 groundwater samples analyzed for chromium, 5 analyses indicated the presence of chromium above the reported detection limit. The maximum detected concentration of chromium was 0.02 mg/L. None of the 5 reported detections were above the NMWQCC standard of 0.05 mg/L. The 5 reported detections were fairly evenly distributed among samples collected from 3 different monitor wells with the greatest frequency of detection at monitor well MW-18 where 3 of 7 samples were reported with detectable concentrations. These sample results indicate that none of the monitor wells, including the five wells known to be affected by organic contaminants, appear to be affected by potential chromium contamination associated with facility operations. As a result, chromium has been excluded from the routine groundwater sample analysis plan as outlined in Section 4.3.4.

Lead – Of the 164 groundwater samples analyzed for lead, 5 analyses indicated the presence of lead above the reported detection limit. The maximum detected concentration of lead was 0.008 mg/L. None of the 5 reported detections were above the NMWQCC standard of 0.05 mg/L. The 5 reported detections were evenly distributed among samples collected from 5 different monitor wells. These sample results indicate that none of the monitor wells, including the five wells known to be affected by organic contaminants, appear to be affected by potential lead contamination associated with facility operations. As a result, lead has been excluded from the routine groundwater sample analysis plan as outlined in Section 4.3.4.

Mercury – Of the 164 groundwater samples analyzed for mercury, 8 analyses indicated the presence of mercury above the reported detection limit. The 8 reported detections were evenly distributed among samples collected from 8 different monitor wells. The maximum detected concentration of mercury was 0.0033 mg/L. The one detection of mercury at 0.0033 mg/L was the only detection of the 8 reported detections above the NMWQCC standard of 0.002 mg/L. The detection of mercury at 0.0033 mg/L was from a sample collected from monitor well MW-13. Seven other samples collected from monitor well MW-13 were non-detect for mercury. These sample results indicate that none of the monitor wells, including the five wells known to be affected by organic contaminants, appear to be affected by potential mercury contamination associated with facility operations. As a result, mercury has been excluded from the routine groundwater sample analysis plan as outlined in Section 4.3.4.

Selenium – Of the 164 groundwater samples analyzed for selenium, 6 analyses indicated the presence of selenium above the reported detection limit. The maximum detected concentration of selenium was 0.020 mg/L. None of the 6 reported detections were above the NMWQCC standard of 0.05 mg/L. The 6 reported detections were distributed among samples collected from 3 different monitor wells with the greatest frequency of detection at monitor well MW-5 where 4 of 7 samples were reported with detectable concentrations. These sample results indicate that none of the monitor wells, including the five wells known to be affected by organic contaminants, appear to be affected by potential selenium contamination associated with facility operations. As a result, selenium has been excluded from the routine groundwater sample analysis plan as outlined in Section 4.3.4.

Silver – Of the 164 groundwater samples analyzed for silver, none of the analyses indicated the presence of silver above the reported detection limit. These sample results indicate that none of the monitor wells, including the five wells known to be affected by organic contaminants, appear to be affected by potential silver contamination associated with facility operations. As a result, silver has been excluded from the routine groundwater sample analysis plan as outlined in Section 4.3.4.

Phase IV Report & Phase V Work Plan for Roswell Compressor Station No. 9 Transwestern Pipeline Company *Copper* – Of the 162 groundwater samples analyzed for copper, 9 analyses indicated the presence of copper above the reported detection limit. The maximum detected concentration of copper was 0.05 mg/L. None of the 9 reported detections were above the NMWQCC standard of 1.0 mg/L. The 9 reported detections were fairly evenly distributed among samples collected from 7 different monitor wells with the greatest frequency of detection at monitor well MW-20 where 2 of 7 samples were reported with detectable concentrations. These sample results indicate that none of the monitor wells, including the five wells known to be affected by organic contaminants, appear to be affected by potential copper contamination associated with facility operations. As a result, copper has been excluded from the routine groundwater sample analysis plan as outlined in Section 4.3.4.

Iron – Of the 142 groundwater samples analyzed for iron, 92 analyses indicated the presence of iron above the reported detection limit. The maximum detected concentration of iron was 16.50 mg/L; the next highest detected concentration of iron was 1.85 mg/L. Detected concentrations of iron above the NMWQCC standard of 1.0 mg/L appear to be limited to just one monitor well, MW-13. Monitor well MW-13 is also known to be affected by organic contaminants. As a result, iron has not been excluded from the routine groundwater sample analysis plan as outlined in Section 4.3.4.

Manganese – Of the 123 groundwater samples analyzed for manganese, 71 analyses indicated the presence of manganese above the reported detection limit. The maximum detected concentration of manganese was 2.40 mg/L; the next highest detected concentration of manganese was 1.50 mg/L. Detected concentrations of manganese above the NMWQCC standard of 0.20 mg/L appear to be limited to five monitor wells: MW-7, MW-12, MW-13, MW-21, and MW-24D. Monitor wells MW-12, MW-13, and MW-21 are also known to be affected by organic contaminants. As a result, manganese has not been excluded from the routine groundwater sample analysis plan as outlined in Section 4.3.4.

Zinc – Of the 162 groundwater samples analyzed for zinc, 52 analyses indicated the presence of zinc above the reported detection limit. The maximum detected concentration of zinc was 0.39 mg/L. None of the 52 reported detections were above the NMWQCC standard of 10 mg/L. The 52 reported detections were fairly evenly distributed among samples collected from 21 of the 22 monitor wells. These sample results indicate that none of the monitor wells, including the five wells known to be affected by organic contaminants, appear to be affected by potential zinc contamination associated with facility operations. As a result, zinc has been excluded from the routine groundwater sample analysis plan as outlined in Section 4.3.4.

Aluminum – Of the 6 groundwater samples analyzed for aluminum, all 6 analyses indicated the presence of aluminum above the reported detection limit. The maximum detected concentration of aluminum was 3.13 mg/L. None of the 6 reported detections were above the NMWQCC standard of 5 mg/L. The 6 reported detections were evenly distributed among samples collected from 6 monitor wells. Analysis of groundwater samples for aluminum was discontinued after one of the earlier sample events since the NMWQCC standard for aluminum only applied to water for irrigation use. Likewise, aluminum has been excluded from the routine groundwater sample analysis plan as outlined in Section 4.3.4.

4.3 Planned Changes to the Ground Water Monitoring Program

4.3.1 Inclusion of Additional Monitor Wells

The monitoring program will be modified to include the monitor wells to be completed within the uppermost aquifer in the course of the Phase V and subsequent assessment activities.

4.3.2 Disposal of Monitor Well Purge Water

Purge water collected from "clean" monitor wells will be discharged to the ground surface at the well location upon completion of sampling activities at the well. A "clean" well will be defined for this purpose as a well for which ground water samples have not indicated the presence of an organic contaminant above the NMWQCC ground water standards or a detection of a halogenated organic contaminant within the last three sample events. This definition would

exclude as "clean" monitor wells MW-12, 13, 20, 21, and 22. Purge water from these monitor wells will be accumulated in one or more 55 gallon drums until the completion of sampling activities and then managed appropriately.

4.3.3 Sampling Frequency

Transwestern proposes to move to the following schedule for ground water sampling:

Well ID	Frequency	Comment		
MW-5	None	10 events, organics all non-detect, well MW-11 provides a "clean" sample point		
		between MW-5 and the release area		
MW-6	None	10 events, organics all non-detect, well MW-10 provides a "clean" sample point		
		between MW-6 and the release area		
MW-8	None	9 events, organics all non-detect with just one exception, well MW-7 provides a		
		"clean" sample point between MW-8 and the release area		
MW-9	None	9 events, organics all non-detect, wells MW-7 & MW-14 provide "clean" sample		
		points between MW-9 and the release area		
MW-18	None	7 events, organics all non-detect, wells MW-15 and MW-17 provide "clean"		
		sample points between MW-18 and the release area		
MW-19	None	8 events, organics all non-detect with just one exception, well MW-15 provides a		
		"clean" sample point between MW-19 and the release area		
MW-3	Annual	10 events, organics all non-detect, MW-3 defines the "clean" perimeter of the		
		contaminant plume		
MW-10	Annual	8 events, organics all non-detect, MW-10 defines the "clean" perimeter of the		
		contaminant plume and is an upgradient well		
MW-11	Annual	8 events, organics all non-detect, MW-11 defines the "clean" perimeter of the		
		contaminant plume		
MW-14	Annual	8 events, organics all non-detect with just one exception, MW-14 defines the		
		"clean" perimeter of the contaminant plume		
MW-15	Annual	8 events, organics all non-detect with just one exception, MW-15 defines the		
		"clean" perimeter of the contaminant plume		
MW-17	Annual	8 events, organics all non-detect with just one exception, MW-17 defines the		
		"clean" perimeter of the contaminant plume		
MW-23D	Annual	5 events, organics all non-detect, monitors quality of the regional aquifer		
MW-24D	Annual	3 events, organics all non-detect, monitors quality of the regional aquifer		
MW-25D	Annual	3 events, organics all non-detect, monitors quality of the regional aquifer		
MW-7	Semiannual	9 events, organics all non-detect with just one exception, MW-7 is located in close		
		proximity to the release area		
MW-12	Semiannual	Well MW-12 is affected by organic contaminants		
MW-13	Semiannual	Well MW-13 is affected by organic contaminants		
MW-20	Semiannual	Well MW-20 is affected by organic contaminants		
MW-21	Semiannual	Well MW-21 is affected by organic contaminants		
MW-22	Semiannual	Well MW-22 is affected by organic contaminants		
MW-26	Quarterly	3 events, organics all non-detect, MW-26 defines the "clean" perimeter at the		
	-	northern end of the contaminant plume, will move to semiannual sampling upon		
		completion of the next sampling event		
MW-28	Quarterly	Proposed well		
MW-29	Quarterly	Proposed well		
MW-30	Quarterly	Proposed well		

4.3.4 Sample Analysis Plan

Well ID	Frequency	Sample Analysis Plan
MW-5	None	None
MW-6	None	None
MW-8	None	None
MW-9	None	None
MW-18	None	None
MW-19	None	None
MW-3	Annual	VOCs by Method 8260, TDS, chloride, & sulfate
MW-10	Annual	VOCs by Method 8260, TDS, chloride, & sulfate
MW-11	Annual	VOCs by Method 8260, TDS, chloride, & sulfate
MW-14	Annual	VOCs by Method 8260, TDS, chloride, & sulfate
MW-15	Annual	VOCs by Method 8260, TDS, chloride, & sulfate
MW-17	Annual	VOCs by Method 8260, TDS, chloride, & sulfate
MW-23D	Annual	VOCs by Method 8260
MW-24D	Annual	VOCs by Method 8260
MW-25D	Annual	VOCs by Method 8260
MW-7	Semiannual	VOCs by Method 8260 & annually: TDS, chloride, sulfate, iron, & manganese
MW-12	Semiannual	VOCs by Method 8260 & annually: TDS, chloride, sulfate, iron, & manganese
MW-13	Semiannual	VOCs by Method 8260 & annually: TDS, chloride, sulfate, iron, & manganese
MW-20	Semiannual	VOCs by Method 8260 & annually: TDS, chloride, sulfate, iron, & manganese
MW-21	Semiannual	VOCs by Method 8260 & annually: TDS, chloride, sulfate, iron, & manganese
MW-22	Semiannual	VOCs by Method 8260 & annually: TDS, chloride, sulfate, iron, & manganese
MW-26	Quarterly	VOCs by Method 8260 & annually: TDS, chloride, sulfate, iron, & manganese
MW-28	Quarterly	VOCs by Method 8260, PAHs by Method 8270 & annually: TDS, chloride,
(new well)		sulfate, iron, & manganese
MW-29	Quarterly	VOCs by Method 8260, PAHs by Method 8270 & annually: TDS, chloride,
(new well)		sulfate, iron, & manganese
MW-30	Quarterly	VOCs by Method 8260, PAHs by Method 8270 & annually: TDS, chloride,
(new well)		sulfate, iron, & manganese

Transwestern proposes to move to the following sample analysis plan:

4.3.5 Routine Reporting of Monitoring Activities

Transwestern proposes to implement annual reporting of ground water monitoring activities. The next annual report will be submitted to the OCD by July 31, 2000.

5. PHASE V GROUND WATER ASSESSMENT PLAN

The current ground water monitoring network consists of twenty-two wells completed within the uppermost aquifer, three wells completed within the deeper regional aquifer, and one well completed within a perched zone (Figure 1). Information collected from additional monitor wells will help to refine the current picture of ground water flow direction, and the nature, rate, and extent of ground water contamination in the uppermost aquifer.

5.1 Installation of Additional Ground Water Monitor Wells

Three additional ground water monitor wells will be installed in the uppermost aquifer to further delineate the extent of PSH and the dissolved-phase plume to the south of existing monitor well MW-27. The proposed location of these three wells is indicated in Figure 7. In addition to the three wells indicated in Figure 7, additional monitor wells may be installed if warranted based on field observations.

Prior to well installation, soil borings will be drilled to the total depth, approximately 10 feet below the water table, at each location with minimum 6-inch-O.D. augers. Soil samples will be collected at 10-foot intervals during the drilling of the pilot hole and field headspace screening will be performed using a PID. At a minimum, one soil sample from each boring will be collected for laboratory analyses; the sample collected from a depth nearest to the capillary fringe of the uppermost aquifer (or at total depth if water is not present in the soil boring). Soil samples will be submitted for analyses for TPH, VOCs, SVOCs, and selected metals (those metals listed in Section 2.2.1). Soil grab samples will also be collected periodically during drilling to better define the geologic conditions at the site.

The monitor wells will be installed within the hollow-stem augers following the completion of the soil boring. Immediately prior to well construction, the total depth of the borehole will be determined using a weighted steel tape or tag line.

The monitor wells will be constructed of 2-inch diameter schedule 40 PVC pipe and will include, in ascending order, a flush-threaded silt trap (sump) at the bottom, 10 to 25 feet of flush-threaded 0.01-inch machine-slotted PVC screen, and blank casing from the top of the screen to ground surface. No more than 15 feet of screen will be installed below the water table.

Once the well casing has been lowered to the bottom of the borehole, a sandpack consisting of 12-20 silica sand will be poured down the annulus of the auger in 3-foot lifts. After each 3-foot interval is filled, the augers will be pulled up approximately the same distance. This procedure will be repeated until the sand pack level is approximately 2 feet above the top of the screened section. The annular space above the sand pack will then be filled with a minimum 2-foot-thick pelletized bentonite seal, which will be hydrated with distilled water. The remaining annular space will be filled with a cement/bentonite slurry grout consisting of approximately 3 percent bentonite by weight. The top of the well casing will be protected by a PVC cap, and the exposed casing will be protected by a locking steel shroud or well vault. A concrete pad will then be constructed around the shroud or well vault.

Immediately following well installation, the new monitor wells will be developed following the procedures outlined in Section 5.2.

Ground water samples will be collected following the procedures outlined in Section 5.3. Ground water samples will be submitted to a laboratory for analysis per the sample analysis plan presented in Section 4.3.4.

5.2 Monitor Well Development Procedures

The newly installed monitor wells will be developed by a sequence of surging and pumping and/or bailing. Initially, the wells will be surged to dislodge any smeared material on the borehole wall that would otherwise inhibit ground water flow and to remove fine particles from the formation surrounding the borehole. The suspended sediments will be removed by bailing, pumping, or air lifting. During well development, pH, temperature, specific conductance, and turbidity will be monitored periodically to determine when the wells have been sufficiently developed. Development will be considered complete when the water becomes relatively clear and water quality parameters have stabilized to within \pm 5 percent over three consecutive measurements.

5.3 Ground Water Sampling Procedures

Prior to ground water sample collection, the following preparations will be made:

- 1. The area around the wellhead will be inspected for integrity, cleanliness, and signs of possible contamination.
- 2. The static water level will be measured to the nearest 0.01 foot using an electrical water level sounder. The presence of any obvious contamination on the water level sounder will be noted in the field logbook. The sounder will be decontaminated between wells, as described in Section 5.4, in order to prevent cross contamination.
- 3. Prior to purging the wells, a clear bailer, hydrocarbon indicating paste, or an interface probe will be used to check for the presence of PSH. The presence or absence of PSH will be recorded in the field logbook, as well as the thickness of PSH, if any.
- 4. The well will then be purged to remove standing/stagnant water in order to ensure the collection of representative ground water samples. Monitor wells with dedicated bladder pumps will be purged at a rate equal to or greater than the anticipated sample collection flow rate. Monitor wells without dedicated bladder pumps will be purged by hand bailing with dedicated, disposable polyethylene bailers. The field parameters pH, electric conductivity, dissolved oxygen, and temperature will be measured throughout the purging process at a frequency of at least once per casing volume. Purging will continue for a minimum of three casing volumes and until the field parameters remain stable to within ±5 percent over at least one casing volume, except if the well is a very poor producer. In this case, the well will be purged dry once prior to sample collection. All fluids produced during purging will be contained for later disposal as described in Section 5.5.

Following purging, unfiltered ground water samples will be collected as soon as possible using either a dedicated bladder pump or a dedicated disposable polyethylene bailer. Under no circumstances will the well be allowed to stand for more than three hours after well purging before collecting samples. The only exception is for very low-yield wells that are pumped dry under normal purging and sampling rates. In this case, the well will be pumped dry and allowed to recover until sufficient water is present in the well to allow a sample to be collected.

In the event that a sample is turbid (i.e., > 50 NTU), a note will be placed on the sample COC that instructs the laboratory to filter the sample prior to analyses for inorganic constituents.

The samples will be collected in order of decreasing volatility, with samples for VOC analysis being collected first. The pumping rate during sample collection of VOC samples at monitor wells with a dedicated bladder pump will be maintained at 100 milliliters (mL) per minute or less to minimize volatilization. All samples will be collected in precooled, acidified, certified-clean 40-mL glass vials with septum caps supplied by the laboratory. Following collection of the VOC samples, the SVOC, metals, and other samples will be collected in appropriate containers.

The sample coolers with the associated chain-of-custody forms will be shipped to the laboratory using an overnight commercial carrier. The fastest possible shipping method will be used, and all sample shipments will be carefully tracked to ensure that samples arrive intact and that all holding times are met.

5.4 Decontamination Procedures

All non-disposable field equipment that may potentially come in contact with contaminated ground water or soils will be decontaminated in order to minimize the potential for cross-contamination between sampling locations. Clean latex or plastic gloves will be worn during all decontamination operations. The following sequence of decontamination procedures will be followed prior to each sampling and/or testing event:

- 1. Wash the equipment in a solution of non-phosphate detergent (Liquinox[®]) and distilled/deionized water. Use a clean Nalgene[®] tub to contain the wash solution and a scrub brush to mechanically remove loose particles.
- 2. Rinse the equipment twice with distilled/deionized water.
- 3. Allow the equipment to air dry before the next use.

5.5 Management of Investigation-Derived Wastes

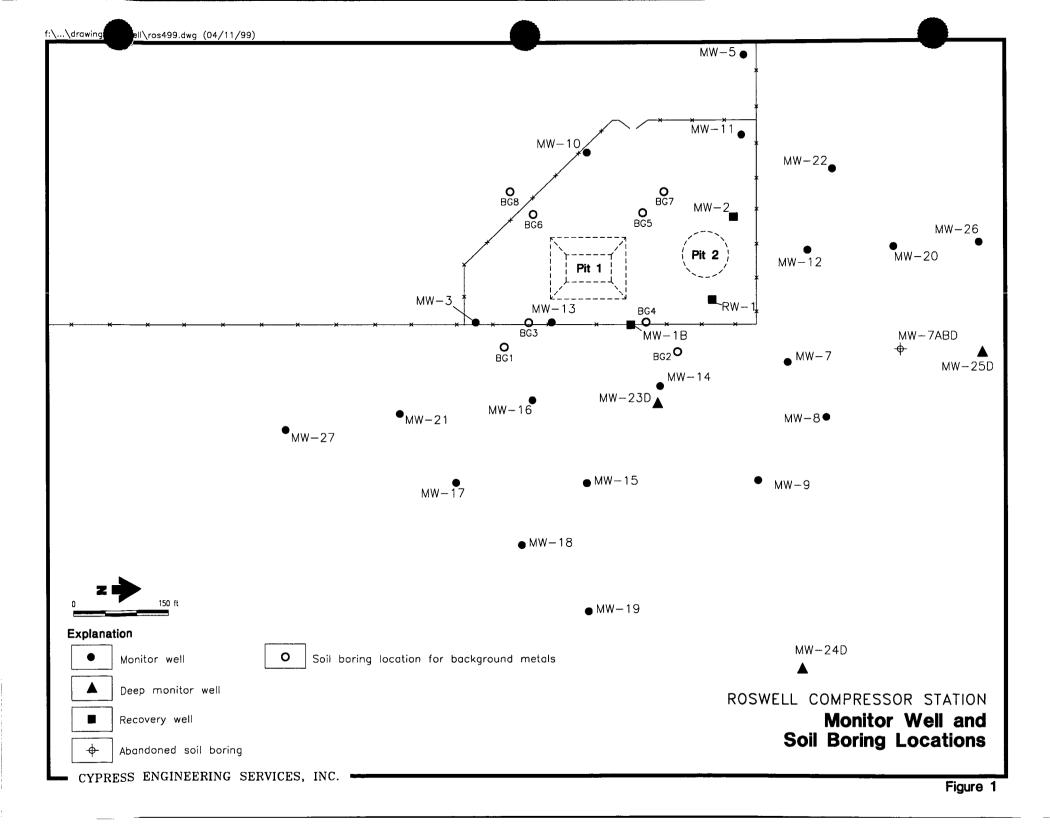
A variety of wastes will be generated during the implementation of the ground water assessment plan. These wastes include soil cuttings, decontamination fluids, used PPE, and ground water produced during well development and purging.

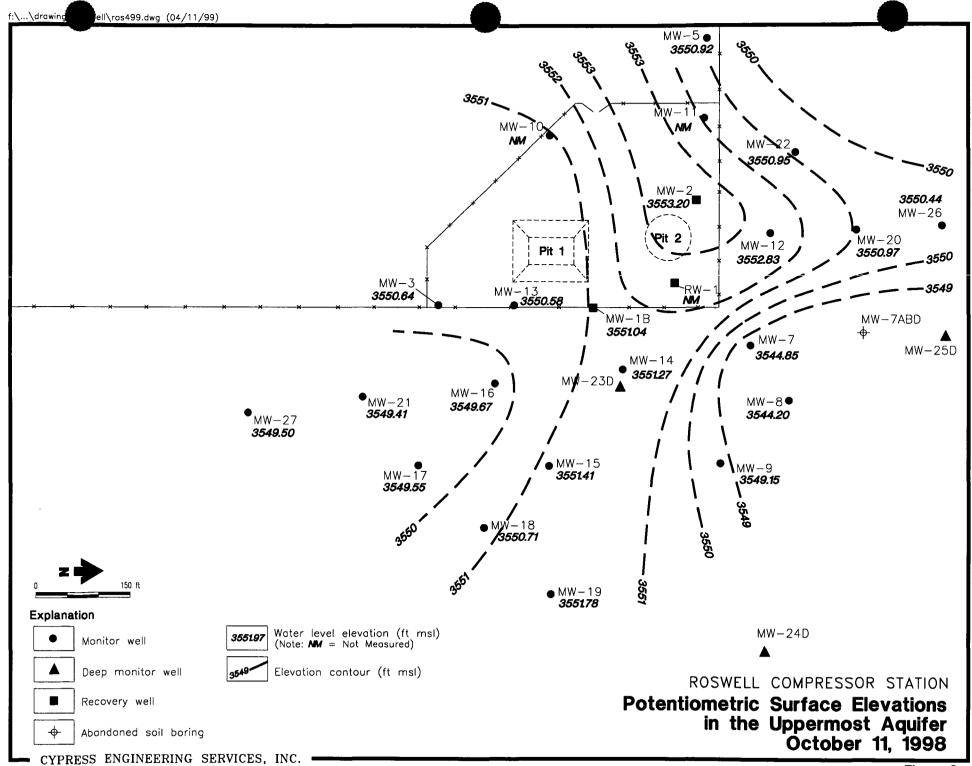
Hydrocarbon contaminated soils, as determined by field headspace screening (PID headspace measurement > 100 ppmv), will be segregated from soils determined by field screening not to be contaminated (PID headspace measurement < 100 ppmv). Soils segregated by field screening techniques will await analytical results before a plan for final disposition is prepared.

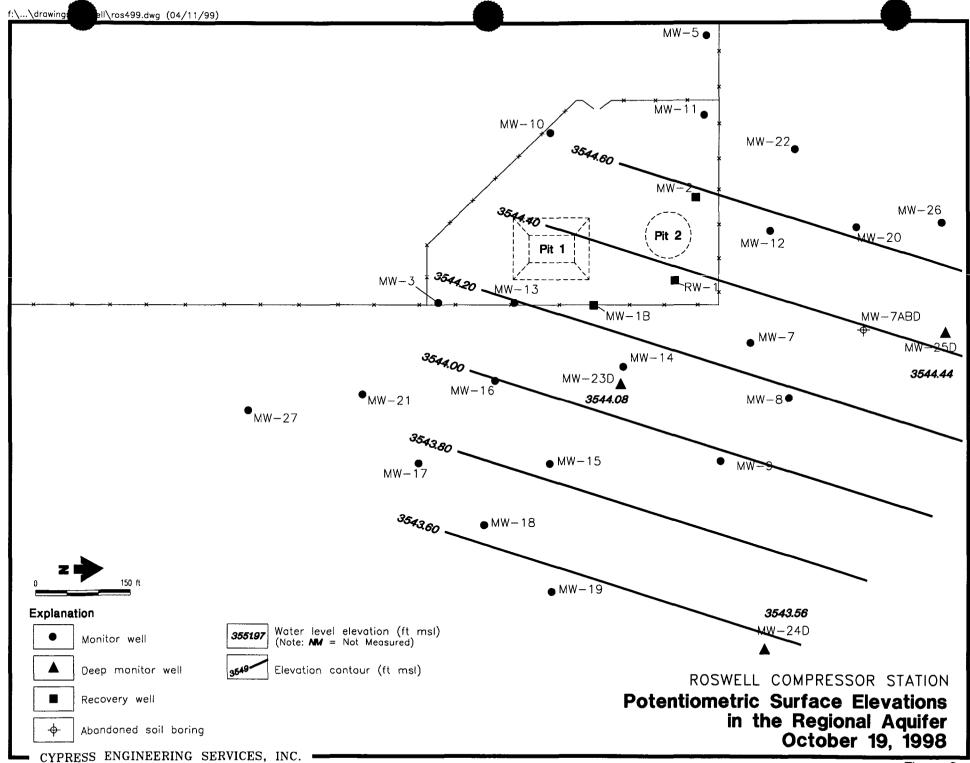
A management plan for the final disposition of investigation derived wastes (IDW) will be prepared and submitted to the OCD for approval.

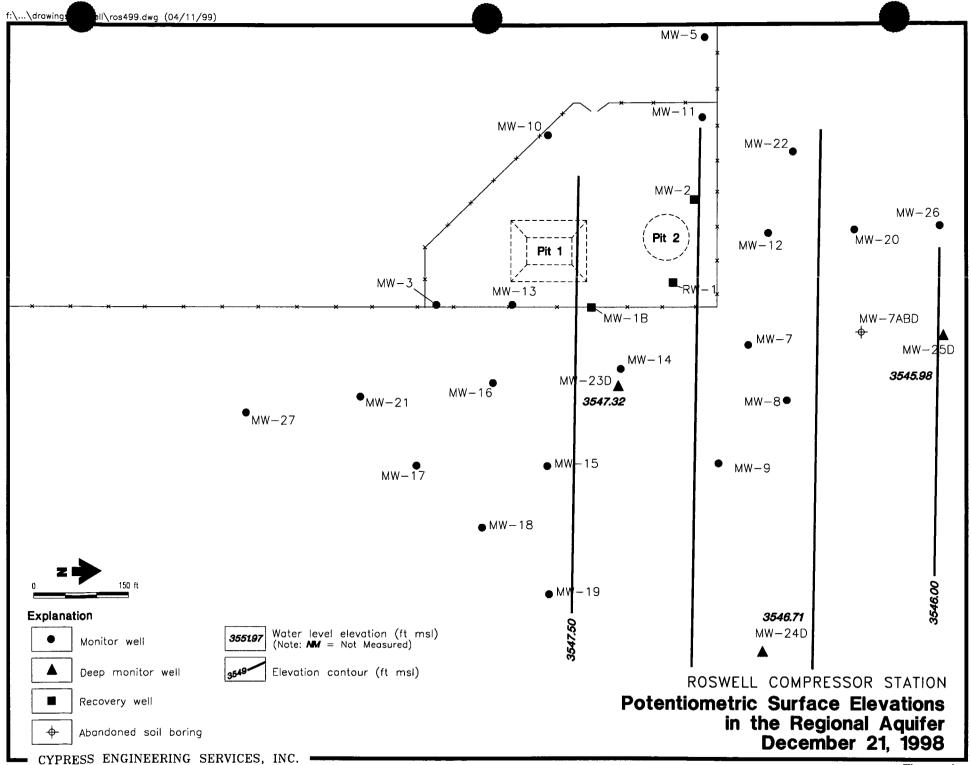
PPE and dry waste associated with these activities will be disposed of in a sanitary landfill.

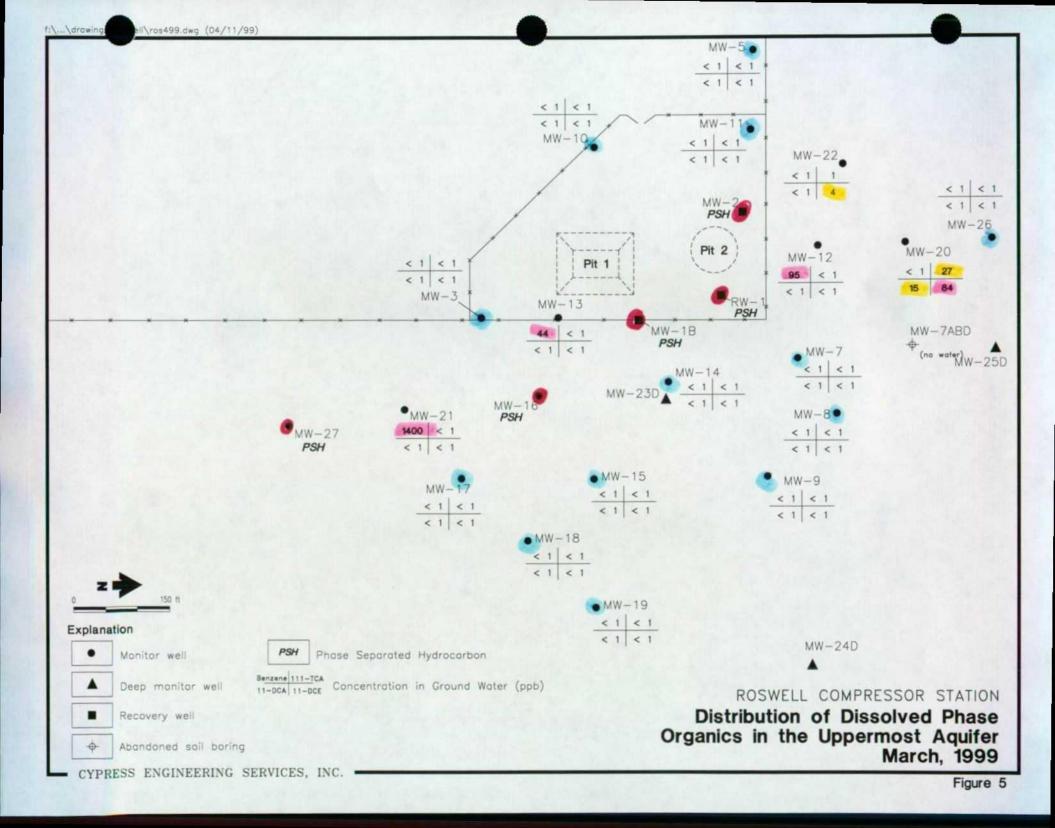
5.6 Reporting Requirements

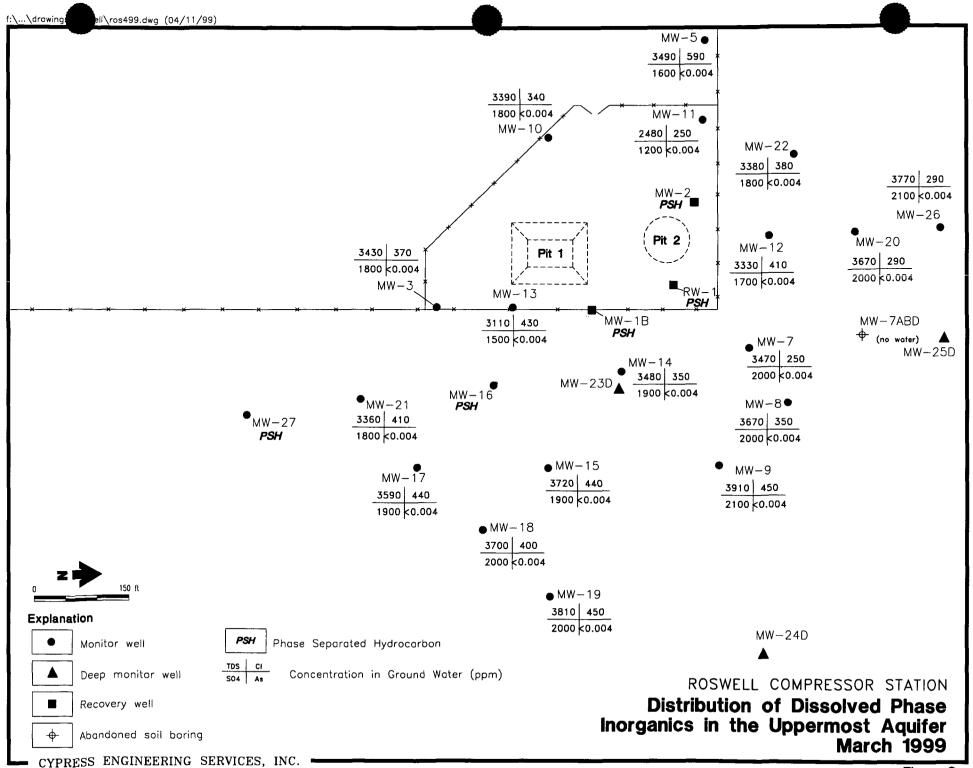

Following completion of the Phase V ground water assessment, the results of the assessment activities will be summarized in a report submitted to the OCD along with copies of the laboratory results for the ground water samples analyzed.


The report will include the following information, as applicable:


- ground water sampling information
 - 1) monitor well ID
 - 2) sample date time
 - 3) field observations (i.e., presence of PSH, turbidity, odor, etc.)
 - 4) sample parameters/methods
 - 5) sample container types
 - 6) sample handling procedures
 - 7) copy of chain of custody
 - 8) sample results & detection limits
 - 9) any pertinent QA/QC information
- comparison of constituents detected with previous sample results, action levels, and/or background levels and any QA/QC concerns
- water table elevation map indicating hydraulic gradient and ground water flow direction
- PSH distribution map indicating the lateral estimated extent of PSH at the water table
- contaminant distribution map(s) showing the concentrations and horizontal extent of contamination for key hazardous constituents identified from laboratory analysis
- discussion and results from any aquifer testing.


FIGURES


Phase IV Report & Phase V Work Plan for Roswell Compressor Station No. 9 Transwestern Pipeline Company i.



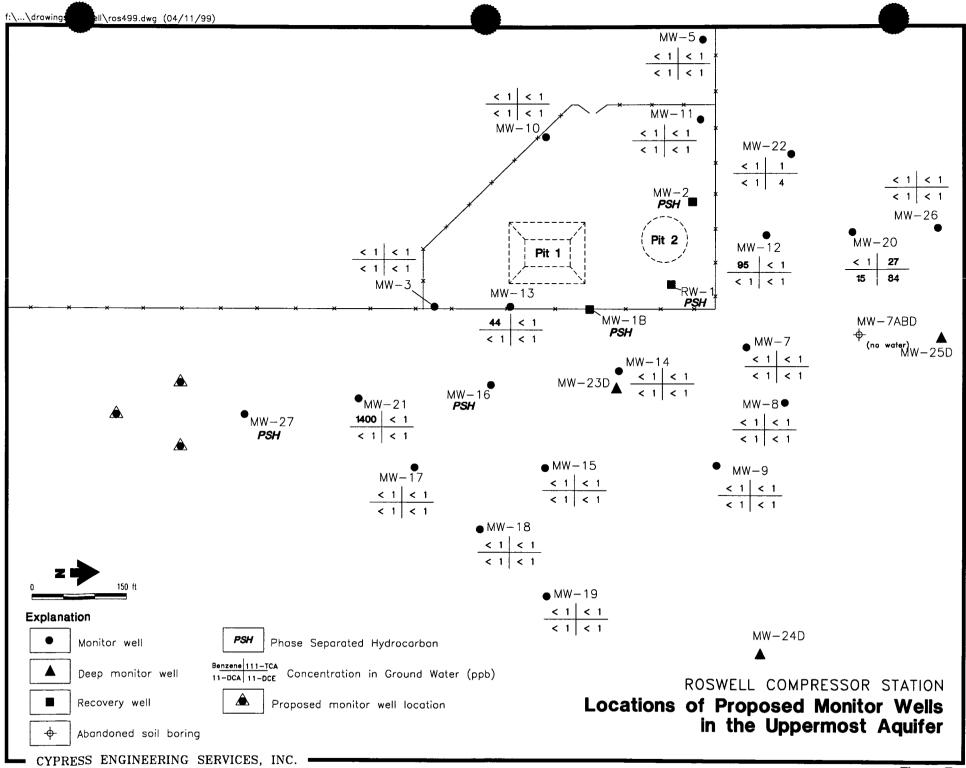


Figure 7

TABLES

Phase IV Report & Phase V Work Plan for Roswell Compressor Station No. 9 Transwestern Pipeline Company

Well ID	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
MW-1 B	09/27/96	3609.96	-	61.60	2.33	3550.13
	10/31/97		58.37	59.76	1.39	3551.26
	01/26/98		58.20	60.80	2.60	3551.14
	05/25/98		58.28	60.38	2.10	3551.18
	08/10/98		58.64	59.05	0.41	3551.22
	10/11/98		58.20	61.20	3.00	3551.04
	03/21/99		60.45	60.46	0.01	3549.51
MW-2	09/27/96	3611.76	-	62.00	2.33	3551.53
	10/31/97		58.36	59.60	1.24	3553.10
	01/26/98		58.20	59.85	1.65	3553.16
	05/25/98		58.42	58.79	0.37	3553.25
	08/10/98		58.25	58.55	0.30	3553.44
	10/11/98		58.20	59.70	1.50	3553.20
	03/21/99		58.35	58.37	0.02	3553.41
MW-3	09/27/96	3614.87	(a)	64.79	(a)	3550.08
	07/23/97		(a)	64.19	. (a)	3550.68
	08/19/97		(a)	64.36	(a)	3550.51
	10/30/97		(a)	64.22	(a)	3550.65
	01/26/98		(a)	64.34	(a)	3550.53
	05/25/98		(a)	64.20	(a)	3550.67
	08/10/98		(a)	64.06	(a)	3550.81
	10/11/98		(a)	64.23	(a)	3550.64
	12/21/98		(a)	64.25	(a)	3550.62
	03/23/99		(a)	64.24	(a)	3550.63
MW-5	09/27/96	3612.77	(a)	62.32	(a)	3550.45
	07/23/97		(a)	61.95	(a)	3550.82
	08/19/97		(a)	62.05	(a)	3550.72
	10/30/97		(a)	61.98	(a)	3550.79
	01/26/98		(a)	61.90' Top of Pump	(a)	NA
	05/25/98		(a)	61.97	(a)	3550.80
	08/10/98		(a)	61.81	(a)	3550.96
	10/11/98		(a)	61.85	(a)	3550.92
	12/21/98		(a)	61.89	(a)	3550.88
	03/23/99		(a)	61.80	(a)	3550.97

Table 1. Summary of Ground Water Surface ElevationsCompressor Station No. 9 - Roswell, NM

Well ID	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
MW-6	09/27/96	3618.62	(a)	61.85	(a)	3556.77
	07/23/97		(a)	61.81	(a)	3556.81
	08/19/97		(a)	61.73	(a)	3556.89
	10/30/97		(a)	61.62	(a)	3557.00
	01/26/98		(a)	61.64	(a)	3556.98
	05/25/98		(a)	61.63	(a)	3556.99
	08/10/98		(a)	61.70	(a)	3556.92
	10/11/98		(a)	61.72	(a)	3556.90
	12/21/98		(a)	61.74	(a)	3556.88
	03/23/99		(a)	61.78	(a)	3556.84
MW-7	09/27/96	3599.20	(a)	54.74	(a)	3544.46
	07/23/97		(a)	52.89	(a)	3546.31
	08/19/97		(a)	53.57	(a)	3545.63
	10/30/97		(a)	53.00	(a)	3546.20
	01/26/98		(a)	51.45	(a)	3547.75
	05/25/98		(a)	51.76	(a)	3547.44
	08/10/98		(a)	54.11	(a)	3545.09
	10/11/98		(a)	54.35	(a)	3544.85
	12/21/98		(a)	52.69	(a)	3546.51
	03/23/99		(a)	51.24	(a)	3547.96
MW-8	09/27/96	3595.80	(a)	51.98	(a)	3543.82
	07/23/97		(a)	50.14	(a)	3545.66
	08/19/97		(a)	50.92	(a)	3544.88
	10/30/97		(a)	50.18	(a)	3545.62
	01/26/98		(a)	48.52	(a)	3547.28
	05/25/98		(a)	49.02	(a)	3546.78
	08/10/98		(a)	51.40	(a)	3544.40
	10/11/98		(a)	51.60	(a)	3544.20
	12/21/98		(a)	49.84	(a)	3545.96
	03/23/99		(a)	48.30	(a)	3547.50
MW-9	09/27/96	3599.35	(a)	50.27	(a)	3549.08
	07/23/97		(a)	50.07	(a)	3549.28
	08/19/97		(a)	50.09	(a)	3549.26
	10/30/97		(a)	50.18	(a)	3549.17
	01/26/98		(a)	50.10	(a)	3549.25
	05/25/98		(a)	50.13	(a)	3549.22
	08/10/98		(a)	50.18	(a)	3549.17
	10/11/98		(a)	50.20	(a)	3549.15
	12/21/98		(a)	50.26	(a)	3549.09
	03/23/99		(a)	50.19	(a)	3549.16

Well ID	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
MW-10	09/27/96	3617.85	(a)	67.21	(a)	3550.64
	07/23/97		(a)	66.83	(a)	3551.02
	08/19/97		(a)	66.93	(a)	3550.92
	10/30/97		(a)	66.83	(a)	3551.02
	01/26/98		(a)	66.58 Top of Pump	(a)	NA
	05/25/98		(a)	66.91	(a)	3550.94
	08/10/98		(a)	66.65	(a)	3551.20
	10/11/98		(a)	66.59 Top of Pump	(a)	NA
	12/21/98		(a)	66.79	(a)	3551.06
	03/23/99		(a)	66.72	(a)	3551.13
MW-11	09/27/96	3613.31	(a)	62.90	(a)	3550.41
	07/23/97		(a)	62.44	(a)	3550.87
	08/19/97		(a)	62.53	(a)	3550.78
	10/30/97		(a)	62.40	(a)	3550.91
	01/26/98		(a)	62.20 Top of Pump	(a)	NA
	05/25/98		(a)	62.22	(a)	3551.09
	08/10/98		(a)	62.18	(a)	3551.13
	10/11/98		(a)	62.21 Top of Pump	(a)	NA
	12/21/98		(a)	62.42	(a)	3550.89
	03/23/99		(a)	62.26	(a)	3551.05
MW-12	09/27/96	3606.38	(a)	55.58	(a)	3550.80
	07/23/97		(a)	53.99	(a)	3552.39
	08/19/97		(a)	53.96	(a)	3552.42
	10/30/97		(a)	53.61	(a)	3552.77
	01/26/98		(a)	53.55	(a)	3552.83
	05/25/98		(a)	53.36	(a)	3553.02
	08/10/98		(a)	53.30	(a)	3553.08
	10/11/98		(a)	53.55	(a)	3552.83
	12/21/98		(a)	53.65	(a)	3552.73
	03/23/99		(a)	53.50	(a)	3552.88
MW-13	09/27/96	3612.46	(a)	62.30	(a)	3550.16
	07/23/97		(a)	61.85	(a)	3550.61
	08/19/97		(a)	61.95	(a)	3550.51
	10/30/97		(a)	61.68	(a)	3550.78
	01/26/98		(a)	61.90	(a)	3550.56
	05/25/98		(a)	61.79	(a)	3550.67
	08/10/98		(a)	61.78	(a)	3550.68
	10/11/98		(a)	61.88	(a)	3550.58
	12/21/98		(a)	61.71	(a)	3550.75
	03/23/99		(a)	61.83	(a)	3550.63

Table 1. (Page 3 of 7)

Well ID	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
MW-14	09/27/96	3604.83	(a)	53.38	(a)	3551.45
	07/23/97		(a)	53.33	(a)	3551.50
	08/19/97		(a)	53.06	(a)	3551.77
	10/30/97		(a)	53.20	(a)	3551.63
	01/26/98		(a)	53.41	(a)	3551.42
	05/25/98		(a)	53.40	(a)	3551.43
	08/10/98		(a)	53.43	(a)	3551.40
	10/11/98		(a)	53.56	(a)	3551.27
	12/21/98		(a)	53.53	(a)	3551.30
	03/23/99		(a)	53.55	(a)	3551.28
MW-15	09/27/96	3610.43	(a)	58.77	(a)	3551.66
	07/23/97		(a)	58.75	(a)	3551.68
	08/19/97		(a)	58.84	(a)	3551.59
	10/30/97		(a)	58.83	(a)	3551.60
	01/26/98		(a)	58.97	(a)	3551.46
	05/25/98		(a)	58.96	(a)	3551.47
	08/10/98		(a)	58.92	(a)	3551.51
	10/11/98		(a)	59.02	(a)	3551.41
	12/21/98		(a)	59.04	(a)	3551.39
	03/23/99		(a)	59.09	(a)	3551.34
MW-16	09/27/96	3612.41	-	67.16	4.01	3548.30
	07/23/97		-	66.46	4.87	3549.65
	08/19/97		•	66.54	4.89	3549.59
	10/31/97		61.58	66.32	4.74	3549.69
	01/26/98		61.55	66.12	4.57	3549.76
	05/25/98		61.56	66.09	4.53	3549.76
	08/10/98		61.49	66.31	4.82	3549.76
	10/11/98		61.59	66.38	4.79	3549.67
	12/21/98		61.59	66.17	4.58	3549.72
	03/23/99		61.42	65.97	4.55	3549.90
MW-17	09/27/96	3608.48	(a)	59.30	(a)	3549.18
	07/23/97		(a)	58.79	(a)	3549.69
	08/19/97		(a)	58.94	(a)	3549.54
	10/30/97		(a)	58.85	(a)	3549.63
	01/26/98		(a)	58.90	(a)	3549.58
	05/25/98		(a)	58.83	(a)	3549.65
	08/10/98		(a)	58.78	(a)	3549.70
	10/11/98		(a)	58.93	(a)	3549.55
	12/21/98		(a)	58.97	(a)	3549.51
	03/23/99		(a)	58.87	(a)	3549.61

Table 1. (Page 4 of 7)

Well ID	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
MW-18	09/27/96	3609.73	(a)	dry	(a)	NA
	07/23/97		(a)	58.29	(a)	3551.44
	08/19/97		(a)	64.81	(a)	still recovering
	10/30/97		(a)	58.61	(a)	3551.12
	01/26/98		(a)	58.60	(a)	3551.13
	05/25/98		(a)	58.51	(a)	3551.22
	08/10/98		(a)	58.74	(a)	3550.99
	10/11/98		(a)	59.02	(a)	3550.71
	12/21/98		(a)	58.53	(a)	3551.20
	03/23/99		(a)	58.70	(a)	3551.03
MW-19	09/27/96	3608.17	(a)	57.95	(a)	3550.22
	07/23/97		(a)	56.03	(a)	3552.14
	08/19/97		(a)	56.20	(a)	3551.97
	10/30/97		(a)	56.17	(a)	3552.00
	01/26/98		(a)	56.28	(a)	3551.89
	05/25/98		(a)	56.29	(a)	3551.88
	08/10/98		(a)	56.38	(a)	3551.79
	10/11/98		(a)	56.39	(a)	3551.78
	12/21/98		(a)	56.41	(a)	3551.76
	03/23/99		(a)	56.41	(a)	3551.76
MW-20	08/19/97	3600.65	(a)	49.50	(a)	3551.15
	10/30/97		(a)	49.47	(a)	3551.18
	01/26/98		(a)	49.37	(a)	3551.28
	05/25/98		(a)	49.21	(a)	3551.44
	08/10/98		(a)	49.41	(a)	3551.24
	10/11/98		(a)	49.68	(a)	3550.97
	12/21/98		(a)	49.62	(a)	3551.03
	03/23/99		(a)	49.38	(a)	3551.27
MW-21	08/07/97	3612.01	(a)	63.64	(a)	3548.37
	10/30/97		(a)	62.58	(a)	3549.43
	01/26/98		(a)	62.76	(a)	3549.25
	05/25/98		(a)	62.57	(a)	3549.44
	08/10/98		(a)	62.47	(a)	3549.54
	10/11/98		(a)	62.60	(a)	3549.41
	12/21/98		(a)	62.59	(a)	3549.42
	03/23/99		(a)	62.50	(a)	3549.51

Well ID	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
MW-22	08/19/97	3606.04	(a)	55.36	(a)	3550.68
	10/30/97		(a)	55.24	(a)	3550.80
	01/26/98		(a)	55.19	(a)	3550.85
	05/25/98		(a)	54.99	(a)	3551.05
	08/10/98		(a)	54.93	(a)	3551.11
	10/11/98		(a)	55.09	(a)	3550.95
	12/21/98		(a)	55.18	(a)	3550.86
	03/23/99		(a)	55.04	(a)	3551.00
MW-26	10/11/98	3597.75 (c)	(a)	47.31	(a)	3550.44
	10/29/98		(a)	47.53	(a)	3550.22
	12/21/98		(a)	47.24	(a)	3550.51
	03/23/99		(a)	46.86	(a)	3550.89
MW-27	10/11/98	3615.11 (c)	64.85	68.00	3.15	3549.50
	12/21/98		64.83	68.03	3.20	3549.51
	03/23/99		64.78	67.91	3.13	3549.58
MW-23 D	08/19/97	3605.16	(a)	62.05	(a)	3543.11
	10/30/97		(a)	59.11	(a)	3546.05
	01/26/98		(a)	56.19	(a)	3548.97
	05/06/98	3605.23 (b)	(a)	59.01	(a)	3546.22
	05/07/98		(a)	59.08	(a)	3546.15
	05/25/98		(a)	60.35	(a)	3544.88
	08/10/98		(a)	63.46	(a)	3541.77
	10/11/98	3605.00 (c)	(a)	61.26	(a)	3543.74
	10/19/98		(a)	60.92	(a)	3544.08
	12/21/98		(a)	57.68	(a)	3547.32
	03/23/99		(a)	56.42	(a)	3548.58
MW-24 D	10/11/98	3595.95 (c)	(a)	52.70	(a)	3543.25
	10/19/98		(a)	52.39	(a)	3543.56
	10/29/98		(a)	51.51	(a)	3544.44
	12/21/98		(a)	49.24	(a)	3546.71
	03/23/99		(a)	47.80	(a)	3548.15
MW-25 D	10/11/98	3592.99 (c)	(a)	48.59	(a)	3544.40
	10/19/98		(a)	48.55	(a)	3544.44
	10/29/98		(a)	48.19	(a)	3544.80
	12/21/98		(a)	47.01	(a)	3545.98
	03/23/99		(a)	45.42	(a)	3547.57

Well ID	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
Well #2	05/06/98 05/07/98	3615.28 (b)	(a) (a)	65.48 65.51	(a) (a)	3549.80 3549.77
Well #5	05/06/98 05/07/98	3635.39 (b)	(a) (a)	83.75 83.79	(a) (a)	3551.64 3551.60

NOTES:

PSH - Phase separated hydrocarbon

Corrections to ground water surface elevation for PSH is calculated assuming a specific gravity of 0.76

(NA) Information not available

(a) Not applicable since no measurable thickness of PSH is present

(b) Elevation based on survey by Wagener Engineering dated 5/6/98

(c) Elevation based on survey by Wagener Engineering dated 9/17/98

				EX g/L)				Other (uç	VOCs µ/L)				OC's g/L)
Well ID	Sampling Date	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Methyl ethyl ketone (2-butanone)	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	1,1,1-Trichloroethane	1,2,4-Trimethylbenzene	Total Naphthalene ^(b)	4-Methylphenol (p-Cresol)
NMWQCC St	andard	10	750	750	620	none	25	10	5	60	none	30	none
MW-3	04/30/93	< 5	< 5	< 5	NA	NA	< 5	< 5	< 5	< 5	NA	NA	NA
	08/22/95	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	09/10/96	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	07/30/97	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	11/03/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/27/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/26/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/13/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	12/24/98	< 1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	< 1	< 1	NA
	03/24/99	<1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	<1	<1	NA
MW-5	04/30/93	< 5	< 5	< 5	NA	NA	< 5	< 5	< 5	< 5	NA	NA	NA
	08/22/95	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	09/10/96	<1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	07/25/97	<1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	10/31/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/27/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/26/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/11/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	12/22/98	<1	<1	<1	<1	< 20	<1	<1	<1	<1	<1	<1	NA
	03/23/99	<1	< 1	< 1	< 1	< 20	< 1	< 1	<1	<1	<1	<1	NA
MW-6	12/02/94	< 0.5	< 0.5	< 0.5	< 0.5	NA	< 0.2	< 5	< 5	< 0.2	NA	NA	NA
	08/22/95	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	09/10/96	<1	< 5	< 5	< 5	< 100 < 100	< 5	< 5	< 5	< 5	NA	< 10 < 10	< 10
	07/25/97	<1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	10/31/97	< 5	< 5	< 5	< 5	< 100 < 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/26/98	< 5	< 5	< 5	< 5	< 20	<5	< 5	< 5	< 5	< 5	< 5	NA
	05/26/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/11/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	12/22/98	<1	<1	<1	<1	< 20	<1	<1	<1	<1	< 1	<1	NA
	03/23/99	<1	<1	<1		× 20						< I	IN/A

Table 2. (Page 1 of 6)

F			BT (ug	EX I/L)		r t			VOCs g/L)			1	OC's g/L)
Well ID	Sampling Date	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Methyl ethyl ketone (2-butanone)	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	1,1,1-Trichloroethane 1,2,4-Trimethylbenzene Total Naphthalene ^(b)	Total Naphthalene ^(b)	4-Methylphenol	
NMWQCC S	tandard	10	750	750	620	none	25	10	5	60	none	30	none
	6 6 6 6 7							_	_	_			
MW-7	08/23/95	< 5	< 5	< 5	< 5	900	< 5	< 5	< 5	< 5	NA	< 10	< 10
	09/17/96	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	07/31/97	<1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	11/03/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/29/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/28/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/14/98 12/27/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
		< 1 < 1	<1	<1	<1	< 20	<1	<1 <1	<1	<1	<1	<1	NA
	03/25/99	< 1	< 1	< 1	<1	< 20	<1	< 1	<1	< 1	<1	<1	NA
WW-8	08/22/95	6	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	09/11/96	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	08/01/97	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	11/02/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/29/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/28/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/14/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	12/27/98	< 1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	<1	< 1	< 1	NA
	03/25/99	< 1	<1	< 1	<1	< 20	<1	<1	< 1	<1	< 1	<1	NA
4W-9	08/23/95	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	09/11/96	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	07/31/97	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	11/02/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/29/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/28/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/14/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	12/27/98	< 1	< 1	<1	< 1	< 20	< 1	< 1	< 1	< 1	< 1	< 1	NA
	03/24/99	< 1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	<1	< 1	NA
/W-10	09/19/96	2	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	07/31/97	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	11/01/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/27/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/26/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/13/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA

Table 2. (Page 2 of 6)

				EX g/L)					VOCs g/L)				OC's g/L)
Well ID	Sampling Date	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Methyl ethyl ketone (2-butanone)	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	1,1,1-Trichloroethane	1,2,4-Trimethylbenzene	Total Naphthalene ^(b)	4-Methylphenol (p-Cresol)
NMWQCC Sta	indard	10	750	750	620	none	25	10	5	60	none	30	none
	12/22/98	<1	< 1	< 1	< 1	< 20	<1	< 1	< 1	< 1	<1	< 1	NA
	03/23/99	<1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	< 1	< 1	NA
MW-11	09/19/96	<1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	07/30/97	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	11/01/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/27/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/26/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/13/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	12/22/98	< 1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	< 1	< 1	NA
	03/24/99	<1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	<1	< 1	NA
MW-12	09/17/96	760	< 5	< 5	52	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	08/06/97	280	< 5	< 5	< 5	< 10	< 5	9	< 5	< 5	NA	< 10	< 10
	11/04/97	340	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
dup (MW-24)	11/04/97	260	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/30/98	310	< 5	< 5	26	< 20	< 5	< 5	< 5	< 5	10	< 5	NA
	05/28/98	310	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	9	< 5	NA
	08/15/98	190	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	8	< 5	NA
dup (MW-28)	08/15/98	200	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	9	< 5	NA
	12/28/98	120	< 1	< 1	< 1	< 20	<1	< 1	< 1	< 1	4	2.8	NA
	03/26/99	92	< 1	< 1	< 1	< 20	<1	< 1	< 1	< 1	3	2.2	NA
dup (MW-28)	03/26/99	95	< 1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	2	2.2	NA
MW-13	09/19/96	4,600	9	< 5	170	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	08/09/97	2,400	< 5	100	< 5	< 100	< 5	41	< 5	< 5	NA	< 10	< 10
	11/04/97	590	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/29/98	61	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/28/98	140	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/15/98	30	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	12/27/98	58	1	< 1	4	< 20	< 1	< 1	< 1	< 1	< 1	1.3	NA
	03/26/99	44	< 1	< 1	6	< 20	< 1	< 1	< 1	< 1	< 1	0.8	NA
MW-14	09/24/96	2 ^(a)	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	08/01/97	- <1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	11/02/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA

Table 2. (Page 3 of 6)

			BT (uç	EX ;/L)					VOCs µ/L)			1	OC's g/L)
Well ID	Sampling Date	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Methyl ethyl ketone (2-butanone)	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	1,1,1-Trichloroethane	1,2,4-Trimethylbenzene	Total Naphthalene ^(b)	4-Methylphenol (p-Cresol)
NMWQCC St	andard	10	750	750	620	none	25	10	5	60	none	30	none
	0.1/00/00	-	_	_	_		_	_	-	-	-	-	
	01/29/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/27/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/11/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	12/23/98	< 1	< 1	<1	< 1	< 20	< 1	<1	<1	< 1	< 1	<1	NA
	03/25/99	< 1	< 1	<1	< 1	< 20	< 1	< 1	< 1	<1	<1	< 1	NA
MW-15	09/25/96	4 ^(a)	6	< 5	6	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	08/08/97	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	11/02/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/28/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/27/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/13/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	12/24/98	< 1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	<1	< 1	NA
	03/24/99	< 1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	< 1	<1	NA
MW-17	09/24/96	2 ^(a)	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
10100-17	07/31/97	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	11/02/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/28/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/27/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/13/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	12/24/98	<1	<1	<1	<1	< 20	<1	<1	<1	<1	<1	< 1	NA
	03/25/99	< 1	<1	< 1	<1	< 20	<1	< 1	< 1	<1	<1	<1	NA
MW-18	08/09/97	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	11/01/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/28/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/27/98	< 5	< 5	< 5	<5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/13/98	< 5	< 5	< 5	< 5	< 20 < 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	12/24/98	<1	<1	<1	<1	< 20 < 20	<1	<1	<1	<1	< 1	< 1	NA
	03/24/99	< 1	< 1	<1	<1	< 20 < 20	< 1	< 1	< 1	< 1	<1	<1	NA
		_	_	_	_		_	-	-	_			
MW-19	09/27/96	2	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	08/08/97	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	11/01/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/27/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/27/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA

Table 2. (Page 4 of 6)

			BT (uç	EX J/L)					VOCs J/L)				OC's g/L)
Well ID	Sampling Date	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Methyl ethyl ketone (2-butanone)	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	1,1,1-Trichloroethane	1,2,4-Trimethylbenzene	Total Naphthalene ^(b)	4-Methylphenol (p-Cresol)
NMWQCC Star	ndard	10	750	750	620	none	25	10	5	60	none	30	none
	08/13/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	12/23/98	<1	<1	< 1	<1	< 20	<1	< 1	<1	<1	<1	< 1	NA
	03/24/99	<1	< 1	< 1	<1	< 20	<1	< 1	< 1	< 1	< 1	<1	NA
MW-20	08/07/97	12	< 5	< 5	< 5	< 100	8	< 5	39	22	NA	< 10	< 10
	11/03/97	< 5	< 5	< 5	< 5	< 100	10	< 5	86	28	NA	< 10	NA
	01/29/98	< 5	< 5	< 5	< 5	< 20	12	< 5	72	< 5	< 5	< 5	NA
	05/29/98	< 5	< 5	< 5	< 5	< 20	15	< 5	120	< 5	< 5	< 5	NA
dup (MW-24)	05/29/98	< 5	< 5	< 5	< 5	< 20	14	< 5	140	29	< 5	< 5	NA
	08/15/98	< 5	< 5	< 5	< 5	< 20	14	< 5	100	28	< 5	< 5	NA
	12/28/98	< 1	< 1	< 1	< 1	< 20	15	< 1	83	27	< 1	< 1	NA
dup (MW-28)	12/28/98	< 1	< 1	< 1	< 1	< 20	15	< 1	83	27	< 1	< 1	NA
	03/26/99	<1	< 1	< 1	< 1	< 20	15	< 1	84	27	< 1	< 1	NA
MW-21	08/07/97	370	< 5	< 5	< 5	< 100	< 5	11	< 5	< 5	NA	< 10	< 10
	11/04/97	170	< 5	< 5	15	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/30/98	700	< 5	< 5	26	< 20	< 5	< 5	< 5	< 5	NA	< 5	NA
dup (MW-24)	01/30/98	700	< 5	< 5	24	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/28/98	790	< 5	< 5	34	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/15/98	1000	< 5	< 5	68	< 20	< 5	< 5	< 5	< 5	7	< 5	NA
	12/28/98	1400	1	< 1	61	< 20	<1	< 1	< 1	< 1	9	8.8	NA
	03/26/99	1400	< 1	< 1	28	< 20	< 1	< 1	< 1	< 1	5	7.1	NA
MW-22	08/07/97	<1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	11/03/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/29/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/28/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/14/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	12/27/98	< 1	< 1	<1	< 1	< 20	<1	<1	4	1	< 1	< 1	NA
	03/25/99	< 1	< 1	< 1	< 1	< 20	< 1	< 1	4	1	< 1	< 1	NA
MW-23D	08/06/97	< 1	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	< 10
	11/05/97	< 5	< 5	< 5	< 5	< 100	< 5	< 5	< 5	< 5	NA	< 10	NA
	01/28/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	05/27/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA
	08/11/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	< 5	< 5	NA

Table 2. (Page 5 of 6)

				EX µ/L)					·VOCs g/L)				OC's g/L)
Well ID	Sampling Date	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Methyl ethyl ketone (2-butanone)	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	1,1,1-Trichloroethane	1,2,4-Trimethylbenzene	Total Naphthalene ^(b)	4-Methylphenol (p-Cresol)
NMWQCC Sta	andard	10	750	750	620	none	25	10	5	60	none	30	none
	12/23/98	< 1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	< 1	< 1	NA
	04/05/99	< 1	<1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	< 1	< 1	NA
MW-24D	10/29/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	NA	< 5	NA
	12/23/98	< 1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	< 1	< 1	NA
	03/30/99	<1	<1	< 1	<1	< 20	< 1	< 1	<1	< 1	< 1	< 1	NA
MW-25D	10/29/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	NA	< 5	NA
	12/23/98	< 1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	< 1	< 1	NA
	03/30/99	< 1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	< 1	<1	< 1	NA
MW-26	10/29/98	< 5	< 5	< 5	< 5	< 20	< 5	< 5	< 5	< 5	NA	< 5	NA
	12/27/98	< 1	<1	<1	<1	< 20	< 1	< 1	< 1	< 1	< 1	< 1	NA
	03/25/99	< 1	< 1	< 1	< 1	< 20	< 1	< 1	< 1	<1	< 1	< 1	NA

NOTES:

Only constituents detected in one or more ground water samples are shown in this table

All results reported above the detection limit are shown in bold type

NA - An analytical result for this constituent was not reported by the laboratory

^(a) Analyte present in method blank

^(b) Total Naphthalene = Naphthalene + 1-Methylnapthalene + 2-Methylnapthalene

^(c) Water sample collected through layer of phase separated hydrocarbon accumulated in monitor well casing

Table 3. Summary of Ground Water Analyses - Inorganics	Compressor Station No. 9 - Roswell, NM
Table 3. Summary of Grou	Compressor Stati

ļ

Material Material Material Material 011 10 001 005 10 10 005 001	Major Ions (mg/L)	Major lons (mg/L)	Major lons (mg/L)	Major lons (mg/L)	Major lons (mg/L)	Major lons (mg/L)	r lons g/L)										2 -	Metals (mg/L)						
Internet 0.1 1.0 0.01 0.05 1.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.01 0.005 0.01 <th0.01< th=""> 0.01 0.01</th0.01<>	Date Date Chloride Sulfate VO2/VO3 - N, total Calcium Potassium Potassium	TDS Chloride Sulfate MO2/NO3 - N, total Calcium Potassium	Chloride Sulfate Calcium Potassium	Sulfate VOz/VOs - V, total Calcium Potassium	NO ₂ /NO ₃ - <i>N</i> , fotal Calcium Potassium	muioleO muieseto9	muisseto9	เมทเรลนดิยเพ	muihoS		(as CaCO ₃)	Sineria	muins8	muimbeO	Chromium	Copper	Iron	read	Aanganese	, Мегсигу	muinələ2	Silver	Sinc	munimulA
010 01 10 010 005 10 005 10 005 005 005 005 005 005 005 005 005 005 005 005 005 001 001 115 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <th></th> <th>l</th> <th>l</th> <th></th>		l	l																					
M < 0.03	NMWQCC Standard 1000 250 600 10 none none none	250 600 10 none none	250 600 10 none none	600 10 none none	10 none none	none none	none	Ĕ		1		0.1	1.0	0.01	0.05	1.0	1.0	0.05	0.20	0.002	0.05	0.05	10	2
116 < 0.05 < 0.01 < 0.00 < 0.01 < 0.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <th< th=""><th>NA NA NA NA</th><th>NA NA NA NA NA NA</th><th>NA NA NA NA NA</th><th>NA NA NA NA</th><th>NA NA NA</th><th>NA NA</th><th>NA</th><th>-</th><th></th><th></th><th>·</th><th>< 0.03</th><th></th><th>< 0.01</th><th>< 0.01</th><th>NA</th><th>NA N</th><th>¢ 0.03</th><th>·</th><th>-</th><th>< 0.05</th><th>< 0.01</th><th>NA</th><th>NA</th></th<>	NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA	NA NA	NA	-			·	< 0.03		< 0.01	< 0.01	NA	NA N	¢ 0.03	·	-	< 0.05	< 0.01	NA	NA
115 < 0.005 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.002 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <th< td=""><th>1,800 0.8 587</th><th>3650 405 1,800 0.8 587 3.2</th><th>405 1,800 0.8 587 3.2</th><th>1,800 0.8 587 3.2</th><td>0.8 587 3.2</td><td>587 3.2</td><td>3.2</td><td>ŝ</td><td></td><td></td><td>·</td><td>·</td><td>·</td><td>< 0.005</td><td>< 0.01</td><td>< 0.01</td><td>·</td><td>¢ 0.05</td><td></td><td></td><td>< 0.1</td><td>< 0.01</td><td>0.03</td><td>0.24</td></th<>	1,800 0.8 587	3650 405 1,800 0.8 587 3.2	405 1,800 0.8 587 3.2	1,800 0.8 587 3.2	0.8 587 3.2	587 3.2	3.2	ŝ			·	·	·	< 0.005	< 0.01	< 0.01	·	¢ 0.05			< 0.1	< 0.01	0.03	0.24
114 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.002 < 0.01 < 0.002 < 0.01 < 0.002 < 0.01 < 0.002 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	385 1,800 (3530 385 1,800 0.96 635 20	385 1,800 0.96 635 20	1,800 0.96 635 20	0.96 635 20	635 20	20	4				< 0.05	•	•	·	< 0.01		0.003		·	< 0.01	< 0.01	< 0.01	NA
110 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.002 < 0.01 < 0.002 < 0.01 < 0.002 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.002 < 0.0102 < 0.0102 < 0.0102 < 0.0102 < 0.0102 < 0.0102 < 0.0102 < 0.0102 < 0.0012 < 0.0022 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0012	3560 409 1,680 1.1 804	3560 409 1,680 1.1 804 < 5	409 1,680 1 .1 804 < 5	1,680 1.1 804 < 5	1.1 804 <5	804 < 5	< 5	ĉ				-	-	-	•	< 0.01		0.003		-		< 0.01	< 0.01	AN
102 < 0.01 0.004 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.001 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.001 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.0	370 1,840 1 .1 790 ^(d)	3450 370 1,840 1 .1 790 ^(d) 3.0	370 1,840 1 .1 790 ^(d) 3.0	1,840 1.1 790 ^(d) 3.0	1.1 790 ^(d) 3.0	790 ^(d) 3.0	3.0	æ						•		•					< 0.04	< 0.01	< 0.03	٨N
	2790 398 1,700 1.1 643	2790 398 1,700 1.1 6 43 3	398 1,700 1.1 6 43 3	1,700 1.1 643 3	1.1 643 3	643 3	в	8						•	-	•		-		: 0.0002	< 0.1	< 0.01	< 0.02	NA
111 0.007 0.010 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 </td <th>430 2,100 1.2 NA NA</th> <th>2700 430 2,100 1.2 NA NA</th> <th>430 2,100 1.2 NA NA</th> <th>2,100 1.2 NA NA</th> <td>1.2 NA NA</td> <td>NA NA</td> <td>NA</td> <td>≤</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>•</td> <td>: 0.005</td> <td>< 0.01</td> <td>< 0.02</td> <td>NA</td>	430 2,100 1.2 NA NA	2700 430 2,100 1.2 NA NA	430 2,100 1.2 NA NA	2,100 1.2 NA NA	1.2 NA NA	NA NA	NA	≤						-		•				•	: 0.005	< 0.01	< 0.02	NA
111 < 0.004 0.0133 < 0.002 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.013 < 0.003 < 0.013 < 0.003 < 0.013 < 0.003 < 0.013 < 0.003 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.011 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0	3600 443 95 1.1 594 3	3600 443 95 1.1 594 3	443 95 1.1 594 3	95 1.1 594 3	1.1 594 3	594 3	en	5						•		< 0.01	·	-		•		< 0.01	0.04	NA
113 < 0.004 0.012 < 0.002 < 0.002 < 0.002 < 0.002 < 0.003 < 0.01 < 0.003 < 0.01 < 0.003 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	3390 390 1,900 1.1 563 3.4	3390 390 1,900 1.1 563 3.4	390 1,900 1 .1 563 3.4	1,900 1.1 563 3.4	1.1 563 3.4	563 3.4	3.4	5			-			•	-		•	-		-		¢ 0.003	< 0.01	NA
NA < (0.03 0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.01 < (0.0	370 1,800 1.3 566	3430 370 1,800 1.3 566 3.5	370 1,800 1 .3 566 3.5	1,800 1.3 566 3.5	1.3 566 3.5	566 3.5	3.5	27	21					•		-	•				-	¢ 0.003	< 0.01	AN
12 < 0.05 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.002 < 0.01 < 0.01 < 0.002 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	03/23/94° NA NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA	NA NA	NA	₹	Ż			< 0.03		·	< 0.01	AN	•	¢ 0.03		·		< 0.01	AN	AN
114 < 0.05 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.002 < 0.01 < 0.002 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	3440 574 1,800 3.1 623 3.8	3440 574 1,800 3.1 623 3.8	574 1,800 3.1 623 3.8	1,800 3.1 623 3.8	3.1 623 3.8	623 3.8	3.8	4				•		•	•	< 0.01		< 0.05		: 0.0002		< 0.01	0.01	0.38
	3550 578 1,690 2.97 631 19	3550 578 1,690 2.97 631 19	578 1,690 2.97 631 19	1,690 2.97 631 19	2.97 631 19	631 19	19	5				< 0.05	·	•	•	< 0.01	-	0.003		: 0.0002	0.02	< 0.01	0.02	AN
118 < 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.002 < 0.04 < 0.01 < 0.03 78 < 0.11 0.047 < 0.005 < 0.01 < 0.002 < 0.01 < 0.01 < 0.02 110 < 0.005 0.016 < 0.01 < 0.01 < 0.02 < 0.015 < 0.01 < 0.02 < 0.011 < 0.002 < 0.012 < 0.005 < 0.002 < 0.011 < 0.002 < 0.002 < 0.011 < 0.002 < 0.011 < 0.002 < 0.002 < 0.011 < 0.002 < 0.002 < 0.011 < 0.002 < 0.002 < 0.011 < 0.002 < 0.002 < 0.011 < 0.002 < 0.002 < 0.011 < 0.002 < 0.011 < 0.002 < 0.011 < 0.002 < 0.011 < 0.002 < 0.011 < 0.002 < 0.011 < 0.002 < 0.011 < 0.002 < 0.011 < 0.002 < 0.011 < 0.012 < 0.011 < 0.012 < 0.011	3960 622 1,720 3.7 916 <5	3960 622 1,720 3.7 916 <5	622 1,720 3.7 916 < 5	1,720 3.7 916 < 5	3.7 916 <5	916 < 5	< 5	ŭ					-		•		•					< 0.01	< 0.01	AN
78 < 0.11 0.047 < 0.005 < 0.012 < 0.01 < 0.02 < 0.055 < 0.002 < 0.01 < 0.02 110 < 0.005 0.012 < 0.005 < 0.016 < 0.015 < 0.005 < 0.005 < 0.016 < 0.015 < 0.016 < 0.012 < 0.005 < 0.0105 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016 < 0.016	3700 560 1,730 3.6 780 ^(d) 2.6	3700 560 1,730 3.6 780 ^(d) 2.6	560 1,730 3.6 780 ^(d) 2.6	1,730 3.6 780 ^(d) 2.6	3.6 780 ^(d) 2.6	780 ^(d) 2.6	2.6	9						-		•					< 0.04	< 0.01	< 0.03	NA
	1180 260 700 1.8 300 <2	1180 260 700 1.8 300 <2	260 700 1.8 300 <2	700 1.8 300 <2	1.8 300 <2	300 < 2	<2							•		•				: 0.0002	< 0.1	< 0.01	< 0.02	NA
	2200 570 1,900 3.5 NA NA	2200 570 1,900 3.5 NA NA	570 1,900 3.5 NA NA	1,900 3.5 NA NA	3.5 NA NA	NA NA	NA	_			v		•	•		< 0.01		-		•		< 0.01	< 0.02	AN
116 < 0.004 0.0148 < 0.002 < 0.005 < 0.005 < 0.005 < 0.005 < 0.006 < 0.016 < 0.003 < 0.010 < 0.003 < 0.011 < 0.003 < 0.011 < 0.003 < 0.013 < 0.003 < 0.011 < 0.003 < 0.011 < 0.003 < 0.011 < 0.003 < 0.011 < 0.003 < 0.011 < 0.003 < 0.011 < 0.003 < 0.011 < 0.003 < 0.011 < 0.003 < 0.011 < 0.003 < 0.011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0	3400 520 1,500 3.7 588 3	3400 520 1,500 3.7 588 3	520 1,500 3.7 588 3	1,500 3.7 588 3	3.7 588 3	588 3	ო	4						-		< 0.01	•					< 0.01	< 0.02	NA
116 < 0.004 0.0142 < 0.005 < 0.002 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.001 < 0.003 < 0.001 < 0.003 < 0.01 < 0.003 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0	3440 620 1,700 3.8 628 3	3440 620 1,700 3.8 628 3	620 1,700 3.8 628 3	1,700 3.8 628 3	3.8 628 3	628 3	cr)	47					-	•			•			•	-	¢ 0.003	< 0.01	NA
110 < 0.05	3.9 607	3490 590 1,600 3.9 607 3.2	590 1,600 3.9 607 3.2	1,600 3.9 607 3.2	3.9 607 3.2	607 3.2	3.2	20	21		-			•	•	-	•				-	c 0.003	< 0.01	NA
99 < 0.05 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.03 < 0.01 < 0.01 < 0.03 < 0.01 < 0.01 < 0.03 < 0.01 < 0.03 < 0.03 < 0.01 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03	2800 344 1,600 1 458 3.9	2800 344 1,600 1 458 3.9	344 1,600 1 458 3.9	1,600 1 458 3.9	1 458 3.9	458 3.9	3.9	1 8				•		•	·	< 0.01		c 0.05		0.0005		< 0.01	0.03	0.69
112 < 0.01 < 0.01 < 0.005 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.03 < 0.01 < 0.01 < 0.03 < 0.01 < 0.03 < 0.03 < 0.01 < 0.03 < 0.03 < 0.01 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 <th>3040 333 1,490 0.98 488</th> <th>3040 333 1,490 0.98 488 19</th> <th>333 1,490 0.98 488 19</th> <th>1,490 0.98 488 19</th> <td>0.98 488 19</td> <td>488 19</td> <td>19</td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>< 0.01</td> <td></td> <td>0.004</td> <td></td> <td>-</td> <td></td> <td>< 0.01</td> <td>< 0.01</td> <td>AN</td>	3040 333 1,490 0.98 488	3040 333 1,490 0.98 488 19	333 1,490 0.98 488 19	1,490 0.98 488 19	0.98 488 19	488 19	19	7						•		< 0.01		0.004		-		< 0.01	< 0.01	AN
106 < 0.03 < 0.01 < 0.01 < 0.01 < 0.03 < 0.01 < 0.002 < 0.04 < 0.01 < 0.03 96 < 0.1	3420 344 1,650 1 778 5	3420 344 1,650 1 77 8 5	344 1,650 1 77 8 5	1,650 1 778 5	1 778 5	778 5	5	1						•		< 0.01	•	0.003		-	< 0.01	< 0.01	0.01	Ν
96 < 0.1 0.007 < 0.005 < 0.01 < 0.01 < 0.02 < 0.05 < 0.005 < 0.01 < 0.01 < 0.02 < 0.05 < 0.002 < 0.1 < 0.01 < 0.02 102 < 0.005 < 0.005 < 0.005 < 0.005 < 0.001 < 0.01 < 0.02	3090 300 1,620 1 .2 550 ^(d) 3.1	3090 300 1,620 1 .2 550 ^(d) 3.1	300 1,620 1.2 550 ^(d) 3.1	1,620 1.2 550 ^(d) 3.1	1.2 550 ^(d) 3.1	550 ^(d) 3.1	3.1	~	·		-			•		•						< 0.01	< 0.03	NA
102 < 0.005 < 0.005 < 0.005 < 0.01 < 0.01 0.04 < 0.05 < 0.005 < 0.002 < 0.1 < 0.01 < 0.02	2650 335 1,500 1.0 517 4	2650 335 1,500 1.0 517 4	335 1,500 1 .0 517 4	1,500 1.0 517 4	1.0 517 4	517 4	4							•		•						< 0.01	< 0.02	AN
	2600 340 1,900 1.1 NA NA	2600 340 1,900 1.1 NA NA	340 1,900 1.1 NA NA	1,900 1.1 NA NA	1.1 NA NA	NA NA	NA				·		-	•				-		: 0.0002	< 0.1	< 0.01	< 0.02	NA

Table 3. (Page 1 of 8)

						ajor lor (mg/L)	IS										Metals (mg/L)				·····		
Well ID	Sampling Date	TDS	Chloride	Sulfate	NO2/NO3 - N, total	Calcium	Potassium	Magnesium	Sodium	Total alkalinity (as CaCO ₃)	Arsenic	Barium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Selenium	Silver	Zinc	Atuminum
NMWQCC	Standard	1000	250	600	10	none	none	none	none	none	0.1	1.0	0.01	0.05	1.0	1.0	0.05	0.20	0.002	0.05	0.05	10	5
	08/11/98 ^b 12/22/98 ^b 03/23/99 ^b	2900 2890 2960	305 300 300	1,500 1,600 1,600	1.0 1.0 1.0	425 488 476	3 3.3 3.7	124 142 146	126 144 153	98 109 108	< 0.005 < 0.004 < 0.004	0.006 0.0099 0.0106	< 0.005 < 0.002 < 0.002	< 0.01 < 0.005 < 0.005	< 0.01 < 0.002 < 0.002	0.18 0.064 0.073	< 0.005 < 0.025 < 0.025	< 0.005 0.0097 < 0.001	< 0.0002 < 0.0002 < 0.0002	< 0.005 < 0.010 < 0.010	< 0.01 < 0.003 < 0.003	0.02 < 0.01 < 0.01	NA NA NA
MW-7	08/23/95 ^b 09/17/96 ^b 07/31/97 ^b 11/03/97 ^b 01/29/98 ^c 05/28/98 ^b 08/14/98 ^b 12/27/98 ^b 03/25/99 ^b	3640 3760 3700 3580 2730 3000 3800 3440 3470	284 273 313 250 288 290 301 260 250	2,000 2,140 1,930 1,810 1,800 2,400 2,300 2,300 2,000	0.12 0.07 < 0.05 < 0.05 < 0.1 < 0.1 < 0.1 0.01 0.02	668 648 191 790 ^(d) 630 NA 572 556 232	8.2 20 6.4 7 NA 8 6.65 5.28	235 198 84.3 260 206 NA 180 0.176 158	149 145 95 180 ^(a) 140 NA 130 141	136 110 112 112 86 114 108 120 116	< 0.05 < 0.05 < 0.03 < 0.1 < 0.005 < 0.005 < 0.004 < 0.004	0.02 0.02 < 0.05 < 0.01 0.014 0.011 0.012 0.0171 0.0130	< 0.005 < 0.02 < 0.01 < 0.005 < 0.005 < 0.005 < 0.002 < 0.002	< 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.005 < 0.005	< 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.002 < 0.002	NA NA 0.3 1.2 < 0.02 0.44 0.30 0.126 < 0.01	< 0.05 < 0.003 < 0.02 < 0.03 < 0.05 < 0.05 < 0.005 < 0.025 < 0.025	NA NA 1.2 0.120 0.490 0.428 0.362 0.0285	0.0004 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002	< 0.1 < 0.01 < 0.05 < 0.04 < 0.1 < 0.005 < 0.005 < 0.010 < 0.010	< 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.003 < 0.003	0.02 0.02 < 0.05 < 0.03 0.03 < 0.02 0.09 < 0.01 < 0.01	1.39 NA NA NA NA NA NA
MW-8	08/22/95 ^b 09/19/96 ^b 08/01/97 ^b 11/02/97 ^b 01/29/98 ^c 05/27/98 ^b 08/14/98 ^b 12/27/98 ^b 03/25/99 ^b	3640 3780 3890 3740 2960 2800 3800 3650 3650	362 331 320 347 370 355 350 350	2,000 2,120 1,980 1,810 1,900 2,500 2,100 2,100 2,000	0.1 0.06 0.16 0.10 0.1 0.2 < 0.1 0.21 0.21	587 630 86.5 610 ^(a) 634 NA 604 554 554	3.7 21 < 20 3.4 3 NA 4 3.7 3.6	193 222 51.5 210 219 NA 188 191 200	117 206 80 180 ^(d) 168 NA 135 184 169	134 141 140 136 96 131 204 137 136	< 0.05 < 0.05 < 0.03 < 0.1 < 0.005 < 0.005 < 0.004 < 0.004	< 0.01 0.01 < 0.05 < 0.01 < 0.005 0.006 0.0108 0.0103	< 0.005 < 0.005 < 0.02 < 0.01 < 0.005 < 0.005 < 0.005 < 0.002 < 0.002	< 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.005 < 0.005	< 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.002 < 0.002	NA NA <0.2 < 0.01 < 0.02 0.03 0.11 0.065 < 0.01	< 0.05 < 0.003 < 0.02 < 0.03 < 0.05 < 0.05 < 0.005 < 0.025 < 0.025	NA NA < 0.01 < 0.005 < 0.005 0.009 0.0028 < 0.001	0.0003 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002	< 0.1 < 0.01 < 0.05 < 0.04 < 0.1 < 0.005 < 0.005 < 0.010 < 0.010	< 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.003 < 0.003	0.01 < 0.01 < 0.05 < 0.02 < 0.02 0.39 < 0.01 < 0.01	0.33 NA NA NA NA NA NA
MW-9	08/23/95 ^b 09/19/96 ^b 07/31/97 ^b 11/02/97 ^b	4060 3810 4270 4000	391 439 487 440	2,200 1,990 2,040 1,930	0.38 0.56 0.55 0.36	896 673 557 610 ^(d)	17 24 < 20 5.5	232 210 174 190	230 287 362 270 ^(d)	124 114 126 124	< 0.05 < 0.05 < 0.05 < 0.03	0.04 0.05 < 0.05 < 0.01	< 0.005 < 0.005 < 0.02 < 0.01	< 0.01 0.01 < 0.05 < 0.01	0.01 < 0.01 < 0.05 < 0.01	NA NA 0.4 1.4	< 0.05 0.004 < 0.02 < 0.03	NA NA NA 0.11	0.0005 < 0.0002 < 0.0002 < 0.0002	< 0.1 < 0.01 < 0.05 < 0.04	< 0.01 < 0.01 < 0.05 < 0.01	0.03 0.02 < 0.05 < 0.03	3.13 NA NA NA

Table 3. (Page 2 of 8)

					N	lajor lor (mg/L)	าร										Metals (mg/L)						
Well ID	Sampling Date	TDS	Chloride	Sulfate	NO2/NO3 - N, total	Calcium	Potassium	Magnesium	Sodium	Total alkalinity (as CaCO ₃)	Arsenic	Barium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Selenium	Silver	Zinc	Aluminum
NMWQCC S	Standard	1000	250	600	10	none	none	none	none	none	0.1	1.0	0.01	0.05	1.0	1.0	0.05	0.20	0.002	0.05	0.05	10	5
	01/29/98°	3730	459	1,800	0.6	639	5	193	248	80	< 0.1	0.008	< 0.005	< 0.01	< 0.01	< 0.02	< 0.05	0.030	< 0.0002	< 0.1	< 0.01	< 0.02	NA
	05/28/98 ^b	3200	470	2,500	0.9	NA	NA	NA	NA	112	< 0.005	0.013	< 0.005	< 0.01	< 0.01	0.86	< 0.05	0.070	< 0.0002	< 0.005	< 0.01	< 0.02	NA
	08/14/98 ^b	4200	479	2,000	1.1	554	6	174	240	105	0.007	0.015	< 0.005	< 0.01	< 0.01	0.91	< 0.005	0.046	< 0.0002	< 0.005	< 0.01	0.03	NA
	08/14/98 °	NA	NA	NA	NA	619	5	206	261	NA	< 0.005	0.007	< 0.005	< 0.01	< 0.01	< 0.02	< 0.05	0.031	< 0.0002	< 0.005	< 0.01	< 0.02	NA
	12/27/98° 03/24/99 ^b	3800	470 450	2,100 2,100	0.93 0.79	532	4.51	163	226 245	121 119	< 0.004 < 0.004	0.0158 0.0164	< 0.002 < 0.002	< 0.005 < 0.005	< 0.002 < 0.002	< 0.01 0.502	< 0.025 < 0.025	0.0088 0.0326	< 0.0002 < 0.0002	< 0.010 < 0.010	< 0.003 < 0.003	< 0.01 < 0.01	NA NA
	03/24/99	3910	430	2,100	0.79	532	5.13	181	240	119	< 0.004	0.0104	< 0.002	< 0.005	< 0.002	0.502	< 0.025	0.0320	< 0.0002	< 0.010	< 0.003	C 0.01	NA
MW-10	09/19/96 ^b	3390	367	3,360	0.75	634	6	153	179	133	< 0.05	< 0.01	< 0.005	< 0.01	< 0.01	NA	< 0.003	NA	< 0.0002	< 0.01	< 0.01	0.02	NA
	07/31/97 ^b	3550	364	1,590	0.71	211	< 20	62.3	146	138	< 0.05	< 0.05	< 0.02	< 0.05	< 0.05	< 0.02	< 0.02	NA	< 0.0002	< 0.05	< 0.05	< 0.05	NA
	11/01/97 ^b	3520	340	1,890	0.74	600 ^(d)	3.5	146	225 ^(d)	128	< 0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01	< 0.0002	< 0.04	< 0.01	< 0.03	NA
	01/27/98°	2910	350	1,700	0.7	607	4	138	197	120	< 0.1	0.005	< 0.005	< 0.01	< 0.01	< 0.02	< 0.05	< 0.005	< 0.0002	< 0.1	< 0.01	< 0.02	NA
	05/26/98 ^b	3000	370	2,200	0.8	NA	NA	NA	NA	122	< 0.005	0.006	< 0.005	< 0.01	< 0.01	0.03	< 0.05	< 0.005	< 0.0002	< 0.005	< 0.01	0.20	NA
	08/13/98 ^b	3300	372	1,900	0.7	563	5	130	201	121	0.007	0.007	< 0.005	< 0.01	< 0.01	< 0.02	< 0.005	< 0.005	< 0.0002	< 0.005	< 0.01	0.04	NA
	12/22/98 ^b	3390	350	1,900	0.68	584	3.3	133	203	127	< 0.004	0.0107	< 0.002	< 0.005	< 0.002	0.034	< 0.025	< 0.005	< 0.0002	< 0.010	< 0.003	< 0.01	NA
	03/23/99 ^b	3390	340	1,800	0.68	569	3.8	134	211	127	< 0.004	0.0104	< 0.002	< 0.005	< 0.002	0.011	< 0.025	< 0.001	< 0.0002	< 0.010	< 0.003	< 0.01	NA
MW-11	09/19/96 ^b	3480	400	2,480	0.71	642	< 5	144	202	116	< 0.05	< 0.01	< 0.005	< 0.01	< 0.01	NA	0.004	NA	< 0.0002	< 0.01	< 0.01	0.04	NA
	07/30/97 ^b	3550	405	1,680	0.7	748	8	132	545	106	< 0.01	< 0.01	< 0.005	< 0.01	< 0.01	0.07	< 0.003	NA	< 0.0002	< 0.01	< 0.01	0.01	NA
	11/01/97 ^b	3530	370	1,900	0.67	630 ^(d)	2.6	140	360 ^(d)	96	< 0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01	< 0.0002	< 0.04	< 0.01	< 0.03	NA
	01/27/98°	2940	374	1,600	0.7	612	3	133	231	100	< 0.1	< 0.005	< 0.005	< 0.01	< 0.01	< 0.02	< 0.05	< 0.005	< 0.0002	< 0.1	< 0.01	< 0.02	NA
	05/26/98 ^b	3000	400	2,100	0.7	NA	NA	NA	NA	103	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	0.17	< 0.05	< 0.005	< 0.0002	< 0.005	< 0.01	0.21	NA
	08/13/98 ^b	3300	390	1,900	0.6	585	4	121	229	102	0.006	0.007	< 0.005	< 0.01	< 0.01	0.14	< 0.005	0.012	< 0.0002	< 0.005	< 0.01	0.06	NA
	12/22/98 ^b	3780	300	1,500	1.1	468	3	98.3	183	110	< 0.004	0.0138	< 0.002	< 0.005	< 0.002	0.047	< 0.025	< 0.005	< 0.0002	< 0.010	< 0.003	< 0.01	NA
	03/24/99 ^b	2480	250	1,200	1.1	403	3.4	88.1	172	106	< 0.004	0.0160	< 0.002	< 0.005	< 0.002	0.137	< 0.025	0.0021	< 0.0002	< 0.010	< 0.003	< 0.01	NA
MW-12	09/17/96 ^b	3670	431	1,810	0.36	688	16	127	247	110	< 0.05	0.02	< 0.005	< 0.01	< 0.01	NA	< 0.003	NA	< 0.0002	< 0.01	< 0.01	0.01	NA
	08/06/97 ^b	3670	435	1,640	0.41	605	< 5	123	236	106	< 0.01	0.01	< 0.005	< 0.01	< 0.01	0.52	< 0.003	NA	< 0.0002	< 0.01	< 0.01	< 0.01	NA
	11/04/97 ^b	3340	390	1,630	0.40	880 ^(d)	2.6	180	330 ^(d)	102	< 0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.03	0.31	< 0.0002	< 0.04	< 0.01	< 0.03	NA

Table 3. (Page 3 of 8)

					М	lajor lor (mg/L)	IS										Metals (mg/L)						
Well ID	Sampling Date	TDS	Chloride	Sulfate	NO2/NO3 - N, total	Calcium	Potassium	Magnesium	Sodium	Total alkalinity (as CaCO ₃)	Arsenic	Barium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Selenium	Silver	Zinc	Aluminum
NMWQCC St	andard	1000	250	600	10	none	none	none	none	none	0.1	1.0	0.01	0.05	1.0	1.0	0.05	0.20	0.002	0.05	0.05	10	5
Dup (MW-24)	11/04/97 ^b 01/30/98 ^c 05/28/98 ^b 08/15/98 ^b	3400 2680 3100 3200	400 421 440 408	1,760 1,600 2,100 2,000	0.40 0.3 0.3 0.4	710 ^(d) 625 NA 616	2.4 2 NA 3	150 120 NA 118	320 ^(d) 209 NA 194	102 74 99 111	< 0.03 < 0.1 < 0.005 0.005	< 0.01 < 0.005 < 0.005 0.005	< 0.01 < 0.005 < 0.005 < 0.005	< 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	< 0.01 0.05 0.12 0.13	< 0.03 < 0.05 < 0.05 < 0.005	0.43 0.444 0.688 0.678	< 0.0002 < 0.0002 < 0.0002 < 0.0002	< 0.04 < 0.1 < 0.005 < 0.005	< 0.01 < 0.01 < 0.01 < 0.01	< 0.03 < 0.02 < 0.02 < 0.02	NA NA NA
Dup (MW-28)	08/15/98 ^b 12/28/98 ^b	3300 3210	417 420	1,700 1,700	0.4 0.28	616 551	< 2 3.0	115 108	193 231	108 107	< 0.005 < 0.004	< 0.005 0.0083	< 0.005 < 0.002	< 0.01 < 0.005	< 0.01 < 0.002	0.09 0.114	< 0.005 < 0.025	0.470 0.667	< 0.0002 < 0.0002	0.005 < 0.010	< 0.01 < 0.003	0.02 < 0.01	NA NA
Dup (MW-28)	03/26/99 ^b 03/26/99 ^b	3360 3330	400 410	1,700 1,700	0.41 0.37	533 533	3.4 3.2	112 113	209 210	104 104	< 0.004 < 0.004	0.0086 0.0084	< 0.002 < 0.002	< 0.005 < 0.005	< 0.002 < 0.002	0.110 0.103	< 0.025 < 0.025	0.790 0.759	< 0.0002 < 0.0002	< 0.010 < 0.010	< 0.003 < 0.003	< 0.01 < 0.01	NA NA
MW-13	09/19/96 ^b 08/09/97 ^b 11/04/97 ^b 01/30/98 ^c 05/28/98 ^b 08/15/98 ^b 12/27/98 ^b 03/26/99 ^b	2810 3640 3760 2970 2900 3700 3160 3110	438 518 460 530 461 470 430	2,910 1,460 1,720 1,500 2,100 1,700 1,600 1,500	0.13 0.06 < 0.05 < 0.1 < 0.1 0.03 < 0.01	496 484 680 ^(d) 707 NA 664 577 550	5 18 3.0 3 NA 5 3.2 3.4	123 144 150 143 NA 134 121 128	136 212 200 ^(d) 174 NA 155 185 170	136 142 152 113 149 163 192 193	< 0.05 0.02 < 0.03 < 0.1 < 0.005 0.007 < 0.004 < 0.004	< 0.01 0.02 < 0.01 0.009 0.008 0.009 0.0150 0.0140	< 0.005 < 0.005 < 0.01 < 0.005 < 0.005 < 0.005 < 0.002 < 0.002	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.005 < 0.005	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.002 < 0.002	NA 0.81 0.67 0.86 1.41 1.36 1.56 1.46	< 0.003 < 0.003 < 0.03 < 0.05 < 0.05 < 0.005 < 0.025 < 0.025	NA 2.4 1.50 1.37 1.07 1.95 1.84	< 0.0002 < 0.0002 < 0.0002 < 0.0002 0.0033 < 0.0002 < 0.0002 < 0.0002	< 0.01 < 0.01 < 0.04 < 0.1 < 0.005 < 0.005 < 0.010 < 0.010	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.003 < 0.003	0.01 0.02 < 0.03 < 0.02 < 0.02 0.06 < 0.01 < 0.01	NA NA NA NA NA NA
MW-14	09/24/96 ^b 08/01/97 ^b 11/02/97 ^b 01/29/98 ^c 05/27/98 ^b 08/11/98 ^b 12/23/98 ^b 03/25/99 ^b	3580 3710 3500 2890 2700 3300 3380 3480	364 360 368 380 360 360 350	2,000 1,630 1,600 1,700 2,200 1,800 1,900 1,900	0.31 0.32 0.13 0.2 0.3 0.2 0.26 0.25	668 672 780 ^(d) 664 NA 608 609 567	6 < 20 4.1 5 NA 5 4.00 4.04	154 155 190 157 NA 144 144 143	149 180 220 ^(d) 169 NA 161 165 167	98 110 112 82 112 122 114 114	< 0.05 < 0.05 < 0.03 < 0.1 < 0.005 < 0.005 < 0.004	0.03 < 0.05 < 0.01 0.012 0.009 0.009 0.0125 0.0126	< 0.005 < 0.02 < 0.01 < 0.005 < 0.005 < 0.005 < 0.002 < 0.002	< 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.005 < 0.005	< 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.002 < 0.002	NA < 0.02 < 0.01 < 0.02 0.05 < 0.02 < 0.01 0.011	< 0.003 < 0.02 < 0.03 < 0.05 < 0.05 < 0.005 < 0.025 < 0.025	NA NA 0.06 0.013 0.007 < 0.005 < 0.005 < 0.001	< 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002	< 0.01 < 0.05 < 0.04 < 0.1 < 0.005 < 0.005 < 0.010 < 0.010	< 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.003 < 0.003	< 0.01 < 0.05 < 0.03 < 0.02 < 0.02 < 0.03 < 0.01 < 0.01	NA NA NA NA NA NA
MW-15	09/25/96 ^b	3860	438	3,940	0.58	1,130	7	180	210	138	< 0.05	0.03	< 0.005	< 0.01	< 0.01	NA	< 0.003	NA	< 0.0002	< 0.01	< 0.01	0.08	NA

Table 3. (Page 4 of 8)

					N	lajor lor (mg/L)	IS									·	Metals (mg/L)						
Well ID	Sampling Date	TDS	Chloride	Sulfate	NO2/NO3 - N, total	Calcium	Potassium	Magnesium	Sodium	Total alkalinity (as CaCO ₃)	Arsenic	Barium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Selenium	Silver	Zinc	Aluminum
NMWQCC S	Standard	1000	250	600	10	none	none	none	none	none	0.1	1.0	0.01	0.05	1.0	1.0	0.05	0.20	0.002	0.05	0.05	10	5
		<u></u>									L												
	08/08/97	3820	467	1,920	0.35	625	< 5	171	269	118	0.02	0.02	< 0.005	< 0.01	< 0.01	0.32	< 0.003	NA	< 0.0002	< 0.01	< 0.01	0.01	NA
	11/02/97 ⁶	3820	450	1,900	0.43	750 ^(d)	3.8	210	330 ^(d)	114	< 0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.03	0.01	< 0.0002	< 0.04	< 0.01	< 0.03	NA
	01/28/98° 05/27/98 ^b	2970 2900	453	1,800	0.4	638	4	174	259	82	< 0.1	0.010	< 0.005	< 0.01	< 0.01	< 0.02	< 0.05	0.015	< 0.0002	< 0.1	< 0.01	0.04	NA
	05/27/98 08/13/98 ^b	2900	500 479	2,300 2,200	0.5 0.6	NA 586	NA 4	NA 162	NA 262	110 106	< 0.005 0.006	0.009 0.012	< 0.005 < 0.005	< 0.01 < 0.01	< 0.01 < 0.01	0.04 0.03	< 0.05 < 0.005	0.006 0.012	< 0.0002 < 0.0002	< 0.005 < 0.005	< 0.01 < 0.01	< 0.02 0.20	NA NA
	12/24/98 ^b	3630	440	2,200	0.48	592	4.00	150	202	111	< 0.008	0.012	< 0.005	< 0.005	< 0.002	0.03	< 0.005	0.012	< 0.0002	< 0.005	< 0.003	< 0.01	NA
	03/24/99 ^b	3720	440	1,900	0.50	578	4.57	162	262	111	< 0.004	0.0133	< 0.002	< 0.005	< 0.002	0.019	< 0.025	0.0131	< 0.0002	< 0.010	< 0.003	< 0.01	NA
	00/24/00	•••••		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.00	0,0		102	202		0.001	0.0111	4 0.00L		< 0.00E	0.010	< 0.020	0.0100	10.0002	0.010	0.000	4 0.01	
MW-17	09/24/96 ^b	3660	437	2,000	0.71	626	< 5	170	218	138	< 0.05	< 0.01	< 0.005	< 0.01	< 0.01	NA	< 0.003	NA	< 0.0002	< 0.01	< 0.01	0.01	NA
	07/31/97 ^b	1570	445	1,820	0.71	221	< 20	71.1	175	96	< 0.05	< 0.05	< 0.02	< 0.05	< 0.05	<0.2	< 0.02	NA	< 0.0002	< 0.05	< 0.05	< 0.05	NA
	11/02/97 ^b	3770	430	2,000	0.74	770 ^(d)	2.5	210	330 ^(d)	90	< 0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.03	0.03	< 0.0002	< 0.04	< 0.01	< 0.03	NA
	01/28/98 °	2880	444	1,700	0.6	629	3	168	249	64	< 0.1	< 0.005	< 0.005	< 0.01	< 0.01	< 0.02	< 0.05	0.018	< 0.0002	< 0.1	< 0.01	< 0.02	NA
	05/27/98 ^b	3000	470	1,500	0.6	NA	NA	NA	NA	89	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	< 0.02	< 0.05	0.011	< 0.0002	< 0.005	< 0.01	< 0.02	NA
	08/13/98 ^b	3900	443	2,100	0.6	578	2	161	257	124	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	< 0.02	< 0.005	0.044	< 0.0002	< 0.005	< 0.01	0.09	NA
	12/24/98 ^b	3600	440	2,000	0.64	558	2.6	148	254	93	< 0.004	0.007 9	< 0.002	< 0.005	< 0.002	< 0.01	< 0.025	0.0042	< 0.0002	< 0.010	< 0.003	< 0.01	NA
	03/25/99 ^b	3590	440	1,900	0.66	535	3.0	152	240	91	< 0.004	0.0077	< 0.002	< 0.005	< 0.002	< 0.01	< 0.025	0.0259	< 0.0002	< 0.010	< 0.003	< 0.01	NA
MW-18	08/09/97 •	4240	NA	NA	NA	471	57	164	291	NA	0.02	0.02	< 0.005	0.02	< 0.01	1.09	< 0.003	NA	< 0.002	< 0.01	< 0.01	0.03	NA
	11/01/97 [®]	3850	390	2,020	0.69	760 ^(d)	6.4	210	330 ^(d)	78	< 0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01	< 0.0002	< 0.04	< 0.01	< 0.03	NA
	01/28/98 °	3100	424	1,900	0.8	641	7	225	166	55	< 0.1	0.017	< 0.006	< 0.01	< 0.01	< 0.02	< 0.05	< 0.005	< 0.0002	< 0.1	< 0.01	< 0.02	NA
	05/27/98 ^b	2800	430	1,800	0.8	NA	NA -	NA	NA	69	< 0.005	0.015	< 0.005	< 0.01	< 0.01	< 0.02	< 0.05	< 0.005	< 0.0002	< 0.005	< 0.01	< 0.02	NA
	08/13/98 ^b	3900 3610	479	2,000	0.7	586	7	209	169	82	0.008	0.015	< 0.005	< 0.01	< 0.01	< 0.02	< 0.005	0.007	< 0.0002	< 0.005	< 0.01	0.08	NA
	12/24/98 ^b		400	2,100	0.72	559	5.51	192	174	80	< 0.004	0.0184	< 0.002	0.0052	< 0.002	0.030	< 0.025	< 0.001	< 0.0002	< 0.010	< 0.003	< 0.01	NA
	03/24/99 ^b	3700	400	2,000	0.66	544	5.77	203	163	84	< 0.004	0.0177	< 0.002	0.0094	< 0.002	< 0.01	< 0.025	< 0.001	< 0.0002	< 0.010	< 0.003	< 0.01	NA
MW-19	09/27/96 ^b	3850	459	2,100	0.82	981	5	226	240	196	< 0.05	0.01	< 0.005	< 0.01	< 0.01	NA	0.004	NA	< 0.0002	< 0.01	< 0.01	0.04	NA
	09/27/90 08/08/97 ^b	3990	536	2,030	0.88	622	11	170	252	122	0.01	0.01	< 0.005	< 0.01	< 0.01	0.08	< 0.003	NA	< 0.0002	< 0.01	< 0.01	< 0.04	NA
	11/01/97 ^b	3920	430	1,880	0.82	710 ^(d)	3.4	210	320 ^(d)	100	< 0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.003	< 0.01	< 0.0002	< 0.04	< 0.01	0.02	NA
	11/01/01			.,			. .,		020		. 0.00					- 0.01	- 0.00	< 0.01	~ 0.0002	× 0.04	< 0.01	0.02	114

Table 3. (Page 5 of 8)

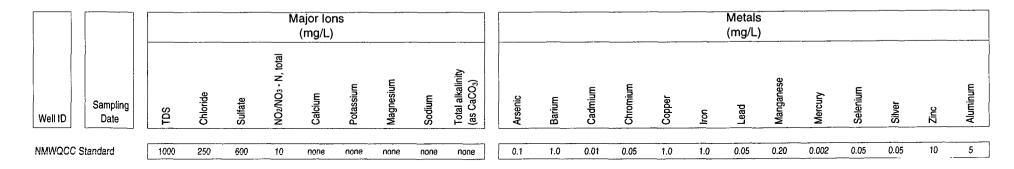

					Ν	lajor lor (mg/L)	าร										Metals (mg/L)						
Well ID	Sampling Date	TDS	Chloride	Sulfate	NO2/NO3 - N, total	Calcium	Potassium	Magnesium	Sodium	Total alkalinity (as CaCO ₃)	Arsenic	Barium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Selenium	Silver	Zinc	Aluminum
NMWQCC SI	tandard	1000	250	600	10	none	none	none	none	none	0.1	1.0	0.01	0.05	1.0	1.0	0.05	0.20	0.002	0.05	0.05	10	5
		·																					
	01/27/98°	3330	469	1,900	0.9	620	5	196	285	97	< 0.1	0.009	< 0.005	< 0.01	< 0.01	< 0.02	< 0.05	< 0.005	< 0.0002	< 0.1	< 0.01	< 0.02	NA
	05/27/98 ^b	3400	480	1,600	1.0	NA	NA	NA	NA	96	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	0.14	< 0.05	< 0.005	< 0.0002	< 0.005	< 0.01	< 0.02	NA
	08/13/98 ^b	4000	443	2,000	0.8	589	4	161	252	113	0.007	0.009	< 0.005	< 0.01	0.01	0.05	< 0.005	< 0.005	< 0.0002	< 0.005	< 0.01	80.0	NA
	12/23/98 ^b	3740	460	2,100	0.84	582	3.3	169	261	104	< 0.004	0.0122	< 0.002	< 0.005	< 0.002	0.030	< 0.025	< 0.005	< 0.0002	< 0.010	< 0.003	< 0.01	NA
	03/24/99 ^b	3810	450	2,000	0.84	540	3.7	169	268	105	< 0.004	0.0122	< 0.002	< 0.005	< 0.002	0.036	< 0.025	< 0.001	< 0.0002	< 0.010	< 0.003	< 0.01	NA
MW-20	08/07/97 ^b	3710	385	1,820	1.65	617	< 5	135	239	200	< 0.01	0.04	< 0.005	< 0.01	0.02	1.85	< 0.003	NA	< 0.0002	< 0.01	< 0.01	0.05	NA
	11/03/97 ^b	3710	290	1,950	0.23	670 ^(d)	2.6	140	270 ^(d)	208	< 0.03	< 0.01	< 0.01	< 0.01	0.02	0.39	< 0.03	< 0.01	< 0.0002	< 0.04	< 0.01	0.22	NA
	01/30/98°	3090	306	1,700	2.8	680	3	137	238	155	< 0.1	< 0.005	< 0.005	< 0.01	< 0.01	< 0.02	< 0.05	< 0.005	< 0.0002	< 0.1	< 0.01	< 0.02	NA
	05/29/98 ^b	3000	310	2,400	3.0	NA	NA	NA	NA	208	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	0.03	< 0.05	< 0.005	< 0.0002	< 0.005	< 0.01	< 0.02	NA
Dup (MW-24)	05/29/98 ^b	3200	320	2,400	3.0	NA	NA	NA	NA	198	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	0.09	< 0.05	< 0.005	0.0005	< 0.005	< 0.01	< 0.02	NA
	08/15/98 ^b	3700	301	2,200	2.2	673	4	130	214	242	0.007	0.006	< 0.005	< 0.01	< 0.01	0.26	< 0.005	< 0.005	< 0.0002	< 0.005	< 0.01	< 0.02	NA
	12/28/98 ^b	3620	310	2,100	2.5	597	3.4	123	257	209	< 0.004	0.0107	< 0.002	< 0.005	< 0.002	0.238	< 0.025	0.0012	< 0.0002	< 0.010	< 0.003	< 0.01	NA
Dup (MW-28)	12/28/98 ^b	3660	310	2,000	2.5	598	3.3	119	258	210	< 0.004	0.0107	< 0.002	< 0.005	< 0.002	0.265	< 0.025	0.0043	< 0.0002	< 0.010	< 0.003	< 0.01	NA
	03/26/99 *	3670	290	2,000	2.5	582	3.7	125	236	213	< 0.004	0.0090	< 0.002	< 0.005	< 0.002	0.044	< 0.025	< 0.001	< 0.0002	< 0.010	< 0.003	< 0.01	NA
MW-21	08/07/97 ^b	3960	436	1,790	0.71	621	< 5	137	192	120	< 0.01	0.06	< 0.005	< 0.01	< 0.01	0.54	< 0.003	NA	< 0.0002	< 0.1	< 0.01	0.03	NA
	11/04/97 ^b	3700	410	1,760	0.36	810 ^(d)	4.0	190	260 ^(d)	118	< 0.03	0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.03	0.40	< 0.0002	< 0.04	< 0.01	< 0.03	NA
	01/30/98°	3020	440	1,700	< 0.1	654	4	153	199	88	< 0.1	0.029	< 0.005	< 0.01	< 0.01	0.21	< 0.05	0.835	< 0.0002	< 0.1	< 0.01	< 0.02	NA
Dup (MW-24)	01/30/98°	2600	437	1,700	< 0.1	647	4	151	201	87	< 0.1	0.025	< 0.005	< 0.01	< 0.01	0.24	< 0.05	0.798	< 0.0002	< 0.1	< 0.01	0.03	NA
,	05/28/98 ^b	3000	450	2,100	< 0.1	NA	NA	NA	NA	124	< 0.005	0.026	< 0.005	< 0.01	< 0.01	0.63	< 0.05	1.51	< 0.0002	< 0.005	< 0.01	< 0.02	NA
	08/15/98 ^b	3400	408	1,900	< 0.1	647	3	144	196	146	0.006	0.020	< 0.005	< 0.01	< 0.01	0.66	< 0.005	1.34	< 0.0002	< 0.005	< 0.01	< 0.02	NA
	12/28/98 ^b	3390	430	1,800	0.03	566	3.3	134	209	138	< 0.004	0.0245	< 0.002	< 0.005	0.0024	0.704	< 0.025	1.47	< 0.0002	< 0.010	< 0.003	< 0.01	NA
	03/26/99 ^b	3360	410	1,800	< 0.01	548	3.4	138	192	139	< 0.004	0.0225	< 0.002	< 0.005	< 0.002	0.933	< 0.025	1.32	< 0.0002	< 0.010	< 0.003	< 0.01	NA
MW-22	08/07/97 ^b	3630	377	1,780	0.76	727	6	143	233	302	< 0.01	0.21	< 0.005	< 0.01	0.05	16.5	0.008	NA	< 0.0002	< 0.01	< 0.01	0.08	NA
11111 6.6.	11/03/97 ^b	3570	380	1,840	0.85	780 ^(d)	3.6	160	290 ^(d)	132	< 0.03	0.04	< 0.01	< 0.01	< 0.00	3.3	< 0.03	0.07	< 0.0002	< 0.04	< 0.01	< 0.03	NA
	01/29/98°	2690	394	1,700	0.9	660	4	130	218	85	< 0.1	0.007	< 0.005	< 0.01	< 0.01	< 0.02	< 0.05	< 0.005	< 0.0002	< 0.1	< 0.01	< 0.03	NA
	01/29/90	2000		.,	0.0	000	-		210		- V. I	0.007	- 0.000	- 0.01	- 0.01	- V.VL	- 0.00	- 0.000	~ 0.000Z	N V. I	< 0.01	< 0.0Z	114

Table 3. (Page 6 of 8)

					M	ajor lor (mg/L)	is										Metals (mg/L)						
Well ID	Sampling Date	TDS	Chloride	Sulfate	NO2/NO3 - N, total	Calcium	Potassium	Magnesium	Sodium	Total alkalinity (as CaCO ₃)	Arsenic	Barium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Selenium	Silver	Zinc	Aluminum
NMWQCC S	Standard	1000	250	600	10	none	none	none	none	none	0.1	1.0	0.01	0.05	1.0	1.0	0.05	0.20	0.002	0.05	0.05	10	5
	05/28/98 ^b	2700	410	2,200	0.9	NA	NA	NA	NA	107	< 0.005	0.009	< 0.005	< 0.01	< 0.01	0.96	< 0.05	0.015	< 0.0002	< 0.005	< 0.01	< 0.02	NA
	08/14/98 ^b	NA	NA	NA	NA	573	3	109	206	NA	0.006	0.036	< 0.005	< 0.01	< 0.01	0.41	< 0.005	0.025	0.0008	< 0.005	< 0.01	0.09	NA
	08/14/98 °	3600	355	1,800	0.6	642	2	129	236	125	< 0.1	< 0.005	< 0.005	< 0.01	< 0.01	0.08	< 0.05	< 0.005	< 0.0002	< 0.1	< 0.01	< 0.02	NA
	12/27/98 ^b	3390	390	1,900	0.85	577	2.9	111	234	114	< 0.004	0.0118	< 0.002	< 0.005	< 0.002	0.305	< 0.025	0.0068	< 0.0002	< 0.010	< 0.003	< 0.01	NA
	03/25/99 ^b	3380	380	1,800	0.82	556	3.2	120	220	113	< 0.004	0.0087	< 0.002	< 0.005	< 0.002	0.043	< 0.025	< 0.001	< 0.0002	< 0.010	< 0.003	< 0.01	NA
MW-23D	08/06/97 ^b	3800	344	1,980	< 0.05	624	8	178	231	124	< 0.01	0.02	< 0.005	0.02	< 0.01	0.11	< 0.003	NA	< 0.0002	< 0.01	< 0.01	0.02	NA
	11/05/97 ^b	3880	330	1,900	< 0.05	600 ^(d)	3.5	215	300 ^(d)	128	< 0.03	0.02	< 0.01	< 0.01	< 0.01	0.38	< 0.03	0.11	< 0.0002	< 0.04	< 0.01	0.07	NA
	01/28/98 °	3180	354	1,800	< 0.1	612	7	183	246	88	< 0.1	0.020	< 0.005	< 0.01	< 0.01	< 0.02	< 0.05	0.141	< 0.0002	< 0.1	< 0.01	< 0.02	NA
	05/27/98°	3000	350	1,800	< 0.1	NA	NA	NA	NA	90	0.005	0.013	< 0.005	< 0.01	< 0.01	< 0.02	< 0.05	0.094	< 0.0002	< 0.1	< 0.01	< 0.02	NA
	08/11/98 ^b	3800	337	2,200	< 0.1	584	6	165	240	128	0.009	0.011	< 0.005	< 0.01	0.02	0.23	< 0.005	0.068	< 0.0002	< 0.005	< 0.01	< 0.02	NA
	12/23/98 ^b	3650	330	2,100	0.03	581	3.6	177	240	127	< 0.004	0.0144	< 0.002	< 0.005	< 0.002	0.216	< 0.025	0.0783	< 0.0002	< 0.010	< 0.003	0.030	NA
	04/5/99 ^b	3700	300	2,000	0.04	551	3.8	162	208	128	0.0049	0.0162	< 0.002	< 0.005	< 0.002	0.29	< 0.025	0.0641	< 0.0002	< 0.020	< 0.003	< 0.01	NA
MW-24D	10/29/98 °	3300	350	1,880	< 0.1	NA	NA	NA	NA	157	0.009	0.015	< 0.005	< 0.01	NA	NA	< 0.005	NA	< 0.0002	< 0.005	< 0.01	NA	NA
	10/29/98 ^b	NA	NA	NA	NA	622	5	99.5	208	NA	< 0.005	0.026	< 0.005	< 0.01	0.01	1.43	< 0.005	0.220	< 0.0002	< 0.005	< 0.01	0.05	NA
	12/23/98 °	3220	330	1800	0.02	508	2.5	82.1	179	279	< 0.004	0.0172	< 0.002	< 0.005	0.0065	< 0.01	< 0.025	0.176	< 0.0002	< 0.010	< 0.003	< 0.01	NA
	03/30/99 ^b	3360	330	1800	< 0.01	630	3.3	110	213	155	< 0.002	0.0183	< 0.002	< 0.005	< 0.002	0.698	< 0.025	0.261	< 0.0002	< 0.010	< 0.003	< 0.01	NA
MW-25D	10/29/98 °	3000	340	2,470	< 0.1	NA	NA	NA	NA	121	0.006	0.007	< 0.005	< 0.01	NA	NA	< 0.005	NA	< 0.0002	< 0.005	< 0.01	NA	NA
	10/29/98 ^b	NA	NA	NA	NA	596	4	162	161	NA	< 0.005	0.011	< 0.005	< 0.01	< 0.01	0.58	< 0.005	0.109	< 0.0002	< 0.005	< 0.01	0.03	NA
	12/23/98 ^b	3450	320	2000	0.01	584	4.00	168	160	122	< 0.004	0.0133	< 0.002	< 0.005	< 0.002	0.327	< 0.025	0.108	< 0.0002	< 0.010	< 0.003	0.011	NA
	03/30/99 ^b	3510	310	2000	< 0.01	589	4.38	167	158	121	< 0.002	0.0131	< 0.002	< 0.005	< 0.002	0.510	< 0.025	0.104	< 0.0002	< 0.010	< 0.003	< 0.010	NA
MW-26	10/29/98 °	3500	320	2,080	5.1	NA	NA	NA	NA	134	< 0.005	0.009	< 0.005	< 0.01	NA	NA	< 0.005	NA	< 0.0002	0.007	< 0.01	NA	NA
	10/29/98 •	NA	NA	NA	NA	650	5	132	215	NA	< 0.005	0.016	< 0.005	< 0.01	< 0.01	0.82	< 0.005	0.082	< 0.0002	< 0.005	< 0.01	< 0.02	NA
	12/27/98 ^b	3780	300	2200	4.4	607	4.06	128	237	159	< 0.004	0.0213	< 0.002	< 0.005	< 0.002	1.13	< 0.025	0.0347	< 0.0002	< 0.010	< 0.003	< 0.01	NA
	03/25/99 ^b	3770	290	2100	4.6	578	4.22	135	213	130	< 0.004	0.0137	< 0.002	< 0.005	< 0.002	0.394	< 0.025	0.0165	< 0.0002	< 0.010	< 0.003	< 0.01	NA

Table 3. (Page 7 of 8)

NOTES:

NA - A result for this constituent is not available

^(a) Water sample collected through layer of phase separated hydrocarbon accumulated in monitor well casing

^(b) Results represent total metals analysis

^(c) Results represent dissolved metals analysis on samples filtered in the lab

^(d) Analyte present in method blank

Table 3. (Page 8 of 8)

Table 4. Summary of Analytical Results for Additional Organic CompoundsNot Listed in Table 2Compressor Station No. 9 - Roswell, NM

Well ID	Date	Compound	Concentration (µg/L)	Reporting Limit (µg/L)
MW-12	12/28/98	Isopropylbenzene	2	1
	03/26/99	Isopropylbenzene	2	1
Dup (MW-28)	03/26/99	Isopropylbenzene	2	1
MW-21	12/28/98	Isopropylbenzene	4	1
	12/28/98	n-Propylbenzene	1	1
	03/26/99	Isopropylbenzene	4	1
MW-25D	12/23/98	Phenanthrene	0.1	0.1

Table 4. (Page 1 of 1)

Well ID	Date	рН	Ternperature °C	Electrical Conductivity (µs/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU/FTU)	Remarks
MW-3	11/03/97	7.21	19.2	3,620	4.5	1.31	Clear
	01/27/98	7.28	18.5	3,630	5.0	4.31	Clear
	05/26/98	7.18	21.4	3,980	5.6	8.04	Clear
	08/13/98	7.19	22.2	3,930	6.1	5.06	Clear
	12/24/98	7.26	16.5	3,940	4.9	5.34	Clear
	03/24/99	7.13	19.7	3,980	/6.0	7.34	Clear
MW-5	10/31/97	7.12	19.9	4,020	7.0		Clear
	01/27/98	7.38	17.7	1,980	7.8	7.82	Clear
	05/26/98	7.13	24.4	4,100	10.0	6.80	Clear
	08/11/98	7.18	20.7	4,210	8.3	5.99	Clear
	12/22/98	7.17	14.6	4,680	6.5/7.0	5.36	Clear
	03/23/99	7.10	19.4	4,360	8.4	3.37	Clear
MW-6	10/31/97	7.21	21.6	3,180	6.9		Clear
· · · · · · · · · · · · · · · · · · ·	01/26/98	7.23	17.3	3,200	6.4	6.08	Clear
	05/26/98	7.19	21.2	3,450	8.2	4.67	Clear
	08/11/98	7.24	22.4	3,430	9.0/8.0	8.03	Clear
	12/22/98	7.29	15.7	3,740	6.7	13.72	Clear
	03/23/99	7.20	19.9	3,460	8.0/7.0	4.93	Clear
MW-7	11/03/97	7.28	18.1	3,540	2.5	11.30	Clear
	01/29/98	7.25	18.4	3,540	1.8	5.68	Clear
	05/28/98	7.14	23.5	3,820	3.6	9.35	Clear
	08/14/98	7.23	21.7	3,770	3.6/2.6	6.89	Clear
	12/27/98	7.20	17.5	3,790	2.7	6.09	Clear
	03/25/99	7.14	17.6	3,780	3.0/3.4	4.40	Clear, Bailed down
MW-8	11/02/97	7.16	18.5	3,730	4.4	6.91	Clear
	01/29/98	7.17	19.8	3,730	4.2	2.41	Clear
	05/28/98	7.11	19.8	4,000	4.7	4.66	Clear
	08/14/98	7.10	20.6	3,970	4.3	4.62	Clear
	12/27/98	7.14	19.1	4,010	4.7	5.54	Clear
	03/25/99	7.07	18.4	4,040	4.0/3.8	4.15	Clear
MW-9	11/02/97	7.32	18.6	4,110	5.5	180	Cloudy
	01/29/98	7.35	16.9	4,090	3.9		Slightly Turbid
	05/28/98	7.25	20.8	4,440	6.0	62	Cloudy
	08/14/98	7.23	21.4	4,400	5.3	91/80	Cloudy, (80 FTU dissolved metals readin
	12/27/98	7.35	17.9	4,400	5.3	97	Cloudy
	03/24/99	7.31	18.9	4,430	/7.0	84	Cloudy, Bailed down
MW-10	11/01/97	7.14	19.7	3,600	6.9	3.40	Clear
	01/27/98	7.20	19.6	3,570	5.9	0.31	Clear
	05/26/98	7.16	22.7	3,900	7.2	2.60	Clear
	08/13/98	7.12	20.1	3,840	6.1/6.0	0.92	Clear

Table 5. (Page 1 of 4)

Well ID	Date	рН	Temperature °C	Electrical Conductivity (µs/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU/FTU)	Remarks
	12/22/98	7.18	14.7	4,190	5.9	3.18	Clear
	03/23/99	7.09	18.9	3,900	6.1/6.0	2.38	Clear
MW-11	11/01/97	7.21	19.5	3,640	7.1	4.40	Clear
	01/27/98	7.25	17.8	3,610	6.7	2.71	Clear
	05/26/98	7.24	21.6	3,950	7.9	30.01	Clear
	08/13/98	7.26	20.3	3,890	7.9	5.52	Clear
	12/22/98	7.25	15.6	3,610	5.4	10.19	Clear
	03/24/99	7.25	20.1	3,030	/7.0	8.68	Clear
MW-12	11/04/97	7.29	20.1	3,790	3.4	1.77	Clear, Odor
	01/30/98	7.16	18.7	3,540	1.2		Clear, Odor
	05/28/98	7.19	20.8	3,850	2.4	2.83	Clear
	08/15/98	7.19	20.6	3,900	2.5	3.87	Clear, Odor
	12/28/98	7.24	17.8	3,820	0.7	2.83	Clear
	03/26/99	7.11	18.2	3,930	1.7/1.2	1.55	Clear, Odor
MW-13	11/04/97	7.10	19.8	3,840	1.1	1.76	Clear, Odor
	01/30/98	6.99	18.7	3,780	0.2		Clear, Odor
	05/28/98	6.98	21.8	4,070	2.4	10.24	Clear, Sewage Odor
	08/15/98	6.92	20.8	4,140	1.1/0	6.89	Clear, Sewage Odor
	12/27/98	6.98	19.2	3,940	0.9	10.47	Clear, Odor
	03/26/99		18.8	3,980	0.6/0.4	7.96	Clear, Odor, turns black in air
MW-14	11/02/97	7.16	18.5	3,620	2.1	1.09	Clear
	01/29/98	7.20	17.9	3,600	3.2	2.32	Clear
	05/27/98	7.18	24.8	3,890	5.0	2.11	Clear
	08/11/98	7.17	25.1	3,880	5.0	4.76	Clear
	12/23/98	7.15	18.4	3,890	2.4	2.10	Clear
	03/25/99	7.13	18.7	3,900	3.7	1.17	Clear
MW-15	11/02/97	7.32	20.1	3,970	3.6	1.54	Clear
	01/28/98	7.41	17.7	3,930	3.6	2.36	Clear
	01/27/98	7.28	22.1	4,330	4.1	1.82	Clear
	08/13/98	7.24	20.7	4,270	4.4	1.57	Clear
· · · · · · · · · ·	12/24/98	7.24	15.5	4,160	5.4	1.49	Clear
	03/24/99	7.16	19.9	4,310	/6.0	1.71	Clear
MW-17	11/02/97	7.26	18.5	3,910	5.8	1.20	Clear
· · · ·	01/28/98	7.01	18.2	3,880	4.9	2.71	Clear
	05/27/98	7.25	21.9	4,250	6.3	1.95	Clear
	08/13/98	7.28	20.1	4,210	6.7	1.65	Clear
	12/24/98	7.25	17.7	4,220	4.5	3.30	Clear
	03/25/99	7.21	18.6	4,260	5.6	1.32	Clear w/ flec's, Sewage Odor
MW-18	11/01/97	7.41	18.6	3,850	7.6	0.73	Clear
	01/28/98	7.36	17.6	3,810	7.6	0.63	Clear

Well ID	Date	рН	Temperature °C	Electrical Conductivity (µs/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU/FTU)	Remarks
	05/27/98	7.55	21.1	4,170	8.2	2.81	Clear
	08/13/98	7.55	21.8	4,130	8.3/8.0	1.08	Clear
	12/24/98	7.44	14.5	4,030	6.0	0.72	Clear
	03/24/99	7.45	19.8	4,180	/8.0	1.47	Clear, Bailed down
MW-19	11/01/97	7.33	19.1	4,080	8.0	0.85	Clear
	01/27/98	7.31	18.2	4,030	6.2	4.03	Clear
	05/27/98	7.20	19.4	4,400	7.2	3.06	Clear
	08/13/98	7.28	20.8	4,370	8.0	2.25	Clear
	12/23/98	7.41	16.2	4,390	6.8	6.97	Clear
	03/24/99	7.23	18.7	4,380	/7.2	9.08	Clear
MW-20	11/03/97	6.90	18.6	3,750	1.4	12.6	Clear
	11/03/97	6.86	18.2	3,710	1.0		Clear
	05/29/98	6.81	20.8	4,000	3.9	4.11	Clear, Slightly cloudy at end
	08/15/98	6.86	20.5	4,060	2.6	13.57	Clear
	12/28/98	6.88	18.5	4,060	2.2/1.8	9.30	Clear
	03/26/99	6.78	18.1	4,130	1.5	3.23	Clear
MW-21	11/04/97	7.29	20.1	3,790	3.4	1.77	Clear, Odor
	01/30/98	7.20	17.6	3,690	1.4	2.78	Clear, Odor
	05/28/98	7.21	20.6	3,990	2.7	3.57	Clear, Odor
	08/15/98	7.16	20.8	4,000	2.7/2.2	2.32	Clear w/ dark flec's, Odor
	12/28/98	7.25	18.0	3,990	0.8	4.39	Clear, Odor, turns black in air
	03/26/99	7.17	18.4	4,030	0.6	3.81	Clear, Odor, turns black in air
MW-22	11/03/97	7.22	18.5	3,700	7.0	260.0	Cloudy
	01/29/98	7.22	18.2	3,660	6.5	10.35	Clear
	05/28/98	7.18	22.8	3,940	8.6	48.03	Clear
	08/14/98	7.20	20.5	3,970	8.6	168.0	Cloudy
	12/27/98	7.25	19.9	3,940	8.0	12.00	Clear
	03/25/99	7.19	17.4	3,980	7.0	1.19	Clear
MW-23D	11/05/97	7.55	18.1	2,550	2.8	87.5	Slightly to Mod. Milky, Sulfur Smell
	01/28/98	8.06	18.6	3,820	4.8	>200	Silty
	05/27/98	7.61	23.2	4,150	7.1		Turbid
	08/11/98	7.22	19.9	4,130	4.2	17.81	Clear
	12/23/98	7.50	16.6	4,210	4.6	43.94	Clear
	04/05/99	7.18	18.8	4,160	5.6		Clear
MW-24D	10/29/98	7.43	18.5	2,930	5.44		Silty
	12/23/98	7.49	16.7	3,840	4.2	>1000	Turbid, Bailed down
	03/30/99	6.98	18.4	3,750	4.6		Turbid, Bailed down
MW-25D	10/29/98	7.80	18.6	3,370	4.87		Silty
	12/23/98	7.67	16.9	3,820	4.6	77	Clear, Bailed down
	03/30/99	7.36	18.1	3,790	4.1		Turbid, Bailed down

Table 5. (Page 3 of 4)

Well ID	Date	рН	Temperature °C	Electrical Conductivity (µs/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU/FTU)	Remarks
MW-26	10/29/98	7.20	18.8	3,620	4.61		Clear
	12/27/98	7.13	19.4	4,130	4.90	83	Cloudy/Turbid, Bailed down
	03/25/99	7.09	18.4	4,170	4.8	35.38	Clear initial/cloudy last, bailed down

Table 6.Summary of Well Construction DetailsCompressor Station No. 9 - Roswell, NM

Well ID	Completion Date	Locatio	on ^a (ft)	Measuring Point Elevation ^b	Total Depth of Boring	Casing Diameter	Screen Interval	Top of Sand Pack
	Completion Date	North	East	(ft msl)	(ft bgs)	(inches)	(ft bgs)	(ft bgs)
SVE-1A	09/21/96	1,793.70	114.40	3,616.50	30	2	20-30	19
SVE-2A	09/20/96	1,735.90	178.90	3,615.70	30	2	20-30	17.5
SVE-3	09/16/96	1,881.00	176.60	3,614.51	62.3	2	32.0-62.3	29.5
MW-1	07/21/92	2,001.40	217.60	NA	68	4	28-68	25.2
MW-1B	04/21/93	1,854.00	265.50	3,609.96	65.5	2	55-65	53
MW-2	04/21/93	2,034.30	102.40	3,611.76	65	2	55-65	53
MW-3	04/26/93	1,629.77	265.23	3,614.87	72.5	2	60-70	58
MW-5	04/28/93	2,049.70	-150.96	3,612.77	70	2	60-70	58
MW-6	12/01/94	1,607.40	-266.20	3,618.62	79	2	59.9-74.9	57.1
MW-7	08/22/95	2,118.00	328.40	3,599.20	70.5	2	50-70	48.1
MW-8	08/16/95	2,178.00	414.70	3,595.80	76.8	2	59-74	57.2
MW-9	08/18/95	2,071.40	512.90	3,599.35	70	2	50-70	47.9
MW-10	09/10/96	1,804.76	0.14	3,617.85	74.5	2	57-72	55.3
MW-11	09/16/96	2,046.04	-27.10	3,613.31	72	2	54-69	51.5
MW-12	09/11/96	2,149.13	152.94	3,606.38	64	2	44-64	42
MW-13	09/13/96	1,749.33	265.05	3,612.46	72	2	57-72	55
MW-14	09/10/96	1,918.87	365.40	3,604.83	64.5	2	49.5-64.5	48
MW-15	09/20/96	1,803.83	516.97	3,610.43	68.5	2	38.5-68.5	37
MW-16	09/19/96	1,718.88	387.35	3,612.41	71.4	2	46.4-71.4	45.5
MW-17	09/21/96	1,598.72	516.35	3,608.48	70	2	53-68	50.9
MW-18	09/25/96	1,701.47	613.38	3,609.73	71	2	54-69	51.6
MW-19	09/26/96	1,806.45	717.41	3,608.17	69.5	2	54.5-69.5	51
MW-20	08/04/97	2,283.22	148.03	3,600.65	64	2	46.8-61.8	43.9
MW-21	08/06/97	1,511.01	408.66	3,612.01	75	2	54-74	51.7
MW-22	08/04/97	2,187.66	26.69	3,606.04	68	2	50-65	49
MW-26	09/01/98	2,416.94	142.26	3,597.75	65	2	43-63	41
MW-27	09/02/98	1,332.63	433.96	3,615.11	75	2	55-75	53

Table 6.Summary of Well Construction DetailsCompressor Station No. 9 - Roswell, NM

NorthEastElevation * (ft msl)or Boring (ft bgs)(inches)(ft bgs)(ft bgs)1,914.95393.653,605.001944167-1871642,139.77807.923,595.951804146-1761432,422.12314.823,592.991504119-149117	Well ID	Completion Date North 07/29/97 1,914.95 09/10/98 2,139.77 09/09/98 2,422.12 are relative to facility grid and set level pove mean sea level blow ground surface	Locatio	on ^a (ft)	Measuring Point	Total Depth	Casing Diameter	Screen Interval	Top of Sand Pac
2,139.77 807.92 3,595.95 180 4 146-176 143	weii iD		North	East	Elevation ^b (ft msl)	of Boring (ft bgs)	(inches)	(ft bgs)	(ft bgs)
	MW-23D	07/29/97	1,914.95	393.65	3,605.00	194	4	167-187	164
2,422.12 314.82 3,592.99 150 4 119-149 117	MW-24D	09/10/98	2,139.77	807.92	3,595.95	180	4	146-176	143
	MW-25D	09/09/98	2,422.12	314.82	3,592.99	150	4	119-149	117
	MW-25D	09/09/98	1 .				4		
		inates are relative to facility grid tring point is top of PVC casing Feet above mean sea level Feet below ground surface							
	ft bgs = Feet bel	24D 09/10/98 25D 09/09/98 nates are relative to facility grid ing point is top of PVC casing Feet above mean sea level							

Well ID	Source ^a	Completion Date	Locat	ion (ft)	Measuring Point	Total Depth
	Source	Completion Date	North	East	Elevation ^b (ft msl)	(ft bgs)
SB-9-06	HLA	04/03/90	NA	NA	NA	29.0
SB-9-07	HLA	04/03/90	NA	NA	NA	38.5
P9-OS-349	HLA	05/02/90	NA	NA	NA	40.0
P9-OS-377	HLA	05/02/90	NA	NA	NA	30.0
SG-09-91	HLA	05/15/90	NA	NA	NA	33.0
SG-09-331	HLA	05/16/90	NA	NA	NA	43.0
SG-09-337	HLA	05/17/90	NA	NA	NA	33.0
SG-09-358	HLA	05/17/90	NA	NA	NA	30.0
SG-09-360	HLA	05/16/90	NA	NA	NA	34.5
SG-09-370	HLA	05/16/90	NA	NA	NA	24.0
Pit 1	Metric	07/16/91	1,798.00	176.60	3,615.72	47.8
Pit 2	Metric	07/17/91	1,995.00	216.60	3,615.72	71.6
Pit 3 (BH-1)	Metric	07/18/91	1,918.00	131.50	3,615.71	32.8
Pit 3 (BH-2)	Metric	07/18/91	1,948.00	138.50	3,615.68	29.5
SG 86	Metric	07/22/91	1,710.00	268.20	3,613.52	40.7
SG 91	Metric	07/22/91	2,053.20	66.50	3,612.28	33.0
SG 349	Metric	07/25/91	2,160.20	79.00	3,615.56	30.4
SG 360	Metric	07/25/91	2,261.50	166.80	3,610.83	29.4
SG 361	Metric	07/25/91	2,261.50	277.80	3,610.15	41.3
OS BH-1	Metric	07/22/91	1,664.90	375.90	3,622.30	35.7
OS BH-2	Metric	07/24/91	1,826.00	379.00	3,618.39	70.6
OS BH-3	Metric	07/26/91	2,108.70	495.10	3,607.04	55.0
OS BH-4	Metric	07/29/91	2,181.60	386.60	3,604.95	31.0
OS BH-5	Metric	07/30/91	1,992.00	389.50	3,611.12	24.8
OS BH-6	Metric	07/30/91	1,817.50	460.90	3,619.15	72.6
OS BH-7	Metric	07/31/91	1,827.60	505.70	3,616.69	40.3
OS BH-8	Metric	07/31/91	1,671.90	460.80	3,620.04	49.9
OS BH-9	Metric	08/01/91	1,891.60	467.20	3,614.77	49.7
BH-10	Metric	11/15/91	NA	NA	3,617.33	37.8
BH-11	Metric	11/15/91	NA	NA	3,617.60	37.8
SB-1A	B&R	04/20/93	NA	NA	3,613.48 °	41.5
SB-1C	B&R	04/29/93	NA	NA	3,606.08 ^c	36.0
SB-4	B&R	04/25/93	NA	NA	3,604.78 °	75
RB-1	B&R	06/13/93	1,914.00	222.00	3,613.22 °	36.3
RB-2	B&R	06/12/93	1,962.00	254.00	3,611.11 °	34.5
RB-3	B&R	06/12/93	1,953.00	220.00	3,612.76 °	42
RB-4	B&R	06/13/93	1,943.00	175.00	3,614.41 ^c	39
RB-5	B&R	06/13/93	2,027.00	213.00	3,608.61 °	32
RB-6	B&R	NA	1,989.00	206.00	3,613.36 °	38.5
Pit 1, NW	DBS&A (I)	08/18/95	1,812.30	172.90	3,615.68	12.0

Table 7. Summary of Abandoned Soil BoringsCompressor Station No. 9 - Roswell, NM

Well ID	0	Completion Date	Locati	on (ft)	Measuring Point	Total Depth
Well ID	Source ^a	Completion Date	North	East	Elevation ^b (ft msl)	(ft bgs)
Pit 1, SE	DBS&A (I)	08/18/95	1,798.20	181.50	3,615.61	14.0
Pit 2, NE	DBS&A (I)	08/17/95	1,990.30	174.70	3,614.81	20.0
Pit 2, SW	DBS&A (I)	08/18/95	1,970.10	150.20	3,616.05	6.0
MW-7ABD	DBS&A (I)	08/15/95	2,289.60	306.60	3,599.37	74.0
SVE-1	DBS&A (II)	09/21/96	1,800.63	117.01	3,617.00	60.0
SVE-2	DBS&A (II)	09/21/96	1,730.93	176.77	3,616.20	30.0
SG86-1	DBS&A (II)	09/24/96	1,718.39	264.18	3,613.60	32.0
SG86-2	DBS&A (II)	09/24/96	1,717.00	233.69	3,614.80	31.0
SG86-3	DBS&A (II)	09/24/96	NA	NA	NA	31.0
SG86-4	DBS&A (II)	09/24/96	1,718.47	304.81	3,613.10	30.0
Pit 3-1	DBS&A (II)	09/18/96	1,923.65	2.52	3,616.70	30.0
Pit 3-2	DBS&A (II)	09/18/96	1,922.92	-46.86	3,616.70	30.0
Pit 3-3	DBS&A (II)	09/18/96	1,874.31	6.83	3,617.70	30.0
Pit 3-4	DBS&A (II)	09/18/96	1,925.90	52.88	3,616.70	30.0
Pit 3-5	DBS&A (II)	09/18/96	1,973.38	-0.24	3,616.20	30.0
Soil Boring - 1	CES (IV)	09/03/98	1,674.33	303.81	3,614.20	14.0
Soil Boring - 2	CES (IV)	09/03/98	1,946.19	311.52	3,606.80	14.0
Soil Boring - 3	CES (IV)	09/03/98	1,713.10	265.57	3,613.90	14.0
Soil Boring - 4	CES (IV)	09/03/98	1,897.14	265.01	3,610.00	14.0
Soil Boring - 5	CES (IV)	09/03/98	1,891.98	94.51	3,617.20	14.0
Soil Boring - 6	CES (IV)	09/03/98	1,720.40	96.66	3,618.70	14.0
Soil Boring - 7	CES (IV)	09/03/98	1,925.23	61.67	3,616.90	14.0
Soil Boring - 8	CES (IV)	09/03/98	1,683.82	61.63	3,619.30	14.0

Table 7. Summary of Abandoned Soil BoringsCompressor Station No. 9 - Roswell, NM

^a HLA ≈ Harding Lawson Associates, 1991

Metric = Metric Corporation, 1991

HB = Halliburton NUS, 1992

B & R = Brown & Root Environmental, 1993

DBS&A (I) = Daniel B. Stephens & Associates, Inc. 1994, 1995, 1996; Phase I

DBS&A (II) = Daniel B. Stephens & Associates, Inc. 1994, 1995, 1996; Phase II

CES (IV) = Cypress Engineering Services, Inc. 1998; Phase IV

^b Measuring point is top of cement plug or ground surface

^c Original survey to arbitrary datum corrected to elevations above sea level by referencing boring elevations to the surveyed elevation of MW-3 (3614.88 fmsl). ft msl = Feet above mean sea level

ft bgs = Feet below ground surface

NA = Not available

Table 8. Summary of Analytical Results for Phase IV Assessment Soil Samples Compressor Station No. 9 - Roswell, NM

														Metals (mg/Kg									
Sample ID	Sampling Date	TPH (mg/kg)	VOC's (ug/Kg)	SVOC's (ug/Kg)	Silver	Aluminum	Arsenic	Barium	Beryllium	Cadmium	Cobatt	Chromium, Hexavalent	Chromium, Total	Copper	Mercury	Nickel	Lead	Antimony	Selenium	Tin	Thallium	Vanadium	Zinc
MW-26 (10-12')	09/01/98	15	all ND	all ND	<1	6160	3.5	81.4	0.4	0.5	2	< 0.10	2	4	< 0.03	5	4.9	< 0.5	< 0.5	18	< 0.5	21.0	19
MW-26 (48-50')	09/01/98	10	all ND	all ND	<1	1120	2.1	43.9	< 0.3	< 0.5	2	< 0.10	5	3	< 0.03	4	4.0	< 0.5	< 0.5	< 5	< 0.5	7.3	15
MW-27 (38-40')	09/02/98	10	all ND	all ND	<1	6200	2.7	28.0	0.5	< 0.5	3	< 0.10	8	6	< 0.03	7	4.9	0.7	< 0.5	< 5	< 0.5	22.1	22
MW-27 (60-62')	09/02/98	NA	all ND	NA	< 1	11600	4.8	156	0.9	< 0.5	6	< 0.10	13	12	< 0.03	11	9.0	0.7	< 0.5	< 5	< 0.5	25.0	42

Notes:

all ND - Results were Non-Detect for all VOC's by Method 8260 and for all SVOC's by Method 8270 NA - An analytical result for this constituent was not reported by the laboratory

Table 8. (Page 1 of 1)

Table 9. Summary of Analytical Results for Background Soil SamplesCompressor Station No. 9 - Roswell, NM

												Metals (mg/Kg									
Sample ID	Sampling Date	TPH (mg/kg)	Silver	Aluminum	Arsenic	Barium	Beryllium	Cadmium	Cobalt	Chromium, Hexavalent	Chromium, Total	Copper	Mercury	Nickel	Lead	Antimony	Selenium	Tin	Thallium	Vanadium	Zinc
Reference Backgrou	nd Meanª:			5.8%	5.5	580	0.68		7.1		41	21	0.046	15	17	0.47	0.23	0.9		70	55
Reference Backgrou	nd Upper Limit (M	(D2) ^b :		23%	22	1,710	3.6	•••	28	•••	200	90	0.25	66	55	2.2	1.3	4		270	180
EPA Region III Risk-	••••••		390	7.8%	0.43	5,500	1,600	39	4,700	390	78,000	3,100		1,600		31	390	47,000	5.5	550	23,000
BG-1A (10-12')	09/03/98	< 10	< 1	1520	3.9	96.9	< 0.3	< 0.5	2	< 0.10	2	4	< 0.03	3	5.0	< 0.5	< 0.5	< 5	< 0.5	15.5	13
BG-1B (12-14')	09/03/98	< 10	< 1	1130	10.2	280	< 0.3	< 0.5	2	< 0.10	< 1	3	< 0.03	2	6.2	0.5	< 0.5	< 5	< 0.5	10.5	23
BG-2A (10-12')	09/03/98	10	< 1	1400	3.1	97.4	< 0.3	< 0.5	1	< 0.10	1	3	< 0.03	< 2	4.8	< 0.5	< 0.5	< 5	< 0.5	17.4	11
BG-3A (10-12')	09/03/98	< 10	< 1	890	3.2	130	< 0.3	< 0.5	1	< 0.10	< 1	2	< 0.03	< 2	3.8	< 0.5	< 0.5	< 5	< 0.5	8.2	9
BG-3B (12-14')	09/03/98	< 10	<1	1090	2.9	103	< 0.3	< 0.5	1	< 0.10	< 1	2	< 0.03	< 2	2.8	< 0.5	< 0.5	< 5	< 0.5	13.5	7
BG-4A (10-12')	09/03/98	< 10	< 1	2100	3.8	442	0.3	< 0.5	2	< 0.10	< 1	3	< 0.03	3	4.1	< 0.5	< 0.5	< 5	< 0.5	26.5	18
BG-4B (12-14')	09/03/98	< 10	< 1	2600	3.0	188	< 0.3	< 0.5	1	< 0.10	< 1	3	< 0.03	3	5.2	< 0.5	< 0.5	< 5	< 0.5	12.8	19
BG-6A (10-12')	09/03/98	< 10	<1	580	3.4	177	< 0.3	< 0.5	1	< 0.10	1	3	< 0.03	2	4.1	0.6	< 0.5	< 5	< 0.5	9.7	11
BG-6B (12-14')	09/03/98	10	< 1	1250	4.6	253	< 0.3	< 0.5	2	< 0.10	< 1	4	< 0.03	3	13.3	< 0.5	< 0.5	< 5	< 0.5	13.6	16
BG-7A (10-12')	09/03/98	< 10	< 1	680	2.8	120	< 0.3	< 0.5	1	< 0.10	< 1	2	< 0.03	< 2	4.3	< 0.5	< 0.5	< 5	< 0.5	11.0	10
BG-7B (12-14')	09/03/98	< 10	< 1	930	2.2	306	< 0.3	< 0.5	1	< 0.10	< 1	3	< 0.03	2	3.3	< 0.5	< 0.5	< 5	< 0.5	12.5	14
BG-8A (10-12')	09/03/98	< 10	<1	2720	3.2	84.1	< 0.3	< 0.5	2	< 0.10	2	3	< 0.03	2	3.7	< 0.5	< 0.5	< 5	< 0.5	21.5	11
BG-8B (12-14')	09/03/98	< 10	< 1	1450	2.8	195	< 0.3	< 0.5	1	< 0.10	< 1	2	< 0.03	< 2	3.1	< 0.5	< 0.5	< 5	< 0.5	14.2	11
Geometric Mean Cor	ncentration ^d :			1273	3.5	167			1.3		1.1	2.8		2.3	4.5			•••		13.7	12.6
Geometric Deviation:	:			1.603	1.448	1.684			1.420	•••	1.297	1.282		1.215	1.482					1.377	1.392
Upper Limit of 95% C	Confidence Interva	al:		3270	7.3	474			2.6	•••	1.9	4.5		3.3	9.9					25.9	24.5

Table 9. Summary of Analytical Results for Background Soil Samples Compressor Station No. 9 - Roswell, NM

												Metals (mg/Kg									
Sample ID	Sampling Date	TPH (mg/kg)	Silver	Aluminum	Arsenic	Barium	Beryllium	Cadmium	Cobalt	Chromium, Hexavalent	Chromium, Total	Copper	Mercury	Nickel	Lead	Antimony	Selenium	Ē	Thallium	Vanadium	Zinc
Reference Backgrou	und Mean ^a :			5.8%	5.5	580	0.68		7.1		41	21	0.046	15	17	0.47	0.23	0.9		70	55
Reference Backgrou	und Upper Limit (M	D2) ^b :		23%	22	1,710	3.6		28		200	90	0.25	66	55	2.2	1.3	4		270	180
EPA Region III Risk	-Based Concentrat	ion ^c :	390	7.8%	0.43	5,500	1,600	39	4,700	390	78,000	3,100		1,600		31	390	47,000	5.5	550	23,000

BG-2B (12-14') 09/03/98 70 2330 < 1 3.0 148 < 0.3 < 0.5 2 < 0.10 < 0.03 3 < 0.5 < 0.5 < 5 < 0.5 18.5 15 3 4 5.2 BG-5A (10-12') 09/03/98 1900 1440 1.2 < 1 21.8 129 < 0.3 2 10 0.03 3 < 0.5 6 < 0.10 11 19.0 1.3 < 0.5 11.4 162 BG-5B (12-14') 09/03/98 860 1650 < 1 3.2 207 < 0.3 < 0.5 2 < 0.10 2 4 < 0.03 3 5.0 < 0.5 < 0.5 < 5 < 0.5 8.5 24

Notes:

(a) - Geometric Mean concentration based on soil samples collected by USGS for Western U.S. Soils. Source: Schacklette, H.T. and J.G. Boerngen, 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States, USGS Prof. Paper 1270.

(b) - Upper Limit concentration of 95% range for Western U.S. Soils as reported by Schacklette and Boerngen.

(c) - Source: USEPA Region III Risk Based Concentration Table dated April 1, 1998. Listed concentrations are for Residential Soil.

(d) - Results reported at less than the detection limit are included at the detection limit in the geometric mean calculation. A mean was not calculated for elements with less than four measured concentrations reported above the detection limit.

Table 10. Summary of Detection Frequency for Metal Constituents in Ground WaterCompressor Station No. 9 - Roswell, NM

Metal Constituent (NMWQCC Standard)		Arsenic ((0.10 mg				Barium (A (1.0 mg/L			admium (/ (0.01 mg/L	· ·		hromium (0.05 mg/L	· ·		Lead (A) (0.05 mg/L	_)
Well ID	Even	s Detects	Max.		Events	Detects	Max.	Events	Detects	Max.	Events	Detects	Max.	Events	Detects	Мах
MW-3	10	1	0.007		10	8	0.02	10	0		10	0		10	0	
MW-5	10	0			10	7	0.047	10	0		10	0		10	0	
MW-6	9	0			9	5	0.0106	9	0		9	0		9	1	0.00
MW-7	9	0		1	9	7	0.02	9	0		9	0		9	0	
MW-8	9	0			9	4	0.0108	9	Ū		9	Û		9	0	
MW-9	9	1	0.007		9	7	0.05	9	0		9	1	0.01	9	1	0.00
MW-10	8	1	0.007		8	5	0.0107	8	0		8	0		8	0	
MW-11	8	1	0.006		8	3	0.0160	8	0		8	0		8	1	0.00
MW-12	8	1	0.005		8	5	0.02	8	0		8	0		8	0	
MW-13	8	2	0.02		8	6	0.02	8	0		8	0		8	0	
MW-14	8	0			8	6	0.03	8	0		8	0		8	0	
MW-15	8	2	0.02		8	7	0.03	8	0		8	0		8	0	
MW-17	8	0			8	2	0.0079	8	0		8	0		8	0	
MW-18	7	2	0.02		7	6	0.02	7	0		7	3	0.02	7	0	
MW-19	8	2	0.01		8	6	0.0122	8	0		8	0		8	1	0.0
MW-20	7	1	0.007		7	4	0.04	7	0		7	0		7	0	
MW-21	7	1	0.006		7	7	0.06	7	0		7	0		7	0	
MW-22	7	1	0.006		7	7	0.21	7	0		7	0		7	1	0.0
MW-23D	7	3	0.009		7	7	0.02	7	0		7	1	0.02	7	0	
MW-24D	3	1	0.009		3	3	0.026	3	0		3	0		3	0	
MW-25D	3	1	0.006		3	3	0.0133	3	0		3	0		3	0	
MW-26	3	0			3	3	0.0213	3	0		3	0		3	0	
Sub-Totals	164	21	0.02		164	118	0.21	164	0	0.00	164	5	0.02	164	5	0.0

Notes:

(A) Constituent listed under NMWQCC 82-1 Part 3, Section 3-103.A; Human health standards for groundwater.

(B) Constituent listed under NMWQCC 82-1 Part 3, Section 3-103.B; Other standards for domestic water supply.

(C) Constituent listed under NMWQCC 82-1 Part 3, Section 3-103.A; Standards for irrigation use.

Table 10. Summary of Detection Frequency for Metal Constituents in Ground Water Compressor Station No. 9 - Roswell, NM

Metal Constituent (NMWQCC Standard)			Mercury (A 0.002 mg/l			elenium (/ (0.05 mg/L	· ·	(Silver (A) (0.05 mg/L	.)		Copper (B (1.0 mg/L)			Iron (B) (1.0 mg/L)
Well ID	1	Events	Detects	Max.	Events	Detects	Max.	Events	Detects	Max.	Events	Detects	Max.	Events	Detects	Max
MW-3		10	1	0.0002	10	0		10	0		9	0		7	3	0.07
MW-5		10	0		10	4	0.020	10	0		9	0		7	5	0.2
MW-6		9	1	0.0005	9	0		9	0		9	0		7	5	0.3
MW-7		9	1	0.0004	9	0		9	0		9	0		7	5	1.2
MW-8		9	1	0.0003	9	0		9	0		9	0		7	3	0.1
MW-9		9	1	0.0005	9	0		9	0		9	1	0.01	7	5	1.4
MW-10		8	0		8	0		8	0		8	0		7	3	0.0
MW-11		8	0		8	0		8	0		8	0		7	5	0.1
MW-12		8	0		8	1	0.005	8	0		8	0		7	6	0.5
MW-13		8	1	0.0033	8	0		8	0		8	0		7	7	1.5
MW-14		8	0		8	0		8	0		8	0		7	2	0.0
MW-15		8	0		8	0		8	0		8	0		7	5	0.3
MW-17		8	0		8	0		8	0		8	0		7	0	
MW-18		7	0		7	0		7	0		7	0		7	2	1.0
MW-19		8	0		8	0		8	0		8	1	0.01	7	5	0.1
MW-20		7	1	0.0005	7	0		7	0		7	2	0.02	7	6	1.8
MW-21		7	0		7	0		7	0		7	1	0.0024	7	6	0.9
MW-22		7	1	0.0008	7	0		7	0		7	1	0.05	7	6	16.
MW-23D		7	0		7	0		7	0		7	1	0.02	7	5	0.3
MW-24D		3	0		3	0		3	0		3	2	0.01	3	2	1.4
MW-25D		3	0		3	0		3	0		3	0		3	3	0.5
MW-26		3	0		3	1	0.007	3	0		3	0	••••	3	3	1.1
Sub-Totals		164	8	0.0033	164	6	0.020	164	0	0.00	162	9	0.05	142	92	16.

Notes:

(A) Constituent listed under NMWQCC 82-1 Part 3, Section 3-103.A; Human health standards for groundwater.

(B) Constituent listed under NMWQCC 82-1 Part 3, Section 3-103.B; Other standards for domestic water supply.

(C) Constituent listed under NMWQCC 82-1 Part 3, Section 3-103.A; Standards for irrigation use.

Table 10. Summary of Detection Frequency for Metal Constituents in Ground WaterCompressor Station No. 9 - Roswell, NM

Metal Constituent NMWQCC Standard)		Manganese (0.20 mg/l			Zinc (B) (10 mg/L)		A	luminum ((5 mg/L)	C)			·····	
Well ID	Event	Detects	Max.	Events	Detects	Max.	Events	Detects	Max.	 			
MW-3	6	0		9	2	0.04	1	1	0.24				
MW-5	6	0		9	2	0.02	1	1	0.38				
MW-6	6	1	0.0097	9	3	0.03	1	1	0.69				
MW-7	6	6	0.490	9	4	0.09	1	1	1.39	 			
MW-8	6	2	0.009	9	2	0.39	1	1	0.33	 			
MW-9	6	6	0.070	9	3	0.03	1	1	3.13	 	_		
MW-10	6	0		8	3	0.20	0			 			
MW-11	6	2	0.012	8	4	0.21	0	•••		 			
MW-12	6	6	0.790	8	2	0.02	0						_
MW-13	6	6	2.40	8	3	0.06	0			 			
MW-14	6	3	0.060	8	1	0.03	0			 			
MW-15	6	6	0.0191	8	4	0.20	0						
MW-17	6	6	0.044	8	2	0.09	0						
MW-18	6	1	0.007	7	2	0.08	0						
MW-19	6	0		8	3	0.08	0			 			
MW-20	6	1	0.0043	7	2	0.22	0						
MW-21	6	6	1.51	7	2	0.03	0						
MW-22	6	4	0.070	7	2	0.09	0			 			
MW-23D	6	6	0.141	7	3	0.07	0			 			
MW-24D	3	3	0.261	3	1	0.05	0						-+
MW-25D	3	3	0.109	3	2	0.03	0			 			
MW-26	3	3	0.082	3	0		0			 	_		
Sub-Totals	123	71	2.400	162	52	0.39	6	6	3.13	 	 + +		+_

Notes:

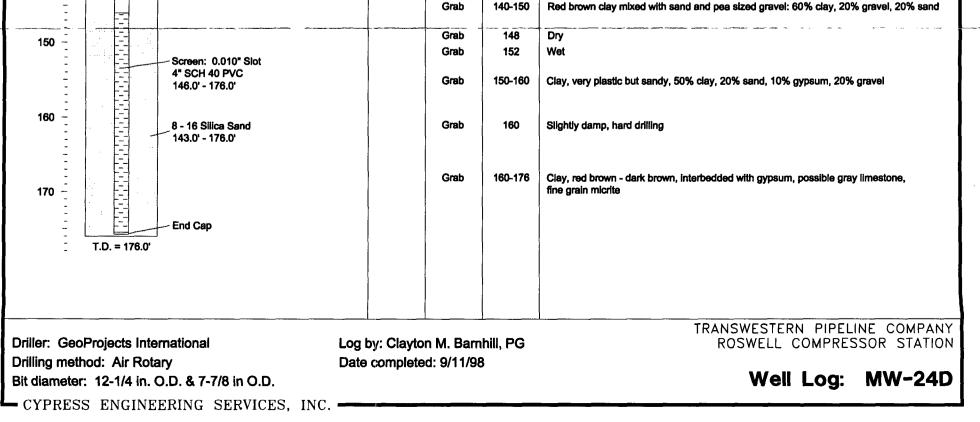
(A) Constituent listed under NMWQCC 82-1 Part 3, Section 3-103.A; Human health standards for groundwater.

(B) Constituent listed under NMWQCC 82-1 Part 3, Section 3-103.B; Other standards for domestic water supply.

(C) Constituent listed under NMWQCC 82-1 Part 3, Section 3-103.A; Standards for irrigation use.

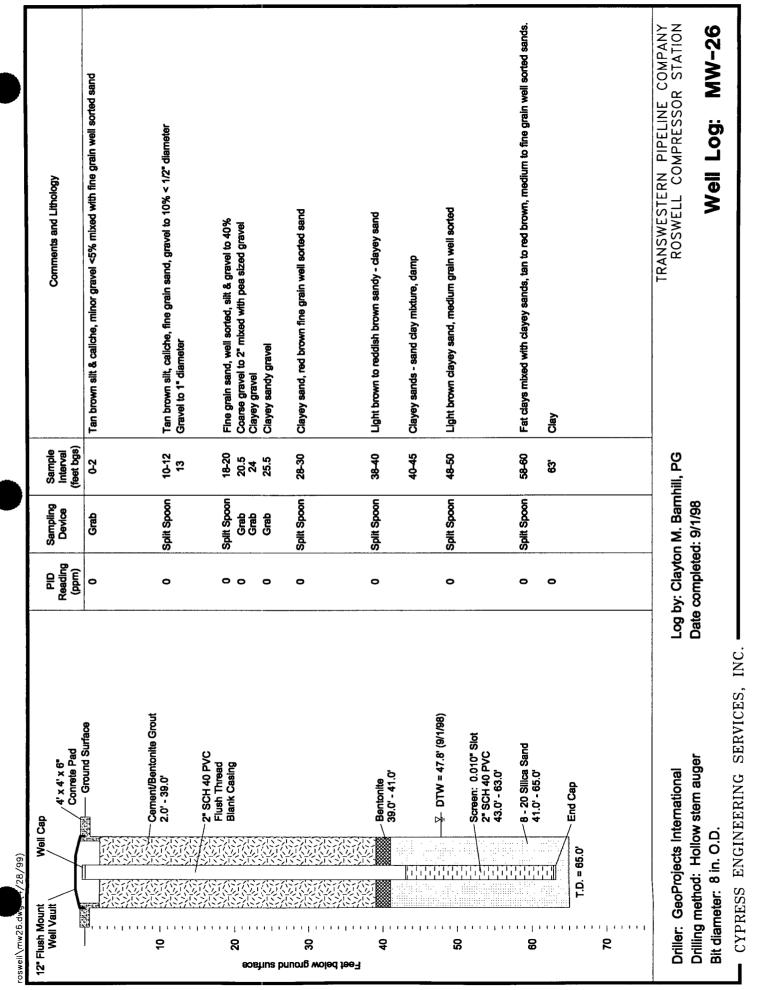
ATTACHMENTS

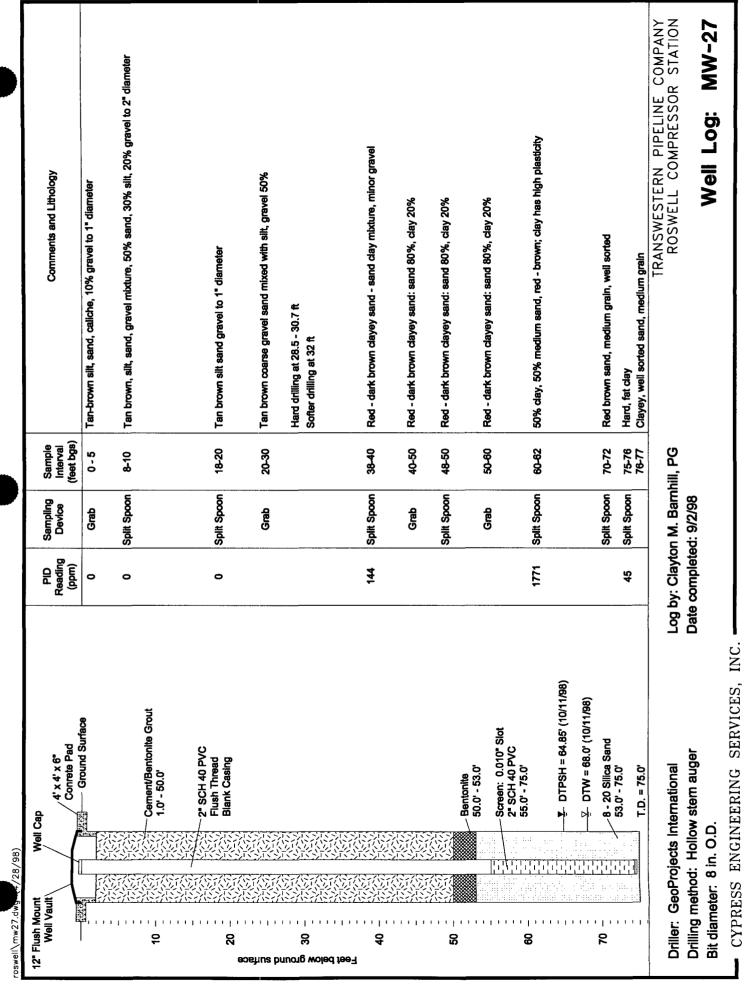
Phase IV Report & Phase V Work Plan for Roswell Compressor Station No. 9 Transwestern Pipeline Company


PHASE IV ASSESSMENT REPORT, GROUND WATER MONITORING REPORT, & PHASE V ASSESSMENT WORK PLAN

TRANSWESTERN PIPELINE COMPANY ROSWELL COMPRESSOR STATION NO. 9

Attachment #1


Soil Boring and Completion Details for new Monitor Wells


Flush Mount Well Vault \	Well Cap /4' x 4' x 6"	PID	Sampling	Sample	Comments and Lithology
	Conrete Pad	Reading (ppm)	Device	Interval (feet bgs)	
- 107757	775575				
10 -					
	12-1/4" Borehole Surface - 90.0'				
20 -					
	8-5/8" Steel Surface			1	
30 -	Casing to 90.0'				
	Cement Grout Surface - 90.0'				
40 -					
50 -					
60 –					
70 –					
80 -	Cement/Bentonite Grout Surface - 140.0'				
		1			
90 - 9					
	7-7/8" Borehole to 176.0'		Grab	90-100	Red brown clay/sand-gypsum mixture, some gravel to 1/2" diameter, white gypsum bear
100 -					
	4" SCH 40 PVC				
110 - 該領	Flush Thread Blank Casing				
120 -			Grab Grab	120-121 122	Red clay seam, sandy, damp Gypsum, hard drilling
130 - Y					
			Grab	136	Tan to brown/light brown clayey sand, mixed with white gypsum beads,
「「「「「「」」という。					20% pea size gravel

" Flush Mo Well Va			Well (4' x 4' x 6" Conrete Pad	PID Reading	Sampling Device	Sample Interval	Comments and Lithology
		/		Ground Surface	(ppm)		(feet bgs)	
- - - -					o	Grab	0-10'	Tan brown slity gravel - gravel sand mixture; gravel is pea sized to pebble
10 -			いいで					
		civeriveri		12-1/4" Borehole to 90.0'	0	Grab	10-20'	Tan brown slity sand and gravel mixture
		1-221-221			0	Grab	20-25'	Same as above; 30% gravel to 1" diameter
30 -				8-5/8" Steel Surface Casing to 90.0'	0	Grab	25-30' 30-35'	Medium grained, well sorted, red brown sand with gravel to 1" diameter Same as above
		in the the		Cement Grout Surface - 90.0'		Grab	35-40'	Could not get returns
40 -			家で			Grab	40-45'	Gravelly sands
- 50 -			家族			Grab	45-50'	Gravelly sands
-				–-⊻- DTW = 52.3' (9/10/98)		Grab	50-55'	Clayey sands, gravel sand-clay mixture
60 -						Grab Grab	55-60' 60-65'	Red tan clayey sand and white clay with some gypsum < 5% Minor caliche, red clayey sand, medium to fine grained
-		in the the				Grab	65-70'	White clay with minor gypsum and caliche
70 -				Cement/Bentonite Grout Surface - 114.0'		Grab	70-80'	Silty sand with minor fine gravel
80 - - - -		1222122212				Grab	80-85'	White gypsum with redish brown clayey sand, some gravel
90 -						Grab	85-90'	Redish brown gravelly sands, minor gypsum
90	-			7-7/8" Borehole to 150.0'		Grab	90-100'	Red-brown clay sand, gypsum mbture; interbedded white gypsum beds 1-2 ft thick
110	-	civer periversive		^{~~} 4" SCH 40 PVC Flush Thread Blank Casing		Grab	100-120'	50% clayey sand, 50% gypsum
-	-	- <u>/</u>		Bentonite 114.0' - 117.0'				
120 -	-					Grab	120-125'	Hard drilling, gray clay mixed with red sandstone layer (very thin bedded), damp clay 122 brown clay/sand mixture, clay 70%, medium to course grade sand 30%
130 -	-			Screen: 0.010" Slot 4" SCH 40 PVC 119.0' - 149.0'				
	-			8 - 16 Silica Sand 117.0' - 150.0'		Grab	125-150'	Wet clay at 138 ft Brown clay, very wet at 150 ft

Driller: GeoProjects International Drilling method: Air Rotary	Log by: Clayton M. Barnhill, PG Date completed: 9/9/98	TRANSWESTERN PIPELINE COMPANY ROSWELL COMPRESSOR STATION

PHASE IV ASSESSMENT REPORT, GROUND WATER MONITORING REPORT, & PHASE V ASSESSMENT WORK PLAN

TRANSWESTERN PIPELINE COMPANY ROSWELL COMPRESSOR STATION NO. 9

Attachment #2

Completed State Engineer Well Record Forms for new Monitor Wells

STATE ENGINEER OFFICE

WELL REĆORD

Section 1	GENERAL	INFORMATION
-----------	---------	-------------

Street or	Post Office Ad	Idress 6312	Worth Main Street	er's Well No. <u>Hいっみリウ</u>
-			and is located in the:	
. a	_ <u>% NW</u> %	<u>SE % SW</u>	4 of Section <u>21</u> Township <u>95</u> Ra	inge <u>246</u> N.M.P.M.
b. Tract	No	of Map No	of the	
			of the County.	
d. X= the	<u></u>	_ feet, Y=	feet, N.M. Coordinate System	Zone in Grant.
(B) Drilling	Contractor	Deo projec	ts International License No. 1	ND 1311
Address 8	834 4	Ircle Driv	e Austin Texas 78731	٥
Drilling Began	9/10/	98 Complete	ed 9/11/98 Type tools Air Balar	Size of hole Sin.
Elevation of la	nd surface or _	∿/A	at well is ft. Total dept	n of well_176ft.
Completed we	llis 🖾 si	hallow 🔲 artes	ian. Depth to water upon completio	n of well <u>150</u> ft.
		Section	2. PRINCIPAL WATER-BEARING STRATA	
Depth From	in Feet To	Thickness in Feet	Description of Water-Bearing Formation	Estimated Yield (gallons per minute)
1	1. 0		strand Bas Da	

		1 1110111000	Description of Water Descine Description	20111111100 · 1010
From	То	in Feet	Description of Water-Bearing Formation	(gallons per minute)
140_	160	20	< INY, W/SAND, Red-Brown	N/A
	·	l		

Section	3.1	RECORD	OF	CASING
---------	-----	--------	----	--------

Diameter	Pounds	Threads	Depth	in Feet	Length	Type of Shoe	Perforations	
(inches)	per foot	per in.	Тор	Bottom	(feet)	Type of Shoe	From	To
	SCH40 PVC	hiser	D	146	140			
	SCH 40 PVC	Screen	140	176	ao	PVL	146	176
							T	

	Section 4. RECORD OF MUDDING AND CEMENTING								
Depth	in Feet	Hole	Sacks	Cubic Feet	Method of Placement				
From	То	Diameter	of Mud	of Cement	Method of Placement				
0	14D	8	1.5	36.65	Surface Pump - Cenent				
140	143	8	N/A		Sorface Drop-Bendonite				
143	176	B	N/A		Silica Sano 8/16				

Section 5. PLUGGING RECORD

ddress		— _{No.}	Depth	in Feet	Cubic Feet
ugging Method		140.	Тор	Bottom	of Cement
ate Well Plugged					l
ugging approved by:		2			
	State Engineer Representative				

FOR USE OF STATE ENGINEER ONLY

_ Use ____

Quad _____ FWL ____ FSL___

•

File No._

Date Received

_____ Location No.___

Revised June 1972

STATE ENGINEER OFFICE

WELL RECORD

Section	1.	GENER/	L	INFORMATION	i
---------	----	--------	---	-------------	---

(A) Owner of	f well Tran	s Wester	N. Pipeline Owner	r's Well No. <u>MW. 25 P</u>
Street or	Post Office Ad	dress 6318	North Main Street	
City and	State	well New	Mexico, 88201	
Well was drilled	d under Permit	No. RA 959	57 and is located in the:	
a	K NW K	<u>SE % SW</u>	4 of Section <u>21</u> Township <u>95</u> Ran	ве <u> 24е</u> N.M.P.M.
b. Tract	No	of Map No	of the	<u></u>
c Lot N	0	of Block No.	of the	
			County.	
d X=		feet V=	feet, N.M. Coordinate System	Zone in
		•		Grant.
(B) Drilling (Contractor	zeo projr	2-15 International License No. 1	<u>D 1311</u>
Address _	<u> 834 c</u>	Lincle Dri	ue Austin Texas 18731	٥
Drilling Began	9 /9 /99	Complet	ed 9 1919 Type tools Air Brotory	Size of hole in.
Elevation of la	r.d surface or _	N/A	at well is ft. Total depth	of wellft.
Completed we	llis 🔀 st	allow 🗆 artes	sian. Depth to water upon completion	of well <u>533/124</u> ft.
		Section	2. PRINCIPAL WATER-BEARING STRATA	
Depth	in Feet	Thickness	Description of Water-Bearing Formation	Estimated Yield
From	To	in Feet	Description of water-bearing Formation	(gallons per minute)
50	55	ک	Clayey Sanos, w/ grave)	N/A
120	las	5	CLAYEY SAND, Gray w/ Rep	<u>∿/¤</u>
	1	· · · · · · · · · · · · · · · · · · ·		

Diameter	Pounds	Threads	Depth	in Feet	Length	Type of Shoe	Perforations		
(inches)	per foot	per in.	Тор	Bottom	(feet)	Type of shoe	From	То	
4	SCH 40 PVC	Niser	D	119	119				
4	SKH40 PVC	Screen	119	149	30	PVC	119	149	

Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Cubic Feet of Cement Sacks of Mud Hole Method of Placement Diameter From То 114 8 29.85 O ١ stace Pump-Cement B 114 117 N/A orfau Drop - Bentonite 8 150 117 N/A 8/1. Silica Somo

Section 5. PLUGGING RECORD

Plugging Contractor Address		-	Depth	in Feet	Cubic Feet
Plugging Method		_ No.	Тор	Bottom	of Cement
Date Well Plugged		- 1			1
Plugging approved by:		2			1
		- 3			
	State Engineer Representative	4			

FOR USE OF STATE ENGINEER ONLY

Date Received

File No .__

Use_

Quad _____ FWL ____ FSL___

.

_____ Location No.__

STATE ENGINEER OFFICE

WELL RECORD

		Sectio	on 1. GENERAL IN	FORMATION	4			
(A)	Owner of well No. Street or Post Office Ac City and State No.	1dress 6318_0	Jorth Mains	<u>Street</u>	Owner	· · · · · · · · · · · · · · · · · · ·		<u> </u>
Well	was drilled under Permit	No/A		, and is located	I in the:			
	a ½ <u>NW</u> ½	<u>SE % SU %</u> 0	f Section 21	Township	<u>95</u> Ran	ige24	<u>16 n</u>	I.M.P.M.
	b. Tract No	of Map No	of the					
	c. Lot No Subdivision, recorde	of Block No d in						
			·		·····			Grant.
(B)	Drilling Contractor	Seo project	s Internation	tional	License No	00	1311	
Addı	ess <u>8834 c</u>	ircle Drive	Austin -	Texus	78736			
Drill	ing Began 4/1/	'98_ Completed	9/1/98	. Type tools H	Iollow Stem A	ugerSize of	hole 8	in.
Eleva	ition of land surface or _	NVA	at well	is	ft. Total depth	of well	65	ft.
Com	pleted well is 🔀 s	hallow 🗖 artesian.	:	Depth to wate	r upon completion	of weil	47.8	ft.
		Section 2. Pl	RINCIPAL WATER	BEARING ST	TRATA			
	Depth in Feet	Thickness				Esti	mated Yield	1

Depti From	h in Feet To	Thickness in Feet	Description of Water-Bearing Formation	Estimated Yield (gallons per minute)
48	50	व	CAYEY SARD, Light Brown	N/A
			· · ·	

Diameter	Pounds	Threads	Depth in Feet		Length	There are only in	Perforations		
(inches)	per foot	per in.	Тор	Bottom	(feet)	Type of Shoe	From	To	
a	SCH 40 PVC	hiser	D	43	43				
2	SCH 40	Screen	43	5U	දුර	PVC	43	63	
2	PVC	Screen	43	63	20	PVC	$\frac{1}{1}$	43	

		Sectio	n 4. RECORD OF I	MUDDING AND C	EMENTING	
Depth	in Feet	Hole	Sacks	Cubic Feet	Method of Placement	
From	То	Diameter	of Mud	of Cement	Method of Placement	
0	38	8	1	12.38 Surface PUMP / Lement		
R M	41	8	N/A		Sur Face Drop / Bentonite	
41	65	පි	NIA		Silica Sanon 8/20	

Section 5. PLUGGING RECORD

Address		- No.	Depth	in Feet	Cubic Feet
Plugging Method		^{NO.}	Тор	Bottom	of Cement
Date Well Plugged		-1^{+}		1	
lugging approved by:		2			
	Ctata Fasinana Democratation	3		<u> </u>	
	State Engineer Representative	4		· · ·	

FOR USE OF STATE ENGINEER ONLY

Date Received

File No .___

_ Use _____ Location No. _____

Quad _____ FWL _____ FSL _____

STATE ENGINEER OFFICE

WELL RECORD

Section 1. GENERAL INFORMATION

Street or	Post Office Ad	<u>dress_6318</u>	erns <u>Pipeli</u> North Ma Jew Mexico	<u>sins Street</u>	Owner	*s Well No. <u>Mいーಎ7</u>	
Well was drilled	under Permit	No. 00/A		and is located in	the:		
a	¼ ¼	¼	_ ¼ of Section	Township	Ran;	geN.M.P.	,M.
b. Tract	No	of Map No	of	the	-		
c. Lot N Subdi	o vision, recorded	of Block No l in	of	the _ County.	•		
d. X= the		_ feet, Y=	feet,	N.M. Coordinate Sys		Zone Grar	
(B) Drilling C	Contractor	zeoproje	ts Inter	National 1	License No. L	00 1311	
		-		N. Texas			
Drilling Began	91210	18 Complet	ed 9/2/98	Type tools Hollo	w Stem Au	ar Size of holei	in.
						of well_ <u>75</u> 1	
Completed wel	lis (X) sh	allow 🔲 artes	sian.	Depth to water up	on completion	of well <u>63</u>	ft.
		Sectior	2. PRINCIPAL WAT	ER-BEARING STRA	TA		
Depth From	in Feet To	Thickness in Feet	Description	of Water-Bearing Form	nation	Estimated Yield (gallons per minute)	
60	60	n	Sano, R.	eo - Brown	<u>د</u>	\sim / \sim	
						<u>`````````````````````````````````````</u>	1

			Section	n 3. RECORD	OF CASING			
Diameter	Pounds	Threads	Depth	in Feet	Length	Type of Shoe	Perfo	rations
(inches)	per foot	per in.	Тор	Bottom	(feet)	Type of Shoe	From	To
a	SCH 40 DVC	hiser	0	5	.55			
a	SCH 40 PVC	Screen	5	75	20	PVL	55	75
]							
<u> </u>	PVC	Dereen				FVC		

		Sectio	n 4. RECORD OF	MUDDING AND C	EMENTING
Depth	in Feet	Hole	Sacks	Cubic Feet	Method of Placement
From	То	Diameter	of Mud	of Cement	Method of Tracement
D	50	в	1	16.29	Sorface Pump - Cement
50	53	ŋO	<u>م</u> /م		Surface Drop - Berotonite
53	75	8	~/~		Silica Sano 8/20

Section 5. PLUGGING RECORD

Address	- <u>.</u>		Depth	in Feet	Cubic Feet
Plugging Method		No.	Тор	Bottom	of Cement
Date Well Plugged		1			
Plugging approved by:	,	2			
	·	3			1
	State Engineer Representative	4			

FOR USE OF STATE ENGINEER ONLY

Date Received

File No..

٠.

Quad _____ FWL ____

____ FSL_

_ Use _

_____ Location No.___

PHASE IV ASSESSMENT REPORT, GROUND WATER MONITORING REPORT, & PHASE V ASSESSMENT WORK PLAN

TRANSWESTERN PIPELINE COMPANY ROSWELL COMPRESSOR STATION NO. 9

Attachment #3

Soil Boring Logs for the Background Soil Sample Soil Borings

Cypress Engineering Services Boring ID: BG - /BACK CLOUND Soil Sampling Sheet: **Project:** The Koswell STATION Location: Tup / Eners Roswell Star Client: Job number: AMADON KINIPS Geo Projets Int. Driller: Total depth: Hollow STEM ANGER, Self Ser? Boring diameter: 8"0.0. 4"4 J.P Drilling method: Boring date: Logged by: Water level: Date measured: SAMPLE SOIL DESCRIPTION COMMENTS standard depth (ft) jraphic log penetration interval number recovery (inches) Color, soil type, relative density or consistency, mineralogy, USGS classification moisture content 7:30 STERTER LACIUM Monitoring well installation, geotechnical test results properties, analytical tests, instrumentation BROWN - TAN Silty GRAVEL SAND Mixture Send. 402 , Genel to 2' 362, 1362 Sitt-GM . 5 White - Ton Silty GRAVE / Somo 1Silt Maxturia Gasval 4070 Saro 4070 Silt 2070 GRAVEL to 2+ GM 10 GM SAME AS ABOVE 04 1.5 P10 = 368 (PA) (misture) 10-12 300507 Blow 5 C8:00 210501 81045 66-16 /S AL14' @ 8:12 PIP = 567 PPM (moisture?) 15 20 Pante UNIMERIVED Dirton omw ~~

BG-2 **Cypress Engineering Services** Boring ID: BACK BRINNO Sir SAMPLING Project: Sheet: The POSWELL STATION Location: Twp Job number: Client: AMADOR Hins, 1058 Geo Prijects Tokent Total depth: Driller: Ait Spino Single Boring diameter: 8"0.0. 4410 Drilling method: Hollow Stem Auger 12 200 Boring date: Logged by: <u> 9/3/98</u> Water level: Date measured: SOIL DESCRIPTION Stortune Stupe Color, soil type, relative density or consistency, SAMPLE COMMENTS standard depth (ft) graphic log recovery (inches) penetration nterval number Monitoring well installation, geotechnical test results mineralogy, USGS classification moisture content properties, analytical tests, instrumentation Silty-Sonoy - GeArd Mr. Mixture. Gravel 488 GM Sand mel fre- 5r. Well Sortes Ten brown 4020 , 202 fine Sett Casuel to 1" 5 GM: SAME AS ABOVE GM. GM- TON Brown -GRAVE / to 211 10 510: GRAVelly SANDS S e. SWLiffle Fines -. . PID = 78,6 è Sand. 80% 202 Gam 18 10-12 09:03 862A 20 187 (moisture? Spt Blow to 1" Tan -brown . PHD = 368 MPM (Marstane?) 110 Spi Blows-Meh- Coarse Gr. Sant 12-14 8624 2.0 4 e 6 15 TP 14 20 Fence line A RWIG Omr! ~}

Boring ID: BG-3 Cypress Engineering Services BACK GOUND SOIL SAMPLING TUP KOUTWELL STATION Project: Sheet: Location: Job number: Client: Geo Prejoch Inferent mitotal depth: Driller: ucen 15117 Stow Sample Boring diameter: 8 Drilling method: Boring date: Logged by: Water level: Date measured: SAMPLE SOIL DESCRIPTION COMMENTS standard Ξ graphic log penetration number recovery (inches) interval depth (Monitoring well installation, geotechnical Color, soil type, relative density or consistency, test results mineralogy, USGS classification moisture content properties, analytical tests, instrumentation : Light Brown - 3:11 GRANDI- Georie Str Silr Mixture 0-2:5 60 GM GM 2.5-SIO: Light Bron to 102 Silt. Tan Camel CM 7070 Scal Scal Silt mixture 262 Gernel 5 Gm SAME AS ABOVE All Tan brown - modes sand. Suit. gravel to 10 GP: POORly GRADED GRAVES GPI SW GRAve 1 to 2" Mixed un per Siled gravel. 502 4620 San d. - Med - gri BC 3A 224 So Telas 2.0 10-12 - 9:56 \$10:65.7 Ppm (moistue?) 350 SP Elous-86 38 Tenbrown - 102 Silt 00 12-14 2.0 PID: 255 PPM Med - Course grainit Sand 40 Tan From Moved with 500% (morstone?) 15 Gene. TU 14 Inside \$6,3 Prace. 30 N Om^{wi} Fence A

OUTSIDE Fener

Cypress Engineering Services Boring ID: B6-4 Back GLOUND Soic Sampling Sheet: TWD Rosaell Station Project: Location: TWP Job number: Client: Ama Dax . Hinojosa Geo Projects Interestorial depth: Driller: Drilling method: Hollow STEM AUGER Stir Stow Sund Boring diameter: 8'0.0. 4'4 I.O. OmB-Boring date: Logged by: 7/3/58 Water level: Date measured: SAMPLE SOIL DESCRIPTION COMMENTS standard depth (ft) graphic log penetration number recovery (inches) interval Monitoring well installation, geotechnical Color, soil type, relative density or consistency, test results properties, analytical tests, instrumentation mineralogy, USGS classification moisture content 0-5: It. Brown to Tan. GP med- coarse grainf Sand. Mixel with gravel to 1" titte GMto Matine s 5 5-10 - SAME AS ABOUK light Ten to white .. GM 10 SAME AS ABOUE GM PID: 92.2 (moisture?) 10-12' C 11:15 86-4A 21 158 Sp7. Bla P10: 48-9 12'-14' C 11:20 06-418 20 53 Sprola 15 TO 14 Gwf 4 100 Fence 0 86-4 RWIA sidfu NPIEP ٩v

Cypress Engineering Services Boring ID: BG-5 BALK GROOND SAMPLIM TWP ROSWEY STATION Project: Sheet: Location: Twp Job number: Client: Amalos Hunging Geo Project's Internetional Total depth: 14 Driller: Hollow STEM AULER SPlit Spen Sanding Boring diameter: 8to.D. 41/4"I.D. Drilling method: CMB-9/3/98 Logged by: Boring date: Water level: Date measured: SAMPLE SOIL DESCRIPTION COMMENTS standard depth (ft) graphic Iog penetration recovery (inches) interval number Monitoring well installation, geotechnical Color, soil type, relative density or consistency, . test results mineralogy, USGS classification moisture content properties, analytical tests, instrumentation O-10: TAN TO LIGHT Brown med to Course grained Send. 50% mixture with 40% Course Bravelso 2" Cut 10% five GM 5 Silt. GM PIT? 55'-10.0' 10' 00 PIT FROM 3.51 -ARAA Donk OPEN NO 5.5-10 Sous Preces of Bricks Recovery 10 PID 10'-12' = 313 PEM -PID 12'-14'= N/D GRAY Black Old pit?" FRon 10+ 11 @ 11-12 GM - Sandy 10'+12' B-54 20 128 SPT 8/005 Joil GM 011:54 15 12-14: Savary - GRAVERY Soil - Not Dana 12'-14' 0 12'05 80,507 6658 1.0 Davis Tan-Brown Medjų grade Sant great gravel. 15 1.0 BG-5

	yhi	62	<u>, r</u>		ering Services	DU	nng iD	: B&-	
Pro	ject:		ź	BACK 6	COUND Soir Sampling	_She	et:		
	atio	n:	•	TWP ,	Roswell STATION	_			
Clie				Twp	Hinojosa GEO Projects Internation	Job	number:		7
Dril Dril		meth			STEM AUCEN / SPLIT Spoo				2.0
	-	date:	οu,	9	12/98		ged by:	Cm	<u></u> 3
	-	evel:					e measur		
	· .	SAMPL	E	standard	SOIL DESCRIPTION	<u> </u>	[COMMENTS	
depth (ft)	interval	number	recovery (inches)	penetration test results	Color, soil type, relative density or consistency, mineralogy, USGS classification moisture content $Sturfued C 12^{\circ}24$	graphic log) well installation, geo analytical tests, instru	
					0-5- Tan to Who.te fine & med. gr. Sand. Monto mixed with poblelos. 1020 Sitt.		GM		
					GRAVEL SIZE INCREQUES to 0p To 2+ - otherwise SAME AS ABOVE	00000	GM.	· · ·	
		3-6A 868	2:0 2.0	300 577 81015 300 547 8/1456	Same As Abové.	0 0 0 7 7 7 7	, GM	рто 10'-12 Рио 12'-14	(= 14) (= 10/
-				•					
-	-				in fence				
-					Fence Bit plays in Gate				
1 -	1	1	l			1			

Cypress Engineering Services Boring ID: BG-7BACK GROUND Soir SAMPLING Project: Sheet: TWP Roswell STATION Location: TWP Job number: Client: HINOSOSA Geo Propets Internation of otal depth: Driller: 141 Amococ Hollow STEM AUGER 1 Spit Spoon Boring diameter: 8"0.0. 4"4" I.O Drilling method: Boring date: Logged by: CMB 9/3 198 Water level: Date measured: SAMPLE SOIL DESCRIPTION COMMENTS standard depth (ft) graphic log penetration recovery (inches) interval number Color, soil type, relative density or consistency, mineralogy, USGS classification moisture content Monitoring well installation, geotechnical . test results properties, analytical tests, instrumentation White to Tan met grained well GM Bertes Band mixtal With Caliche and pebbles to 1" 21020 3115 5 TAN-TO Brown. Med. Grained Well Sortel Sand mixed with Gene GM to # -10 Med gr. to Cocresc gr. Send. 602 402, Get vel to 1" little or motion SW PHD 10-12'= N/D ¢ 0-12 185 Spring 86-174 2.0 PID 12'-14'= N/D TAN Brown - in Color-86-79 180 SM TO Blous n OBG=0 OBG-7 . while Rectal GANE Flygg Fauce FRANCA

_			~	D la Si E li					
	Project: Location: Client: Driller:			BACK CROWND Son Sampling Twp Roswell STATION			Sheet:		
				TWP	This is the Call is to the the	Job number:			
			: مام		HINO 1054 Geologieds Interest				
	Boring date:			Q la laci			Boring diameter: <u>8"o.o. 4</u> Logged by: <u>CmB</u>		
	-	evel:				Date measured:			
٧٧a		CVCI.				_Date			
2		SAMPL	E	standard	SOIL DESCRIPTION		COMMENTS		
depth (ft)	interval	number	recovery (inches)	penetration test results	Color, soil type, relative density or consistency, mineralogy, USGS classification moisture content	graphic Iog	Monitoring well installation, geotechnic properties, analytical tests, instrumenta		
					STARTED @ 14:30 White, Tan, Brown, Sand	1-61			
-			.		Citt Frank Marture -	1111	Pro		
					SAND 50% GRAVET HORO SAND 50% GRAVET HORO Srit 10% - Some Calicha Station - Some Calicha		GM		
-					GRAVE (to 34 - Cobbles	19			
_		1			CRAVE! 10 5 Cost 10				
				L		[1]]]			
_						69			
_					-		GM		
					SAME AS ABOUE		G		
-	}					$\ \ _{\mathcal{A}} \ $			
-									
 		1				Ha h			
-					SAME AS ABOVE		nin 10-12-		
-		BG		500			GM PID 10 122		
•		84		Blas		4	GM PID 10-12'= PID 12'-14'= A		
		86 88	ļ	385 47		119	1.2.10		
1				Blows		TO 141	·		
_									
	1			.					
-	1 ·								
		1		<u> </u>					
-	1	1							
-	1	1		.					
-	1								
-						ľ			
\vdash				╞───┤					
-									
-	ļ				e 4 18				
_				j.	0 B6 -8				
-	ł								
1		1	I	1	Force		Gota		