

REPORTS

YEAR(S):

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Summary of Hydrogeological Investigations Conducted at the Thoreau Compressor Station July 1991 Through February 1994

> Prepared for ENRON Corp. Houston, Texas

April 20, 1994

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

TABLE OF CONTENTS

Se	ction	Page	:
EX	ECUTIVE SUMMARY	. 1	
1.	INTRODUCTION	. 3	
2.	WELL ABANDONMENT	. 5	
3.	BIOREMEDIATION PILOT TEST	. 7	
4.	SUPPLEMENTAL DRILLING PROGRAMS	. 8	
5.	GROUND-WATER MONITORING	. 11	
6.	SOIL VAPOR EXTRACTION PILOT TESTS	. 13	
7.	SUMMARY AND CONCLUSIONS	. 15	
8.	REFERENCES	. 1,6	

LIST OF FIGURES

Figure

- 1 **Regional Location Map**
- 2 Locations of Monitor Wells and Exploratory Borings
- Water Table Elevation for the Perched Ground Water, April 19, 1993 3
- Benzene Concentrations in Ground Water, 1992/1993 4
- Toluene Concentrations in Ground Water, 1992/1993 5
- Ethylbenzene Concentrations in Ground Water, 1992/1993 6
- 7 Xylene Concentrations in Ground Water, 1992/1993
- Total PCB Concentrations in Ground Water, October 1992 8

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

LIST OF TABLES

Table

- 1 Inventory of Monitor Wells and Soil Borings, Thoreau Compressor Station
- 2 Summary of Soils Analytical Results from Pilot Bioremediation Test, Thoreau Compressor Station
- 3 Summary of Ground-Water Analytical Results from Pilot Bioremediation Test, Thoreau Compressor Station
- 4 Summary of Soil Chemistry Results from July/August 1992 Exploratory Drilling Program, Thoreau Compressor Station
- 5 Summary of Water Chemistry Results from July/August 1992 Exploratory Drilling Program, Thoreau Compressor Station
- 6 Summary of Ground-Water Level Data, Thoreau Compressor Station
- 7 Summary of Ground-Water Analytical Results, November 1989 Through April 1993, Thoreau Compressor Station
- 8 Summary of Ground-Water Inorganic Chemical Results, April 1993, Thoreau Compressor Station
- 9 Summary of BTEX Concentrations in Soil Vapor from November 1993 SVE Pilot Test, Thoreau Compressor Station

LIST OF APPENDICES

Appendix

- A Well Abandonment Report
- B Bioremediation Pilot Test Information
- C Lithologic Logs and Well Completion Diagrams
- D Hydrographs
- E SVE Pilot Test Reports and Calculations

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

EXECUTIVE SUMMARY

Daniel B. Stephens & Associates, Inc. conducted a regional and site hydrogeologic investigation at the Thoreau compressor station in 1989, based on reconnaissance and available literature. Subsequently, DBS&A conducted several more detailed site-specific hydrogeological investigations at the station from July 1991 through February 1994. The objectives of these additional investigations were to further define the extent of impacts to soil and ground water and to evaluate potential remedial actions. This report summarizes the more recent of these additional investigations, including abandonment of selected wells, a bioremediation pilot test, installation of additional soil borings and monitor wells, routine ground-water monitoring, and soil vapor extraction pilot tests. The additional soil borings and monitor wells, along with routine ground-water monitoring, defined the downgradient extent of impacted ground water. Also, information gathered from the pilot tests indicated that soil vapor extraction and enhanced bioremediation are viable technologies for remediation of the impacted soil and ground water at the Thoreau compressor station.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

1. INTRODUCTION

Daniel B. Stephens & Associates, Inc. (DBS&A) was retained by ENRON Corporation in 1989 to conduct a hydrogeological investigation at the Transwestern Pipeline Company (Transwestern) Compressor Station No. 5 near Thoreau, New Mexico (subsequently referred to as the Thoreau compressor station). The objective of the initial investigation was to perform monitoring activities in accordance with a Toxic Substances Control Act (TSCA) Consent Decree (Consent Decree) between Transwestern Pipeline Company and the U.S. Environmental Protection Agency (EPA) Region VI. The primary objective of the ground-water portion of the Consent Decree was to test for the existence of PCBs. However, Transwestern expanded the work to include evaluation of the quality of ground water downgradient of a former waste disposal area.

A *Ground-Water Assessment Report* (GAR) was submitted in July 1991 in accordance with the Consent Decree. The scope of activities reported in the GAR included completion of 13 monitor wells, 11 exploratory borings, field and laboratory tests for hydrologic properties characterization, 2 geophysical surveys, and several special investigations pertaining to ground-water flow and transport. Details regarding these investigations can be found in the GAR (DBS&A, 1991). Also, results of an earlier investigation at the Thoreau site, which included installation of 11 monitor and test wells, had been previously reported by DBS&A (1990).

A number of additional investigations have been undertaken since the GAR was issued, primarily for the purpose of further characterizing impacts to ground water and obtaining information to assess the need for and assist with design of a remedial system. The purpose of this report is to summarize all hydrogeologic investigations completed at the Thoreau compressor station since the GAR was submitted. The additional activities performed at the site include:

- abandonment of deep regional test wells
- a bioremediation pilot test
- installation of additional exploratory borings and monitor wells
- ongoing evaluation of water levels, hydraulic gradients, and water quality

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

• soil vapor extraction pilot tests on several wells

Sections 2 through 6 of this report summarize each of these activities, respectively.

1.1 Site Description

The Thoreau compressor station is located approximately 1.5 miles north-northwest of Thoreau, New Mexico in McKinley County, as shown on Figure 1. The area investigated includes both the Transwestern property and Navajo Tribal land that borders the station on its south and east sides. All monitor wells and soil borings that have been completed by DBS&A at the station are shown on Figure 2, and a summary of completion information for monitor wells and soil borings is included as Table 1.

The land surface at the station slopes gently to the south and is sparsely vegetated with native grasses, juniper, and piñon pine. The land surface elevation is about 7300 feet above mean sea level (fmsl). The station is located on the north side of a broad east-west trending valley just east of the continental divide. The Zuni Mountains to the south rise to about 9100 feet, and the prominent cliffs of the Owl Rock escarpment define the northern edge of the valley. No well defined surface drainages cross the station.

1.2 Site Hydrogeology

The station is situated on the southern end of the San Juan Structural Basin within the Colorado Plateau physiographic province. The area is within the Zuni uplift element of the basin, a northwest-southeast trending, forested upland where Precambrian rocks are exposed and the Permian and younger strata dip to the north away from the uplift.

The Chinle Formation is the principal bedrock underlying the station. The Chinle Formation is comprised mostly of red claystones and mudstones and is roughly 1000 to 1300 feet thick. In addition, there is a middle Chinle Formation member, called the Sonsela sandstone, that is approximately 90 to 130 feet thick at a depth of approximately 650 feet below the station. The Sonsela sandstone is the shallowest aquifer that is used as a water supply in the Thoreau area.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

The upper part of the Chinle Formation in the vicinity has been eroded so that its surface generally slopes southward and nearly opposite to the dip of the formation. The Chinle Formation is overlain by 30 to more than 75 feet of alluvium over most of the station and surrounding area.

The alluvium consists of reddish brown, silty sand that is fine- to very fine-grained, moderately to well sorted, with thin silty interbeds. Approximately 1 to 5 feet of weathered, sandy clay mark the transition between the surficial alluvium and underlying Chinle Formation.

Perched ground water is present in the alluvium on top of the Chinle Formation. The perched zone is approximately 10 to 15 feet thick over most of the site, with the thickness increasing locally due to the presence of paleochannels that eroded the top of the Chinle Formation. The depth to perched ground water is approximately 45 to 50 feet below ground surface (bgs) at the southern part of the Thoreau compressor station and increases to the south to approximately 65 feet bgs in monitor well 5-58B (Figure 2). Results of previous hydraulic testing at the site indicated that the perched ground water has an average hydraulic conductivity of approximately 10^{-4} centimeters per second (cm/sec). The average hydraulic gradient at the site is approximately 0.04 feet per foot (ft/ft) to the south. Assuming an effective porosity of 0.12, ground water flows at an average velocity of approximately 3.3×10^{-5} cm/sec or 34 feet per year.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

2. WELL ABANDONMENT

In March 1992, several dry monitor wells (5-7B, 5-8B, 5-25B, 5-26B, and 5-27B) and two deep test wells (5-1A and 5-3A) that were installed under the terms of the EPA Consent Decree were abandoned. The deep test and shallow alluvial wells were originally installed in the Chinle Formation to evaluate potential impacts to ground water resulting from potential release of PCBs in the former waste pit (Figure 2). Routine ground-water sampling revealed that subsurface impacts were limited to the perched water on top of the Chinle Formation (DBS&A, 1991); thus, continued monitoring of the deep test wells was deemed unnecessary. Accordingly, the deep test wells and the dry shallow monitor wells were abandoned to eliminate potential pathways for migration of ground water from the perched system to the underlying bedrock aquifers.

Following completion of field abandonment activities in May 1992, DBS&A submitted a report to the New Mexico Oil Conservation Division (OCD) documenting abandonment procedures. A copy of the report is included in Appendix A. The following paragraphs provide a brief summary of the well abandonments, which were performed by Ward Drilling Company of Capitan, New Mexico, with technical supervision provided by DBS&A.

The deep test wells were installed in April 1989 by Salazar Drilling Company of Grants, New Mexico under the supervision of Ground Water Resource Consultants of Tucson, Arizona. The test wells were constructed of 6-inch-diameter steel casing within a 10-inch surface casing. The 10-inch surface casing was grouted to approximately 80 feet bgs to prevent unconsolidated alluvium from sloughing into the open holes during drilling. Test well 5-3A was completed with a gravel pack from the bottom of the screened interval to the ground surface, while 5-1A was completed without a gravel pack.

The general approach for abandonment of test wells 5-1A and 5-3A involved perforating the 6-inch-diameter steel casing at 25-foot intervals with a mechanical cutting tool. A cementbentonite grout was then pumped into the well casing and annulus through a tremie pipe set near the bottom of the zone to be grouted.

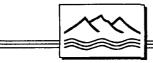
5

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Predetermined volumes of grout were pumped into the casing until the grout reached the ground surface. Grouting was performed in several grout lifts to minimize the pressure head on the grouted interval, thus avoiding excessive grout loss to the formation. After each lift, the grout was allowed sufficient time to set up. The top of the grout surface was determined prior to adding each grout lift to the well. After the abandonment was completed, a steel plate containing the well number and the date of abandonment was welded onto the top of each casing.

Shallow monitor wells 5-7B, 5-8B, 5-25B, 5-26B, and 5-27B extended into the top of Chinle Formation but did not encounter ground water. These dry monitor wells were abandoned by filling the 2-inch polyvinyl chloride (PVC) casing with a bentonite-cement grout from the bottom up using a 1-inch PVC tremie pipe. The steel monitor well vault cover was welded in place, and a steel identification plate with the well number and abandonment date was welded to the vault cover.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS


3. BIOREMEDIATION PILOT TEST

A pilot test was conducted from April through December of 1992 for the purpose of investigating the feasibility of nitrate-enhanced bioremediation at the Thoreau site. Details regarding the theory of nitrate-enhanced bioremediation, the test design, and results are included in Appendix B. Lithologic logs and well completion diagrams for the pilot test wells are included in Appendix C. Summaries of soil and water chemistry data collected during the pilot test are included as Tables 2 and 3, respectively.

As discussed in Appendix B, the well configuration for the pilot test included closely spaced injection and extraction wells with a monitor well in between. Nitrate and bromide (as a tracer) were added into the injection well and were subsequently captured with the extraction well. The extraction well was pumped at a sustainable low volume rate.

During pumping, a small amount of non-aqueous phase liquid (NAPL) began pooling in the well, although NAPL had not been detected elsewhere in the site previously or subsequently. A sample of the NAPL was collected and sent to Core Laboratories in Houston, Texas for analysis. The results of the analysis, which are included in Appendix B, indicate that the NAPL sample is a complex mixture that includes approximately 170 identifiable hydrocarbons ranging from C_4 through C_{21} , with 95 percent of the hydrocarbons lying in the C_7 to C_{14} range.

The pilot test resulted in reductions in concentrations of toluene, xylene, and ethylbenzene. However, no significant reduction in benzene was observed. Consequently, the system was subsequently altered to allow for addition of oxygen (by air injection). Air injection was initiated on October 7, 1992, and proceeded until the end of the test in December 1992. The preliminary results indicated that there was an apparent reduction of benzene following the addition of air, although the test did not proceed long enough to positively evaluate the combined effects of nitrate and air addition on benzene degradation. Nevertheless, since benzene was not reduced solely by the addition of nitrate, a decision was made to pursue bioremediation that is based on aerobic degradation rather than denitrification.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

4. SUPPLEMENTAL DRILLING PROGRAMS

Previous field investigations described in the GAR identified soil and ground-water impacts downgradient of the former waste disposal areas; however, the western and southern extent of the impacted area remained to be defined. Therefore, DBS&A conducted supplemental exploratory drilling and sampling programs in July through August 1992 and March 1993 to define the areal extent of hydrocarbons in the perched ground water. The location of each exploratory boring and monitor well installed during the two supplemental investigations is depicted on Figure 2. All off-site drilling locations were cleared by the Navajo Nation Archeology Department prior to commencement of drilling activities (Francisco, 1992).

The July/August 1992 program included the drilling of 19 exploratory borings in the alluvium, from which soil and ground-water samples were collected for chemical analysis. Monitor wells were installed in 3 of the 19 exploratory borings. In March 1993, 2 additional monitor wells were installed outside the downgradient plume boundary.

The 19 exploratory borings used for the collection of soil and ground-water samples in July through August 1992 were installed by Stewart Brothers Drilling Company using a Failing F-10 hollow-stem auger rig. Soil samples were collected for geologic descriptions by driving a split-spoon sampler into the undisturbed soil ahead of the borehole or by collecting samples of drill cuttings. Samples were used for geologic descriptions (Appendix C) and checked for the presence of volatile organic compounds (VOCs) using an organic vapor meter equipped with a photoionization detector (PID). All sampling equipment was decontaminated prior to use by washing with Liquinox[®] followed by a deionized water rinse. Drilling equipment was thoroughly steam-cleaned and inspected by on-site DBS&A personnel between each boring.

The first four borings (5-SB38, 5-SB39, 5-SB40, and 5-SB41) were drilled at predetermined locations to define the western and southern extent of BTEX and the extent of PCBs in ground water southeast of the former waste pit. Additional borings were installed to define the extent of source areas and the southern and east-west extent of organic constituents. The spacing between borings was determined based upon the measured concentrations of hydrocarbons in prior borings. For example, if ground-water concentrations were near standards, then the next

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

boring was placed within 100 feet; conversely, if hydrocarbon concentrations were high, then a greater spacing was used.

When the augers reached the top of the water table, a split-spoon sample was collected for chemical analysis. Split-spoon samples were collected in brass rings sealed with Teflon caps, placed on ice, and delivered to Analytical Technologies, Inc. (ATI) in Phoenix for analysis. Each sample was analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) by EPA methods 8020 and 8015 modified. Soils from exploratory borings 5-SB40 and 5-SB49 were also analyzed for polychlorinated biphenyls (PCBs) by EPA method 8080. Table 4 provides a summary of the TPH, BTEX, and PCB concentrations measured in soils submitted for chemical analysis. In addition, soil samples were collected from several exploratory borings outside the area of hydrocarbon impacts to determine natural total organic carbon content (Table 4).

After the split-spoon sample was collected from each boring, a ground-water sampling device, referred to as the *HydroPunch* by the manufacturer, was inserted into the boring to facilitate acquisition of a ground-water sample. The HydroPunch consists of a steel housing containing a disposable PVC screen. The steel housing was attached to the auger rig center rods and driven into the upper 3 to 5 feet of the saturated soils ahead of the lead auger. The sampler housing was then retracted to expose the PVC intake screen.

Ground-water samples were collected by hand with disposable Teflon bailers provided with the HydroPunch sampler. The water samples were shipped to ATI for immediate analyses for possible BTEX and TPH (C_6 - C_{36}) constituents by EPA methods 8020 and 8015 modified, respectively. ATI provided DBS&A with verbal and facsimile copies of the analytical results within 24 hours of the sample collection time. Ground-water samples from 5-SB40 and 5-SB49 were also analyzed for the presence of PCBs. Table 5 provides a summary of the analytical results for the ground-water samples collected during the exploratory drilling program.

Following completion of the drilling program, 16 of the exploratory borings were abandoned by filling the hole with a cement-bentonite slurry. Three monitor wells (5-41B, 5-47B, and 5-48B) were constructed in the other three borings (those with the same numeric identification) to permit

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

continued ground-water monitoring. The monitor wells were constructed using 15 feet of 2-inch 0.010-slot PVC screen, flush-threaded 2-inch PVC blank casing, 10-20 silica sand filter pack to about 1 foot above the screen, followed by 1 foot of 16-40 silica sand filter pack. A bentonite seal was emplaced on top of the filter pack, followed by a cement-bentonite grout to the ground surface. Two additional monitor wells (5-57B and 5-58B) of similar design were installed in March 1993 farther to the south and west of the exploratory borings (Figure 2). Construction details for all monitor wells are given in Table 1 and Appendix C.

Following well completion, each well was developed by the surge and bail method until field parameters (pH, temperature, and electrical conductivity) stabilized and the well yielded relatively sediment-free ground water. Prior to sampling, each monitor well was purged of at least three additional casing volumes to ensure that samples were representative of the perched system. Ground-water samples were then collected from the newly installed wells and analyzed for BTEX (EPA method 8020).

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

5. GROUND-WATER MONITORING

In addition to the hydrogeologic investigations described in the previous sections, monitoring of ground-water levels and ground-water quality is routinely conducted at the Thoreau compressor station. Ground-water monitoring was conducted on a monthly or bimonthly basis from late 1989 to April 1992. Beginning in April 1992, monitoring was conducted on a semiannual basis. However, DBS&A was not able to complete the semiannual monitoring scheduled for October 1993 because access was not granted by the Navajo Nation. This section summarizes both ground-water level and ground-water quality data.

5.1 Water Level Data

Ground-water elevation data are summarized in Table 6, and hydrographs showing ground-water elevations for each of the Thoreau monitor wells are shown in Appendix D. Because of extreme localized variations in water levels due to pumping, hydrographs from the pilot test injection and extraction wells are not included. Ground-water levels for the perched system in April 1993 are shown as Figure 3.

The ground-water elevations were determined by measuring the depth to water from a surveyed measuring point elevation (Table 1). At the same time that new monitor wells were being surveyed in September 1992, all measuring point elevations at the Thoreau station were resurveyed in order to investigate some potential discrepancies in elevations. The new survey, which tied into the nearest benchmark, indicated measuring point elevations that were slightly different than those used previously. Consequently, the ground-water elevations shown in this report vary slightly from those presented in the GAR (DBS&A, 1991). Elevations presented in this report, including the ground and measuring point elevations shown in Table 1 and the ground-water elevations shown in Figure 3 and Appendix D, are referenced to the September 1992 survey (except as noted on Table 1).

All of the hydrographs (Appendix D) show fluctuations in ground-water elevations of approximately 2 to 4 feet since the monitor wells were installed. Water levels followed a general decreasing trend until the winter of 1991 and have been increasing since that time.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

5.2 Ground-Water Quality

As discussed previously, samples are currently collected at the Thoreau compressor station semiannually. Normally, BTEX samples are collected from all existing monitor wells in October and from selected wells in April. Routine ground-water monitoring also includes annual analyses for PCBs at selected wells. Additionally, selected inorganic parameters were analyzed in April 1993. The BTEX and PCB results from all sampling events are summarized in Table 7, and the results of the April 1993 inorganic analyses are summarized in Table 8. Copies of actual sample laboratory data sheets, quality assurance/quality control blank and replicate data sheets, sampling procedures, chain of custody forms, field parameters, and other supporting information are available on request.

BTEX concentrations are decreasing in many of the monitor wells at the Thoreau compressor station (Table 7). This may be due in part to natural biodegradation of BTEX in ground water. The distribution of BTEX and PCBs in ground water from the most recent sampling event (April 1993) are shown as Figures 4 though 8. Since all of the wells were not sampled in April 1993, October 1992 data are shown for the wells for which April 1993 data are not available. Figures 4 through 7 show that most of the area where BTEX concentrations exceed EPA maximum contaminant levels (MCLs) is within or just south of the compressor station boundary. However, benzene concentrations slightly in excess of MCLs extend farther to the south (Figure 4). PCB concentrations above MCLs have only been detected in two wells in the southeastern corner of the compressor station property (Figure 8).

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

6. SOIL VAPOR EXTRACTION PILOT TESTS

In November 1993, DBS&A conducted several short-term soil vapor extraction (SVE) pilot tests to evaluate design parameters for an SVE system. The specific objectives of the SVE pilot tests were to

- Evaluate the effective radius of influence for future SVE wells
- Determine operational flow rates and vacuum pressures
- Estimate the hydrocarbon mass removal rates
- Assess the occurrence of natural in-situ biodegradation of hydrocarbons by comparing fixed-gas ratios, such as CO₂/O₂
- Evaluate the need for future emission control systems and emission permits

The pilot SVE tests consisted of one 24-hour test (monitor well 5-34B), one 3-hour test (monitor well 5-35B), two 2-hour tests (monitor wells 5-4B and 5-5B), and one 1-hour test (monitor well 5-6B).

The pilot testing was conducted with assistance from AcuVac Remediation (AcuVac) of Houston, Texas. AcuVac transported a mobile internal combustion engine vapor treatment unit to the site and operated the unit under DBS&A's direction. The internal combustion engine draws a vacuum on the SVE wells while at the same time achieving nearly complete hydrocarbon destruction. Appendix E contains AcuVac's report on the SVE pilot tests.

During the tests, soil vapor concentrations were measured with a hand-held gas chromatograph and a Horiba auto emissions analyzer provided by AcuVac. Once soil vapor extraction rates and pressures stabilized, soil vapor samples were collected for chemical analyses. Tedlar bags were filled inside a specially designed vacuum box and delivered to Hall Environmental Analysis Laboratory of Albuquerque, New Mexico and analyzed for TPH and BTEX. Additional samples were collected in stainless steel canisters and shipped to Core Laboratories (Core) in Houston, Texas for analysis of extended refinery gasses, TPH, and BTEX.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 9 summarizes the concentrations of BTEX measured in the vapor samples by the two laboratories and the hand-held gas chromatograph; complete laboratory results and Horiba measurements are summarized in Appendix E. The large discrepancies among measured concentrations may result from varying collection and analysis procedures. The highest concentrations of total hydrocarbon vapors were extracted during the 3-hour SVE test conducted on monitor well 5-34B. The Horiba analyzer provided by AcuVac consistently measured total hydrocarbon concentrations of approximately 30,000 parts per million vapor during the 5-34B test.

The analytical results provided by Core were used to determine the maximum uncontrolled emissions resulting from future vapor extraction from 5-34B. The calculations suggest that the maximum uncontrolled emissions of all hydrocarbon vapors would not exceed the 10-pound per hour permitting criterion contained in the New Mexico Air Quality Control Regulations. Appendix E contains the calculated maximum emission rates from one SVE well operating at the pilot test flow rate of 22 cubic feet per second (cfm).

The results from the SVE pilot tests indicated that SVE is a viable means to remove hydrocarbon vapors from the impacted soil. The vacuum response seen in wells approximately 50 feet from the SVE test well indicate that the radii of influence are relatively large at the operational flow rates of 20 to 25 cfm. In addition, the tests indicated that natural in situ biodegradation of hydrocarbons is occurring, as evidenced by the elevated CO_2 concentrations. The operation of an SVE system should stimulate natural biodegradation of the impacted soils.

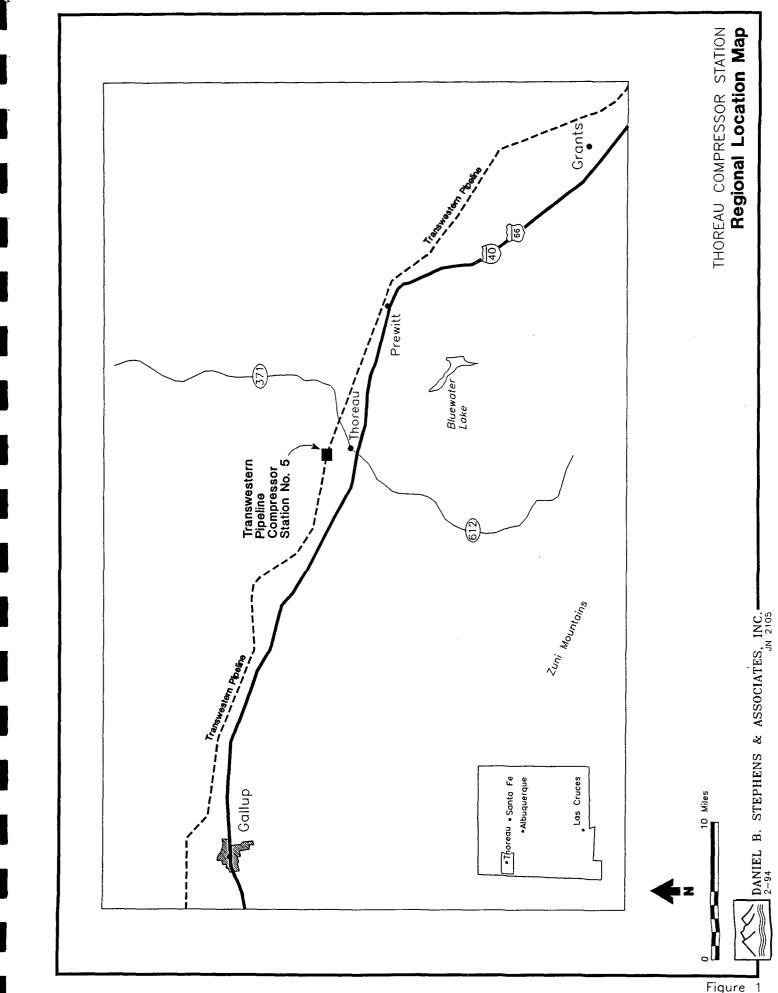
14

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

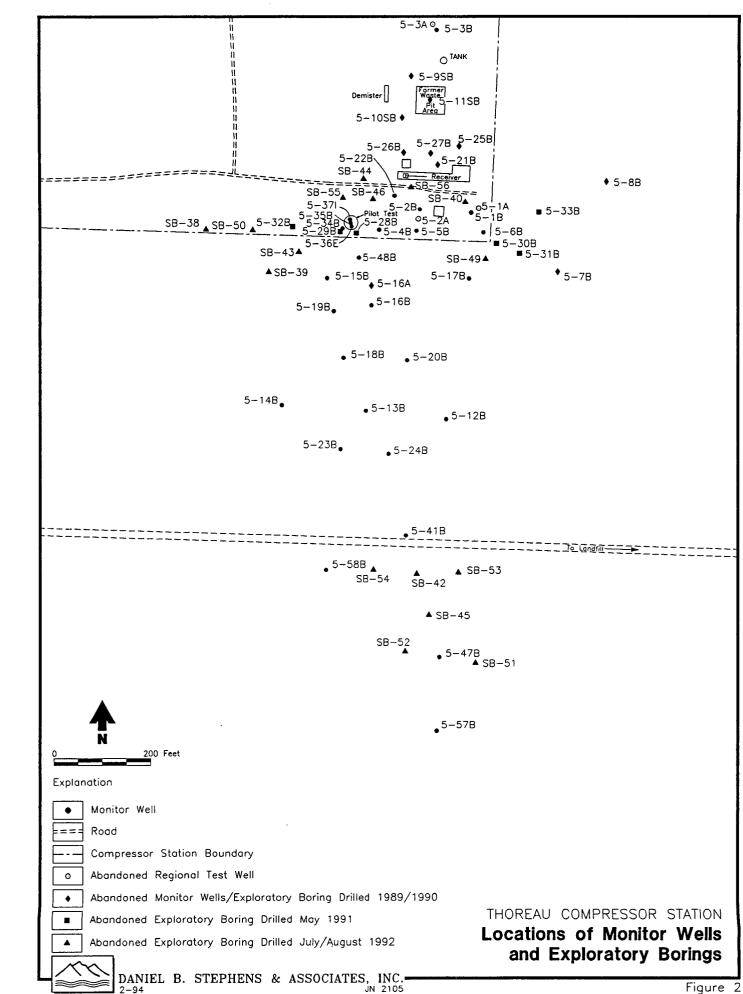
7. SUMMARY AND CONCLUSIONS

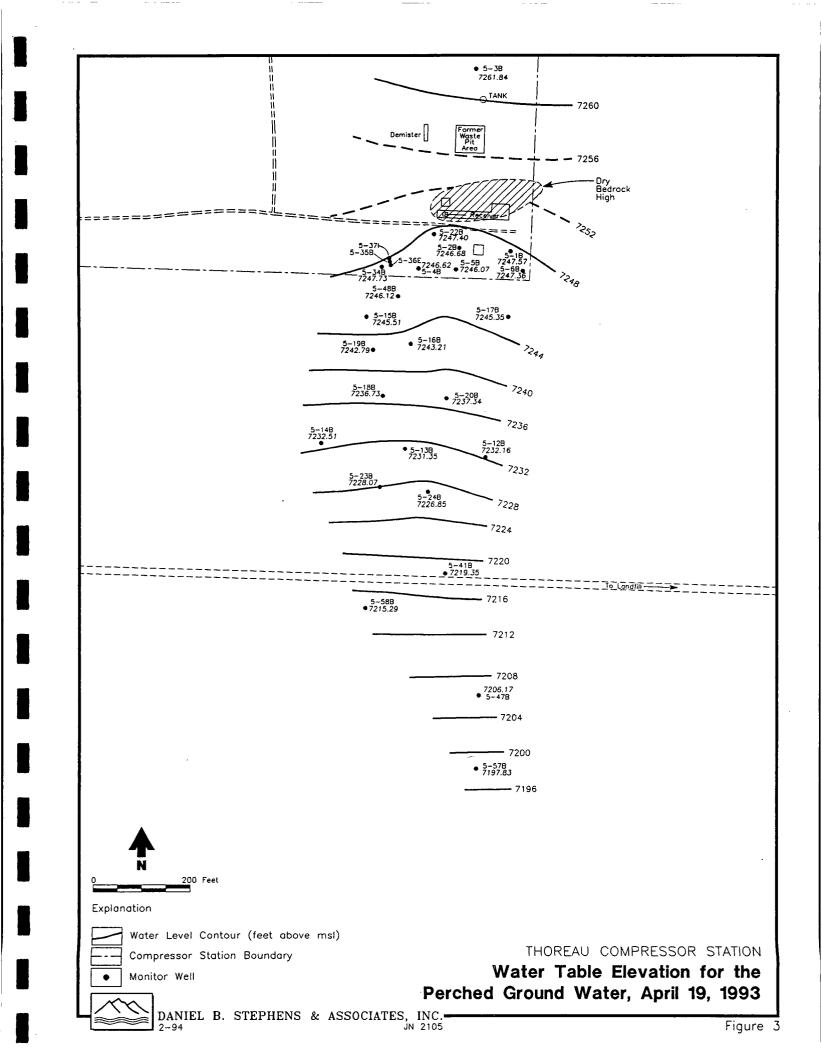
Several hydrogeologic investigations have been conducted at the Thoreau compressor station since the previous investigations were reported in July 1991. The purpose of the additional investigations was to define the extent of impacted soils and ground water and to evaluate potential remedial actions. These hydrogeologic investigations can be summarized as follows.

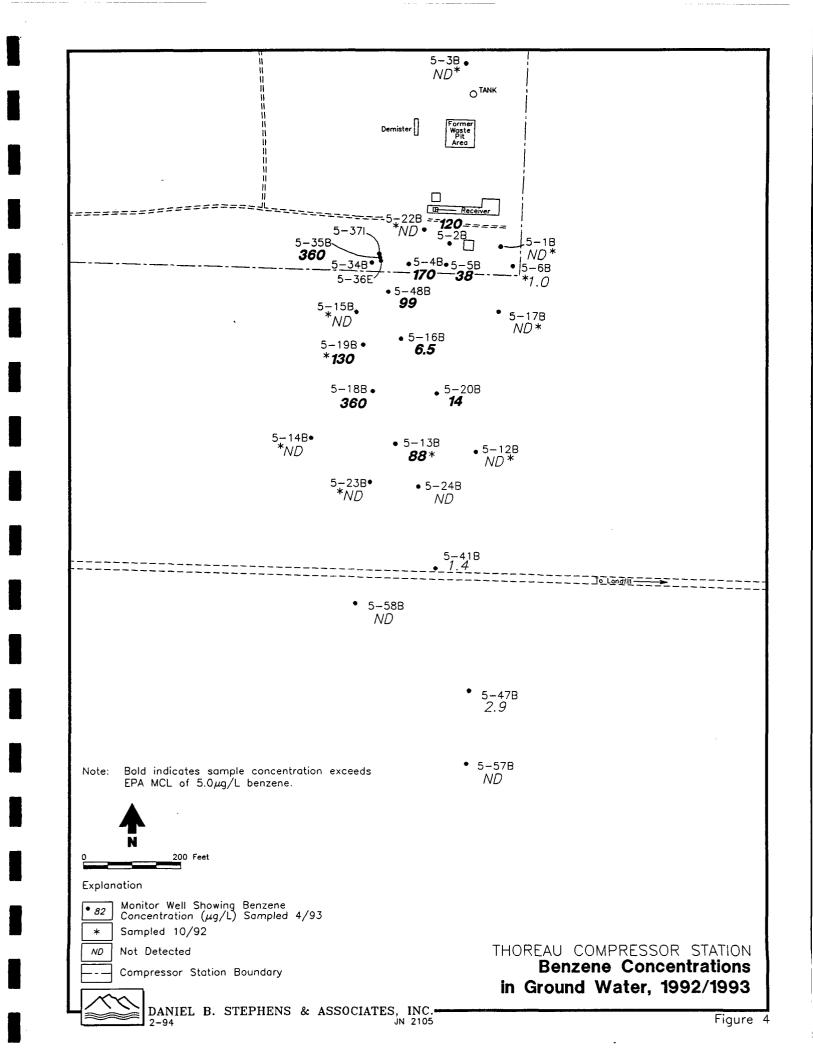
- Three deep test wells and four dry monitor wells were successfully abandoned in order to eliminate the potential for chemical migration within the boreholes.
- A pilot test of nitrate-enhanced bioremediation was successful in reducing concentrations of toluene, ethylbenzene, and xylene but was unsuccessful in reducing concentrations of benzene. Consequently, it was decided that air injection would be a more viable method of reducing benzene concentrations in ground water.
- Additional exploratory borings and monitor wells drilled at the site defined the downgradient and lateral extent of impacted soils and ground water. Most of the impacted area is within or just downgradient of the Thoreau compressor station boundary, but benzene concentrations slightly in excess of EPA MCLs extend further to the south.
- Routine ground-water monitoring conducted at the site indicated that BTEX concentrations are dropping in many of the monitor wells. Routine monitoring also indicated that PCBs in ground water are limited to a small area in the southeast corner of the compressor station.
- A SVE pilot test indicated that soil vapor extraction is feasible for removing hydrocarbon vapors from the vadose zone at the Thoreau compressor station.

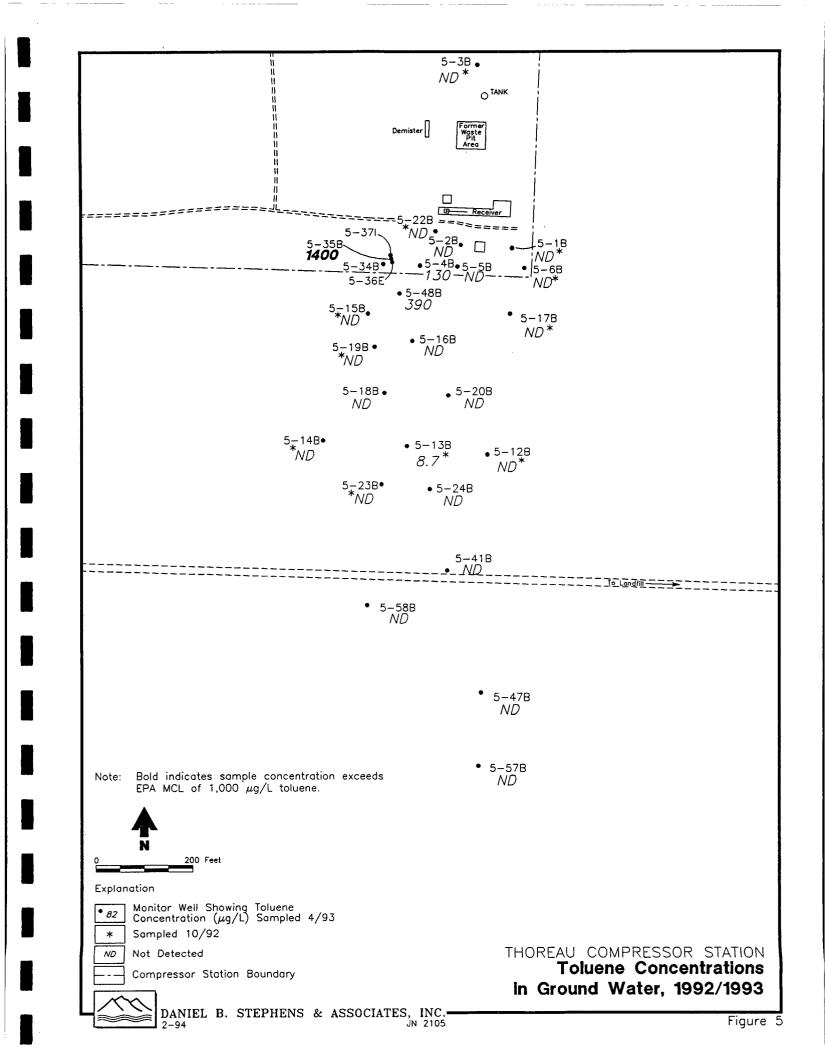


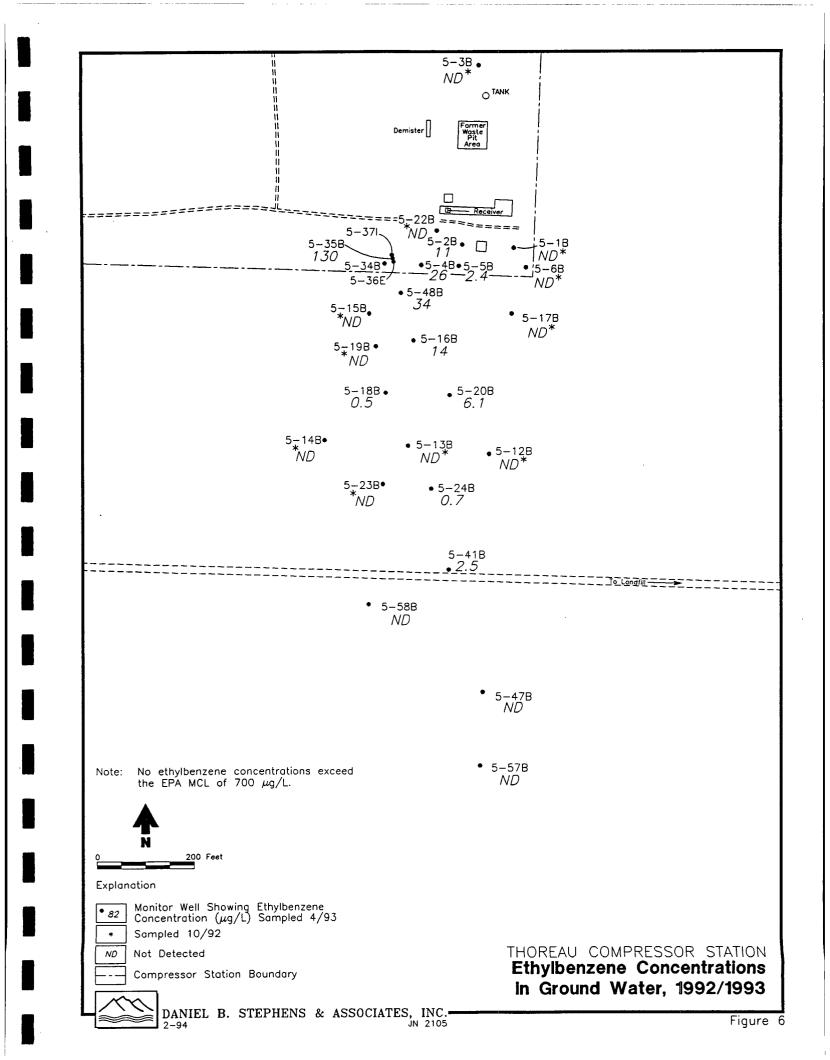
ENVIRONMENTAL SCIENTISTS AND ENGINEERS

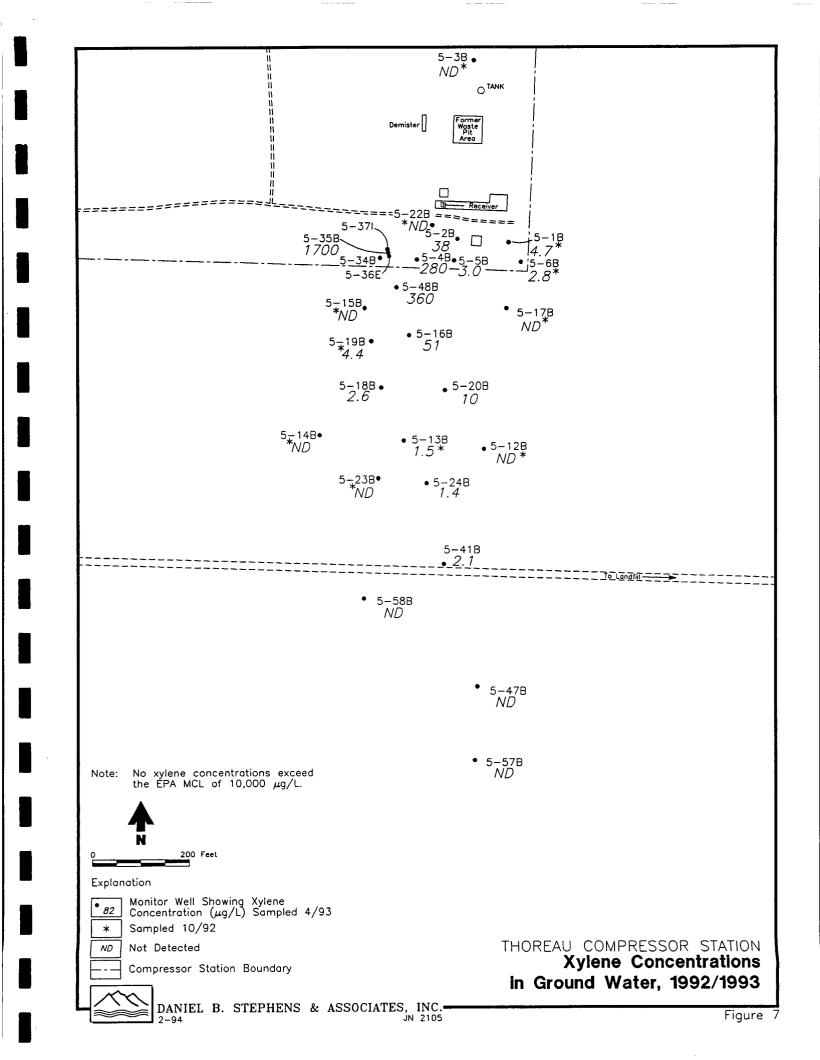

8. REFERENCES

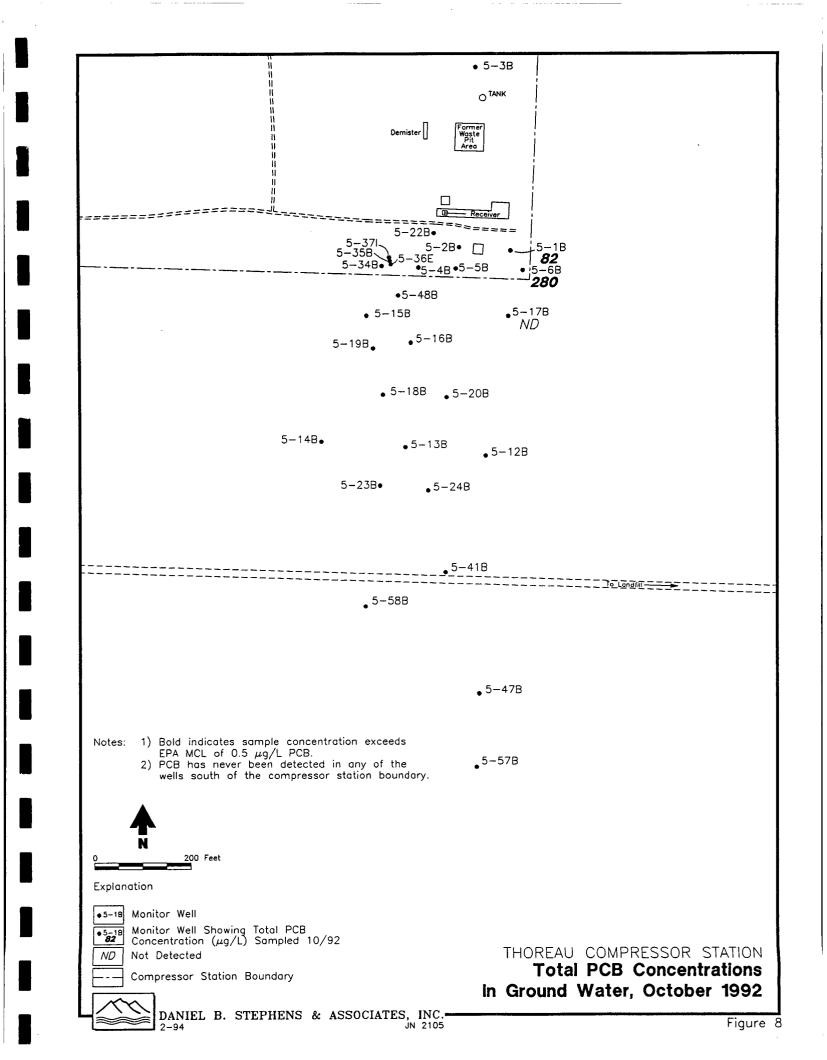

- Daniel B. Stephens & Associates, Inc. (DBS&A). 1990. Hydrogeology at the Transwestern Pipeline Compressor Station No. 5, Thoreau, New Mexico. Prepared for Transwestern Pipeline Company, Houston, Texas, February 1990.
- DBS&A. 1991. Ground-Water Assessment Report for Compressor Station No. 5, Thoreau, New Mexico. Prepared for Transwestern Pipeline Co., Houston, Texas, July 26, 1991.
- Francisco, A.J. 1992. An Archaeological Survey of Water Testing Units at the Thoreau Compressor Station at Thoreau, McKinley County, New Mexico for the Transwestern Pipeline Company. Prepared for Edwin R. Peck, Jr., Director, Right-of-Way Agent, Transwestern Pipeline Company, Houston, Texas, December 1992.
- New Mexico Oil Conservation Division (OCD). 1993. Unlined Surface Impoundment Closure Guidelines, February 1993.


FIGURES




Figure





TABLES

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 1. Inventory of Monitor Wells and Soil Borings Thoreau Compressor Station Page 1 of 5

19

Note: All elevations are based on 1992 Martinez survey unless otherwise noted

³ Surveyed to top of steel vault unless otherwise noted

⁴ TRC = Triassic Chinle Formation

QAL = Quaternary alluvium

¹ ATW = Abandoned test well MW = Monitor well AMW = Abandoned monitor well ASB = Abandoned soil boring

² Relative to southeast property boundary

* From 1991 Condor survey; benchmark differs from 1992 Martinez survey

2105(3)\INV-SUM.294\WELL-INV.294

fmsl = Feet above mean sea level bgs = Below ground surface NA = Not applicable NS = Not surveyed

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 1. Inventory of Monitor Wells and Soll Borings Thoreau Compressor Station Page 2 of 5

		Loca	Location ²	Surface	Measuring		Total	Cacino	Eormation	Creanad
Boring Number	Boring Type ¹	X (feet)	Y (feet)	Elevation ³ (fmsl)	Elevation (fmsl)	Date of Completion	Depth (feet)	Diameter (inches)	of Completion ⁴	Interval (feet bgs)
5-12B	MW	-89.37	-387.48	7280.13	7279.61	06/28/90	65.0	2	QAL	45.0 - 65.0
5-13B	MM	-261.04	-369.35	7283.14	7282.43	06/28/90	69.4	2	QAL	49.3 - 69.4
5-14B	MW	-441.25	-357.23	7286.42	7285.76	06/27/90	72.3	5	QAL	42.3 - 72.3
5-15B	MW	-344.34	-87.47	7293.51	7292.92	06/23/90	65.6	2	QAL	45.6 - 65.6
5-16A	ASB	-244.80	-91.72	7288.40*	AN	02/05/90	64.8	AN	OAL	NA
5-16B	MW	-248.38	-145.56	7289.26	7288.82	02/05/90	64.6	2	QAL	34.6 - 64.6
5-17B	MW	-40.96	-88.53	7285.19	7284.75	06/03/00	63.9	2	QAL	33.9 - 63.9
5-18B	MW	-309.06	-256.43	7287.05	7286.41	06/60/20	6.69	2	QAL	49.9 - 69.9
5-19B	MW	-330.24	-157.69	7291.01	7290.52	02/10/90	63.3	2	QAL	43.3 - 63.3
5-20B	MW	-172.12	-261.92	7285.21	7284.60	02/11/90	64.0	2	QAL	33.9 - 63.9
5-21B	ASB	-107.59	159.62	7289.32*	NA	09/19/90	26.0	AN	QAL	NA
5-22B	MW	-198.69	88.16	7293.72	7292.74	09/13/90	55.8	2	QAL	45.8 - 55.8
5-23B	MW	-315.67	-450.52	7283.42	7282.63	09/21/90	80.1	2	QAL	50.1 - 80.1
5-24B	MW	-211.48	-460.67	7280.19	7279.18	09/25/90	75.5	2	QAL	45.5 - 75.5

Note: All elevations are based on 1992 Martinez survey unless otherwise noted

¹ ATW = Abandoned test well MW = Monitor well

³ Surveyed to top of steel vault unless otherwise noted

TRC = Triassic Chinte Formation
 CAL = Quatemary alluvium

- AMV = Abandoned monitor well ASB = Abandoned soil boring

² Relative to southeast property boundary

* From 1991 Condor survey; benchmark differs from 1992 Martinez survey

2105(3)\INV-SUM.294\WELL-INV.294

tmsl = Feet above mean sea level bgs = Below ground surface NA = Not applicable

......

DANIEL B. STEPHENS & ASSOCIATES, INC. Environmental scientists and engineers

(((ll

Table 1. Inventory of Monitor Wells and Soil Borings **Thoreau Compressor Station** Page 3 of 5

³ Elevation (fmsl) Date of Completion (fmsl) Date of (mnsl) Date of (mnsl) Date of (mnsl) Date of (mnsl) Operation (mode) of (mode) • NA 12/05/90 36.0 2 QAL 2 • NA 12/05/90 36.0 2 QAL 2 • NA 12/05/91 54.0 2 QAL 2 • NA 05/09/91 81.5 2 QAL 2 • NA 05/13/91 56.0 2 QAL 2 • NA 05/14/91 51.5 2 QAL 3 • NA 03/31/93 65			Loca	Location ²	Surface	Measuring Point		Total	Casind	Formation	Screened
AMW -63.87 198.71 7289.19* NA 12/07/90 36.0 2 OAL 26.0- AMW -177.89 185.40 7292.47* NA 12/06/90 38.0 2 OAL 28.0- AMW -127.89 185.40 7292.47* NA 12/06/90 38.0 2 OAL 28.0- AMW -121.95 185.40 7291.28* NA 12/14/90 54.0 2 OAL 28.0- ASB -262.30 16.40 7291.40* NA 05/09/91 81.5 2 OAL 43.0- ASB -311.11 19.40 7291.40* NA 05/14/91 56.0 2 OAL 45.5- ASB -410.00 24.90 7293.20* NA 05/14/91 56.0 2 OAL 45.5- ASB -410.00 24.90 7293.20* NA 05/14/91 59.0 2 OAL 45.0 ASB -410.00 29.0	Boring Number	Boring Type ¹	X (feet)	Y (feet)	Elevation ³ (fmsl)	Elevation (fmsl)	Date of Completion	Depth (feet)	Diameter (inches)	of Completion ⁴	Interval (feet bgs)
AMW -177.89 185.40 7292.47° NA $12/06/90$ 38.0 2 OAL 28.0 AMW -121.95 183.69 7291.28° NA $12/11/90$ 54.0 2 OAL 24.0 ASB -211.95 16.40 7290.00° NA $05/08/91$ 81.5 2 OAL 43.0 ASB -311.11 19.40 7291.40° NA $05/13/91$ 75.5 2 OAL 45.5 ASB -311.11 19.40 7291.40° NA $05/13/91$ 56.0 2 OAL 45.5 ASB -13.50 -5.00 7281.60° NA $05/14/91$ 51.5 2 OAL 45.5 ASB -140.00 24.90 7292.30° NA $05/14/91$ 83.0 2 OAL 38.5 ASB -140.00 24.90 7293.20° NA $05/14/91$ 83.0 2 OAL 38.5 ASB -100.00 24.90 7293.20° NA $05/14/91$ 83.0 2 OAL 38.5 ASB -1000 24.90 7293.20° NA $05/14/91$ 83.0 2 OAL 38.5 ASB -1000 24.90 729.30° NA $05/14/91$ 83.0 2 OAL 38.5 ASB -100.40 27.90° 100.40° 29.0° 20.0° 20.0° 20.0° 20.0° 20.0° ASB -100.40° 29.0° 20.0°	5-25B	AMW	-63.87	198.71	7289.19*	NA	12/07/90	36.0	2	QAL	26.0 - 36.0
AMW -121.95 183.69 7291.28* NA 12/11/90 54.0 2 QAL 24.0 ASB -262.30 16.40 7290.00* NA 05/08/91 81.5 2 QAL 43.0- ASB -311.11 19.40 7291.40* NA 05/08/91 81.5 2 QAL 45.5- ASB -311.11 19.40 7291.40* NA 05/13/91 56.0 2 QAL 45.5- ASB 13.50 -5:00 7282.80* NA 05/13/91 56.0 2 QAL 45.5- ASB 100.40 24.90 7282.80* NA 05/13/91 51.5 2 QAL 38.0- ASB 100.40 59.60 7293.20* NA 05/13/91 59.0 2 QAL 38.5- MW -306.80 7293.20* NA 05/15/91 59.0 2 QAL 38.0- MW -306.80 729 03.193 6	5-26B	AMW	-177.89	185.40	7292.47*	NA	12/06/90	38.0	2	QAL	28.0 - 38.0
ASB -262.30 16.40 7290.00* NA 05/08/91 81.5 2 QAL 43.0 ASB -311.11 19.40 7291.40* NA 05/09/91 75.5 2 QAL 45.5 ASB -311.11 19.40 7291.40* NA 05/13/91 56.0 2 QAL 45.5 ASB 13.50 -5.00 7282.80* NA 05/14/91 56.0 2 QAL 38.5 ASB 60.70 24.90 7293.20* NA 05/14/91 51.5 2 QAL 38.0 ASB 100.40 24.90 7293.20* NA 05/14/91 51.5 2 QAL 38.0 MW -306.80 7293.20* NA 05/14/91 59.0 2 QAL 38.0 MW -306.80 7293.60* NA 05/14/91 59.0 2 QAL 34.0 MW -289.09 37.30 NS 7296.51 04/05/92 <td>5-27B</td> <td>AMW</td> <td>-121.95</td> <td>183.69</td> <td>7291.28*</td> <td>NA</td> <td>12/11/90</td> <td>54.0</td> <td>2</td> <td>QAL</td> <td>24.0 - 54.0</td>	5-27B	AMW	-121.95	183.69	7291.28*	NA	12/11/90	54.0	2	QAL	24.0 - 54.0
ASB -311.11 19.40 7291.40* NA 05/09/01 75.5 2 QAL 45.5- ASB 13.50 -5.00 7284.60* NA 05/13/91 56.0 2 QAL 41.0- ASB 60.70 -25.90 7282.80* NA 05/14/91 51.5 2 QAL 38.5- ASB -410.00 24.90 7283.60* NA 05/14/91 83.0 2 QAL 38.0- ASB 100.40 59.60 7283.60* NA 05/15/91 83.0 2 QAL 38.0- MW -306.80 25.50 NS 7294.71 03/31/93 65.7 4 QAL 34.0- MW -306.80 37.30 NS 7294.71 03/31/93 65.7 4 QAL 34.0- MW -289.09 37.30 NS 7296.56 04/05/92 70.0 4 7 MW -289.09 30.28 NS 7296.51 <td>5-28B</td> <td>ASB</td> <td>-262.30</td> <td>16.40</td> <td>7290.00*</td> <td>NA</td> <td>05/08/91</td> <td>81.5</td> <td>2</td> <td>QAL</td> <td>43.0 - 76.5</td>	5-28B	ASB	-262.30	16.40	7290.00*	NA	05/08/91	81.5	2	QAL	43.0 - 76.5
ASB 13.50 -5.00 7284.60* NA 05/13/91 56.0 2 QAL 41.0- ASB 60.70 -25.90 7282.80* NA 05/14/91 51.5 2 QAL 38.5- ASB -410.00 24.90 7293.20* NA 05/14/91 83.0 2 QAL 38.0- ASB 100.40 59.60 7293.20* NA 05/14/91 83.0 2 QAL 38.0- MSB 100.40 59.60 7293.20* NA 05/15/91 83.0 2 QAL 34.0- MW -306.80 25.97 NS 7294.71 03/31/93 65.7 4 QAL 34.0- MW -289.09 37.30 NS 7296.11 04/05/92 70.0 4 QAL 34.0- MW -287.13 30.28 NS 7296.51 04/05/92 70.0 4 QAL 47.7- MW -280.76 NS 7296.31 </td <td>5-29B</td> <td>ASB</td> <td>-311.11</td> <td>19.40</td> <td>7291.40*</td> <td>NA</td> <td>05/09/91</td> <td>75.5</td> <td>2</td> <td>QAL</td> <td>45.5 - 75.5</td>	5-29B	ASB	-311.11	19.40	7291.40*	NA	05/09/91	75.5	2	QAL	45.5 - 75.5
ASB 60.70 -25.90 7282.80* NA 05/14/91 51.5 2 QAL 38.5 ASB -410.00 24.90 7293.20* NA 05/14/91 83.0 2 QAL 38.0 ASB 100.40 29.60 7293.20* NA 05/15/91 83.0 2 QAL 38.0 MW -306.80 59.60 7293.60* NA 05/15/91 59.0 2 QAL 34.0 MW -306.80 25.97 NS 7294.71 03/31/93 65.7 4 QAL 34.0 MW -289.09 37.30 NS 7296.11 04/05/92 70.0 4 QAL 31.3 MW -289.13 30.28 NS 7296.51 04/09/92 67.5 4 QAL 47.7 MW -290.76 MS 7296.31 04/16/92 72.5 4 QAL 52.1 MW -280.59 23.88 7296.51 04/09/92 <td>5-30B</td> <td>ASB</td> <td>13.50</td> <td>-5.00</td> <td>7284.60*</td> <td>NA</td> <td>05/13/91</td> <td>56.0</td> <td>2</td> <td>QAL</td> <td>41.0 - 56.0</td>	5-30B	ASB	13.50	-5.00	7284.60*	NA	05/13/91	56.0	2	QAL	41.0 - 56.0
ASB -410.00 24.90 7293.20* NA 05/14/91 83.0 2 QAL 38.0 ASB 100.40 59.60 7283.60* NA 05/15/91 59.0 2 QAL 34.0 MW -306.80 25.97 NS 7294.71 03/31/93 65.7 4 QAL 34.0 MW -306.80 37.30 NS 7296.11 04/05/92 70.0 4 QAL 34.0 MW -289.09 37.30 NS 7296.11 04/05/92 70.0 4 QAL 31.3 MW -287.13 30.28 NS 7296.56 04/09/92 67.5 4 QAL 47.7 MW -290.76 44.48 NS 7296.31 04/16/92 72.5 4 QAL 52.1 ASB -589.69 23.88 7299.75 [†] NA 07/21/92 70.5 M QAL 52.1	5-31B	ASB	60.70	-25.90	7282.80*	NA	05/14/91	51.5	2	QAL	38.5 - 51.5
ASB 100.40 59.60 7283.60* NA 05/15/91 59.0 2 QAL 34.0- MW -306.80 25.97 NS 7294.71 03/31/93 65.7 4 QAL 34.0- MW -289.09 37.30 NS 7296.11 04/05/92 70.0 4 QAL 31.3- MW -289.09 37.30 NS 7296.11 04/05/92 70.0 4 QAL 31.3- MW -287.13 30.28 NS 7296.56 04/09/92 67.5 4 QAL 47.7- MW -280.76 44.48 NS 7296.31 04/16/92 72.5 4 QAL 52.1- MW -589.69 23.88 7299.75 [†] NA 07/21/92 50.5 MA QAL 52.1-	5-32B	ASB	-410.00	24.90	7293.20*	NA	05/14/91	83.0	2	QAL	38.0 - 83.0
MW -306.80 25.97 NS 7294.71 03/31/93 65.7 4 QAL 34.0- MW -289.09 37.30 NS 7296.11 04/05/92 70.0 4 QAL 31.3- MW -289.09 37.30 NS 7296.11 04/05/92 70.0 4 QAL 31.3- MW -287.13 30.28 NS 7296.56 04/09/92 67.5 4 QAL 47.7- MW -280.76 48.48 NS 7296.31 04/16/92 72.5 4 QAL 52.1- ASB -589.69 23.88 7299.75 [†] NA 07/21/92 50.5 NA QAL 52.1-	5-33B	ASB	100.40	59.60	7283.60*	NA	05/15/91	59.0	2	QAL	34.0 - 59.0
MW -289.09 37.30 NS 7296.11 04/05/92 70.0 4 QAL 31.3- MW -287.13 30.28 NS 7296.56 04/09/92 67.5 4 QAL 47.7- MW -290.76 44.48 NS 7296.31 04/16/92 72.5 4 QAL 52.1- ASB -589.69 23.88 7299.75 [†] NA 07/21/92 50.5 NA QAL 52.1-	5-34B	MM	-306.80	25.97	NS	7294.71	03/31/93	65.7	4	QAL	34.0 - 64.0
MW -287.13 30.28 NS 7296.56 04/09/92 67.5 4 QAL 47.7 MW -290.76 44.48 NS 7296.31 04/16/92 72.5 4 QAL 52.1 ASB -589.69 23.88 7299.75 [†] NA 07/21/92 50.5 NA QAL 7.7	5-35B	MM	-289.09	37.30	NS	7296.11	04/05/92	70.0	4	QAL	31.3 - 61.3
MW -290.76 44.48 NS 7296.31 04/16/92 72.5 4 QAL ASB -589.69 23.88 7299.75 [†] NA 07/21/92 50.5 NA QAL	5-36E	MM	-287.13	30.28	NS	7296.56	04/09/92	67.5	4	QAL	
ASB –589.69 23.88 7299.75 [†] NA 07/21/92 50.5 NA QAL	5-371	MM	-290.76	44.48	NS	7296.31	04/16/92	72.5	4	QAL	52.1 - 59.8
	5-SB-38	ASB	-589.69	23.88	7299.75 [†]	NA	07/21/92	50.5	NA	QAL	NA

Note: All elevations are based on 1992 Martinez survey unless otherwise noted

- ^t ATW = Abandoned test well MW = Monitor well
- AMW = Abandoned monitor well
 - = Abandoned soil boring ASB

² Relative to southeast property boundary

2105(3)\INV-SUM.294\WELL-INV.294

¹ Ground elevation ³ Surveyed to top of steel vault unless otherwise noted

- fmsl = Feet above mean sea level bgs = Below ground surface NA = Not applicable NS = Not surveyed Below ground surface
 Not applicable
 Not surveyed

* From 1991 Condor survey; benchmark differs from 1992 Martinez survey

TRC = Triassic Chinle Formation
 QAL = Quatemary alluvium

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Щ

Table 1. Inventory of Monitor Wells and Soil Borings **Thoreau Compressor Station** Page 4 of 5

Surface Point
Y Elevation ³ (feet) (fmsl)
-64.14 7295.35 [†]
80.90 7292.27 [†]
-603.88 7280.00
-690.85 7276.47 ^t
-22.88 7295.49 [†]
130.06
-775.63 7271.06 [†]
87.42 7294.40 [†]
-862.86
-34.33
-37.51
19.91
-874.81
-850.80

Note: All elevations are based on 1992 Martinez survey unless otherwise noted

¹ ATW = Abandoned test well MW = Monitor well

³ Surveyed to top of steel vault unless otherwise noted

TRC = Triassic Chinle Formation
 CAL = Quatemary alluvium

[†] Ground elevation

- AMW = Abandoned monitor well ASB = Abandoned soil boring
- ² Relative to southeast property boundary

2105(3)\NV-SUM.294\WELL-INV.294

fmsi = Feet above mean sea level bgs = Below ground surface NA = Not applicable

DANIEL B. STEPHENS & ASSOCIATES, INC. ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 1. Inventory of Monitor Wells and Soil Borings Thoreau Compressor Station Page 5 of 5

Poring X Y Elevation ³ Elevation Date of leet) Depth (feet) 3 Type ¹ (feet) (feet) (feet) (fmsl) (fmsl) Date of leet) Depth (feet) 3 ASB -64.86 -688.26 7273.32 ⁺ NA 08/12/92 65.0 4 ASB -240.89 -682.60 7279.06 ⁺ NA 08/13/92 64.0 5 ASB -240.89 -682.60 7279.06 ⁺ NA 08/13/92 64.0 6 ASB -162.03 112.05 7295.85 ⁺ NA 08/14/92 46.5 6 ASB -162.03 112.05 7293.39 ⁺ NA 08/14/92 47.0 MW NS NS 7258.14 ⁺ 7257.80 ⁺ 03/04/93 76.2			Госа	Location ²	Surface	Measuring		Total	Casind	Formation	Screened
ASB -64.86 -688.26 7273.32 [†] NA 08/12/92 65.0 65.0 7279.06 [†] NA 08/13/92 65.0 65.0 720 65.0 720 720 720 65.0 720 65.0 720 65.0 <td>Boring Number</td> <td>Boring Type¹</td> <td>X (feet)</td> <td>Y (feet)</td> <td>Elevation³ (fmsl)</td> <td>Elevation (fmsI)</td> <td>Date of Completion</td> <td>Depth (feet)</td> <td>Diameter (inches)</td> <td>of Completion⁴</td> <td>Interval (feet bgs)</td>	Boring Number	Boring Type ¹	X (feet)	Y (feet)	Elevation ³ (fmsl)	Elevation (fmsI)	Date of Completion	Depth (feet)	Diameter (inches)	of Completion ⁴	Interval (feet bgs)
ASB -240.89 -682.60 7279.06 [†] NA 08/13/92 64.0 64.0 ASB -304.97 89.74 7295.85 [†] NA 08/14/92 46.5 46.5 ASB -162.03 112.05 7293.39 [†] NA 08/14/92 47.0 MW NS NS 7258.14 [‡] 7257.80 [‡] 03/04/93 76.2	5-SB-53	ASB	-64.86	-688.26	7273.32 [†]	AN	08/12/92	65.0	NA	QAL	AN
ASB -304.97 89.74 7295.85 [†] NA 08/14/92 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 47.0	5-SB-54	ASB	-240.89	-682.60	7279.06 [†]	NA	08/13/92	64.0	NA	QAL	AA
ASB -162.03 112.05 7293.39 [†] NA 08/14/92 47.0 MW NS NS 7258.14 [±] 7257.80 [±] 03/04/93 76.2 MW NS NS 7258.14 [±] 7257.80 [±] 03/04/93 76.2	5-SB-55	ASB	-304.97	89.74	7295.85 [†]	NA	08/14/92	46.5	NA	QAL	NA
MW NS 7258.14 [±] 7257.80 [±] 03/04/93 MW NS NS 7279.70 [±] 7279.38 [±] 03/03/93	5-SB-56	ASB	-162.03	112.05	7293.39 [†]	AN	08/14/92	47.0	NA	OAL	NA
03/03/03 10 [±] 7279 20 [±] 7279 38 [±] 03/03/93	5-57B	MM	NS	SN	7258.14 [‡]	7257.80 [‡]	03/04/93	76.2	5	QAL	60.0 - 75.0
	5-58B	MW	NS	SN	7279.70 [‡]	7279.38 [‡]	03/03/93	78.1	2	QAL	61.2 - 76.2

Note: All elevations are based on 1992 Martinez survey unless otherwise noted

Abandoned test well	Monitor well	Abandoned monitor well	Abandoned soil boring
11	11	R	II
' ATW	MW	AMW	ASB

² Relative to southeast property boundary

- TRC = Triassic Chinle Formation
 QAL = Quaternary alluvium
 - [†] Ground elevation
- * Surveyed by DBS&A, 1993 ³ Surveyed to top of steel vault unless otherwise noted
- fmsl = Feet above mean sea level bgs = Below ground surface NA = Not applicable NS = Not surveyed

2105(3)\INV-SUM.294\WELL-INV.294

DANIEL B. STEPHENS & ASSOCIATES, INC. ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 2. Summary of Solis Analytical Results from Pilot Bioremediation Test Thoreau Compressor Station

		Approximate				Cor	Concentration (mg/kg)	(mg/kg)				
Well No.	Date	Depth Below Land Surface (feet)	TPH (C ₅ -C ₁₄ range)	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-34B 00	03/30/92	51	17000	250	8.3	0.5	190	5	26	0.5	310	ŝ
ö	03/31/92	66	7800	125	9.3	0.5	94	0.5	13	0.5	130	0.5
5-35B 04	04/05/92	55	QN	5	QN	0.025	0.11	0.025	QN	0.025	0.20	0.025
ő	04/05/92	60	650	10	 	0.025	0.6	S	1.7	0.025	16	5
ō	04/05/92	71	200	10	0.13	0.025	0.69	0.025	0.073	0.025	1.2	0.025
5-36E 04	04/08/92	36	10000	125	Q	0.25	26	0.25	10	0.25	130	0.625
ŏ	04/08/92	51	8800	125	0.53	0.25	23	0.25	13	0.25	150	0.25
õ	04/08/92	59	14000	125	=	0.625	190	1.25	22	0.625	250	1.25

TPH = Total petroleum hydrocarbons ND = Not detected

2105(3)\INV-SUM.294\SOIL-BIO.294

DANIEL B. STEPHENS & ASSOCIATES, INC. ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3. Summary of Ground-Water Analytical Results from Pilot Bioremediation Test Thoreau Compressor Station Page 1 of 3

<u></u>					r														-			
		(mg/L)	AN	0.06	AN	A	0.06	0.06	0.06	0.06	0.06	¥	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	Nitrite	as N (mg/L)	NA	QN	NA	NA	Q	Q	Q	Q	0.22	AN	1.15	0.87	2.86	2.1	4.7	4.0	1.5	4.9	2.5	0.29
		RL (mg/L)	AN	0.06	NA	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	Nitrate	as N (mg/L)	AN	.06	AN	5.8	7.8	7.8	3.7	0.06	42	34	32.8	55	46	64	63	48	84	40	37	40
		RL (mg/L)	AN	0.1	AN	AN	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	<u>.</u>
		Bromide (mg/L)	٩N	2.1	Ą	AN N	17	26	15	5.4	59	25	50		19	53	50	50	4	80	45	37
		RL (µg/L)	25	AN	50	AN	10	25	25	25	9	25	10	₽	9	25	12.5	50	12.5	25	S	5
	Total	Xylenes (μg/L)	6500	NA	3800	NA	3300	2700	2900	2700	3000	3100	2600	3600	3400	2900	3800	3600	1500	3300	1100	770
Concentration		RL (µg/L)	25	NA	50	NA	10	25	25	25	10	2.5	10	10	10	2.5	12.5	5	2.5	25	0.5	0.5
Conce	Ethyl-	benzene (µg/L)	580	NA	gN	NA	41	40	83	43	80	69	63	130	87	81	230	280	54	190	36	31
		RL (µg/L)	250	AN	20	Ą	125	25	50	25	50	25	100	50	25	25	125	50	12.5	25	5	5
		Toluene (μg/L)	13000	AN	5700	Ą	5300	5300	5900	5300	4200	4200	3300	3700	3300	3100	4400	5200	1300	4300	1000	840
		RL (µg/L)	25	NA	50	NA	10	25	25	25	10	2.5	10	10	10	25	12.5	5	2.5	25	S	5
		Benzene (µg/L)	3700	AN	910	AN N	230	570	590	390	470	410	460	190	720	610	810	670	310	610	210	130
		RL (mg/L)	10	AN	-	AN	-	-	-	.	-	-	-	-			2	-	-	-	-	-
	Hydro-		င္-င္-	AN	င်-င်	AN	င် နှင့်	C ₅ -C ₂₂	C₅-C₁₄	င္ -င္ "	င္-င်္က	ငိ-င်ಜ	ငို-ငို	ငိ-င်	ငွ-င22	C ₆ -C ₂₂	ငိ-င်္သ	C ₆ -C ₂₂	င္-င္ာ	C ₆ -C ₂₂	င္-င္အ	C ₆ -C ₂₂
		TPH (mg/L)	360	NA	27	NA	21	24	14	26	34	31	23	38	27	28	38	31	18	33	13	Ŧ
	_	Date	04/01/92	08/31/92	05/12/92	05/16/92	05/28/92	06/05/92	06/12/92	06/22/92	07/06/92	07/13/92	07/22/92	08/04/92	08/18/92	08/31/92	09/29/92	10/07/92	10/30/92	11/17/92	12/01/92	12/10/92
		Well No.	5-34B		Mixing	Tank																

2105(3)\INV-SUM.294\WATR-BIO.294

TPH = Total petroleum hydrocarbons RL = Reporting limit

NA = Not analyzed ND = Not detected

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 3. Summary of Ground-Water Analytical Results from Pilot Bioremediation Test Thoreau Compressor Station Page 2 of 3

									Concei	Concentration								
			Hydro-						Ethyl-		Total				Nitrate		Nitrite	
Well No.	Date	TPH (md/l)	carbon	RL (mg/	Benzene	BL BL	Toluene	RL (ind)	benzene	RL (101)	Xylenes	RL ////	Bromide	RL (mg/)	as N	RL (mg/l)	as N	RL (mc/)
		1-1,8)	offin 1	1	- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	11-18-11	1-18-1		1-18-41	1-18-1	1-1.84	1-18-1	1-1,Rin/	(R	- /= ,£/	1- IR-1-1	1-1.8	1-
5-35B	05/06/92	55	C°-C'	-	610	25	2600	50	480	25	4400	25	0.6	0.1	Q	0.06	g	0.06
	05/28/92	30	C₅-C₁	—	530	10	0069	125	580	10	4900	10		0.1	Q	0.06	g	0.06
	06/05/92	35	C5-C16	-	640	25	5900	125	530	25	4900	25	თ	0.1	Q	0.06	g	0.06
	06/12/92	21	C₅-C₁₄	-	600	25	5100	25	530	25	4800	25	∞	0.1	Q	0.06	g	0.06
	06/22/92	33	င့-င္။	-	620	25	4800	25	490	25	4300	25	12	0.1	0.4	0.06	g	0.06
	07/02/92	NA	AN	AN	NA	AN	AN	AN	AN	AN	AN	AN	AN	AN	Ŧ	0.06	2.51	0.06
	07/06/92	33	Ce-C23	-	710	S	1400	12.5	170	S	3200	12.5	19	0.1	თ	0.06	4.31	0.06
	07/10/92	NA	AN	AN	AN	AN	AN	AN	AN	AN	AN	٩Z	AN	AN	25	0.06	AN	AN
	07/13/92	27	ငိ-ငို	-	610	25	1300	25	140	2.5	3200	25	23	0.1	19	0.06	AN	AN
	07/22/92	18	ငိ-ငာ	-	620	S	790	S	110	Ś	2800	5	53	0.1	19.2	0.06	0.78	0.06
	08/04/92	26	ငိ-ငို		880	5	1000	Ś	160	S	2700	25	13	0.1	24	0.06	1.1	0.06
	08/18/92	20	ငိုင်ಜ		930 630	S	1000	S	160	S	2900	S	13	0.1	21.7	0.06	6.10	0.06
	08/31/92	52	C ₆ -C ₂₂	-	810	S	1500	50	180	S	2700	50	16	0.1	30	0.06	1.8	0.06
	09/11/92	NA	AN	AN	NA	٨N	AN	NA	AN	AN	NA	AN	AN	٩N	28.8	0.06	6 .	0.06
	09/29/92	18	C ₆ -C ₂₂	-	730	ß	520	S	76	ß	1600	5	19	0.1	37	0.06	4.5	0.06
	10/07/92	16	C ₆ -C ₂₂	-	880	S	840	S	100	S	1900	5	18	0.1	34	0.06	3.8 8.0	0.06
	10/30/92	19	ငိ-ငိ	-	560	S	540	S	72	S	1500	S	18	0.1	33	0.06	1.5	0.06
	11/17/92	16	င္မ-င်	-	610	S	400	5	67	ß	1700	5	15	0.1	27	0.06	2.9	0.06
	12/01/92	16	ငိ-ငိ	-	680	ß	620	S	110	ъ	1600	S	19	0.1	15.8	0.06	3.4	0.06
	12/01/92 [†]	16	ငိ-ငိ2	-	680	S	630	S	110	S	1600	S	19	0.1	15.8	0.06	с. С.	0.06
	12/10/92	15	C ₆ -C ₂₂	-	630	10	770	10	91	10	1700	10	25	0.1	20.0	0.06	0.29	0.06
	Total petroleum hydrocarbons	ydrocarbons	A UN		Not analyzed Not detected	₩ +	Fictitious replicate	vlicate										
11			Ē	I														

2105(3)\INV-SUM.294\WATH-BIO.294

DANIEL B. STEPHENS & ASSOCIATES, INC. Environmental scientists and engineers

(((

 Table 3. Summary of Ground-Water Analytical Results from Pilot Bioremediation Test

 Thoreau Compressor Station

 Page 3 of 3

									Conce	Concentration								
			Hydro-						Ethyl-		Total				Nitrate		Nitrite	
Well No.	Date	TPH (mg/L)	carbon Range	RL (mg/L)	Benzene (µg/L)	RL (µg/L)	Toluene (µg/L)	RL (µg/L)	benzene (µg/L)	RL (µg/L)	Xylenes (μg/L)	RL (µg/L)	Bromide (mg/L)	RL (mg/L)	as N (mg/L)	RL (mg/L)	as N (mg/L)	RL (mg/L)
5-36E	05/06/92	56	င် ကို	-	1200	25	9800	125	300	25	4100	25	0.4	0.1	g	90.0	Q	0.06
	05/28/92	8	ငိ-င်-	-	860	10	7600	125	360	9	4300	10	1.9	0.1	0.06	0.06	Q	0.06
	06/05/92	43	ငိ-ငိ-	-	980	25	10000	125	400	25	5400	25	2.7	0.1	g	0.06	Q	0.06
	06/12/92	53	ငိုင	-	940	25	8700	50	210	25	4300	25	3.5	0.1	Q	0.06	g	0.06
	06/22/92	42	ငိ ပိ	-	890	25	9200	125	260	25	4600	25	4.2	0.1	QN	0.06	Q	0.06
	07/06/92	47	င"-င [ာ]	• ••	690	5	5600	50	220	ß	3900	50	<u>ი</u>	0.1	2.0	0.06	2.11	0.06
	07/13/92	36	ငိ-ငိ	-	580	25	4000	25	260	2.5	3900	25	13	0.1	7.6	0.06	AN	Ą
	07/22/92	38	Ce-C22		690	10	6800	100	260	10	3600	9	13	0.1	6.7	0.06	1.03	0.06
	08/04/92	55	င ^{ို} င		920 	10	6200	50	340	9	4200	9	 9	0.1	8.8	0.06	0.75	0.06
	08/18/92	35	ငိ-ငအ	N	670	10	6700	50	350	P	4400	9	~	0.1	10.8	0.06	2.72	0.06
	08/31/92	35	ငိ-ငာ	-	780	50	4500	50	280	50	3700	50	 F	0.1	18	0.06	1.8	0.06
	09/11/92	AN	AN	Ą	NA	AN	AN	NA	NA	Å	٩N	AA	AN	AN	16.4	0.06	5.1	0.06
	09/29/92	43	C ₆ -C₂	ß	880	12.5	6000	125	270	12.5	3900	12.5	₽ ₽	0.1	18	0.06	3.3	0.06
	10/07/92	38	ငိ-ငအ	**	1000	5	7100	50	400	S	4300	50	₽ ₽	0.1	16	0.06	3.0	0.06
	10/30/92	26	ငိ-ပို	-	830	12.5	3900	125	330	12.5	3900	12.5	5	0.1	53	0.06	1.6	0.06
	11/17/92	38	ငိ-ဝိ		660	25	5300	25	220	25	3600	25	 თ	0.1	50	0.06	2.3	0.06
	12/01/92	50	ငိ-ငအ		630	12.5	1300	12.5	210	2.5	2900	12.5	53	0.1	50	0.06	3.5	0.06
	12/01/92 [†]	52	င"-င	-	690	12.5	1700	12.5	230	2.5	3000	12.5	22	0.1	19.6	0.06	2.8	0.06
	12/10/92	32	$C_{6}-C_{22}$		720	10	5100	25	260	10	3600	25	15	0.1	11.7	0.06	0.33	0.06
Source Tank	05/08/92	22	ပို ပို	~	270	2.5	270	50	QN	2.5	830	2.5	AN	AN	ΥN	NA	AN	Ą

2105(3)\INV-SUM.294\WATR-BIO.294

TPH = Total petroleum hydrocarbons RL = Reporting limit

[†] Fictitious replicate

NA = Not analyzed ND = Not detected

DANIEL B. STEPHENS & ASSOCIATES, INC. ENVIRONMENTAL SCIENTISTS AND ENGINEERS

F

ļ

Table 4. Summary of Soil Chemistry Results from July/August 1992 Exploratory Drilling Program Thoreau Compressor Station Page 1 of 2

	Percentage of Total Organic Carbon	NA	A	AN	<0.01	<0.01	AN	A	0.09	A	<0.01
	교	NA	NA	0.03	NA	NA	NA	AN	NA	AN	AN
	Total PCB*	٩ ۲	¥	g	¥	۲ ۲	¥	¥	٩	¥	AN
	늄	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
	Total Xylenes	0.038	Q	g	2	2	g	g	Q	Q	g
	R	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
g/kg)	Ethyl- benzene	g	9	g	g	g	g	g	QN	QN	g
Concentration (mg/kg)	R	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
Concer	Toluene	QN	ŊŊ	QN							
	R	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
	Benzene	QN	QN	QN							
	RL	S	S	ъ	ы	5	5	5	5	5	a
	Fuel Hydro- carbon Range	င္-ငဲ့	င-င-	ငိ-င3	°သ	ငိ-ငဲ္အ	°°-0°	°°0	C _e -C ₃₆	c _e -c _{3e}	C ₆ -C ₃₆
	TPH	QN	Q	QN	QN	QN	QN	QN	QN	QN	Q
	Date	07/21/92	07/22/92	07/23/92	07/24/92	07/28/92	07/29/92	07/30/92	07/31/92	08/03/92	08/04/92
	Sample Identification	5-SB-38 @ 50-50.5'	5-SB-39 @ 49-49.5'	5-SB-40 @ 46-46.5'	5-SB-41 @ 60-61.5'	5-SB-42 @ 62-63.5'	5-SB-43 @ 47-48.5'	5-SB-44 @ 49.5-51'	5-SB-45 @ 63-64.5'	5-SB-46 @ 50-51.5'	5-SB-47 @ 63-64.5'

ND = Not detected NA = Not analyzed TPH = Total petroleum hydrocarbons RL = Reporting limit

* Total PCB includes Arodors 1016, 1221, 1232, 1242, 1248, 1254, and 1260

All samples analyzed by Analytical Technologies, Inc., Phoenix, Arizona

2105(3)UNV-SUM.294/SOIL.294

ĺ,

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 4. Summary of Soil Chemistry Results from July/August 1992 Exploratory Drilling Program Thoreau Compressor Station Page 2 of 2

							Concen	Concentration (mg/kg)	g/kg)						
Sample Identification	Date	ТРН	Fuel Hydro- carbon Range	ЯĻ	Benzene	Я	Toluene	님	Ethyl- benzene	یے _۔	Total Xylenes	님	Total PCB⁺	R	Percentage of Total Organic Carbon
5-SB-48 @ 49-50.5'	08/05/92	190 74 11	င်္ဂ-င်္ င်္ဂ-င်္ င်္က-င်္သ	້ນມາ	QN	0.025	2.1	0.025	1.1	0.025	9.1	0.025	AN	NA	NA
5-SB-49 @ 45-46.5'	08/06/92	QN	C _e -C ₃	5	QN	0.025	QN	0.025	QN	0.025	QN	0.025	QN	0.03	<0.01
5-SB-50 @ 49-51.5'	08/06/92	ND 22	$c_{e}^{-}c_{2s}^{-}$	55	QN	0.025	QN	0.025	QN	0.025	0.028	0.025	AN	NA	NA
5-SB-51 @ 63-64.5'	08/10/92	ΟN	C ₆ -C ₃₆	5	QN	0.025	QN	0.025	QN	0.025	QN	0.025	AN	NA	<0.01
5-SB-52 @ 63-64.5'	08/11/92	DN	င"-င"	5	QN	0.025	QN	0.025	QN	0.025	QN	0.025	NA	NA	<0.01
5-SB-53 @ 65-66.5'	08/12/92	QN	C ₆ -C ₃₆	5	QN	0.025	QN	0.025	QN	0.025	QN	0.025	AN	NA	<0.01
5-SB-54 @ 64-65.5'	08/13/92	DN	C ₆ -C ₃₆	5	QN	0.025	QN	0.025	QN	0.025	QN	0.025	AN	NA	0.06
5-SB-55 @ 46.5-48'	08/14/92	QN	C ₆ -C ₃₆	5	QN	0.025	Q	0.025	QN	0.025	QN	0.025	AN	٩N	NA
5-SB-56 @ 47-48.5'	08/14/92	Q	ပို ပို	S	Q	0.025	QN	0.025	QN	0.025	QN	0.025	NA	NA	NA

TPH = Total petroleum hydrocarbons ND = Not detected RL = Reporting limit NA = Not analyzed * Total PCB includes Arodors 1016, 1221, 1232, 1242, 1248, 1254, and 1260

10121 FOD 111010093 2104013 1010, 1221, 1202, 1242, 1240, 1204, and 1200

All samples analyzed by Analytical Technologies, Inc., Phoenix, Arizona

2105(3)\INV-SUM.294\SOIL.294

DANIEL B. STEPHENS & ASSOCIATES, INC. Environmental scientists and engineers

Table 5. Summary of Water Chemistry Results from July/August 1992 Exploratory Drilling Program Thoreau Compressor Station Page 1 of 2

	RL (μg/L)	AN	NA	2.5	NA	NA	NA	NA	NA	NA	NA	ΥN
	Total PCB⁺ (µg/L)	NA	NA	QN	NA	٧N	٧N	٧N	NA	NA	٧N	NA
	RL μg/L)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	S
	Total Xylenes (μg/L)	QN	0.8	QN	QN	QN	QN	DN	QN	QN	QN	1400
	RL (µg/L)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	ъ
	Ethyl- benzene (µg/L)	QN	QN	QN	9.0	QN	QN	QN	QN	QN	QN	130
Concentration	RL (μg/L)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	S
Conc	Toluene (µg/L)	DN	QN	QN	QN	QN	QN	QN	0.7	QN	DN	45
	RL (µg/L)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	ъ
	Benzene (µg/L)	QN	QN	QN	24	34	QN	QN	19	DN	DN	Q
	(mg/L) RL	+				1	-	-		+	1	
	Fuel Hydro- carbon Range	C ₆ -C ₃₆	ငင. ငင. ငင.3	C ₆ -C ₃₆	C ₆ -C ₁₀ C ₁₀ -C ₃₆	C _e -C ₃₆	C _e -C ₃₆	C _e -C ₃₆	င္ -C ₁₀ ငC ₂₂ င ₂₂ -C ₃₆	C ₆ -C ₃₆	C _e -C ₃₆	င်္ဂ င်င်္ င်င်္န
	TPH (mg/L)	QN	1 5 ND	QN	+ UN	DN	QN	DN	0N - 0N	DN	QN	48 11 ND
	Date	07/21/92	07/22/92	07/23/92	07/24/92	07/28/92	07/29/92	07/30/92	07/31/92	08/03/92	08/04/92	08/05/92
	Sample Identification	5-SB-38	5-SB-39	5-SB-40	5-SB-41	5-SB-42	5-SB-43	5-SB-44	5-SB-45	5-SB-46	5-SB-47	5-SB-48

2105(3)\UNV-SUM.294\WATER.294

* Total PCB includes Aroclors 1016, 1221, 1232, 1242, 1248, 1254, and 1260 All samples analyzed by Analytical Technologies, Inc., Phoenix, Arizona

ND = Not detected NA = Not analyzed

TPH = Total petroleum hydrocarbons RL = Reporting limit

DANIEL B. STEPHENS & ASSOCIATES, INC. Environmental scientists and engineers

Î

Table 5. Summary of Water Chemistry Results from July/August 1992 Exploratory Drilling Program Thoreau Compressor Statlon Page 2 of 2

								COLICEIIII ALIOII						
			Fuel Hydro-						Ethvl-		Total		Total	
Sample		ТРН	carbon	塭	Benzene	ЯГ	Toluene	Ч	benzene	ЯL	Xylenes	님	PCB*	Ч
Identification	Date	(mg/L)	Range	(mg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)
5-SB-49 (08/06/92	QN	င္-င္း	-	QN	0.5	QN	0.5	QN	0.5	QN	0.5	DN	0.5
5-SB-50 (08/06/92	DN	င္မ-င္အ	1	QN	0.5	DN	0.5	DN	0.5	QN	0.5	NA	NA
5-SB-51 (08/10/92	QN	င္မ-င္အ	+	QN	0.5	QN	0.5	QN	0.5	QN	0.5	NA	NA
5-SB-52 @ 40' (08/11/92	ND	င္မ-င္အ	1	QN	0.5	DN	0.5	DN	0.5	QN	0.5	NA	NA
5-SB-52 @ 64' (08/11/92	ND	C ₆ -C ₃₆	+	QN	0.5	0.8	0.5	DN	0.5	0.7	0.5	NA	NA
5-SB-53 (08/12/92	QN	C ₆ -C ₃₆	-	QN	0.5	ND	0.5	QN	0.5	QN	0.5	NA	NA
5-SB-54 (08/13/92	DN	င္မ-င ₃₆	+	86	0.5	ND	0.5	DN	0.5	1.0	0.5	NA	NA
5-SB-55 (08/14/92	ND	C _e -C ₃₆	+	QN	0.5	ΠN	0.5	DN	0.5	QN	0.5	NA	NA
5-SB-56 (08/14/92	ND	င္မ-င္အ	Ŧ	QN	0.5	DN	0.5	ND	0.5	1.3	0.5	NA	NA

* Total PCB includes Aroclors 1016, 1221, 1232, 1242, 1248, 1254, and 1260 ND = Not detected NA = Not analyzed TPH = Total petroleum hydrocarbons RL = Reporting limit

All samples analyzed by Analytical Technologies, Inc., Phoenix, Arizona

2105(3)UNV-SUM.294\WATER.294

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6. Summary of Ground-Water Level DataThoreau Compressor StationPage 1 of 11

Well ID	Measuring Point Elevation (ft above msl)	Date	Depth to Ground Water (ft below MP)	Ground-Water Elevation (ft above msl)
5-01B	7290.53	08/29/90	44.69	7245.84
0010	1200.00	11/08/90	44.70	7245.83
		01/08/91	44.82	7245.71
]	02/05/91	44.86	7245.67
		03/05/91	44.91	7245.62
		04/10/91	44.94	7245.59
		05/21/91	45.08	7245.45
		06/18/91	45.15	7245.38
		07/23/91	45.28	7245.25
		09/04/91	45.38	7245.15
		10/02/91	45.52	7245.01
		11/06/91	45.63	7244.90
		12/10/91	45.64	7244.89
		01/09/92	45.61	7244.92
		01/27/92	45.53	7245.00
		02/20/92	45.39	7245.14
		03/18/92	45.18	7245.35
		04/29/92	44.78	7245.75
		10/06/92	43.71	7246.82
		10/14/92	43.67	7246.86
		04/19/93	42.96	7247.57
5-02B	7292.06	08/29/90	47.60	7244.46
		11/08/90	47.72	7244.34
		01/11/91	47.88	7244.18
		02/12/91	47.90	7244.16
		03/05/91	47.93	7244.13
		04/11/91	47.92	7244.14
		05/20/91	48.14	7243.92
		06/18/91	48.23	7243.83
		07/24/91	48.36	7243.70
		09/05/91	48.55	7243.51
		10/03/91	48.62	7243.44
		11/05/91	48.73	7243.33
		12/12/91	48.68	7243.38
		01/09/92	48.58	7243.48

MP = Measuring point

msl = Mean sea level

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6. Summary of Ground-Water Level DataThoreau Compressor StationPage 2 of 11

Well ID	Measuring Point Elevation (ft above msl)	Date	Depth to Ground Water (ft below MP)	Ground-Water Elevation (ft above msl)
5-02B (cont.)	7292.06	01/28/92	48.48	7243.58
		02/20/92	48.27	7243.79
		03/19/92	47.98	7244.08
		04/29/92	47.38	7244.68
		10/06/92	46.09	7245.97
		10/14/92	46.07	7245.99
		04/19/93	45.38	7246.68
		04/22/93	45.36	7246.70
5-03B	7303.76	08/29/90	43.77	7259.99
		01/07/91	44.10	7259.66
		02/12/91	44.12	7259.64
		03/05/91	44.24	7259.52
		04/10/91	44.31	7259.45
		05/21/91	44.53	7259.23
		06/18/91	44.68	7259.08
		07/23/91	44.95	7258.81
		09/04/91	45.14	7258.62
		10/02/91	45.19	7258.57
		11/05/91	45.15	7258.61
		12/10/91	44.90	7258.86
		01/09/92	44.67	7259.0 9
÷		01/27/92	44.43	7259.33
		02/19/92	44.19	7259.57
		03/17/92	43.82	7259.94
		04/28/92	43.26	7260.50
		10/06/92	42.06	7261.70
		10/07/92	42.09	7261.67
		04/19/93	41.92	7261.84
		04/20/93	41.98	7261.78
5-04B	7292.39	08/29/90	48.35	7244.04
		11/08/90	48.42	7243.97
		01/11/91	48.42	7243.97
		01/31/91	48.94	7243.45
		03/04/91	48.68	7243.71
· · ·		04/12/91	48.79	7243.60

MP = Measuring point

msi = Mean sea level

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6. Summary of Ground-Water Level DataThoreau Compressor StationPage 3 of 11

Well ID	Measuring Point Elevation (ft above msl)	Date	Depth to Ground Water (ft below MP)	Ground-Water Elevation (ft above msl)
5-04B (cont.)	7292.39	05/21/91	49.90	7242.49
		06/17/91	49.00	7243.39
		07/24/91	49.15	7243.24
		09/04/91	49.34	7243.05
		10/03/91	49.44	7242.95
		11/05/91	49.50	7242.89
		12/12/91	48.40	7243.99
		01/09/92	49.23	7243.16
		01/28/92	49.11	7243.28
		02/19/92	48.91	7243.48
		03/18/92	47.22	7245.17
		04/28/92	47.65	7244.74
		10/06/92	46.36	7246.03
		10/13/92	46.35	7246.04
		04/19/93	45.77	7246.62
		04/21/93	45.79	7246.60
5-05B	7290.83	08/29/90	47.50	7243.33
		11/08/90	47.25	7243.58
		01/10/91	47.14	7243.69
		02/05/91	47.20	7243.63
		03/05/91	47.20	7243.63
		04/18/91	47.34	7243.49
		05/21/91	47.44	7243.39
		06/18/91	47.52	7243.31
		07/24/91	47.69	7243.14
		09/05/91	47.83	7243.00
		10/02/91	47.54	7243.29
		11/04/91	48.02	7242.81
		12/10/91	47.94	7242.89
		01/09/92	47.87	7242.96
		01/27/92	47.74	7243.09
		02/19/92	47.58	7243.25
		03/17/92	48.43	7242.40
		04/28/92	46.61	7244.22
		10/06/92	45.39	7245.44

MP = Measuring point

msl = Mean sea level

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6. Summary of Ground-Water Level DataThoreau Compressor StationPage 4 of 11

Well ID	Measuring Point Elevation (ft above msl)	Date	Depth to Ground Water (ft below MP)	Ground-Water Elevation (ft above msl)
5-05B (cont.)	7290.83	10/12/92	45.37	7245.46
		04/19/93	44.76	7246.07
		04/21/93	44.75	7246.08
5-06B	7289.30	08/29/90	43.47	7245.83
		11/08/90	43.24	7246.06
		01/08/91	43.42	7245.88
		02/12/91	43.50	7245.80
		03/05/91	43.50	7245.80
		04/18/91	43.61	7245.69
		05/21/91	43.66	7245.64
		06/18/91	43.74	7245.56
		07/23/91	43.83	7245.47
		09/05/91	44.00	7245.30
		10/03/91	44.06	7245.24
		11/05/91	44.16	7245.14
		12/10/91	44.17	7245.13
		01/09/92	44.16	7245.14
		01/27/92	44.08	7245.22
		02/20/92	43.94	7245.36
		03/18/92	43.76	7245.54
		04/29/92	43.43	7245.87
		10/06/92	42.52	7246.78
		10/14/92	42.49	7246.81
		04/19/93	41.94	7247.36
5-12B	7279.61	08/14/90	48.85	7230.76
		11/15/90	48.92	7230.69
		01/09/91	48.96	7230.65
		02/13/91	49.00	7230.61
•		03/07/91	49.00	7230.61
		04/12/91	49.05	7230.56
		05/22/91	49.12	7230.49
		06/19/91	49.20	7230.41
		07/25/91	49.27	7230.34
		09/16/91	49.37	7230.24
		10/09/91	49.43	7230.18

MP = Measuring point

msi = Mean sea level

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6. Summary of Ground-Water Level DataThoreau Compressor StationPage 5 of 11

Well ID	Measuring Point Elevation (ft above msl)	Date	Depth to Ground Water (ft below MP)	Ground-Water Elevation (ft above msl)
5-12B (cont.)	7279.61	01/07/92	49.49	7230.12
		04/30/92	49.07	7230.54
		10/06/92	48.27	7231.34
		10/08/92	48.28	7231.33
		04/19/93	47.45	7232.16
5-13B	7282.43	08/14/90	52.43	7230.00
		11/15/90	52.76	7229.67
		01/09/91	52.82	7229.61
		02/07/91	52.89	7229.54
		03/07/91	52.92	7229.51
		04/12/91	53.00	7229.43
		05/22/91	53.06	7229.37
		06/19/91	53.15	7229.28
		07/26/91	53.26	7229.17
		09/16/91	53.36	7229.07
		10/10/91	53.42	7229.01
		01/08/92	53.58	7228.85
		05/01/92	52.88	7229.55
		10/06/92	51.80	7230.63
		10/13/92	51.78	7230.65
		04/19/93	51.08	7231.35
5-14B	7285.76	08/14/90	55.14	7230.62
		11/14/90	55.02	7230.74
		01/09/91	55.12	7230.64
		02/07/91	55.19	7230.57
		03/07/91	55.21	7230.55
		04/12/91	55.64	7230.12
		05/22/91	55.36	7230.40
		06/19/91	55.38	7230.38
		07/25/91	55.54	7230.22
		09/16/91	55.63	7230.13
		10/09/91	55.72	7230.04
		01/06/92	55.74	7230.02
		04/30/92	55.02	7230.74
		10/06/92	53.94	7231.82

MP = Measuring point

msi = Mean sea level

2105(3)\INV-SUM.294\DTW&GWE.294

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6. Summary of Ground-Water Level DataThoreau Compressor StationPage 6 of 11

Well ID	Measuring Point Elevation (ft above msl)	Date	Depth to Ground Water (ft below MP)	Ground-Water Elevation (ft above msl)
5-14B (cont.)	7285.76	10/08/92	53.93	7231.83
		04/19/93	53.25	7232.51
5-15B	7292.92	08/14/90	49.86	7243.06
		11/14/90	49.98	7242.94
		01/10/91	51.10	7241.82
		02/07/91	50.16	7242.76
		03/06/91	50.17	7242.75
		04/10/91	50.25	7242.67
		05/23/91	50.45	7242.47
		06/19/91	50.54	7242.38
		07/25/91	50.70	7242.22
		09/16/91	50.92	7242.00
		10/09/91	50.95	7241.97
		01/07/92	50.57	7242.35
		04/30/92	48.74	7244.18
		10/06/92	47.75	7245.17
		10/08/92	47.74	7245.18
		04/19/93	47.41	7245.51
5-16B	7288.82	08/14/90	47.21	7241.61
		11/14/90	47.46	7241.36
		01/10/91	47.60	7241.22
		02/06/91	47.62	7241.20
		03/06/91	47.63	7241.19
		04/09/91	47.73	7241.09
		05/23/91	47.87	7240.95
		06/18/91	47.91	7240.91
		07/26/91	48.04	7240.78
		09/03/91	48.17	7240.65
		10/11/91	48.30	7240.52
		11/12/91	48.34	7240.48
		12/12/91	48.22	7240.60
		01/08/92	48.11	7240.71
		02/20/92	47.76	7241.06
		03/18/92	47.43	7241.39
		04/29/92	46.89	7241.93

MP = Measuring point

msl = Mean sea level

2105(3)\INV-SUM.294\DTW&GWE.294

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6. Summary of Ground-Water Level DataThoreau Compressor StationPage 7 of 11

Well ID	Measuring Point Elevation (ft above msl)	Date	Depth to Ground Water (ft below MP)	Ground-Water Elevation (ft above msl)
5-16B (cont.)	7288.82	10/06/92	45.97	7242.85
	1200.02	10/13/92	45.95	7242.87
		04/19/93	45.61	7243.21
		04/20/93	45.62	7243.20
5-17B	7284.75	08/14/90	40.79	7243.96
		11/15/90	40.83	7243.92
		01/10/91	40.96	7243.79
		02/08/91	40.99	7243.76
		03/06/91	41.01	7243.74
		04/11/91	41.06	7243.69
		05/22/91	41.14	7243.61
		06/18/91	41.23	7243.52
		07/25/91	41.34	7243.41
		09/16/91	41.50	7243.25
		10/09/91	41.60	7243.15
		01/07/92	41.60	7243.15
		02/19/92	41.46	7243.29
		03/17/92	41.21	7243.54
		04/28/92	40.84	7243.91
		10/06/92	39.97	7244.78
		10/07/92	39.97	7244.78
		04/19/93	39.40	7245.35
5-18B	7286.41	08/14/90	51.67	7234.74
		08/24/90	51.68	7234.73
		11/15/90	51.60	7234.81
		01/04/91	51.66	7234.75
		02/13/91	51.76	7234.65
		03/06/91	51.79	7234.62
		04/16/91	51.90	7234.51
		06/19/91	52.05	7234.36
		07/26/91	52.21	7234.20
		09/16/91	52.35	7234.06
		10/11/91	52.41	7234.00
		01/08/92	52.40	7234.01
		05/01/92	51.38	7235.03

MP = Measuring point

msi = Mean sea level

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

- - ----

		Page 8 of 1	-	
Well ID	Measuring Point Elevation (ft above msl)	Date	Depth to Ground Water (ft below MP)	Ground-Water Elevation (ft above msl)
5-18B (cont.)	7286.41	10/06/92	50.24	7236.17
		10/13/92	50.22	7236.19
		04/19/93	49.68	7236.7 3
		04/22/93	49.70	7236.71
5-19B	7290.52	08/14/90	49.44	7241.08
		11/14/90	49.76	7240.76
		01/10/91	49.86	7240.66
		02/07/91	49.90	7240.62
		03/06/91	49.92	7240.60
		04/09/91	50.02	7240.50
		05/23/91	50.92	7239.60
		06/19/91	50.23	7240.29
		07/26/91	50.37	7240.15
		09/16/91	50.55	7239.97
		10/10/91	50.60	7239.92
		01/08/92	50.36	7240.16
		02/20/92	50.04	7240.48
		03/19/92	49.60	7240.92
		04/29/92	48.97	7241.55
		10/06/92	48.05	7242.47
		10/13/92	48.04	7242.48
		04/19/93	47.73	7242.79
5-20B	7284.60	08/14/90	48.50	7236.10
		01/09/91	48.70	7235.90
		02/07/91	48.79	7235.81
		03/07/91	48.80	7235.80
		04/16/91	48.88	7235.72
		05/20/91	48.92	7235.68
		06/19/91	49.02	7235.58
		07/26/91	49.13	7235.47
		09/16/9 1	49.25	7235.35
		10/10/91	49.32	7235.28
		01/08/92	49.36	7235.24
		05/01/92	48.48	7236.12
		10/06/92	47.61	7236.99

Table 6. Summary of Ground-Water Level DataThoreau Compressor StationPage 8 of 11

MP = Measuring point

msi = Mean sea level

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6. Summary of Ground-Water Level DataThoreau Compressor StationPage 9 of 11

Well ID	Measuring Point Elevation (ft above msl)	Date	Depth to Ground Water (ft below MP)	Ground-Water Elevation (ft above msl)
5-20B (cont.)	7284.60	10/12/92	47.58	7237.02
		04/19/93	47.26	7237.34
		04/21/93	47.31	7237.29
5-22B	7292.74	10/25/90	48.08	7244.66
		11/15/90	48.08	7244.66
		01/10/91	48.33	7244.41
		02/04/91	48.38	7244.36
		03/06/91	48.42	7244.32
		04/11/91	48.49	7244.25
		05/21/91	48.65	7244.09
		06/17/91	48.76	7243.98
		07/24/91	49.24	7243.50
		09/04/91	49.06	7243.68
		10/03/91	49.19	7243.55
		11/04/91	49.26	7243.48
		12/12/91	49.15	7243.59
		01/10/92	49.00	7243.74
		01/28/92	48.84	7243.90
		02/19/92	48.67	7244.07
		03/18/92	48.24	7244.50
		04/28/92	47.46	7245.28
		10/06/92	45.97	7246.77
		10/08/92	45.98	7246.76
		04/19/93	45.34	7247.40
5-23B	7282.63	10/25/90	55.78	7226.85
		11/15/90	55.75	7226.88
		01/03/91	55.90	7226.73
		02/07/91	56.20	7226.43
		03/07/91	56.02	7226.61
		04/16/91	56.08	7226.55
		05/22/91	56.14	7226.49
		06/19/91	56.17	7226.46
		07/25/91	56.28	7226.35
		09/03/91	56.38	7226.25
		10/09/91	56.47	7226.16

MP = Measuring point

msi = Mean sea level

2105(3)\INV-SUM.294\DTW&GWE.294

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6. Summary of Ground-Water Level DataThoreau Compressor StationPage 10 of 11

=

Well ID	Measuring Point Elevation (ft above msl)	Date	Depth to Ground Water (ft below MP)	Ground-Water Elevation (ft above msl)
5-23B (cont.)	7282.63	11/11/91	56.56	7226.07
		12/13/91	56.63	7226.00
		01/07/92	56.58	7226.05
		02/18/92	56.58	7226.05
		03/17/92	56.42	7226.21
		04/30/92	56.12	7226.51
		10/06/92	55.19	7227.44
		10/09/92	55.19	7227.44
		04/19/93	54.56	7228.07
5-24B	7279.18	10/25/90	53.64	7225.54
		11/15/90	53.72	7225.46
		01/03/91	53.76	7225.42
		01/09/91	53.78	7225.40
		02/07/91	53.86	7225.32
		03/07/91	53.86	7225.32
		04/16/91	53.94	7225.24
		05/22/91	54.00	7225.18
		07/26/91	54.15	7225.03
		09/03/91	54.21	7224.97
		10/10/91	54.30	7224.88
		11/11/91	54.38	7224.80
		12/13/91	54.43	7224.75
		01/07/92	54.40	7224.78
	· · · · ·	02/18/92	54.40	7224.78
		03/17/92	54.25	7224.93
		04/30/92	53.98	7225.20
		10/06/92	53.06	7226.12
		10/13/92	53.02	7226.16
		04/19/93	52.33	7226.85
		04/21/93	52.33	7226.85
5-34B	7294.71	05/12/92	48.62	7246.09
		05/13/92	48.60	7246.11
		05/14/92	48.58	7246.13
		06/19/92	48.18	7246.53
		07/28/92	47.88	7246.83

MP = Measuring point

msl = Mean sea level

2105(3)\INV-SUM.294\DTW&GWE.294

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6. Summary of Ground-Water Level DataThoreau Compressor StationPage 11 of 11

÷

Well ID	Measuring Point Elevation (ft above msl)	Date	Depth to Ground Water (ft below MP)	Ground-Water Elevation (ft above msl)
5-34B (cont.)	7294.71	04/19/93	46.98	7247.73
5-35B	7296.11	05/05/92	50.55	7245.56
		05/14/92	50.32	7245.79
		05/30/92	50.14	7245.97
		06/19/92	49.94	7246.17
		06/29/92	49.81	7246.30
		07/24/92	49.61	7246.50
		08/07/92	49.51	7246.60
		08/31/92	49.35	7246.76
		09/15/92	49.29	7246.82
		09/29/92	49.26	7246.85
		10/14/92	49.20	7246.91
		04/19/93	48.79	7247.32
		04/22/93	48.73	7247.38
5-41B	7279.73	10/06/92	61.03	7218.70
		10/09/92	60.99	7218.74
		04/19/93	60.38	7219.35
		04/20/93	60.40	7219.33
5-47B	7268.35	10/06/92	62.71	7205.64
		10/07/92	62.71	7205.64
		04/19/93	62.18	7206.17
		04/20/93	62.20	7206.15
5-48B	7292.64	10/06/92	46.80	7245.84
		10/12/92	46.96	7245.68
		04/19/93	46.52	7246.12
		04/21/93	46.51	7246.13
5-57B	7257.80	04/19/93	59.97	7197.83
5-58B	7279.38	04/19/93	64.09	7215.29

MP = Measuring point

msl = Mean sea level

DANIEL B. STEPHENS & ASSOCIATES, INC. Environmental scientists and engineers

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 1 of 22

--;

							Concentration (µg/L)	tion (µg/L)				
Well No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-01A	05/89	ER	QN	*	Q	5.0	an	5.0	an	5.0	NA	AN
	12/89	ER	Q	*	g	5.0	g	5.0	Q	5.0	AN	AN
	04/90	EB	Q	*	g	5.0	g	5.0	Q	5.0	Q	5.0
	06/90	EB	Q	*	2	5.0	g	5.0	Q	5.0	Q	5.0
	06/80	AS	g	0.1	g	-	Q		Q		Q	-
	11/90	핖	g	•	Q	0.50	Q	0.50	Q	0.50	g	1.0
	01/91	ᇤ	g	*	g	1.0	g	1.0	g	1.0	Q	1.0
	02/91	Ш	g	*	9	0.50	g	0.50	g	0.50	Q	1.0
	03/91	EH	g	*	g	0.50	g	0.50	Q	0.50	Q	1.0
	04/91	EH	QN	*	QN	0.50	Q	0.50	QN	0.50	QN	1.0
5-01B	08/80	E	2.11	*	AN	AN	NA	NA	AN	NA	AN	AN
	12/89	ER	2.02	*	g	5.0	6.3	5.0	Q	5.0	A N	Ą
	03/90	ER	94 ³	*	g	5.0	g	5.0	Q	5.0	25	5.0
	06/90	ER	112	5.0	g	5.0	Q	5.0	QN	5.0	g	5.0
	08/90	AS	2.02	0.1	g	-	g	-	QN	-	3.5	-
	11/90	Ŧ	5.52	*	g	0.50	g	0.50	Q	0.50	3.0	1.0
	01/91	EH	282	*	QN	1.0	QN	1.0	Ŋ	1.0	4.8	1.0
ABB = / AS = / ATT-A = / ATT-P = / ER = /	ASEA Brown Boveri Assaigai Laboratories Analytical Technologic Analytical Technologic Enseco (Houston) Enseco (Houston)	a Boveri Ioratories Ioratories Iochnologies Iochnologies Iston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerque Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)	endre x	 Total PCB includes Art 1242, 1248, 1254, and 1 Standard reporting limits Aroclor 1016 = 0.50 Aroclor 1221 = 0.50 Aroclor 1232 = 0.50 Aroclor 1242 = 0.50 	Total PCB Includes Aroclo 1242, 1248, 1254, and 1260 3tandard reporting limits: Aroclor 1016 0.50 A Aroclor 1016 = 0.50 A A Aroclor 1221 = 0.50 A Aroclor 1221 = 0.50 A A A Aroclor 1221 = 0.50 A A A Aroclor 1221 = 0.50 A	Total PCB Includes Aroclor 1016, 1221, 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1216 = Aroclor 1016 0.50 Aroclor 1248 = Aroclor 121 0.50 Aroclor 1254 = Aroclor 1221 0.50 Aroclor 1254 = Aroclor 1221 0.50 Aroclor 1260 = Aroclor 1232 0.50 Aroclor 1260 =	21, 1232, = 0.50 = 1.0	 ** 10 times sta * Aroclor 1016 2 Aroclor 1242 3 Aroclor 1221 ND = Not det NA = Not ana 	indard r 4 5 ected ilyzed	eporting limits Arodor 1248 Arodor 1254	
IS NINNER	OTDE/OWINV.SI M OON AP BES CMD											

2105(3)\INV-SUM.294\LAB-RES.CMB

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 2 of 22

							Concentration (µg/L)	ion (µg/L)				
Vell No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-01B	02/91	표	QN	*	1.6	0.50	QN	0.50	Q	0.50	4.6	1.0
	03/91	H	Q	*	2.0	0.50	Q	0.50	QN	0.50	5.2	1.0
	04/91	Ш	Q	*	1.2	0.50	2	0.50	Q	0.50	3.6	1.0
	05/91	H	Q	*	Q	0.50	g	0.50	Q	0.50	5.4	
	06/91	H	QN	*	Q	0.50	0.63	0.50	g	0.50	1.9	1.0
	07/91	Ħ	Q	•	Q	0.50	Q	0.50	9	0.50	6.0	1.0
	09/91	НЩ	QN	*	QN	0.50	g	0.50	Q	0.50	7.8	1.0
	10/91	EB	2103	50	QN	0.50	Q	0.50	Q	0.50	6.4	0.50
	11/91	Ë	76³	50	Q	0.50	g	0.50	g	0.50	9.8	0.50
	12/91	EB	QN	9	Q	0.50	9	0.50	Q	0.50	2.4	0.50
	01/09/92	EB	Q	1.0	Q	0.50	g	0.50	Q	0.50	Q	0.50
	01/27/92	EB	67 ³	40	QN	0.50	Q	0.50	g	0.50	0.79	0.50
	02/20/92	ER	823	10	QN	0.50	Q	0.50	Q	0.50	5.2	0.50
	03/18/92	ATI-P	54 ³	2.5	QN	0.5	g	0.5	Q	0.5	3.3	0.5
	04/29/92	ATI-P	71 ³	0.5	Q	0.5	Q	0.5	g	0.5	2.3	0.5
	10/14/92	ATI-P	82³	5.0	QN	0.5	QN	0.5	QN	0.5	4.7	0.5
5-02A	08/89	ER	NA	NA	QN	5.0	QN	5.0	QN	5.0	NA	NA
↑ 488 AS AT:A AT:A AT:A ER ER ER ER ER	 ABB = ASEA Brown Boveri AS = Assaigai Laboratories ATI-A = Analytical Technologic ATI-P = Analytical Technologic ER = Enseco (Rocky Mount EH = Enseco (Houston) 	l Boveri oratories chnologies chnologies ky Mounta iston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerque Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)		 Total PCB ii 1242, 1248, 1248, - Standard rep Arodor 1016 Arodor 1221 Arodor 1222 Arodor 1242 	Total PCB includes Aroclo 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 A Aroclor 1221 = 0.50 A Aroclor 1242 = 0.50 A	Total PCB includes Aroclor 1016, 1221, 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1248 = Aroclor 1016 = 0.50 Aroclor 1254 = Aroclor 1221 = 0.50 Aroclor 1254 = Aroclor 1223 = 0.50 Aroclor 1254 = Aroclor 1223 = 0.50 Aroclor 1260 =	21, 1232, = 0.50 = 1.0	 ** 10 times sta * Arocior 1016 2 Arocior 1242 3 Arocior 1221 3 Arocior 1221 8 Arocior 1221 8 Arocior 1221 8 Arocior 1231 9 Arocior 124 9 Ar	ndard i 4 5 ected llyzed	eporting limits Arodor 1248 Arodor 1254	

2105(3)/INV-SUM.294/LAB-RES.CMB

+

i

•

:

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 3 of 22

							Concentration (µg/L	ion (µg/L)	:			
Well No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-02A	12/89	EB	Q	*	QN	25	490	25	56	25	NA	AN
	01/90	ER	Q	*	42	15	210	15	24	15	AN	Ą
	04/90	ABB	QN	•	48	2	150	2	32	5	290	2
5-02B	05/89	ER	QN	*	1800	200	2000	200	QN	200	NA	AN
	08/80	Ë	Q	*	2500	500	4700	500	Q	500	AN	AN
_	11/89	ER	Q	*	1800	250	3100	250	250	250	NA	A
_	03/90	ER	Q	*	2300	250	3800	250	QN	250	2400	250
	06/90	ER	g	5.0	1900	250	3100	250	Q	250	2300	250
_	08/80	AS	Q	0.1	1400	-	2300	-	180		1700	-
	11/90	EH	Q	*	1500	100	2400	100	230	100	1900	200
_	01/91	표	Q	*	600	50	730	50	110	20	940	100
	02/91	H	Q	*	460	50	280	50	75	50	600	100
_	03/91	Ŧ	Q	*	2400	120	3300	120	290	120	2600	25
_	04/91	표	g	*	830	50	1200	50	110	50	920	9
_	05/91	HU	QN	*	830	250	1200	250	150	25	1300	50
_	06/91	Ш	Q	•	5.1	0.50	7.0	0.50	0.57	0.50	4.7	1.0
	07/91	EH	QN	•	400	25	600	25	49	5.0	420	10
ABB AS ATT-A ATT-A ATT-P ER ER EN	 ABB = ASEA Brown Boveri AS = Assaigai Laboratories ATI-A = Analytical Technologis ATI-P = Analytical Technologis ATI-P = Enseco (Rocky Mount EH = Enseco (Houston) 	a Boveri oratories ochnologies chnologies ky Mounta iston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerque Analytical Technologies, Inc., Phoenix Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)	endne	 Total PCB ii 1242, 1248, Standard rep Arodor 1016 Arodor 1221 Arodor 1232 Arodor 1232 	Total PCB includes Aroclo 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 A Aroclor 1221 = 0.50 A Aroclor 1232 = 0.50 A	Total PCB includes Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 Aroclor 1248 = 0.50 Aroclor 1254 = 1.0 Aroclor 1221 = 0.50 Aroclor 1254 = 1.0 Aroclor 1254 = 1.0 Aroclor 1256 = 0.50	21, 1232, = 0.50 = 1.0	 ** 10 times sta Arocior 1016 Arocior 1242 Arocior 1221 Arocior 1221 MD = Not det NA = Not ana 	ndard i 4 5 ected hyzed	eporting limits Arodor 1248 Arodor 1254	

2105(3) UNV-SUM.294 LAB-RES.CMB

ļ

DANIEL B. STEPHENS & ASSOCIATES, INC. ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 4 of 22

<u> </u>								_											
	Reporting Limit	50	9	25	5	25	5	25	9	125	2.5	0.5	NA	5.0	5.0	÷		1.0	
	Total Xylenes	530	310	950	320	480	560	1200	1700	2200	640	38	٩N	Q	QN	Q	QN	QN	eporting limits Aroclor 1248 Aroclor 1254
	Reporting Limit	25	10	25	12	25	12	25	10	125	2.5	0.5	5.0	5.0	5.0	Ŧ	0.50	1.0	ndard i 4 5 6 ected
	Ethyl- benzene	21	37	67	31	52	64	140	170	240	74	11	QN	Q	QN	QN	Q	DN	 10 times sta Arodor 1016 Arodor 1242 Arodor 1221 Arodor 1221 ND = Not det NA = Not ana
on (µg/L)	Reporting Limit	25	10	25	12	25	12	25	50	125	5	0.5	5.0	5.0	5.0	-	0.50	1.0	1, 1232, = 0.50 = 1.0
Concentration (μg/L)	Toluene	750	450	1200	580	710	810	1600	2100	3800	200	QN	Q	Q	Q	1.6	0.67	DN	r 1016, 122 rodor 1248 rodor 1254 rodor 1260
	Reporting Limit	25	10	25	12	25	12	25	10	125	5	2.5	5.0	5.0	5.0		0.50	1.0	Total PCB includes Aroclo 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 A Aroclor 1221 = 0.50 A Aroclor 1232 = 0.50 A
	Benzene	510	290	740	330	360	420	068	910	1700	800	120	QN	Q	Q	9 2	4.	DN	 Total PCB includes Arc 1242, 1248, 1254, and 1. Standard reporting limits: Arodor 1016 = 0.50 Arodor 1221 = 0.50 Arodor 1232 = 0.50 Arodor 1242 = 0.50
	Reporting Limit	+	*	1.0	1.0	1.0	1.0	*	0.5	25.0	AN	NA	*	*	:	0.1	*	•	
	Total PCB [‡]	av	Q	Q	Q	Q	Q	Q	g	Q	٩	AN	Q	a	Q	Q	QN	DN	, Inc., Albuque , Inc., Phoeni in Analytical)
	Lab [†]	표	E	£	EB	H	£	£	ATI-P	ATI-P	ATI-P	ATI-A	ER	ËB	Ë	AS	표	EH	Boveri ratories hnologies hnologies y Mountai (ton)
	Date	16/60	10/91	11/91	12/91	01/09/92	01/28/92	02/20/92	03/19/92	04/29/92	10/14/92	04/22/93	12/89	04/90	05/90	08/90	11/90	01/91	 ABB = ASEA Brown Boveri AS = Assaigai Laboratories ATI-A = Analytical Technologies, Inc., Albuquerque ATI-P = Analytical Technologies, Inc., Phoenix ATI-P = Analytical Technologies, Inc., Phoenix ER = Enseco (Houston) EH = Enseco (Houston)
	Vell No.	5-02B		<u> </u>									5-03A						ABB AS ATI-A = ER EH =

2105(3)UNV-SUM.294LAB-RES.CMB

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 5 of 22

_

							Concentration (µg/L)	tion (µg/L)				
Vell No.	Date	Lab [†]	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-03A	02/91	H	QN	*	0.76	0.50	6.79	0.50	QN	0.50	QN	1.0
	03/91	H	Q	*	1.5	0.50	0.90	0.50	Q	0.50	QN	1.0
	04/91	ᇤ	Q	*	4	0.50	0.74	0.50	Q	0.50	QN	1.0
	12/91	ER	QN	1.0	0.76	0.50	0.61	0.50	QN	0.50	1.0	0.50
5-03B	05/89	ER	QN	*	Q	5.0	QN	5.0	QN	5.0	NA	AN
	11/89	ËR	Q.	*	g	5.0	QN	5.0	QN	5.0	NA	AA
	04/90	Ë	QN	*	Q	5.0	QN	5.0	Q	5.0	QN	5.0
	06/30	ER	Q	*	Q	5.0	Q	5.0	Q	5.0	Q	5.0
	08/90	AS	QN	0.1	Q	-	QN		QN		QN	-
	11/90	Ĥ	Q	*	Q	0.50	QN	0.50	QN	0.50	QN	-
	01/91	ᇤ	QN	*	g	0.30	QN	0.30	Q	0.30	QN	0.60
	02/91	H	Q	*	Q	0.50	QN	0.50	Q	0.50	Q	1.0
	03/91	EH	QN	*	Q	0.50	QN	0.50	Q	0.50	Q	1.0
	04/91	Η	Q	*	Q	0.50	QN	0.50	QN	0.50	Q	1.0
	05/91	EH	Q	*	9	0.50	Q	0.50	Q	0.50	QN	1.0
	06/91	ΗIJ	Q	*	2	0.50	1.4	0.50	Q	0.50	2.2	1.0
	07/91	EH	ND	*	QN	0.50	QN	0.50	QN	0.50	QN	1.0
ABB AS ATI-A = ATI-P = EH = =	 ABB = ASEA Brown Boveri AS = Assaigai Laboratories ATI-A = Analytical Technologis ATI-P = Analytical Technologis ER = Enseco (Houston) EH = Enseco (Houston) 	A Boveri boratories achnologie: Ay Mounta Iston)	ASEA Brown Boveri Assaigai Laboratories Analyticai Technologies, Inc., Albuquerque Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)		 Total PCB ii 1242, 1248, 1248, 1242, 1248, 1242 Standard rep Arodor 1221 Arodor 1222 Arodor 1232 Arodor 1242 	Total PCB includes Aroclor 1016, 1221, 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 Aroclor 1248 = Aroclor 1221 = 0.50 Aroclor 1221 = 0.50 Aroclor 1264 = Aroclor 1242 = 0.50	lor 1016, 12 50 Aroclor 1248 Aroclor 1254 Aroclor 1260	21, 1232, = 0.50 = 1.0 = 1.0	** 10 times sta ¹ Aroclor 1016 ² Aroclor 1242 ³ Aroclor 1221 ³ Aroclor 1221 ND = Not det NA = Not ana	indard r 4 5 ected ected	eporting limits Arodor 1248 Arodor 1254	

2105(3) UNV-SUM. 294 LAB-RES. CMB

DANIEL B. STEPHENS & ASSOCIATES, INC. ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

 Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993

 Thoreau Compressor Station

 Page 6 of 22

							Concentration (μg/L)	ion (µg/L)				
Vell No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-03B	09/91	Ш	a	*	Q	0.50	g	0.50	QN	0.50	Q	1.0
	10/91	ER	a	*	Q	0.50	Q	0.50	Q	0.50	g	0.50
	11/91	ER	Q	0.1	Q	0.50	Q	0.50	Q	0.50	g	0.50
	12/91	ER	Q	0.1	Q	0.50	Q	0.50	Q	0.50	g	0.50
	01/09/92	EB	QN	1.0	Q	0.50	Q	0.50	Q	0.50	g	0.50
	01/27/92	E	QN	1.0	g	0.50	g	0.50	Q	0.50	g	0.50
	02/19/92	ER	Q	*	Q	0.50	g	0.50	QN	0.50	g	0.50
	03/17/92	ATI-P	Q	0.5	Q	0.5	9	0.5	QN	0.5	g	0.5
	04/28/92	ΑΤΙ-Ρ	QN	0.5	Q	0.5	g	0.5	Q	0.5	g	0.5
	10/07/92	ATI-P	NA	NA	QN	0.5	DN	0.5	DN	0.5	DN	0.5
5-04B	10/89	ER	NA	NA	QN	25	QN	25	QN	25	AN	NA
	12/89	Ë	QN	•	 9	5.0	Q	5.0	QN	5.0	Ą	A
	01/90	Ш	QN	•	5	5.0	g	5.0	Q	5.0	AN	AN
*	04/90	ER	Q	*	54	5.0	2	5.0	7.1	5.0	110	5.0
	06/90	EB	QN	*	09	50	Q	50	QN	50	64	50
	08/80	AS	QN	0.1	 8	-	9.5	-	Q	-	15	-
	11/90	표	QN	*	25	5.0	QN	5.0	QN	5.0	QN	10
ABB AS AT ABB AT AS AT AT AT AT ABB AT AS AT	 ABB = ASEA Brown Boveri AS = Assaigai Laboratories ATI-A = Analytical Technologies, Inc., Albuqu ATI-P = Analytical Technologies, Inc., Phoen ATI-P = Enseco (Rocky Mountain Analytical) EH = Enseco (Houston) 	Boveri oratories chnologies ky Mounta ston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerqu Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)	enbue x	 Total PCB includes Arc 1242, 1248, 1254, and 1; Standard reporting limits: Aroclor 1016 = 0.50 Aroclor 1221 = 0.50 Aroclor 1242 = 0.50 	Total PCB includes Aroclo (242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1221 = 0.50 A Aroclor 1223 = 0.50 A Aroclor 1242 = 0.50 A	Total PCB includes Aroclor 1016, 1221, 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 Aroclor 1248 = Aroclor 1221 = 0.50 Aroclor 1221 = 0.50 Aroclor 1264 = Aroclor 1242 = Aroclor 1242 = 0.50	21, 1232, = 0.50 = 1.0	 * 10 times sta * Aroclor 1016 2 Aroclor 1242 3 Aroclor 1221 3 Aroclor 1221 ND = Not det NA = Not ana 	ndard 4 5 8 ected	eporting limits Arodor 1248 Arodor 1254	

2105(3) UNV-SUM.294\LAB-RES.CMB

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 7 of 22

							Concentration (μg/L)	tion (µg/L)				
Vell No.	Date	Lab [†]	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-04B	01/91	Ŧ	QN	•	22	0.50	1.6	0.50	0.75	0.50	5.6	1.0
	03/91	Ħ	QN	*	26	5.0	÷	0.50	g	0.50	5.7	1.0
	04/91	Ψ	QN	*	 30	5.0	0.66	0.50	g	0.50	2.9	1.0
	05/91	표	Q	*	6	10	÷	0.50	0.96	0.50	13	1.0
	06/91	표	Q	*	8	5.0	21	5.0	4	5.0	87	10
	07/91	Ξ	Q	*	7	5.0	g	0.5	4.5	0.50	43	1.0
	09/91	Ξ	Q	*	270	50	Q	1.0	9.9	1.0	24	2
	10/91	EH	Q	*	180	5.0	g	5.0	7.8	5.0	48	5.0
	11/91	EB	QN	1.0	g	1.2	g	1.2	Ŧ	1.2	83	1.2
	12/91	EB	QN	1.0	100	2.5	Q	2.5	5.1	2.5	45	2.5
	01/10/92	Ë	QN	1.0	23	1.2	Q	1.2	3.7	1.2	4	1.2
	01/28/92	Ë	QN	1.0	48	1.2	5.8	1.2	6.5	1 2	4	1:2
	02/19/92	Ш	QN	*	42	1.0	g	1.0	3.4	1.0	 66	1.0
	03/18/92	ATI-P	QN	0.5	g	0.5	Q	0.5	g	0.5	Q	0.5
	04/28/92	ATI-P	Q	0.5	86	2.5	80	2.5	09	2.5	570	2.5
	10/13/92	ATI-P	NA	AN	530	2.0	40	2.0	19	2.0	260	2.0
	04/21/93	ATI-A	NA	NA	170	5	130	5	26	5	280	25
ABB = ABB = ATI-P = AT	 ABB = ASEA Brown Boveri AS = Assaigai Laboratories ATI-A = Analytical Technologic ATI-P = Analytical Technologic ATI-P = Analytical Technologic ER = Enseco (Rocky Mount EH = Enseco (Houston) 	Boveri bratories chnologies y Mounta ston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerque Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)	enb	 Total PCB ii 1242, 1248, 1 Standard rep Arodor 1016 Arodor 1221 Arodor 1222 Arodor 1242 	Total PCB includes Aroclor 1016, 1221, 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 0.50 Aroclor 1248 Aroclor 121 0.50 Aroclor 1248 Aroclor 1221 0.50 Aroclor 1248 Aroclor 1222 0.50 Aroclor 1254 Aroclor 1222 0.50 Aroclor 1260 Aroclor 1242 0.50 Aroclor 1260	lor 1016, 122 80 Arodor 1248 Arodor 1254 Arodor 1260	21, 1232, = 0.50 = 1.0	** 10 times sta ¹ Arocior 1016 ² Arocior 1242 ³ Arocior 1221 ND = Not det NA = Not ana	ndard 4 5 9cted	eporting limits Aroclor 1248 Aroclor 1254	

2105(3)UNV-SUM.294LAB-RES.CMB

Í

1

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 8 of 22

							Concentration (μg/L	tion (µg/L)				
Well No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-05B	10/89	ER	QN	*	Q	5.0	Q	5.0	8.7	5.0	٩٧	AN
	11/89	£	Q	•	Q	5.0	Q	5.0	Q	5.0	AN	NA
	04/90	ER	QN	*	9	5.0	Q	5.0	g	5.0	Q	5.0
	06/90	ER	QN	*	2	5.0	9	5.0	Q	5.0	Q	5.0
	06/80	AS	0.19 ²	0.1	2.5		g		9 2	-	4.6	-
	11/90	Ш	2.4 ²	*	1.4	0.50	2	0.50	g	0.50	2.9	1.0
	01/91	ΕH	Q	*	g	0.50	Q	0.50	g	0.50	0.56	0.50
	02/91	EH	QN	*	49	5.0	35	5.0	7.4	5.0	26	10
	03/91	ΕH	QN	•	12	0.50	1. 2.	0.50	g	0.50	Q	1.0
	04/91	ΗIJ	QN	*	1.3	0.50	g	0.50	Q	0.50	Q	1.0
	05/91	ΗIJ	Q	*	4.6	0.50	g	0.50	Q	0.50	Q	1.0
	06/91	Ш	Q	*	3.8	0.50	g	0.50	Q	0.50	Q	1.0
	07/91	표	QN	*	0.51	0.50	g	0.50	Q	0.50	Q	1.0
	09/91	EH	Q	*	3.0	0.50	g	0.50	Q	0.50	Q	1.0
	10/91	ER	Q	5.0	06.0	0.50	g	0.50	QN	0.50	Q	0.50
	11/91	ER	Q	1.0	1.2	0.50	g	0.50	Q	0.50	g	0.50
	12/91	EB	QN	2.0	QN	0.50	QN	0.50	QN	0.50	QN	0.50
ABB = / AS = / ATI-A = / ATI-P = / ER = E EH = E	 ABB = ASEA Brown Boveri AS = Assaigai Laboratories ATI-A = Analytical Technologi ATI-P = Analytical Technologi ER = Enseco (Rocky Mouni EH = Enseco (Houston) 	Boveri oratories chnologies ky Mounta ston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerqu Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)	endre A	 Total PCB includes Arc 1242, 1248, 1254, and 1; Standard reporting limits: Aroclor 1016 = 0.50 Aroclor 1221 = 0.50 Aroclor 1242 = 0.50 	Sec.	lor 1016, 122 0 Arodor 1248 Arodor 1254	21, 1232, = 0.50 = 1.0	** 10 times sta ¹ Aroclor 1016 ² Aroclor 1242 ³ Aroclor 1221 ³ Aroclor 1221 ND = Not det NA = Not ana	ndard 4 5 ected llyzed	reporting limits Arodor 1248 Arodor 1254	

2105(3)\NV-SUM.294\LAB-RES.CMB

DANIEL B. STEPHENS & ASSOCIATES, INC. Environmental scientists and engineers

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 9 of 22

							Concentration (µg/L)	tion (µg/L)				
Well No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-05B	01/09/92	EB	QN	1.0	QN	0.50	QN	0.50	QN	0.50	g	0.50
	01/27/92	Ë	Q	1.0	QN	0.50	QN	0.50	Q	0.50	Q	0.50
	02/19/92	EB	Q	:	Q	0.50	QN	0.50	Q	0.50	g	0.50
	03/17/92	ATI-P	QN	0.5	53	0.5	QN	0.5	7	0.5	84	0.5
	04/28/92	ATI-P	QN	0.5	QN	0.5	QN	0.5	QN	0.5	g	0.5
	10/12/92	ATI-P	NA	AN	270	5.0	110	5.0	25	5.0	160	5.0
	04/21/93	ATI-A	NA	NA	38	0.5	QN	0.5	2.4	0.5	3.0	0.5
5-06B	10/89	ER	QN	*	15	5.0	QN	5.0	QN	5.0	AN	NA
	12/89	ER	180 ³	50	7.4	5.0	35	5.0	21	5.0	AN	AA
	01/90	EB	1003	20	Q	5.0	QN	5.0	8.3	5.0	Ą	AN
	04/90	ER	170	*	5.3	5.0	QN	5.0	QN	5.0	120	5.0
	06/90	ER	39²	5.0	QN	5.0	QN	5.0	QN	5.0	19	5.0
	06/80	AS	1.12	0.1	QN		QN		1.5		36	
	11/90	Ξ	65²	20	1.8	0.50	QN	0.50	0.50	0.50	54	1.0
	01/91	ΗIJ	392	5.0	QN	1.0	QN	1.0	QN	1.0	3	1.0
	02/91	Η	QN	*	5	0.50	2.5	0.50	QN	0.50	5	1.0
	03/91	EH	ND	*	2.0	0.50	DN	0.50	QN	0.50	5.1	1.0
ABB AS ATI-A ER EH EH EH	ASEA Brown Boveri Assaigai Laboratories Analytical Technologie Analytical Technologie Enseco (Houston) Enseco (Houston)	Boveri oratories chnologies ky Mounta ston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerque Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)	enbuer	 Total PCB ir 1242, 1248, 1 Standard rept Arodor 1016 Arodor 1221 Arodor 1232 Arodor 1242 	Total PCB includes Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260 1232, 1232, Standard reporting limits: Aroclor 1016 ± 0.50 Aroclor 1248 ± 0.50 Aroclor 1016 ± 0.50 Aroclor 1248 ± 1.0 Aroclor 1221 ± 0.50 Aroclor 1254 ± 1.0 Aroclor 1232 ± 0.50 Aroclor 1260 ± 1.0 Aroclor 1242 ± 0.50 Aroclor 1260 ± 1.0	slor 1016, 12 60 Arodor 1248 Arodor 1260	21, 1232, = 0.50 = 1.0 = 1.0	 * 10 times sta Aroclor 1016 Aroclor 1242 Aroclor 1221 Aroclor 1221 ND = Not det NA = Not ana 	ndard i 4 5 9cted	eporting limits Aroclor 1248 Aroclor 1254	

2105(3)UNV-SUM.294LAB-RES.CMB

DANIEL B. STEPHENS & ASSOCIATES, INC. ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Ý

 $\langle\!\langle\!\langle$

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 10 of 22

							Concentration (µg/L)	tion (µg/L)				<u></u>
Well No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-06B	04/91	· EH	Q	•	5.2	0.50	g	0.50	QN	0.50	12	1.0
	05/91	EH	Q	*	7.7	0.50	g	0.50	Q	0.50	18	1.0
	06/91	ΗB	Q	*	Ţ	0.50	2.3	0.50	Q	0.50	25	~
	07/91	EH	Q	*	1.5	0.50 ×	g	0.50	Q	0.50	15	
	09/91	H	Q	*	3.5	0.50	g	0.50	Q	0.50	13	1.0
	10/91	ER	250³	20	3.1	0.50	0.62	0.50	0.77	0.50	9.3	0.50
	11/91	EB	140³	100	1.4	0.50	Q	0.50	Q	0.50	6.0	0.50
	11/91	ATI	210 ³	50	2.3	0.50	Q	0.50	Q	0.50	18	0.50
	12/91	ER	270³	100	Q	0.50	Q	0.50	Q	0.50	5.0	0.50
	01/09/92	ER	Q	1.0	2.3	0.50	Q	0.50	Q	0.50	QN	0.50
	01/27/92	ER	190 ³	100	1.3	0.50	Q	0.50	Q	0.50	2.6	0.50
	02/20/92	ER	2003	5.0		0.50	Q	0.50	g	0.50	1.2	0.50
	03/18/92	ATI-P	140 ³	2.5	6.0	0.5	g	0.5	Q	0.5	2.3	0.5
	04/29/92	ATI-P	150³	0.5	1.4	0.5	Q	0.5	g	0.5	3.6	0.5
	10/14/92	ATI-P	280 ³	5.0	1.0	0.5	QN	0.5	QN	0.5	2.8	0.5
5-12B	08/80	AS	Q	0.1	Q	-	Q	-	Q		QN	-
	11/90	Ħ	QN	•	QN	0.50	Q	0.50	QN	0.50	DN	1.0
† ABB = ASEA Br AS = Assaigai ATI-A = Analytica ATI-P = Analytica ER = Enseco (EH = Enseco (ASEA Brown Boveri Assaigai Laboratories Analytical Technologie Analytical Technologie Enseco (Rocky Mount Enseco (Houston)	l Boveri oratories chnologies chnologies ky Mounta iston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerque Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)		 Total PCB ii 1242, 1248, - Standard rep Arodor 1016 Arodor 1221 Arodor 1222 Arodor 1242 	Total PCB includes Aroclo 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 A Aroclor 1221 = 0.50 A Aroclor 1232 = 0.50 A	Total PCB includes Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260 1232, 1248, 1232, Standard reporting limits: Aroclor 1248 = 0.50 Aroclor 1254 = 1.0 Aroclor 121 = 0.50 Aroclor 1254 = 1.0 Aroclor 1221 = 0.50 Aroclor 1254 = 1.0 Aroclor 1222 = 0.50 Aroclor 1254 = 1.0 Aroclor 1222 = 0.50 Aroclor 1260 = 1.0 Aroclor 1242 = 0.50 Aroclor 1260 = 1.0	21, 1232, = 0.50 = 1.0	 10 times sta Arocior 1016 Arocior 1242 Arocior 1221 Arocior 1221 Arocior 1221 MD = Not det NA = Not ana 	ndard i 4 5 ected hyzed	eporting limits Arocior 1248 Arocior 1254	

2105(3)UNV-SUM.294LAB-RES.CMB

i i

DANIEL B. STEPHENS & ASSOCIATES, INC. ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 11 of 22

							Concentration (µg/L)	tion (µg/L)				
Well No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-12B	01/91	표	QN	*	1.5	0.50	4.7	0.50	6.79	0.50	3.8	1.0
	02/91	Ŧ	QN	*	QN	0.50	Q	0.50	Q	0.50	g	1.0
	03/91	Ŧ	Q	*	Q	0.50	Q	0.50	Q	0.50	g	1.0
	04/91	毌	QN	*	Q	0.50	Q	0.50	Q	0.50	g	1.0
	05/91	Η	QZ	*	Q	0.50	QN	0.50	Q	0.50	g	1.0
	06/91	H	QN	*	Q	0.50	QN	0.50	Q	0.50	g	1.0
	07/91	H	AN	A	Q	0.50	Q	0.50	Q	0.50	g	1.0
	10/91	Ш	AN	A	Q	0.50	Q	0.50	Q	0.50	g	0.50
_	01/07/92	ER	AN	AN	Q	0.50	Q	0.50	Q	0.50	g	0.50
	04/30/92	ATI-P	AN	AN	g	0.5	QN	0.5	Q	0.5	g	0.5
	10/08/92	ATI-P	NA	NA	QN	0.5	QN	0.5	QN	0.5	DN	0.5
5-13B	08/90	AS	QN	0.1	24 1		13	-	QN	-	330	-
	11/90	표	QN	•	61	9	Q	10	Q	10	480	20
	01/91	H	QN	*	180	5.0	17	5.0	Q	5.0	310	10
	02/91	Ш	QN	*	270	9	25	10	Q	9	460	20
	03/91	Ш	g	*	240	50	QN	50	Q	50	480	100
	04/91	표	QN	•	430	25	QN	0.50	QN	0.50	620	50
ABB = AS ATI-A = ATI-A	 ABB = ASEA Brown Boveri AS = Assaigai Laboratories ATI-A = Analytical Technologies, Inc., Albuqu ATI-P = Analytical Technologies, Inc., Phoen ER = Enseco (Rocky Mountain Analytical) EH = Enseco (Houston) 	Boveri oratories chnologies ky Mounta ston)	ASEA Brown Boven Assaigai Laboratories Analytical Technologies, Inc., Albuquerque Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)	enbr	 Total PCB i 1242, 1248, Standard rep Arodor 12016 Arodor 1222 Arodor 1232 Arodor 1242 	Total PCB includes Aroclor 1016, 1221, 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 Aroclor 1248 = Aroclor 1221 = 0.50 Aroclor 1221 = 0.50 Aroclor 1264 = Aroclor 1242 = 0.50	lor 1016, 122 50 Arodor 1248 Arodor 1254 Arodor 1250	21, 1232, = 0.50 = 1.0	 ** 10 times sta * Arocior 1016 * Arocior 1242 * Arocior 1221 * Arocior 1231 * Arocior 124 * A	indard r 4 5 ected llyzed	eporting limits Arodor 1248 Arodor 1254	

2105(3)UNV-SUM.294LAB-RES.CMB

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 12 of 22

							Concentration (µg/L)	tion (µg/L)				
Vell No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-13B	05/91	표	QN	*	290	10	QN	10	QN	10	450	20
	06/91	Ĥ	QN	*	330	50	0.53	0.50	QN	0.50	600	100
	07/91	₽	NA	NA	67	25	0.72	0.50	QN	0.50	760	20
	10/91	щ	NA	NA	71	5.0	QN	5.0	Q	5.0 `	510	5.0
	01/08/92	ËR	NA	¥	150	25	Q	25	Q	25	570	25
-	05/01/92	ATI-P	NA	NA	76	0.5	8.0	0.5	Q	0.5	67	0.5
	10/13/92	ATI-P	NA	NA	88	0.5	8.7	0.5	QN	0.5	1.5	0.5
5-14B	06/80	AS	QN	0.1	QN	-	QN		QN	-	QN	
	11/90	Ŧ	NA	NA	Q	0.50	QN	0.50	Q	0.50	QN	1.0
	01/91	Ŧ	QN	*	Q	0.50	QN	0.50	Q	0.50	QN	1.0
	02/91	Ŧ	QN	*	Q	0.50	QN	0.50	QN	0.50	QN	1.0
<u> </u>	03/91	ΗIJ	QN	*	Q	0.50	QN	0.50	Q	0.50	QN	0.
	04/91	Ħ	QN	*	Q	0.50	QN	0.50	QN	0.50	QN	1.0
	05/91	Н	Q	*	Q	0.50	QN	0.50	QN	0.50	QN	1.0
	06/91	Η	QN	•	5.8	0.50	3.2	0.50	0.53	0.50	2.0	1.0
	07/91	H	NA	Ą	0.60	0.50	QN	0.50	Q	0.50	QN	1.0
	10/91	ER	NA	NA	QN	0.50	DN	0.50	DN	0.50	QN	0.50
+ ABB = AS AT A = AT - AT - AS AT - AT - AT - AT - AT - A	 ABB = ASEA Brown Boveri AS = Assaigai Laboratories ATI-A = Analytical Technologic ATI-P = Analytical Technologic ER = Enseco (Rocky Mount EH = Enseco (Houston) 	, Boveri oratories chnologies ky Mounta ston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerqu Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)	enbue	 Total PCB i 1242, 1248, - Standard rep Arodor 1016 Arodor 1221 Arodor 1232 Arodor 1242 	Total PCB includes Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 Aroclor 1248 = 0.50 Aroclor 1254 = 1.0 Aroclor 1254 = 0.50 Aroclor 1254 = 0.50 Aroclor 1254 = 1.0 Aroclor 1254 = 0.50 Aroclor 1254 = 1.0 Aroclor 1260 = 1.0	lor 1016, 12 80 Arocior 1248 Arocior 1260 Arocior 1260	21, 1232, = 0.50 = 1.0 = 1.0	 10 times sta Arocior 1016 Arocior 1242 Arocior 1221 Arocior 1221 Arocior 1221 MD = Not det NA = Not ana 	ndard 4 5 ected ilyzed	eporting limits Aroclor 1248 Aroclor 1254	

2105(3)\INV-SUM.294\LAB-RES.CMB

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 13 of 22

							Concentration (µg/L	tion (µg/L)				
Vell No.	Date	Lab [†]	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-14B	01/06/92	EB	NA	AN	QN	0.50	QN	0.50	QN	0.50	QN	0.50
	04/30/92	ATI-P	NA	N	Q	0.5	QN	0.5	Q	0.5	QN	0.5
	10/08/92	ATI-P	NA	NA	QN	0.5	ND	0.5	ND	0.5	DN	0.5
5-15B	08/80	AS	QN	0.1	QN	-	QN		QN		QN	-
	11/90	EH	QN	*	5.1	0.50	Q	0.50	Q	0.50	QN	1.0
	01/91	H	QN	*	Q	0.30	QN	0.30	QN	0.30	1.0	0.60
	02/91	Ŧ	Q	*	9	0.50	QN	0.50	QN	0.50	QN	1.0
	03/91	H	Q	*	g	0.50	QN	0.50	QN	0.50	QN	1.0
	04/91	ΗIJ	Q	•	Q	0.50	QN	0.50	QN	0.50	QN	1.0
	05/91	H	Q	•	Q	0.50	QN	0.50	QN	0.50	QN	1.0
	06/91	ΗIJ	QN	*	g	0.50	QN	0.50	QN	0.50	QN	1.0
	07/91	ΗIJ	NA	AN	Q	0.50	0.59	0.50	QN	0.50	QN	1.0
	10/91	EB	NA	Å	g	0.50	QN	0.50	QN	0.50	QN	0.50
	01/07/92	EB	NA	AN	g	0.50	QN	0.50	QN	0.50	QN	0.50
	04/30/92	ATI-P	NA	Ą	9 2	0.5	QN	0.5	QN	0.5	QN	0.5
	10/08/92	ATI-P	NA	Ą	Q	0.5	QN	0.5	ND	0.5	QN	0.5

ND = Not detected NA = Not analyzed ¹ Arodor 1016 ² Arodor 1242 ³ Arodor 1221 Arodor 1248 = 0.50Arodor 1254 = 1.0Arodor 1260 = 1.01242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50Aroclor 1221 = 0.50Aroclor 1232 = 0.50Aroclor 1232 = 0.50AS = Assaigai Laboratories ATI-A = Analytical Technologies, Inc., Albuquerque ATI-P = Analytical Technologies, Inc., Phoenix ER = Enseco (Rocky Mountain Analytical) EH = Enseco (Houston)

** 10 times standard reporting limits

[‡] Total PCB includes Aroclor 1016, 1221, 1232,

= ASEA Brown Boven

† ABB

Aroclor 1248
 Aroclor 1254

2105(3) UNV-SUM.294 LAB-RES.CMB

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 14 of 22

							Concentration (μg/L)	tion (µg/L)				
Well No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-16B	08/90	AS	QN	0.1	19	-	25		20	-	320	+
	01/91	田	QN	*	2	0.30	g	0.30	QN	0.30	g	0.60
	02/91	ШH	Q	*	320	20	46	20	170	20	860	20
	03/91	Η	Q	*	920	50	4	0.50	1.2	0.50	130	100
	04/91	H	Q	*	92	5.0	Q	0.50	0.68	0.50	9.2	1.0
	05/91	Ħ	Q	*	270	12	g	12	230	12	1100	25
	06/91	EH	Q	*	450	120	490	120	460	120	2300	250
	07/91	EH	Ą	AN	260	20	140	20	400	50	2400	100
	09/91	EH	AN	Ą	460	50	320	50	550	50	3600	100
	10/91	£	A	Ą	170	50	420	20	460	50	3200	50
	11/91	E	AN	Ą	180	20	430	20	330	50	2400	50
	12/91	EB	AN	Ą	140	50	490	50	360	50	2900	50
	01/08/92	ER	N	Ą	500	120	200	120	410	120	3000	120
	02/20/92	EB	Q	*	170	25	330	25	470	25	3200	25
	03/18/92	ATI-P	Q	5.0	23	9	68	ę	400	10	2400	10
	04/29/92	ATI-P	Q	10.0	53	2.5		2.5	210	2.5	1000	2.5
	10/13/92	ATI-P	NA	NA	5.1	0.5	2.3	0.5	12	0.5	63	0.5
ABB ASB AS ATT-A ATT-A ATT-P ER EH EH	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuq Analytical Technologies, Inc., Phoer Enseco (Rocky Mountain Analytical) Enseco (Houston)	Boveri boratories chnologies chnologies ky Mounta ston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerqu Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)	* * endre	 Total PCB includes Art 1242, 1248, 1254, and 1 Standard reporting limits Arodor 1016 = 0.50 Arodor 1221 = 0.50 Arodor 1232 = 0.50 		lor 1016, 12 0 Arodor 1248 Arodor 1254	21, 1232, = 0.50 = 1.0	 10 times sta Arocior 1016 Arocior 1242 Arocior 1221 Arocior 1221 ND = Not det 	indard i 4 5 6cted	reporting limits Arodor 1248 Arodor 1254	

2105(3) VNV-SUM. 294 LAB-RES. CMB

ND = Not detected NA = Not analyzed

Arodor 1221 = 0.50 Arodor 1232 = 0.50 Arodor 1242 = 0.50

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 15 of 22

							Concentration (µg/L)	tion (µg/L)				
Well No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-16B	04/20/93	ATI-A	NA	NA	6.5	0.5	DN	0.5	14	0.5	51	0.5
5-17B	08/90	AS	QN	0.1	QN	-	QN		QN	÷	QN	
	11/90	H	QN	*	Q	0.50	QN	0.50	9	0.50	Q	1.0
	01/91	ΗIJ	QN	*	Q	0.50	Q	0.50	g	0.50	QN	0.50
	02/91	ΗIJ	DN	•	Q	0.50	QN	0.50	9	0.50	Q	1.0
	03/91	H	QN	*	Q	0.50	Q	0.50	2	0.50	QN	1.0
	04/91	H	QN	*	Q	0.50	Q	0.50	Q	0.50	Q	1.0
	05/91	H	QN	*	Q	0.50	QN	0.50	2	0.50	QN	1.0
	06/91	Ħ	QN	*	0.72	0.50	2.9	0.50	1.8	0.50	÷	1.0
	07/91	ΗIJ	NA	A	Q	0.50	Q	0.50	g	0.50	QN	1.0
	10/91	ER	NA	NA	g	0.50	Q	0.50	2	0.50	QN	0.50
	01/08/92	Ë	NA	NA	Q	0.50	QN	0.50	Ð	0.50	Q	0.50
	02/19/92	ËR	QN	*	Q	0.50	Q	0.50	2	0.50	Q	0.50
	03/17/92	ATI-P	QN	0.5	Q	0.5	Q	0.5	g	0.5	Q	0.5
	04/28/92	ATI-P	QN	0.5	Q	0.5	Q	0.5	2	0.5	Q	0.5
	10/07/92	ATI-P	QN	0.5	QN	0.5	DN	0.5	QN	0.5	QN	0.5

= ASEA Brown Boveri † ABB

AS = Assaigai Laboratories ATI-A = Analytical Technologies, Inc., Albuquerque ATI-P = Analytical Technologies, Inc., Phoenix ER = Enseco (Rocky Mountain Analytical) EH = Enseco (Houston)

2105(3)\NV-SUM.294\LAB-RES.CMB

ND = Not detected NA = Not analyzed

Aroclor 1248 = 0.50Aroclor 1254 = 1.0Aroclor 1260 = 1.0

Aroclor 1016 = 0.50 Aroclor 1221 = 0.50 Aroclor 1232 = 0.50 Aroclor 1242 = 0.50

¹ Aroclor 1016 ² Aroclor 1242 ³ Aroclor 1221

** 10 times standard reporting limits

[‡] Total PCB includes Aroclor 1016, 1221, 1232,

1242, 1248, 1254, and 1260 Standard reporting limits:

⁴ Aroclor 1248 ⁵ Aroclor 1254

DANIEL B. STEPHENS & ASSOCIATES, INC. Environmental scientists and engineers

ļ

 $\langle\!\langle$

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 16 of 22

							Concentration (µg/L)	ion (µg/L)				
Weil No.	Date	Lab [†]	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-18B	06/80	AS	Q	0.1	1100	-	14	-	9	-	220	-
	11/90	H	Q	*	1900	100	Q	100	g	100	320	200
	01/91	표	g	*	1300	25	g	25	g	25	170	25
	02/91	Ŧ	Q	*	670	25	 -	5.0	2	5.0	170	10
	03/91	ᇤ	g	*	260	12		0.50	g	0.50	53	1.0
	04/91	H	Q	•	1000	25	g	1.0	Q	1.0	78	N
	06/91	Ĥ	Q	*	680	50	÷	0.50	1.0	0.50	150	100
	07/91	ΗIJ	A	NA	1500	25	3.0	0.50	1.5	0.50	20	1.0
1	10/91	ER	NA	AN	1200	25	Q	25	9	25	130	25
	01/08/92	ER	NA	NA	1100	25	g	25	Q	25	88	25
	05/01/92	ATI-P	NA	AN	290	25	2.7	0.5	Q	0.5	36	0.5
	10/13/92	ATI-P	AN	Ą	820	2.5	g	0.5	0.	0.5	36	0.5
	04/22/93	ATI-A	NA	NA	360	2.5	QN	0.5	0.5	0.5	2.6	0.5
5-19B	06/80	AS	QN	0.1	190		3.5	-	5.8	-	4	-
	11/90	E	Q	*	180	9	===	10	2	10	g	20
	01/91	Ħ	g	*	150	0.30	Q	0.30	0.60	0.30	15	0.60
	02/91	EH	QN	•	200	10	5.8	2.5	Q	2.5	14	5.0
ABB AS ATI-A = ATI-P = EH = =	 ABB = ASEA Brown Boveri AS = Assaigai Laboratories ATI-A = Analytical Technologi ATI-P = Analytical Technologi ER = Enseco (Rocky Mount EH = Enseco (Houston) 	Boveri Patories chnologies ky Mounta ston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerque Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)	enb	 Total PCB ii 1242, 1248, 1242, 1248, Standard rep Arodor 1016 Arodor 1221 Arodor 1232 Arodor 1242 	Total PCB includes Aroclo 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 A Aroclor 1221 = 0.50 A Aroclor 1242 = 0.50 A	Total PCB includes Aroclor 1016, 1221, 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 Aroclor 1248 = Aroclor 1221 = 0.50 Aroclor 1221 = 0.50 Aroclor 1264 = Aroclor 1242 = 0.50	21, 1232, = 0.50 = 1.0	 * 10 times sta Arockor 1016 Arockor 1242 Arockor 1221 Arockor 1221 ND = Not dett NA = Not ana 	ndard r 4 5 8cted	eporting limits Arodor 1248 Arodor 1254	

2105(3) NNV-SUM. 294 LAB-RES. CMB

i I

DANIEL B. STEPHENS & ASSOCIATES, INC. Environmental scientists and engineers

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 17 of 22

							Concentration (µg/L)	ion (µg/L)				
	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-19B	03/91	Ξ	QN	•	200	25	30	25	180	25	880	50
	04/91	표	QN	*	290	25	Q	25	210	25	880	50
	05/91	ΗIJ	Q	*	240	12	Q	0.50	0.71	0.50	5	1.0
	06/91	Ĥ	QN	*	290	25	7.5	0.50	2.2	0.50	52	1.0
	07/91	Ξ	Ą	NA	240	25	Q	0.50	0.58	0.50	4	1.0
	10/91	EB	AN	NA	140	2.5	Q	2.5	QN	2.5	12	2.5
	01/08/92	ER	A N	NA	240	5.0	Q	5.0	Q	5.0	0.6	5.0
	02/20/92	EB	Q	*	150	2.5	Q	2.5	QN	2.5	4.2	2.5
	03/19/92	ATI-P	Q	0.5	140	S	Q	0.5	QN	0.5	2.9	0.5
	04/29/92	ATI-P	Q	0.5	190	2.5	QN	0.5	Q	0.5	4.3	0.5
	10/13/92	ATI-P	NA	NA	130	1.0	QN	0.5	QN	0.5	4.4	0.5
5-20B	06/80	AS	QN	0.1	58	-	8		QN	ŀ	19	-
	11/90	Ŧ	Q	•	180	5.0	Q	5.0	Q	5.0	12	10
	01/91	Ξ	Q	*	63	1.0	4	1.0	g	1.0	53	0
	02/91	EH	Q	*	280	10	14	10	g	10	46	20
	02/91	Ξ	Q	*	110	5.0	Q	5.0	Q	5.0	g	5.0
	03/91	핖	QN	٠	200	5.0	QN	5.0	QN	5.0	DN	10
	 ABB = ASEA Brown Boveri AS = Assaigai Laboratories ATI-A = Analytical Technologic ATI-P = Analytical Technologic ER = Enseco (Rocky Mount EH = Enseco (Houston) 	Boveri oratories chnologies ky Mounta ston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerque Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)		 Total PCB ii 1242, 1248, 1 Standard rep Arodor 1016 Arodor 1221 Arodor 1232 Arodor 1242 	Total PCB includes Aroclo 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 A Aroclor 1221 = 0.50 A Aroclor 1232 = 0.50 A	Total PCB includes Aroclor 1016, 1221, 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 Aroclor 1248 = Aroclor 1221 = 0.50 Aroclor 1221 = 0.50 Aroclor 1264 = Aroclor 1242 = 0.50	21, 1232, = 0.50 = 1.0	 * 10 times sta Arocior 1016 Arocior 1242 Arocior 1221 Arocior 1221 ND = Not det NA = Not ana 	ndard # * * * * *	eporting limits Arodor 1248 Arodor 1254	

2105(3)UNV-SUM.294/LAB-RES.CMB

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 18 of 22

							Concentration (µg/L)	ion (µg/L)				
Vell No.	Date	Lab [†]	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-20B	04/91	Ŧ	QN	*	180	12	QN	1.0	Q	1.0	16	~
	05/91	Η	QN	*	160	5.0	Q	5.0	QN	5.0	32	e
	06/91	표	QN	*	300	25	 -:-	0.50	Q	0.50	15	1.0
	07/91	EH	NA	AN	13	5.0	 	0.50	1.0	0.50	54	1.0
	10/91	Ë	AA	NA	57	1.2	2.2	1.2	Q	1.2	Ŧ	- - -
	01/08/92	£	NA	AN	31	1.2	Q	1.2	QN	1.2	6.7	1.2
	05/01/92	ATI-P	NA	NA	22	0.5	3.9	0.5	4.9	0.5	6.2	0.5
	10/12/92	ATI-P	NA	NA	25	0.5	2.7	0.5	4.4	0.5	Ŧ	0.5
	04/21/93	ATI-A	NA	NA	14	0.5	QN	0.5	6.1	0.5	10	0.5
5-22B	10/90	AS	2.2²	0.1	QN	Ļ	Q	-	QN		QN	Ŧ
	01/91	표	134	*	9	0.50	2	0.50	QN	0.50	2	0.50
	02/91	Ŧ	Q	•	Q	0.50	g	0.50	Q	0.50	g	1.0
	03/91	ᇤ	QN	*	Q	0.50	2	0.50	Q	0.50	g	0.
	04/91	Ħ	Q	•	Q	0.50	g	0.50	Q	0.50	g	1.0
	05/91	표	Q	*	Q	0.50	g	0.50	QN	0.50	g	1.0
	06/91	Ħ	Q	*	6.1	0.50	5.5	0.50	13	0.50	28	1.0
	07/91	표	Q	·	QN	0.50	Q	0.50	QN	0.50	QN	1.0
ABB = ASB = AST = ATT-AS ATT-A = ATT-A = ATT-ASS = ATT-A	 ABB = ASEA Brown Boveri AS = Assaigai Laboratories ATI-A = Analytical Technologic ATI-P = Analytical Technologi ER = Enseco (Rocky Mount EH = Enseco (Houston) 	Boveri oratories chnologies ky Mounta ston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerque Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)	erdue X	 Total PCB ii 1242, 1248, 1 Standard rept Arodor 1016 Arodor 1221 Arodor 1222 Arodor 1242 	Total PCB includes Aroclo 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 A Aroclor 1221 = 0.50 A Aroclor 1242 = 0.50 A	r 1016, 122 rodar 1248 rodar 1254 rodar 1260	11, 1232, = 0.50 = 1.0	** 10 times sta ¹ Arocior 1016 ² Arocior 1242 ³ Arocior 1221 ³ Arocior 1221 ND = Not det NA = Not ana	indard 4 5 ected ilyzed	reporting limits Arodor 1248 Arodor 1254	

2105(3)UNV-SUM.294\LAB-RES.CMB

· · · · · · ·

DANIEL B. STEPHENS & ASSOCIATES, INC. ENVIRONMENTAL SCIENTISTS AND ENGINEERS

.

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 19 of 22

							Concentration (μg/L)	ion (µg/L)				
Vell No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-22B	09/91	EH	QN	. *	Q	0.50	2	0.50	QN	0.50	Q	1.0
	10/91	EB	QN	*	Q	0.50	9	0.50	Q	0.50	g	0.50
	11/91	ER	QN	1.0	Q	0.50	9	0.50	Q	0.50	9	0.50
	12/91	E	Q	1.0	Q	0.50	9	0.50	Q	0.50	2	0.50
	01/10/92	E	Q	1.0	Q	0.50	2	0.50	QN	0.50	2	0.50
	01/28/92	Ë	Q	1.0	g	0.50	Q	0.50	Q	0.50	g	0.50
	02/19/92	EB	QN	•	g	0.50	Q	0.50	Q	0.50	Q	0.50
	03/18/92	ATI-P	Q	0.5	2	0.5	Q	0.5	QN	0.5	g	0.5
	04/28/92	ATI-P	Q	0.5	g	0.5	Q	0.5	Q	0.5	g	0.5
	10/08/92	ATI-P	NA	NA	QN	0.5	QN	0.5	QN	0.5	DN	0.5
5-23B	10/90	AS	302	0.1	2.3		QN	Ŧ	QN	F	- ON	
	11/90	Ŧ	Q	*	5.1	0.50	g	0.50	Q	0.50	Q	1.0
	01/91	H	Q	*	3.0	0:30	Q	0.30	QN	0:30	g	09.0
	02/91	Η	g	*	6.6	0.50	Q	0.50	QN	0.50	g	1.0
	03/91	표	Q	*	8.5	0.50	Q	0.50	Q	0.50	1.2	1.0
	04/91	H	Q	*	5.0	0.50	Q	0.50	Q	0.50	g	1.0
	05/91	표	QN	٠	120	5.0	QN	0.50	QN	0.50	7.5	1.0
AS AS ATI-A BB ATI-A ATI-A = = EH = = = =	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuqi Analytical Technologies, Inc., Phoen Analytical Technologies, Inc., Phoen Enseco (Houston) Enseco (Houston)	Boveri oratories chnologies cy Mounta ston)	ASEA Brown Boveri Assaigai Laboratories Analyticai Technologies, Inc., Albuquerque Analyticai Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)	entue x	 Total PCB includes Arc 1242, 1248, 1254, and 1 Standard reporting limits: Arocior 1016 = 0.50 Arocior 1221 = 0.50 Arocior 1232 = 0.50 Arocior 1242 = 0.50 	Total PCB includes Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 Aroclor 1248 = 0.50 Aroclor 1221 = 0.50 Aroclor 1260 = 1.0 Aroclor 1222 = 0.50 Aroclor 1260 = 1.0 Aroclor 1242 = 0.50 Aroclor 1260 = 1.0	lor 1016, 122 80 Arodor 1248 Arodor 1250 Arodor 1260	:1, 1232, = 0.50 = 1.0	** 10 times sta ¹ Arocior 1016 ² Arocior 1242 ³ Arocior 1221 ND = Not det NA = Not ana	andard i * *	eporting limits Aroclor 1248 Aroclor 1254	

2105(3)/INV-SUM.294/LAB-RES.CMB

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 20 of 22

							Concentration (µg/L)	ion (µg/L)				
Vell No.	Date	Lab [†]	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-23B	06/91	H	QN	+	3.8	0.50	0.55	0.50	g	0.50	5.7	1.0
	07/91	EH	AN	AN	5.0	0.50	Q	0.50	2	0.50	t.3	1.0
	09/91	EH	NA	NA	2.1	0.50	g	0.50	g	0.50	÷	1.0
	10/91	ER	AN	NA	1.6	0.50	9	0.50	Q	0.50	g	0.50
	11/91	£	NA	NA	0.59	0.50	QN	0.50	Q	0.50	Q	0.50
	12/91	EB	NA	NA	Q	0.50	Q	0.50	Q	0.50	Q	0.50
	01/07/92	EB	NA	NA	0.65	0.50	Q	0.50	Q	0.50	g	0.50
	02/18/92	ER	NA	NA	QN	0.50	Q	0.50	Q	0.50	g	0.50
	03/17/92	ATI-P	AA	NA	Q	0.5	g	0.5	Q	0.5	g	0.5
	04/30/92	ATI-P	NA	NA	Q	0.5	g	0.5	Q	0.5	Q	0.5
	10/09/92	ATI-P	NA	NA	QN	0.5	QN	0.5	QN	0.5	QN	0.5
5-24B	10/90	AS	QN	0.1	63	-	QN	-	2.0		1.6	-
	11/90	ΗIJ	QN	*	100	5.0	Q	5.0	g	5.0	Q	10
	01/91	Ŧ	QN	*	40	0.50	0.55	0.50	0.74	0.50	Q	1.0
	02/91	ᇤ	QN	*	150	5.0	16	5.0	g	. 5.0	21	10
	03/91	H	QN	*	68	2.5	6 .8	2.5	Q	0.50	3.5	1.0
	04/91	EH	QN	•	230	12	QN	1.0	QN	1.0	6.3	2
т АВВ АS АП.А = АП.А = ЕН = ЕН = ЕН =	 ABB = ASEA Brown Boveri AS = Assaigai Laboratories ATI-A = Analytical Technologies, Inc., Albuqt ATI-P = Analytical Technologies, Inc., Phoen ATI-P = Analytical Technologies, Inc., Phoen ER = Enseco (Rocky Mountain Analytical) EH = Enseco (Houston) 	Boveri oratories chnologies ky Mountai ston)	ASEA Brown Boveri Assaigai Laboratories Analytical Technologies, Inc., Albuquerque Analytical Technologies, Inc., Phoenix Enseco (Rocky Mountain Analytical) Enseco (Houston)	nerdue Nerdue	* Total PCB ii 1242, 1248, 1248, * Standard rep Arodor 1016 Arodor 1221 Arodor 1222 Arodor 1222	Total PCB includes Aroclo 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 A Aroclor 1221 = 0.50 A Aroclor 1232 = 0.50 A	Total PCB includes Aroclor 1016, 1221, 1242, 1248, 1254, and 1260 Standard reporting limits: Aroclor 1016 = 0.50 Aroclor 1248 = Aroclor 1221 = 0.50 Aroclor 1221 = 0.50 Aroclor 1254 = Aroclor 1222 = 0.50 Aroclor 1222 = 0.50 Aroclor 1260 = Aroclor 1242 = 0.50	:1, 1232, = 0.50 = 1.0	** 10 times sta ¹ Arocior 1016 ² Arocior 1242 ³ Arocior 1221 ND = Not det NA = Not ana	indard i 4 8 ected	eporting limits Arodor 1248 Arodor 1254	

2105(3)\INV-SUM.294\LAB-RES.CMB

i

ļ

ļ

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 21 of 22

			-				Concentration (µg/L)	tion (µg/L)				
Vell No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-24B	05/91	H	QN	*	4.3	0.50	QN	0.50	Q	0.50	1.3	1.0
	06/91	H	QN	*	280	25	0.86	0.50	0.64	0.50	13	1.0
	07/91	Н	NA	NA	130	5.0	QN	0.50	Q	0.50	8.7	1.0
	09/91	표	NA	AN	250	12	0.54	0.50	Q	0.50	12	1.0
	10/91	ER	NA	AA	140	2.5	QN	2.5	Q	2.5	QN	2.5
	11/91	Ш	NA	NA	180	5.0	QN	5.0	QN	5.0	QN	5.0
	12/91	E	NA	AN	180	5.0	QN	5.0	Q	5.0	QN	5.0
	01/07/92	ER	NA	NA	120	2.5	QN	2.5	Q	2.5	QN	2.5
	02/18/92	БЯ	NA	AN	140	2.5	QN	2.5	Q	2.5	QN	2.5
	03/17/92	ATI-P	NA	AN	120	S	Q	0.5	0.8	0.5	1.4	0.5
	04/30/92	ATI-P	AN	NA	100	0.5	2.1	0.5	1.4	0.5	2.2	0.5
	10/13/92	ATI-P	AN	AN	 2.	0.5	QN	0.5	0.8	0.5	0.8	0.5
	04/21/93	ATI-A	NA	NA	DN	0.5	ND	0.5	0.7	0.5	1.4	0.5
5-35B	04/22/93	ATI-A	NA	NA	360	12.5	1400	12.5	130	12.5	1700	12.5
5-41B	10/09/92	ATI-P	NA	AN	47	0.5	3.9	0.5	0.7	0.5	1.0	0.5
	04/20/93	ATI-A	NA	٩	1.4	0.5	ND	0.5	2.5	0.5	2.1	0.5

2105(3)UNV-SUM.294\LAB-RES.CMB

AS = Assaigai Laboratories ATI-A = Analytical Technologies, Inc., Albuquerque ATI-P = Analytical Technologies, Inc., Phoenix ER = Enseco (Rocky Mountain Analytical) EH = Enseco (Houston)

= ASEA Brown Boveri

† ABB

** 10 times standard reporting limits

* Total PCB includes Aroclor 1016, 1221, 1232,

1242, 1248, 1254, and 1260 * Standard reporting limits:

⁴ Aroclor 1248 ⁵ Aroclor 1254

¹ Arocior 1016 ² Arocior 1242 ³ Arocior 1221 ND = Not detected NA = Not analyzed

Arodor 1248 = 0.50Arodor 1254 = 1.0Arodor 1260 = 1.0

Arodor 1016 = 0.50 Arodor 1221 = 0.50 Arodor 1232 = 0.50 Arodor 1242 = 0.50

DANIEL B. STEPHENS & ASSOCIATES, INC. ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 7. Summary of Ground-Water Analytical Results, November 1989 Through April 1993 Thoreau Compressor Station Page 22 of 22

							Concentration (μg/L)	ion (µg/L)				
Well No.	Date	Lab⁺	Total PCB [‡]	Reporting Limit	Benzene	Reporting Limit	Toluene	Reporting Limit	Ethyl- benzene	Reporting Limit	Total Xylenes	Reporting Limit
5-47B	10/07/92 ATI-P	ATI-P	AN	NA	1.0	0.5	g	0.5	Q	0.5	QN	0.5
	04/20/93	ATI-A	NA	NA	2.9	0.5	DN	0.5	QN	0.5	QN	0.5
5-48B	10/12/92	ATI-P	AN	AN	380	2.5	1100	25	84	2.5	840	2.5
	04/21/93	ATI-A	NA	NA	66	12.5	390	12.5	34	12.5	360	12.5
5-57B	04/19/93	ATI-A	NA	NA	DN	0.5	DN	0.5	QN	0.5	ΩN	0.5
5-58B	04/19/93	ATI-A	NA	NA	QN	0.5	Q	0.5	QN	0.5	QN	0.5

** 10 times standard reporting limits	⁴ Aroclor 1248	⁵ Arodor 1254				DA 7
** 10 times stand	¹ Aroclor 1016	² Aroclor 1242	³ Arodor 1221	ND - Not detected		
oclor 1016, 1221, 1232,	260		Aroclor 1248 = 0.50	Aroclor $1254 = 1.0$	Aroclor $1260 = 1.0$	
[‡] Total PCB includes Aroclor 1016, 1221, 1232,	1242, 1248, 1254, and 1260	* Standard reporting limits:	Arocior 1016 = 0.50	Aroclor $1221 = 0.50$	Aroclor 1232 = 0.50	Arocior 1242 = 0.50
	AS = Assaigai Laboratories	ATLE = Analytical rectinologies, inc., Albuquerque ATLE = Analytical Tochaclonica has Dhamic	ED _ Encond (Docky Mountain Analytical)	E Elisero (Houston)		

2105(3)UNV-SUM.294LAB-RES.CMB

DANIEL B. STEPHENS & ASSOCIATES, INC. ENVIRONMENTAL SCIENTISTS AND ENGINEERS

(((

Table 8. Summary of Ground-Water Inorganic Chemical Results, April 1993 Thoreau Compressor Station

						Concentration (mg/L)	ion (mg/L)				
Well No.	Date	Sulfate	Reporting Limit	Sulfide	Reporting Limit	Dissolved Iron	Reporting Limit	Nitrate as N	Reporting Limit	Bromide	Reporting Limit
5-02B	04/22/93	300	5	DN	1.0	2.77	0.020	NA	NA	NA	NA
5-03B	04/20/93	85	5	NA	NA	QN	0.020	NA	NA	NA	NA
5-04B	04/21/93	68	5	NA	NA	0.751	0.020	NA	NA	NA	NA
5-05B	04/21/93	140	5	NA	NA	0.208	0.020	NA	NA	NA	NA
5-16B	04/20/93	20	5	DN	1.0	0.110	0.020	NA	NA	NA	NA
5-18B	04/22/93	82	5	NA	NA	0.122	0.020	NA	NA	NA	NA
5-20B	04/21/93	26	5	AN	NA	1.08	0.020	NA	NA	NA	NA
5-24B	04/21/93	99	5	NA	NA	0.099	0.020	NA	NA	NA	NA
5-35B	04/22/93	30	5	QN	1.0	1.87	0.020	QN	0.06	0.6	0.1
5-35B*	04/22/93	59	5	DN	1.0	1.89	0.020	ND	0.06	NA	NA
5-41B	04/20/93	02	5	NA	NA	0.082	0.020	NA	NA	NA	NA
5-47B	04/20/93	65	5	NA	NA	0.748	0.020	NA	NA	NA	NA
5-48B	04/21/93	99	5	QN	1.0	0.661	0.020	0.27	0.06	NA	NA
5-57B	04/19/93	20	5	NA	NA	QN	0.020	NA	NA	NA	NA
5-58B	04/19/93	77	5	QN	1.0	QN	0.020	NA	NA	NA	NA

ND = Not detected NA = Not analyzed

* Fictitious replicate

All samples analyzed by Analytical Technologies, Inc., Phoenix, Arizona

2105(3)\NV-SUM.294\NORGRES.294

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 9. Summary of BTEX Concentrations in Soil Vapor fromNovember 1993 SVE Pilot TestThoreau Compressor Station

					Concer (ppi		
Well No.	Date	Time	Laboratory	Benzene	Toluene	Ethyl- benzene	Total Xylenes
5-35B	11/03/93	1440	Core	30	220	48	522
			HEAL	28	151	5	40.5
			GC	<0.1	>200	<5.0	77.1
	11/04/93	1230	Core	38	262	47	590
			HEAL	25	141	6	51.3
			GC	<0.1	>200	<5.0	116.2
5-34B	11/04/93	1610	Core	192	969	96	552
			HEAL	74	182	5	43.2
			GC	<0.1	>200	<5.0	106.1
5-04B	11/05/93	0950	Core	<1	31	6	76
			HEAL	2	14	2	10.3
			GC	<0.1	59.1	<5.0	44.6
5-05B	11/05/93	1215	Core	<1	2	<1	6
			HEAL	0.1	2	0.2	1.8
			GC	<0.1	<5.0	<5.0	<5.0

Core = Core Laboratories, Houston, Texas

HEAL = Hall Environmental Analysis Laboratory, Albuquerque, New Mexico, concentrations converted from µg/L to ppmv using the ideal gas law.

GC = Hand-held gas chromatograph

APPENDIX A

WELL ABANDONMENT REPORT

ľ

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

June 4, 1992

0388-2105-92

Mr. Bill Olson Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87504-2088

RE: Closure of Deep Monitor Wells 5-1A and 5-3A, and Shallow Monitor Wells 5-7B, 5-8B, 5-26B and 5-27B at Transwestern Pipeline Company, Compressor Station No. 5, Thoreau, N.M.

Dear Mr. Olson:

The purpose of this letter is to describe closure (abandonment) details for Thoreau monitor wells 5-1A, 5-3A, 5-7B, 5-8B, 5-26B, and 5-27B as required by OCD correspondence dated March 12, 1992. The wells were abandoned during the period April 23 to May 7, 1992.

WELL CLOSURE PROCEDURES

For all well closure procedures described below, depth measurements were referenced from ground surface. All casing and annulus depths were made using either an electronic sounding device or a tremie pipe. All volume calculations were based on the assumption that 18.2 sacks of hydrated cement are equal to 1 cubic yard.

All neat cement grout mixtures, with the exception of monitor well 5-1A, consisted of 7.5 gallons of water and 4 pounds of bentonite per 94-lb sack of type 1 & 2 cement. This mixture yielded approximately 14.2 lb/gal of cement having a specific gravity of 1.67. The bentonite used in 5-1A was a high yield material (SUPER GEL-X); therefore, only 2 pounds of bentonite per sack of cement were added in the above-mentioned mixture.

SHALLOW MONITOR WELLS 5-7B, 5-8B, 5-26B and 5-27B

The shallow monitor wells were abandoned by filling the 2-inch PVC monitor well screen and casing from total depth to the surface with a bentonite neat cement grout. The grout was pumped from the bottom up through a 1-inch PVC tremie pipe. The steel monitor well vault cover was welded in place, and a steel identification plate with the well number and abandonment date was welded to the vault cover. Photographs of the identification plates are included in Attachment I, and well construction diagrams are included as Attachment II.

MONITOR WELL 5-1A

An attempt was made to pull the entire well casing from the borehole. However, the casing could not be pulled using two 12-ton hydraulic jacks along with jars and the rig hydraulics pulling approximately 78,000 pounds. The casing stretched 3.5 inches, indicating material had fallen in

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Mr. Bill Olson June 4, 1992 Page 2

around the casing at depth. A tremie pipe was lowered into the casing and the total depth of the well was measured at 663.5 feet.

The tremie pipe was removed and a mechanical perforating tool was lowered in the casing to a depth of 606 feet. A total of 59 perforations measuring 5/16 inches wide by 1 3/4 inches long were cut in the casing at approximately 25-foot intervals from total depth to 27 feet below ground surface. The tremie pipe was then lowered in the casing to a depth of 645 feet, and 2.08 cubic yards (38 sacks) of cement were pumped through the tremie into the casing. Six joints of tremie pipe were removed from the casing to eliminate the possibility of cementing the tremie in the hole. The cement was allowed to set up for approximately 4 hours. The tremie was then lowered into the casing and the top of the grout was tagged at 573.5 feet. An additional 2.08 cubic yards (38 sacks) were pumped through the tremie into the casing, and the tremie was then pulled from the casing.

The following morning the tremie pipe was used to tag the top of the cement at 210 feet. A 1-inch PVC tremie pipe was lowered in the annulus between the 10.75-inch surface pipe and the 6.25-inch well casing. The tremie would not pass below 82 feet, indicating a bridge or slough in the annulus. A total of 3.7 cubic yards (68 sacks) of cement were pumped in the casing and annulus alternating between the 2.67-inch steel tremie in the casing and the 1-inch PVC tremie in the annulus. The level of cement in the annulus was kept higher than that in the casing to eliminate the possibility of diluting the annular seal with displaced formation water through the perforations. Monitor well 5-1A required a total of 7.9 cubic yards (144 sacks) to bring the level of the cement to ground surface. The surface casing was then cut off, and a steel cap with the well number and abandonment date was then welded to the top of the surface casing (see Attachment I).

MONITOR WELL 5-3A

Monitor well 5-3A was gravel packed from the bottom of the well screen to 23 feet below ground surface; therefore, no attempt was made to pull the casing. A perforating tool attached to the tool line was lowered into the casing. The total depth of the well was measured at 433.8 feet. A total of 48 perforations measuring 5/16 inches wide by 1 3/4 inches long were cut in the casing at approximately 25-foot intervals from 428 feet to 56 feet below ground surface. The perforator was then pulled from the casing.

The following morning, the tremie pipe was lowered into the casing to a depth of 424.9 feet, and 1.1 cubic yards (20 sacks) of cement were pumped in the casing through the tremie pipe from the bottom up. Five joints of tremie pipe were pulled from the casing to eliminate the possibility of cementing the tremie in the casing. The cement was allowed to set up for four hours. The

2105\OLSON.604

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Mr. Bill Olson June 4, 1992 Page 3

tremie pipe was then lowered in the casing and the cement was measured at 332.6 feet. The tremie was elevated to 329.3 feet, and an additional 1.1 cubic yards (20 sacks) of cement were pumped in the casing through the tremie pipe from the bottom up and allowed to set up overnight.

The following morning the tremie was lowered into the casing and the cement was measured at 264.8 feet. The tremie pipe was elevated to 234.8 feet below ground surface, and 1.1 cubic yards (20 sacks) of cement were pumped through the tremie in the casing from the bottom up. The cement was allowed to set up for approximately 5.5 hours. The tremie was then lowered in the hole and the cement measured at 168 feet below ground surface. The tremie pipe was elevated in the casing to 140.4 feet, and 1.7 cubic yards (31 sacks) were pumped in the casing, bringing the grout to the surface. Monitor well 5-3A required 5 cubic yards (91 sacks) of cement to bring the level of the cement to ground surface. The surface casing was cut off, and a steel cap with the well number and abandonment date was then welded to the top of the surface casing (see Attachment I).

If you have any questions concerning these procedures or need more information, please call me.

Sincerely,

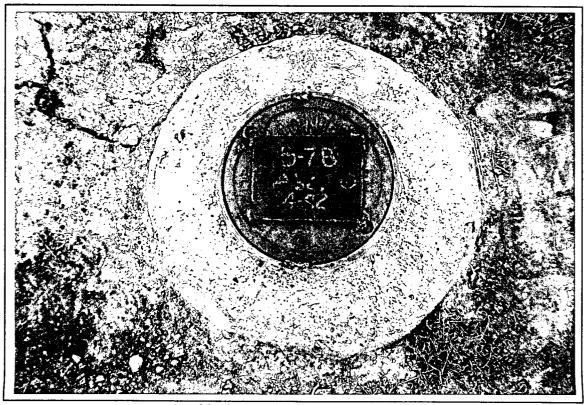
DANIEL B. STEPHENS & ASSOCIATES, INC.

XC

K.C. Thompson Geologist

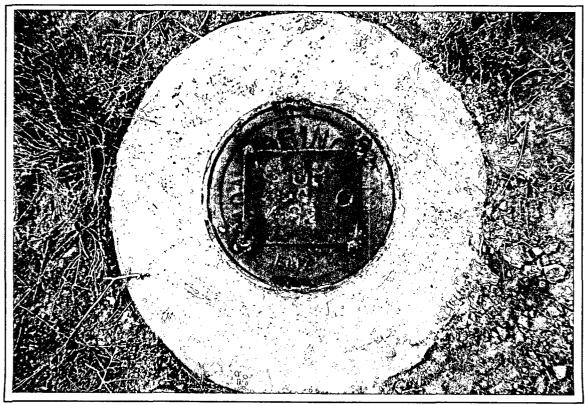
cc: Ted Ryther Enron

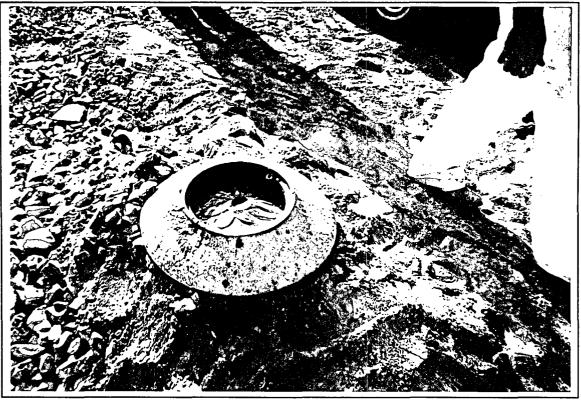
your Hilten

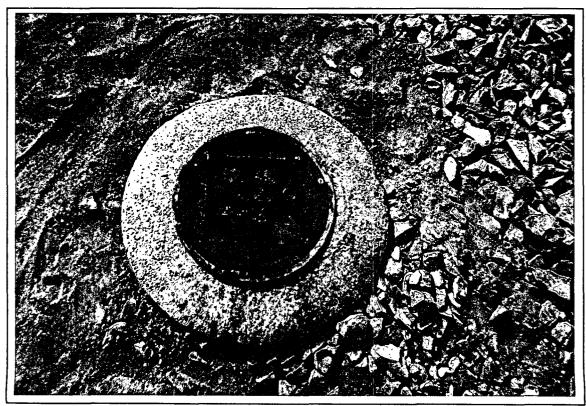

Joanne Hilton Project Manager

2105\OLSON.604

ATTACHMENT I PHOTOGRAPHS


Monitor well 5-7B prior to abandonment


Monitor well 5-7B abandoned


Monitor well 5-8B cement grout level at surface, prior to welding steel abandonment cap

Monitor well 5-8B abandoned

Monitor well 5-26B cement grout level at surface, prior to welding steel abandonment cap



Monitor well 5-26B abandoned

Monitor well 5-27B cement grout level at surface, prior to welding steel abandonment cap

Í

Monitor well 5-27B abandoned

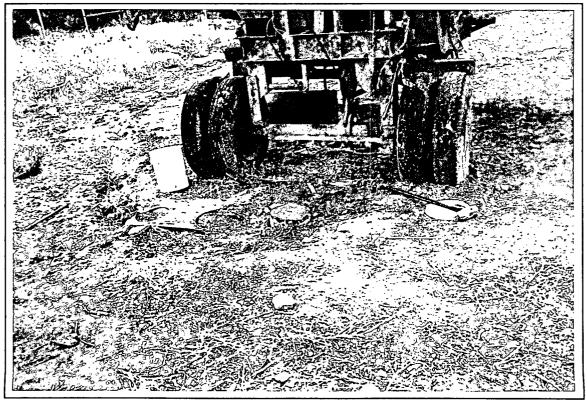


Pumping cement grout



Steel abandonment cap welded to surface casing

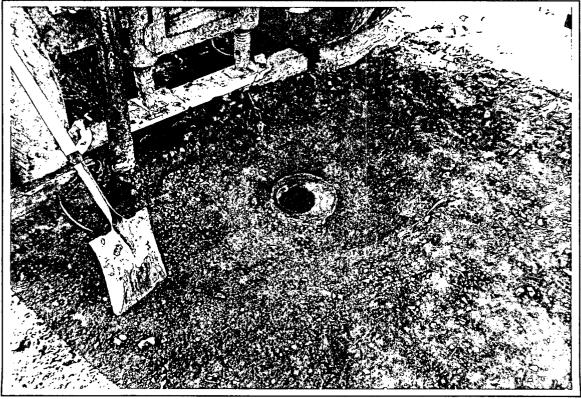
Ļ


Cement grout level at surface, prior to welding steel abandonment cap

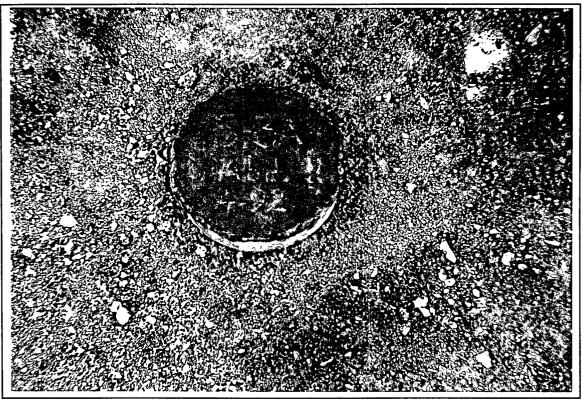
Measuring tremie pipe

3

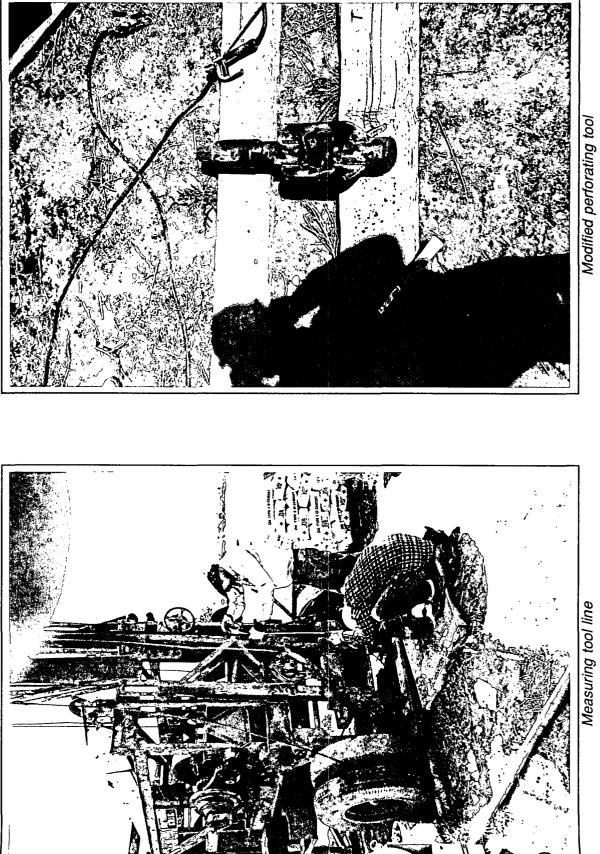
1


Monitor well 5-1A abandoned

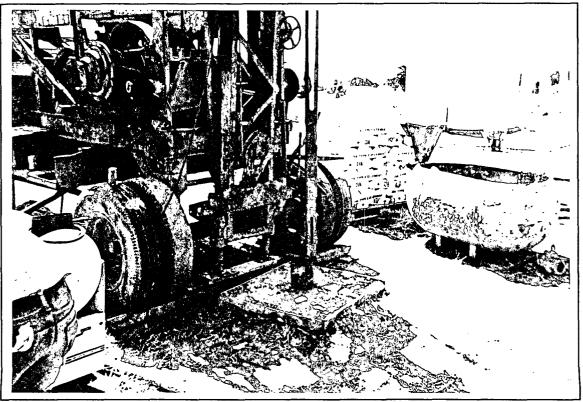
>


1

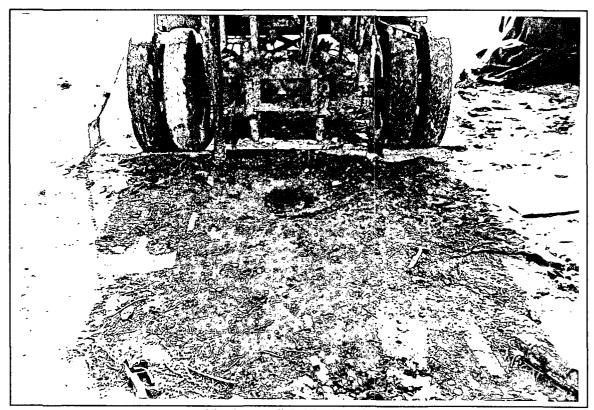
Test perforation at surface


Cement grout level at surface, prior to welding steel abandonment cap

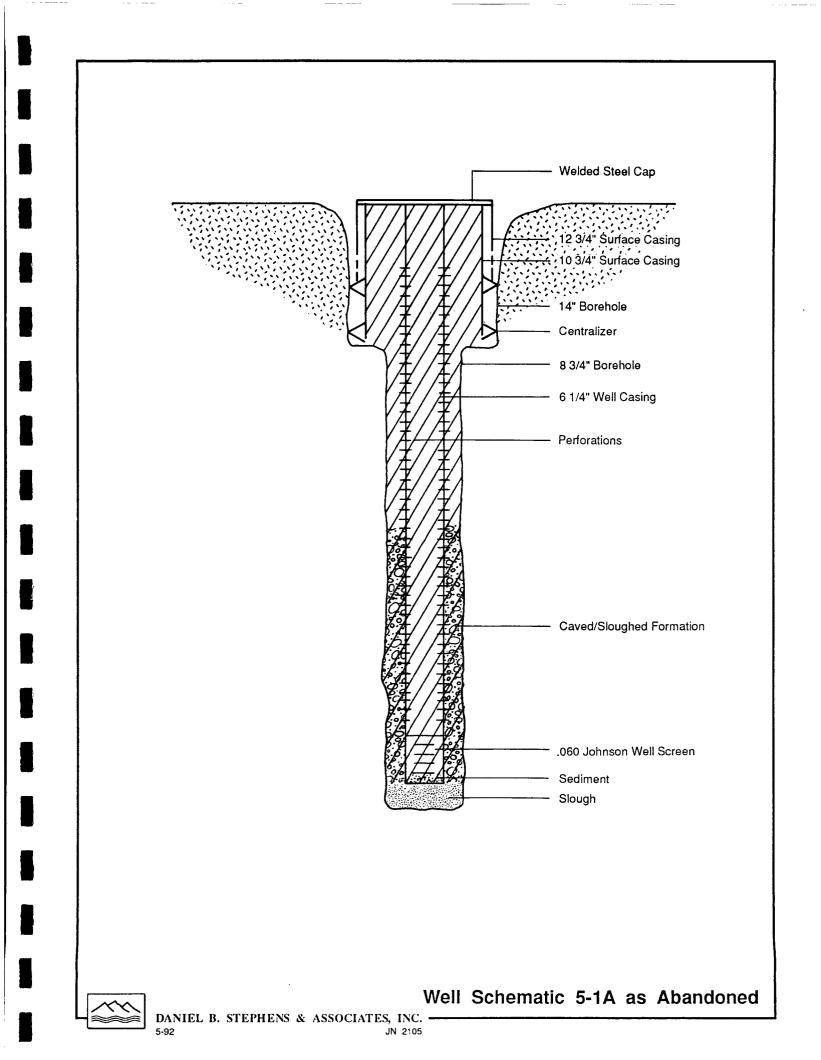
Steel abandonment cap welded to surface casing

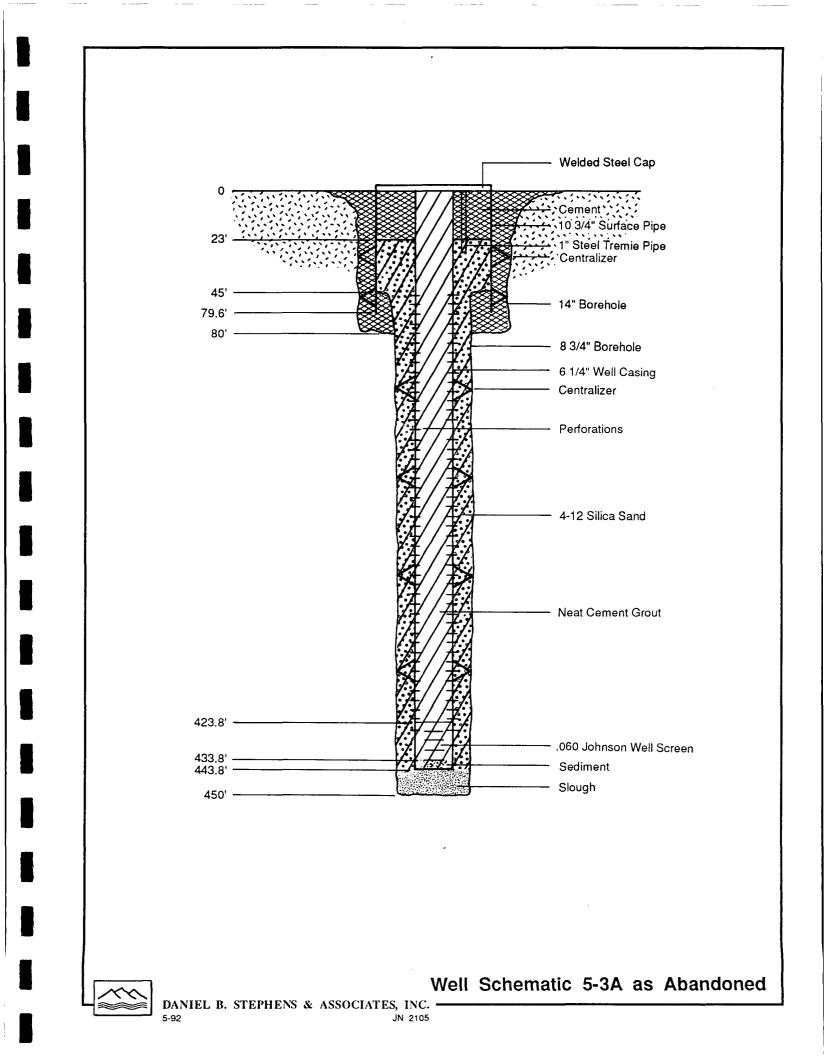


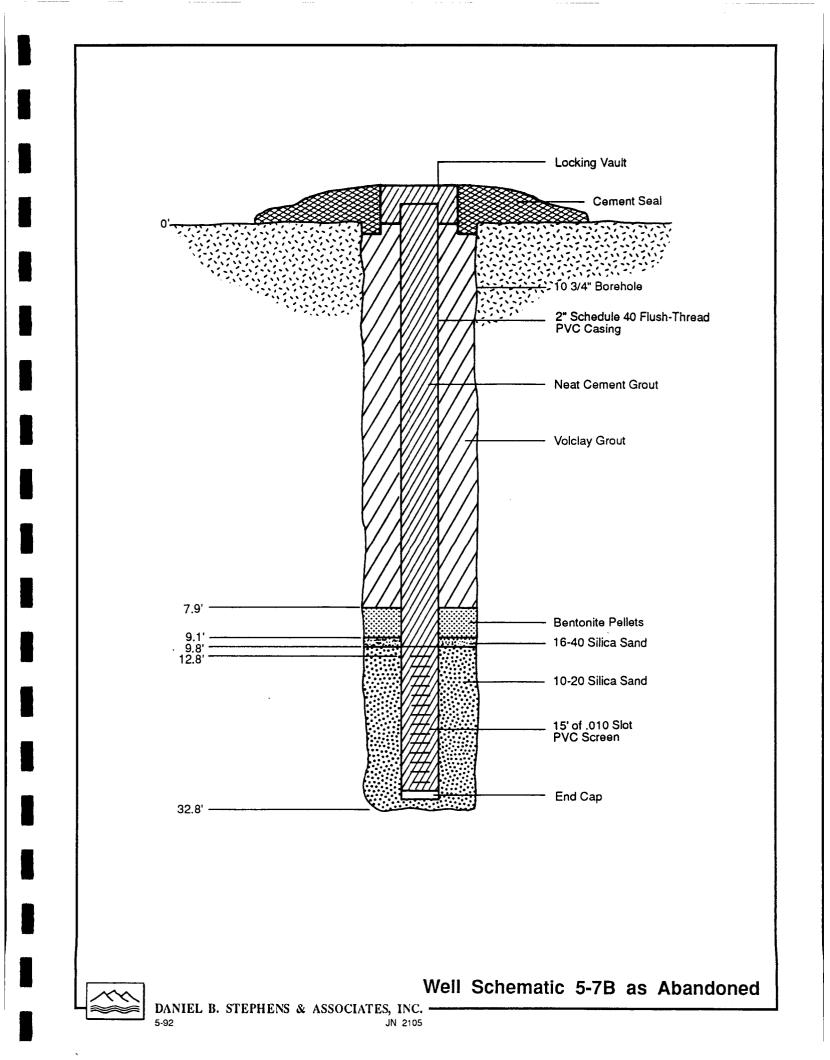
Mixing cement grout

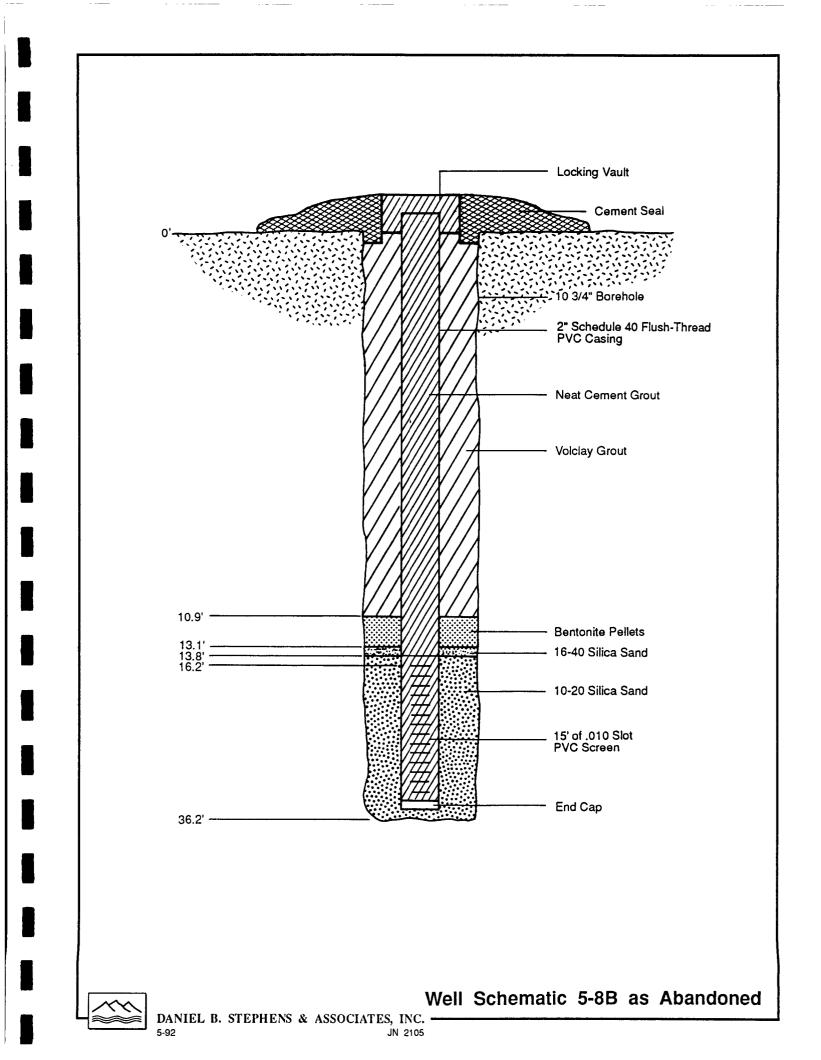


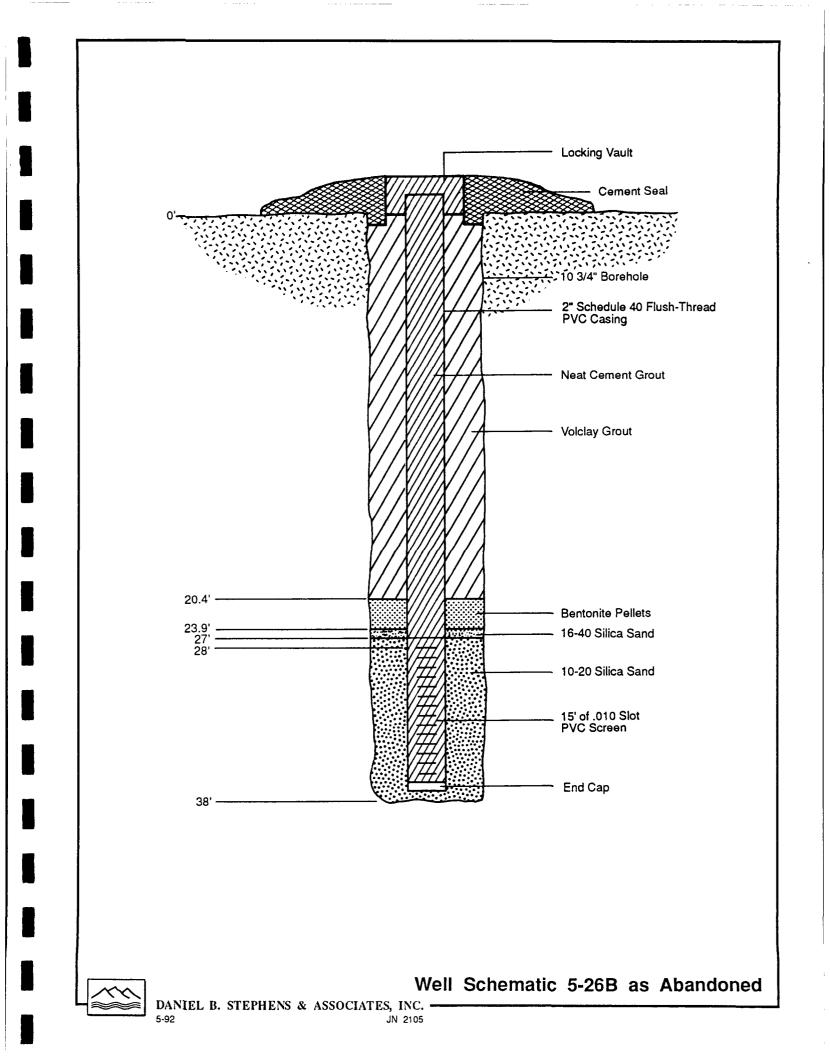
Perforating knife

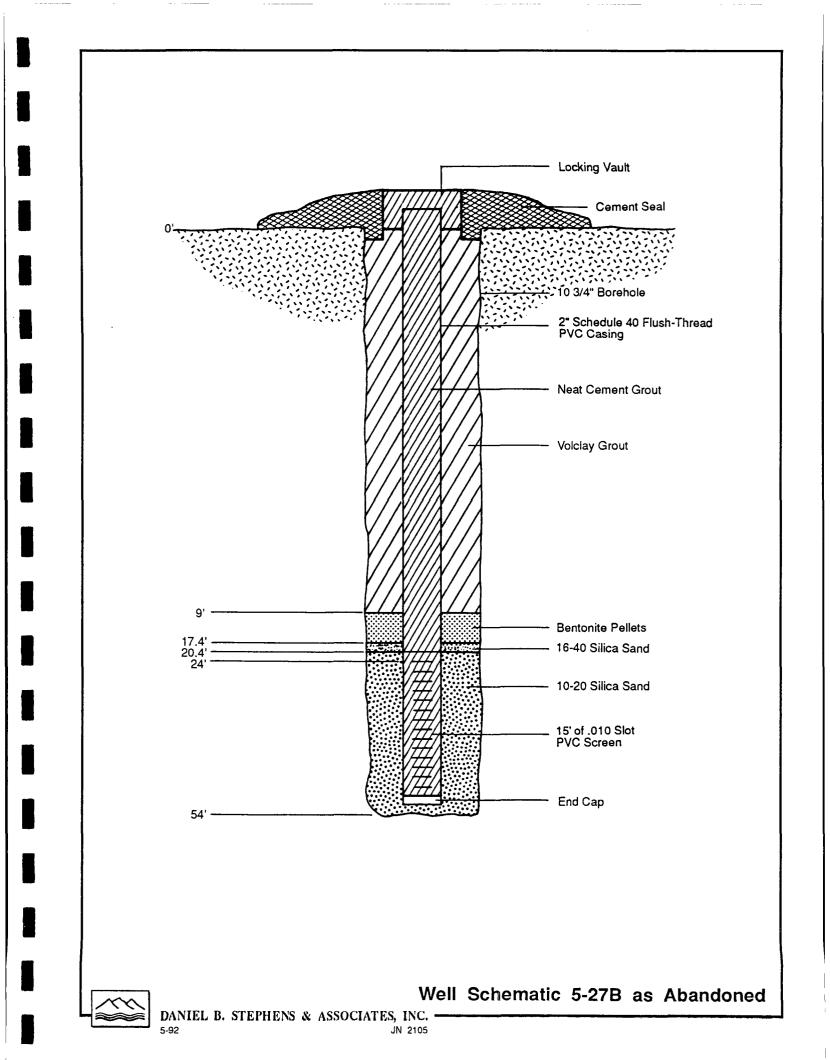



Entire perforating assembly




Monitor well 5-3A abandoned


ATTACHMENT II WELL SCHEMATICS



APPENDIX B

BIOREMEDIATION PILOT TEST INFORMATION

PILOT TEST OF NITRATE-ENHANCED HYDROCARBON BIOREMEDIATION

IN A MODERATE- TO LOW-PERMEABILITY AQUIFER

Joanne Hilton¹, Bob Marley¹, Ted Ryther, P.E.², Jeffrey Forbes¹

¹Daniel B. Stephens & Associates, Inc. Albuquerque, New Mexico

²Consulting Engineering Services Houston, Texas

Abstract

A pilot test was conducted to determine the feasibility of using nitrate as an oxidant to enhance hydrocarbon bioremediation in a moderate- to low-permeability aquifer. The aquifer consists of approximately 15 feet of saturated silty sand, with an average hydraulic conductivity of approximately 0.28 ft/day and an average depth to water of 48 feet below land surface. A recirculating injection/extraction system was used to introduce potassium nitrate into the aguifer. The injection well was installed 15 feet upgradient of the extraction well, with a monitoring well placed halfway between the two. Soil samples collected during drilling were analyzed for denitrifying bacterial population, nutrients, and hydrocarbons. Potassium nitrate, sodium bromide, and monosodium phosphate were injected into the recirculating ground water via an automatic metering pump. Field measurements of nitrate and bromide in the monitoring and extraction wells were made with ion selective electrodes, and water samples were sent to an analytical laboratory to verify the field measurements. The nitrate-to-bromide ratios were evaluated to determine nitrate consumption rates. Total petroleum hydrocarbons, benzene, toluene, ethylbenzene and total xylene were also monitored. Toluene, ethylbenzene and total xylene concentrations decreased during the pilot test period, but no reduction in benzene was observed. The presence of nitrite, along with the observed reduction in dissolved hydrocarbon concentrations, indicated that denitrification was occurring.

Introduction and Site Description

A pilot test of nitrate-enhanced hydrocarbon bioremediation was conducted at a natural gas compressor station in western New Mexico. The site is situated on the southern end of the San Juan Structural Basin within the Colorado Plateau physiographic province. The pilot test area consists of approximately 60 feet of alluvium comprised mostly of reddish-brown, silty, fine sand having moderate to low permeability. Perched ground water is encountered at approximately 48

Hilton, J.A., R. Marley, T. Ryther, and J. Forbes. 1992. Pilot test of nitrate-enhanced bioremediation in a moderate-to-low permeability aquifer. NGWA Petroleum Hydrocarbons and Organic Chemicals in Ground Water. Houston, Texas.

feet below land surface. The average natural hydraulic gradient in the perched alluvial aquifer is approximately 0.03 ft/ft, the average hydraulic conductivity is about 0.28 ft/day (10^{-4} cm/sec), and the site average ground-water flow velocity in the alluvium is approximately 30 ft/year. The alluvium is underlain by the Triassic Chinle Formation which is comprised mostly of red claystones and mudstones and is roughly 1000 to 1300 feet thick. The regional water table lies about 400 feet beneath the site, within the upper Chinle Formation.

Dissolved hydrocarbons, including benzene, toluene, ethylbenzene and xylene (BTEX) have been detected in perched ground water at the site. The source of the hydrocarbons in ground water is believed to be primarily natural gas condensate. Natural gas is composed mostly of alkane compounds, with methane being the most abundant (Eiceman, 1986). In addition, natural gas contains variable concentrations of heavier molecular weight hydrocarbons (C_{4+}) which may condense due to changes in temperature and pressure within the distribution pipelines. The condensate is removed from the pipeline through "pigging" operations, which make use of a cylindrical piston-like device known as a "pig". The pig cleans the condensate from the interior pipeline wall by scraping and brushing as it is carried through the pipeline by the pressurized gas stream. Two major classes of organic chemicals are contained in the condensate: (1) alkanes/ alkenes and (2) benzene/alkylated benzenes. While currently all condensate from pigging operations is contained, past practices resulted in release of hydrocarbons to the perched ground water beneath the site.

Nitrate-enhanced hydrocarbon bioremediation was selected for consideration at the site because moderate to low permeabilities limited the feasibility of using either pump-and-treat remediation or in-situ techniques requiring flushing of large volumes of water or air. The objective of the pilot test was to evaluate the feasibility of using nitrate to stimulate bioremediation of the dissolved hydrocarbons and to apply information from the pilot test to a site wide design.

Theory of Nitrate-Enhanced Bioremediation

Most biodegradation reactions result from oxidation of hydrocarbons to carbon dioxide (CO₂) and water (H₂O). For example, the oxidation of benzene (C₆H₆) may occur according to the following reaction:

Thus oxidation of one mole of benzene requires $7\frac{1}{2}$ moles of molecular oxygen. As shown by the above reaction, oxidative biodegradation usually involves molecular oxygen (O₂) as the oxidizing agent (oxidant), but this need not always be the case. In the more general sense, oxidation of an organic compound, or any other substance, simply requires transfer of electrons from the substance being oxidized to the oxidizing agent, which is thereby reduced to a lower oxidation state. The numbers above the reactants and products in Rxn. 1 give the oxidation states of the elements that make up the compounds. In this case, carbon has been oxidized through the removal of electrons, raising its oxidation state from -1 to +4. Molecular oxygen (O₂) serves as the electron acceptor and is thereby reduced from an oxidation state of 0 to -2.

Oxidants other than molecular oxygen are also possible. The nitrate ion (NO_3^-) may serve as an oxidant (electron acceptor), as shown in the following oxidation reaction:

$$-CH_{-} + NO_{3}^{-} + H^{+} \longrightarrow CO_{2} + \frac{1}{2}N_{2} + H_{2}O \qquad \text{Rxn. 2}$$

In this reaction, the hydrocarbon (symbolized -CH-) is oxidized to carbon dioxide and water, while nitrate is simultaneously reduced to N_2 gas, a process known as denitrification¹. In Rxn. 2, 1 mole of nitrate is capable of oxidizing 1 mole of carbon atoms. Note also that Rxn. 2 is pH-dependent. Although thermodynamics indicate that the reaction should proceed to the right at near-neutral pH conditions, the very high activation energy causes the rate to be very slow. Therefore, denitrification would proceed exceedingly slowly were it not for denitrifying bacteria, which manufacture enzymes to facilitate the reaction. Genera of bacteria which are known to perform denitrification include Pseudomonas, Escherichia, Bacillus, and Proteus, though not all of these are capable of complete reduction of nitrate to nitrogen gas (Fenchel and Blackburn, 1979). Thus, Rxn. 2 is a simplification of a complex set of reaction steps through several transient intermediate nitrogen species, including the nitrite ion (NO_2^-) , nitric oxide (NO), and nitrous oxide (N_2O) . The nitrate-nitrite reduction reaction is generally the rate-limiting step in the overall reaction (Postma et al., 1991). Indeed, some laboratory experiments performed with an excess of available nitrate have been shown to proceed only as far as nitrite (NO_2^-) , instead of going all the way to di-nitrogen gas (Hutchins, 1991).

Oxidation-reduction reactions that occur naturally in ground water generally follow in strict succession, with those reactions that yield the most energy occurring first at the highest redox potential, and those yielding the least energy occurring last at the lowest redox potential (Drever, 1982). Providing there is an excess of organic matter to act as a reducing agent, aerobic oxidation of the organic matter by O_2 will generally proceed until all molecular oxygen is consumed. Only then will denitrification commence. Following consumption of all of the nitrate, subsequent redox reactions may occur at successively lower redox potentials (e.g., $Fe^{3+} \rightarrow Fe^{2+}$, $SO_4^{2-} \rightarrow H_2S$). Each of these successive reactions causes a phenomenon known as "redox buffering," which causes the redox potential of the ground water to be fixed at a value close to that of the redox pair in question (Drever, 1982).

Although the ability of denitrifying bacteria to fully degrade or "mineralize" certain petroleum hydrocarbons to CO_2 and H_2O under both laboratory and field conditions is now undisputed (Kuhn et al., 1988; Hutchins et al., 1991), the full-scale application of nitrate-enhanced hydrocarbon biodegradation remains experimental. Previous laboratory "microcosm studies" conducted under controlled denitrifying conditions (anaerobic) have revealed the following phenomena (Hutchins, 1991):

- Dissolved toluene, ethylbenzene, meta-xylene and para-xylene (TEX) initially present as sole-source substrates at mg/l levels can be successfully degraded by denitrifying bacteria to <0.5 μg/l, with toluene generally being degraded most rapidly.
- 2. Ortho-xylene is not degraded when present as a sole-source substrate, but is slowly degraded in the presence of other hydrocarbons.
- 3. Benzene is not generally degraded under strictly denitrifying (anaerobic) conditions, regardless of the presence of other hydrocarbons, but degradation of benzene has been observed in several field studies, presumably due to the presence of low concentrations of dissolved oxygen.

¹ "Denitrification" refers to the reduction of nitrate-nitrogen to di-nitrogen gas. The term refers to the conversion of NO₃⁻ to N₂, the dominant natural process by which nitrogen is removed from soils. The reverse reaction is termed "nitrification".

- 4. Rates of biodegradation under denitrifying conditions for those compounds which are degraded are typically slower than equivalent rates under aerobic conditions.
- 5. Although the stoichiometry suggests that approximately 1 kg of nitrate-nitrogen is required to oxidize 1 kg of BTEX (Rxn. 2), nearly ten times as much nitrogen is actually consumed in field applications of nitrate-enhanced bioremediation, possibly due to the oxidation of other non-BTEX hydrocarbons (e.g., alkanes).
- 6. Denitrification rates are pH dependent, with optimum conditions being in the range pH 6 to 8.

The principal advantage of in-situ nitrate-based bioremediation of hydrocarbons in ground water, as opposed to oxygen-based aerobic biodegradation, is that it is possible to introduce more oxidizing power into the subsurface using nitrate than would be possible using oxygen, due to the low aqueous solubility of the latter (\approx 9 mg/l @ 20°C with air @ 1 atm., \approx 44 mg/l with oxygen). Nitrate salts, on the other hand, are extremely soluble in water (>100 g/l), and the nitrate ion is generally considered to be a conservative solute in the ground-water environment, and therefore highly mobile. Given that 1 mole of nitrate-nitrogen has the same oxidizing power as 5/4 mole of O₂, nitrate at the concentration of the drinking water standard (10 mg/l NO₃-N) has approximately three times the oxidizing capacity as dissolved oxygen at saturation (9 mg/l). If nitrate is injected at concentrations higher than 10 mg/l NO₃-N, hydrocarbons can be degraded at a more rapid rate.

Pilot System Installation and Operation

Figure 1 shows a schematic of the pilot system, which was designed to operate unattended for up to 5 days at a time. The pilot system consists of a single injection well located 15 feet upgradient of an extraction well, with a monitoring well located halfway between the injection and extraction wells (Figure 1). While this type of spacing would not be considered to be economically feasible for a full-scale remedial design, it was chosen for the pilot test so that results could be observed within a relatively short time period.

Drilling and Soil Sample Collection

The pilot test location was chosen based on the delineation of the hydrocarbon plume and proximity to the original release. Previous installation of 2-inch monitoring wells at that location, using hollow stem-auger techniques, proved difficult within the saturated, heaving sands encountered at the site. Consequently, a cable tool rig, capable of advancing casing with the bit, was chosen in hopes of minimizing flowing sands entering the boring during drilling, thereby simplifying installation of the 4-inch pilot test wells.

Pilot system wells were drilled to approximately 65 feet. Prior to each drilling operation, all drilling equipment, soil samplers, and well materials were thoroughly decontaminated by steam cleaning. In addition, down-hole sampling devices were decontaminated prior to collection of all samples by scrubbing them in a solution of deionized water and liquinox, followed by a deionized water rinse.

Soil samples were collected with a 2.5-inch ID split spoon sampler lined with brass rings. Soil samples were collected within the vadose zone immediately above the water table, the middle of the saturated alluvium, and at the bottom of the aquifer. Samples were analyzed for total and

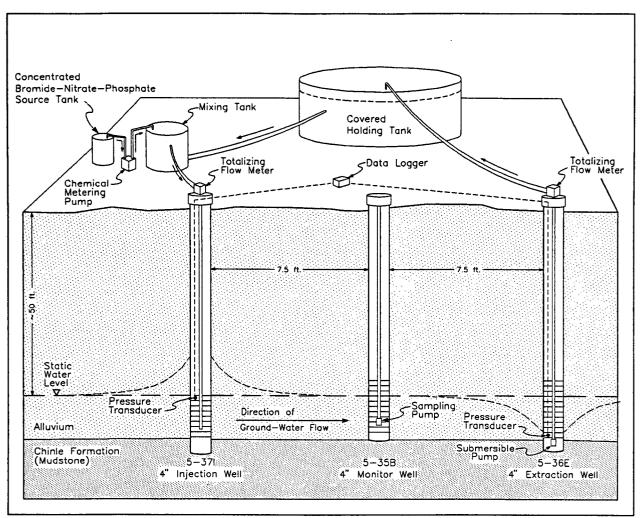


Figure 1. Pilot System Schematic

denitrifying bacteria counts, total organic carbon (TOC), total petroleum hydrocarbons (TPH), and BTEX. Plate counts revealed viable denitrifying and total bacterial populations of up to 10⁴/gram and 10⁶/gram, respectively. The existing denitrifying bacterial soil populations, though not extremely large, were thought to be adequate for the purpose of the pilot test.

Well Construction

The injection well was constructed with 4-inch diameter, low carbon steel casing and 0.040-inch wire-wound stainless steel screen to maximize screen open area and minimize potential screen clogging. Additionally, steel construction facilitates vigorous mechanical redevelopment should clogging become a problem. The annulus around the screen was filled with 8-12 mesh silica sand filter pack which extends to 6 inches above the well screen. A 24-inch bentonite seal was emplaced on top of the filter pack followed by a cement grout to surface. The grout sealed the well screen below the water table, and injection water was delivered via a drop pipe below the water table to further avoid potential aeration of ground water and possible iron precipitation.

Downgradient of the injection well, a 4-inch diameter PVC monitoring well with 0.010-inch PVC screen was installed to monitor nitrate and bromide breakthrough and BTEX concentrations. The

well was screened from the bottom of the aquifer to several feet above the water table. The annulus around the screen was filled with 10-20 mesh silica sand filter pack followed by a 16-40 mesh silica sand, a 24-inch bentonite seal, and cement grout to the surface.

The extraction well was constructed of 4-inch diameter low carbon steel casing and 0.025-inch wire-wound screen, with a filter pack of 10-20 mesh silica sand. The well was screened from the bottom of the aquifer to approximately 2 feet above the static water table, and was completed to the surface as described for the first two wells.

System Operation

The Figure 1 schematic outlines the operation of the pilot system. Ground water is pumped from the extraction well to a holding tank, where sediments that could potentially clog the injection well settle out. The holding tank and other system components are covered to minimize hydrocarbon volatilization, so that the effectiveness of denitrification can be evaluated with minimal interferences from dilution effects. From the holding tank, the ground water flows by gravity feed to the chemical mixing tank. Chemical source solutions of potassium nitrate, sodium bromide, and monosodium phosphate are metered from the source tank to the mixing tank via a piston type metering pump. A mechanical stirrer is used to keep the chemicals in solution. In-line flow meters measure and record the total volume of water recirculating through the system at the pumping and injection wells, and water levels in the injection and extraction wells are monitored continuously with transducers linked to a data logger. The system is equipped to automatically shut itself off in case of well clogging, overflowing tanks, and/or lack of water in the pumped well.

The extraction well is equipped with a Grunfos Redi-Flo2 pump. As shown on the summary of average pumping rates (Figure 2), the extraction well was initially pumped at a rate of approximately 0.18 to 0.22 gallons per minute (gpm). This pumping rate was the highest sustainable rate based on measured water level response in the pumped well. During the first two weeks of system operation, frequent measurements of flow rates and water levels were made to maximize the injection rate and radius of influence. The pumping rate was steadily increased until mid-July when the system hydraulics equilibrated at an average flow rate of 0.36 gpm.

Chemical Injection and Monitoring

Chemical injection began on May 15, 1992. The permit for the pilot test allowed for up to 100 mg/l of potassium nitrate (as N) to be injected under controlled conditions. However, nitrate was initially injected at 10 mg/l (as N) so that denitrification could be evaluated prior to injecting at higher levels. Sodium bromide (25 mg/l as Br^{-}) was also injected to serve as a conservative tracer that would allow for comparison of nitrate losses due to dilution and dispersion with those due to denitrification. Source solution was metered into the mixing tank at an average rate of 25 ml per minute.

The monitoring and extraction wells and the chemical mixing tank immediately upstream of the injection well were sampled approximately every two weeks. The samples were analyzed by Analytical Technologies, Inc. for nitrate and bromide to confirm field results, and for nitrite, phosphate, BTEX and TPH.

Field measurements of nitrate, bromide, dissolved oxygen, pH, and conductivity were made approximately three times per week at the monitoring and extraction wells and at the chemical mixing tank. The dissolved oxygen concentrations measured from the pilot test monitoring wells

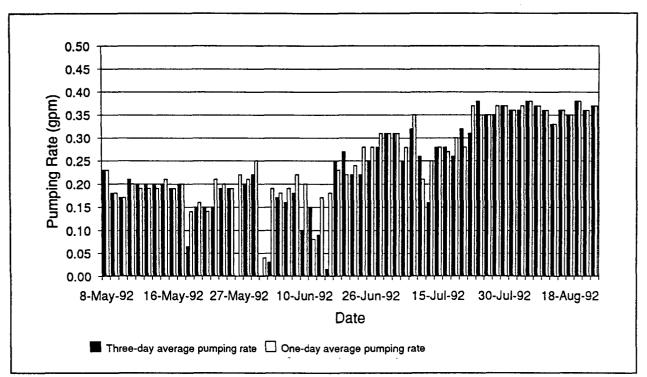


Figure 2. Pilot Test Pumping History

were less than 1 mg/l, as compared to background dissolved oxygen concentrations at the site of approximately 6 to 7 mg/l.

Orion ion selective electrodes (ISEs) were used in conjunction with a digital millivolt meter to allow rapid field determination of ground-water nitrate and bromide concentrations. The ISE operates much like a pH electrode, except that the probe is sensitive to ions other than H⁺, in this case NO_3^- or Br⁻. A double-junction reference electrode serves to establish the reference potential (voltage). Because the potentials of both the ISE and the reference electrode tend to vary with temperature and time, the method of standard addition (MSA) was chosen for field use, to avoid the necessity of frequent recalibration with standard solutions.

Using MSA, the ISE is immersed in the ground-water sample and the potential is measured on the millivolt meter relative to the constant potential of the reference electrode. A nitrate or bromide "spike" of known concentration is then added to the sample, and the potential measured again. The difference between the unspiked and spiked millivolt readings may then be used to calculate the initial NO_3^- (or Br⁻) concentration of the sample prior to adding the spike. A programmable calculator was used to facilitate calculations in the field.

Following solute breakthrough, field (ISE) and laboratory results for nitrate were in good agreement, generally within about 30% relative difference. Prior to breakthrough, the nitrate ISE had consistently indicated concentrations of several mg/l, even when the laboratory results indicated that nitrate was below the detection limit (0.06 mg/l). It is believed that the laboratory results are correct, since the analytical method employed by the laboratory is subject to fewer interferences. The reason for the positive systematic error of the ISE at low nitrate concentrations is unknown, but hydrocarbon concentrations may be a factor.

Following bromide breakthrough, the relative percent differences between the field- and laboratory-determined values ranged from 8% to 84%. Thus, the bromide ISE exhibited somewhat lower precision than the nitrate ISE, if the laboratory values are assumed to be correct. A systematic error was also evident for bromide, with the bromide ISE consistently indicating higher concentrations than the laboratory. Although the systematic error was evident, similar general trends in bromide concentrations were apparent in both the ISE and laboratory data.

Observations

Bromide and nitrate concentrations measured in the monitoring and extraction wells are shown on Figures 3 and 4, respectively. Bromide was first detected above background levels at the monitoring well approximately eight days after injection began. This observed travel time from the injection well to the monitoring well corresponds well with the calculated travel time of seven days, obtained by using the observed hydraulic gradient between the two wells and the site average hydraulic conductivities and effective porosities. Bromide concentrations continued to rise to approximately 10 mg/l, and stabilized at that level for approximately two weeks. The plateau at the 10 mg/l level is most likely due to dilution effects resulting from mechanical problems which lowered the average injection concentration. Once injection reached a steady average bromide concentration of 25 mg/l, bromide concentrations continued to increase until approximately 95% of the bromide concentration injected was detected in the monitoring well, and approximately 80% was detected in the extraction well. The lower concentrations of bromide detected in the extraction well, which is further from the source, are indicative of dilution and dispersion. A subsequent decline in bromide concentrations is most likely due to lower-thanaverage injection rates resulting from temporary shutdowns of the extraction well pump.

Nitrate concentrations in the monitoring and extraction wells were not observed to be increasing at the same rate as the bromide concentrations. In fact, during the first five weeks of operation, nitrate concentrations measured by the analytical laboratory were at or below detection limits (0.06 mg/l) in both the monitoring and extraction wells, with the exception of 0.4 mg/l nitrate measured on June 22, 1992 in the monitoring well. As discussed previously, some nitrate was detected with the ISEs, but it was believed to be due to hydrocarbon interference, and greater confidence was held in the laboratory data. In mid-June, the concentrations of bromide in the monitoring well and extraction wells were approximately 60% and 30%, respectively, of the average injection concentration. Since the nitrate levels were well below those percentages, it was surmised that either the nitrate was being retarded to a higher degree than the bromide, denitrification was occurring, or a combination of both. Retardation of nitrate was considered unlikely, and nitrate consumption was believed to be responsible. Since it appeared that denitrification was occurring, the injection concentration was increased to 50 mg/l nitrate (as N).

Following the increased injection rates, an increase in nitrate concentrations was observed in both the injection and monitoring wells. Two possible explanations for the lack of total nitrate consumption are 1) there is insufficient contact time for the nitrate to be totally consumed, or 2) some essential nutrient was lacking, therefore limiting growth of the denitrifying bacteria population. Consequently, monosodium phosphate was added at 10 mg/l to determine if this nutrient would enhance denitrification. The monosodium phosphate concentration was later increased to 20 mg/l. Even with the addition of the monosodium phosphate, however, nitrate breakthrough concentrations persisted at approximately 20 mg/l in the monitoring well and 10 to 15 mg/l in the extraction well.

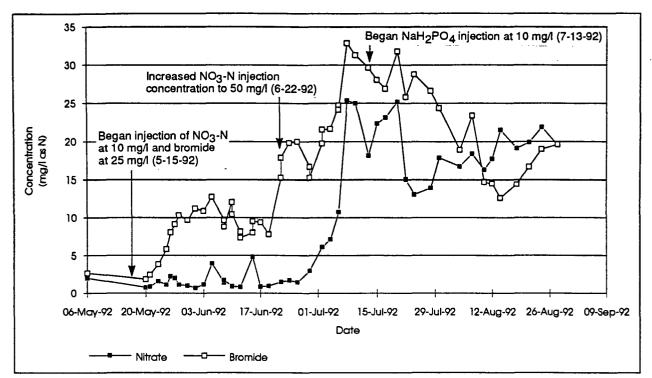


Figure 3. Monitoring Well: Nitrate and Bromide Concentrations (measured with ISEs)

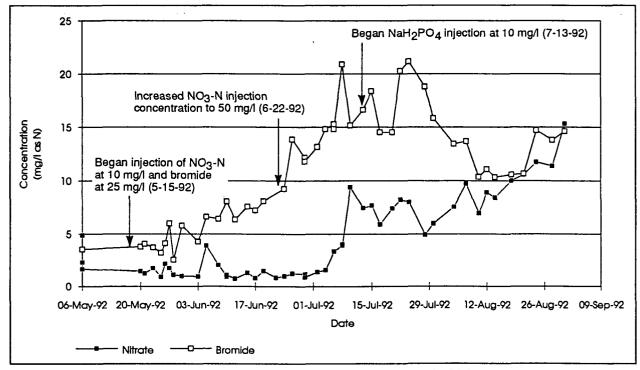


Figure 4. Extraction Well: Nitrate and Bromide Concentrations (measured with ISEs)

In spite of the nitrate breakthrough, an increase in nitrite concentrations indicated that denitrification was occurring. Nitrite concentrations measured by the analytical laboratory were initially below the detection limit of 0.06 mg/l. Following the increase in the nitrate injection rates, nitrite was measured at concentrations up to 6.1 mg/l and 2.7 mg/l in the monitoring and extraction wells, respectively. Nitrite is produced as an intermediate product in the conversion of nitrate to nitrogen gas (Rxn. 2) and is indicative of denitrification.

Concentrations of BTEX in the monitoring and extraction wells are shown in Figures 5 to 8. These plots show that toluene was the most readily degraded of the BTEX compounds. Toluene concentrations in monitoring well 5-35B decreased steadily from an initial concentration of 7600 μ g/l to approximately 1000 μ g/l (an 87% reduction) between May 15 and August 15. Ethylbenzene and total xylene decreased by 67% and 34%, respectively, at the monitoring well during this period. Benzene concentrations were not observed to decline during the pilot test. Previous researchers have hypothesized that once the majority of the hydrocarbons are removed, dissolved oxygen levels will increase and aerobic degradation of benzene will be initiated (Hutchins, 1991). However, hydrocarbon levels did not drop sufficiently during this test period for aerobic conditions to develop.

After approximately six weeks of continuous pumping, free product was observed pooling in the extraction well. The free product (approximately 0.4 ft) provides a persistent source which may keep dissolved hydrocarbon concentrations from continuing to drop. The slight increases in TEX concentrations shown on Figures 5 to 8, following initial reductions, may be due to contributions from the free product, and/or from additional hydrocarbons released as a result of the saturation of previously unsaturated sediments near the injection well.

Conclusions

The pilot test has been operational for approximately four months. At this point, the following conclusions can be drawn:

- 1. Denitrification is actively degrading hydrocarbons within the pilot study area, as evidenced by the following:
 - Nitrite production has been observed, with concentrations of up to 6.1 mg/l (NO₂-N) measured in ground water from the monitoring well.
 - After recirculation of approximately 1½ pore volumes of ground water (50,000 gallons), the concentration of nitrate being removed from the extraction well has only reached about 30% of the injection concentration, as compared with approximately 80% for the conservative bromide tracer. Since nitrate and bromide are considered equally conservative (mobile) in the subsurface, the difference is attributable to nitrate consumption.
 - Concentrations of toluene, ethylbenzene, and total xylene in the monitoring well have dropped to 13%, 33%, and 66%, respectively, of their initial concentrations since the start of nitrate injection.
- 2. No benzene degradation has been observed as a result of the nitrate addition.
- 3. At the present nitrate injection rate (95 g/day NO_3 -N), approximately 88 g of hydrocarbons are being degraded per day due to denitrification.

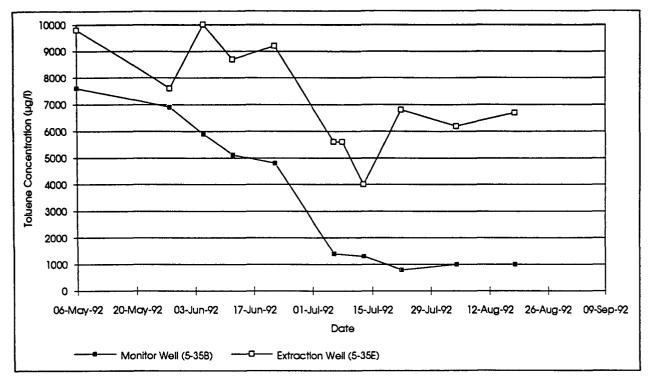


Figure 5. Toluene vs Time

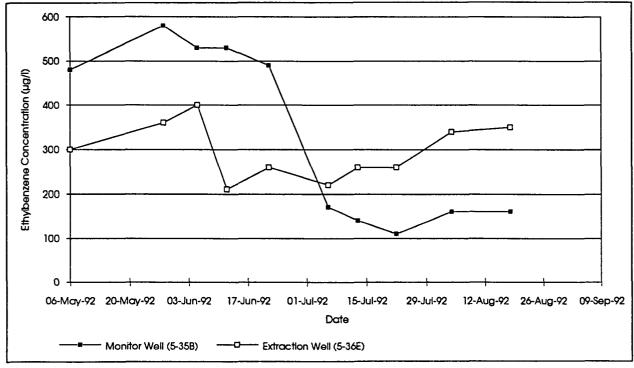


Figure 6. Ethylbenzene vs Time

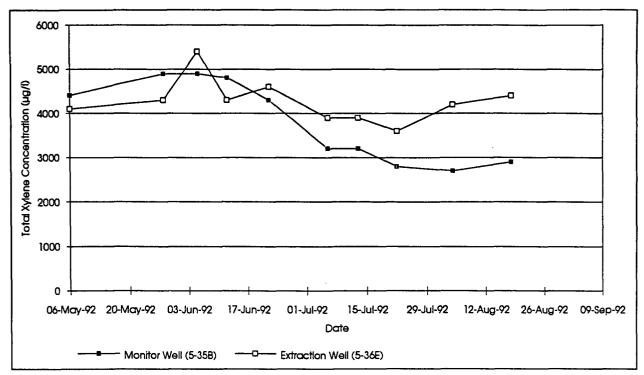


Figure 7. Xylene vs Time

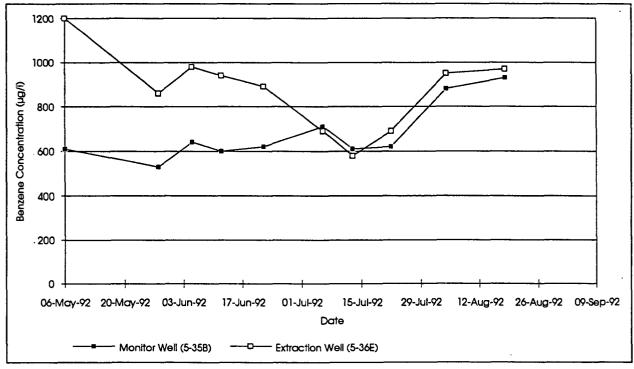


Figure 8. Benzene vs Time

References

Drever, J.I., 1982. Geochemistry of natural waters. Prentice-Hall, p. 282.

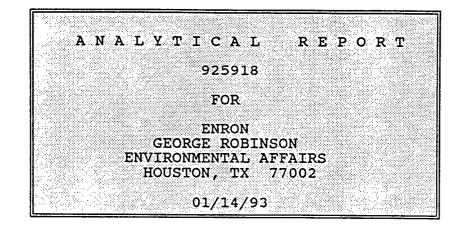
Fenchel, T. and T.H. Blackburn, 1979. Bacteria and mineral cycling. Academic Press.

- Eiceman, G.A., 1986. Hazardous organic wastes from natural gas production, processing, and distribution: Environmental fates. New Mexico Water Resources Research Institute Report No. 227.
- Hutchins, S.R., 1991. Optimizing BTEX biodegradation under denitrifying conditions. *Environmental Toxicology and Chemistry*, 10:1437-1448.
- Hutchins, S.R., W.C. Downs, J.T. Wilson, G.B. Smith, D.A. Kovacs, D.D. Fine, R.H. Douglass, and D.J. Hendrix, 1991. Effect of nitrate addition on biorestoration of fuel-contaminated aquifer: Field demonstration. *Ground Water*, 29(4):571-579.
- Kuhn, E.P., J. Zeyer, P. Eicher, and R.P. Schwarzenbach, 1988. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer conditions. *Applied and Environmental Microbiology*, 54(2):490-496.
- Postma, D., C. Boesen, H. Kristiansen, and F. Larsen, 1991. Nitrate reduction in an unconfined sandy aquifer: Water chemistry, reduction processes, and geochemical modeling. *Water Resources Research*, 27(8):2077-2045.

Biographical Sketches

Joanne Hilton is a senior hydrologist and projects group manager with Daniel B. Stephens & Associates, Inc. in Albuquerque, New Mexico. She has eight years of experience in ground-water investigations at hazardous waste sites, including landfills, mill tailings, and underground storage tank leaks. She is currently involved in numerous hydrogeologic investigations pertaining to contaminant transport and remedial design. Ms. Hilton received her bachelors degree in hydrology from the University of Arizona and her masters degree in hydrology from Colorado State University.

Bob Marley is a hydrogeologist with Daniel B. Stephens & Associates, Inc. in Albuquerque, New Mexico, specializing in site characterization and remediation and in-situ hydraulic testing. He has conducted contaminant transport and water supply investigations in the southwestern U.S. and Australia, and is currently involved in remedial actions at several sites in New Mexico. He holds a bachelors degree in geology from Northern Arizona University and an M.S. in hydrology from the University of Arizona.


Fenley "Ted" Ryther received his Bachelor of Civil Engineering degree from the Georgia Institute of Technology. He has practiced consulting civil and environmental engineering, including permitting, design, site investigation, and remediation of hazardous and toxic wastes in soils and ground water, for more than 35 years. He has project experience in 25 states and 8 foreign countries. He is a registered Professional Engineer in six states, a member of the National Society of Professional Engineers and the Air and Waste Management Association, and a Fellow and Past President of the Houston Branch of the American Society of Civil Engineers. Jeffrey Forbes is a senior hydrogeochemist with Daniel B. Stephens & Associates, Inc. in Albuquerque, New Mexico. He has seven years of experience in the analysis and interpretation of geochemical data pertaining to environmental site investigations. He has also worked as an analytical chemist performing laboratory analysis of water and soil samples for major elements, trace metals, and isotopic composition. Mr. Forbes received a bachelors degree in geology from Indiana University and a masters degree in geological sciences from the University of Washington. He is a Registered Geologist in Arizona and Indiana and is a member of the American Chemical Society.

NAPL Analytical Report

RECEIVED JAN 2 1 1993

CORE LABORATORIES

The analyses opinions of interpretations nonlarined in this inport are based upon observations and material supplied by the client for whose inclusive and confributial use this report has been made. The interpretations or opinions increased represent the best judgement of Core Laboratories. Core Laboratories increased area in each responsibility and material supplied by the client for whose inclusive and confributial use this report has been made. The interpretations or opinions increased represent the best judgement of Core Laboratories. Tore taboratories or any increased area in the interpretation of interpretations or opinions increased area in the productivity proper operatories or profitableness of any increased interpretations or profitableness of any increased area interpretations or profitableness of any increased area interpretations of profitableness of any increased area interpretations and increased area interpretations of profitableness of any increased area interpretations and profitable area interpretations and interpretations of profitableness of any increased area interpretations are profitableness of any increased area interpretations are profitableness of any increased area interpretations are profitableness of any interpretation area property, well or sund in connection with which such report is used or relieved upon toriany reason whatsoney. This report shall not be reproduced except in its entrety, without the written approval of Core Laboratories.

LABORATORY TESTS RESULTS 01/14/93

CUSTOMER: ENRON

JOB NUMBER: 925918

CLIENT I.D.....: DATE SAMPLED.....: 12/10/92 TIME SAMPLED.....: 10:45

WORK DESCRIPTION ...: 5-36E LNAPL

LABORATORY I.D...: 925918-0001 DATE RECEIVED...: 12/21/92 TIME RECEIVED...: 16:36 REMARKS.....

ATTN: GEORGE ROBINSON

apillary Gas Chromatography	N/A		See Attachment	Capilliary GC	N/A	N/
ulfur, Total by x-ray Fluoresc.	0.61		Wt. %	ASTM D-4294	12/23/92	RF
ulfur Analysis by Chemiluminescen		*1		GC/SCD	12/22/92	SC
Hydrogen Sulfide	15	1	ppm wt sulfur			
Carbonyl Sulfide	16	1	ppm wt sulfur			
Sulfur Dioxide	<1	1	ppm wt sulfur			
Carbon Disulfide	<1	1	ppm wt sulfur			
Methyl Mercaptan	1	1	ppm wt sulfur			
Ethyl Mercaptan	7	1	ppm wt sulfur			
Isopropyl Mercaptan	8	1	ppm wt sulfur			
N-Propyl Mercaptan	2	1	ppm wt sulfur			
Tert-Butyl Mercaptan	9	1	ppm wt sulfur			
Sec-Butyl Mercaptan	<1	1	ppm wt sulfur			
Isobutyl Mercaptan		1	ppm wt sulfur			
N-Butyl Mercaptan	1		ppm wt sulfur			
Methyl Sulfide			ppm wisulfur			
Ethyl Methyl Sulfide	<1		ppm wt Sulfur			
			1			
Ethyl Sulfide	<1		ppm wt sulfur		·	
Methyl Disulfide			ppm wt sulfur	· · ·		
Ethyl Methyl Disulfide	9		ppm wt sulfur	1		
Ethyl Disulfide	54		ppm wt sulfur	· · · · · ·	· ·	
Thiophene	27	1	ppm wt sulfur			
Tetra-Hydro Thiophene	<1	1	ppm wt sulfur	· · ·		
2-Methyl Thiophene	2	1	ppm wt sulfur			
3-Methyl Thiophene	. <1	1	ppm wt sulfur			
2-Ethyl Thiophene	<1	1	ppm wt sulfur			
3-Ethyl Thiophene	<1	1	ppm wt sulfur		1	
Thianaphthene	149	1	ppm wt sulfur			
Unidentified Sulfur Compounds	5810	Ó	ppm wt sulfur	ł	1	
			FF			
					1	
PROVED BY: Anthre) BOX 34282 JSTON, TX 77234-4282		
PROVED BY:				13) 943-9776	-	

The process optimes or interpretations contactives to this report are based upon reservations and material sublect by the client for whose encire or and contribution is to the proprietations or professional encires encires as to the proprietations. One programmers or protection are based upon observations and material sublect by the client for whose encires or and contributional use this report has been made. The interpretations or professional and material sublect by the client for whose encires or interpretations or professional and material as the programmers of professional encires or and control of the programmers or professional and material sublect by the client to the professional encires or and control of professional encires or any reasonal encires or analytic professional encires or an expensional encires or an expension of professional encires or an expension of profession encires or an expension encires or an expension encires or expen

P.O. Box 34282 Houston, TX 77234 (713) 943 9776

January 5, 1993

Enron Environmental Affairs Suite 3AC 3115 1400 Smith Street Houston, TX 77002 ATTN: George Robinson

Job No: 925918 Date Received: 12/21/92 Sample Description: 5-36E LNAPL 12/10/92 10:45

CAPILLARY ANALYSIS

	<u>Wt. %</u>	<u>L.V.%</u>	<u>Mole %</u>
n-Butane	0.01	0.01	0.02
iso-Pentane	0.01	0.01	0.02
n-Pentane	0.03	0.04	0.05
Cyclopentane	0.02	0.02	0.04
2,3-Dimethylbutane	0.02		
2-Methylpentane	0.17		0.24
3-Methylpentane	0.18		0.26
n-Hexane	0.61	0.70	0.89
2,2-Dimethylpentane	0.06		0.07
Methylcyclopentane	0.43		0.65
2,4-Dimethylpentane	0.09	0.10	0.11
2,2,3-Trimethylbutane	0.02	0.02	0.02
Benzene	0.01	0.01	0.02
3,3-Dimethylpentane	0.65	0.71	0.81
Cyclohexane	1.21	1.19	1.82
2-Methylhexane	1.30		1.64
2,3-Dimethylpentane	0.37	0.41	0.47
1,1-Dimethylcyclopentane	0.20	0.20	0.25
3-Methylhexane	1.60	1.78	2.02
cis-1,3-Dimethylcyclopentane	0.44	0.45	0.57
trans-1,3-Dimethylcyclopentane	0.41		0.53
3-Ethylpentane	0.15	0.16	0.18
trans-1,2-Dimethylcyclopentane	0.68	0.69	0.87
n-Heptane	3.92	4.38	4.93
Methylcyclohexane	5.23	5.20	6.73
2,2-Dimethylhexane	0.46	0.50	0.51
Ethylcyclopentane	0.27	0.27	0.35
2,5-Dimethylhexane	0.31	0.34	0.35
2,4-Dimethylhexane	0.35		
trans, cis-1, 2, 4-Trimethylcyclopentane	0.42	0.43	0.47
3,3-Dimethylhexane	0.13	0.14	0.14

Continued on Page 2

The analyses, opinions or interpretations contained in this report are based upon noservations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed inpresent the best judgement of Core Laboratories. Core Laboratories however, assumes no responsibility and makes no warranty or representatives, express or implied as to the productively choice originations or profitablences, of any or rgs cour or other mineral property, well or sand in connection with which such report is used or reled upon for any reason whatshower. This report shall not be reproduced, except in its entirety without the written approval of Crie Laboratories.

P.O. Box 34282 Houston, TX 77234 (713) 943 9776

Enron ATTN: George Robinson

Sample Description: 5-36E LNAPL 12/10/92 10:45

CAPILLARY ANALYSIS

	<u>Wt. 8</u>	L.V.%	<u>Mole %</u>
trans,cis-1,2,3-Trimethylcyclopentane	0.46	0.47	0.52
Toluene	0.45	0.40	0.62
2,3-Dimethylhexane	0.45	0.48	0.50
2-Methyl-3-Ethylpentane	0.09	0.09	0.10
1,1,2-Trimethylcyclopentane	0.01	0.01	0.01
2-Methylheptane	2.54	2.78	2.81
4-Methylheptane	0.95	1.03	1.05
3,4-Dimethylhexane	0.10	0.10	0.11
cis, trans-1,2,4-Trimethylcyclopentane	0.06	0.06	0.07
3-Methylheptane	2.22	2.40	2.45
cis-1,3-Dimethylcyclohexane	1.70	1.70	1.91
trans-1,4-Dimethylcyclohexane	0.64	0.64	0.72
2,2,4,4-Tetramethylpentane	0.30	0.32	0.30
2,2,5-Trimethylhexane	0.03	0.03	0.03
trans-1-Ethyl-3-Methylcyclopentane	0.15	0.14	0.17
cis-1-Ethyl-3-Methylcyclopentane	0.13	0.12	0.14
trans-1-Ethy1-2-Methylcyclopentane	0.20	0.25	0.30
1-Ethyl-1-Methylcyclopentane	0.04	0.04	0.04
	0.74	0.73	0.84
cis,cis-1,2,3-Trimethylcyclopentane	0.01	0.01	0.01
n-Octane	5.00	5.44	5.53
Isopropylcyclopentane	0.08	0.08	0.09
2-Methyl-4-Ethylhexane	0.04	0.04	0.04
2,3,5-Trimethylhexane	0.05	0.05	0.05
cis-1-Ethyl-2-Methylcyclopentane	0.04	0.04	0.04
2,2-Dimethylheptane	0.11	0.12	0.11
cis-1,2-Dimethylcyclohexane	0.44	0.42	0.50
4,4-Dimethylheptane	0.03	0.03	0.03
n-Propylcyclopentane	1.38	1.36	1.55
2,6-Dimethylheptane	0.83	0.83	0.82
1,1,3-Trimethylcyclohexane	0.63	0.63	0.62
3,5-Dimethylheptane	0.75	0.80	0.74
3,3-Dimethylheptane	0.16	0.16	0.15
3-Methyl-3-Ethylhexane	0.05	0.05	0.05
Ethylbenzene	0.07	0.06	0.08
2,3,4-Trimethylhexane	0.22	0.23	0.21
trans, trans-1,2,4-Trimethylcyclohexane	0.36	0.36	0.36
cis,trans-1,3,5-Trimethylhexane	0.04	0.04	0.04
meta-Xylene	0.69	0.61	0.83

Continued on Page 3

The analyses opinions or interpretations contained in this report are based upon observations and initial subject by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions exclusive by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions exclusive by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions exclusive and confidential use this report has been made. represent the best judgement of Core Laboratories. Core Laboratories: however, assumes no responsibility and makes no warrantly or representations, expression implied as to the productively, proper ripletations, or profitableness of an p = 24coal or other mineral, property, well or sand in connection with which such report is used or reled upon for any reason whatsoever. This report shall not be reproduced, except in its entirely, without the written approval of Cire Laborator es

P.O. Box 34282 Houston, TX 77234 (713) 943 9776

~

Enron ATTN: George Robinson

Sample Description: 5-36E LNAPL 12/10/92

10:45

CAPILLARY ANALYSIS

	<u>Wt. %</u>	L.V. \$	<u>Mole %</u>
para-Xylene	0.22	0.19	0.26
2,3-Dimethylheptane	0.42		
3,4-Dimethylheptane	0.19		
C-9 Naphthene	0.23		0.22
4-Ethylheptane	0.20	0.21	
2,3-Dimethyl-3-Ethylpentane	0.02	0.02	
4-Methyloctane	1.05	1.11	
2-Methyloctane	1.40		
3-Ethylheptane	0.26	0.28	0.26
3-Methyloctane	1.64	1.74	1.62
3,3-Diethylpentane	1.64 0.02	0.02	0.02
ortho-Xylene	0.40	0.35	0.48
C-10 Paraffin	0.12	0.12	0.10
1-Methyl-2-Propylcyclopentane	0.27	0.27	0.27
cis-1-Ethyl-3-Methylcyclohexane	0.52 0.28	0.50	0.52
trans-1-Ethyl-4-Methylcyclohexane	0.28	0.27	0.28
iso-Butylcyclopentane	0.05		0.05
2,2,6-Trimethylheptane	0.06		0.05
n-Nonane	5.43	5.80	5.35
Unidentified C-9 Compounds	0.30	0.32	0.30
trans-1-Ethyl-3-Methylcyclohexane	0 37	0 36	0.37
1-Methyl-1-Ethylcyclohexane	0.13	0.12	0.13
iso-Propylbenzene	0.03	0.03	0.03
sec-Butylcyclopentane	0.23		0.22
iso-Propylcyclohexane	0.17	0.16	0.17
2,2-Dimethyloctane	0.23	0.25	0.21
3,5-Dimethyloctane	0.13		
Propylcyclohexane	0.78		
n-Butylcyclopentane	0.37	0.36	0.37
2,6-Dimethyloctane	0.89	0.94	0.79
3,3-Dimethyloctane	0.09	0.09	0.08
n-Propylbenzene	0.30		0.32
1,3-Dimethyl-2-Ethylcyclohexane	0.23		0.21
meta-Ethyltoluene	0.23		0.24
para-Ethyltoluene	0.19	0.16	0.20
1,3,5-Trimethylbenzene	0.93	0.82	0.98
4-Ethyloctane	0.04		0.03
5-Methylnonane	0.45		0.40
4-Methylnonane	1.01	1.06	0.89

Continued on Page 4

The analyses opinions or interpretations contained in this mount are based upon inservations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or romons exclusive = 1 represent the best progement of Core Laboratorius. Core Laboratorius, however, assumes no mapping mains no wairanty or ingresentiations, entress or implied as to the productivity, physic operators or profiliableness or any h^{-1} to Coal or other mineral property, well or sand in connection with which such report is used or related upon for any reason whatshower. This report shall not be reproduced, except in its inferrety without the written adjunction (¹⁶ye Lation or its inferrety).

P. O. Box 34282 Houston, TX 77234 (713)943-9776

January 14, 1993

Enron-Environmental Affairs ATTN: George Robinson

Job No: 925918 Sample ID: 5-36E LNAPL 12/10/92 10:45

CAPILLARY ANALYSIS

		<u>Wt.</u> %	LV.%	<u>Mol.%</u>
C4 Summation		0.01	0.01	0.02
C5 Summation		0.04	0.05	0.07
C6 Summation		1.00	1.13	1.46
C7 Summation		11.54	12.49	14.96
C8 Summation		23.50	24.50	27.17
C9 Summation		19.05	19.57	19.30
C10 Summation		17.86	17.86	16.53
Cll Summation		13.27	12.95	11.11
C12 Summation		3.37	3.27	2.59
C13 Summation	· ·· · · · ···	4.62	3.55	3.22
C14 Summation		4.84	3.72	3.08
C15 Summation	ي د د د و و ۲۰ د م	0.51	0.51	0.30
C16 Summation		0.17	0.17	0.09
C17 Summation	· · · · · · · · · · · ·	0.12	0.12	0.07
		0.04	0.04	0.01
C19 Summation		0.03	0.03	0.01
C20 Summation		0.02	0.02	0.01
C21 Plus Compounds		0.01	0.01	0.00
		100.00	100.00	100.00
Paraffins			60.53	
Naphthenes			21.96	
Aromatics			8.31	
Unidentified			9.20	

9.20

MWaits

M. Jean Waits Supervising Chemist

vw

The analyses opinions or interpretations contained in this report are based upon orderval (or such as individual supplied by the client for whose exultive and to criticate and the interpretations or opinion's end to be represent the best judgement of Core Luboratories. **Core Luboratories nowew: assumes no** responsibility and manus no warranty or representatives endersities enderstate as coal or other minimal property, well or sund in connection with which such report is used or refer support for a protein on the interpretations or connection with which such reports as the enderstate estimated or the report shall not be reproduced, except in its entraty without the written approval of Core Luboratories.

- - ----

January 14, 1993

Enron-Environmental Affairs ATTN: George Robinson

Job No.: 925918 Sample ID: 5-36E LNAPL 12/10/92 10:45

Liquid Volume Percent

Carbon No C-4	Paraffins .01	Naphthene	Aromatics	Unidentified	Total .01
C-5	.05	.02			.07
C-6	1.11	1.63	.01		2.75
C-7	9.09	7.23	.40		16.72
C-8	14.03	6.50	1.21		21.74
C-9	13.68	4.54	2.90	.32	21.44
C-10	11.04	1.93	2.19	.77	15.93
C-11	5.47	.14	1.58	1.26	8.45
C-12	4.26		.02	.44	4.72
C-13	.94			2.61	3.55
C-14	.47			3.25	3.72
C-15	.11			.40	.51
C-16	.07		· .	.10	.17
C-17	.07	-		.05	.12
C-18	.04				.04
C-19	.03				.03
C-20+	.03				.03
Total	60.50	21.99	8.31	9.20	100.00

gritu Labóratory Supervisor

The analyses opinions or interpretations contained in this report are based upon nosvirvations and inatents supplied by the intent for which exclusive and confidential use this fraper has been made. The interpretations or opinions exclusived in the previous has been made. The interpretations or opinions exclusived in the previous has been made. The interpretations or opinions exclusived in the previous has been made. The interpretations or opinions exclusived in the previous this been made. The interpretations or opinions exclusived in the previous domain interpretations or opinions exclusived in the previous domain in the previous domain of exclusived in the previous domain or exclusive intervention or opinions exclusived in the previous domain or exclusive intervention or opinions exclusive interventions or opinions exclusive intervention or exclusive intervention or opinions exclusive intervention or exclusive interventions or opinions exclusive intervention of the intervention of exclusive interventions or opinions exclusive interventions or opinions exclusive interventions exclusive interventions or opinions exclusive interventions exclusive interventions or opinions exclusive interventions or opinions exclusive interventions exclusive interventions or opinions exclusive interventions or opinions exclusive interventions exclusive interventions exclusive interventions or opinions exclusive interventions exclusive exclusive interventions exclusive interventions exclusive interventions exclusive interventions exclusive interventions exclusive exclusive interventions exclusive exclusi

APPENDIX C

LITHOLOGIC LOGS AND WELL COMPLETION DIAGRAMS

Lithologic Logs

- - - -----

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-34B
	Thoreau, New Mexico	Drilling Contractor:	Ward Drilling Company Ruidoso, New Mexico
Project No.:	2105 2.3		
Data Startada	3/28/93	Drilling Method:	Cable Tool
Date Started:	3/20/93	Total Depth Drilled:	65.7 ft
Date Completed:	3/31/93		

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
0.0 - 10.0	Cuttings	Silty sand	Fine-grained, moderately sorted, 5% medium- grained, 5-10% clay, red (2.5 YR 4/6, wet)
10.0 - 20.0	Cuttings	Silty sand	Fine-grained, moderately sorted, 5% medium- grained, 5-10% clay with minor coarse sand, red (2.5 YR 4/6, wet)
20.0 - 27.0	Cuttings	Sand	Fine-grained, moderately sorted, 20% silt and clay, reddish-brown (2.5 YR 5/4, wet)
27.0 - 40.0	Cuttings	Silty sand	Fine-grained, poorly sorted, 15% clay, 23% limestone gravel (1.0 - 1.5 cm diameter), reddish- brown (2.5 YR 5/4, wet)
40.0 - 43.0	Cuttings	Silty sand	Fine-grained, poorly sorted, 10% limestone gravel (0.8 - 1.5 cm diameter), reddish-brown (2.5 YR 5/4, wet)
43.0 - 50.0	Cuttings	Silty sand	Fine-grained, poorly sorted, 15-20% clay, minor gravel, reddish-brown (2.5 YR 5/4, wet)
50.0 - 55.0	Cuttings	Silty sand	Fine-grained, poorly sorted, 5-10% gravel (0.2 - 0.6 cm/diameter), reddish brown (2.5 YR 5/4, wet)
55.0 - 59.6	Cuttings	Sand	Fine-grained, well sorted, minor silt and clay, reddish-brown (2.5 YR 5/4, wet)
59.6 - 60.6	Split spoon	Silty clay	Well sorted, plastic, moist, light gray reduction spots with claystone partings, red (10 R 4/6)
60.6 - 65.7	Cuttings	Silty clay	Well sorted, plastic, red (10 R 4/6)

1

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-35B
	Thoreau, New Mexico	Drilling Contractor:	Ward Drilling Company Ruidoso, New Mexico
Project No.:	2105		······
		Drilling Method:	Cable Tool
Date Started:	4/4/92	Total Depth Drilled:	70.0 ft
Date Completed:	4/5/92	total Deptil Diffied.	, 0.0 K

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
0.0 - 20.0	Cuttings	Sand	Very fine-grained, moderately sorted, trace clay, red (2.5 YR 4/6, wet)
20.0 - 25.0	Cuttings	Silty sand	Very fine-grained, moderately sorted, minor clay, reddish-brown (2.5 YR 5/4, wet)
25.0 - 30.0	Cuttings	Sandy clay	Very fine-grained, poorly sorted, reddish-brown (2.5 YR 5/4, wet)
30.0 - 35.0	Cuttings	Silty sand	Fine-grained, moderately sorted, reddish-brown (2.5 YR 5/4, wet)
35.0 - 40.0	Cuttings	Silty sand	Fine-grained, poorly sorted, 10-15% coarse sand and limestone gravel (0.2 - 0.7 cm diameter), reddish-brown (2.5 YR 5/4, wet)
40.0 - 50.0	Cuttings	Silty sand	Fine-grained, poorly sorted, 15-20% coarse sand and gravel, reddish-brown (2.5 YR 5/4, wet)
50.0 - 55.4	Cuttings	Sand	Fine-grained, moderately sorted, 15-20% coarse sand and gravel (0.2 - 0.8 cm diameter), reddish brown (2.5 YR 5/4, wet)
55.4 - 56.4	Split spoon	Sand	Medium-grained, well sorted, minor fines, 3-5% gravel, reddish brown (2.5 YR 5/4, wet)
56-4 - 60.2	Cuttings	Silty sand	Fine-grained, moderately sorted, reddish-brown (2.5 YR 5/4, wet)
60.2 - 61.2	Split spoon	Clay	Plastic, with light gray reduction spots, red (10 R 4/6)
61.2 - 65.2	Cuttings	Clay	Plastic, with light gray reduction spots, red (10 R 4/6)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO.: 5-35B (CONTINUED)

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
65.2 - 65.5	Split spoon	Clay	Plastic, moist, with light gray reduction spots, red (10 R 4/6)
65.5 - 70.0	Cuttings	Clay	Plastic, with light gray reduction spots, red (10 R 4/6)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Client:	Transwestern Pipeline	Boring No.:	5-36E
	Compressor Station No. 5 Thoreau, New Mexico	Drilling Contractor:	Ward Drilling Company Ruidoso, New Mexico
Project No.:	2105 2.3		Tuluoso, New Mexico
Date Started:	4/8/92	Drilling Method:	Cable Tool
		Total Depth Drilled:	67.5 ft
Date Completed:	4/9/92		

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
0.0 - 20.0	Cuttings	Silty sand	Very fine-grained, moderately sorted, trace clay, weak red (10 R 5/4, wet)
20.0 - 25.0	Cuttings	Silty sand	Very fine-grained, moderately sorted, minor clay, reddish-brown (2.5 YR 5/4, wet)
25.0 - 32.0	Cuttings	Silty sand	Fine-grained, moderately sorted, 5% coarse sand, reddish-brown (2.5 YR 5/3, wet)
32.0 - 35.7	Cuttings	Silty sand	Fine-grained, moderately sorted, 5-10% gravel (0.3 - 0.4 cm diameter), reddish-brown (2.5 YR 5/3, wet)
35.7 - 36.5	Split spoon	Sand	Medium-grained, well sorted, 10% coarse sand and gravel, reddish-brown (2.5 YR 5/3, wet)
36.5 - 49.9	Cuttings	Silty sand	Fine-grained, poorly sorted, 10-15% coarse sand and gravel, red (2.5 YR 5/6, wet)
49.9 - 51.1	Split spoon	Sand	Medium-grained, well sorted, moist to wet, minor silt, red (10 R 5/6, wet)
51.1 - 52.0	Cuttings	Sand	Medium-grained, well sorted, red (10 R 5/6, wet)
52.0 - 58.0	Cuttings	Sand	Fine-grained, moderately sorted, red (10R 5/6, wet)
58.0 - 59.0	Split spoon	Sand	Medium-grained, well sorted, 2% gravel and cobbles (1.0 - 1.5 cm diameter), red (10R 5/6, wet)
59.0 - 61.5	Cuttings	Sand	Very fine-grained, moderately sorted, 2% coarse sand, minor clay, red (2.5 YR 5/6)
61.5 - 67.5	Cuttings	Clay	Plastic, with light gray reduction spots, red (10 R 5/6, wet)

.

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-371
	Thoreau, New Mexico	Drilling Contractor:	Ward Drilling Company Ruidoso, New Mexico
Project No.:	2105 2.3		
		Drilling Method:	Cable Tool
Date Started:	4/15/92	Total Depth Drilled:	72.5 ft
Date Completed	4/16/92	Total Depth Dimed.	72.0 H

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
0.0 - 37.0	Cuttings	Silty sand	Very fine to fine-grained, moderately sorted, trace clay, yellowish-red (5 YR 5/6, wet)
37.0 - 53.0	Cuttings	Silty sand	Fine-grained, poorly sorted, 15% limestone gravel and coarse sand, trace clay, yellowish-red (5 YR 5/6, wet)
53.0 - 59.0	Cuttings	Silty sand	Very fine to fine-grained, moderately sorted, trace clay, yellowish-red (5 YR 5/8, wet)
59.0 - 72.5	Cuttings	Clay	Plastic, moist to dry, trace fine sand, red (2.5 YR 4/8), partings with light gray reduction spots to 1/8" diameter. (N8)

;

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

' <u>.</u>	Client:	Transwestern Pipeline	Boring No.:	5-SB-38	
		Compressor Station No. 5 Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico	
	Project No.:	2105 2.2		Grants, New Mexico	
	Date Started:	7/21/92	Drilling Method:	Hollow Stem Auger	
	Duc ounce.	//2//02	Total Depth Drilled:	50.5 ft.	
	Date Completed:	7/21/92			

-	DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
	0.0-11.0	Cuttings	Silty clayey sand	Very fine- to fine-grained, with minor fine-grained limestone gravel at 9.5', damp, moderate brown (5YR 4/4)
	11.0-14.0	Cuttings	Sandy silty clay	Very fine-grained, poorly sorted, very slightly plastic, damp, moderate brown (5YR 4/4)
	14.0-17.4	Split Spoon	Silty clayey sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
	17.4-18.0	Split Spoon	Silty clay	Very fine-grained, slightly plastic, with minor secondary calcite filling, damp, moderate brown (5YR 4/4)
	18.0-18.5	Split Spoon	Silty clayey sand	Very fine- to fine-grained, poorly sorted, damp, moderate brown (5YR 4/4)
	18.5-19.0	Split Spoon	Silty clay	Very fine-grained, with dark, reduced material, slightly plastic, damp, moderate brown (5YR 4/4)
	19.0-23.0	Cuttings	Silty clayey sand	Very fine- to medium-grained, poorly sorted, subangular to subrounded, damp (5YR 4/4)
	23.0-25.0	Cuttings	Silty clayey sand	Slightly plastic, damp, with minor limestone gravel, moderate brown (5YR 4/4)
	25.0-26.0	Cuttings	Silty clay	Very fine-grained, with fine-grained limestone gravel at 26', damp, moderate brown (5YR 4/4)
	26.0-44.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO.: 5-SB-38 (CONTINUED)

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
44.0-45.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, with medium-grained limestone gravel at 44', slightly damp, moderate brown (5YR 4/4)
45.0-49.0	Cuttings	Gravel	Limestone gravel with fine-grained silty sand, slightly damp, moderate brown (5YR 4/4)
49.0-50.5	Split Spoon	Gravelly clay	Plastic, fat, damp with fine to medium limestone gravel, moderate brown (5YR 4/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Client:	Transwestern Compressor St	tation No. 5	Boring No.:	5-SB-39
	Thoreau, New Mexico		Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico
Project No.:				
Date Started:	7/22/92	•	Drilling Method:	Hollow Stem Auger
Date Completed:	7/22/92		Total Depth Drilled:	48.5 ft.
, ·		·		
	,	· · · ·		
DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DES	CRIPTION
0.0-13.0	Cuttings	Silty sand	subangular to subround	ed, moderately well sorted, ded, minor clay, very at 8.0', moderate brown
13.0-15.0	Cuttings	Silty clayey sand	-	d, moderately sorted, ded sand, with limestone htly damp, moderate brow
15.0-17.2	Split Spoon	Silty sandy clay		ed, poorly sorted, ded, with secondary calcite np, moderate brown (5YR
17.2-17.6	Split spoon	Clayey sand	Fine- to medium-graine subangular to subround moderate brown (5YR	led, very slightly damp,
17.6-20.0	Split spoon	Silty sand		ed, moderately well sorted ded, dry, moderate brown
20.0-22.0	Cuttings	Silty sand	Fine- to medium-graine subangular to subround moderate brown (5YR	
22.0-26.0	Cuttings	Silty clayey sand	Fine- to medium-graine subangular to subround moderate brown (5YR	led, very slightly damp,
26.0-30.0	Cuttings	Silty sand		ed, moderately well sorted ded, with limestone gravel brown (5YR 3/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO .: 5-SB-39 (CONTINUED)

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
30.0-36.0	Split spoon	; 	No recovery, no cuttings
36.0-38.0	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp to dry, moderate brown (5YR 3/4)
38.0-38.4	Split spoon	Silty sandy clay	Very fine- to medium-grained, poorly sorted, subangular to subrounded, slightly plastic clay, with secondary calcite filling, very slightly damp, moderate brown (5YR 3/4)
38.4-39.5	Split spoon	Silty sand	Very fine-grained, well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 3/4)
39.5-40.0	Split spoon	Silty clayey sand	Very fine-grained, poorly sorted, very slightly damp, moderate brown (5YR 4/4)
40.0-43.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, with minor limestone gravel, dry, moderate brown (5YR 4/4)
43.0-43.5	Split spoon	Silty sand	Very fine- to fine-grained, with minor limestone gravel and light gray clay nodules, damp, moderate brown (5YR 4/4)
45.0-46.2	Split spoon	Clayey silty sand	Very fine- to fine-grained, poorly sorted, damp, moderate brown (5YR 4/4)
46.2-47.0	Split spoon	Sandy silty clay	Very fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
47.0-48.0	Split spoon	Clayey sand	Fine- to medium-grained, poorly sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
48.0-48.5	Split spoon	Clayey gravel	Fine to medium, wet, moderate orange (10YR 6/6)

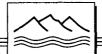
ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-SB-40	
	Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico	
Project No.:	2105 2.2			
Date Started:	7/23/92	Drilling Method:	Hollow Stem Auger	
Puto duntou.	,,20,02	Total Depth Drilled:	43.5 ft.	
Date Completed:	7/23/92	4		

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
0.0-6.5	Cuttings	Silty sandy clay	Very fine-grained, poorly sorted, damp, moderate brown (5YR 3/4)
6.5-10.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
10.0-13.0	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
13.0-13.5	Split spoon	Clayey gravelly sand	Very fine- to medium-grained, poorly sorted, subangular to subrounded with limestone gravel, slightly damp, moderate brown (5YR 3/4)
13.5-17.0	Cuttings	Silty clayey sand	Very fine- to medium-grained, poorly sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
17.0-25.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very fine- to medium- grained limestone gravel at 23' and 25', very slightly damp, moderate brown (5YR 4/4)
25.0-25.5	Split spoon	Silty clayey sandy gravel	Very fine to coarse, poorly sorted, well graded, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
25.5-26.2	Split spoon	Silty clay	Very fine-grained, well sorted, with subangular to subrounded, slightly plastic, light gray (10YR 6/2) clay nodules, slightly damp (5YR 4/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO.: 5-SB-40 (CONTINUED)


DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
26.2-26.7	Split spoon	Gravel	Very coarse, subangular to subrounded, with minor clay and light gray (10YR 6/2) clay nodules, very slightly damp, pale yellowish brown (5YR 6/2)
26.7-27.2	Split spoon	Silty clay	Very fine-grained, well sorted, with light gray (10YR 3/4) clay nodules and minor medium- grained sand, slightly damp (5YR 3/4)
27.2-28.0	Split spoon	Gravelly clay	Fine to medium limestone gravel, poorly sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
28.0-33.0	Cuttings	Gravelly clay	Very fine to medium limestone gravel, poorly sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
33.0-36.0	Cuttings	Silty clay	Very fine-grained, moderately well sorted, subangular to subrounded, with minor fine-grained gravel, damp, moderate brown (5YR 4/4)
36.0-40.0	Cuttings	Clayey sand	Very fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
40.0-43.5	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very damp, moderate brown (5YR 4/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-41B
	Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico
Project No.:	2105 2.2		
Date Started:	8/16/92	Drilling Method:	Hollow Stem Auger
Date Completed:	8/16/92	Total Depth Drilled:	77.0 ft.

DEPTH INTERVAL	SAMPLE	MATERIAL	
(FEET)	TYPE	ТҮРЕ	DESCRIPTION
0.0-7.0	Cutting	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
7.0-10.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp to dry, moderate brown (5YR 4/4)
10.0-15.0	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp to dry, moderate brown (5YR 4/4)
15.0-19.0	Cuttings	Silty clayey sand	Very fine- to medium-grained, poorly sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
19.0-25.0	Cuttings	Silty sandy clay	Very fine- to medium-grained, poorly sorted, subangular to subrounded, dark organic material at 23', slightly damp, moderate brown (5YR 4/4)
25.0-26.5	Split spoon	Silty clayey sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, secondary calcite filling, very slightly damp, moderate brown (5YR 4/4)
26.5-35.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, minor limestone gravel at 30', very slightly damp, moderate brown (5YR 4/4)
35.0-40.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, dry, moderate brown (5YR 4/4)
40.0-43.0	Split spoon	Silty sandy clay/silty clayey sand	Very fine-grained, moderately well sorted, subangular to subrounded, dry, moderate brown (5YR 4/4)

TH

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO .: 5-41B (CONTINUED)

_	DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
	43.0-43.5	Split spoon	Silty clay/clayey silt	Very fine-grained, well sorted, secondary calcite filling, dry, moderate brown (5YR 4/4)
	43.5-49.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, dry, moderate brown (5YR 4/4)
	49.0-53.0	Cuttings	Gravel	Fine to medium limestone gravel
	53.0-55.0	No returns		
	55.0-56.2	Split spoon	Clayey sand	Very fine-grained, moderately well sorted, very damp, (5YR 4/4)
	56.2-56.5	Split spoon	Silty Clay	Very fine-grained, fat, plastic, wet, moderate brown (5YR 4/4)
	56.2-75.0	Cuttings	No returns	
	75.0-76.5	Split spoon	Sand	Very fine-grained, well sorted, saturated, moderate brown (5YR 3/4)
	76.5-77.0	Split spoon	Clay	Plastic, light gray (7N7) clay nodules, slightly damp, minor silt, moderate reddish brown (10YR 4/6)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

	,		
Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-SB-42
•	Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico
Project No.:	2105 2.2		Grants, New Mexico
Project No	2100 2.2	Drilling Method;	Hollow Stem Auger
Date Started:	7/28/92	Diming method,	Honow Stern Auger
	.,	Total Depth Drilled:	62.0 ft
Date Completed:	7/28/92		

IN	DEPTH TERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION	-
0	.0-10.0	Cuttings	Silty sand	Fine- to medium-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)	
10	0.0-10.4	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)	
. 10).4-12.0	Split spoon	Silty clay	Slightly plastic, with light gray (10YR 6/2) clay nodules, very slightly damp, moderate brown (5YR 4/4)	
12	2.0-13.7	Split spoon	Silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, dry, moderate brown (5YR 4/4)	
13	3.7-15.0	Split spoon	Silty clayey sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, with secondary calcite filling, dry, moderate brown (5YR 4/4)	
15	5.0-20.0	Cuttings	Silty clay	Fat, plastic, damp, moderate reddish brown (10YR 4/6)	
20	0.0-25.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, with some dark grayish brown (5YR 3/2) organic soil at 20', slightly damp, moderate brown (5YR 4/4)	
25	5.0-25.2	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)	
25	5.2-26.2	Split spoon	Sand	Medium- to coarse-grained, poorly sorted, dry, moderate brown (5YR 4/4)	


2105\TDRLG.992

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO .: 5-SB-42 (CONTINUED)

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
26.2-26.8	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, very slightly damp, moderate brown (5YR 3/4)
26.8-28.3	Split spoon	Silty clay	Very fine-grained, moderately well sorted, with light gray (10YR 6/2) clay nodules and secondary calcite filling, slightly damp, moderate brown (5YR 3/4)
28.3-30.0	Split spoon	Silty sand	Very fine- to medium-grained, poorly sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
30.0-51.5	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
51.5-59.0	Cuttings	Gravel	Limestone gravel, cobbles, and boulder
59.0-62.0	Split spoon	No recovery	Split spoon barrel wet

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

.

	· · · · · · · · · · · · · · · · · · ·		
Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-SB-43
	Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico
Project No.:	2105 2.2		Granta, New Mexico
•		Drilling Method:	Hollow Stem Auger
Date Started:	7/29/92	•	
		Total Depth Drilled:	47.0 ft.
Date Completed:	7/29/92		

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
0.0-10.0	Cuttings	Silty sand	Very fine- to medium-grained, poorly sorted, subangular to subrounded, limestone cobbles at 5', damp, moderate brown (5YR 3/4)
10.0-10.9	Split spoon	Silty sand	Very fine-grained, well sorted, damp, moderate brown (5YR 3/4)
10.9-12.2	Split spoon	Silty clayey sand	Very fine- to medium-grained, poorly sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
12.2-15.0	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
15.0-22.0	Cuttings	Silty sand	Very fine- to medium-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
22.0-25.0	Cuttings	Silty clayey sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
25.0-26.4	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
26.4-26.9	Split spoon	Clayey silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
26.9-27.4	Split spoon	Sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, loose, moderate brown (5YR 4/4)

2105\TDRLG.992

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO.: 5-SB-43 (CONTINUED)

.

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
27.4-28.0	Split spoon	Silty clayey sand	Very fine- to medium-grained, poorly sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
28.0-31.0	Cuttings	Silty clayey sand	Very fine- to medium-grained, poorly sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
31.0-32.0	Cuttings	Gravel	Fine to medium, subangular to subrounded limestone gravel
32.0-40.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, very slightly damp to dry, moderate brown (5YR 4/4)
40.0-41.0	Split spoon	Gravel	Limestone cobbles and gravel
41.0-42.5	Cuttings	Silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, large limestone boulder at 41-41.5', dry, moderate brown (5YR 4/4)
42.5-44.0	Split spoon	Gravelly sand	Medium- to coarse-grained, well sorted, subangular to subrounded, dry, light brown (5YR 6/4)
44.0-45.0	Split spoon	Gravelly clay	Fine to coarse, poorly sorted, well graded, with light gray (N/8) clay nodules and some silty clay, damp, moderate brown (5YR 3/4)
45.0-47.0	Cuttings	Gravelly clay	Fine to coarse, poorly sorted, well graded, subangular to subrounded, with light gray (N/8) clay nodules and some silty clay, wet, moderate brown (5YR 3/4)

2105\TDRLG.992

.

DANIEL B. STEPHENS & ASSOCIATES, INC.

Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-SB-44
	Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico
Project No.:	2105 2.2		
Date Started:	7/30/92	Drilling Method:	Hollow Stem Auger
Date Starley.	1100/02	Total Depth Drilled:	49.5 ft.
Date Completed:	7/30/92		

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
0.0-3.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, damp, gray brown (5YR 3/2)
3.0-10.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
10.0-10.9	Split spoon	Silty clayey sand	Very fine- to fine-grained, poorly sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
10.9-12.8	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
12.8-13.0	Split spoon	Silty clayey sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
13.0-22.0	Cuttings	Silty clay	Very fine-grained, well sorted, with gravel at 16', slightly damp, yellowish gray (5YR 3/2)
22.0-25.0	Cuttings	Silty clay	Very fine-grained, plastic, damp, moderate brown (5YR 4/4)
25.0-25.5	Split spoon	Clayey silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
25.5-26.0	Split spoon	Clayey silty sand	Very fine-grained, moderately sorted, subangular to subrounded, with light gray (10YR 6/2) clay nodules, damp, moderate brown (5YR 4/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO .: 5-SB-44 (CONTINUED)

:

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
26.0-27.0	Split spoon	Silty sand	Very fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
27.0-30.0	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
30.0-34.0	Cuttings	Clayey silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
34.0-35.0	Cuttings	Gravel	Sandstone gravel to 34.5', limestone gravel to 35', damp, moderate brown (5YR 4/4)
35.0-42.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
42.0-42.2	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
42.2-43.8	Split spoon	Gravel	Limestone gravel and cobbles in a clayey silty sand matrix, damp, moderate brown (5YR 4/4)
43.8-44.5	Split spoon	Silty clayey sand	Very fine- to fine-grained, poorly sorted, subangular to subrounded, with minor gravel, damp, moderate brown (5YR 3/4)
44.5-49.5	Cuttings	Silty clayey sand	Very fine- to fine-grained, poorly sorted, subangular to subrounded, wet, moderate brown (5YR 3/4)

Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-SB-45
	Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico
Project No.:	2105 2.2		Grants, New Mexico
		Drilling Method:	Hollow Stem Auger
Date Started:	7/31/92	Total Depth Drilled:	63.0 ft.
Date Completed:	7/31/92	. oui Depui Dineu.	

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
0.0-7.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
7.0-10.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, with minor fine gravel, dry to slightly damp, light brown (5YR 6/4)
10.0-13.5	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, dry, light brown (5YR 6/4)
13.5-14.2	Split spoon	Clayey silty sand	Very fine- to fine-grained, subangular to subrounded, with minor dark organic material, slightly damp, moderate brown (5YR 3/4)
14.2-15.0	Split spoon	Silty clay	Slightly plastic, damp, moderate brown (5YR 3/4)
15.0-17.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, slightly damp, moderate brown (5YR 3/4)
17.0-25.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
25.0-26.5	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, light brown (5YR 6/4)
26.5-27.9	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO .: 5-SB-45 (CONTINUED)

DEPTH			
INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
27.9-28.4	Split spoon	Gravelly sand	Very fine- to medium-grained, poorly sorted, subangular to subrounded, with very fine to fine limestone gravel, dry, moderate brown (5YR 4/4)
28.4-29.0	Split spoon	Silty gravelly sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
29.0-33.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, with fine gravel, dry, light brown (5YR 6/4)
33.0-37.0	Cuttings	Silty gravelly sand	Very fine- to fine-grained, poorly sorted, subangular to subrounded, with fine to medium, subangular to subrounded limestone gravel, dry, light brown (5YR 6/4)
37.0-40.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, dry, moderate brown (5YR 4/4)
40.0-41.2	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
41.2-41.7	Split spoon	Silty sandy gravel	Fine- to medium, subangular to subrounded limestone gravel, with very fine- to medium- grained, poorly sorted, subangular to subrounded sand, dry, moderate brown (5YR 4/4)
41.7-42.8	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
42.8-43.5	Split spoon	Silty gravelly sand	Fine to medium, subangular to subrounded limestone gravel, with very fine- to medium- grained, poorly sorted, subangular to subrounded sand, very slightly damp, moderate brown (5YR 3/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO.: 5-SB-45 (CONTINUED)

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
43.5-44.5	Cuttings	Silty gravelly sand	Fine to medium-grained, subangular to subrounded sand, very fine- to medium, poorly sorted, subangular to subrounded limestone gravel, very slightly damp, moderate brown (5YR 3/4)
44.5-46.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, moderate brown (SYR 4/4)
46.0-47.5	Cuttings	Gravel	Fine to medium, subangular to subrounded limestone gravel, dry, light brown (5YR 6/4)
47.5-50.0	Cuttings	Clay	Plastic, fat, damp, moderate brown (5YR 3/4)
50.0-51.0	Cuttings	Silty clayey sand	Very fine- to fine-grained, poorly sorted, subangular to subrounded, with minor limestone gravel, damp, moderate brown (5YR 3/4)
51.0-57.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, with minor clay and fine limestone gravel, damp, moderate brown (5YR 3/4)
57.0-57.6	Split spoon	Silty clayey sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
57.6-58.0	Split spoon	Silty clayey gravel	Very fine to fine limestone gravel, with very fine- to fine-grained, moderately sorted, subangular to subrounded sand and silt, damp, moderate brown (5YR 3/4)
58.0-63.0	Cuttings	Silty clayey gravel	Very fine to fine, subangular to subrounded limestone gravel, with very fine-grained, moderately well sorted, subangular to subrounded clayey silt, damp, moderate brown (5YR 3/4)

DEPTH

DANIEL B. STEPHENS & ASSOCIATES, INC.

Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-SB-46
• •	Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico
Project No.:	2105 2.2	. •	Grants, New Mexico
Date Started:	8/3/92	Drilling Method:	Hollow Stem Auger
Date Started:	0/3/92	Total Depth Drilled:	58.5 ft.
Date Completed:	8/3/92		

• •	INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
	0.0-10.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
	10.0-13.2	Split spoon	Silty sand	Very fine-grained, well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
	13.2-15.0	Split spoon	Clayey silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
•	15.0-20.0	Cuttings	Clayey silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, with minor limestone gravel at 18', damp, moderate brown (5YR 4/4)
	20.0-21.0	Cuttings	Clay	Plastic, fat, damp, moderate brown (5YR 4/4)
•	21.0-25.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
	25.0-28.2	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, with very fine-grained, very well sorted sand from 26.4' to 26.6', damp, moderate brown (5YR 4/4)
	28.2-29.2	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, with minor medium limestone gravel, slightly damp, moderate brown (5YR 4/4)
	29.2-30.0	Split spoon	Silty clayey sand	Very fine- to fine-grained, moderately sorted, slightly damp, moderate brown (5YR 4/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO .: 5-SB-46 (CONTINUED)

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
30.0-35.0	Cuttings	Silty clayey sand	Very fine- to fine-grained, moderately sorted, damp, moderate brown (5YR 4/4)
35.0-42.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, with minor limestone and sandstone gravel at 42', damp, moderate brown (5YR 4/4)
42.0-42.5	Cuttings	Gravel	Fine to medium, subangular to subrounded limestone gravel, with very fine- to fine-grained, moderately well sorted, subangular to subrounded sand, damp, moderate brown (5YR 3/4)
42.5-45.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
45.0-47.5	Split spoon	Gravel	Fine to medium, subangular to subrounded limestone gravel, with very fine- to fine-grained, moderately sorted, subangular to subrounded silty sand, damp, moderate brown (5YR 4/4)
47.5-50.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very damp to 49.2', wet from 49.2' to 50.0', moderate brown (5YR 4/4)
50.0-58.5	Cuttings	Silty sand	Very fine-grained, moderately well sorted, subangular to subrounded, wet, moderate brown (5YR 3/4)
58.5	Cuttings	Clay	Plastic, fat, wet, with light gray (7N7) clay nodules and minor silt, moderate reddish brown (10YR 4/6); Chinle Fm.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

.

.

r

	· · ·		
Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-47B
	Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico
Project No.:	2105 2.2		
		Drilling Method:	Hollow Stem Auger
Date Started:	8/16/92		-
,		Total Depth Drilled:	80.0 ft.
Date Completed:	8/16/92		

•	DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
-	0.0-10.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
	10.0-10.3	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
	10.3-12.6	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, dry, light brown (5YR 6/4)
	12.6-15.0	Split spoon	Silty clay/clayey silt	Very fine-grained, well sorted, subangular to subrounded, very fine gravel at 13' at 13.2', secondary calcite filling, damp, moderate brown (5YR 3/4)
	15.0-17.5	Cuttings	Silty clay	Very fine-grained, well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
	17.5-17.7	Cuttings	Gravel	Fine to medium, subangular to subrounded limestone gravel, minor sandstone gravel, damp, moderate brown (5YR 3/4)
	17.7-22.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
	22.0-24.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, dry, light brown (5YR 6/4)
	24.0-30.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, minor clay, slightly damp, moderate brown (5YR 4/4)
	30.0-32.0	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)

۰.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO.: 5-47B (CONTINUED)

INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
32.0-40.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
40.0-40.4	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
40.4-40.8	Split spoon	Sand	Very fine-grained, well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
40.8-41.1	Split spoon	Clayey silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, secondary calcite filling, very slightly damp, (5YR 4/4)
41.1-41.7	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
41.7-43.0	Split spoon	Silty gravelly sand	Very fine- to medium-grained, poorly sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
43.0-44.0	Split spoon	Silty clayey sand	Very fine-grained, moderately well sorted, some secondary calcite filling, very slightly damp, moderate brown (5YR 4/4)
44.0-58.0	Cuttings	Clayey silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
58.0-63.0	Split spoon	Gravel ?	Large limestone cobble, very damp fine-grained sand in drive shoe
63.0-75.0	Cuttings	Sand, clay and gravel	Undifferentiated cuttings
75.0-75.4	Split spoon	Clay	Plastic, fat, wet, moderate brown (5YR 3/4)
75.4-75.7	Split spoon	Gravel	Fine to medium, subrounded to subangular limestone gravel and cobbles, very fine- to fine- grained, subangular to subrounded sand, damp, moderate brown (5YR 3/4)
75.7-76.5	Split spoon	Silty clay/clayey silt	Very fine-grained, well sorted, slightly plastic, damp, moderate brown (5YR 3/4)
76.5-80.0	Split spoon	Clay	Plastic, light gray (7N7) clay nodules, minor silt, damp, moderate reddish brown (10YR 4/6)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-48B
	Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico
Project No.:	2105 2.2		
· · ·		Drilling Method:	Hollow Stem Auger
Date Started:	8/19/92	Tatal Daath Dallad	63.7 ft.
Date Completed:	8/20/92	Total Depth Drilled:	05.7 11.

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
0.0-10.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
10.0-13.8	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
13.8-14.3	Split spoon	Gravelly sand	Very fine- to medium-grained, poorly sorted, subangular to subrounded, damp, light brown (5YR 6/4)
14.3-15.0	Split spoon	Clay	Plastic, fat, wet, moderate brown (5YR 3/4)
15.0-20.0	Cuttings	Silty clay	Very fine-grained, well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
20.0-23.0	Cuttings	Clay	Plastic, fat, wet, moderate brown (5YR 3/4)
23.0-23.5	Cuttings	Silty clay	Plastic, slightly damp, moderate brown (5YR 3/4)
23.5-25.0	Cuttings	Silty clayey sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
25.0-25.2	Split spoon	Silty clayey sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
25.2-25.5	Split spoon	Silty clay	Slightly plastic, secondary calcite filling and minor organic material, damp, moderate brown (5YR 3/4)
25.5-26.0	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
26.0-26.8	Split spoon	Clayey silty sand	Very fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
	INTERVAL (FEET) 0.0-10.0 10.0-13.8 13.8-14.3 14.3-15.0 15.0-20.0 20.0-23.0 23.0-23.5 23.5-25.0 25.0-25.2 25.2-25.5 25.2-25.5	INTERVAL (FEET)SAMPLE TYPE0.0-10.0Cuttings10.0-13.8Split spoon13.8-14.3Split spoon14.3-15.0Split spoon15.0-20.0Cuttings20.0-23.0Cuttings23.0-23.5Cuttings23.5-25.0Cuttings25.0-25.2Split spoon25.2-25.5Split spoon25.5-26.0Split spoon	INTERVAL (FEET)SAMPLE TYPEMATERIAL TYPE0.0-10.0CuttingsSilty sand10.0-13.8Split spoonSilty sand13.8-14.3Split spoonGravelly sand14.3-15.0Split spoonClay15.0-20.0CuttingsClay20.0-23.0CuttingsClay23.0-23.5CuttingsSilty clay23.5-25.0CuttingsSilty clay25.0-25.2Split spoonSilty clayey sand25.2-25.5Split spoonSilty clayey sand25.5-26.0Split spoonSilty clay26.0-26.8Split spoonClayey silty

DANIEL B. STEPHENS & ASSOCIATES, INC.

. . .

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO.: 5-48B (CONTINUED)

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION	
26.8-33.0	Cuttings	Clayey silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, very slightly damp, (5YR 3/4)	
33.0-35.0	Cuttings	Clayey silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)	
35.0-36.0	Cuttings	Silty sand	Fine-grained, well sorted, subangular to subrounded, very slightly damp, light brown (5YR 6/4)	
36.0-37.0	Cuttings	Gravel	Fine to medium, subangular to subrounded limestone gravel, fine-grained, subangular to subrounded sand, very slightly damp, moderate brown (5YR 4/4)	
37.0-40.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)	
40.0-42.0	Cuttings	Gravel	Fine to medium, subangular to subrounded, very fine- to fine-grained silty sand, slightly damp, (5YR 4/4)	
42.0-44.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, (5YR 4/4)	
44.0-45.0	Split spoon	Gravel	Fine to medium, subangular to subrounded, some re-worked Chinle and limestone cobbles, slightly damp, moderate brown (5YR 3/4)	
45.0-45.9	Split spoon	Silty gravelly sandy clay	Very fine- to medium-grained, poorly sorted, well graded, subangular to subrounded, very damp, moderate brown (5YR 3/4)	
45.9-47.8	Split spoon	Sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, wet, moderate brown (5YR 3/4)	
47.8-49.0	Split spoon	Silty sandy clay/silty clayey sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded sand, minor fine gravel, wet, moderate brown (5YR 3/4)	
49.0-58.0	Cuttings	Sand silt and gravel	Undifferentiated cuttings	

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO.: 5-48B (CONTINUED)

DEPT INTER\ (FEET	AL SAMPLE	MATERIAL TYPE	DESCRIPTION
58.0-6	0.8 Split spoon	Sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, wet, moderate brown (5YR 3/4)
60.8-6	1.0 Split spoon	Cobbles	Limestone cobbles
61.0-6	1.2 Split spoon	Sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, wet, moderate brown (5YR 3/4)
61.2-6	3.7 Split spoon	Clay	Plastic, fat, wet, light gray (7N7) clay nodules, moderate reddish brown (10YR 4/6)

Client:	Transwesterr Compressor S Thoreau, Nev	Station No. 5	Boring No.: Drilling Contractor:	5-SB-49 Stewart Brothers Drilling
Project No.:	2105 2.2		Drilling Method:	Grants, New Mexico Hollow Stem Auger
Date Started:	8/6/92		Total Depth Drilled:	44.0 ft.
Date Completed:	8/6/92			
DEPTH				
INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESC	CRIPTION
0.0-10.0	Cuttings	Silty sand	Very fine- to fine-graine subangular to subround moderate brown (5YR (
10.0-11.7	Split spoon	Silty sand	-	erately well sorted, led, with secondary calcite v slightly damp, moderate
11.7-15.0	Split spoon	Silty clayey sand	-	ed, moderately sorted, led, with secondary calcite v slightly damp, moderate
15.0-21.0	Cuttings	Silty clayey sand	Very fine- to fine-graine subangular to subround filling and minor limesto slightly damp (5YR 4/4	led, with secondary calcite one gravel at 20', very
21.0-22.0	Cuttings	Gravel	moderately well sorted,	gular to subrounded very fine- to fine-grained, subangular to subrounded damp, moderate brown
22.0-25.0	Cuttings	Silty sand	Very fine- to fine-graine subangular to subround moderate brown (5YR 4	
25.0-25.9	Split spoon	Sand	Fine-grained, well sorte subrounded, with mino brown (5YR 6/4)	d, subangular to r silt, slightly damp, light

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO .: 5-SB-49 (CONTINUED)

	·····	TYPE	DESCRIPTION
25.9-26.6	Split spoon	Silty clay	Very fine-grained, slightly plastic, with minor fine limestone gravel, damp, moderate brown (5YR 3/4)
26.6-27.4	Split spoon	Silty sand	Fine- to medium-grained, poorly sorted, subangular to subrounded, slightly damp, light brown (5YR 6/4)
27.4-27.9	Split spoon	Silty clay	Very fine-grained, slightly plastic, with some secondary calcite filling, damp (5YR 3/4)
27.9-29.0	Split spoon	Sand	Fine- to medium-grained, poorly sorted, subangular to subrounded, slightly damp, light brown (5YR 6/4)
29.0-29.5	Split spoon	Gravelly sand	Very fine- to medium-grained, poorly sorted, well graded, subangular to subrounded, with very fine to fine, subangular to subrounded limestone gravel, very slightly damp, light brown (5YR 6/4)
29.5-30.0	Split spoon	Silty clay	Very fine-grained with some secondary calcite filling, very slightly damp, moderate brown (5YR 3/4)
30.0-40.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly to slightly damp, moderate brown (5YR 4/4)
40.0-43.2	Split spoon	Silty sand	Very fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
43.2-44.0	Split spoon	Sand	Fine- to medium-grained, poorly sorted, subangular to subrounded, wet, moderate brown (5YR 3/4)

· ·			
Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-SB-50
	Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico
Project No.:	2105 2.2		
		Drilling Method:	Hollow Stem Auger
Date Started:	8/6/92		40 F 6
Date Completed:	8/6/92	Total Depth Drilled:	49.5 ft.

•	DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
-	0.0-10.0	Cuttings	Clayey silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, with some clay, damp, moderate brown (5YR 3/4)
	10.0-10.8	Split spoon	Silty clayey sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded with rootlets, very slightly damp, moderate brown (5YR 3/4)
	10.8-12.6	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, light brown (5YR 6/4)
	12.6-14.8	Split spoon	Silty sand	Fine- to medium-grained, poorly sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
	14.8-15.0	Split spoon	Silty clayey sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, slightly plastic, with secondary calcite filling, slightly damp, moderate brown (5YR 3/4)
	15.0-19.0	Cuttings	Silty clayey sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, slightly plastic, with secondary calcite filling, slightly damp, moderate brown (5YR 3/4)
	19.0-21.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

.

BORING NO .: 5-SB-50 (CONTINUED)

NTERVAL (FEET)	SAMPLE TYPE	MATERIAL	DESCRIPTION
21.0-23.5	Cuttings	Gravel	Fine to medium, subangular to subrounded limestone and sandstone gravel, with very fine- to fine-grained, moderately well sorted silty sand, slightly damp, moderate brown (5YR 3/4)
23.5-25.0	Cuttings	Sand	Fine-grained, well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
25.0-26.8	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
26.8-27.1	Split spoon	Clay	Plastic, fat, wet, moderate brown (5YR 3/4)
27.1-29.4	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
29.4-29.8	Split spoon	Sand	Fine-grained, well sorted, subangular to subrounded, slightly damp, light brown (5YR 6/4)
29.8-30.0	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
30.0-35.0	Cuttings	Silty clayey sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
35.0-42.0	Cutting	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
42.0-43.5	Cuttings	Gravel	Fine to medium, subangular to subrounded limestone gravel, with very fine- to fine-grained silty sand, slightly damp, moderate brown (5YR 3/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO .: 5-SB-50 (CONTINUED)

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
43.5-44.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
44.0-47.0	Cuttings	Gravel, cobbles	Fine to medium, subangular to subrounded limestone gravel, cobbles and boulder, slightly damp, light brown (5YR 6/4)
47.0-47.6	Split spoon	Silty gravelly clayey sand	Very fine- to coarse-grained, poorly sorted, well graded, subangular to subrounded, damp, moderate brown (5YR 3/4)
47.6-48.6	Split spoon	Silty sand	Very fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
48.6-49.5	Split spoon	Clay	Plastic, fat, damp, moderate brown (5YR 3/4)

. ·

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Client:	Transwestern Pipeline	Boring No.:	5-SB-51	
• • •	Compressor Station No. 5 Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drill	ng
Project No.:	2105 2.2		Grants, New Mexico	
Date Started:	8/7/92	Drilling Method:	Hollow Stem Auger	<i>.</i>
		Total Depth Drilled:	63.0 ft.	
Date Completed:	8/10/92		· ·	
				L.
	. · · · · · · · · · · · · · · · · · · ·			· .
DEPTH				
INTERVAL	SAMPLE MATERIAL			

: : :

(FEET)	TYPE	TYPE	DESCRIPTION	
0.0-10.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, light brown (5YR 6/4)	
10.0-15.0	Split spoon		No recovery	
15.0-25.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)	
25.0-27.6	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp to dry, light brown (5YR 6/4)	
27.6-28.0	Split spoon	Clayey silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, with minor light gray clay nodules, very slightly damp, moderate brown (5YR 4/4)	
28.0-41.0	Cuttings	Silty sand	Very fine-grained, moderately well sorted, subangular to subrounded, with minor limestone gravel at 37', dry, light brown (5YR 6/4)	
41.0-41.9	Split spoon	Clayey silty sand	Very fine-grained, moderately sorted, subangular to subrounded, with minor clay, very slightly damp, moderate brown (5YR 4/4)	
41.9-44.0	Split spoon	Silty clayey sand		

.

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO .: 5-SB-51 (CONTINUED)

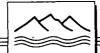
DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
44.0-46.5	Cuttings	Silty sand	Very fine-grained, well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
46.5-47.0	Cuttings	Silty clay	Very fine-grained, slightly plastic, damp, moderate brown (5YR 3/4)
47.0-58.0	Cuttings	Silty sandy clay	Very fine-grained, poorly sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
58.0-60.0	Split spoon	Silty clay	Very fine-grained, slightly plastic, with minor limestone gravel, moderate brown (5YR 3/4)
60.0-63.0	Cuttings	Gravel	Fine to medium, subangular to subrounded limestone gravel, and limestone cobbles with very fine-grained silty sand, slightly damp, moderate brown (5YR 4/4)

Client:	Transwestern Pipeline	Boring No.:	5-SB-52
	Compressor Station No. 5 Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling
Project No.:	2105 2.2		Grants, New Mexico
Date Started:	8/10/92	Drilling Method:	Hollow Stem Auger
Date Completed:	8/11/92	Total Depth Drilled:	60.0 ft.

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
0.0-10.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, light brown (5YR 6/4)
10.0-12.0	Split spoon	Silty sand	Very fine-grained, moderately well sorted, subangular to subrounded, with minor clay, slightly damp, moderate brown (5YR 4/4)
12.0-16.5	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, with minor limestone gravel, dry, light brown (5YR 6/4)
16.5-17.0	Cuttings	Clayey silty sand	Very fine-grained, well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
17.0-25.0	Cuttings	Clayey silty sand	Very fine-grained, well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
25.0-30.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
30.0-31.0	Cuttings	Silty clayey sand	Very fine-grained, moderately sorted, subangular to subrounded, dry, light brown (5YR 6/4)
31.0-35.0	Cuttings	Clayey silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded dry, light brown (5YR 6/4)
35.0-42.0	Cuttings	Silty sand	Very fine-grained, moderately well sorted, subangular to subrounded, with limestone gravel at 38', slightly damp, moderate brown (5YR 4/4)

· ,

ENVIRONMENTAL SCIENTISTS AND ENGINEERS


BORING NO .: 5-SB-52 (CONTINUED)

		,	
DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
42.0-43.5	Cuttings	Gravel	Fine to medium, subangular to subrounded with some very fine- to fine-grained, moderately sorted, subangular to subrounded sand, slightly damp, moderate brown (5YR 4/4)
43.5-45.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, with minor clay, slightly damp, moderate brown (5YR 4/4)
45.0-50.0	Split spoon	No recovery	Plastic, fat, wet clay on sampler
50.0-55.0	Cuttings	Silty clayey sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, dry, light brown (5YR 6/4)
55.0-58.0	Cuttings	Silty clay	Very fine-grained, moderately well sorted, subangular to subrounded, slightly plastic with some light gray clay nodules, damp, moderate brown (5YR 3/4)
58.0-60.0	Split spoon	Sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, saturated, moderate brown (5YR 3/4)

	· · · · · ·		
Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-SB-53
	Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling
			Grants, New Mexico
Project No.:	2105 2.2		
		Drilling Method:	Hollow Stem Auger
Date Started:	8/12/92		
		Total Depth Drilled:	65.0 ft.
Date Completed:	8/12/92		

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
0.0-10.0	Cuttings	Silty sand	Very fine- to medium-grained, moderately sorted, subangular to subrounded, minor gravel at 4', damp, moderate brown (5YR 4/4)
10.0-10.9	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
10.9-13.0	Split spoon	Silty clayey sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, with secondary calcite filling and light gray clay nodules, very slightly damp to dry, moderate brown (5YR 4/4)
13.0-25.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
25.0-27.5	Split spoon	Gravel	No recovery
27.5-28.5	Cuttings	Gravel	Fine to medium, subangular to subrounded limestone gravel, with minor sandstone gravel, damp, moderate brown (5YR 3/4)
28.5-34.5	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, dry, light brown (5YR 6/4)
32.0-40.0	Cuttings	Silty clayey sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very dry, light brown (5YR 6/4)
40.0-45.0	Split spoon	Silty clayey sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

.

BORING NO .: 5-SB-53 (CONTINUED)

. '

DEDTU			·
DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
40.0-43.0	Split spoon	Silty clayey sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, dry, moderate brown (5YR 6/4)
43.0-45.0	Cuttings	Silty clayey sand	Very fine-grained, moderately sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
45.0-46.5	Cuttings	Gravel	Fine- to medium-grained, subangular to subrounded limestone gravel, with very fine- to fine-grained, moderately well sorted, subangular to subrounded sand, slightly damp, moderate brown (5YR 4/4)
46.5-55.0	Cuttings	Clayey silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, very slightly damp to dry, moderate brown (5YR 4/4) to light brown (5YR 6/4)
55.0-56.8	Split spoon	Clayey silty sand	Very fine- to fine-grained, poorly sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
56.8-58.0	Split spoon	Sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
58.0-60.0	Cuttings	Sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
60.0-65.0	Cuttings	Gravel	Large limestone cobble and very damp fine- grained sand at bottom of drive shoe, very damp, moderate brown (5XR 3/4)

A V

DANIEL B. STEPHENS & ASSOCIATES, INC.


lient:	Transwestern Compressor S	•	Boring No.:	5-SB-54
Thoreau, New Mexico			Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico
Project No.:	2105 2.2		Drilling Method:	Hollow Stem Auger
Date Started:	8/13/92		Total Depth Drilled:	64.0 ft.
Date Completed:	8/13/92			
			х · ·	
DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESC	CRIPTION
0.0-10.0	Cuttings	Silty sand	subangular to subround	ed, moderately well sorted, led, with minor clay and noderate brown (5YR 3/4)
10.0-10.9	Split spoon	Clayey silty sand	Very fine- to fine-graine subangular to subround moderate brown (5YR /	led, slightly damp,
10.9-14.0	Split spoon	Clayey sand	Very fine-grained, mode subangular to subround filling and limonite stair limestone gravel, dry, li	led, with secondary calcite hing, minor very fine
14.0-22.0	Cuttings	Clayey sand	filling and very fine, sul	erately well sorted, led, with secondary calcite bangular to subrounded ly damp, moderate brown
22.0-25.0	Cuttings	Silty sand	Very fine-grained, well subrounded, slightly da (5YR 3/4)	
25.0-26.2	Split spoon	Silty sand	Very fine- to medium-g subangular to subround subangular to subround slightly damp, light bro	led, with minor very fine, led limestone gravel,
26.2-28.2	Split spoon	Clayey silty sand	Very fine- to medium-g subangular to subround grained, subangular to gravel, very slightly dar	led, with minor fine-

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO .: 5-SB-54 (CONTINUED)

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL	DESCRIPTION
28.2-28.7	Split spoon	Sand	Fine-grained, well sorted, subangular to subrounded dry, light brown (5YR 6/4)
28.7-29.0	Split spoon	Silty clay/clayey silt	Very fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
29.0-29.4	Split spoon	Silty clay	Very fine-grained, moderately well sorted, subangular to subrounded, plastic, moderate brown (5YR 3/4)
29.4-30.0	Split spoon	Silty clayey sand	Very fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
30.0-40.0	Cuttings	Silty clayey sand	Very fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
40.0-41.1	Split spoon	Silty clayey sand	Very fine- to medium-grained, poorly sorted, subangular to subrounded, with minor fine-grained limestone gravel, very slightly damp, light brown (5YR 6/4)
41.1-42.4	Split spoon	Silty sand	Very fine- to medium-grained, moderately sorted, subangular to subrounded, slightly damp, moderate brown (5YR 4/4)
42.4-45.0	Split spoon	Silty clay	Very fine-grained, poorly sorted, subangular to subrounded, with minor limestone gravel and light gray clay nodules, very slightly damp to dry, light brown (5YR 6/4)
45.0-46.0	Cuttings	Silty clay	Very fine-grained, poorly sorted, subangular to subrounded, with minor limestone gravel and light gray clay nodules, very slightly damp to dry, light brown (5YR 6/4)
46.0-51.0	Cuttings	Clayey silty sand	Very fine- to fine-grained, moderately sorted, subangular to subrounded, with minor fine limestone gravel, dry, light brown (5YR 6/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

...

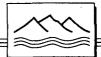
BORING NO .: 5-SB-54 (CONTINUED)

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
51.0-51.5	Cuttings	Grave!	Very fine to medium, subangular to subrounded limestone gravel, with very fine-grained silty sand, slightly damp, moderate brown (5YR 4/4)
51.5-57.0	Cuttings	Silty clay	Very fine-grained, moderately well sorted, subangular to subrounded, very slightly damp, moderate brown (5YR 4/4)
57.0-58.6	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded with minor clay, damp, moderate brown (5YR 3/4)
58.6-59.3	Split spoon	Silty clayey sand	Very fine-grained, moderately well sorted, subangular to subrounded with light gray clay nodules, damp, moderate brown (5YR 3/4)
59.3-59.8	Split spoon	Gravel	Fine to medium, subangular to subrounded limestone gravel, very fine- to fine-grained silty sand, damp, moderate brown (5YR 3/4)
59.8-61.4	Split spoon	Silty clay	Very fine-grained, well sorted, subangular to subrounded with light gray clay nodules at 61', damp, moderate brown (5YR 3/4)
61.4-62.0	Split spoon	Clay	Plastic, fat, wet light gray clay nodules, damp, moderate brown (5YR 3/4)
62.0-63.0	Cuttings	Clay	Plastic, fat, wet, moderate brown (5YR 3/4)
63.0-64.0	Cuttings	Silty clayey sand	Very fine-grained, moderately well sorted, subangular to subrounded, very damp, moderate brown (5YR 4/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

.

Client: Project No.: Date Started: Date Completed:	Transwestern Compressor S Thoreau, New 2105 2.2 8/14/92 8/14/92	tation No. 5	Boring No.: Drilling Contractor: Drilling Method: Total Depth Drilled:	5-SB-55 Stewart Brothers Drilling Grants, New Mexico Hollow Stem Auger 46.5 ft.
DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESC	RIPTION
0.0-10.0	Cuttings	Silty sand		d, moderately well sorted, ed, damp, moderate brown
10.0-11.0	Split spoon	Silty sand		d, moderately well sorted, ed, damp, moderate brown
11.0-12.6	Split spoon	Clayey silty sand	Very fine- to medium-gr sorted, subangular to su secondary calcite filling, (5YR 4/4)	· ·
12.6-13.4	Split spoon	Silty sand	Very fine-grained to me sorted, subangular to su moderate brown (5YR 3	ubrounded, damp,
13.4-15.0	Split spoon	Sand		d, moderately well sorted, ed, damp, moderate brown
15.0-17.0	Cuttings	Sand	Very fine- to medium-gr sorted, subangular to su moderate brown (5YR 3	ubrounded, damp,
17.0-25.0	Cuttings	Silty clayey sand		d, moderately well sorted, ed, damp, moderate brown
25.0-27.2	Split spoon	Silty clayey sand		d, moderately well sorted, ed, damp, moderate brown



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO .: 5-SB-55 (CONTINUED)

· • .

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
27.2-28.1	Split spoon	Sandy gravel	Fine to medium, with very fine- to medium- grained poorly sorted, subangular to subrounded limestone gravel, subangular to subrounded sand, damp, moderate brown (5YR 3/4)
28.1-28.3	Split spoon	Clay	Plastic, fat, damp, brownish gray (5YR 4/1)
28.3-30.0	Split spoon	Clay	Plastic, fat, minor silt and some secondary calcite filling, damp, moderate brown (5YR 3/4)
30.0-39.0	Cuttings	Clayey silty sand	Very fine- to fine-grained, poorly sorted, subangular to subrounded, with some very fine to fine, subangular to subrounded limestone gravel, damp, moderate brown (5YR 4/4)
39.0-40.0	Cuttings	Gravel	Very fine to medium, subangular to subrounded, limestone gravel, with fine- to medium-grained, subangular to subrounded, poorly sorted sand, damp, moderate brown (5YR 3/4)
40.0-45.0	Split spoon	Gravel	Fine to medium, poorly sorted, subangular to subrounded limestone gravel, with fine- to medium-grained, subangular to subrounded sand, damp, moderate brown (5YR 3/4)
45.0-46.5	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp to wet, moderate brown (5YR 3/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Client:	Transwestern Pipeline Compressor Station No. 5	Boring No.:	5-SB-56
	Thoreau, New Mexico	Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico
Project No.:	2105 2.2		,
Date Started:	8/14/92	Drilling Method:	Hollow Stem Auger
Date Completed:	8/14/92	Total Depth Drilled:	47.0 ft.

DEPTH INTERVAL (FEET)	SAMPLE	MATERIAL TYPE	DESCRIPTION
0.0-10.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
10.0-13.0	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, slightly damp, moderate brown (5YR 3/4)
13.0-24.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
24.0-25.0	Cuttings	Silty clay	Very fine-grained, well sorted, subangular to subrounded, slightly plastic, damp, moderate brown (5YR 3/4)
25.0-25.8	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 4/4)
25.8-27.5	Split spoon	Silty clay	Very fine-grained, well sorted, subangular to subrounded, slightly plastic, damp, moderate brown (5YR 3/4)
27.5-33.0	Cuttings	Silty clay	Very fine-grained, moderately sorted, subangular to subrounded, slightly plastic, damp, moderate brown (5YR 3/4)
33.0-34.0	Cuttings	Gravel	Very fine to medium, subangular to subrounded limestone gravel, with very fine- to fine-grained, moderately well sorted, subangular to subrounded sand, damp, moderate brown (5YR 3/4)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BORING NO.: 5-SB-56 (CONTINUED)

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
34.0-42.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded with minor clay, damp, moderate brown (5YR 4/4)
42.0-43.8	Split spoon	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
43.8-44.2	Split spoon	Gravel	Very fine to medium, subangular to subrounded limestone gravel, with fine- to medium-grained, poorly sorted, subangular to subrounded sand, damp, moderate brown (5YR 3/4)
44.2-45.0	Cuttings	Silty sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, damp, moderate brown (5YR 3/4)
45.0-47.0	Split spoon	Sand	Very fine- to fine-grained, moderately well sorted, subangular to subrounded, with minor gravel, wet, moderate brown (5YR 3/4)

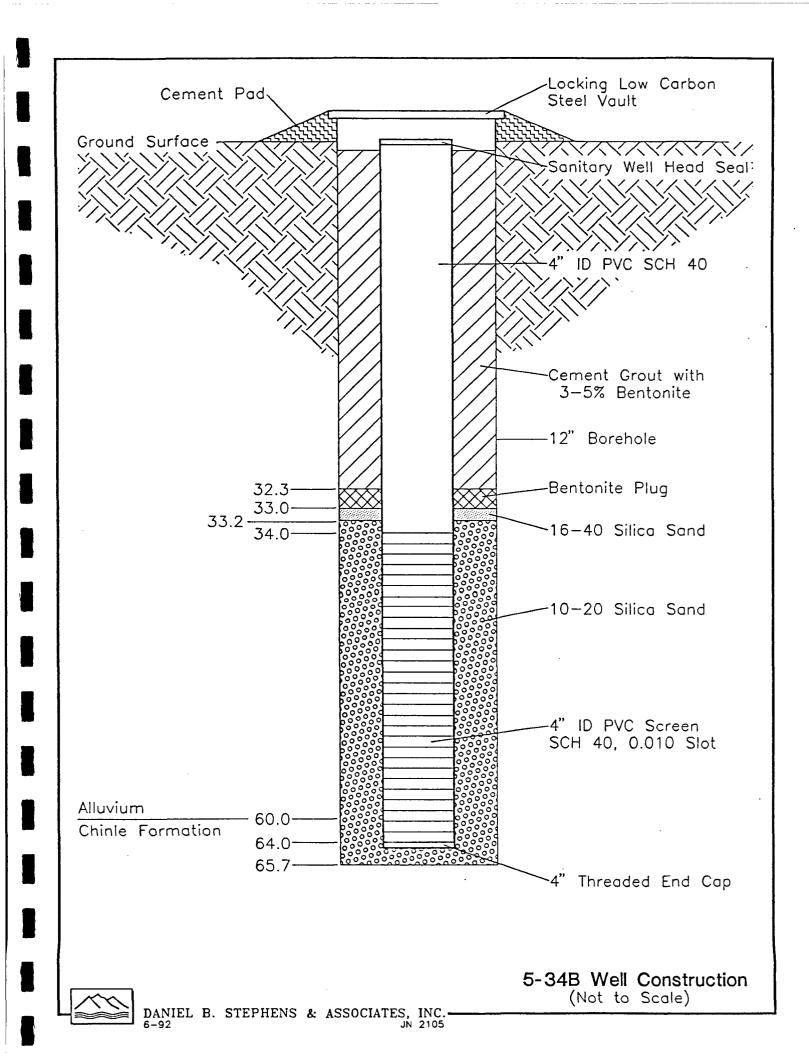
ENVIRONMENTAL SCIENTISTS AND ENGINEERS

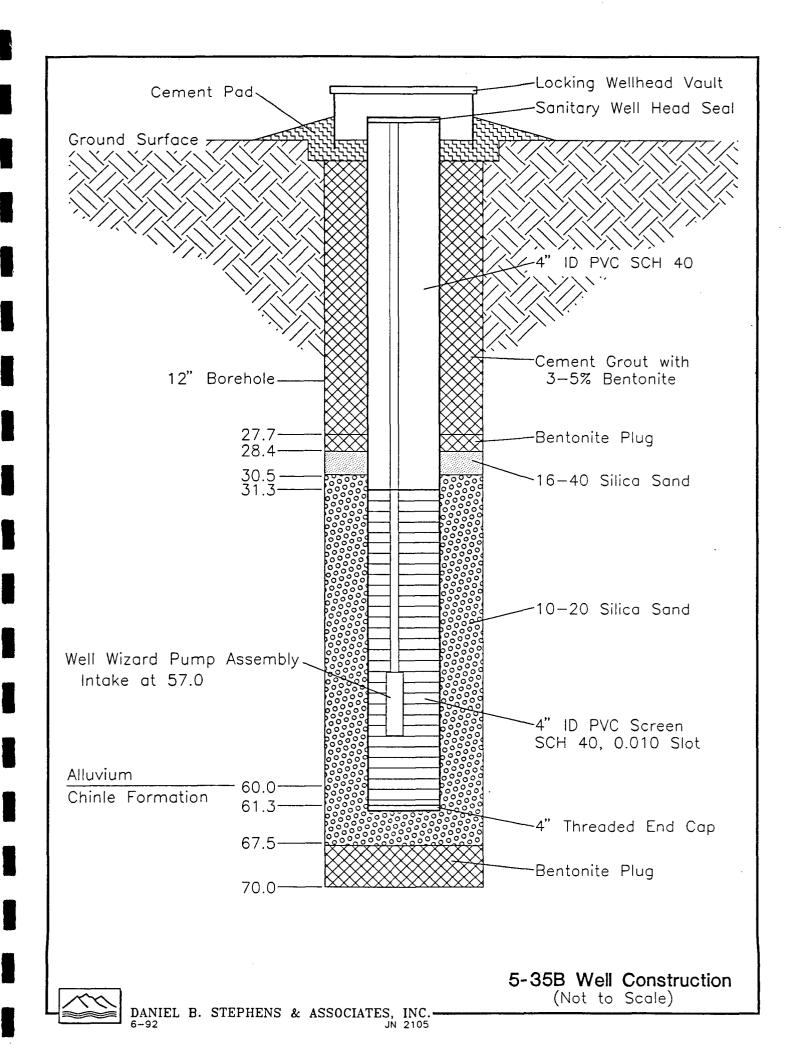
	Client:	Transwestern Compressor S		Boring No.:	5-57B
		Thoreau, New		Drilling Contractor:	Stewart Brothers Drilling Grants, New Mexico
•	Project No.:	2105 2.2		Drilling Method:	Hollow Stem Auger
	Date Started:	3/3/93		Total Depth Drilled;	76.2 ft
	Date Completed:	3/4/93	·		``````````````````````````````````````
	DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESC	CRIPTION
	0.0-5.0	Cuttings	Sand		d, moderately well sorted, ed, moist, with minor silt prown (2-5YR 3/4)
	5.0-15.0	Cuttings	Sand		d, moderately well sorted, ed, slightly moist, minor R 4/4 to 5/4)
	15.0-30.0	Cuttings	Sand	Fine grained, well sorted subrounded, slightly mo 4/4 to 5/4)	d, subangular to bist, reddish brown (5YR
	30.0-35.0	Cuttings	Sand	Fine grained, moderately to subrounded, slightly limestone cobbles (1.5- brown (5YR 4/4 to 5/4)	cm-diameter), reddish
	35.0-45.0	Cuttings	Sand	subangular to subround	d, moderately well sorted, ed, slightly moist, with estone pebbles, red (10R
	45.0-55.0	Cuttings	Silty sand	Very fine to fine grained subangular to subround 2-5% limestone cobbles (10R 4/6)	ed, with minor clay and
	55.0-60.0	Cuttings	Silty sand	Very fine to fine grained subangular to subround clay, red (10R 4/6)	
	60.0-65.0	Cuttings	Silty sand and clayey silt	Very fine grained, mode (10R 4/6)	erately sorted, wet, red
	65.0-76.2		·	No cuttings return	

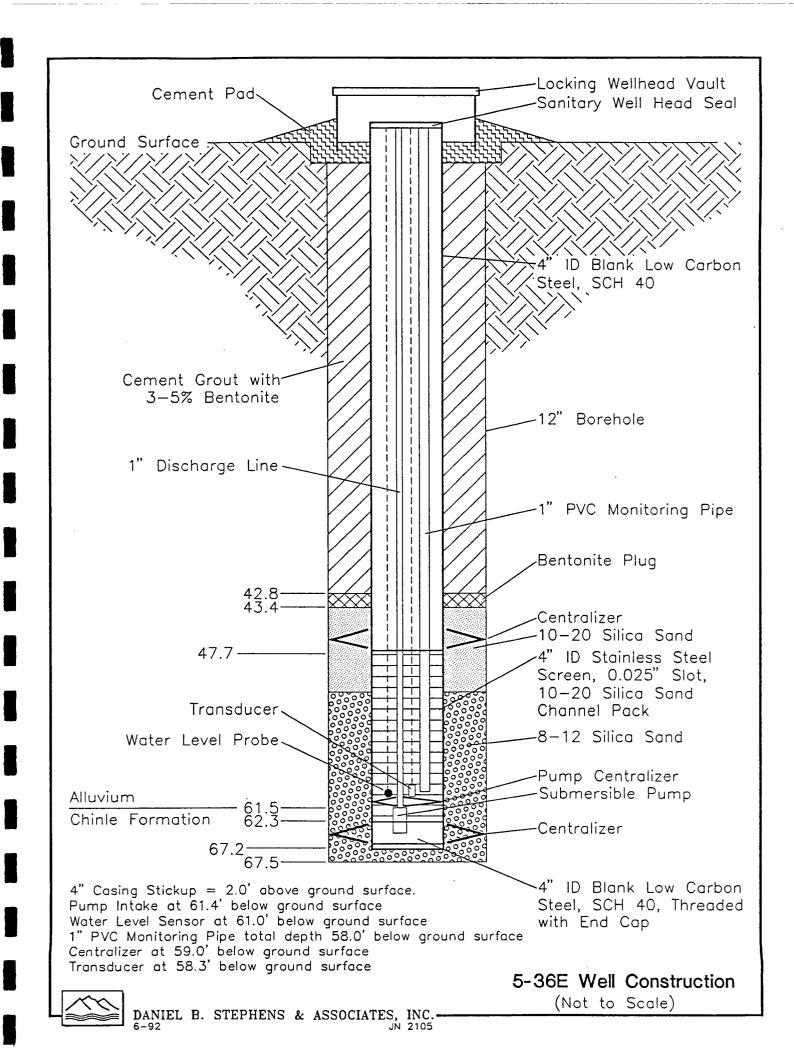
ENVIRONMENTAL SCIENTISTS AND ENGINEERS

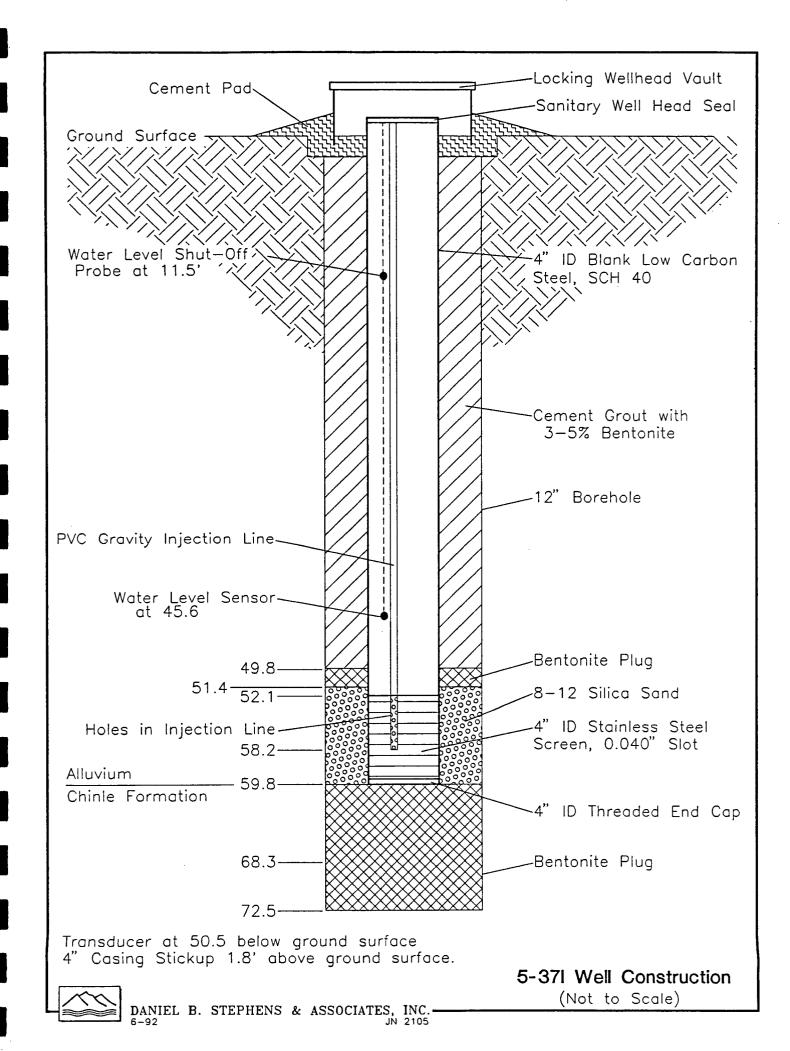
٠

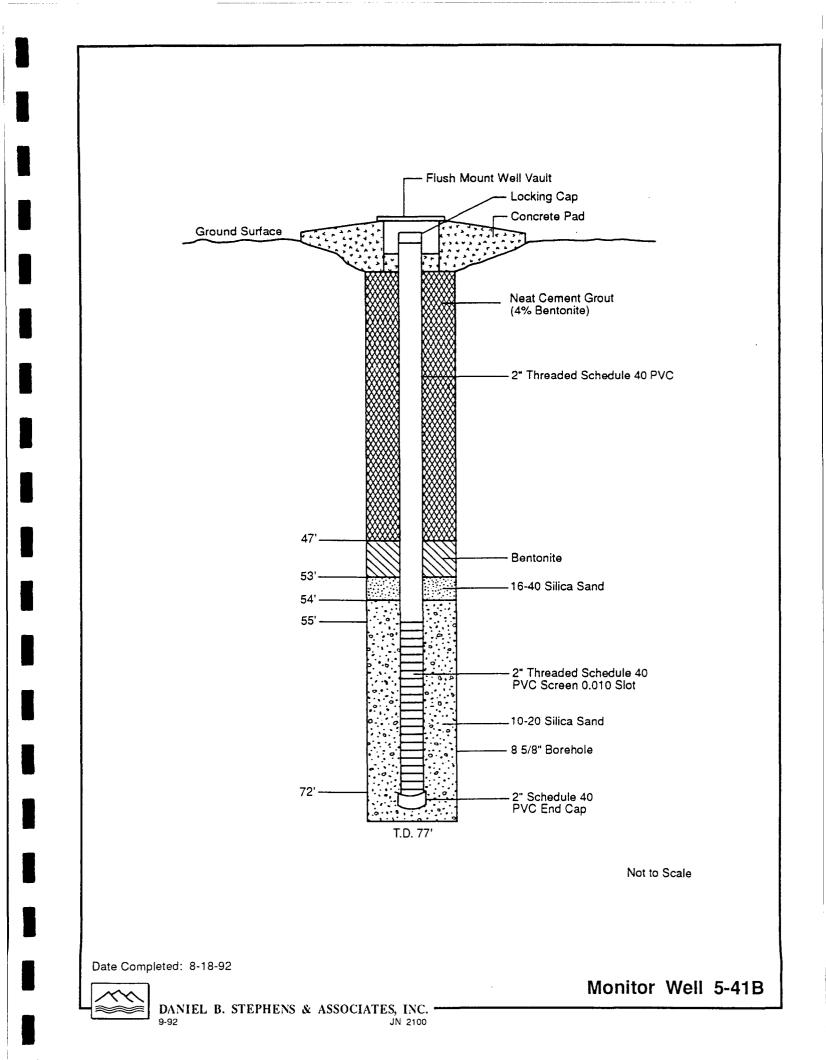
		•		· ·
Client:	Transwestern Pipelir Compressor Station Thoreau, New Mexic	No. 5	Boring No.: Drilling Contractor:	5-58B Stewart Brothers Drilling
				Grants, New Mexico
Project No.:	2105 2.2			Hollow Storn Augus
Date Started:	3/2/93		Drilling Method:	Hollow Stem Auger
	202	· .	Total Depth Drilled:	78.1 ft
Date Completed:	3/3/93			
x	· ·			
DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DES	SCRIPTION
0.0-10.0	Cuttings	Sand		rted, subangular to grains, moist, slightly mois silt, yellowish red (5YR 4/6
10.0-20.0	Cuttings	Sand	Very fine to fine grain sorted, subangular to moist, increase in silt yellowish red (5YR 4	subrounded, slightly t and clay content,
20.0-25.0	Cuttings	Silty sand	subangular to subrou	silt content, minor clay,
25.0-30.0	Cuttings	Sand	-	ned, moderately well o subrounded, dry, very o (5YR 6/4)
30.0-35.0	Cuttings	Gravelly sand	subangular to subrou	bles (diameter 1.5-3.0 cm)
35.0-40.0	Cuttings	Sand		ned, moderately sorted, Inded, dry, 2-3% limestone sh brown (5YR 5/4)
40.0-45.0	Cuttings	Sand	subangular to subrou	ned, moderately sorted, Inded, dry, 2-3% gravel Inor silt, reddish brown

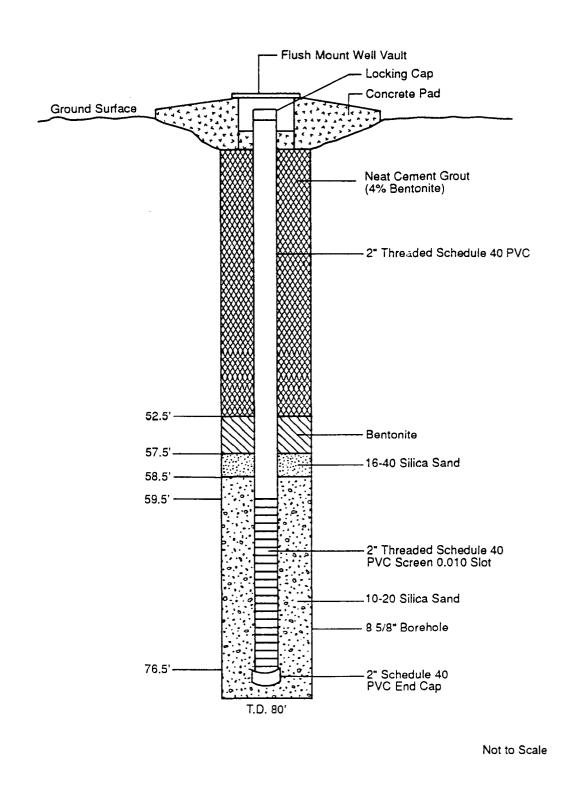


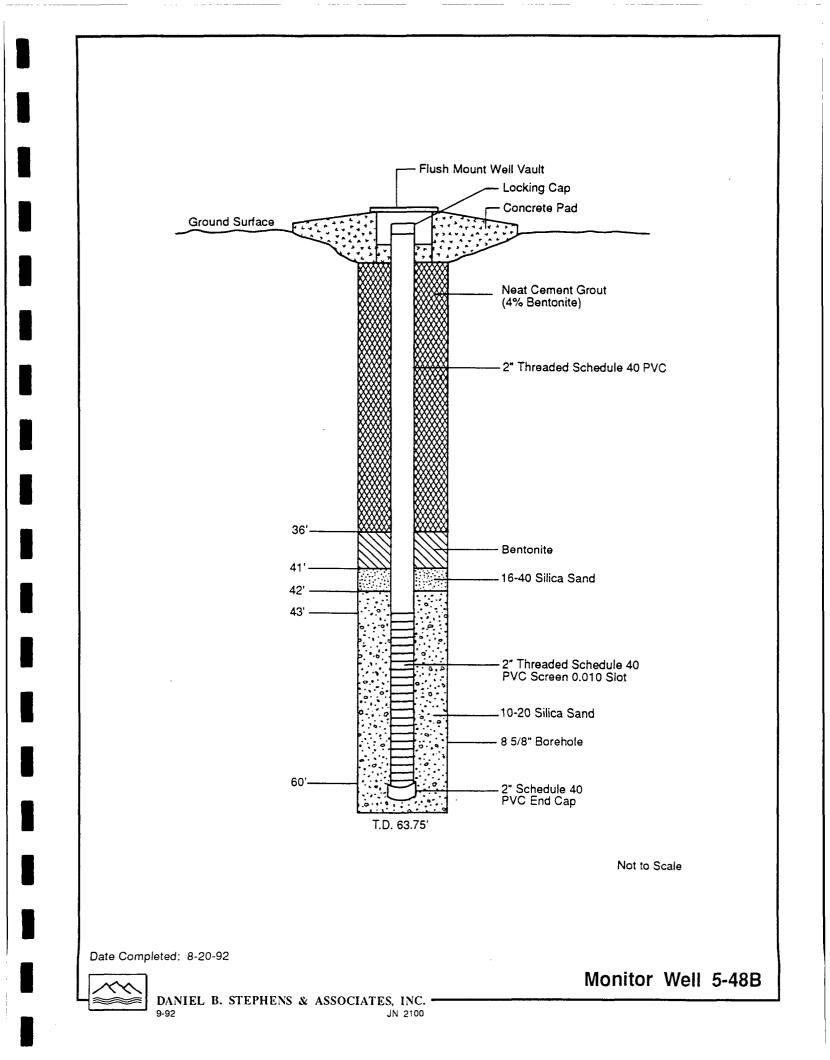

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

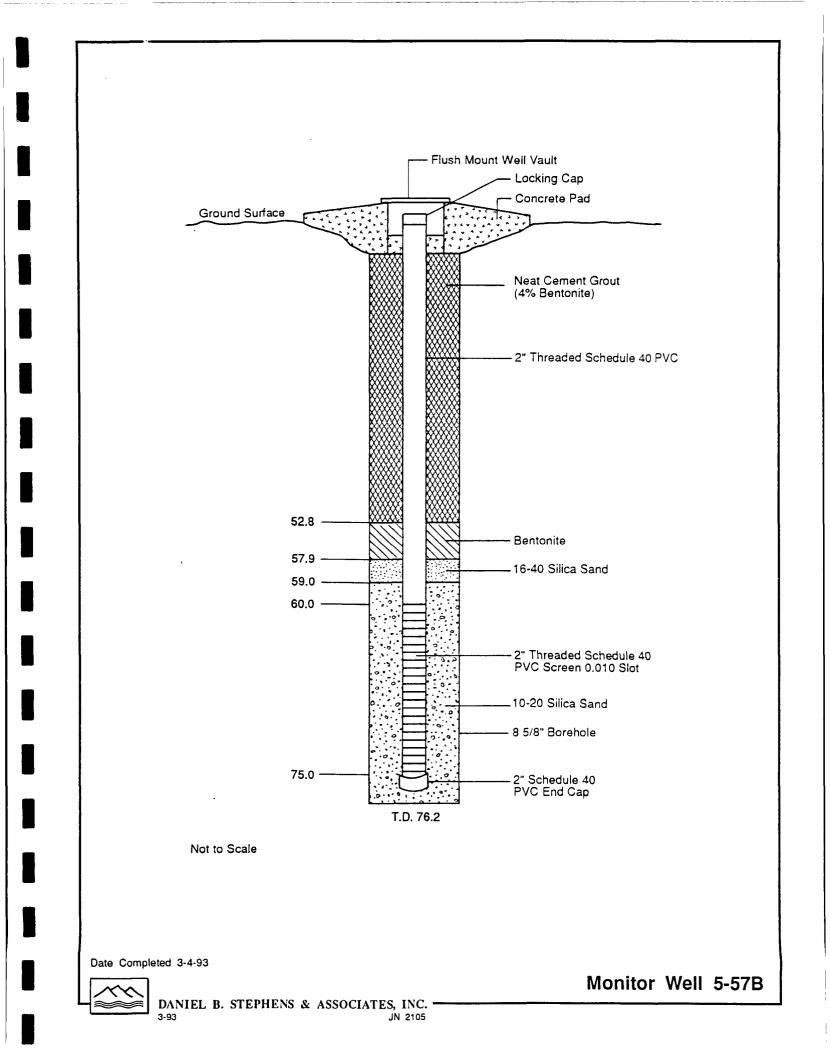

DEPTH INTERVAL (FEET)	SAMPLE TYPE	MATERIAL TYPE	DESCRIPTION
45.0-55.0	Cuttings	Silty sand	Very fine to fine grained, moderately sorted, subangular to subrounded, minor clay, 2-3% limestone cobbles (2-cm-diameter), wet, red (2.5YR 4/6)
55.0-60.0	Cuttings	Sand	Fine grained, moderately sorted, subangular t subrounded, dry, loose, 10% coarse sand an gravel, red (2.5YR 4/6)
60.0-65.0	Cuttings	Silty sand	Very fine to fine grained, moderately well sorted, subangular to subrounded, moist, wit minor clay, dark red (2.5YR 3/6)
65.0-78.1	Cuttings	Clayey sand	Very fine to fine grained, moderately sorted, subangular to subrounded, moist, dark red (2 5YR 3/6)

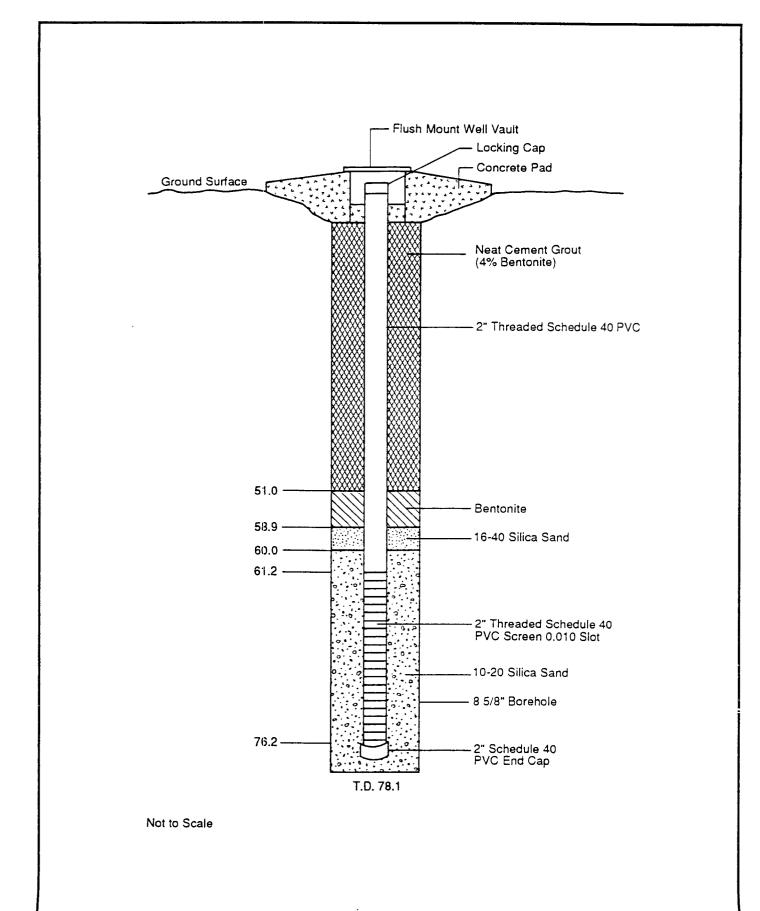

2105\TDRLG.393


Well Completion Diagrams



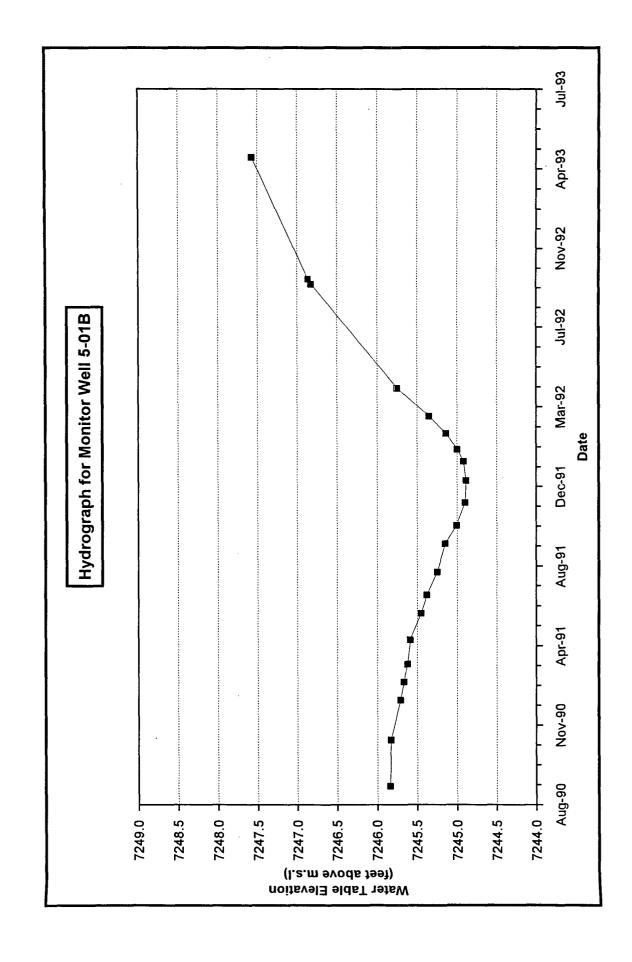


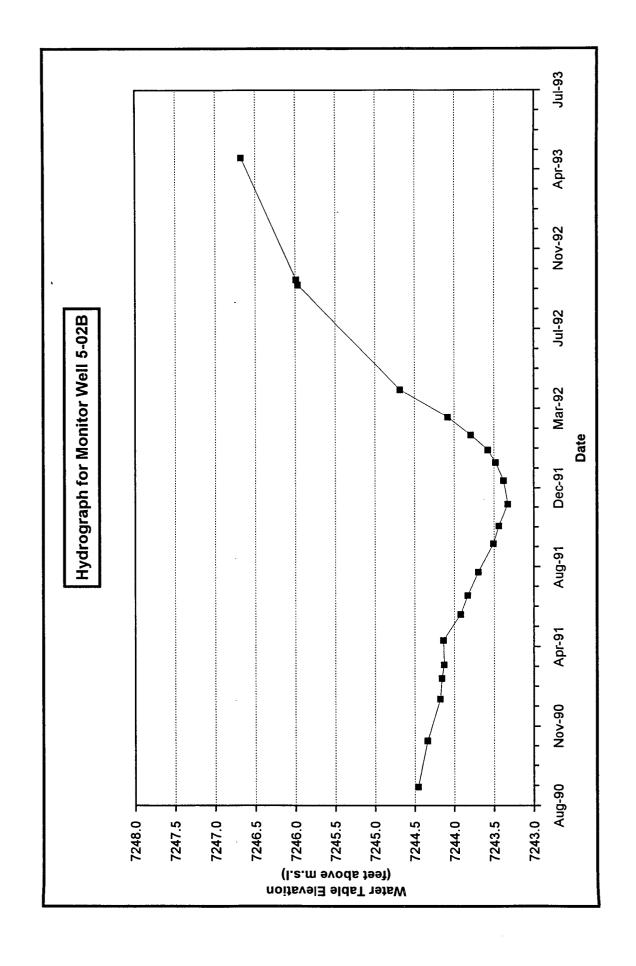


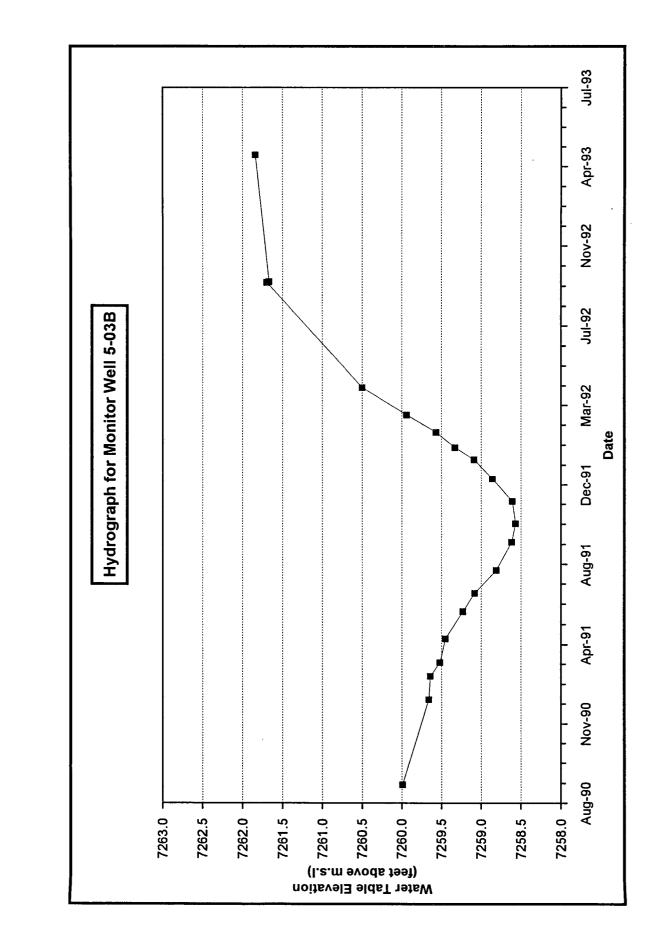

Date Completed: 8-16-92

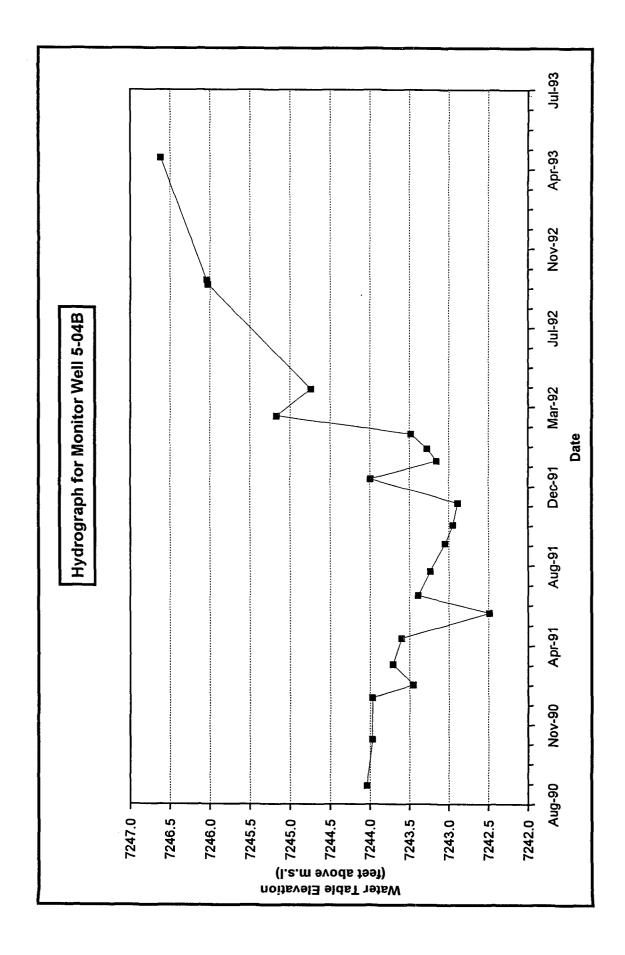
DANIEL B. STEPHENS & ASSOCIATES, INC. -9-92 JN 2100 Monitor Well 5-47B

Date Completed 3-3-93

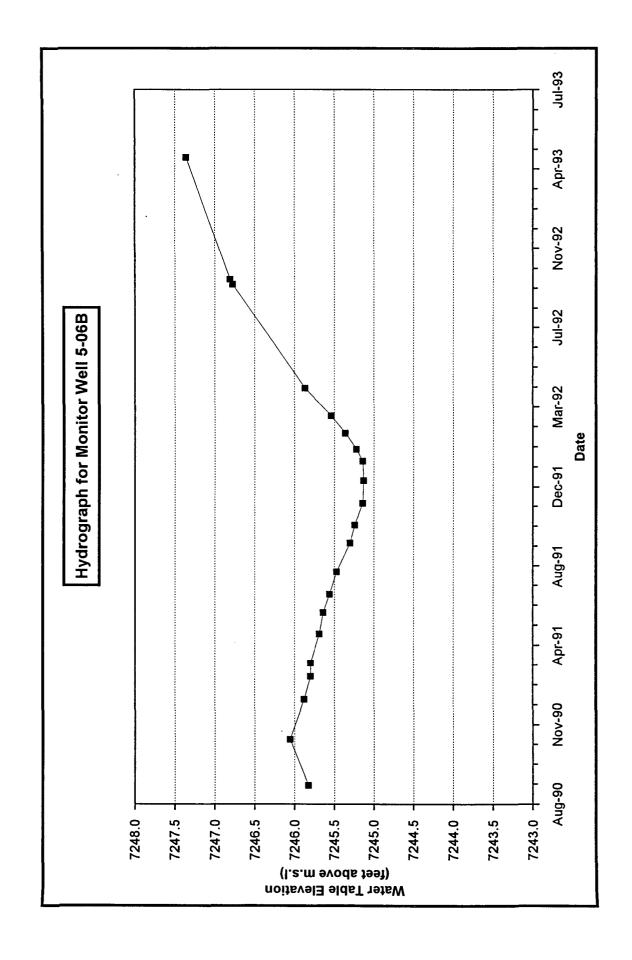


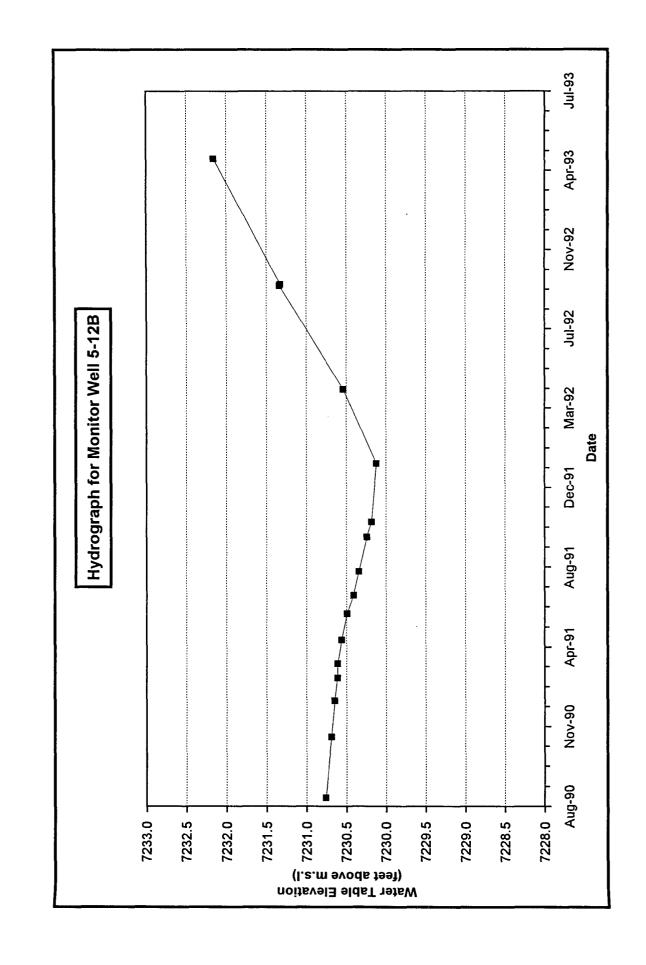

Monitor Well 5-58B

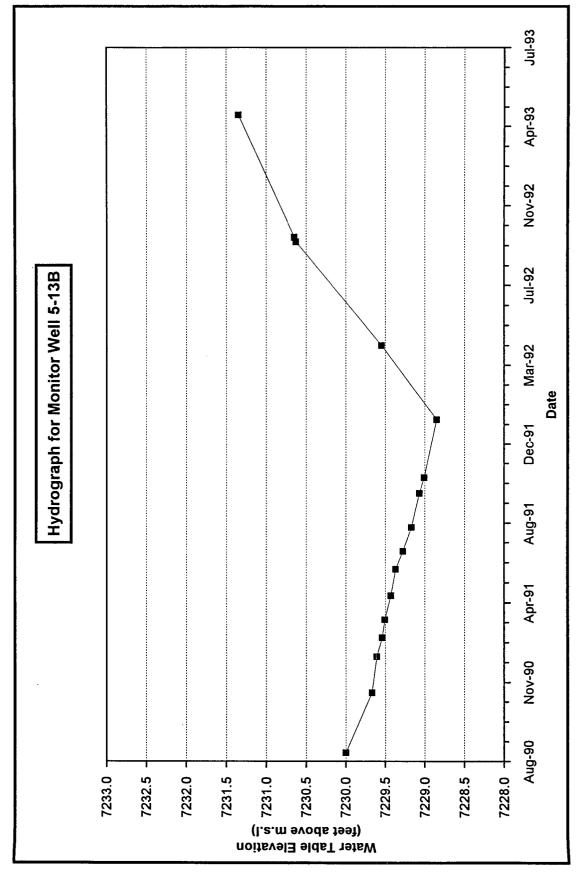

APPENDIX D


HYDROGRAPHS

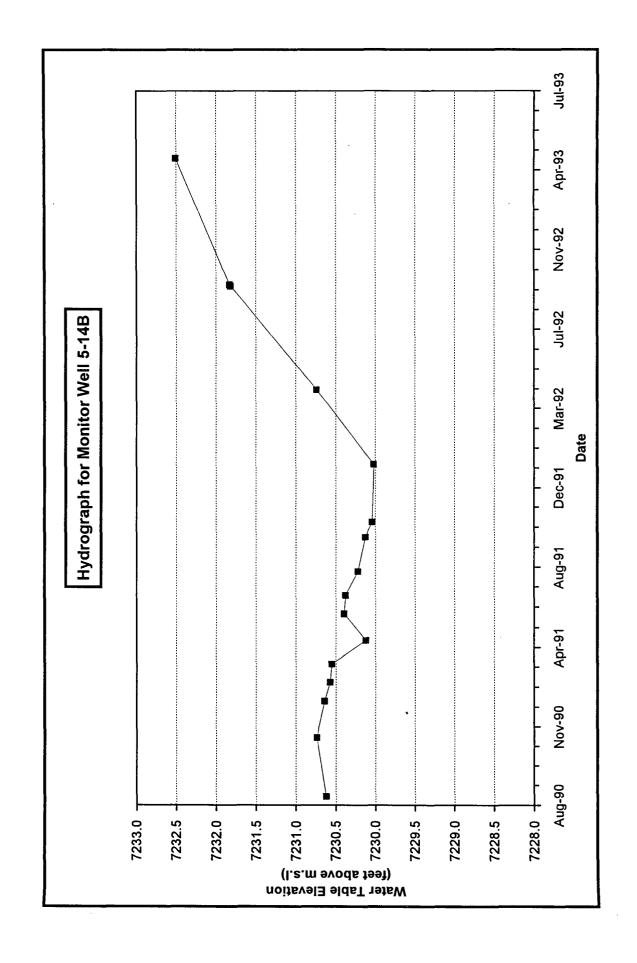
I

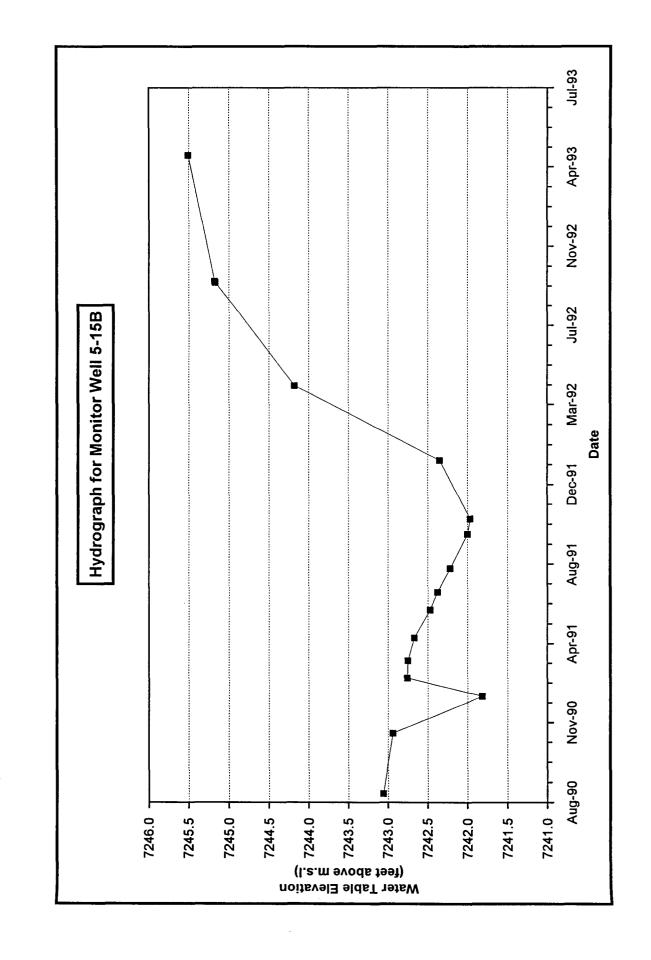


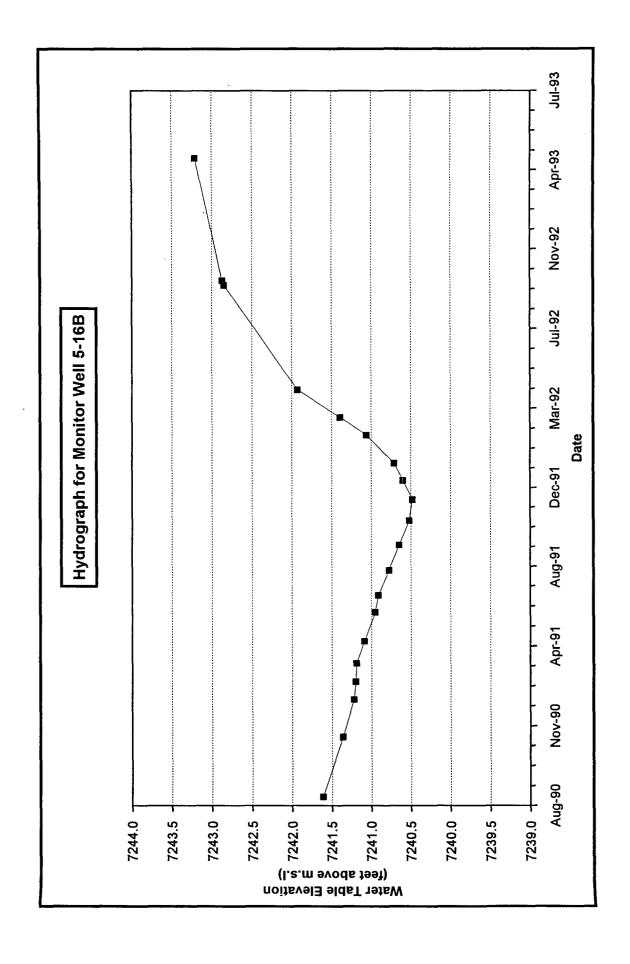


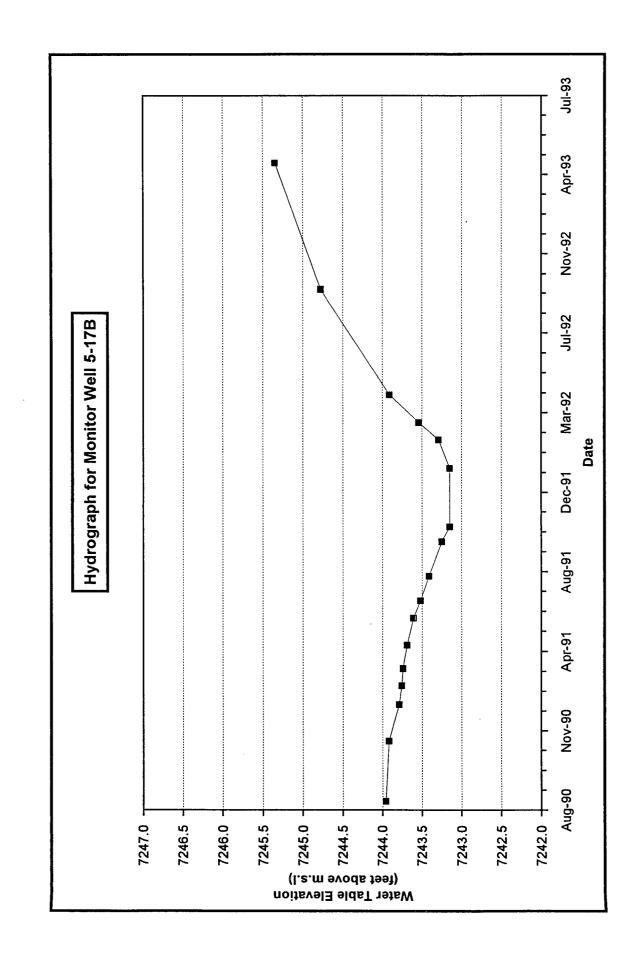


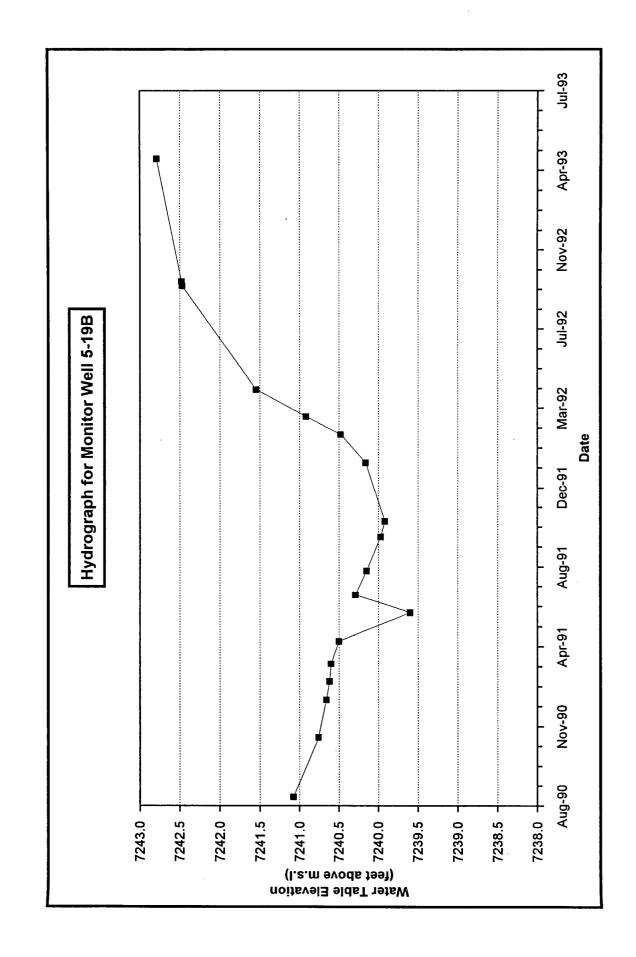
ľ

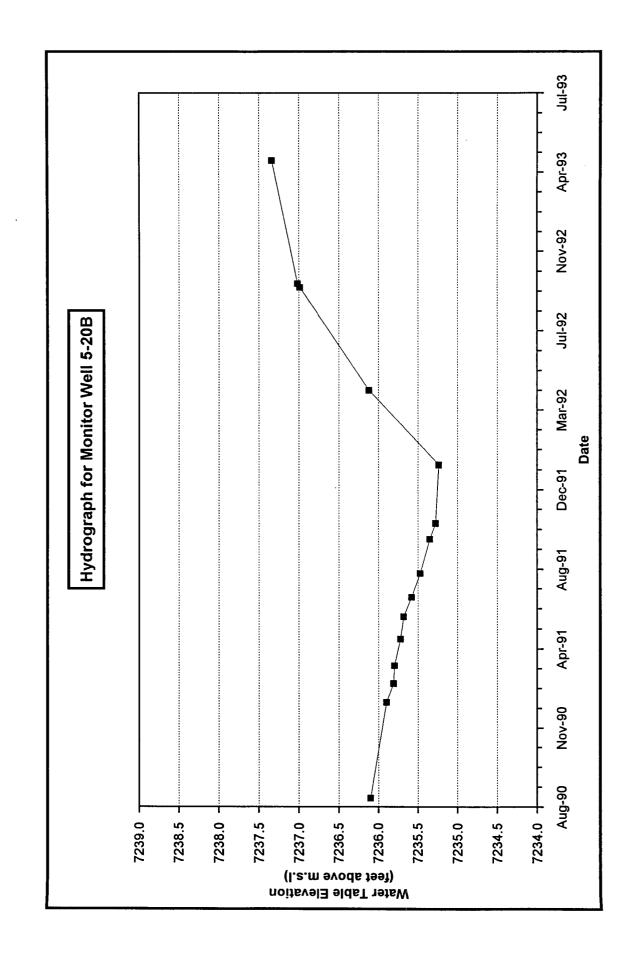


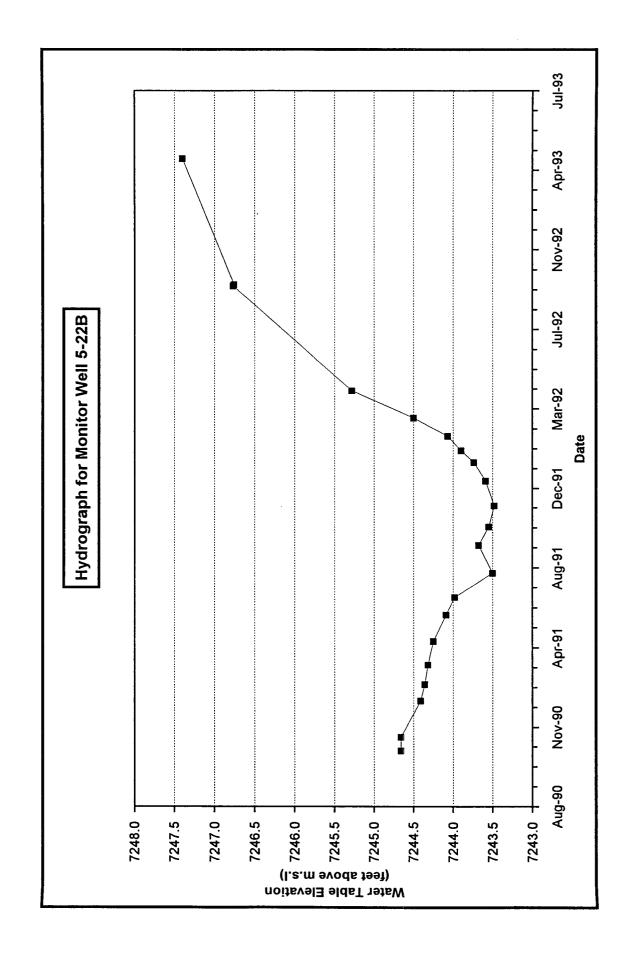

Î

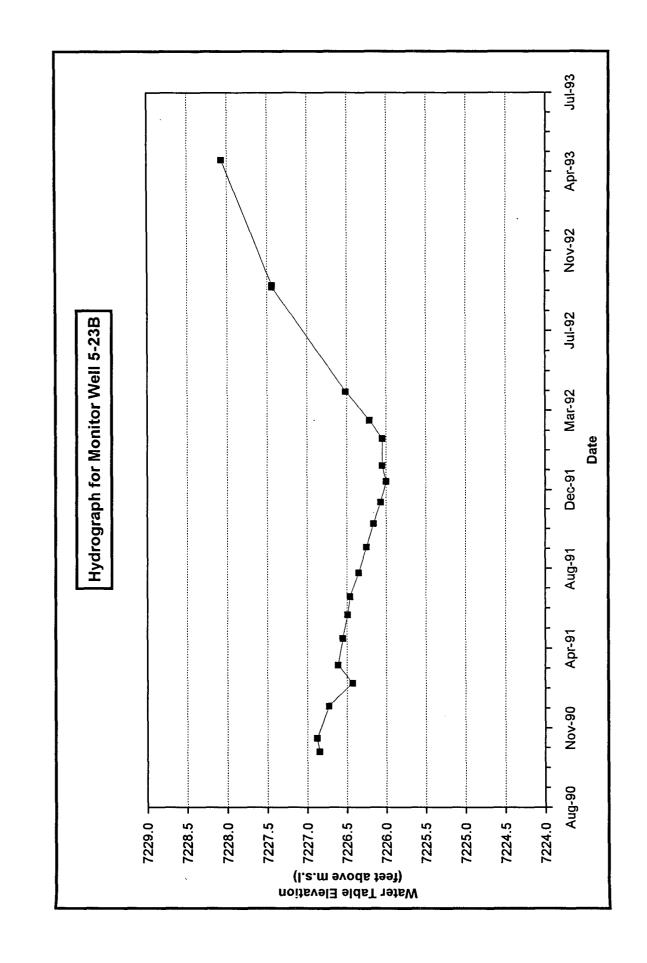


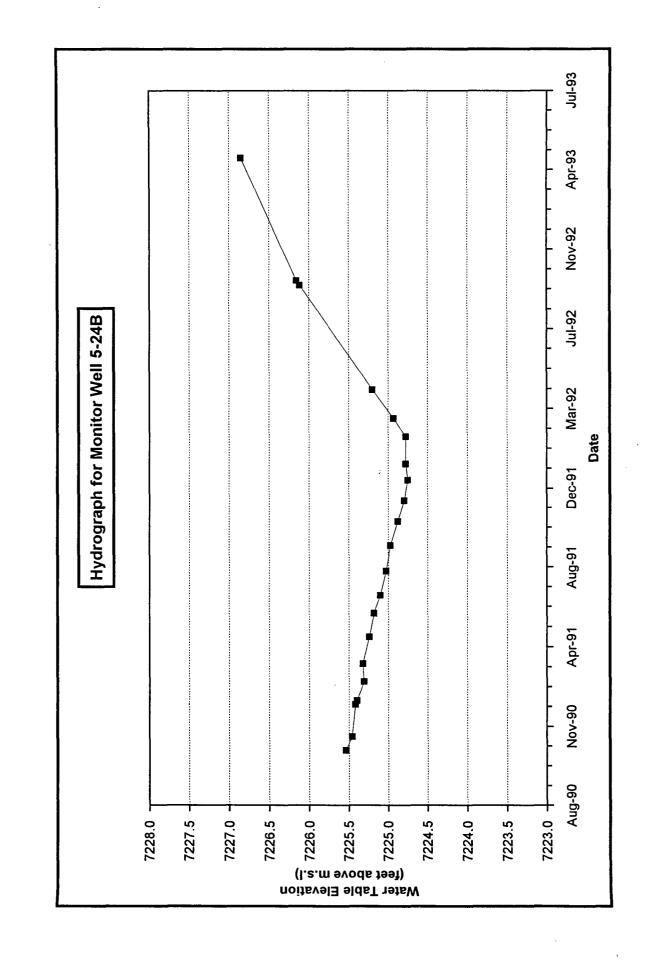


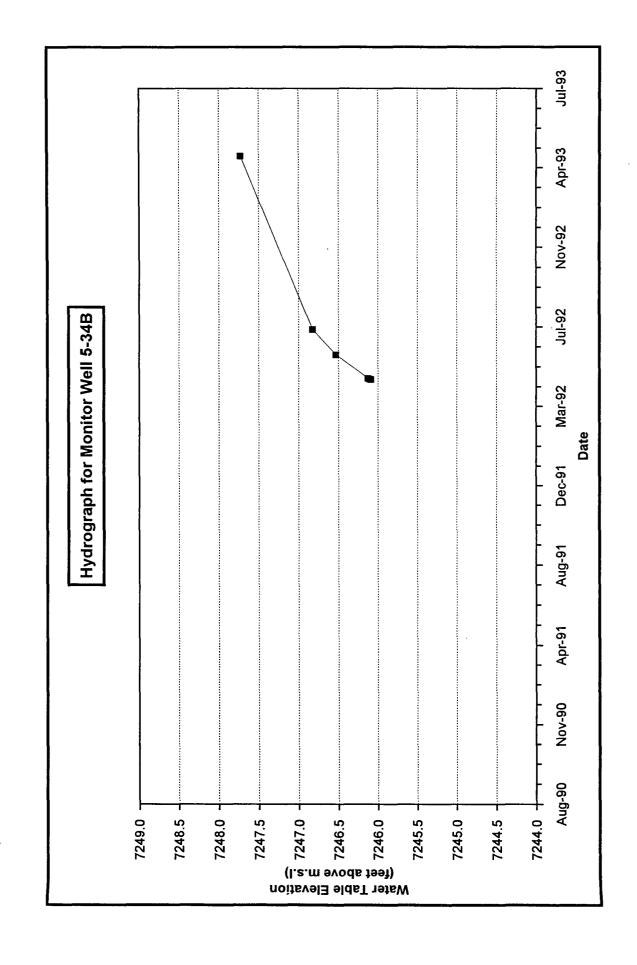


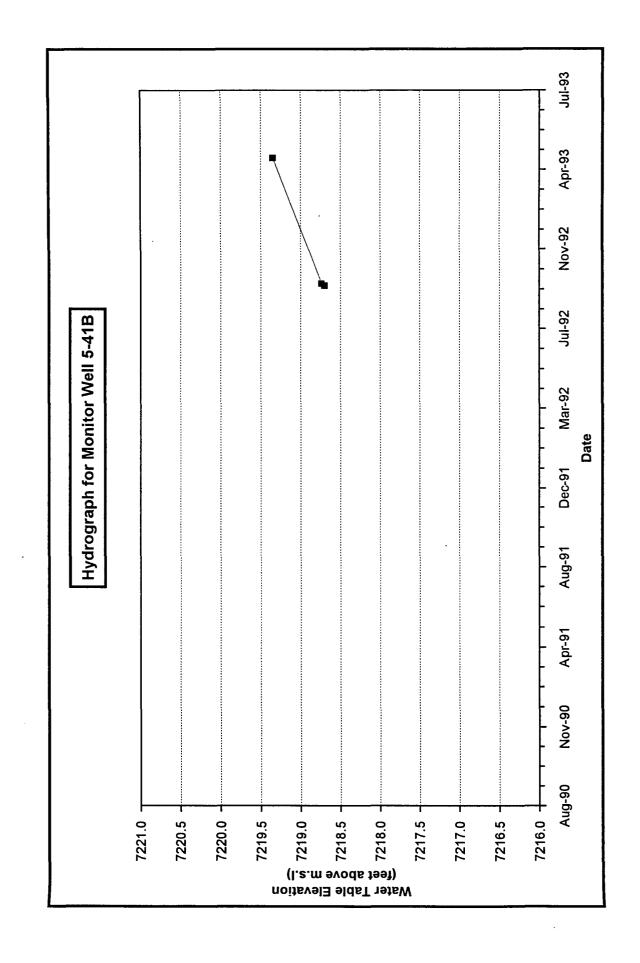

Ì

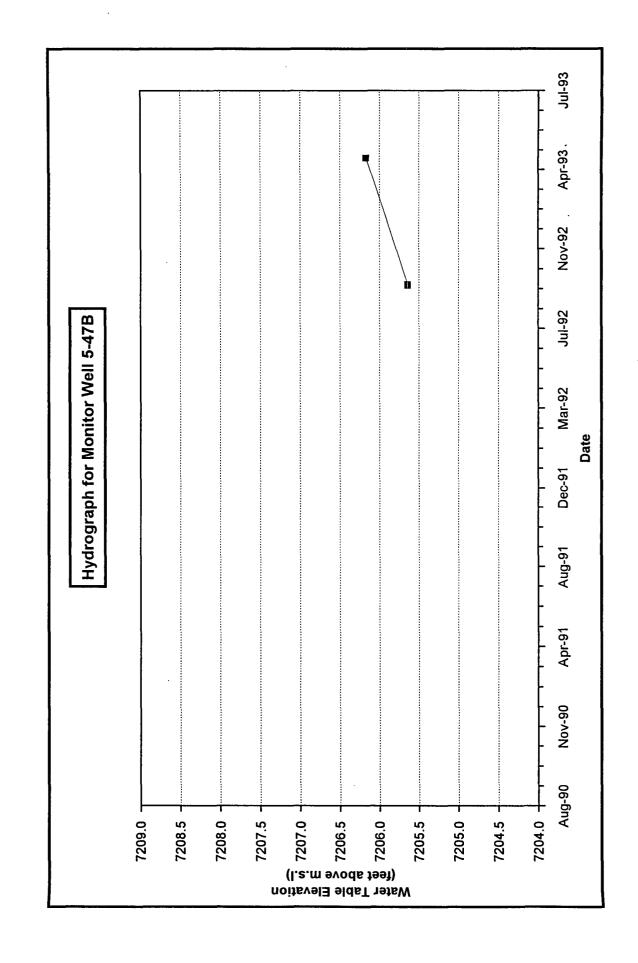



1

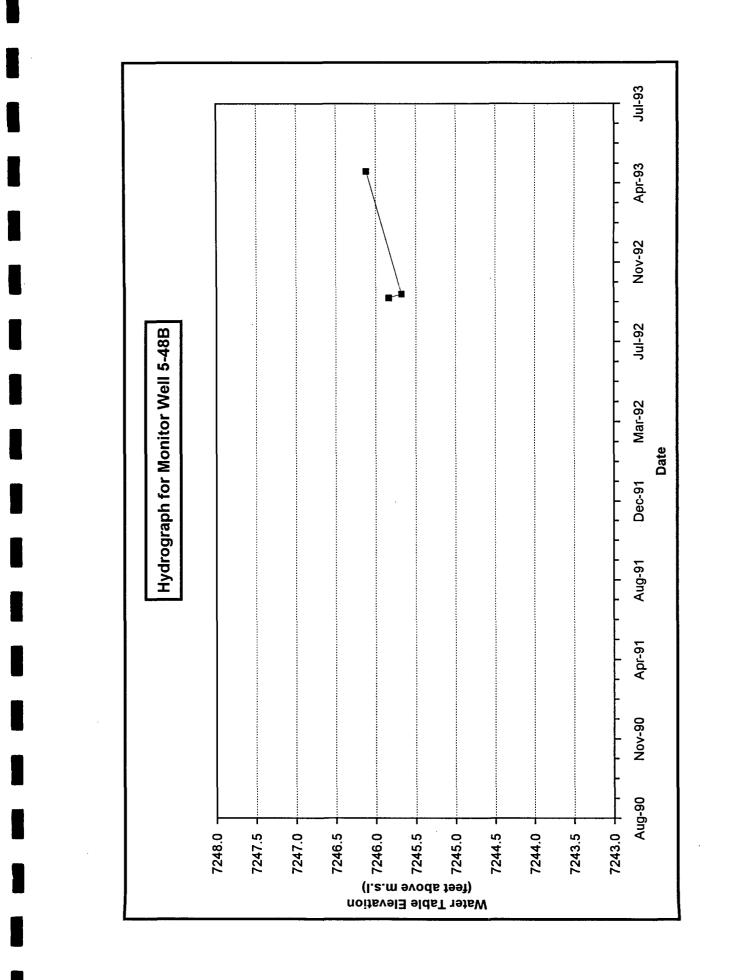

.



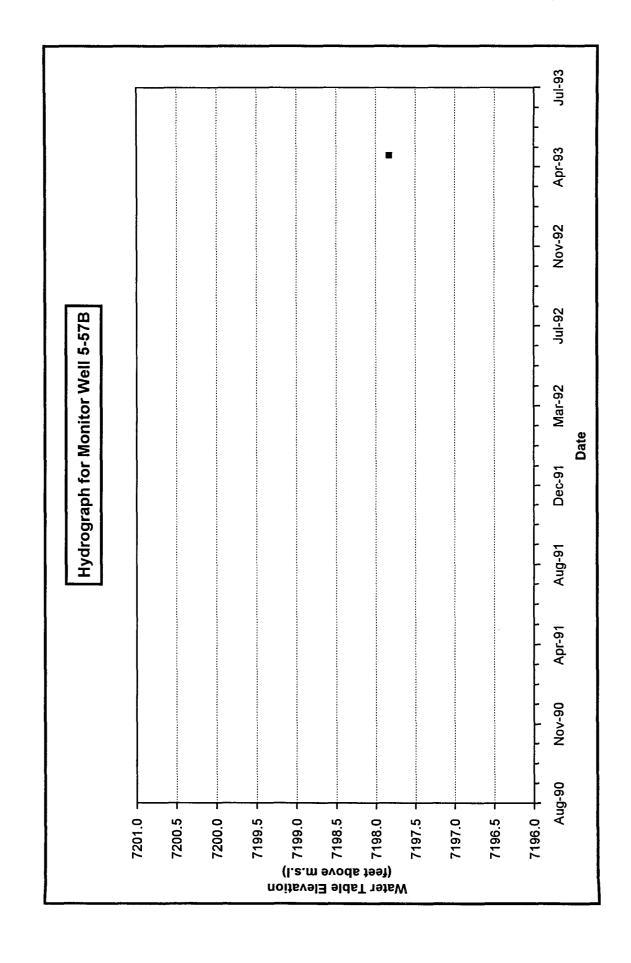




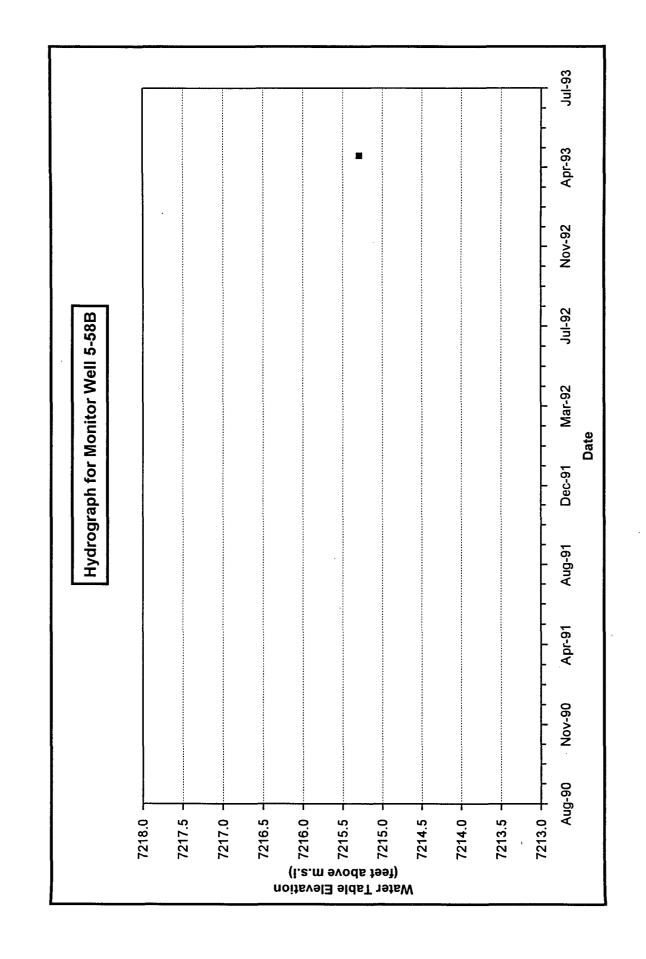
· · ·



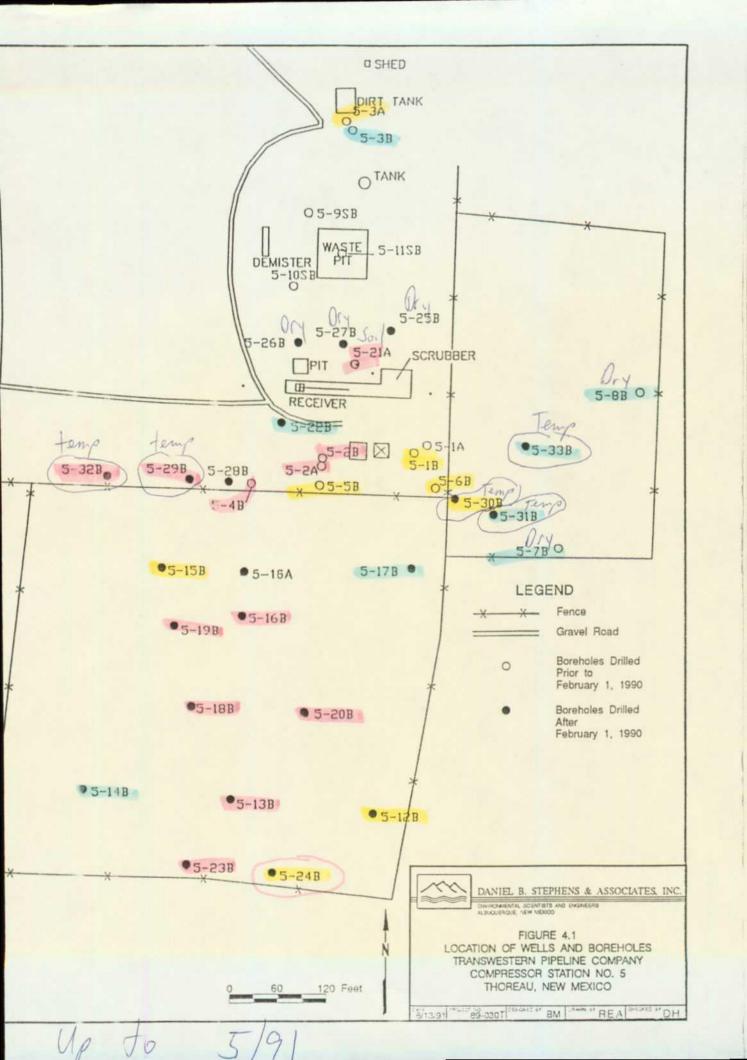
L



- ----


ŀ

I


į

i

 \vdots_{1}

ļ

APPENDIX E

SVE PILOT TEST REPORTS AND CALCULATIONS

AcuVac Report

9111 Katy Freeway Suite 303 Houston, TX 77024 (713) 468-6688: TEL (713) 468-6689: FAX *Manufacturers Distributor* RSI S.A.V.E. System

Ms JoAnn Hilton Hydrogeologist and Manager Daniel B. Stephens & Associates, Inc. 6020 Academy N.E. Ste 100 Albuquerque, NM 87109

Dear Ms Hilton:

Enclosed is the report on Pilot Testing performed on November 3rd, 4th, and 5th, 1993 at DBS&A Project No. 2105, Enron Corporation, Transwestern Compressor Station #5, Thoreau, NM. During the tests, AcuVac used the S.A.V.E. Remediation System with various instrumentation including the Horiba Analyzer. The report is divided into six separate tests that were conducted over a three day period.

Project Scope:

Connect the S.A.V.E. System to observation wells B-35B, B-34B, B-4B, B-5B, B-2B and B-6B, and apply vacuum to these wells; record the vacuum and well flow and record all system data - including fuel flow (propane) - and estimate the fuel value from the well vapors. Install and observe the magnehelic gauges on the selected outer observation wells to determine vacuum radius of influence or if the selected recovery well is in vacuum communication with the outer observation wells. Take influent vapor samples to forward for laboratory analysis and provide on-site Horiba Analyzer data on HC ppmv, CO_2 and CO, % by volume. Operate the S.A.V.E. System in a manner that all well vapors are passed through the engine to destruct the contaminants and exhausted to meet air emission standards and comply with applicable State and Federal laws and safety standards.

Fuel Use Information:

When the S.A.V.E. System is running 100% on fuel from recovery well vapors at an altitude of 7,300 ft, the maximum contaminated fuel destruction or burn rate is approximately 9.3 lbs/hr or 1.4 gallons of gasoline per hour. Maximum propane flow at full load was 115 CFH at this altitude at ambient air temperatures from 30° to 50°F and engine speed at 2,700 RPM. Therefore, when the flow meter is on 60 CFH, the well vapors are contributing approximately 50% of the fuel value, or approximately 4.65 lbs/hr. Other percentages are calculated accordingly. Contaminant in the form of gasoline will produce approximately 125,000 BTU/hr. Therefore, the fuel requirement

November 15, 1993

Ms JoAnn Hilton Page 2 of 4

for these tests are estimated to produce 175,000 BTU/hr. Propane requirements without fuel value from well flow is 1.81 gals/hr.

Summary of Data: 6 Tests See Exhibit A.

Discussion of Data:

There will be variations in well distances compared to an accurate survey. Some well distances were measured while others were estimated from the scale plotted on a location map.

Test #1 was a 24 hour SVE test conducted from recovery well (RW) 5-35B. This well is constructed from 4" PVC pipe and screened from 31.3 to 61.3 ft bgs with a depth of groundwater at test time of 50.03 bmp. Prior to beginning the test, magnehelic gauges were used to check the static vacuum or pressure existing in the selected observation wells. With the exception of well 5-37I, all selected observation wells indicated a pressure under static conditions. From my experience in observing SVE test data, this is not uncommon. Observation wells 5-36E and 5-37I are reported to be screened below the groundwater level and erratic data may occur during SVE testing. Later, we found out during SVE Test #5, that 5-2B was a dead well (no well flow) and the observed vacuums /pressures were probably not influenced by the RW vacuum with the exception of groundwater level changes.

Prior to starting the test, the recovery well PVC connecter and boot were modified to accept transducers for sensing groundwater level changes. All S.A.V.E.'s systems were checked and magnehelic gauges set at "0".

The 24 hour test provided good steady data from observation wells 5-34B, 5-4B, 5-22B and 5-5B. This is presented in the Summary of Data. From this data, 5-34B and 5-4B should be considered within the radius of influence and it is highly probable that 5-22B and 5-5B will effectively be within the influence over time (see Figure 1). The HC, CO_2 and CO concentrations from well vapors as provided by the HORIBA Analyzer were consistent throughout the test period. This is confirmed by the consistent propane flow.

Test #2 was a 3 hour SVE test conducted from recovery well (RW) 5-34B. This well is constructed from 4" PVC pipe and screened from 34 to 64 ft bgs with depth of groundwater at 47.68 ft at the time of the test. The interface probe indicated a PSH sheen on the groundwater. The test was a very typical SVE test in that the RW vacuum and flow was almost constant throughout the test time. The propane flow and the HORIBA analysis of well vapors were also consistent and the progress of vacuum in the

Ms JoAnn Hilton Page 3 of 4

observation wells was steady. This is confirmed as shown in the Summary of Data and Figure 1.

Test #3 was a 2 hour SVE test conducted from recovery well (RW) 5-4B. This well is constructed from 2" PVC pipe and screened from 38.7 to 58.7 ft bgs with depth of groundwater at time of test of 46.12 ft. Prior to beginning the test, magnehelic gauges were used to check the static vacuum/pressure existing in the selected observations wells. With the exception of well 5-2B, all wells indicated a vacuum at 0730 hours on 11/05/93 as compared to a pressure at 1155 hours on 11/03/93. This occurred after 27.9 hours of SVE testing. The recorded data was consistent throughout the test as indicated in the Summary of Data and Figure 1.

Test #4 was a 2 hour SVE test from recovery well (RW) 5-5B. This well is constructed from 2" PVC pipe and screened from 39.5 to 58 ft bgs with depth of groundwater of 45.0 ft at time of test. The operating data was consistent throughout the test. The HORIBA analysis indicates the well vapors contained small amounts of hydrocarbon vapors. Observation wells 5-35B and 5-34B were too far from the RW to provide meaningful data. Two additional wells, 5-1B and 5-6B were added as observation wells. The data is presented in the Summary and Figure 1.

Test #5 was scheduled to be a 2 hour SVE test. However, after the initial vapor evacuation from the well, no flow was observed at a well vacuum of 283" H_2O . The test was aborted. The well should not be included as a SVE recovery well.

Test #6 was a 1.3 hour SVE test conducted from recovery well (RW) 5-6B. This well is constructed from 2" PVC pipe and reported screened from 38.7 to 58.7 ft bgs with the depth of groundwater at 42.0 ft at the time of test. All operating data was consistent throughout the test. Vacuum was held at near 90" H_20 to encourage well flow. Observation wells 5-1B and 5-5B responded to RW vacuum. HORIBA data indicates low hydrocarbon value from the well vapors. All other observation wells were dropped due to distances. The data was not included in the plot in Figure 1.

Figure 1 indicates the most conclusive data supporting a SVE system for this facility. As shown on the plot, a radius of influence from 40 to 60 ft could be incorporated in the design plan. An approximation of the radius of influence may be obtained by determining the point at which the measured vacuum is 0.3 to 0.5" H_20 . It is assumed that beyond these points, the pressure gradient (driving force) is negligible to effectively transport vaporized contaminants to the extraction well. Under continuous operation, vacuum and radius of influence may continue to increase 1 to 10 days.

Ms JoAnn Hilton Page 4 of 4

Additional Information (This should be read as vital part of the report):

- Summary of Operating Data
- Plot of observed Vacuum vs Distance at the Facility
- Field Operating Data and Notes
- Site Photographs

Conclusion:

The tests indicate that soil vacuum extraction (SVE) would be an effective method of remediation for this facility. Although the observed vacuum on the outer observation wells was relatively low, or in some cases pressure was recorded, the duration of the pilot tests #2 through #6 were short. However, the results give positive indication that the observed and reported wells were in vacuum communication with the selected SVE recovery wells. A properly installed SVE System should effectively remove contaminants from the soil.

The S.A.V.E. System performed as represented and should be considered a viable technology to use for the remediation of this location. We project it will take 1 to 5 days to establish a consistent vacuum and true radius of influence. The System is designed to consume heavy concentrations of vapors and meet air emission standards set by the NMED. The new S.A.V.E. II System which is presently being tested, can provide well flows of up to 250 cfm.

Once you have reviewed the report, please call me if you have any questions.

Sincerely,

James E. Sadler Product Engineer

- - -----

ļ.

(.38)

.14

DBS&A - Thoreau, NM Test #1

11/03/93	Initial Data Time 1230	Second Data Time 1315	Third Data Time 1330	Forth Data Time 143	Fil Da O Time	ta	Sixth Data Time 1630	Seventh Data Time 1730
% Well Vapors As Fuel	13	22	17	22	2	2	22	22
Horiba-HC PPM	-	15,530	-	19,430	20,	490	17,120	23,950
Recovery Well Vacuum "H ₂ O Well 5-358	24	26	26	26	2	5	26	26
Recovery Well Flow-CFM Well 5-35B	19	20	19.5	19	20	0	21	21
Well 5-34B Vacuum "H ₂ O Dist. ft.	.25	.45	. 48	. 60	.6	4	.64	.70
Well 5-4B Vacuum "H ₂ O Dist. ft.	.17	.30	.35	.40	.5	2	.50	.48
Well 5-22B Vacuum "H ₂ O Dist. ft.	(.13)	0	. 05	. 05	.1	0	.10	.12
Well 5-2B Vacuum "H ₂ O Dist. ft.	(.41)	(1.00)	(1.00)	(.85)	(.7	0)	(.70)	(.54)
Well 5-5B Vacuum "H ₂ O Dist. ft.	(.10)	(.03)	(.01)	.03	.0	5	.04	.06
·								
11/03/93 and 11/04/93	Eighth Data Time 1830	Ninth Data Time 1930	Tenth Data Time 2030	Eleventh Data Time 2130	Twelfth Data Time 2230		nirteenth Data Time 2330	Fourteenth Data Time 0030
% Well Vapors As Fuel	26	17	17	17	17	Ē.	17	17
Horiba-HC PPM	23,630	21,370	-	22,130	-		21,870	
Recovery Well Vacuum "H ₂ O Well 5-35B	26	27	27	27	27		27	27
Recovery Well Flow-CFM Well 5-35B	20	21	21	21	21		21	22
Well 5-34B Vacuum "H ₂ O Dist. ft.	.70	.78	.80	.83	.85		.86	.88
Well 5–4B Vacuum "H ₂ O Dist. ft.	.52	.56	.60	.62	.60		.58	.60
Well 5-22B Vacuum "H ₂ O Dist. ft.	.15	.18	.18	.18	.18		.16	.14

(Test.pg1)

Well 5–2B Vacuum "H₂O Dist. ft.

Well 5–5B Vacuum "H₂O <u>Dist. ft.</u> (.48)

.07

(.30)

.13

.

(.28)

.12

(.24)

.12

(.30)

.12

(.32)

.14

_

· ·-

. . _____

|

---- --- ---

DBS&A - Thoreau, NM Test #1 - Continued

11/04/93	Fifteenth Data Time 0130	Sixteenth Data Time 0230	Seventeenth Data Time 0330	Eighteenth Data Time 0430	Nineteenth Data Time 0530	Twentieth Data Time 0630	Twenty-first Data Time 0730
% Well Vapors As Fuel	17	17	17	22	22	17	17
Horiba-HC PPM	-	23,110	-	22,570	-	21,960	21,200
Recovery Well Vacuum "H ₂ O Well 5-358	27	27	27	27	27	27	28
Recovery Well Flow-CFM Well 5-35B	22	22	21	22	22	22	26
Well 5-34B Vacuum "H ₂ O Dist. 21.6 ft.	.90	.90	.90	. 90	.92	.95	.98
Well 5-4B Vacuum "H ₂ O Dist. 38.2 ft.	.62	.60	.64	.66	.66	.67	.70
Well 5-22B Vacuum "H ₂ O Dist. 80.3 ft.	.15	.15	.15	.16	.18	.20	.27
Well 5-2B Vacuum "H ₂ O Dist. 116.9 ft.	(.38)	(.34)	(.32)	(.30)	(.24)	(.20)	(.14)
Well 5-58 Vacuum "H ₂ 0 Dist. 11858 ft.	.15	.14	.12	.10	.12	. 15	.15

11/04/93	Twenty-second Data Time 0830	Twenty-third Data Time 0930	Twenty-forth Data Time 1030	Twenty-fifth Data Time 1130	Twenty-sixth Data Time 1235	Average Data 24:05 Hrs.	Maximum Data
% Well Vapors As Fuel	17	17	17	17	17	18.54	26
Horiba-HC PPM	-	20,398	21,394	22,470	21,860	21,205	23,950
Recovery Well Vacuum "H-O Well 5-35B	28	29	29	30	31	27.12	31
Recovery Well Flow-CFM Well 5-35B	27	29	29	30	30	22.64	30
Well 5-34B Vacuum "H ₂ O Dist. 21.6 ft.	.97	.98	1.00	1.00	1.10	.81	1.10
Well 5-4B Vacuum "H ₂ O Dist. 38.2 ft.	.74	.68	.65	.72	.76	.57	.76
Well 5-22B Vacuum "H ₂ O Dist. 80.3 ft.	.24	.17	.18	.24	.26	.15	.27
Well 5-2B Vacuum "H ₂ O Dist. 116.9 ft.	(.18)	(.22)	(.24)	(.30)	(.50)	(.42)	(.14)
Well 5-5B Vacuum "H ₂ O Dist. 118.8 ft.	.15	.08	.10	.14	.15	.09	.15

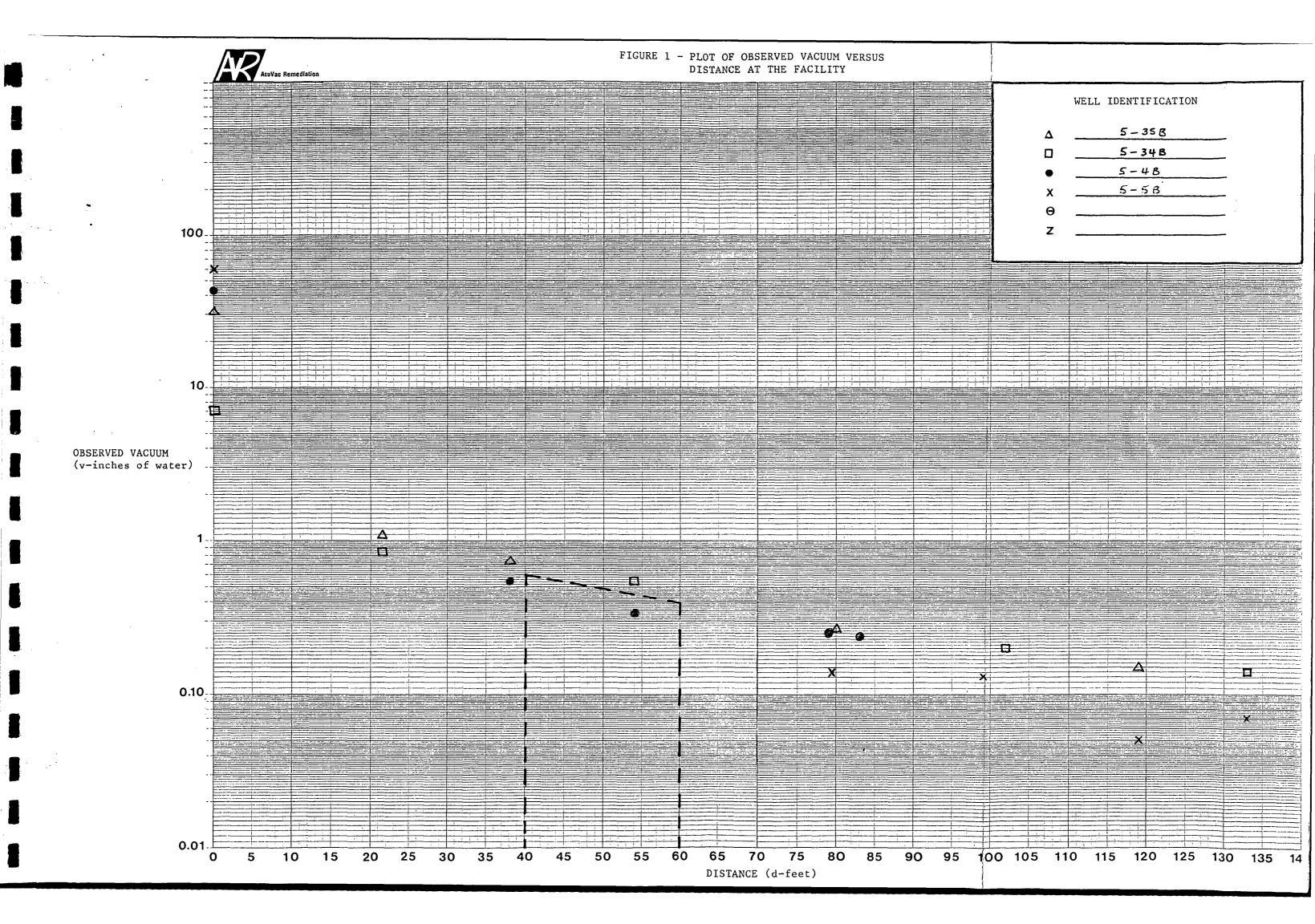
DBS&A - Thoreau, NM Test #2

11/04/93	Initial Data Time 1415	Second Data Time 1515	Third Data Time 1615	Average Data 2:12 Hrs.	Maximum Data
% Well Vapors As Fuel	35	30	35	33.3	35
Horiba-HC PPM	28,770	32,570	31,670	31,003	32,570
Recovery Well Vacuum "H ₂ O Well 5-34B	6.0	6.0	6.2	6.07	6.2
Recovery Well Flow-CFM Well 5-34B	20	21	22	21	22
Well 5-35B Vacuum "H ₂ O Dist, 21.6 ft.	. 80	. 80	.85	.82	.85
Well 5-4B Vacuum "H ₂ O Dist. 54.0 ft.	.46	.48	.52	.49	.52
Well 5-22B Vacuum "H ₂ O Dist. 102.0 ft.	.12	.16	.20	.16	.20
Well 5-2B Vacuum "H ₂ O Dist. 134.0 ft.	(.66)	(.50)	(.36)	.51	(.36)
Well 5-5B Vacuum "H ₂ O Dist. 133.5 ft.	.10	.14	.18	.14	.18

DBS&A - Thoreau, NM Test #3

11/05/93	Initial Data Time 0755	Second Data Time 0855	Third Data Time 1000	Average Data _2:05 Hrs.	Maximum Data
% Well Vapors As Fuel	0	0	0	0	0
Horiba-HC PPM	898	1,178	1,205	1,094	1,205
Recovery Well Vacuum "H ₂ O Well 5-4B	42	42	43	42.33	43
Recovery Well Flow-CFM Well 5-4B	20	22	23	21.67	23
Well 5-35B Vacuum "H ₂ O Dist. 38.2 ft.	.38	. 46	.52	.45	.52
Well 5-348 Vacuum "H ₂ 0 Dist. 54.0 ft	.22	.28	.34	.28	.34
Well 5-22B Vacuum "H ₂ O Dist. 83.0 ft.	.14	.19	.24	.19	.24
Well 5-2B Vacuum "H ₂ O Dist. 88.5 ft.	(.06)	(.04)	(.02)	(.04)	(.02)
Well 5-5B Vacuum "H ₂ O Dist. 79.5 ft.	- 04	.20	.26	. 17	.26

---- ----


DBS&A - Thoreau, NM Test #4

11/05/93	Initial Data Time 1015	Second Data Time 1115	Third Data Time 1225	Average Data 2:10 Hrs.	Maximum Data
% Well Vapors As Fuel	0	0	0	0	0
Horiba-HC PPM	56	64	22	47.33	64
Recovery Well Vacuum "H ₂ O Well 5-5B	82	60	60	67.33	82
Recovery Well Flow-CFM Well 5-5B	20	18	18	.67	20
Well 5 -35B Vacuum "H ₂ O Dist. 118.8 ft.	.05	.05	.05	.05	. 05
Well 5-34B Vacuum "H ₂ O Dist. 133.5 ft	.07	.07	.05	.06	.07
Well 5-48 Vacuum "H ₂ O Dist. 79.5 ft.	.14	.16	.18	.16	.18
Well 5-22B Vacuum "H ₂ O Dist. 99.0 ft.	_14	.14	.16	.15	.16
Well 5-2B Vacuum "H ₂ 0 Dist. 46.0 ft.	(.02)	. 05	.05	. 03	. 05
Well 5-1B Vacuum "H ₂ O Dist. 123.0 ft.	(.22)	(.04)	. 05	(.07)	. 05
Well 5-6B Vacuum "H ₂ O Dist. 1425 ft.	(.10)	(.05)	.08	(.02)	.08

· _--

DBS&A - Thoreau, NM Test #6

11/05/93	Initial Data Time 1305	Second Data Time 1405	Third Data Time 1420	Average Data 1:15 Min	Maximum Data
% Well Vapors As Fuel	0	0	0	0	0
Horiba-HC PPM	20	108		64	108
Recovery Well Vacuum "H ₂ O Well 5-6B	92	95	96	94.33	96
Recovery Well Flow-CFM Well 5-6B	4	8	9	7.0	9
Well 5-1B Vacuum "H ₂ O Dist. 49.5 ft.	0	.18	.20	.13	.20
Well 5-5B Vacuum "H ₂ O Dist. 142-5 ft	.04	.15	.18	.12	.18

IND	7
	AcuVac Remediation
	•

Page

OPERATING DATA - TEST NO ____

S.A.V.E.TM SYSTEM

ENRON CORPORATION Location TRANSWESTERN COMPLESSOR STA #5 THOREAU NM Project Engr. J. SADLER

- 1

. 8		Date	11/2/02					D
			11 3 93 Time START UP	Time when up	Time START	Time	Time	Time
		Parameter	1005 Hr. Meter	1155	1230	1315	1330	1430 Hr. Meter
_			535.0	Hr. Meter 536.0	Hr. Meter 536.5	Hr. Meter 537,2	Hr. Meter 537.5	538,6
		R.P.M.	2000	2000	2600	2750	2700	2700
:		Oil Press P.S.I.	00	55	55	50	50	50
	ENGINE	Water Temp 'F	120	170 -	190	190	190	190
	EN	Volts	13,5	13,5	13,5	13,5	13.5	13.5
		Intake Vac Hg	6	6	8	6	6	4
		Gas Flow Fuel/Propane cfh	60	60	100	90	95	90
	AIR	Air Flow cfm	. 20	18	24	28	28	30
	FUEL/AIR	Well Flow 5-35B cfm	~	-	19	20	19.5	19
		Recovery Well Vac 5-35 B "H ₂ 0			24	26	26	26
ļ	· · ·	Air Temp F	38	52	55	56	56	ଽଷ
		Barometric Pressure "Hg						·
		5-36E "H20	-	(.90)	.05	. 11	. 12	(.18)
		5-37 I "H20	*	0	, 40	.40	.90	,90
		5-34 B "H20	-	(.06)	.25	,45	. 48	,60
		5.4 B "H20	~	(,10)	17	.30	,35	. 40
	Σ	5-22B "H20	•	(,13)	(,13)	0	.05	.05
	L VACUUM	5-28 "H20	^ .*	(.16)	(.41)	(1.00)	(1,00)	(.85)
	۲ A	5-5B "H20		(.10)	(,10)	(.03)	(.01)	.03
	MONITOR WEI	" ^H 2 ^O		щ				
	ПОН	"H2 ⁰		-L -L -L		• • •		
	NOM	"н ₂ о		RES RES RES	$\langle \rangle$	ENDICATES	WELL PRE	SURE
		" ^H 2 ^O						
		" ^H 2 ^O		JAP ST				
		" ^H 2 ⁰		P C C C C C C C C C C C C C C C C C C C				
	·	"H ₂ 0		N 29 2	<u></u>		·	
	2	Vapor Wells On/Off	OFF	ON	00	ON	ON	ON
	MANIFOLD	Groundwater Wells On/Off	OFF			•		₽
	¥¥	Discharge Flow Meter gals	OFF -					>
		Samples				HORIBA Influent		HOQIBA Influent

	Instrument			·				Ĩ
ST	· ·	HORIBA	HORIBA	HORIBA			·	
TEST	Time	1310	1430	1545				
UENT	H-C ppmv	15,530	19,430		ŕ			
VAPOR INFLUENT	с-о х	.04	.04					
VAPC	^{co} 2 ×	5.16	5.70			;		
	H−C ppmv			18				
SNOISS	C-0 %			.05				
SAVE EMISSIONS	^{co} 2 %			4.16				
Ś	Air/Fuel Ratio							
			·	· ·				

DATE	11/3/93 TEST NO. 1
0905	Arnived at location - met with Robert Monley, Daniel
	B. Stephens & Associates
0915	Positioned S.AU.E. System near well 5-35B for recovery well (RW
	and connected SAVE to RW via flex hose and boot and PVC well
0 945	extention. Connected air/water separator and installed
	individual well plugs for magnetic gages-H20 level 51.75
100 5	Stanted S.A.V.E. for worm-up and system check-Ran 9 hour
1100	Helpedremovic monitoring well pamps and installing transducers in RW
1155	Recorded static pressures on outerwells - Restort for warm.up
1215	DBSCA recorded initial groundwater levels and set readings an transductor
1230	START TEST - Initial well flow @ 18 cfm well vocuum @ 22"HIO
	Recorded Data-All outer wells responding to vocuum X 5-2B & 5-5B
1315	Recorded Operating and HORIBA Data - All system functions
	normal-Vac. increase on outer wells X 5-2B, with press, inc.
1330	Recorded Data - All normal - Slight increases on outer wells
1430	HORIBA Data - Recorded increase in HC value
1430	Recorded Data-Note that 5-36E changed from vacuum to press.
	Difficult to provide reason since well screened below H2O level.

(933107-PAGE2)

.

AcuVac Remediation 3

Page

OPERATING DATA - TEST NO ____

ENRON CORPORATION

Location TRANSWESTERN COMPRESSOR STA #5

N.M Project Engr. J. SAULER

l

			1	T	1	1	r
	Date	11/3/93					
		Time 1530	Time 1630	Time 1730	Time 1830	Time 1930	Time 2030
	Parameter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter
		539.6	540.6	541.6	542.6	543.6	544.6
	R.P.M.	2700	2700	2700	2600	2700	2700
— …	Oil Press P.S.I.	50	50	50	50	50	50
ENGINE	Water Temp 'F	190	190 -	190	190	185	185
ش 	Volts	13,5	13,5	13,5	13,5	13,5	13,5
	Intake Vac Hg	4	4	4	4	5	5
	Gas Flow Fuel/Propane cfh	90	90	90	85	95	95
/AIR	Air Flow cfm	30	32	32	<u> </u>	35	35
FUELAIR	Well Flow 5-358 cfm	20	21	21	20	21	21
	Recovery Well Vac 5-358 "H ₂ 0	26	26	26	26	27	27
	Air Temp *F	52	48	43	40	38.	38
	Barometric Pressure "Hg						5.5
	5-36E "H20	(.17)	(.12)	(,02)	.03	.15	.08
	<u>5-371 "H20</u>	,90	.90	1,00	(1,2)	(.60)	(.60)
	5-34B "H20	.64	.64	.70	.70	,78	.80
	5-48 "H20	.52	.50	,48	.52	.56	. 60
Σ	5-22B "H20	.10	.10	.12	.15	. 18	.18
LL VACUUM	5-2B "H20	(,70)	(,70	(,54)	(,48)	(.30)	(.28)
	5.5 g "H20	05	.04	.06	,07	.13	.12
ME	"H ₂ 0		· · · · · · · · · · · · · · · · · · ·				
MONITOR WEI	"H ₂ 0		•				
WO	"H ₂ 0			() IN	ICATES WI	FLL PRESS	URE
	"H ₂ 0						
	"H ₂ 0		·····				
	"H ₂ 0						
	"H ₂ 0						
MANIFOLD	Vapor Wells On/Off	ON	ON	08	on	ON	01
	Groundwater Wells On/Off	OFF					>
∎ Ž	Discharge Flow Meter gals	OFF	·····				>
	Samples	HORIBA		HORIBA INELGENT	HORIBA INFLUENT	HORIBA INFLUENT	
		Emissions	· ·	Emissions			

	Instrument		<u> </u>	۲			<u> </u>]
51		HOPIBA	HORIBA	HORIBA	HORIBA	HORIBA	
TEST	Time	(600	1700	1730	1850	1945	
UENT	H-C ppmv	20, 490	17,120	23,450	23,630	21,370	
VAPOR INFLUENT	с-о х	.07	.06	,07	.07	,06	
VAPO	^{co} 2	6.24	5:20	5.95	5.81	5:60	
10	H-C ppmv		20				
EMISSIONS	с-о х		,03				
SAVE EMI	^{co} 2 %		3,22				
Ŝ	Air/Fuel Ratio						
	%						

מחתרו	11 3 43 TEST NO. 1
·1530	Recorded Data - All S.A.V.E functions normal - Outer wells
	indicating increased vacaum X 5-36B,
	NOTE: Observation wells 5-36E and 5-37I are
	reported to be screened below the groundwater level
<u> </u>	and eratic data may occur during SVE testing
1600	
1630	Recorded Data - All system functions normal
1645	Adjusted for slight increase in RW vocuum and flow
1730	Recorded Operating and HoreiBA Data
1830	
· · · ·	RW vapors. Fresh air flow must remain 30-35 clm to
	provide proper ain fuel ratio - System can consume much
	higher fuel concentrations therefore well vapous probably have low of
	NOTE Well 5-37I has changed from . 90 Has vac to 1.2 Has pressure
1930	Recorded Operating & HORIBA Data - All outer wells
	indicating continued increased vocuum
1445	HORIBA Data - HC down slightly
2030	Recorded Data - SAVE System functions normal.

T

	AcuVac	Remediation
Page	3	Loca

OPERATING DATA - TEST NO

LOCATION TRANSWESTERN COMPRESSOR STA #5 NM, Project Engr. J. SADLER

	P=0-						
	Date	11/3/93			11/4/93	·	
		Time 2130	Time みみ30	Time 2330	Time 0030	Time 0130	Time 0330
	Parameter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter
	R.P.M.	545,5	546.5	547.5	548.5	549,5	550,5
	Oil Press	2700	2700	2800	2700	2700	2700
ш	P.S.I. Water Temp	50	50	50	50	50	50
ENGINE	• F	185	185	185	185	185	185
	Volts	13.5	13,5	13,5	13,5	13,5	13,5
	Intake Vac Hg	5	5	5	5	5	5
	Gas Flow Fuel/Propane cfh	95	95	95	95	95	95
AIR (Air Flow cfm	34	34	34	34	34	34
FUEL/AIR	Well Flow 5-358 cfm	21	21	21	ング	22	22
	Recovery Well Vac 5-35B "H ₂ 0	27	27	27	27	27	27
	Air Temp 'F	37	37	36	36	36	35
	Barometric Pressure "Hg						
	5-36E "H20	.06	.08		.12	12	.10
	5-31エ ^{"H20}	(.70)	(.10)	(,75)	.(.80	(.80)	(,60)
	5-34B "H20	.83	.85	.86	.88	,90	. 90
	5-4B "H20	.62	.60	.58	.60	.62	.60
	5-22B "H20	·18	.18	.16	.14	,15	.15
LL VACUUM	5-2B "H20	(.24)	(.30)	(.32)	(.38)	(.38)	(.34)
, VA	5-5B "H20	.12	.12	.14	, 14	.15	.14
MEL	"H20						
TOR	" ^H 2 ⁰				· .		· · · · · · · · · · · · · · · · · · ·
MONITOR WEI	"н ₂ 0				CATES WE	L PRESSU	0C
~	"H ₂ 0			<u> </u>		U TREDU	
1	"H ₂ 0						
	"H ₂ 0						
	"H20						
	Vapor Wells On/Off	660	on	02	62	0,10	oN
MANIFOLD	Groundwater Wells On/Off	OFF					>
MAN	Discharge Flow Meter gals	OFF	,				D
	Samples	HORIBA INFLUENT		HORIBA INFLUENT			HORIBA INFLIENT
			·	<u> </u>	<u> </u>	<u> </u>	

•

933107)

[Instrument			۰ <i>۴</i> ۰		
ST		HORIBA	HORIBA	1-ORIBA		
TEST	Time	2140	2345	0745		
UENT	H-C ppmv	22,130	21,870	73,110	ţ.	
VAPOR INFLUENT	с-о х	,06	.06	,07		
	co ₂	5.78	5.64	6.08		
	H-C ppmv					
SSIONS	C-0 %					
SAVE EMISSIONS	^{co} 2 %					
Ś	Air/Fuel Ratio	·				
	%					

11 3-4 93 DATE TEST NO. Recorded Data - All S.A.V.E. System functions normal - Outer 2130 well vocuum steady. HORIBA DATA - HC in 20,000 ppm range throughout test 2140 Recorded Data - All steady 2230 Increased well vocaum slightly but well vapors at 2245 maximum flow, requiring high propane and fresh air flow • to provide 120 to 140 thousand BTU/HR. Recordal Data - All systems normal - NOTE Very windy 2330 chill factor low - blowing sand HORIBA Data - -2345 THURSDAY 11/4/93 - Recorded Data - All systems normal 0030 Checked calibration of magnehelic gages - Minion adjustment for temperature. Recorded Data - All steady - Slight variance in outer 0130 wells vacuum Recorded Data - Outer wells vocuum off slightly All curture functions normal - Switched to full 0230 All system functions normal - Switched to propone tonks.

	AcuVac 1	Remediation
Page	4	Loca

OPERATING DATA - TEST NO 🥼

---- -

_ - ·

l

	Date	11/4/93					
		Time	Time	Time	Time	Time	Time
		0330	0430	0530	0630	0730	0830
	Parameter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter
		551.5	552.5	553.5	554.5	555.5	556.5
	R.P.M.	2700	2700	2700	2700	2700	2700
	Oil Press P.S.I.	50	50	50	50	50	50
ENGINE	Water Temp 'F	185	185 -	185	185	185	185
	Volts	13.5	13.5	13,5	13,5	13,5	13.5
	Intake Vac Hg	5	5	5	5	5	6
	Gas Flow Fuel/Propane cfh	95	90	90	95	95	95
AIR	Air Flow cfm	34	32	33	34	32	32
FUELVAIR	Well Flow 5-35B cfm	21	22	32	37	26	27
щ	Recovery Well Vac5-358 "H ₂ 0	27	27	21	74	28	28
	Air Temp	34	33	32	34	35	36
	Barometric			50			
	Pressure "Hg 5-36 E "H2 ⁰	.07	'08	.(0	.10	12	,08
	"H_O	(,60)	(,50)	(,50)	(,50)	.12 (,50)	(.60)
	$5-371^{+20}$	·			.95		
	<u>5-34 B</u> ^{-H₂0}	,90	.90	.92	1	. 48	.47
	$5-4B$ $^{12^{\circ}}$.64	.66	.66	.67	.10	.74
MUL	2 240	(15	(.30)	.(8	,20	.27	. 24
VACI	5-20 "H-0	(132)		(.24)	(.20)	(.14)	(.18)
EL	<u>5-58</u> "2° "H ₂ 0	112	,10	.12	.15	,15	.15
MONITOR WELL VACUUM	"H ₂ 0						
NITO			·				
W	"H ₂ 0			() INDI	CATES WE	IL PRESS	IRE
	"H ₂ 0						
	"H20						
	" ^H 2 ⁰						
	"H2 ⁰						
آ م	Vapor Wells On/Off	ON	ON	ON	000	ao	ON
MANIFOLD	Groundwater Wells On/Off	OFF					Ð
MAN	Discharge	OFF	·		· · · · · · · · · · · · · · · · · · ·		>
1	Flow Meter gals Samples		HORIBA INFLUENT		HORIBA	ILORIBA IN FLUENT	

00 0745 160 21,200 6 .05	0		
6.05			
		· · ·	
02 6.89	4	÷	

DATE	11/4/93 TEST NO. 1
0330	Recorded Data - All systems normal -Outer wells steady
11	Recorded Data - No mojor changes - HORIBA Data
0530	Recorded Data - All SAVE System functions normal
	Very windy and cold
0630	Recorded Data - All functions normal
0100	HORIBA DATA - CO2 continuing to increase
0710	Increased well flow to 27 csm and well vacaum to 28"Hoc
0730 .	Recorded Data - Outer wells responding to RW
	vocuum and flow increase.
0745	SAVE engine experiences roughness - HORIBA Data
	indicates CO2 incréased to 6.84% - Probable
	reason is that increased vocuum and flow opened
	new zones - Also natural and induced bio-remediation
	produces CO2.
0830	Recorded Data - All steady - Engine still little
	rough - Adjusted propane and air flaw slightly

4

ر" (933107-PAGE2)

ļ.

age	AcuVac Remediation		CRATING DAT. 2102 ATION 2201 COMPRESS			ect Engr. J	S.A.V.I System Saoler
	Date	11/4/93			>		
		Time 0930	Time 1030	Time (130	Time STOP	Time	Time
	Parameter	Hr. Meter 557,5	Hr. Meter 558.5	Hr. Meter 559,5	Hr. Meter 560.6	Hr. Meter	Hr. Meter
	R.P.M.	7500	2700	2700	2700		
	Oil Press P.S.I.	50	50	50	50		
ENGINE	Water Temp 'F	190	190	190	190		
	Volts	13.5	13.5	13,5	13.5		
	Intake Vac Hg	5	5	5	5		
FUEL/AIR	Gas Flow Fuel/Propane cfh	95	95	95	95		
	Air Flow cfm	33	34	34	34		
	Well Flow 5-35 B cfm	29	29	30	30		
	Recovery Well Vac 5-35 B "H ₂ 0	29	29	30	31		
	Air Temp 'F	39	44	48	54	<u></u>	
	Barometric Pressure "Hg	_					-
	5-36 E "H20	.05	,05	,05	(.20)		
	5-37 I "H20	(.6)	(.65)	(.88)	(1.1)		
	5-34 B "H20	.98	1.00	1,00	1.10		
	5-4 0 "H20	-68	.65	. 72	.76	· · · · · ·	
5	5- 22 B "H20	,17	.18	, 24	.26		
cuu	5-2B 2	(.22)	(.24)	(.30)	(,50)		
MONITOR WELL VACUUM	5-5B "H20	08	.10	.14	.15	· · ·	
WEL	"H ₂ 0						
ITOR	"H20	· · · · · · · · · · · · · · · · · · ·	·				
NOM	" ^H 2 ⁰						
	"H ₂ 0		()	INDIZATES	WELL PR	Essure	
	"H ₂ 0					· · · · · · · · · · · · · · · · · · ·	
	"H ₂ 0						
	" ^H 2 ⁰						
Ē	Vapor Wells On/Off	610	080	02	02	, ,	
MANIFOLD	Groundwater Wells On/Off	OFF					
MAI	Discharge Flow Meter gals	OFF			D		
	Samples	HORIBA INFLUENT	HORIBA INFLUENT AND EMISSIONS	HORIBA INFLUENT	HORIBA INFLUENT		:

	Instrument							
TEST			HORIBA	HORIBA	HORIBA	HORIBA		
TE	Time		0945	(100	1155	1230		-
VAPOR INFLUENT	H-C	ppmv	20,398	21,394	22,470	21,860		
	C-0	%	.06	,0٦	,07	,06		
	^{co} 2	× 7,	5.74	6,10	6.23	6.25	: . .	
SAVE EMISSIONS	H-C	ppmv		36				
	C-0	× X		4,85				
	^{co} 2	%		.04				
ŝ	Air/Fuel Ra	atio						
		%						

114/93 DATE TEST NO. (Recorded Data - All SAVE Systems 0930 normal Well flow at maximum - Calculation from Flow Sensor data indicates well flow at 35 ACEM. 0945 HORIBA Data - Steady Recorded Data - All systems normal. 1030 Wind estimated steady 25mph, quets 30mph+ Blowing sand HORIBA Data - Influent & Emissions 1100 Recorded Data- RW vacuum and flow up to 30 (130 Increase vocuum in outer wells HORIBA DATA - Slight inc in CO2 - Lab samples 1155 HORIBA DATA - Final sample - Lab samples 1230 Recorded Darter - Final data - Test completed 1235 Recovery well groundwooter 50,86 Increase in groundwooter . 89' Total Test Time - 29,1 hours

	AcuVac Remediation	ENRON COR	ERATING DAT LPORATION ERN COMPRESS		THORIEAU	ect Engr. 7	S.A.V.E." System Sablea
	Date	11/4/93				>	
	Parameter	Time STRAT 1315 Hr. Meter	Time i415 Hr. Meter	Time 1515 Hr. Meter	Time 1615 Hr. Meter	Time STOP 1627 Hr. Meter	Time Hr. Meter
	R.P.M.	560.7	561.7	562.7		563,9	
	Oil Press P.S.I.	2700 50	2100 50	2700 50	2700 50		
ENGINE	Water Temp *F	190		190	190		
ά	Volts Intake Vac	13,5	(3.5	13,5	13,5	 	
l	Нд	5	5	5	5	 	<u> </u>
	Gas Flow Fuel/Propane cfh Air Flow	ণ০	25	80	75		
FUEL/AIR	Well Flow	34	34	34	34		
FUE	5-346 cfm	20	30	21	22	<u>·</u>	
	Recovery Well Vac5-34B "H20	5:6	6.0	6.0	6.2		
	Air Temp •F	56	.57	56	54		
	Barometric Pressure "Hg			 	 		
	5-35B "H20	.68	.80	.80	,85		
	5-36E "H20	(,56)	(.54)	(,36)	(.12)		
	5-37 L "H20	(1,7)	(1.5)	(1.4)	(1,2)		
	5-48 "H20	.26	. 46	.48	.52		
Σ	5-228 "H20	.02	.12	.16	. ,20		
ACUU	5-2B "H20	(,58)	(,66)	(,50)	(.36)		
MONITOR WELL VACUUM	5-5B "H20	. <u>O</u>	. 10	.14	.(8		
A WE	"H ₂ 0						
	"H ₂ 0	·	·		· .		
ίΟW	"H ₂ 0			() IN	DICATES V	VELL PRE	SURE
	"H ₂ 0	<u>.</u>					
	"H ₂ 0						
	"H ₂ 0	=+-==					
	"H ₂ 0						
آ و	Vapor Wells On/Off	00	60	00	ON	OFF	
MANIFOLD	Groundwater Wells On/Off	OFF				>	
¥	Discharge Flow Meter gals	OFF				>	
	Samples	HORIGA Influent	HORIBA INFLUENT EMISSIONS	HORIBA TNFLUENT	HORIBA SNFLUENT	· .	 :

933107)

TEST	Instrument	HORIBA	HORIBA	140P-1 BA	HORIBA	itoriba	HORIBA
	Time	1340	1425	1435	i 500	1540	(6(5
UENT	H-C ppmv	33 180	78,770		32,570	૩૦, ાત્વ છ	31,670
VAPOR INFLUENT	с-о х	<u>,</u> 0٦	.07		.06	.06	.07
VAPC	^{co} 2 x	6.51	5.82		6.43	5,80	6,12
SAVE EMISSIONS	H-C ppmv			46			
	С-0 %			.04			
	^{co} 2 %			3,87			
SA	Air/Fuel Ratio						
	%						

1250 Positioned SAVE System near well 5-34B for recovery well 4" well screened from 34' to 64 ft bgs - H2O C 47.68 Interface probe indicated PSH sheen on groundwater 1315 START TEST - Recorded Data-Initial RW vac, C 5.6"H2O and flow C 20 cSm - Propose C 90 eth - Initial voe, reading-3 we 1340 Horizza Data- with proprie flow C 75 to 80 eth, HC 1415 Recorded Data-All SAVE Sanctions normal - Good vocuum response on outer wells X pressure wells.	{
4" well screened from 34 to 64 ft bqs - H2O @ 47.68 Interface probe indicated PSH sheen on groundwater 1315 START TEST - Recorded Data - Initial RW vac, @ 5.6"H2O and flow @ 20 csm - Propose @ 90 eth - Initial voe, reading-3 we 1340 HORIBA Data - with proprie flow @ 75 to 80 eth, HC 1840 HORIBA Data - with proprie flow @ 75 to 80 eth, HC 1845 Recorded Data - All SAVE Sunctions normal - Good voccum response on outer wells X pressore wells.	(RW)
Interface probe indicated PSH sheen on groundwater 1315 START TEST - Recorded Data - Initial RW vac. @ 5.6"How and Flow @ 20 csm - Propose @ 90 cth - Initial voe. reading - 3 we 1340 HORIBA Data - with proprie flow @ 75 to 80 cth, HC 1000 in ppmu expected to be 30,000 ppm + 1415 Recorded Data - All SAVE Sanctions normal - Good vocuum response on outer wells X pressure wells.	
1315 START TEST - Recorded Data - Initial RW vac, @ 5,6"HD and flow @ 20 cdm - Propose @ 90 cth - Initial voe, reading-3we 1340 HORIBA Data - with proprie flow @ 75 to 80 cth, HC level in pame expected to be 30,000 ppm + 1415 Recorded Data - All SAVE Sunctions normal - Good vocuum response on outer wells X pressure wells.	
1340 HORIBA Data- with proprie flow C 75 to 80 cfh, HC 1evel in ppmu expected to be 30,000 ppm t 1415 Recorded Data-All SAVE Sunctions normal - Good vocuum response on outer wells X pressure wells.	·
1340 HORIBA Data- with proprie flow C 75 to 80 cfh, HC 1evel in ppmu expected to be 30,000 ppm t 1415 Recorded Data-All SAVE Sunctions normal - Good vocuum response on outer wells X pressure wells.	dls
1915 Recorded Data-All SAVE Sunctions normal - Good vocuum response on outer wells X pressure wells.	
1415 Recorded Data-All SAVE Sunctions normal - Good vocuum response on outer wells X pressure wells.	
NOTE-Outer wells 5-36EE 5-37I are reported to be screened	-d
below groundwater level and erratic data may accur during 5	" –
1425 HORIBA INFLUENC Dola - 1435 HORIBA Emissions Drita	
1500 HORIBA " Data - AC values steady within range	
1515 Recorded Operative Data - System fanctions normal Outer and	Sl-
indicating good response to steady vocuum and flow	
1540 HORIBA Influent Data	
1615 Recorded Operating and HORIBA Data - RW VOCE flow up	
1627 STOP TEST - HOO level 47,38 - Increase 0.30 - Good Test	

ND	Y
	AcuVac Remediation

Page

i

OPERATING DATA - TEST NO 3

LOCATION CORPORATION THOREAG LOCATION TRANSCESTERY COMPRESSOR STATIS NM Project Engr. J. SADLER

	Date	11/5/93			D	a -	
<u></u>	l	Time water w	Time START	Time	Time STOP	Time	Time
		0730	0755	0855	1000		·
	Parameter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter
		564.0	564.5	565,5	566.6	<u> </u>	<u> </u>
	R.P.M.	1500	2500	2750	2700		
	Oil Press P.S.I.	60	55	50	50		
ENGINE	Water Temp *F	120	(80	190	190		
EN	Volts	13,5	13, 5	13,5	13,5		
	Intake Vac Hg	4	11	2	7		
	Gas Flow Fuel/Propane cfh	60	115	115	115		
AIR	Air Flow cfm	50	27	23	24		
FUELAIR	Well Flow 5-4B cfm	OFF	20	22	23		
Ξ.	Recovery Well	OFF	42	42	43	·	
	Vac 5-48 "H ₂ 0 Air Temp			1			I
	F Barometric	33	34	36	39		
	Pressure "Hg						
	<u>, , , , , , , , , , , , , , , , , , , </u>	.05	.38	.46	,52		
	5 766	, 40	(.60)	(.60)	(.64)		
	5-37 <u>1</u> "H20	,40	(.40)	(.44)	(,40)		
	5-34B "H20	.05	.22	,78	,34		
Σ	5-23,B "H20	. 10	.14	.19	,24		
CUU	5-2B "H20	(.2)	(.06)	(.04)	(.02)		
LL VACUUM	5-50 "H20	07	,04	. ,20	.26		
	"H2 ⁰						
тоя	"H ₂ 0	2 2 3			· · · · · · · · · · · · · · · · · · ·		
MONITOR WE	"н ₂ 0	P.C.				:	
-	"H ₂ 0	10 40		() IN	DIGATES W	ELL PRECH	RE
	"H ₂ 0	4 7 5 5					
	"H ₂ 0	NU-TU RELL	<u> </u>				· <u> </u>
	" ^H 2 ⁰	H 365				······································	
	Vapor Wells						
l e	On/Off	OFF	ON	001	ON		
MANIFOLD	Groundwater Wells On/Off	OFF -			Ð		
W	Discharge Flow Meter gals	OFF -			`		·····
[Samples		HORIBA	HORIBA	HORIBA		· · · · · · · · · · · · · · · · · · ·
			INFLUENT	INFLUENT: EMISSIONS	INFLUENT		:
			· · ·				

<u> </u>			•					
TEST	Instrument		HORIBA	HORIBA	HOLIBA	HORIBA		
	Time		୦୫୲୦	0905	0970	0955		
JENT	H-C pp	omv	<i>ଟ</i> 48 [%]	1178		1205		
VAPOR INFLUENT	C-0	%	,03	.02		,02		
VAPC	^{CO} 2		3,44	3,44		3,50	÷	
	H-C pp	om∨			34			
SNOISS	C-0	%			00			
SAVE EMISSIONS	^{co} 2	%			2.74			
Ś	Air/Fuel Rati	io				·		
		%						

DATE	11 5 93 TEST NO. 3
0700	Arrived at location - positionial SAVE near well 5-4B as
	recovery well (Rw) - 2" well along fence line - Screened
	from 38.7 to 58.7 ft bys and water depth @ 46.12
0715	Set up SAVE System and plug outer wells for magnetilie gage
0730	SAVE System warm up - All systems normal-Recorded static well data
	NOTE Outer wells 5-36E = 5-37 I are reported to be screened
	below groundwater level and ernatic data may occur during SUE tests
0755	START TEST - Recorded Initial Data - RW flow @ 20chm ucc@42"
	Good you make a after wells 5-35B and 5-34B
	Note: Wells 5-36E and 5-37 I changed from vacuum to pressone
0810	HORIBA DATA - HE low - very little BTU value
0830	Increased Red flow to 22 chin and vacuum to 43" H20
0855	Recorded Data - All systems normal-Good response on outer wills
0905	HORIBA Dato - Little change in HC-0920 HORIBA EMISSION DATA
0955	HORIBA Influent Data - HZ low - Propose neur max @ 115eth
1000	Recorded Data - All systems normal - Continuiral good response
	on outer wells 5-35B, 5-34B \$ 5-5B
1005	TEST COMPLETED - HAD @ 45.05 - Increase during test - 1.07'

	AcuVac Remediation	ENRON COL			THOREAL		S.A.V.E. System
Page	Location	TRANSWESTE	en Compres	or stats	N.M. Pro	ject Engr	
	Date	11/5/43		>			
		Time START	Time 11(5	Time STOP	Time	Time	Time
	Parameter	Hr. Meter 566.9	Hr. Meter 567,9	Hr. Meter 569.0	Hr. Meter	Hr. Meter	Hr. Meter
	R.P.M.	2500	2500	2500			
	Oil Press P.S.I.	50	50	50			
ENGINE	Water Temp 'F	190	190 -	190			
Ň	Volts	13,5	13,5	13,5			
	Intake Vac Hg	{\	()	L V			
	Gas Flow Fuel/Propane cfh	115	115	115			
FUEL/AIR	Air Flow cfm	اک	14	14			
FUEL	Well Flow 5-58 cfm	20	18	18			
	Recovery Well Vac 5~5 B "H ₂ 0	୫ନ	60	60			
	Air Temp F	40	43	47			·
	Barometric Pressure "Hg						
	5-358"H20	,05	,05	.05			
	5-34B "H20	,07	,07	,05			
	5-4B "H20 5-12B "H20	.14	.16	31.			
·	5-220	.14	,14	طار			-
WN	5-65	(,0,)	,05	,05			
VACL	5715 -	('33)	(.04)	•05			
MONITOR WELL VACUUM	<u>5-68</u> "2° "H ₂ 0	. (.10)	(,05)	.08			
OR V	"н ₂ о						
LINOV	"H ₂ 0		<u> </u>				
~	"H ₂ 0			() IND	ICATES U	JELL PRES	sure
	"н ₂ о			. ,			
	"H2 ⁰						
	"H ₂ 0						
<u> </u>	Vapor Wells On/Off	001	00	ON			
MANIFOLD	Groundwater Wells On/Off	OFF		>			
₩.	Discharge Flow Meter gals Samples	OFF HORIBA INFLUEWT	HORIBA JNFLUEWT	HORIBA TNFLUEN	· ·		
			·				

•

933107)

TEST	Instrument	HORIBIA	HORIBA	HORIBA			
ΤE	Time	1040	1130	(335	-		
UENT	H-C ppmv	56	64	37			
VAPOR INFLUENT	с-о х	00	00	00			
VAPO	^{co} 2	216	1.96	ろいろ		÷	
SAVE EMISSIONS	H-C ppmv						
	C-0 X		·				
	^{co} 2						
SA	Air/Fuel Ratio	·					
	× ×			•			

ż.

OPERATING DATA AND NOTES

	or married barn mb horbs
DATE	11 5 a3 TEST NO. 4
1010	Mourd SAVE to will 5-5B as (RW) recovery well
	2" well screened from 39,5 to 58' bas, H, O @ 45.0
1015	START TEST - Recorded Data - Initial vocuum @ 82"Hro, flow
	@ 20 ctm - Held vocuum bebu 100"Hoo to encourage flow.
	Dropped wells 5-36 E and 5-37 I - Exad initial voc, response
1030	RW vocagm @ 130"Har - Sanging - Probably ground water
· •	rising above apport screened area.
1035	Reduced RW vocuum to 20"H20 and increased to 60"H20 @ 1040
1045	HORIBA Data - HC very low - No engine fuel value
1050	Vacuan increased to 90"His - Reduced Slaw to 18 chm and
	reset RW vacuum @ 60"Hro - Propone @ max.
1115	Recorded Data - All systems normal - Not much vocuum
	response on outer wells - well voe, holding @ 60"Hau
1120	HORIBA Data - HE low
1225	Recorded Data - All systems normal - Limited response
	on outer wells
1227	HORIBA DATA - HE LOWER
1230	TEST COMPLETED - HOO level @ 44.05 - HOO level inc. 0.95

 ND	¥
	AcuVac Remediation

Page

OPERATING DATA - TEST NO _____

SADLER

ENRON CORPORATION

Location TRANSWESTERN COMPRESSOR STA # 5

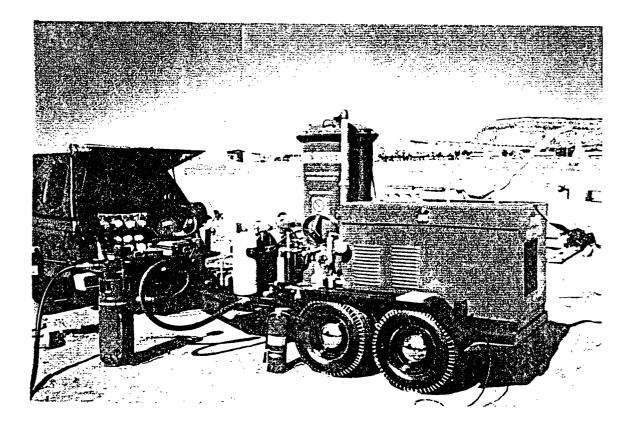
AHS NIM, Project Engr. J.

	Date	11/5/93	·	>			
	Parameter	Time START 1245 Hr. Meter	Time 1250 Hr. Meter	Time STOP (255 Hr. Meter	Time Hr. Meter	Time Hr. Meter	Time Hr. Meter
		569,3	569,4	569.5	<u> </u>		
	R.P.M.	2600	2700	2100			
	Oil Press P.S.I.	50	-	-			
ENGINE	Water Temp F	190	·	-			
۵ ۵	Volts	13,5					
	Intake Vac Hg	1/10	-	-			
	Gas Flow Fuel/Propane cfh	115	115	115			
FUEL/AIR	Air Flow cfm	15	15	16			
FUEI	Well Flow 5-28 cfm	0	0	0			
	Recovery Well Vac 5 つみ "H ₂ 0	250	780	285			
	Air Temp F	48	.49	49			
	Barometric Pressure "Hg						
	5-358 "H20	JU.					
	5-34B "H20	- the state					
	5-4B "H20	No.	¢				
	5-22B "H20		Eley.				
Σ	5-5B "H20		<u> </u>	-			
MONITOR WELL VACUUM	5-1B "H20		, in the second se	X III			
× F	5-6B "H20			- SI			
H WE	"H ₂ 0			<u> </u>		<u> </u>	
	"H ₂ 0				·····		· ·
Ŵ	"H ₂ 0 "H_0		· · ·		· .		· ·
]}	" ^н 2 ⁰ "н ₂ 0						
	. ⁿ 2 ⁰ "H ₂ 0				·		ļ
	"2 ⁰ """				<u> </u>		
	Vapor Wells			[` 	ļ]
_ م_ ا	On/Off	ON	ON	ON			
MANIFOLD	Groundwater Wells On/Off	OFF		>		- <u> </u>	
WAN	Discharge Flow Meter gals	OFF OFF					
	Samples						·
لل			<u> </u>	<u> </u>		I	

	Instrument					
TEST		· · · · · · · · · · · · · · · · · · ·		., ور	 	
E E	Time					
ENT	н−с	÷ •	· ·		 	
VAPOR INFLUENT	c-o %					
VAPO	^{co} 2		••		<i>:</i>	
	H-C ppmv					
SSIONS	с-о х			· · · · · · · · · · · · · · · · · · ·		
SAVE EMISSIONS	^{co} 2 x					
SA	Air/Fuel Ratio				 	
	%					

DATE	11/5/93 TEST NO. 5
1235	Positionial SAVE near well 5-2B as recovery well (Rw)
	2" well - Screened from 37,5 to 52,5' bgs - 1/20 e 45,2'
1245	START TEST - RW VOCUUM immediately @ 250"H20
	Initial well flow was evocuation of vapors from .
	Ru, well flow then went to 0.
12.50	Rus vocuum @ 280" Hro - No well flow.
1255	RW vocuam @ 285'H20 - No well Slow.
	Test was aborted - This well should not be
	used as a SUE recovery well
	`
·	

A	OPERATING DATA - TEST NO AcuVac Remediation ENACH CORPORATION THOREAN Location TRANSMESTERN COMPLESSOR STA. #5 N.M. Project Engr						S.A.V.E. SYSTEM
Page	Location	J. DAOLER					
·.	Date	11/5/93			D		
		Time START	Time	Time STOP	Time SHUT OW	Time	Time
	Parameter	130 <u>5</u> Hr. Meter	1405 Hr. Meter)470 Hr. Meter	1425 Hr. Meter	Hr. Meter	Hr. Meter
		569.7	570.7	570.9	571.0		
	R.P.M.	2500	2600	2600			
	Oil Press P.S.I.	50	50	50		· · · ·	
ENGINE	Water Temp •F	(40	190	190			
Ŭ	Volts	13,5	13.5	13,5			
	Intake Vac Hg	13	13	13			
, <u> </u>	Gas Flow Fuel/Propane cfh	115	115	115			
AIR	Air Flow cfm	18	18	90			
FUELAIR	Well Flow 5-68 cfm	4	8	9			
	Recovery Well Vac 5-69 "H ₂ 0	92	45	96			
	Air Temp •F	49	49	50			
	Barometric Pressure "Hg	<u>`</u>				<u> </u>	
	5-1B "H20	0	.18	,20			
	5-5B ^{"H20}	.04	.15	.18			
	" ^H 2 ⁰						
	"н ₂ 0			······································		· · ·	
	"H ₂ 0						
cuuk	"H ₂ 0		117 			<u></u>	
L VA	" ^H 2 ⁰	•					
Wel	"H2 ⁰		 				
MONITOR WELL VACUUM	" ^H 2 ⁰		· · ·		· .		
NOM	" ^H 2 ⁰			· · · · · · · · · · · · · · · · · · ·			
	" ^H 2 ⁰						
	" ^H 2 ⁰						
	"H ₂ 0					<u> </u>	
	"H ₂ 0						
<u>م</u>]	Vapor Wells On/Off	40	00	001			
MANIFOLD	Groundwater Wells On/Off	OFF		Đ			
WAN	Discharge Flow Meter gals	OFF		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u> </u>	
	Samples		·	·			:


٠

	Instrument	11-0-0-0	()				
TEST	Time	HORIBA	HORIBA	·			
		1320	1405				
JENT	H-C ppmv	20	108				
VAPOR INFLUENT	C-0 %	00	00				
VAPC	^{CO} 2	.84	1.45			÷	
	H-C .						
6	ppmv						
ŇŎ	C~O	1	ч.				
SSIG							
SAVE EMISSIONS	^{co} 2						
N N	%						
Ŝ	Air/Fuel Ratio						
	×			-			

DATE	11/5/93 TEST NO. 6
1300	Moved SAVE near well 5-6B as recovery well (Rw)
	2" well-keported screened from 38.7 to 58.7 ft bas
	Groundwater level @ 42,00°
1305	START TEST - Recorded Data - Initial RW flow & Actm
	and vocuum at 92" 1200 - Propone @ 115 eth
1320	HORIBA Data - HC very low - Well almost clean
1405	Recorded Dater - All SAVE System Sunctions normal
1410	9 .
1470	
	TEST COMPLETED
1445	Cleaned and loaded all equipment -
1500	Reviewed test data
1545	Departed location
	·
1470 1445 1500	Cleaned and loaded all equipment - Reviewed test data

◀ ,

Emissions Calculations

2

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Computation of Maximum Uncontrolled Emissions for Soil Vapor Extraction Thoreau Compressor Station Well 5-34B

1. Maximum anticipated soil gas concentrations (from pilot test gas analysis [Core Laboratories]):

Benzene:	192 ppmv
Toluene:	969 ppmv
Ethylbenzene:	96 ppmv
Xylene:	552 ppmv
NMHC*:	20,000 ppmv

Convert concentrations from ppmv to µg/L

$$C_{(\mu g'L)} = C_{ppmv} \times \frac{M_w \times P}{R \times T}$$

where C_{ppmv} = concentration of vapor in parts per million M_W = Molecular weight of compound of interest (gm/mole) P = Atmospheric pressure (atm) (assumed to be 0.83 atm) R = Gas constant (0.08205 L-atm/degree-mole) T = Temperature (K) (assumed to be 293 K)

 $C_{benzene (\mu g/L)} = 192 \ ppmv \ x \ \frac{78.1 \ gm/mole \ x \ 0.83 \ atm}{0.08205 \ L-atm/K-mole \ x \ 293 \ K} = 518 \ \mu g/L$

$$C_{toluene (\mu g/L)} = 969 \ ppmv \ x \ \frac{92.1 \ gm/mole \ x \ 0.83 \ atm}{0.08205 \ L-atm/K-mole \ 293 \ K} = 3081 \ \mu g/L$$

 $C_{ethylbenzene (\mu g/L)} = 96 \ ppmv \ x \ \frac{106.2 \ gm/mole \ x \ 0.83 \ atm}{0.08205 \ L-atm/K-mole \ x \ 293 \ K} = 352 \ \mu g/L$

 $C_{xylene (\mu g/L)} = 552 \ ppmv \ x \ \frac{106.2 \ gm/mole \ x \ 0.83 \ atm}{0.08205 \ L-atm/K-mole \ x \ 293 \ K} = 2024 \ \mu g/L$

 $C_{NMHC (\mu g/L)} = 20,000 \ ppmv \ x \ \frac{102 \ gm/mole \ x \ 0.83 \ atm}{0.08205 \ L-atm/K-mole \ x \ 293 \ K} = 70,430 \ \mu g/L$

NMHC = Non-methane hydrocarbons

2105(2)\WP-CST\COMPUTN.121

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

2. Compute emission rates for 22-cfm flow rate:

 $M_i = C_i \times Q$

where M_i = the emission rate of the ith compound C_i = the concentration of the ith compound (C_i in $\mu g/L = C_i$ in mg/m³) Q = the process flow rate (22 ft³/min, based on SVE pilot test)

$$C_{i}\left(\frac{mg}{m^{3}}\right) \times \frac{1kg}{1,000,000 \ mg} \times \frac{2.2lb}{kg} \times \frac{m^{3}}{35.3 \ ft^{3}} = C_{i} \ (lb/ft^{3})$$

or

$$C_i$$
 (*lb/ft*³) = 6.23 x 10⁻⁸ C_i (*mg/m*³)

Emission rates are thus calculated as

$$\begin{split} \mathsf{M}_{\mathsf{benzene}} &= 518 \times (6.23 \times 10^{-8}) \times 22 \; \mathrm{ft^3/min} \times 60 \; \mathrm{min/hr} = 0.04 \; \mathrm{lb/hr} \\ \mathsf{M}_{\mathsf{toluene}} &= 3081 \times (6.23 \times 10^{-8}) \times 22 \; \mathrm{ft^3/min} \times 60 \; \mathrm{min/hr} = 0.25 \; \mathrm{lb/hr} \\ \mathsf{M}_{\mathsf{ethylbenzene}} &= 352 \times (6.23 \times 10^{-8}) \times 22 \; \mathrm{ft^3/min} \times 60 \; \mathrm{min/hr} = 0.03 \; \mathrm{lb/hr} \\ \mathsf{M}_{\mathsf{xylene}} &= 2024 \times (6.23 \times 10^{-8}) \times 22 \; \mathrm{ft^3/min} \times 60 \; \mathrm{min/hr} = 0.17 \; \mathrm{lb/hr} \\ \mathsf{M}_{\mathsf{NMHC}} &= 70,430 \times (6.23 \times 10^{-8}) \times 22 \; \mathrm{ft^3/min} \times 60 \; \mathrm{min/hr} = 5.80 \; \mathrm{lb/hr} \end{split}$$

Field and Laboratory Chemical Analyses

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

BTEX Vapor Concentrations Measured with the Hand-Held Gas Chromatograph Thoreau SVE Pilot Tests

			Concentration (ppmv)				
Well No.	Date	Time	Benzene	Toluene	Ethyl- benzene	M-Xylene	O-Xylene
5-35B	11/03/93	1312	<0.1	>200	<5.0	69.5	19.8
		1332	<0.1	>200	<5.0	71.2	21.3
		1445	<0.1	>200	<5.0	62.4	14.7
		1530	<0.1	>200	<5.0	70.7	21.3
		1825	<0.1	>200	<5.0	70.9	18.4
	11/04/93	0840	<0.1	>200	<5.0	47.5	12.2
		0945	<0.1	>200	<5.0	64.2	15.2
		1055	<0.1	>200	<5.0	80.3	22.3
		1150	<0.1	>200	<5.0	79.2	17.6
		1230	<0.1	>200	<5.0	89.2	27.0
5-34B	11/04/93	1400	<0.1	>200	<5.0	106	20.6
		1455	<0.1	>200	<5.0	92.3	19.9
		1535	<0.1	>200	<5.0	141	33.9
		1610	<0.1	>200	<5.0	87.2	18.9
5-04B	11/05/93	0905	<0.1	90.5	<5.0	39.0	12.9
		0950	<0.1	59.1	<5.0	32.9	11.7
5-05B	11/05/93	1050	<0.1	56.0	<5.0	28.0	7.5
		1150	<0.1	15.3	<5.0	5.5	<5.0
		1215	<0.1	<5.0	<5.0	<5.0	<5.0
5-06B	11/05/93	1318	<0.1	17.1	<5.0	9.1	<5.0
		1410	<0.1	14.3	<5.0	7.3	<5.0

Note: Concentrations may not be accurate, as indicated by comparison with laboratory results.

Hall Environmental Analysis Laboratory 2403 San Mateo N.E., Suite P-13 Albuquerque, N.M. 87110 (505) 880-1803 11/10/93

Daniel B. Stephens and Associates, Inc. 6020 Academy NE, Suite 100 Albuquerque, NM 87109

Dear Mr. Bob Marley:

Enclosed are the results for the analyses that were requested. These were done according to E.P.A. procedures or the equivalent.

Please don't hesitate to contact me for any additional information or clarifications.

Sincerely,

Hall

11/10/97

Scott Hallenbeck, Lab Manager

Project: Enron-Thoreau

2403 San Mateo N.E. Suite P-13 • Albuquerque, NM 87110

Results for sample : 5-35B (See date collected)

ł

Date collected: 11/3/93 Date received: 11/5/93 Date extracted: NA Date injected: 11/8/93 Client: Daniel B. Stephens and Associates, Inc. Project Name: Enron-Thoreau HEAL #: 931119-1 Project Manager: Bob Marley Sampled by: B. Marley Matrix: Air

Method: EPA 602

:.

<u>Compound</u>	Amount	<u>Units</u>
Benzene	74	UG/L
Toluene	480	UG/L
Ethylbenzene	18	UG/L
Total-Xylene	150	UG/L
BFB (Surrogate)	Recovery = 9	98
Dilution Factor	= 100	

Compound	ļ	Amou	int		<u>I</u>	<u>Jnits</u>	
Gasoline	-	52,0	000			UG/L	
BFB (Surrogate	e)	Rec	covery	=	104	8	
Dilution Facto	or	=	100				

Results for sample : 5-35B (See date collected)

Date collected:11/4/93Date received:11/5/93Date extracted:NADate injected:11/8/93 Client: Daniel B. Stephens and Associates, Inc. Project Name: Enron-ThoreauHEAL #: 931119-2Project Manager: Bob MarleySampled by: B. Marley Matrix: Air ____ _____

1

i

Method: EPA 602

Compound	<u>Amount</u>	<u>t</u>	Jnits
Benzene	67		UG/L
Toluene	450		UG/L
Ethylbenzene	21		UG/L
Total-Xylene	190		UG/L
BFB (Surrogate)	Recovery =	100	oto
Dilution Factor	= 100		

Compound	<u>Amount</u>	<u>Units</u>
Gasoline	53,000	UG/L
BFB (Surrogate)	Recovery =	108 %
Dilution Factor	= 100	

Results for sample : 5-34B

Date collected: 11/4/93Date received: 11/5/93Date extracted: NADate injected: 11/8/93Client: Daniel B. Stephens and Associates, Inc.Project Name: Enron-ThoreauHEAL #: 931119-3Project Manager: Bob MarleySampled by: B. MarleyMatrix: Air

Method: EPA 602

. . .

Compound	<u>Amount</u>	<u>Units</u>
Benzene	200	UG/L
Toluene	580	UG/L
Ethylbenzene	19	UG/L
Total-Xylene	160	UG/L
BFB (Surrogate)	Recovery = 10^4	4 8
Dilution Factor	= 50	

Compo	ound		Amou	<u>.nt</u>		Ţ	<u>Jnits</u>	
Gaso	line		51,0	00			UG/L	
BFB	(Surr	ogate)	Rec	overy	=	100	90	
Dilut	tion	Factor	=	100				

Results for sample : 5-4B

Date collected: 11/5/93Date received: 11/5/93Date extracted: NADate injected: 11/8/93Client: Daniel B. Stephens and Associates, Inc.Project Name: Enron-ThoreauHEAL #: 931119-4Project Manager: Bob MarleySampled by: B. MarleyMatrix: Air

Method: EPA 602

. .

,

<u>Compound</u>	<u>Amount</u>	<u>Units</u>
Benzene	4.8	UG/L
Toluene	44	UG/L
Ethylbenzene	6.2	UG/L
Total-Xylene	38	UG/L
BFB (Surrogate)	Recovery =	102 %
Dilution Factor	= 25	

Compound 1	Amount	<u>Units</u>
Gasoline	6,800	UG/L
BFB (Surrogate)	Recovery =	119 %
Dilution Factor	= 25	

Results for sample : 5-5B

Date collected:11/5/93Date received:11/5/93Date extracted:NADate injected:11/8/93Client:Daniel B. Stephens and Associates, Inc.Project Name:Enron-ThoreauHEAL #:931119-5Project Manager:Bob MarleySampled by:B. MarleyMatrix:Air

Method: EPA 602

· •

<u>Compound</u>	Amount	<u>Units</u>
Benzene	0.39	UG/L
Toluene	6.0	UG/L
Ethylbenzene	0.68	UG/L
Total-Xylene	6.6	UG/L
BFB (Surrogate)	Recovery = 105	8
Dilution Factor	= 2	

Method: EPA 8015 Modified

Compound	Amount	Units
Gasoline	210	UG/L
BFB (Surrogate)	Recovery = *	ક
Dilution Factor	= 2	

* Indicates surrogate recovery indeterminate due to matrix effects.

6

Results for QC: Air Blank

Date extracted: NA Date injected: 11/8/93 Client: Daniel B. Stephens and Associates, Inc. Project Name: Enron-Thoreau HEAL #: RB 11/8 Project Manager: Bob Marley Matrix: Air

Method: EPA 602

<u>Compound</u>	Amount	<u>Units</u>
Benzene	<0.05	UG/L
Toluene	<0.05	UG/L
Ethylbenzene	<0.05	UG/L
Total-Xylene	<0.05	UG/L
BFB (Surrogate)	Recovery = 99	9 8

Method: EPA 8015 Modified

Compound	<u>Amount</u>	Units
Gasoline	<10	UG/L

BFB (Surrogate) Recovery = 95 %

Results for QC: Matrix Spike/Matrix Spike Dup Blank Spike/Blank Spike Dup

Date extracted: NADate injected: 11/5,8/93Client: Daniel B. Stephens and Associates, Inc.Project Name: Enron-ThoreauHEAL #: BS/BSD 11/8Project Manager: Bob Marley93112-1 11/5Matrix: AirUnits: UG/L

Method: EPA 602

•

<u>Compound</u>	Sample <u>Result</u>	Amount <u>Added</u>	Matrix <u>Spike</u>	MS %	MS Dup	MSD %	RPD
Benzene	<0.05	2.00	2.03	102	2.07	104	2
Toluene	<0.05	2.00	2.08	104	2.12	106	2
Ethylbenzene	<0.05	2.00	2.04	102	2.09	105	2
Total Xylenes	<0.05	6.00	6.21	104	6.37	106	3

Method: EPA 8015

Compound	Sample <u>Result</u>	Amount <u>Added</u>	Blank Spike	BS %	BS Dup	BSD %	<u>RPD</u>
Gasoline	<10	50	51	96	54	102	6

CHAIN-OF-CUSTODY RECORD Ten in the fight of	Hall ENVIRONMENTAL ANALYSIS LABORATORY 2403 San Mateo NE, Suite P-13 Albuquerque, New Mexico 87110 505.880.1803	ANALYSIS REQUEST		0) (0) (1929i0 + (1929i0 +	208/20 1) (Cas 1) 2 2 2 2 2 2 2 2 2 2 2 2 2	2108 L 1 + 38 1 + 38 1 + 38 1 + 38 1 + 38 1 + 38 1 + 38 202 po 1 + 38 202 po 202 po 202 po 202 po 203 po 20	11 11 11 11 11 11 11 11 11 11									Remarks:	
い 見 え ゆ し ー ー ー ー こ い の に ゆ ー き う い つ ー ー ー ー ー ー ー	soc. Project Name: Entron - Thore	Project #:	NM 87/09 2105	Project Manager	822 9400 Sampler: Beb	- 822 8877 Samples Cold? DYes D	Matrix Sample I.D. No. Number/Volume HgCl2 HCI Other	Ar 5-35B 11/16000 9	A.r 5-35B 1L/ 1	Air 5-348 14	0 AIC 5-48 [L]	- Hr S-SIS 10/ 4	 t			Relinquished By: (Signature)	Relinearished By: (Signature) Received By: (Sign

CORE LABORATORIES

CORE LABORATORIES ANALYTICAL REPORT Job Number: 935571 Prepared For: HALL ENVIRONMENTAL ANALYTICAL ****SCOTT HALLENBECK*** 2403 SAN MATEO N E ALBUQUERQUE, NM 87110 Date: 11/19/93

Si

CORE LABORATORIES

<u>11-19-93</u> Date:

P O BOX 34766 HOUSTON, TX 77234-4282

Title: Laboratory Supervisor

Name: Larry Scott

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and contidential use this report has been made. The interpretations or oninions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.

CORE LABORATORIES

LABORATORY TESTS RESULTS 11/19/93

CUSTOMER: HALL ENVIRONMENTAL ANALYTICAL

JOB NUMBER: 935571

; `

·· .

CLIENT I.D...... 210522 DATE SAMPLED...... 11/03/93 TIME SAMPLED...... 14:40 WORK DESCRIPTION...: 5-35B

LABORATORY I.D...: 935571-0001 DATE RECEIVED....: 11/09/93 TIME RECEIVED....: 08:23 REMARKS.....

ATTN: **SCOTT HALLENBECK*

EST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TEC
enzene, Toluene, Xylenes in Gas		*1			11/17/93	PK
Benzene	30	1	ppm v/v			
Toluene	220	1	ppm v/v			
Ethyl Benzene	48	1	ppm v/v			
m+p-Xylenes	501	1	ppm v/v	GC		
ortho-Xylene	21	1	ppm v/v			
finery Gas Analysis, Extended		*1			11/17/93	P
Hydrogen	<0.01	0.01	Mol %	ASTM D-1945		
Oxygen	2.95	0.01	Mol %	ASTM D-1945		
Nitrogen	84.29	0.01	Mol %	ASTM D-1945		
Carbon Monoxide	<0.01	0.01	Mol %	ASTM D-1946		
Carbon Dioxide	11.55	0.01	Mot %	ASTM D-1945		
Hydrogen Sulfide	<0.01	0.01	Mol %			
Methane	<0.01	0.01	Mol %	ASTM D-1945	1	
Ethylene	<0.01	0.01	Mol %	ASTM D-1946	1	
Ethane	<0.01	0.01	Mol %	ASTM D-1945	1	
Propylene	<0.01	0.01	Mol %	ASTM D-2163	1	
Propane	<0.01	0.01	Mol %	ASTM D-2105		
Isobutane	<0.01	0.01	Mol %			
				ASTM D-1945		
Isobutylene	<0.01 <0.01	0.01	Mol %	ASTM D-2163		
1-Butene		0.01	Mol %	ASTM D-2163		
n-Butane	<0.01	0.01	Mol %	ASTM D-1945		
trans-2-Butene	<0.01	0.01	Mol %	ASTM D-2163		
cis-2-Butene	<0.01	0.01	Mol %	ASTM D-2163		
Isopentane	<0.01	0.01	Mol %	ASTM D-2163		
n-Pentane	<0.01	0.01	Mol %	ASTM D-2163		
Hexanes	0.08	0.01	Mol %			
Heptanes	0.34	0.01	Mol %		l	
Octanes	0.33	0.01	Mol %			
Nonanes	0.06	0.01	Mol X			
Decanes	0.01	0.01	Mol X		}	
Undecanes	0	0	Mol X			
Dodecanes	0	0	Mol %			
Tridecanes	0	0	Mol %		[
Tetradecanes Plus	0	0	Mol %		l I	
······································	ł	I	l	I	1	
			HOUS	BOX 34766 TON, TX 77234-4282) 943-9776		
<u></u>		PAGE:1				

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.

· · ·

CORE LABORATORIES

	: HALL ENVIRONMEN	INE ARALI I LOAL		*SCOTT HALLENBECK*		
IENT I.D: 210522 TE SAMPLED: 11/04/93 ME SAMPLED: 12:30 DRK DESCRIPTION: 5-35B			DATE RECEIV	I.D: 935571-0002 /ED: 11/09/93 /ED: 08:23		
ST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
enzene, Toluene, Xylenes in Gas		*1			11/17/93	PK1
Benzene Toluene Ethyl Benzene m+p-Xylenes ortho-Xylene efinery Gas Analysis, Extended Mydrogen Oxygen Nitrogen Carbon Monoxide Carbon Monoxide Carbon Dioxide Hydrogen Sulfide Methane Ethylene Ethane Propylene Propane Isobutylene 1-Butene n-Butane trans-2-Butene Isopentane n-Pentane Hexanes Heptanes Octanes Nonanes Decanes Undecanes Tridecanes Plus	$\begin{array}{c} 38\\ 262\\ 47\\ 558\\ 32\\ \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	ppm v/v ppm v/v ppm v/v ppm v/v Mol X Mol X	GC ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1946 ASTM D-1946 ASTM D-1945 ASTM D-1945 ASTM D-2163 ASTM D-2163 ASTM D-2163 ASTM D-2163 ASTM D-2163 ASTM D-2163 ASTM D-2163 ASTM D-2163 ASTM D-2163	11/17/93	PK

PAGE:2

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.

L.

CORE LABORATORIES

LABORATORY TESTS RESULTS 11/19/93

CUSTOMER: HALL ENVIRONMENTAL ANALYTICAL

JOB NUMBER: 935571

.....

CLIENT I.D...... 210522 DATE SAMPLED.....: 11/04/93 TIME SAMPLED.....: 16:10 WORK DESCRIPTION...: 5-34B

LABORATORY I.D...: 935571-0003 DATE RECEIVED...: 11/09/93 TIME RECEIVED...: 08:23 REMARKS.....

ATTN: **SCOTT HALLENBECK*

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECHI
Benzene, Toluene, Xylenes in Gas		*1			11/17/93	PKT
Benzene	192	1	ppm v/v			
Toluene	969	l i	ppm v/v			
Ethyl Benzene	96	1 i	ppm v/v			
m+p-Xylenes	435	i	ppm v/v	GC		
ortho-Xylene	117	i	ppm v/v			
Refinery Gas Analysis, Extended		*1			11/17/93	РКТ
Hydrogen	<0.01	0.01	Mol %	ASTM D-1945		
Oxygen	1.56	0.01	Mol %	ASTM D-1945		
Nitrogen	81.39	0.01	Mol %	ASTM D-1945		
Carbon Monoxide	<0.01	0.01	Mol %	ASTM D-1946		
Carbon Dioxide	14.44	0.01	Mot %	ASTM D-1945	1	
Hydrogen Sulfide	<0.01	0.01	Mol X		1	
Methane	<0.01	0.01	Mol %	ASTM D-1945		
Ethylene	<0.01	0.01	Mol %	ASTM D-1946		
Ethane	<0.01	0.01	Mol %	ASTM D-1945		
Propylene	<0.01	0.01	Mol %	ASTM D-2163	1	
Propane	<0.01	0.01	Mol %	ASTM D-1945		
Isobutane	<0.01	0.01	Mol %	ASTM D-1945		
Isobutylene	<0.01	0.01	Mol %	ASTM D-2163		
1-Butene	<0.01	0.01	Mol %	ASTM D-2163		
n-Butane	<0.01	0.01	Mol %	ASTM D-1945		
trans-2-Butene	<0.01	0.01	Mol %	ASTM D-2163		
cis-2-Butene	<0.01	0.01	Mol %	ASTM D-2163		
Isopentane	<0.01	0.01	Mol %	ASTM D-2163		
n-Pentane	<0.01	0.01	Mol %	ASTM D-2163		
Hexanes	0.42	0.01	Mol %			
Heptanes	0.55	0.01	Mol %			
Octanes	0.89	0.01	Mol X			
Nonanes	0.12	0.01	Mol %			
Decanes	0.02	0.01	Mol X			
Undecanes	0	0.01	Mol X			
Dodecanes	ŏ	ŏ	Mol %			
Tridecanes	0	Ŏ	Mol %			
Tetradecanes Plus	0	0	Mol %			
				BOX 34766		
				STON, TX 77234-4282 3) 943-9776		
		PAGE:3	······································			

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or protitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.

CORE LABORATORIES

LABORATORY TESTS RESULTS 11/19/93

JOB NUMBER: 935571

....

CUSTOMER: HALL ENVIRONMENTAL ANALYTICAL

ATTN: **SCOTT HALLENBECK*

CLIENT I.D.....: 210522 DATE SAMPLED.....: 11/05/93 TIME SAMPLED.....: 09:50 WORK DESCRIPTION...: 5-4B

LABORATORY I.D:	935571-0004
DATE RECEIVED: TIME RECEIVED: REMARKS	• • •

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECI
Senzene, Toluene, Xylenes in Gas		*1			11/17/93	PK
Benzene	<1	1	ppm v/v			
Toluene	31	1	ppm v/v			
Ethyl Benzene	6	1	ppm v/v			
m+p-Xylenes	67	1	ppm v/v	GC		
ortho-Xylene	9	1	ppm v/v			
Refinery Gas Analysis, Extended		*1			11/17/93	PK
Hydrogen	<0.01	0.01	MOL %	ASTM D-1945		
Oxygen	15.31	0.01	Mol %	ASTM D-1945		
Nitrogen	78.92	0.01	Mol %	ASTM D-1945		
Carbon Monoxide	<0.01	0.01	Mol %	ASTM D-1946		
Carbon Dioxide	5.72	0.01	Mol %	ASTM D-1945		
Hydrogen Sulfide	<0.01	0.01	Mol %			
Methane	<0.01	0.01	Mol %	ASTM D-1945		
Ethylene	<0.01	0.01	Mol %	ASTM D-1945		
Ethane	<0.01	0.01	Mol %	ASTM D-1945		
Propylene	<0.01	0.01	Mol %	ASTM D-2163		
Propane	<0.01	0.01	Mol %	ASTM D-1945		
Isobutane	<0.01	0.01	Mol %			
				ASTM D-1945		
Isobutylene	<0.01	0.01	Mol %	ASTM D-2163		
1-Butene	<0.01	0.01	Mol %	ASTM D-2163		
n-Butane	<0.01	0.01	Mol %	ASTM D-1945		
trans-2-Butene	<0.01	0.01	Mol %	ASTM D-2163		
cis-2-Butene	<0.01	0.01	Mol %	ASTM D-2163		
Isopentane	<0.01	0.01	Mol %	ASTM D-2163		
n-Pentane	<0.01	0.01	Mol %	ASTM D-2163		
Hexanes	<0.01	0.01	Mol %			
Heptanes	0.01	0.01	Mol %			
Octanes	0.03	0.01	Mol %			
Nonanes	0.01	0.01	Mol %			
Decanes	<0.01	0.01	Mol %			
Undecanes	0	0	Mol %			
Dodecanes	Ŏ	Ŏ	Mol %			
Tridecanes	Ō	Ŏ	Mol %			
Tetradecanes Plus	ů	Ö	Mol %			
Teti ductanes Plus	Ū	Ŭ				
			HOU	BOX 34766 STON, TX 77234-4282 3) 943-9776		
		PAGE:4				

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.

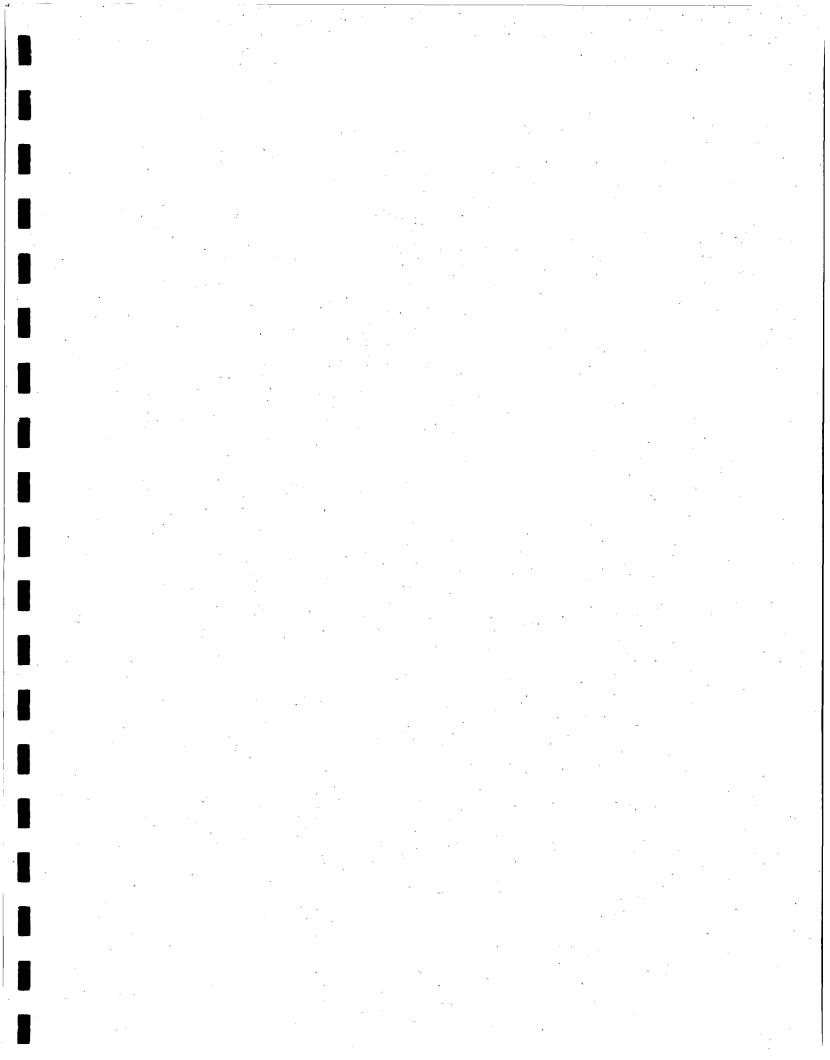
.

CORE LABORATORIES

LABORATORY TESTS RESULTS 11/19/93

JOB NUMBER: 935571 CUSTOMER: HALL ENVIRONMENTAL ANALYTICAL ATTN: **SCOTT HALLENBECK*

CLIENT I.D...... 210522 DATE SAMPLED...... 11/05/93 TIME SAMPLED...... 12:15 WORK DESCRIPTION...: 5-5B


LABORATORY I.D...: 935571-0005 DATE RECEIVED....: 11/09/93 TIME RECEIVED....: 08:23 REMARKS......

1

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECHN
Benzene, Toluene, Xylenes in Gas		*1			11/17/93	РКТ
Benzene	<1	1	ppm v/v			
Toluene	2	1	ppm v/v			
Ethyl Benzene	<1	1	ppm v/v			
m+p-Xylenes	6	1	ppm v/v	GC		
ortho-Xylene	<1	1	ppm v/v			
Refinery Gas Analysis, Extended		*1			11/17/93	РКТ
Hydrogen	<0.01	0.01	Mol %	ASTM D-1945		
Oxygen	12.70	0.01	Mol %	ASTM D-1945		
Nitrogen	82.47	0.01	Mol %	ASTM D-1945		
Carbon Monoxide	<0.01	0.01	Mol %	ASTM D-1946		
Carbon Dioxide	4.83	0.01	Mol %	ASTM D-1945		
Hydrogen Sulfide	<0.01	0.01	Mol %			
Methane	<0.01	0.01	Mol %	ASTM D-1945		
Ethylene	<0.01	0.01	Mol %	ASTM D-1946		
Ethane	<0.01	0.01	Mol %	ASTM D-1945	1	
Propylene	<0.01	0.01	Mol %	ASTM D-2163		
Propane	<0.01	0.01	Mol %	ASTM D-1945	-	
Isobutane	<0.01	0.01	Mol %	ASTM D-1945		
Isobutylene	<0.01	0.01	Mol %	ASTM D-2163		
1-Butene	<0.01	0.01	Mol %	ASTM D-2163		
n-Butane	<0.01	0.01	Mol %	ASTM D-1945		
trans-2-Butene	<0.01	0.01	Mol %	ASTM D-2163		
cis-2-Butene	<0.01	0.01	Mot X	ASTM D-2163		
Isopentane	<0.01	0.01	Mol %	ASTM D-2163		
n-Pentane	<0.01	0.01	Mol %	ASTM D-2163		
Hexanes	<0.01	0.01	Mol %	ASIM 0-2105		
	<0.01		Mot %			
Keptanes	<0.01	0.01	Mol %			
Octanes		0.01				
Nonanes	<0.01	0.01	Mol %		1	
Decanes	<0.01	0.01	Mol %			
Undecanes	0	0	Mol %			
Dodecanes	0	0	Mol %			
Tridecanes	0	0	Mol %			
Tetradecanes Plus	0	0	Mol %			
1						
		l	1			
				BOX 34766		
1				ISTON, TX 77234-4282	2	
1			(71	3) 943-9776		
			· · · · · · · · · · · · · · · · · · ·	·····		

The analyses, opinions or interpretations contained in this report are based upon observations and matenal supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.

I	IN-OF-		CHAIN-OF-CUSTODY RECORD						VIRON	HALL ENVIRONMENTAL ANALYSIS LABORATORY	ANA		ABORA	TORY	n
]		403 Sa	n Mate	2403 San Mateo NE, Suite P-13	ite P-1	ŝ		 •	۰۰، ۱
Client	7	R	Client Towning R Stonking & Konce	Project Name:				Рофиен	que, N	Albuquerque, New Mexico 87110	ico 871	2		•	, .
		5	in the second second	Enron - Thoreau				05.880	.1803			•		÷.	5
Address:		6070 Acolonia	m NE Sukloo	(ANAL	ANALYSIS REQUEST	QUEST				E,
	Albugu	ea ve		Z105 2.5	1								<*		, , ,
				Project Manager:					3	4	••••••••••••••••••••••••••••••••••••••		505)		(N 10
						(070)				<u>.</u>	¥		h.13		ζ) θ)
Phone #	#: SOS		822 9400	Sumpler. Bob Marley		8/20									odspo
: Fax # :	sos:	i,		Zamples Cold? 🗆 Yes 🖵	D No	9) 38		<u> </u>							or He
Date	Time	Matrix	Sample I.D. No.	sservative	HEAL No.	19M) X3T TM + X3T	0419M H9	TEX + MI	209/10 419W) На	(Weth 200 ()(AN9) 01	en der de	. <u></u>	r Bubbles
6 411	11 2/92 1400	4.	5.25R	r 1 (Gooc		8	<u> </u>						(2)		
1419	0221230	Arr	S-3SB				\times				. 			<u> </u>	,
11/4/9	11/4/93 16/0	Air	S-34B	14			\times								.
11/5/93	3 0950	4r	5-4B	ור/			\times					く			· ·
11/5/9	11/5/93/1215	Ar	S-SB	(1/)			\mathbf{X}				-	\times			
															· ·
		-					.								
-			1												
Date: 11[5]93	Time:		Relinquished By: (Signature) For Manley	Received By: (Signature)	_	Remarks:				1					
Dope: 11/5/93	Time:	Reliperis	Relingenished By: (Signuthe)	- Andrangia	1-1-12 12 12-11										
	-														

