GW - 199

GENERAL CORRESPONDENCE

YEAR(S): 2006 - 2003

Price, Wayne, EMNRD

From:Price, Wayne, EMNRDSent:Wednesday, July 26, 2006 3:51 PMTo:'mtom@escden.com'Cc:'Dean.Sibert@champ-tech.com'Subject:Champion Hobbs site GW-199 AP-14Contacts:Manley A. Tom

Dear Gentlemen:

OCD is in receipt of the Supplemental Investigation Report dated July 12, 2006 and hereby approves of the recommendations a,b,c, and d found on page 18 with the following additional condition:

1. An additional Monitoring well be installed down gradient of MW-20. The well shall be screened the entire thickness of the saturated zone and the distance down gradient shall be determined by your modeling program to demonstrate the anticipated attenuation.

2. Please notify this office 3 working days prior to drilling the well.

Please be advised that NMOCD approval of this plan does not relieve the owner/operator of responsibility should operations fail to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve the owner/operator of responsibility for compliance with any OCD, federal, state, or local laws and/or regulations.

ENVIRONMENTAL STRATEGIES CONSULTING LLC

4600 South Ulster Street, Suite 930 • Denver, CO 80237 • (303) 850-9200 • Fax (303) 850-9214

July 12	2, 2006	2006
Mr. W	ayne Price	JUL
New M	Aexico Oil Conservation Division	۱ ۱
1220 S	1220 South St Francis Drive	
Santa I	Fe, NM 87505	ΑM
Re:	Supplemental Investigation Report, Champion Technologies Inc. Site (AP-14)	9
	4001 South Highway 18, Hobbs, New Mexico	ភ្ល

Dear Mr. Price:

Please find enclosed 2 copies of the supplemental investigation report for the above-referenced site.

If you have any questions regarding this report, please contact me at (303) 517-7985 or $\underline{mtom@escden.com}$.

Sincerely,

Manley Tom, P.E. Technical Manager

Enclosure

cc/encl: Chris Williams – New Mexico Oil Conservation Division Dean Sibert – Champion Technologies Inc. Dwight Vorpahl - Champion Technologies Inc. Brian Friedman - Champion Technologies Inc. Juan Alvarado - Champion Technologies Inc. John Simon – Environmental Strategies Consulting, LLC

AQUANTA TECHNICAL SERVICES COMPANY

Price, Wayne, EMNRD				
From:	Price, Wayne, EMNRD	nt: Tue 10/4/2005 1:12 PM		
То:	Manley Tom	•		
Cc:	Williams, Chris, EMNRD; Dean Sibert; John Simon			
Subject:	RE: Request to Abandon Wells (AP-14)			
Attachments	S:			

Got your message about off-site well. I would like to wait and see what your results before I approve your request. Thanks for keeping us informed.

Wayne Price-Senior Environmental Engr. Oil Conservation Division 1220 S. Saint Francis Santa Fe, NM 87505 E-mail wayne.price@state.nm.us Tele: 505-476-3487 Fax: 505-4763462

From: Manley Tom [mailto:mtom@escden.com] Sent: Tue 10/4/2005 10:36 AM To: Price, Wayne, EMNRD Cc: Williams, Chris, EMNRD; Dean Sibert; John Simon Subject: Request to Abandon Wells (AP-14)

Wayne,

Please find attached a request to abandon certain unused well points and to modify other monitoring wells.

Manley Tom P.E. Technical Manager Environmental Strategies Consulting LLC 4600 South Ulster Street, Suite 930 Denver, CO 80237 (720) 482-3615 office (303) 517-7985 cell (303) 850-9214 fax

Important Notice: The information contained in this e-mail, including any attachments, is not intended and should not be construed as an official confirmation of any transaction unless expressly provided. Furthermore, this e-mail may contain information that is confidential, non-public and protected by privilege from disclosure. If you are not the intended recipient, please delete this e-mail, including attachments, and notify the sender. The unauthorized use, dissemination, distribution or reproduction of this e-mail, including attachments, is prohibited and may be unlawful.

Price, Wayn	e, EMNRD	
From:	Price, Wayne, EMNRD	Int: Tue 10/4/2005 1:29 PM
То:	Manley Tom	-
Cc:	Williams, Chris, EMNRD; Dean Sibert; John Simon	
Subject:	RE: Request to Abandon Wells (AP-14)	
Attachments	*	

OCD approves of the request.

Please be advised that NMOCD approval of this request does not relieve (Champion) of responsibility should their operations fail to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve (Champion) of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Wayne Price-Senior Environmental Engr. Oil Conservation Division 1220 S. Saint Francis Santa Fe, NM 87505 E-mail wayne.price@state.nm.us Tele: 505-476-3487 Fax: 505-4763462

From: Manley Tom [mailto:mtom@escden.com] Sent: Tue 10/4/2005 10:36 AM To: Price, Wayne, EMNRD Cc: Williams, Chris, EMNRD; Dean Sibert; John Simon Subject: Request to Abandon Wells (AP-14)

Wayne,

Please find attached a request to abandon certain unused well points and to modify other monitoring wells.

Manley Tom P.E. Technical Manager Environmental Strategies Consulting LLC 4600 South Ulster Street, Suite 930 Denver, CO 80237 (720) 482-3615 office (303) 517-7985 cell (303) 850-9214 fax

Important Notice: The information contained in this e-mail, including any attachments, is not intended and should not be construed as an official confirmation of any transaction unless expressly provided. Furthermore, this e-mail may contain information that is confidential, non-public and protected by privilege from disclosure. If you are not the intended recipient, please delete this e-mail, including attachments, and notify the sender. The unauthorized use, dissemination, distribution or reproduction of this e-mail, including attachments, is prohibited and may be unlawful.

ENVIRONMENTAL STRATEGIES CONSULTING LLC 4600 South Ulster, Suite 930 • Denver, Colorado 80237 • (303) 850-9200 • Fax (303) 850-9214

October 4, 2005

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St Francis Drive Santa Fe, NM 87505

Re: Request to Abandon Selected Wells, Champion Technologies Inc. Site (AP-14) 4001 South Highway 18, Hobbs, New Mexico

Dear Mr. Price:

Environmental Strategies, on behalf of Champion Technologies Inc., is requesting NMOCD's approval to abandon seven shallow wells associated with the pilot-test referenced in the report by NOVA Safety and Environmental, dated March 24, 2005.

The purpose of abandoning the wells is two-fold: 1) the recently constructed facility expansion will lead to higher truck traffic and the stick-up wells restrict traffic patterns, and 2) Champion is not proposing any future groundwater treatment using injection technologies in the area thus retrofitting these seven wells would be an unnecessary effort. Our recent groundwater sampling indicates that there are no COCs exceeding their WQCC standards in both MW-17 and MW-18, which is consistent with the historical data from these wells as presented in NOVA's report and summarized in Appendix D of the Supplemental Investigation Workplan, dated March 29, 2005.

Attached is a map of the well locations (MP-2 through MP-7 and the injection well). We are proposing to fill the subsurface casings with a bentonite-cement grout, placed via a tremie pipe. The upper 3 ft of the casing will be drilled out or excavated and the void backfilled with on-site borrow soil, compacted in lifts. In addition to this abandonment, selected stick-up monitoring wells (MW-2, -6, -12, -16, -17 and -18) will be retrofitted with flush-mounted vaults to enable future monitoring while allowing the new traffic pattern. The casing elevations of the retrofitted wells will be resurveyed. We would like to begin this work the week of October 24, 2005.

A QUANTA TECHNICAL SERVICES COMPANY

Price, Wayne

From: Price, Wayne

Sent: Tuesday, May 10, 2005 8:22 AM

To: 'Manley Tom'; Price, Wayne

Cc: Williams, Chris; Dean Sibert; John Simon

Subject: RE: Champion Technologies Hobbs, NM (AP-14)

OCD hereby approves of the investigation plan changes.

Please be advised that NMOCD approval of this plan does not relieve (Champion) of liability should their operations fail to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve (Champion) of responsibility for compliance with any other federal, state, or local laws and/or regulations.

-----Original Message----- **From:** Manley Tom [mailto:mtom@escden.com] **Sent:** Monday, May 09, 2005 3:16 PM **To:** wprice@state.nm.us **Cc:** cwilliams@state.nm.us; Dean Sibert; John Simon **Subject:** Champion Technologies Hobbs, NM (AP-14)

Wayne,

As we discussed, here is a recap of our discussion regarding the Champion investigation.

Manley Tom P.E. Technical Manager Environmental Strategies Consulting LLC 4600 South Ulster Street, Suite 930 Denver, CO 80237 (720) 482-3615 office (303) 517-7985 cell (303) 850-9214 fax

Important Notice: The information contained in this e-mail, including any attachments, is not intended and should not be construed as an official confirmation of any transaction unless expressly provided. Furthermore, this e-mail may contain information that is confidential, non-public and protected by privilege from disclosure. If you are not the intended recipient, please delete this e-mail, including attachments, and notify the sender. The unauthorized use, dissemination, distribution or reproduction of this e-mail, including attachments, is prohibited and may be unlawful.

This email has been scanned by the MessageLabs Email Security System. For more information please visit http://www.messagelabs.com/email

Price, Wayne

From: Manley Tom [mtom@escden.com]

Sent: Monday, May 09, 2005 3:16 PM

To: wprice@state.nm.us

Cc: cwilliams@state.nm.us; Dean Sibert; John Simon

Subject: Champion Technologies Hobbs, NM (AP-14)

Wayne,

As we discussed, here is a recap of our discussion regarding the Champion investigation.

Manley Tom P.E. Technical Manager Environmental Strategies Consulting LLC 4600 South Ulster Street, Suite 930 Denver, CO 80237 (720) 482-3615 office (303) 517-7985 cell (303) 850-9214 fax

Important Notice: The information contained in this e-mail, including any attachments, is not intended and should not be construed as an official confirmation of any transaction unless expressly provided. Furthermore, this e-mail may contain information that is confidential, non-public and protected by privilege from disclosure. If you are not the intended recipient, please delete this e-mail, including attachments, and notify the sender. The unauthorized use, dissemination, distribution or reproduction of this e-mail, including attachments, is prohibited and may be unlawful.

This email has been scanned by the MessageLabs Email Security System. For more information please visit http://www.messagelabs.com/email

ENVIRONMENTAL STRATEGIES CONSULTING LLC 4600 South Ulster, Suite 930 • Denver, Colorado 80237 • (303) 850-9200 • Fax (303) 850-9214

VIA ELECTRONIC MAIL

May 9, 2005 Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St Francis Drive Santa Fe, NM 87505

Re: Supplemental Investigation Workplan, Champion Technologies Inc. Site (AP-14) 4001 South Highway 18, Hobbs, New Mexico

Dear Mr. Price:

Thank you taking the time to review your April 29, 2005 comments on our proposed Supplemental Investigation Workplan, submitted on behalf of Champion Technologies, Inc., (Champion) on March 29, 2005. This letter serves to memorialize the discussion on May 4, 2005 and presents our understanding of the additional work to be included with the investigation program.

<u>OCD Comment #1</u>: One additional monitor well shall be installed due east of MW-08 located near the east side property line that runs north-south. The well shall have a minimum of 2 inch diameter and be built of similar material, constructed, developed and purged as other previously approved monitor wells on site (see July 10, 2000 approval). Due to the unusual amount of precipitation in this area, the required well mentioned above and proposed monitor wells MW-19 and MW-20 may be installed with a total screened interval of 25 feet of slotted screen with a minimum of 15 feet below and 10 feet above the current water level.

Summary of discussion: Champion will add MW-21 within the property, due east of MW-8 as close to the property line as practical. The proposed shallow wells (MW-19, -20, and -21) will be installed with 25 feet of slotted screen, with 5 feet above the water level encountered during installation. Furthermore, depending on the accessibility of land, MW-20 may be placed a reasonable distance north or south of the inferred chromium plume's longitudinal centerline. Attached is a revised version of Table 1, which supercedes the March 29, 2005, version.

<u>OCD Comment #2</u>: Chemicals of Concern (COC's) at this site shall be chloride, chromium, 1,1-DCA, PCE, vinyl chloride, barium and manganese.

Summary of discussion: We understand that OCD operating policy during site investigations is to monitor for all chemicals that exceed the numerical criteria listed in the Water Quality Control Commission (WQCC) regulations, in order to determine whether it poses a hazard to public health. Therefore, the COCs will be as listed in the above comment.

Mr. Wayne Price May 9, 2005 Page 2 of 4

<u>OCD Comment #3</u>: Monitoring program shall include wells listed in Table 2 (attached) of the March 29, 2005 Supplemental Investigation Workplan submitted by Environmental Strategies Consultants LLC plus monitoring wells MW-03, 05, 07, 09 and new required well listed in item #1 above.

The following monitoring wells shall be sampled and analyzed quarterly:

MW-17 and MW-18 for chloride, chromium, 1,1-DCA, PCE, vinyl chloride, barium and manganese. MW-19, 13, 04,4D, 10, 20, Champion's active on-site well and Residents active off-site well for chloride, chromium, barium and manganese. All other wells for chloride, barium and manganese.

Summary of discussion: Champion will add the five monitoring wells and the chemicals requested by OCD. We understand that the purpose of the additional analyses is to confirm the results of the predictive modeling completed to date. Attached is a revised version of Table 2 which supercedes the March 29, 2005, version.

<u>OCD Comment #4</u>: No current monitor well shall be plugged or abandoned without OCD approval.

Duly noted.

<u>OCD Comment #5</u>: Notify the OCD Santa Fe office and the OCD District office at least 72 hours in advance of all scheduled activities such that the OCD has the opportunity to witness the events and/or split samples during OCD's normal business hours.

Duly noted.

<u>OCD Comment #6: Area "3".</u> Please provide the chloride content of the backfill or collect representative samples in this area and analyze for chlorides. Please take a soil core sample and perform a permeability test.

Summary of discussion: Champion will add one soil boring in the central part of Area 3 to document the concentrations of chloride in the backfill soil and the in-place hydraulic conductivity. We agree that the former criterion of 1×10^{-5} cm/s was arbitrarily selected, but is not necessarily applicable. This soil boring and proposed soil samples are presented in the revised version of Table 1 (attached) which supercedes the March 29, 2005, version

OCD Comment #7 <u>Area "5"</u> shall be delineated horizontally and vertically for chlorides.

Summary of discussion: Soil borings ESCSB-02 and -03, as originally proposed in the Workplan, serve to complete the delineation of chlorides in Area 5 vertically and horizontally.

OCD Comment #8 Submit the results of the investigation and remediation efforts to the OCD Santa Fe Office by July 15, 2006 with a copy provided to the OCD Hobbs District Office and shall include the following investigative information:

- a. A description of all investigation, remediation and monitoring activities, which have occurred including conclusions and recommendations.
- b. A geologic/lithologic log and well completion diagram for each monitor well.
- c. A water table potentiometric map showing the location of all pertinent site features as well as the elevation, direction and magnitude of the hydraulic gradient of the groundwater.
- d. Isopleth maps for contaminants of concern, which were observed during the investigations.
- e. Summary tables of all ground water quality sampling results and copies of all laboratory analytical data sheets and associated QA/QC data taken within the past year.
- f. The quantity and disposition of all recovered product and/or wastes generated. All waste shall be disposed of at an approved OCD site.
- g. Address any issues concerning "Density Gradient" contamination.

Summary of discussion: Bullets "a" through "f" are duly noted. To address bullet "g", Champion will analyze selected samples from selected shallow and deep wells for total dissolved solids, which is likely the overriding factor relating to water density. The report will present our findings with regard to inferred water density variation and reiterate the discussion on the very low potential for non-aqueous phase chlorinated solvents at the site, as presented in Appendix D of the Workplan.

<u>OCD Comment #9</u>: Future contamination found at or beyond the most down gradient monitoring system that exceeds the Water Quality Control Commission Regulation (WQCC) groundwater standards shall require immediate corrective action. A corrective action plan shall be submitted within 15 days of discovery.

Duly noted.

Mr. Wayne Price May 9, 2005 Page 4 of 4

In summary, we understand that OCD is looking forward to terminating the abatement activities at this site and are pleased to conduct this supplemental investigation to collect adequate site characterization data to allow OCD to make a sound decision to do so.

Please contact me at your earliest convenience if you have any questions regarding this matter, at (303) 517-7985 or by email <u>mtom@escden.com</u>.

Sincerely,

Manley Tom, P.E. Technical Manager

Attachments

cc: Chris Williams – New Mexico Oil Conservation Division Dean Sibert – Champion Technologies Inc. John Simon – Environmental Strategies Consulting, LLC

Table 1 (Revised May 4, 2005)Summary of Proposed Soil Borings and Monitoring Wells
Champion Technologies, Inc. Site
Hobbs, New Mexico

Designation	Approximate Depth (feet bgs)	Soil Sample Depth (feet bgs)	Soil Analyses/Method	
ESCSB-1/MW-19	50/80	1, 5, 10, 15, 25, 35 and 50 ^{a)}	Chloride EPA 9056	
ESCSB-2	50		Chromium EPA 6010	
ESCSB-3	50		pH EPA 9045	
ESCSP 4	20	1, 5, 10, 15 and 20	201, 5, 10, 15 and 20Chloride EPA 90Hydraulic Condu	Chloride EPA 9056
E3C3B-4	20			Hydraulic Conductivity ^{b)}
MW-4D	120		-	
MW-20	80			
MW-21	80			

^{a)} The deepest sample will be collected as close to the top of the saturated zone as practical.

^{b)} Select one representative undisturbed sample for analysis by ASTM D2434 for granular soils or ASTM D5084 for silty or clayey soils. Initial degree of saturation will be inferred from the initial moisture content and density of each sample. If an undisturbed sample cannot be obtained, remold the sample at the laboratory to a target dry density of 103.4 to 106.8 pcf at an initial moisture content of 9.5 to 11.5%, based on in-place compaction reports (NOVA, 2005)

Table 2 (Revised May 4, 2005) Summary of Groundwater Monitoring Program Champion Technologies, Inc. Site Hobbs, New Mexico

Designation	Field Parameters	Quarterly Lab Analyses	Additional Lab Analyses (First Two Quarters)
MW-1			
MW-4			
MW-4D			
MW-8			Iron EPA 6010^{b}
MW-10		Barium, Chromium, and Manganese EPA 6010 ^{b)}	Sulfide EPA 9030
MW-13		Chloride EPA 300.0	Sulfate EPA 9035
MW-19	all		Total Organic Carbon EPA 9060
MW-20	pH ORP Dissolved Oxygen Ferrous Iron ^{a)}		Total Dissolved Solids EPA 160.1 °
Onsite Supply Well			
Offsite Supply Well			
MW-17		Barium, Chromium, and Manganese EPA 6010 ^{b)}	
		Chloride EPA 300.0	
MW-18		Chlorinated VOCs EPA 8260	
MW-3			
MW-5			
MW-7		Chloride EPA 300.0	
MW-9		Barium and Manganese EPA 6010 "	
MW-21			

a) Ferrous iron, using a HACH kit, is to be completed for the first two quarters of monitoring only.

b) All metals samples shall be filtered through a new 0.45 micron filter prior to placing in an acid-preserved container.

c) Samples from MW-4, -4D, -8, -9, and the Onsite Supply Well will be analyzed for Total Dissolved Solids for the first two quarters of monitoring.

ENVIRONMENTAL STRATEGIES

NEW MEXICO ENERGY, MICERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor

April 29, 2005

Joanna Prukop Cabinet Secretary Mark Fesmire Director Oil Conservation Division

Dean Sibert Global Director, QHSE Affairs Champion Technologies 3355 West Alabama #400 Houston, TX 77098

Re: Champion Hobbs Facility GW-199 (AP-14) March 29, 2005 Supplemental Investigation Workplan

Dear Mr. Sibert:

The New Mexico Oil Conservation Division (OCD) is in receipt of the March 29, 2005 Supplemental Investigation Workplan submitted by Environmental Strategies Consultants LLC on behalf of Champion Technologies and the NOVA Safety and Environmental Status Update Letter to Comprehensive Status Report. OCD understands that Environmental Strategies Consultants LLC is now the lead consultant on this project. OCD hereby approves of the plan with the following conditions:

- 1. One additional monitor well shall be installed due east of MW-08 located near the east side property line that runs north-south. The well shall have a minimum of 2 inch diameter and be built of similar material, constructed, developed and purged as other previously approved monitor wells on site (see July 10, 2000 approval). Due to the unusual amount of precipitation in this area, the required well mentioned above and proposed monitor wells MW-19 and MW-20 may be installed with a total screened interval of 25 feet of slotted screen with a minimum of 15 feet below and 10 feet above the current water level.
- 2. Chemicals of Concern (COC's) at this site shall be chloride, chromium, 1,1-DCA, PCE, vinyl chloride, barium and manganese.
- 3. Monitoring program shall include wells listed in Table 2 (attached) of the March 29, 2005 Supplemental Investigation Workplan submitted by Environmental Strategies Consultants LLC plus monitoring wells MW-03, 05, 07, 09 and new required well listed in item #1 above.

The following monitoring wells shall be sampled and analyzed quarterly:

MW-17 and MW-18 for chloride, chromium, 1,1-DCA, PCE, vinyl chloride, barium and manganese. MW-19, 13, 04,4D, 10, 20, Champion's active on-site well and Residents active off-site well for chloride, chromium, barium and manganese. All other wells for chloride, barium and manganese.

- 4. No current monitor well shall be plugged or abandoned without OCD approval.
- 5. Notify the OCD Santa Fe office and the OCD District office at least 72 hours in advance of all scheduled activities such that the OCD has the opportunity to witness the events and/or split samples during OCD's normal business hours.

Ì

Mr. Dean Sibert April 29, 2005 Page 2

6.

Area "3". Please provide the chloride content of the backfill or collect representative samples in this area and analyze for chlorides. Please take a soil core sample and perform a permeability test.

Area "5" shall be delineated horizontally and vertically for chlorides. 7.

8. Submit the results of the investigation and remediation efforts to the OCD Santa Fe Office by July 15, 2006 with a copy provided to the OCD Hobbs District Office and shall include the following investigative information:

A description of all investigation, remediation and monitoring activities, which have a. occurred including conclusions and recommendations.

A geologic/lithologic log and well completion diagram for each monitor well. b.

A water table potentiometric map showing the location of all pertinent site features as c. well as the elevation, direction and magnitude of the hydraulic gradient of the groundwater.

Isopleth maps for contaminants of concern, which were observed during the d. investigations.

Summary tables of all ground water quality sampling results and copies of all laboratory e. analytical data sheets and associated QA/QC data taken within the past year.

The quantity and disposition of all recovered product and/or wastes generated. All waste f. shall be disposed of at an approved OCD site.

Address any issues concerning "Density Gradient" contamination. g.

9. Future contamination found at or beyond the most down gradient monitoring system that exceeds the Water Quality Control Commission Regulation (WQCC) groundwater standards shall require immediate corrective action. A corrective action plan shall be submitted within 15 days of discovery.

Please be advised that NMOCD approval of this plan does not relieve Champion Technologies of liability should their operations fail to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve Champion Technologies of responsibility for compliance with any other federal, state, or local laws and/or regulations.

If you have any questions please do not hesitate to contact me at 505-476-3487 or e-mail WPRICE@state.nm.us.

Sincerely;

Wayne Price-Pet. Engr. Spec.

OCD Hobbs Office cc:

attachments-1

Table 2Summary of Groundwater Monitoring Program

Designation	Field Parameters ^{a)}	Quarterly Lab Analyses ^{b)}	Additional Lab Analyses (First Two Quarters) ^{b)}
MW-1 MW-8 MW-17 MW-18 MW-4 MW-4D MW-4D MW-10 MW-10 MW-13 MW-19 MW-20 Onsite Supply Well Offsite Supply Well	pH ORP Dissolved Oxygen Ferrous Iron	Chromium EPA 6010 Chloride EPA 300.0	Sulfide EPA 9030 Sulfate EPA 9035 Iron EPA 6010 Total Organic Carbon EPA 9060

a) Ferrous iron, using a HACH kit, is to be completed for the first two quarters of monitoring only.

b) All metals samples shall be filtered through a new 0.45 micron filter prior to placing in an acid-preserved container.

ENVIRONMENTAL STRATEGIES CONSULTING LLC

4600 South Ulster Street, Suite 930 = Denver, CO 80237 = (303) 850-9200 = Fax (303) 850-9214

March 29, 2005

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St Francis Drive Santa Fe, NM 87505

Re: Supplemental Investigation Workplan, Champion Technologies Inc. Site (AP-14) 4001 South Highway 18, Hobbs, New Mexico

Dear Mr. Price:

Please find enclosed 2 copies of the proposed supplemental investigation workplan for the above-referenced site.

If you have any questions regarding this workplan, please contact me at (303) 517-7985 or <u>mtom@escden.com</u>.

Sincerely,

Manley Tom, P.E. Technical Manager

Enclosure

cc/encl: Chris Williams – New Mexico Oil Conservation Division Dean Sibert – Champion Technologies Inc. Dwight Vorpahl - Champion Technologies Inc. John Simon – Environmental Strategies Consulting, LLC

AQ/UANTA TECHNICAL SERVICES COMPANY

ENVIRONMENTAL STRATEGIES CONSULTING LLC 4600 South Ulster Street, Suite 930 • Denver, CO 80237 • (303) 850-9200 • Fax (303) 850-9214

March 29, 2005

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St Francis Drive Santa Fe, NM 87505

Re: Record of Transmittal, Status Update Letter, Champion Technologies Inc. Site (AP-14) 4001 South Highway 18, Hobbs, New Mexico

Dear Mr. Price:

On behalf of Champion Technologies, Inc., Environmental Strategies Consulting LLC is enclosing 2 copies of NOVA Safety and Environmental's "Stage 2 Abatement Plan, Status Update Letter to Comprehensive Status Report", dated March 24, 2005, for the above-referenced site.

Sincerely,

Manley Tom, P.E. Technical Manager

Enclosure

cc/encl:	Chris Williams – New Mexico Oil Conservation Division
cc w/o encl:	Dean Sibert – Champion Technologies Inc.
	Dwight Vorpahl - Champion Technologies Inc.
	John Simon – Environmental Strategies Consulting, LLC

Price, Wayne

From: Price, Wayne

Sent: Thursday, March 10, 2005 10:08 AM To: 'Brad Phillips'; Price, Wayne

Subject: RE: Champion Technologies, Inc. - Hobbs, NM Facility

FW-199

OCD hereby approves of the new containment devices with the following conditions:

1. Shall be designed and meet the requirements pursuant to your current discharge plan conditions.

2. Please be advised that NMOCD approval of this plan does not relieve (Champion) of liability should their new containment operations pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve (Champion) of responsibility for compliance with any other federal, state, or local laws and/or regulations.

-----Original Message----- **From:** Brad Phillips [mailto:BradP@syaeng.com] **Sent:** Monday, February 28, 2005 2:51 PM **To:** WPrice@state.nm.us **Subject:** Champion Technologies, Inc. - Hobbs, NM Facility

Mr. Price,

Today, I forwarded the drum storage containment drawing and site map to your attention via overnight delivery. This package, coupled with the previous correspondence dated 2/17/2005 from Schreiber, Yonley & Associates, completes the project construction drawings and specifications for the two new containment structures to be installed at the Champion Technologies facility located in Hobbs, New Mexico.

Once you have had a chance to review the packages, please feel free to contact me if you have any questions.

Regards,

Brad Phillips Associate Engineer Schreiber, Yonley & Associates (636) 349-8399 bradp@syaeng.com

CONFIDENTIALITY NOTICE

This message is intended only for the use of the individual(s) or entity(s) to which it is addressed. This message may contain information that is privileged, confidential or otherwise protected from disclosure under law. If the reader of this message is not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately and delete the message from your computer. Thank you.

This email has been scanned by the MessageLabs Email Security System. For more information please visit http://www.messagelabs.com/email

271 Wolfner Drive • Fenton, Missouri 63026 636/349-8399 • Fax 636/349-8384

February 28, 2005

Mr. Wayne Price New Mexico Environmental Department Oil Conservation Bureau 1220 South St. Francis Drive Santa Fe, NM 87505

RE: Champion Technologies, Inc. Hobbs, New Mexico Facility Drawing for the Drum Storage Containment Structure

Dear Mr. Price:

As a follow-up to my letter dated February 17, 2005, Schreiber, Yonley & Associates is forwarding the drawing for the new drum storage containment structure to be constructed at the Champion Technologies, Inc., Hobbs, NM operation located at 4001 Highway 18. In addition, the site map referenced in the previous letter showing the location of the two new containment structures is included as a reference.

If you have any questions or if additional information is needed, please feel free to contact me at 636-349-8399.

Sincerely,

SCHREIBER, YONLEY & ASSOCIATES

Brad Phillips Associate Engineer

BSP:bah Enclosures

cc: Bryan Phillips - Champion Technologies, Inc. w/enclosures

X:\CHPHOB\040176\Correspondence\nmed ltr 2-28-05.doc

271 Wolfner Drive • Fenton, Missouri 63026 636/349-8399 • Fax 636/349-8384

February 18, 2005

Mr. Wayne Price New Mexico Environmental Department Oil Conservation Bureau 1220 South St. Francis Drive Santa Fe, NM 87505

RE: Champion Technologies, Inc. Hobbs, New Mexico Facility Drawings and Specifications for the Storage Tank Containment Structure

Dear Mr. Price:

On behalf of Champion Technologies, Inc., Schreiber, Yonley & Associates is forwarding the drawings and specifications for the new storage tank containment structure to be constructed at their Hobbs, NM operation located at 4001 Highway 18. In addition, a site map showing the location of this containment structure is also included as a reference.

The second phase of this project will include the design and construction of a drum storage containment structure located near the current warehouse, also shown on the enclosed site map. The drawings and specifications for this structure are being developed and will be forwarded to your attention under separate cover.

If you have any questions or if additional information is needed, please feel free to contact me at 636-349-8399.

Sincerely,

SCHREIBER, YONLEY & ASSOCIATES

Brad Phillips Associate Engineer

BSP:bah Enclosures cc: Bryan Phillips – Champion Technologies, Inc. X:\CHPHOB\040176\Correspondence\nmed ltr 2-17-05.doc

SECTION NO. 03200

REVISION 0

CONCRETE REINFORCEMENT

PENTA PROJECT NO. 20050112

SCHREIBER, YONLEY & ASSOCIATES CHAMPION TECHNOLOGIES, INC.

TANK FARM AND DRUM STORAGE AREA HOBBS, NEW MEXICO

January 24, 2005

SECTION NO. 03200 TABLE OF CONTENTS

PAGE

1.00	GENERAL	. 1
1.01	DESCRIPTION	. 1
1.02	QUALITY ASSURANCE	.1
1.03	SUBMITTALS	.2
1.04	PRODUCT DELIVERY, HANDLING AND STORAGE	.2
2.00	PRODUCTS	.2
2.01	MATERIALS	.2
2.02	FABRICATION	.3
3.00	EXECUTION	.3
3.01	INSTALLATION	.3

Schreiber, Yonley & Assoc. Penta Project No. 2005-0112

1.00 GENERAL

1.01 DESCRIPTION

- A. Work under this section consist of furnishing everything necessary for and incidental to the execution and completion of concrete reinforcement work as indicated on the drawings and specified herein, it includes fabrication and placement of reinforcement for all cast-in-place concrete, including bars, welded wire fabric, ties and supports.
- B. The extent of concrete reinforcement is shown on the drawings and in schedules.
- C. Related work specified elsewhere.
 - 1. Cast-in-Place Concrete: Section 03300
- 1.02 QUALITY ASSURANCE
- A. Codes and Standards: Comply with requirements of the latest edition of the following codes and standards, except as herein modified:
 - 1. American Welding Society, AWS D1.4, "Structural Welding Code-Reinforcing Steel".
 - 2. Concrete Reinforcing Steel Institute, "Recommended Practice for Placing Reinforcing Bars".
 - 3. Concrete Reinforcing Steel Institute, "Manual of Standard Practice for Reinforced Concrete Construction".
 - 4. American Concrete Institute, ACI 318, "Building Code Requirements for Reinforced Concrete".
 - 5. American Concrete Institute, ACI 315, "Manual of Standard Practice for Detailing Reinforced Concrete Structures".
 - 6. ASTM A615, "Specifications for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement".
 - 7. ACI 301, Structural Concrete for Buildings.
 - 8. AWS D12.1, Welding Reinforcement Steel, Metal Inserts and Connections in Reinforced Concrete Construction.
 - 9. ACI SP 66, American Concrete Institute Detailing Manual.
 - 10. ANSI/ASTM A82, Cold Drawn Steel Wire for Concrete Reinforcement.
- B. Qualifications for Welding Work:
 - 1. Qualify welding processes and welding operators in accordance with the AWS "Standard Qualification Procedure."
 - 2. Provide certification that welders to be employed in the work have satisfactorily passed AWS qualification tests within the previous 12 months. Submit certification to Owner a minimum of 15 days prior to performing any welding.
 - 3. If recertification of welders is required, retesting will be the Contractor's responsibility.

Schreiber, Yonley & Assoc. Penta Project No. 2005-0112

1.03 SUBMITTALS

- A. Manufacturer's Data: Submit copies of specifications and installation instructions for proprietary materials and reinforcement accessories if requested by Owner.
- B. Mill Test Reports: Furnish test reports or an affidavit certifying that the materials or product delivered to the job meet specified requirements if requested by Owner.

1.04 PRODUCT DELIVERY, HANDLING AND STORAGE

- A. Deliver reinforcement to the project site bundled, tagged and marked. Use weatherproof tags indicating bar size, lengths and other information corresponding to markings shown on placement diagrams. Deliver reinforcement clean and free from loose mill and rust scale, dirt and other coatings.
- B. Store concrete reinforcement materials at the site to prevent damage and accumulation of dirt, excessive rust and grease. Store materials to permit easy access for inspection and identification.
- C. Exercise care to prevent damage to steel reinforcement during delivery and storage.

2.00 PRODUCTS

- 2.01 MATERIALS
- A. Reinforcing Bars (rebar): ASTM A615, Grade 60 (420 MPa).
- B. Supports for Reinforcement: Bolsters, chairs spacers and other devices for spacing, supporting and fastening reinforcement in place.
 - 1. Over waterproof membranes, use precast-concrete brick bar supports to prevent penetration of the membrane.
- C. Tie Wire: 16 gauge minimum and in sufficient quantity to hold reinforcement accurately in place during concrete placement operations.

Schreiber, Yonley & Assoc. Penta Project No. 2005-0112

2.02 FABRICATION

- General: Fabricate reinforcing bars to conform to required shapes and dimensions, with fabrication tolerances complying with CRSI "Manual of Standard Practice", ACI SP-66, ACI 318, and ANSI/ASTM A 184. In case of fabricating errors, do not rebend or straighten reinforcement in a manner that will injure or weaken the material.
- B. Locate reinforcement splices not indicated on drawings at point of minimum stress. Review location with Owner's Engineer.
- C. Unacceptable Materials: Reinforcement with any of the following defects will not be permitted in the work:
 - 1. Bar lengths, depths and bends exceeding specified fabrication tolerances.
 - 2. Bend or kinks not indicated on drawings or final shop drawings.
 - 3. Bars with reduced cross section due to excessive rusting or other cause.
- D. Weld reinforcement in accordance with ANSI/AWS D1.4, ANSI/AWS D12.1.

3.00 EXECUTION

3.01 INSTALLATION

- A. Comply with the specified codes and Standards and Concrete Reinforcing Steel Institute's recommended practice for "Placing Reinforcing Bars" for details and methods of reinforcement placement and support and as herein specified.
- B. Clean reinforcement to remove loose rust and mill scale, earth, ice and other materials that reduce or destroy bond with concrete.
- C. Accurately position, support and secure reinforcement against displacement by form work, construction or concrete placement operations.
- D. Place reinforcement to obtain the minimum coverages for concrete protection as per ACI 318. Arrange, space and securely tie bars and bar supports together with 16-gauge wire to hold reinforcement accurately in position during concrete placement operations. Set wire ties so that twisted ends are directed away from exposed concrete surfaces.
- E. Provide sufficient number of supports to carry reinforcement. Do not place reinforcing bars more than 2" (50 mm) beyond the last leg of any continuous bar support. Do not use supports as bases for runways for concrete conveying equipment and similar construction loads.

Schreiber, Yonley & Assoc. Penta Project No. 2005-0112

F. Splices: Provide standard reinforcement splices by lapping ends, placing bars in contact and tightly wire tying. Comply with requirements of ACI 318 for minimum lap of spliced bars. In the absence of splice locations shown on the drawings, splice top bars at midspan and bottom bars at supports.

END OF SECTION

SECTION NO. 03300

REVISION 0

CAST-IN-PLACE CONCRETE

PENTA PROJECT NO. 20050112

SCHREIBER, YONLEY & ASSOCIATES CHAMPION TECHNOLOGIES, INC.

TANK FARM AND DRUM STORAGE AREA HOBBS, NEW MEXICO

January 24, 2005

SECTION NO. 03300 TABLE OF CONTENTS

7

PAGE

1.00	GENERAL	. 1
1.01 1.02	DESCRIPTION QUALITY ASSURANCE	.1 .1
1.03	JOB CONDITIONS	. 1
2.00	PRODUCTS	.2
2.01	MATERIALS	.2
2.02	MIXES	.3
2.03	FABRICATION AND MANUFACTURE	.3
2.04	CONCRETE ADMIXTURES	.3
3.00	EXECUTION	.4
3.01	INSTALLATION	.4
3.02	FIELD QUALITY CONTROL	.5

Schreiber, Yonley & Assoc. Penta Project No. 2005-0112

1.00 GENERAL

- 1.01 DESCRIPTION
- A. Work under this section consists of furnishing everything necessary for and incidental to the execution and completion of all cast-in-place concrete work, as indicated on the drawings and specified herein.
- B.Related Work Specified Elsewhere1.Concrete Reinforcement:Section 03200
- 1.02 QUALITY ASSURANCE
- A. Reference Standards
 - 1. American Society for Testing and Materials (ASTM).
 - 2. American Concrete Institute (ACI).

1.03 JOB CONDITIONS

- A. Environmental Requirements
 - 1. In cold weather the concrete shall have a temperature of at least 50°F (10°C), but not more than 90°F (32°C). It shall be kept at a temperature of at least 50°F (10°C) for not less than 72 hours after placing, or until it has thoroughly set. Approved methods of keeping the required uniform temperature through the curing period, using canvas, heaters, etc., shall be employed. The Contractor shall provide adequate fire protection accessible at all times on each floor where heating is in progress, and shall maintain qualified personnel to keep the heating units in continued operation. Heating appliances shall not be placed in such a manner as to endanger formwork or expose any area of concrete to rapid drying action or other injury due to excessive heat. Where heat is required for protection of CO_2 in the pit from the combustion gases. See ACI 306R for other requirements for cold weather concreting.
 - 2. Comply with ACI 305R requirements for hot weather concreting whenever the air temperature exceeds 80°F (27°C). Make provisions for such expected conditions in advance to placing concrete. Sprinkle all formwork, reinforcing, subgrade, and general area around the work with cool water just before placing concrete. Place concrete as quickly as possible. Do not place concrete whose temperature exceeds 90°F (32°C).

- B. Protection
 - 1. Immediately after placing or finishing, protect concrete surface that is not covered by forms from loss of surface moisture for at least five days when average daily temperature is at least 70°F (21°C), and for longer periods when average daily temperature falls below 70°F (21°C).
 - 2. Protect surfaces from which forms are removed before curing period has elapsed as specified for surfaces not covered by forms. Do not use membrane curing on surfaces required to receive additional concrete, concrete fill, or floor hardener.
- C. Curing
 - Curing of concrete shall comply with ACI 308. Provision shall be made for maintaining concrete in a moist condition for a period of at least 7 days after placement. For high-early-strength concrete, however, moist curing shall be provided for at least the first three days, when concrete and air temperature are above 50°F (10°C). Longer periods of curing shall be required when temperatures are below 50°F (10°C)
 - 2. The water saturation curing method using waterproof paper or polyethylene film or an impervious membrane curing compound may be used to keep concrete in a moist condition. Impervious membrane curing compound shall be an approved non-bituminous colorless liquid sealing compound applied in atomized form so as to preserve natural color of concrete. Apply curing compound as soon as surface water has disappeared from concrete surfaces, using approved pressure spraying equipment as per Manufacturer's directions in sufficient thickness to form effective water seal.

2.00 PRODUCTS

- 2.01 MATERIALS
- A. Cement
 - 1. Shall be ASTM C150 Portland Cement Type I or Ia, or type III or IIIa, conforming to Specification 3.2 of the latest ACI Standard 318 unless noted on the drawings.
- B. Aggregates
 - 1. Shall conform to ASTM C33 and Specification 3.3 of the latest ACI Standard 318 for normal weight concrete.
- C. Water

Schreiber, Yonley & Assoc. Penta Project No. 2005-0112

1. Shall be clean and not detrimental to concrete, and shall conform to Specification 3.4 of the latest ACI Standard 318.

D. Formwork

1. Form design, construction, and removal shall conform to Specifications 6.1 and 6.2 of the latest ACI Standard 318.

2.02 MIXES

- A. The concrete quality shall conform to the latest ACI Standard 318, Chapter 4, and in accordance with design stresses as shown on the drawings.
- B. All concrete shall have at 28 days a minimum compressive strength as follows:
 - 1. Lean concrete fill: 1500 psi (10 MPa).
 - 2. Exterior slab and curbs: 4000 psi (28 MPa).

2.03 FABRICATION AND MANUFACTURE

- A. Concrete
 - 1. Equipment shall be prepared and concrete mixed, in accordance with Specifications 5.1, 5.2, and 5.3 of the latest ACI Standard 318.
 - 2. Concrete shall be purchased from pre-qualified concrete suppliers approved by the Owner's Representative.

B. Mixture

1. Concrete shall be mixed and preparation made for its deposit in accordance with Specifications 5.1, 5.2, and 5.3 of the latest ACI Standard 318, as well as ACI 304.

2.04 CONCRETE ADMIXTURES

- A. Provide admixtures produced by established reputable manufacturers and use in compliance with the Manufacturer's printed directions. Do not use admixtures that have not been incorporated and tested in the accepted mixes, unless otherwise authorized in writing by the Owner's Representative.
- B. Air-Entraining Admixture: ASTM C 260. Use air-entraining admixture as noted on the design drawings. Add air-entraining admixture at the Manufacturer's prescribed rate to result in concrete at the point of placement having air content within the following limits:
 - 1. 4% for maximum 2" (50mm) aggregate
 - 2. 6% for maximum ³/₄" (19mm) aggregate
 - 3. 7% for maximum $\frac{1}{2}$ (12mm) aggregate

Schreiber, Yonley & Assoc. Penta Project No. 2005-0112

Air content should be measured using the pressure method described in ASTM C231 for normal weight concrete.

- C. Water-Reducing Admixture: ASTM C 494, Type A. Use admixtures for water-reducing and set-control in strict compliance with the Manufacturer's directions.
- D. Set-Control Admixtures: ASTM C 494, as follows:
 - 1. Type B, Retarding
 - 2. Type C, Accelerating
 - 3. Type D, Water-Reducing and Retarding
 - 4. Type E, Water-Reducing and Accelerating
- E. Superplasticizers: The superplasticizer to produce rheoplastic concrete shall conform to ASTM-C-494, Type F or G. The admixture shall be free of chlorides and alkalis, and be of the synthesized sulfonated complex polymer type that shall be added to the concrete mixer at the central batch plant. Dosage as recommended by the manufacturer.
- F. Fly Ash: Fly ash (ASTM C618, Class C) may be used to reduce cement content. Fly ash may replace up to 20 percent of cement by the use of 125 pounds (57 kg) of fly ash for each 100 pounds (45 kg) of cement removed. Submit mix design and test reports verifying compliance.
- G. Calcium chloride or admixtures containing calcium chloride will not be permitted in concrete.

3.00 EXECUTION

3.01 INSTALLATION

- A. Examination
 - 1. Verify that anchors, seats, plates, reinforcement, and other items to be cast into concrete are accurately placed, positioned securely, and will not cause hardship in placing concrete.
 - 2. Verify requirements for concrete cover over reinforcement in accordance with Section 7.7 of the latest ACI 318.
- B. Preparation
 - 1. Prepare previously placed concrete by cleaning with steel brush and applying bonding agent in accordance with Manufacturer's instructions.
Schreiber, Yonley & Assoc. Penta Project No. 2005-0112

C. Placing Concrete

- 1. Concrete shall be conveyed and deposited in accordance with Specifications 5.9 and 5.10 of the latest ACI Standard 318 and ACI 304.
- 2. No concrete shall be placed until dewatering, where required, has been accomplished.
- 3. Free fall height for concrete placement shall not exceed 4'-0" (1.2m).
- 4. Apply fog sprays as soon as possible to all slabs after placing, to guard against plastic shrinkage cracks.
- 5. Install vapor barrier under slabs on grade. Repair vapor barrier damages during placement of concrete reinforcing.
- 6. Place concrete continuously between predetermined expansion, control, and construction joints.
- 7. Notify Owner's Representative a minimum of 24 hours before placing concrete.
- 8. Maintain records of concrete placement, including date, location, quantity, air temperature, and samples taken.

D. Finishes

- 1. All exposed concrete surfaces shall be finished in accordance with ACI 301. These shall be rubbed with cement or carborundum blocks and water until hollows, lines, form marks and surplus material have been removed. The surface shall be uniformly smooth and shall be washed clean.
- 2. The Contractor shall patch all form tie holes and minor defective or honeycombed areas by cutting back to solid concrete and then filling with cement mortar consisting of one part cement to three parts sand before concrete is thoroughly dry. Concrete around metal form ties shall be cut back to a depth of ½" (12mm) and then the holes pointed up. The area to be patched shall be thoroughly wetted, prior to placing patching mortar.
- 3. Concrete floors shall be steel trowel finished. Outside walkways and stairs shall have a sand float finish. All finish surfaces shall be monolithic to indicated elevation and no additional grout or dry topping will be permitted.
- 4. Chemical hardener shall be applied to concrete surfaces as indicated on the drawings, and only when the ambient temperature is 50°F (10°C) and rising. Follow manufacturer's instructions regarding method of application.

3.02 FIELD QUALITY CONTROL

A. Concrete Compressive Strength Tests

- 1. ASTM C 31, "Practice for Making and Curing Concrete Test Specimens in the Field."
- 2. ASTM C 39, "Test Method for Compressive Strength of Cylindrical Concrete Specimens."
- 3. ASTM C 172 "Practice for Sampling Freshly Mixed Concrete."

January 24, 2005

Schreiber, Yonley & Assoc. Penta Project No. 2005-0112

- 4. ACI 318-95, Section 5.6.
- 5. At least six (6) specimens shall be made for each test, and not less than one (1) test shall be made for each 150 yd³ (115m³) [100 yd³ (76m³) for cold weather concreting] of concrete. In no case shall there be less than one (1) test for each eight (8) hour shift of concreting. Copies of test reports are to submitted to the Owner's Representative.
- B. Concrete Slump Tests
 - 1. Slump testing shall conform to ASTM C 143, "Test Method for Slump of Hydraulic Cement Concrete."
 - 2. The following table lists the slump ranges for various types of construction. In no case shall slump exceed 6" (150mm) unless superplasticizers have been used. Concrete without superplasticizers or high-range water reducers with a slump in excess of 6" (150mm) shall be rejected. Only the Owner's Representative may authorize adding water to concrete with low slumps at the rate of ½ gal. per yd³ (2.5 liter per m³) up to 2 gal. per yd³ (10 liter per m³) total. If slump is still insufficient after max. allowable amount of water is added, concrete shall be rejected, and shall be removed from the job site at the Contractor's expense.

TYPES OF SLUMP, CONSTRUCTION	MAXIMUM	MINIMUM
Reinforced slabs and walls	5" (125mm)	2" (50mm)

- 3. Slump tests shall be performed at the same time compressive strength cylinders are made or at anytime requested by the Owner's Representative.
- C. Enforcement of Strength Requirements
 - 1. Should the strength shown by the test specimen fall below the design strength specified, the Owner's Representative shall have the right to require changes in concrete proportions to apply on the remainder of the work. The Owner's Representative shall further have the right to require additional curing on those portions of the structure represented by such test specimens. In the event that such additional curing does not give the required strength, the Owner's Representative shall have the right to require strength at no additional expense.
- D. Additional Curing
 - 1. When additional curing on portions of the structure is ordered, it shall be done at the Contractor's expense and no claims for extra compensation for such curing shall be allowed.

January 24, 2005

Schreiber, Yonley & Assoc. Penta Project No. 2005-0112

2. Such additional curing shall consist of an extension of the periods specified as may be necessary. Curing shall be continued until cores drilled from portions of the structure involved show an average strength equal to that specified. Cores for this purpose shall be secured and tested in accordance with ASTM C 42.

END OF SECTION

GENERAL:

- 1. THE DESIGN, DETAILING, FABRICATION, AND ERECTION OF ALL STRUCTURES SHALL CONFORM TO THE LATEST EDITION OF THE FOLLOWING CODES:
 - a. AMÉRICAN CONCRETE INSTITUTE "BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE" (ACI 318-XX)
 - b. "DETAILS AND DETAILING OF CONCRETE REINFORCEMENT" (ACI 315-XX) AND "MANUAL OF ENGINEERING AND PLACING DRAWINGS FOR REINFORCED CONCRETE STRUCTURES" (ACI 315R-XX)
- 2. DESIGN CRITERIA:
- a. ALLOWABLE SOIL PRESSURE = 4000 PSF
- b. BASIN VOLUME HAS BEEN SIZED FOR 10% OF VOLUME OF 32 TANKS

BACKFILL:

1. ALL BACKFILL SHALL BE PLACED IN 8" LIFTS AND COMPACTED TO 95% OF IT'S MODIFIED PROCTER DENSITY AS DETERMINED BY ASTM D-1557 UNLESS NOTED OTHERWISE.

CONCRETE:

- 1. CONCRETE SHALL HAVE THE FOLLOWING MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS, UNLESS OTHERWISE NOTED: a. LEAN CONCRETE FILL 1000 psi
- b. FOOTINGS AND FOUNDATION WALLS, PILE CAPS & CURBS 4000 psi
- 2. CONCRETE SHALL BE AIR ENTRAINED.
- 3. CONCRETE PROTECTIVE COVER FOR REINFORCEMENT SHALL BE IN ACCORDANCE WITH A.C.I. CODE, UNLESS OTHERWISE NOTED OR DETAILED ON DRAWING. IN GENERAL CONCRETE COVER SHALL BE AS FOLLOWS:
- a. 3" FOR CONCRETE DEPOSITED AGAINST THE GROUND b. 2" - FOR FORMED SURFACES EXPOSED TO WEATHER
- 4. EXPOSED EDGES OF CONCRETE ABOVE GRADE AND EXPOSED EXTERNAL CORNERS OF ALL COLUMNS AND BEAMS SHALL HAVE 3/4" x 45 DEGREE CHAMFERS, UNLESS OTHERWISE NOTED.
- 5. CONCRETE FINISHES:
- a. EXTERIOR SURFACES SHALL HAVE A BROOM FINISH

REINFORCEMENT:

- 1. REINFORCING BARS SHALL CONFORM TO ASTM SPECIFICATIONS A615 GRADE 60 UNLESS NOTED.
- 2. ALL SPLICES AND DEVELOPMENT LENGTHS TO BE PER ACI 318 CLASS "A" MINIMUM UNLESS NOTED.
- 3. ALL REINFORCEMENT SPLICES SHALL BE STAGGERED.
- 4. CONTRACTOR TO PROVIDE ADEQUATE SUPPORT OF REINFORCEMENT TO PREVENT SAGGING OF THE REINFORCEMENT.

CONSTRUCTION & CONTROL JOINTS.

- 1. SLAB CONTROL JOINTS SHALL BE SPACED AT MAXIMUM OF 20'-0" O.C. EACH WAY.
- 2. WATERSTOPS SHALL BE 3/16" x 6" EXTRUDED MULTI-RIB CENTER BULB TYPE UNLESS NOTED OTHERWISE.

	SLOFE DOWN	
	SILOPE DOWN	

150'-	-0"		

1

Down	
SLOPE	
NMOQ JACIS	
۲	

	38'-4"	17'-6"	-
<u> </u>		SLOPE DOWIN 1:10	
	DRUM CONFINEMENT AREA ALLOWABLE SOIL PRESSURE = 4000 PSF	SLOPE DOWN 1:10	

 $\overline{}$

Price, Wayne

From: Sent: To: Subject: Price, Wayne Thursday, July 01, 2004 3:51 PM Price, Wayne; 'Ralph Corry' RE: HOBBS (AP-14) CHAMPION'S HOBBS, NM FACILITY GW-199

Dear Ralph, OCD received the map and plugging plan and hereby approves.

----Original Message----From: Price, Wayne Sent: Monday, June 28, 2004 8:16 AM To: 'Ralph Corry' Subject: RE: HOBBS (AP-14) CHAMPION'S HOBBS, NM FACILITY GW-199

Please provide a map showing the wells and a plugging plan.

----Original Message----From: Ralph Corry [mailto:Ralph.Corry@CHAMP-TECH.com] Sent: Friday, June 25, 2004 9:11 AM To: Wayne Price (E-mail) Cc: Ann Barker; Allan Childs Subject: HOBBS (AP-14) CHAMPION'S HOBBS, NM FACILITY GW-199

Dear Wayne,

Champion Technologies is requesting permission to plug and close two of the monitoring wells at the Hobbs' facility. These two wells are MW-8 and MW-11. These wells have not exceeded the regulatory requirements for chromium in the five quarters of sampling. These wells are located on or close to the old drum pad behind the warehouse. After these wells are plugged, then a concrete pad will be rebuilt over or near these areas.

Also Champion is rebuilding the tank farm area that was previously removed for remediation purposes.

If there should be any questions, please contact Ann Barker or me at 281-431-2561.

Sincerely yours, Ralph Corry

This email has been scanned by the MessageLabs Email Security System. For more information please visit http://www.messagelabs.com/email CHAMPION FRESNO

N0.284 P.1/3

CHAMPION TECHNOLOGIES, INC. Committed to Improvement RALPH CORRY

Environmental Specialist 3130 FM 521•Fresno, Texas• 77545 P.O. Box 450499 •Houston, Texas •77245-0499 Office Phone: 281-431-2561 Fax: 281-431-1655

DATE: July 1, 2004 TO: Wayne Price-NMOCD

FROM: RALPH CORRY

476-3462 FAX: 505-827-8177

SUBJECT: Hobbs (AP-14) CHAMPION'S HOBBS, NM FACILITY GW-199

YOU SHOULD RECEIVE 3 PAGES, INCLUDING THIS COVER SHEET. IF YOU DO NOT RECEIVE ALL THE PAGES, PLEASE CALL 281-431-2561

The wells to be P&A are MW-8 and MW-11. I am enclosing map and the plugging plan.

P.2/3

.

I

i

JUL. 1.2004	4:13PM	CHAMPION FRESNO	,	N0.284	P.3/3
Raiph Corry		•	Õ		

To: Subject:

. 20

1

ł

Wayne Price (E-mail) WELL PLUGGING PLAN HOBB'S AP-14

IF THE MONITORING WELLS ARE PVC, A CEMENT TRUCK WILL BE GROUGHT IN TO FILL THE CASING TO THE SURFACE WITH GROUT. AFTER FILLING THEN THE DRILL WILL SUBMIT A P&A REPORT TO THE STATE UPON COMPLETION. THE MONITORING WELLS TO BE PLUGGED ARE MW-8 AND MW-11. IF CONSTRUCTED OF MATERIAL OTHER THAN PVC, THEN A DRILLING RIG WILL BE BROUGHT ON SITE AND ATTEMPT TO PULL. AS REQUIRED BY REGS. AFTER THE CASING IS PULLED OR CUT OFF (IF IT CANNOT BE PULLED), A CEMENT TRUCK WILL BE BROUGHT IN TO FILL THE WELLS WITH GROUT TO SURFACE. HEN P&A REPORT WILL BE SUBMITTED TO THE STATE UPON COMPLETION.

RALPH CORRY

Ł

Price, Wayne

From: Sent: To: Cc: Subject: Price, Wayne Thursday, August 21, 2003 1:47 PM 'Todd Choban'; Price, Wayne ralph.corry@champ-tech.com; Chan Patel RE: Excavated well sample results, schedule

Approved!

Please be advised that NMOCD approval of this plan does not relieve Champion of liability should their operations fail to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve Champion of responsibility for compliance with any OCD, federal, state, or local laws and/or regulations.

-----Original Message-----From: Todd Choban [mailto:tchoban@etgi.cc] Sent: Thursday, August 21, 2003 1:47 PM To: WPrice@state.nm.us Cc: ralph.corry@champ-tech.com; Chan Patel Subject: Excavated well sample results, schedule

Hi Wayne,

On behalf of Champion Technologies, ETGI requests permission to plug and abandoned the "excavated" water well located in the Area 2 sidewall and to utilize the excavated concrete debris (estimated 250 cy) during backfilling activities.

Attached are the analytical results from the excavated water well at Champion. Also attached is an estimated schedule of up-coming activities.

The sample results look "good", let me know what you think.

If you do not receive either or both the PDF and Word file attachments please let me know. I have received past reports that the attachments did not make it to their destination from this computer.

Call if you have any questions.

Thanks,

Todd Choban ETGI

1

TASKS TO BE COMPLETED AT CHAMPIONS HOBBS FACILITY.

1

1. Quarterly sampling of monitor and domestic wells (4th o	quarter).
2. Plug and Abandonment of excavated well.	(1 Week)
3. Backfill, compaction and installation of liner in Area 2.	(3 Weeks)
4. Conduct slug tests and pump test to determine rate of groundwater movement. Conduct pump test on up-gradient well, utilize produced water during backfill and compaction of Area 2.	(1 Week)
5. Complete soil sampling of compacted caliche layer to illustrate decrease of precipitation infiltration.	(2 Weeks)
6. Excavate below 5 foot near Area 3 (sample points D-34 and D-35) for chloride. Collect confirmation samples, backfill and dispose of excavated material.	(2 Weeks)
7. Backfill and compact Area 3.	(2 Weeks)
8. Excavate/Scrape at least 1.5 feet of topsoil from Area 5, collect sample for chloride, backfill and dispose of excavated material with above.	(1 Week)
9. Install, develop, and sample an additional monitor wells near entry gate.	(1 Week)
10. Investigate area between MW-7 and MW-13 for secondary subsurface chromium source.	(3 Weeks)
11. Conduct pilot test to determine density of injection points for groundwater treatment.	(2 Weeks)
12. Install groundwater treatment injection zone in two locations by monitor well MW-4 and MW-12.	(3 Weeks)
13. Ensure bulk tank and drum storage area have permanent secondary containment.	(1 Week)
14. Establish procedures for containing, collecting and disposing of all fluids discarded in laboratory sink.	(1 Week)
15. Status Update Report to include all data collected since last report, on-going activities/	

1

monitoring, quarterly monitoring, monitoring reduction, projections, etc. (5 V

(5 Weeks)

(1 Week)

16. Modify discharge permit.

Total 29 weeks.

Activity durations are estimates. Schedule may be modified by conducting some activities concurrently or by changing site parameters. Data evaluation time is not included in the above schedule.

Analytical and Quality Control Report

Project Location:HobbsProject Name:ChampionProject Number:CH 2100

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

15306	Excavated Well	water	2003-08-13	10:50	2003-08-14
Sample	Description	Matrix	Taken	Taken	Received
			Date	Time	Date

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 33 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Report Date:	August	20,	2003
CH 2100			

Work Order: 3081414 Champion Page Number: 2 of 33 Hobbs

Analytical Report

Sample: 15306 - Excavated Well

Analysis:	Ag, Dissolved		Analytical Method:	S 6010B	Prep Method:	S 3005A
QC Batch:	3849		Date Analyzed:	2003-08-19	Analyzed By:	\mathbf{RR}
Prep Batch:	3385		Date Prepared:	2003-08-15	Prepared By:	JH
			\mathbf{RL}			
Parameter		Flag	\mathbf{Result}	Units	Dilution	RL
Dissolved Silv	ver		< 0.0130	m mg/L	1	0.0130

Sample: 15306 - Excavated Well

Analysis:	Alkalinity		Analytical Method:	SM 2320B	Prep Method:	N/A
QC Batch:	3806		Date Analyzed:	2003-08-15	Analyzed By:	RS
Prep Batch:	3417		Date Prepared:	2003-08-15	Prepared By:	RS
			\mathbf{RL}			
Parameter		Flag	\mathbf{Result}	Units	Dilution	\mathbf{RL}
Hydroxide All	kalinity		<1.00	mg/L as CaCo3	1	1.00
Carbonate All	kalinity		<1.00	mg/L as CaCo3	1	1.00
Bicarbonate A	Alkalinity		108	mg/L as CaCo3	1	4.00
Total Alkalini	ty		108	mg/L as CaCo3	1	4.00

Sample: 15306 - Excavated Well

Analysis:	As, Dissolved		Analytical Method:	S 6010B	Prep Method:	S 3005A
QC Batch:	3849		Date Analyzed:	2003-08-19	Analyzed By:	\mathbf{RR}
Prep Batch:	3385		Date Prepared:	2003-08-15	Prepared By:	$_{ m JH}$
			RL			
Parameter		\mathbf{Flag}	\mathbf{Result}	\mathbf{Units}	Dilution	RL
Dissolved Ars	senic		< 0.0100	. mg/L	1	0.0100

Sample: 15306 - Excavated Well

Analysis:	Ba, Dissolved		Analytical Method:	S 6010B	Prep Method:	S 3005A
QC Batch:	3849		Date Analyzed:	2003-08-19	Analyzed By:	\mathbf{RR}
Prep Batch:	3385		Date Prepared:	2003-08-15	Prepared By:	$_{ m JH}$
			RL			
Parameter		Flag	Result	Units	Dilution	\mathbf{RL}
Dissolved Bar	rium		0.743	mg/L	1	0.0100

Sample: 15306 - Excavated Well

Analysis:	Cations	Analytical Method:	S 6010B	Prep Method:	S 3005A
QC Batch:	3866	Date Analyzed:	2003-08-18	Analyzed By:	BC
Prep Batch:	3385	Date Prepared:	2003-08-15	Prepared By:	JH

Report Date: August 20, 2003	Work Order: 3081414	Page Number: 3 of 33
CH 2100	Champion	Hobbs

		RL			
Parameter	\mathbf{Flag}	\mathbf{Result}	Units	Dilution	\mathbf{RL}
Dissolved Calcium		49.9	mg/L	1	0.500
Dissolved Potassium		5.93	mg/L	1	0.500
Dissolved Magnesium		12.3	mg/L	1	0.500
Dissolved Sodium		116	mg/L	1	0.500

Sample: 15306 - Excavated Well

Analysis: QC Batch: Prep Batch:	Cd, Dissolved 3849 3385		Analytical Method: Date Analyzed: Date Prepared:	S 6010B 2003-08-19 2003-08-15	Prep Method: Analyzed By: Prepared By:	S 3005A RR JH
Parameter		Flag	RL Result	Units	Dilution	\mathbf{RL}
Dissolved Ca	dmium		0.0120	mg/L	1	0.00500

Sample: 15306 - Excavated Well

Analysis:	Cr, Dissolved		Analytical Method:	S 6010B	Prep Method:	S 3005A
QC Batch:	3849		Date Analyzed:	2003-08-19	Analyzed By:	RR
Prep Batch:	3385		Date Prepared:	2003-08-15	Prepared By:	JH
			\mathbf{RL}			
Parameter		Flag	Result	Units	Dilution	\mathbf{RL}
Dissolved Ch	romium	·	0.0120	mg/L	1	0.0100

Sample: 15306 - Excavated Well

Analysis: QC Batch: Prep Batch:	Cu, Dissolved 3849 3385		Analytical Method: Date Analyzed: Date Prepared:	S 6010B 2003-08-19 2003-08-15	Prep Method: Analyzed By: Prepared By:	S 3005A RR JH
			RL			
Parameter		Flag	Result	Units	Dilution	\mathbf{RL}
Dissolved Cop	pper		< 0.0125	mg/L	1	0.0125

Sample: 15306 - Excavated Well

Analysis: QC Batch: Prep Batch:	Fe, Dissolved 3849 3385	Analytical Method: Date Analyzed: Date Prepared:	S 6010B 2003-08-19 2003-08-15	Prep Method: Analyzed By: Prepared By:	S 3005A RR JH
		RL			
Parameter	Flag	\mathbf{Result}	Units	Dilution	RL
Dissolved Iron	n	< 0.0500	mg/L	1	0.0500

Sample: 15306 - Excavated Well

Report Date: August 20, 2003 CH 2100		Work Order: 3081414 Champion		Page Number: 4 of 33 Hobbs		
Analysis:	Hg, Dissolved		Analytical Method:	S 7470A	Prep Method	: N/A
QC Batch:	3857		Date Analyzed:	2003-08-19	Analyzed By:	BC
Prep Batch:	3462		Date Prepared:	2003-08-18	Prepared By:	BC
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Dissolved Me	ercury		< 0.000200	mg/L	1 0	.000200

Sample: 15306 - Excavated Well

Analysis:	Ion Chromatography	Analytical Method	l: E 300.0	Prep Method:	N/A
QC Batch:	3756	Date Analyzed:	2003-08-15	Analyzed By:	JSW
Prep Batch:	3379	Date Prepared:	2003-08-14	Prepared By:	$_{\rm JSW}$
QC Batch:	3823	Date Analyzed:	2003-08-19	Analyzed By:	$_{\rm JSW}$
Prep Batch:	3431	Date Prepared:	2003-08-18	Prepared By:	JSW
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride	·····	285	mg/L	10	0.500
Fluoride		<1.00	m mg/L	5	0.200
Sulfate		5.25	mg/L	5	0.500

Sample: 15306 - Excavated Well

Analysis:	Mn, Dissolved		Analytical Method:	S 6010B	Prep Method:	S 3005A
QC Batch:	3849		Date Analyzed:	2003-08-19	Analyzed By:	\mathbf{RR}
Prep Batch:	3385		Date Prepared:	2003-08-15	Prepared By:	JH
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Dissolved Ma	nganese		0.286	mg/L	1	0.0250

Sample: 15306 - Excavated Well

Analysis:	NO2 (Spec)	Analytical Method:	SM 4500-NO2 B	Prep Method:	N/A
QC Batch:	3757	Date Analyzed:	2003-08-15	Analyzed By:	JSW
Prep Batch:	3380	Date Prepared:	2003-08-15	Prepared By:	JSW
		\mathbf{RL}			
Parameter	Flag	\mathbf{Result}	Units	Dilution	RL
Nitrite-N		<0.0100	mg/L	1	0.0100

Sample: 15306 - Excavated Well

Analysis:	NO3 (IC)	Analytical Method:	E 300.0	Prep Method:	N/A
QC Batch:	3756	Date Analyzed:	2003-08-15	Analyzed By:	JSW
Prep Batch:	3379	Date Prepared:	2003-08-14	Prepared By:	JSW

Report Date: August 20, 2003 CH 2100		Work Or Ch	rder: 3081414 ampion	Page Number: 5 of 33 Hobbs		
Parameter Nitrate-N	Flag	RL Result <1.00	Units mg/L		Dilution 5	RL 0.200
Sample: 15	306 - Excavated Well	l				
Analysis: QC Batch: Prep Batch:	Pb, Dissolved 3849 3385	Analytical Metho Date Analyzed: Date Prepared:	od: S 6010B 2003-08-19 2003-08-15		Prep Method: Analyzed By: Prepared By:	S 3005A RR JH
Parameter	\mathbf{Flag}	RL Result	Units		Dilution	\mathbf{RL}
Dissolved Le	ad	<0.0100	mg/L		1	0.0100
Sample: 15	306 - Excavated Well	l				
Analysis: QC Batch: Prep Batch:	pH 3830 3438	Analytical Method: Date Analyzed: Date Prepared:	SM 4500-H+ 2003-08-14 2003-08-14		Prep Meth Analyzed I Prepared F	od: N/A 3y: RS 3y: RS
Parameter	Flag	RL Result	Units		Dilution	RL
pН	1	7.20	s.u.		1	0.00
Sample: 15	306 - Excavated Well	L				
Analysis: QC Batch: Prep Batch:	Se, Dissolved 3849 3385	Analytical Metho Date Analyzed: Date Prepared:	d: S 6010B 2003-08-19 2003-08-15		Prep Method: Analyzed By: Prepared By:	S 3005A RR JH
		RL				
Parameter Dissolved Sel	Fla _i lenium	g Result <0.0100	Units mg/L		Dilution 1	0.0100
Sample: 15	306 - Excavated Well					
Analysis: QC Batch: Prep Batch:	Semivolatiles 3813 3411	Analytical Metho Date Analyzed: Date Prepared:	d: S 8270C 2003-08-18 2003-08-17		Prep Method: Analyzed By: Prepared By:	S 3510C RC JH
Parameter		Flag	RL Result	Units	Dilution	RL
Pyridine n-Nitrosodim 2-Picoline Methyl meth	anesulfonate	<0 <0 <0 <0 <0	.00500 .00500 .00500 .00500	mg/L mg/L mg/L mg/L	0.001 0.001 0.001 0.001	$5.00 \\ 5.00 \\ 5.00 \\ 5.00 \\ 5.00$
Ethyl methan	nesulfonate	<0	.00500	mg/L	0.001 continued	5.00

¹received out of holding time

Report Date: August 20, 2003	Work Order: 3081414	Page Number: 6 of 33
CH 2100	Champion	Hobbs

sample 15306 continued ...

		\mathbf{RL}			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Phenol		< 0.00500	mg/L	0.001	5.00
Aniline		< 0.00500	mg/L	0.001	5.00
bis(2-chloroethyl)ether		< 0.00500	mg/L	0.001	5.00
2-Chlorophenol		< 0.00500	mg/L	0.001	5.00
1,3-Dichlorobenzene (meta)		< 0.00500	mg/L	0.001	5.00
1.4-Dichlorobenzene (para)		< 0.00500	mg/L	0.001	5.00
Benzyl alcohol		< 0.00500	mg/L	0.001	5.00
1.2-Dichlorobenzene (ortho)		< 0.00500	mg/L	0.001	5.00
2-Methylphenol		< 0.00500	mg/L	0.001	5.00
bis(2-chloroisopropyl)ether		< 0.00500	mg/L	0.001	5.00
4-Methylphenol / 3-Methylphenol		<0.00500	mg/L	0.001	5.00
n-Nitrosodi-n-propylamine		<0.00500	mg/L	0.001	5.00
Hexachloroethane		<0.00000	mg/L	0.001	5.00
Acetophenone		<0.00000	mg/L	0.001	5.00
Nitrobenzene		<0.00000	mg/L	0.001	5.00
n-Nitrosopiperidine		<0.00500	mg/L	0.001	5.00
Isophorone		<0.00500	mg/L	0.001	5.00
2-Nitrophenol		<0.00500	mg/L	0.001	5.00
2 4-Dimethylphenol		<0.00500	mg/L	0.001	5.00
bis(2-chloroethoxy)methane			mg/L	0.001	5.00
2 4-Dichlorophenol		<0.00500	$m_{\rm g}/L$	0.001	5.00
1.2.4-Trichlorobenzene		<0.00500	mg/L	0.001	5.00
Benzoic acid			mg/L	0.001	20.0
Naphthalene		<0.0200	mg/L	0.001	5.00
a a-Dimethylphenethylamine		<0.00500	mg/L	0.001	5.00
4-Chloroaniline			mg/L	0.001	5.00
2.6-Dichlorophenol		< 0.00500	mg/L	0.001	5.00
Hexachlorobutadiene		<0.00500	mg/L	0.001	5.00
n-Nitroso-di-n-butylamine		<0.00500	mg/L	0.001	5.00
4-Chloro-3-methylphenol		<0.00500	mg/L	0.001	5.00
2-Methylnaphthalene		<0.00500	mg/L	0.001	5.00
1-Methylnaphthalene		<0.00500	mg/L	0.001	5.00
1.2.4 5-Tetrachlorobenzene		<0.00500	mg/L	0.001	5.00
Hexachlorocyclopentadiene		<0.00500	mg/L	0.001	5.00
2.4.6-Trichlorophenol		<0.00500	mg/L	0.001	5.00
2.4.5-Trichlorophenol		<0.00500	mg/L	0.001	5.00
2-Chloronaphthalene		<0.00500	mg/L	0.001	5.00
1-Chloronaphthalene			mg/L	0.001	5.00
2-Nitroaniline			m_{g}/L	0.001	5.00
Dimethylphthalate		<0.00500	mg/L	0.001	5.00
Acepaphthylene		<0.00500	mg/L	0.001	5.00
2.6-Dipitrotoluone		<0.00500	mg/L	0.001	5.00
3-Nitroaniline		<0.00500	mg/L	0.001	5.00
Acepaphthono		<0.00500	mg/L	0.001	5.00
2 4-Dipitrophonol			mg/L	0.001	20.0
Dibongofuron		<0.0200	mg/L mg/I	0.001	5.00
Pentachlorobenzene		<0.00000 <0.00500	mg/L	0.001	5.00
4-Nitronhanol		<0.00000 <0.00500	mg/L	0.001	5.00 5.00
2 4 Dinitrotoluene		<0.00000 <0.00500	mg/L	0.001	5.00
1-Nanhthylamine		<0.00000 <0.00500	mg/L	0.001	5.00 5.00
2 3 4 6-Tetrachlorophenol		<0.00000 <0.00500	mg/L	0.001	5.00
		<u>_0.00000</u>	<u> </u>	0.001	0.00

Report Date: August 20, 2003	Work Order: 3081414	Page Number: 7 of 33
CH 2100	Champion	Hobbs

sample 15306 continued ...

				\mathbf{RL}			
Parameter		\mathbf{Fl}	ag	\mathbf{Result}	Units	Dilution	RL
2-Naphthylamine		·		< 0.00500	mg/L	0.001	5.00
Fluorene				< 0.00500	mg/L	0.001	5.00
4-Chlorophenyl-phenyl	lether			< 0.00500	mg/L	0.001	5.00
Diethylphthalate				< 0.00500	mg/L	0.001	5.00
4-Nitroaniline				< 0.00500	mg/L	0.001	5.00
Diphenylhydrazine				< 0.00500	mg/L	0.001	5.00
4,6-Dinitro-2-methylph	henol			< 0.00500	mg/L	0.001	5.00
Diphenvlamine				< 0.00500	mg/L	0.001	5.00
4-Bromophenyl-phenyl	lether			< 0.00500	mg/L	0.001	5.00
Phenacetin				< 0.00500	mg/L	0.001	5.00
Hexachlorobenzene				< 0.00500	mg/L	0.001	5.00
4-Aminobiphenvl				< 0.00500	mg/L	0.001	5.00
Pentachlorophenol				< 0.00500	mg/L	0.001	5.00
Anthracene				< 0.00500	mg/L	0.001	5.00
Pentachloronitrobenze	ne			< 0.00500	mg/L	0.001	5.00
Pronamide				< 0.00500	8/ mg/L	0.001	5.00
Phenanthrene				< 0.00500	8/ – mg/L	0.001	5.00
Di-n-butylphthalate				< 0.00500	8/ – mg/L	0.001	5.00
Fluoranthene				< 0.00500	mg/L	0.001	5.00
Benzidine				< 0.0150	mg/L	0.001	15.0
Pyrene				<0.00500	mg/L	0.001	5.00
p-Dimethylaminoazobe	enzene			< 0.00500	mg/L	0.001	5.00
Butylbenzylphthalate				< 0.00500	mg/L	0.001	5.00
Benzo(a)anthracene				< 0.00500	mg/L	0.001	5.00
3.3-Dichlorobenzidine				< 0.00500	mg/L	0.001	5.00
Chrysene				< 0.00500	mg/L	0.001	5.00
his(2-ethylheyyl)phtha	late			< 0.0100	mg/L	0.001	10.0
Di-n-octylphthalate	late			<0.00500	mg/L	0.001	5.00
Benzo(b)fluoranthene				<0.00500	mg/L	0.001	5.00
Benzo(k)fluoranthene				<0.00500	mg/L	0.001	5.00
7.12-Dimethylbenz(a)a	nthracana				mg/L	0.001	5.00
Benzo(a) purono	intin acene				mg/L	0.001	5.00
3-Methylcholanthrone					mg/L	0.001	5.00
Dibongo(a j)agridino					mg/L	0.001	5.00
Indono(1.2.3 ad)pyrono	`				mg/L	0.001	5.00
Dibongo(a, b)onthrocon				<0.00500	mg/L	0.001	5.00
Bongo(g h i) norman	le				mg/L	0.001	5.00
benzo(g,n,i)peryiene				<0.00500	Ing/L	0.001	
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
2-Fluorophenol		0.0225	mg/L	0.001	80.0	28	0 - 94
Phenol-d5		0.0135	m mg/L	0.001	80.0	17	0 - 67
Nitrobenzene-d5		0.0596	m mg/L	0.001	80.0	74	6.75 - 138.7
2-Fluorobiphenyl		0.0650	$\mathrm{mg/L}$	0.001	80.0	81	14.7 - 135
2,4,6-Tribromophenol		0.0586	mg/L	0.001	80.0	73	44.92 - 152
Terphenyl-d14		0.0572	mg/L	0.001	80.0	72	44.49 - 162.36

Sample: 15306 - Excavated Well

Analysis: TDS

Report Date CH 2100	e: August 20, 2003	•	Work Order: 3081414 Champion			Page Number: 8 of 33 Hobbs		
QC Batch:	3734		Date Analyzed:	2003-08-15		Analyzed 1	By: JSW	
Prep Batch:	3360		Date Prepared:	2003-08-14		Prepared I	By: JSW	
			\mathbf{RL}					
Parameter		Flag	\mathbf{Result}	Un	its	Dilution	RL	
Total Dissol	ved Solids		583.0	mg	/L	1	10.00	
Sample: 15	5306 - Excavated	Well						
Analysis:	TPH DRO		Analytical Meth	od: Mod. 8015	5B	Prep Meth	od: N/A	
QC Batch:	3747		Date Analyzed:	2003-08-14	1	Analyzed 1	By: BP	
Prep Batch:	3372		Date Prepared:	2003-08-14	1	Prepared I	By: DS	
			\mathbf{RL}					
Parameter	Flag		Result	Units		Dilution	RL	
DRO			<5.00	mg/L		0.1	50.0	
					Spike	Percent	Recovery	
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits	
n-Triacontan	le	7.72	mg/L	0.1	150	51	44 - 123	
Sample: 15	306 - Excavated	Well						
Analysis:	TPH GRO		Analytical Metho	d: S 8015B		Prep Method:	S 5030B	
QC Batch:	3765		Date Analyzed:	2003-08-15		Analyzed By:	\mathbf{MT}	
Prep Batch:	3388		Date Prepared:	2003-08-15		Prepared By:	MT	
			RL					
Parameter	Flag		Besult	Units		Dilution	RL	

Parameter F	`lag		Result		Units	Dil	ution	\mathbf{RL}
GRO			< 0.100		mg/L		1	0.100
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)			0.103	mg/L	1	0.100	103	73 - 120
4-Bromofluorobenzene (4-B)	FB)	2	0.0688	mg/L	1	0.100	69	78 - 120

Sample: 15306 - Excavated Well

۲
J
t T
\mathbf{RL}
1.00
1.00
1.00
1.00
5.00

²Low BFB surrogate recovery due to prep. TFT surrogate recovery shows the method to be in control.

Report Date: August 20, 2003	Work Order: 3081414	Page Number: 9 of 33
CH 2100	Champion	Hobbs

sample 15306 continued ...

		\mathbf{RL}			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloroethane		<1.00	$\mu g/L$	1	1.00
Trichlorofluoromethane		<1.00	$\mu g/L$	1	1.00
Acetone		<10.0	$\mu g/L$	1	10.0
Iodomethane (methyl iodide)		6.88	$\mu g/L$	1	5.00
Carbon Disulfide		<1.00	$\mu g/L$	1	1.00
Acrylonitrile		<1.00	$\mu g/L$	1	1.00
2-Butanone (MEK)		< 5.00	$\mu g/L$	1	5.00
4-Methyl-2-pentanone (MIBK)		< 5.00	$\mu g/L$	1	5.00
2-Hexanone		< 5.00	$\mu g/L$	1	5.00
trans 1.4-Dichloro-2-butene		<10.0	$\mu g/L$	1	10.0
1.1-Dichloroethene		<1.00	$\mu g/L$	1	1.00
Methylene chloride		< 5.00	μg/L	1	5.00
MTBE		<1.00	μg/L	1	1.00
trans-1.2-Dichloroethene		<1.00	$\mu g/L$	1	1.00
1.1-Dichloroethane		<1.00	μg/L	1	1.00
cis-1.2-Dichloroethene		<1.00	μg/L	1	1.00
2 2-Dichloropropane		<1.00	μg/L	- 1	1.00
1.2-Dichloroethane (EDC)		<1.00	$\mu g/L$	1	1.00
Chloroform		<1.00	μσ/L	- 1	1.00
1 1.1-Trichloroethane		<1.00	μg/L	- 1	1.00
1.1-Dichloropropene		<1.00	μg/L	1	1.00
Benzene		<1.00	μg/L	1	1.00
Carbon Tetrachloride		<1.00	μg/L	- 1	1.00
1.2-Dichloropropane		<1.00	μg/L	1	1.00
Trichloroethene (TCE)		<1.00	μg/L	- 1	1.00
Dibromomethane (methylene bromide)		<1.00	μg/L	1	1.00
Bromodichloromethane		<1.00	μg/L	1	1.00
2-Chloroethyl vinyl ether		< 5.00	μg/L	1	5.00
cis-1.3-Dichloropropene		<1.00	$\mu g/L$	1	1.00
trans-1,3-Dichloropropene		<1.00	$\mu g/L$	1	1.00
Toluene		<1.00	$\mu g/L$	1	1.00
1,1,2-Trichloroethane		<1.00	$\mu g/L$	1	1.00
1,3-Dichloropropane		<1.00	$\mu g/L$	1	1.00
Dibromochloromethane		<1.00	$\mu g/L$	1	1.00
1,2-Dibromoethane (EDB)		<1.00	$\mu g/L$	1	1.00
Tetrachloroethene (PCE)		<1.00	$\mu g/L$	1	1.00
Chlorobenzene		<1.00	$\mu g/L$	1	1.00
1,1,1,2-Tetrachloroethane		<1.00	$\mu g/L$	1	1.00
Ethylbenzene		< 1.00	$\mu g/L$	1	1.00
m,p-Xylene		<1.00	$\mu g/L$	1	1.00
Bromoform		<1.00	$\mu g/L$	1	1.00
Styrene		<1.00	$\mu g/L$	1	1.00
o-Xylene		<1.00	$\mu g/L$	1	1.00
1,1,2,2-Tetrachloroethane		<1.00	$\mu g/L$	1	1.00
2-Chlorotoluene		<1.00	$\mu g/L$	1	1.00
1,2,3-Trichloropropane		<1.00	$\mu g/L$	1	1.00
Isopropylbenzene		<1.00	$\mu g/L$	1	1.00
Bromobenzene		<1.00	$\mu g/L$	1	1.00
n-Propylbenzene		<1.00	$\mu { m g}/{ m L}$	1	1.00
1,3,5-Trimethylbenzene		<1.00	$\mu g/L$	1	1.00
tert-Butylbenzene		<1.00	$\mu { m g}/{ m L}$	1	1.00

continued ...

Į.

Report Date: August 20, 2003	Work Order: 3081414	Page Number: 10 of 33
CH 2100	Champion	Hobbs

sample 15306 continued ...

				\mathbf{RL}			
Parameter		\mathbf{Flag}	Re	esult	\mathbf{Units}	Dilution	\mathbf{RL}
1,2,4-Trimethylbenzene			<	1.00	$\mu g/L$	1	1.00
1,4-Dichlorobenzene (para)			<	1.00	$\mu { m g}/{ m L}$	1	1.00
sec-Butylbenzene		•	<	1.00	$\mu { m g/L}$	1	1.00
1,3-Dichlorobenzene (meta)			<	1.00	$\mu { m g/L}$	1	1.00
p-Isopropyltoluene			<	1.00	$\mu { m g/L}$	1	1.00
4-Chlorotoluene			<	1.00	$\mu { m g/L}$	1	1.00
1,2-Dichlorobenzene (ortho)			<	1.00	$\mu { m g}/{ m L}$	1	1.00
n-Butylbenzene			<	1.00	$\mu { m g}/{ m L}$	1	1.00
1,2-Dibromo-3-chloropropane			<	5.00	$\mu { m g/L}$	1	5.00
1,2,3-Trichlorobenzene			<	5.00	$\mu { m g/L}$	1	5.00
1,2,4-Trichlorobenzene			<	5.00	$\mu { m g/L}$	1	5.00
Naphthalene			<	5.00	$\mu { m g/L}$	1	5.00
Hexachlorobutadiene			<	5.00	$\mu g/L$	1	5.00
					Spike	Percent	Recovery
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane		48.6	$\mu g/L$	1	50.0	97	70 - 130
Toluene-d8		48.3	$\mu { m g}/{ m L}$	1	50.0	97	70 - 130
4-Bromofluorobenzene (4-BFB)		48.8	$\mu g/L$	1	50.0	98	70 - 130

Sample: 15306 - Excavated Well

Analysis:	Zn, Dissolved		Analytical Method:	S 6010B	Prep Method:	S 3005A
QC Batch:	3849		Date Analyzed:	2003-08-19	Analyzed By:	\mathbf{RR}
Prep Batch:	3385		Date Prepared:	2003-08-15	Prepared By:	JH
			RL			
Parameter		Flag	\mathbf{Result}	Units	Dilution	RL
Dissolved Zin	с	····	< 0.0250	mg/L	1	0.0250

Method Blank (1) QC Batch: 3734

Parameter	\mathbf{Flag}	\mathbf{Result}	Units	\mathbf{RL}
Total Dissolved Solids		<10.00	mg/L	10

Method Blank (1) QC Batch: 3747

Parameter	Flag	Result	Units	RL
DRO		<5.00	mg/L	50

Report Date: August 20, 2003 CH 2100			Work Order: 3081414 Champion				Page Number: 11 of 33 Hobbs	
						Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilut	ion A	mount	Recovery	Limits
n-Triacontane		8.27	mg/L	0.1	·	150	55	44 - 123
Method Blank (1)	QC B	atch: 3756						
Parameter		Flag		\mathbf{Result}		Un	its	\mathbf{RL}
Nitrate-N				< 0.200		mg	/L	0.2
Method Blank (1)	QC B	atch: 3756						
Parameter		Flag		Result		Uni	ts	\mathbf{RL}
Fluoride				< 0.200		mg,	/L	0.2
Sulfate				< 0.500		mg,	/L	0.5
Method Blank (1) Parameter Nitrite-N	QC Ba	atch: 3757 Flag		Result <0.0100		Uni mg/	ts L	RL 0.01
Method Blank (1)	QC Ba	atch: 3765						
Parameter		Flag		Result		Uni	ts	RL
GRO		0		0.216		mg/	′L	0.1
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TF	Г)		0.101	m mg/L	1	0.100	101	73 - 120
4-Bromofluorobenzen	e (4-BFB)	3	0.0658	mg/L	1	0.100	66	78 - 120
Method Blank (1)	QC Ba	atch: 3782						
Parameter			Fl	ag	Result		Units	\mathbf{RL}
Bromochloromethane					<1.00		$\mu g/L$	1
Dichlorodifluorometh	ane				<1.00		$\mu { m g/L}$	1
Chloromethane (meth	yl chloride)			<1.00		$\mu g/L$	1
Vinyl Chloride	11	`			<1.00		$\mu g/L$	1
Bromomethane (meth	iyi bromide)			< 5.00		$\mu g/L$	5
Trichlorofluorometha	ne				<1.00 <1.00		$\mu g/L$	1
rionor on uor on containan					<1.00		<i>гъ</i> ,	-

³Low BFB surrogate recovery due to prep. TFT surrogate recovery shows the method to be in control.

continued ...

I

i

Report Date: August 20, 2003 CH 2100 Work Order: 3081414 Champion

Page Number: 12 of 33 Hobbs

 $method \ blank \ continued \ \ldots$

ļ

Parameter	Flag	Result	Units	RL
Acetone		<10.0	$\mu g/L$	10
Iodomethane (methyl iodide)		$<\!5.00$	$\mu { m g/L}$	5
Carbon Disulfide		<1.00	$\mu g/L$	1
Acrylonitrile		<1.00	$\mu \mathrm{g/L}$	1
2-Butanone (MEK)		$<\!5.00$	$\mu g/L$	5
4-Methyl-2-pentanone (MIBK)		$<\!5.00$	$\mu g/L$	5
2-Hexanone		$<\!5.00$	$\mu g/L$	5
trans 1,4-Dichloro-2-butene		<10.0	$\mu g/L$	10
1,1-Dichloroethene		<1.00	$\mu g/L$	1
Methylene chloride		< 5.00	$\mu g/L$	5
MTBE		<1.00	$\mu g/L$	1
trans-1.2-Dichloroethene		<1.00	$\mu g/L$	1
1.1-Dichloroethane		<1.00	μg/L	1
cis-1.2-Dichloroethene		<1.00	μg/L	- 1
2.2-Dichloropropane		<1.00	119/L	1
1.2-Dichloroethane (EDC)		<1.00	μσ/L	1
Chloroform		<1.00	$\mu_{\rm S}/\Delta$	1
1 1 1-Trichloroethane		<1.00	μσ/Ι.	1
1 1-Dichloropropene		<1.00	$\mu_{\rm B}/L$	1
Benzeno		<1.00	$\mu_{\rm g}/{\rm L}$	1
Carbon Tetrachloride		<1.00	$\mu g/L$	1
1 2-Dichloropropano		<1.00	$\mu g/L$	1
Trichleresthene (TCF)		<1.00	$\mu g/L$	1
Dibromomothana (methylana bromida)		<1.00	$\mu g/L$	1
Bromodichloromothano		<1.00	$\mu g/L$	1
2 Chloroothyl yinyl othor		< 5.00	$\mu g/L$	5
z-Omoroethyl vinyl ether		< 1.00	$\mu g/L$	0 1
trong 1.2 Dichloropropene		<1.00	$\mu g/L$	1
Toluone		<1.00	$\mu g/L$	1
1 1 9 Thick langethand		<1.00	$\mu g/L$	1
1,1,2-Inchloropenane		<1.00	$\mu g/L$	1
Dibrory schlarger sthere		<1.00	$\mu g/L$	1
1.0 Dilamanthane (EDD)		<1.00	$\mu g/L$	1
Tetra ablance (EDB)		<1.00	$\mu g/L$	1
Chland and Chland		<1.00	$\mu g/L$	1
		<1.00	$\mu g/L$	1
1,1,1,2- Ietrachloroethane		<1.00	$\mu g/L$	1
Ethylbenzene		<1.00	$\mu g/L$	1
m,p-Aylene		<1.00	$\mu g/L$	1
Bromotorm		<1.00	$\mu g/L$	1
Styrene		<1.00	$\mu g/L$	1
o-Xylene		<1.00	$\mu g/L$	1
1,1,2,2-Tetrachloroethane		<1.00	$\mu g/L$	1
2-Chlorotoluene		<1.00	$\mu g/L$	1
1,2,3-Trichloropropane		<1.00	$\mu g/L$	1
lsopropylbenzene		<1.00	$\mu g/L$	1
Bromobenzene		<1.00	$\mu g/L$	1
n-Propylbenzene		<1.00	$\mu g/L$	1
1,3,5-Trimethylbenzene		<1.00	$\mu g/L$	1
tert-Butylbenzene		<1.00	$\mu g/L$	1
1,2,4-Trimethylbenzene		<1.00	$\mu { m g} / { m L}$	1
1,4-Dichlorobenzene (para)		<1.00	$\mu { m g/L}$	1
sec-Butylbenzene		<1.00	$\mu { m g/L}$	1

Report Date: August 20, 2003	Work Order: 3081414	Page Number: 13 of 33
CH 2100	Champion	Hobbs

 $method \ blank \ continued \ \ldots$

Parameter	Flag	\mathbf{Result}	Units	\mathbf{RL}
1,3-Dichlorobenzene (meta)		<1.00	μ g/L	1
p-Isopropyltoluene		<1.00	$\mu { m g/L}$	1
4-Chlorotoluene		<1.00	$\mu { m g}/{ m L}$	1
1,2-Dichlorobenzene (ortho)		<1.00	$\mu { m g}/{ m L}$	1
n-Butylbenzene		<1.00	$\mu { m g} / { m L}$	1
1,2-Dibromo-3-chloropropane		$<\!5.00$	$\mu { m g}/{ m L}$	5
1,2,3-Trichlorobenzene		$<\!5.00$	$\mu { m g}/{ m L}$	5
1,2,4-Trichlorobenzene		$<\!5.00$	$\mu g/L$	5
Naphthalene		$<\!5.00$	$\mu { m g}/{ m L}$	5
Hexachlorobutadiene		<5.00	$\mu { m g}/{ m L}$	5
		S	pike Percent	Recovery

					opino	I CI COING	100001019
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane		46.5	$\mu { m g/L}$	1	50.0	93	70 - 130
Toluene-d8		48.5	$\mu { m g/L}$	1	50.0	97	70 - 130
4-Bromofluorobenzene (4-BFB)		49.9	$\mu { m g/L}$	1	50.0	100	70 - 130

Method Blank (1) QC Batch: 3806

Parameter	Flag	Result	Units	\mathbf{RL}
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1
Carbonate Alkalinity		<1.00	mg/L as CaCo3	1
Bicarbonate Alkalinity		<4.00	mg/L as $CaCo3$	4
Total Alkalinity		<4.00	mg/L as CaCo3	4

Method Blank (1) QC Batch: 3813

Parameter	Flag	Result	Units	\mathbf{RL}
Pyridine		< 0.00500	mg/L	5
n-Nitrosodimethylamine		< 0.00500	mg/L	5
2-Picoline		< 0.00500	mg/L	5
Methyl methanesulfonate		< 0.00500	mg/L	5
Ethyl methanesulfonate		< 0.00500	mg/L	5
Phenol		< 0.00500	mg/L	5
Aniline		< 0.00500	mg/L	5
bis(2-chloroethyl)ether		< 0.00500	mg/L	5
2-Chlorophenol		< 0.00500	mg/L	5
1,3-Dichlorobenzene (meta)		< 0.00500	mg/L	5
1,4-Dichlorobenzene (para)		< 0.00500	mg/L	5
Benzyl alcohol		< 0.00500	mg/L	5
1,2-Dichlorobenzene (ortho)		< 0.00500	mg/L	5
2-Methylphenol		< 0.00500	mg/L	5
bis(2-chloroisopropyl)ether		< 0.00500	mg/L	5
4-Methylphenol / 3-Methylphenol		< 0.00500	mg/L	5
n-Nitrosodi-n-propylamine		< 0.00500	mg/L	5
Hexachloroethane		< 0.00500	mg/L	5

Report Date: August 20, 2003 CH 2100 Work Order: 3081414 Champion Page Number: 14 of 33 Hobbs

method blank continued ...

Parameter	\mathbf{F} lag	Result	Units	\mathbf{RL}
Acetophenone		< 0.00500	mg/L	5
Nitrobenzene		< 0.00500	mg/L	5
n-Nitrosopiperidine		< 0.00500	mg/L	5
Isophorone		< 0.00500	mg/L	5
2-Nitrophenol		< 0.00500	mg/L	5
2,4-Dimethylphenol		< 0.00500	8/ mg/L	5
bis(2-chloroethoxy)methane		< 0.00500	8/ = mg/L	5
2,4-Dichlorophenol		< 0.00500	mg/L	5
1,2,4-Trichlorobenzene		< 0.00500	mg/L	5
Benzoic acid		< 0.0200	8/ == mg/L	20
Naphthalene		< 0.00500	mg/L	5
a.a-Dimethylphenethylamine		< 0.00500	mg/L	5
4-Chloroaniline			mg/L	5
2.6-Dichlorophenol			mg/L	5
Hexachlorobutadiene			mg/L	5
n-Nitroso-di-n-butylamine			mg/L	5
4-Chloro-3-methylphenol			mg/L	5
2-Methylnaphthalene			mg/L	5
1-Methylnaphthalene			mg/L	5
1 2 4 5-Tetrachlorobenzene			mg/L	5
Hexachlorocyclopentadiene			mg/L	5
2.4.6-Trichlorophenol			mg/L	5
2.4.5-Trichlorophenol			mg/L	5
2-Chloronaphthalene		<0.00500	mg/L	5
1-Chloronaphthalene			mg/L	5
2-Nitroaniline			mg/L	5
Dimethylphthalate			mg/L	5
Acenaphthylene		<0.00500	mg/L	5
2.6-Dinitrotoluene		<0.00500	mg/L	5
3-Nitroaniline		<0.00500	mg/L	5
Acenaphthene		<0.00500	mg/L	5
2.4-Dinitrophenol		<0.0200	mg/L	20
Dibenzofuran		<0.00500	mg/L	5
Pentachlorobenzene		<0.00500	mg/L	5
4-Nitrophenol		<0.00500	mg/L	5
2.4-Dinitrotoluene			mg/L	5
1-Naphthylamine		<0.00000	mg/L	5
2 3 4 6-Tetrachlorophenol			mg/L mg/L	5
2-Naphthylamine			mg/L	5
Fluorene			mg/L mg/I	5
4-Chlorophenyl-phenylether		<0.00000	mg/L	5
Diethylphthalate			mg/L	5
4-Nitroaniline			mg/L	5
Diphenylhydrazino			mg/L	5
4.6 Dinitro 2 mothylphonol		<0.00500	mg/L	5
Diphonylamino			mg/L	5
4-Bromonhenyl-phenylether			mg/L mg/I	5
Phenacetin			mg/L	ม ร
Hexachlorobenzene		<0.00000 <0.00500	mg/L	ບ ຮ
4-Aminohiphenyl		<0.00000 <0.00500	mg/L	ม เ
Pentachloronhenol		<0.00000 <0.00500	mg/L	ม เ
Anthracana		<0.00000 <0.00500	mg/L	ບ ະ
			<u>ше/</u> ц	. <u> </u>

Report Date: August 20, 2003 CH 2100 Work Order: 3081414 Champion

method blank continued ...

Parameter			Flag	F	Result	Units	RL
Pentachloronitrobenzen	ne			<0.0	00500	mg/L	5
Pronamide				<0.0	00500	mg/L	5
Phenanthrene				<0.0	00500	mg/L	5
Di-n-butylphthalate				<0.0	00500	mg/L	5
Fluoranthene				<0.0	00500	mg/L	5
Benzidine				<0	.0150	mg/L	15
Pyrene				<0.0	00500	mg/L	5
p-Dimethylaminoazobe	enzene			<0.0	00500	mg/L	5
Butylbenzylphthalate				<0.0	00500	mg/L	5
Benzo(a)anthracene				<0.0	00500	mg/L	5
3,3-Dichlorobenzidine				<0.0	00500	mg/L	5
Chrysene				<0.0	00500	mg/L	5
bis(2-ethylhexyl)phtha	late			<0	.0100	mg/L	10
Di-n-octylphthalate				<0.0	00500	mg/L	5
Benzo(b)fluoranthene				<0.0	00500	mg/L	5
Benzo(k)fluoranthene				<0.0	00500	mg/L	5
7,12-Dimethylbenz(a)a	nthracene			<0.0	00500	mg/L	5
Benzo(a)pyrene				<0.0	00500	mg/L	5
3-Methylcholanthrene				<0.0	00500	mg/L	5
Dibenzo(a,j)acridine				<0.0	00500	mg/L	5
Indeno(1,2,3-cd)pyrene				<0.0	0500	mg/L	5
Dibenzo(a,h)anthracen	e			<0.0	0500	mg/L	5
Benzo(g,h,i)perylene				<0.0	0500	$\mathrm{mg/L}$	5
					Snike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
2-Fluorophenol	0	0.0453	mg/L	0.001	80.0	57	0 - 94.7
Phenol-d5		0.0269	mg/L	0.001	80.0	34	0 - 67.64
Nitrobenzene-d5		0.0670	mg/L	0.001	80.0	84	6.75 - 138.7
2-Fluorobiphenyl		0.0719	mg/L	0.001	80.0	90	14.71 - 134.97
2,4,6-Tribromophenol		0.0594	mg/L	0.001	80.0	74	44.92 - 152.29
Terphenyl-d14		0.0716	mg/L	0.001	80.0	90	44.49 - 162.36

Method Blank (1) QC Batch: 3823

Parameter	\mathbf{Flag}	\mathbf{Result}	Units	RL
Chloride		< 0.500	mg/L	0.5

Method Blank (1) QC Batch: 3849

Parameter	Flag	Result	Units	RL
Dissolved Silver		<0.0130	mg/L	0.013

Report Date: August CH 2100	20, 2003	Work Order: 3081414 Champion	Page N	umber: 16 of 33 Hobbs
Parameter	Flag	Result	Units	RL
Dissolved Arsenic	_	<0.0100	mg/L	0.01
Method Blank (1)	QC Batch: 3849			
Parameter	Flag	Result	Units	RL
Dissolved Barlum	····	<0.0100	mg/L	0.01
Method Blank (1)	QC Batch: 3849			
Parameter	Flag	Result	Units	RL
Dissolved Cadmium		<0.00500	mg/L	0.005
Method Blank (1)	QC Batch: 3849			
Parameter Dissolved Chromium	Flag	Result	Units	RL
Method Blank (1)	QC Batch: 3849		<u> </u>	
Parameter	Flag	Result	Units	RL
Method Blank (1)	QC Batch: 3849	<u><u> </u></u>		0.0120
Parameter Dissolved Iron	Flag	Result	Units mg/L	RL 0.05
Method Blank (1)	QC Batch: 3849			
Parameter	Flag	Result	Units	RL
Dissolved Manganese		<0.0200	mg/L	0.025

Method Blank (1) QC Batch: 3849

Report Date: August 2 CH 2100	20, 2003	Work Order: Champi	3081414 on		Page Numb	er: 17 of 33 Hobbs
Parameter	Flag	Resu	ılt	Units		\mathbf{RL}
Dissolved Lead		<0.01	00	m mg/L		0.01
Method Blank (1)	QC Batch: 3849					
Parameter	Flag	Re	sult	Units		RL
Dissolved Selenium		<0.0)100	mg/L		0.01
Method Blank (1)	QC Batch: 3849					
Parameter	Flag	Resul	t	Units		RL
Dissolved Zinc		< 0.025	0	mg/L		0.025
Method Blank (1)	QC Batch: 3857					
Parameter	Flag	Re	sult	Units		RL
Dissolved Mercury		<0.000	200	mg/L		0.0002
Method Blank (1)	QC Batch: 3866					
Parameter	Flag	R	esult	Units		RL
Dissolved Calcium		<	0.500	mg/L		0.5
Dissolved Potassium		<	J.500	mg/L		0.5
Dissolved Sodium			0.500	mg/L mg/L		0.5
Duplicate (1) QC	C Batch: 3734					
Param	Duplicate Result	$\begin{array}{c} \mathbf{Sample} \\ \mathbf{Result} \end{array}$	Units	Dilution	RPD	RPD Limit
Total Dissolved Solids	2998	2810	mg/L	2	6	9.41
Duplicate (1) QC	C Batch: 3806					

	Duplicate	Sample				\mathbf{RPD}
Param	Result	\mathbf{Result}	Units	Dilution	RPD	Limit
Hydroxide Alkalinity	<1.00	<1.00	mg/L as CaCo3	1	0	5.81
Carbonate Alkalinity	<1.00	<1.00	mg/L as CaCo3	1	0	5.81
Bicarbonate Alkalinity	104	108	mg/L as CaCo3	1	4	5.81

Report Date: CH 2100	August 20,	2003		Wor	k Order: 30 Champior	081414 1	•		Page Numbe	r: 18 of 33 Hobbs
									duplicate con	tinued
		D	uplicate	Samp	ole				1	RPD
Param			Result	Resu	lt	Units		Dilution	RPD	Limit
Total Alkalinit	у		104	108	mę	g/L as CaCo	53	1	4	5.81
Duplicate (1)	QC B	atch: 3830								
		Duplicate		Sample						RPD
Param		Result		Result	Uni	ts	Dilutio	n	RPD	Limit
pH	4	3.70		3.70	S. U	l	1		0	0
Param DRO	LCS Result 22.5	LCSD Result 27.0	Units mg/L	Dil. 0.1	Spike Amount 250	Matrix Result <0.230	Rec. 90	<u>RPD</u> 18	Rec. Limit 86 - 120	RPD Limit 20
Percent recover	v is based o	on the spike	result. R	PD is based	l on the spi	ke and spik	e duplic	ate result.		
	<i>J</i>				1			T 00	T COD	Ð
Cumorata		LCS	LCSD	Unite	. Dil	Spik	e	LCS	LCSD	Kec.
n Triacontana		Result 9 29			<u>01</u>	Amou 150		<u> </u>	<u> </u>	$\frac{1}{44}$ 122
Laboratory (Param	Control Sp LCS Result	bike (LCS-1 LCSD Result	L) Q	C Batch: 3' Dil.	756 Spike Amount	Matrix Result	Rec.	RPD	Rec.	RPD Limit
	2.30	2.33	mg/L	1	2.30	<0.120			90 - 110	20
Percent recover	y is based of	on the spike oike (LCS-1	result. R l) Q	PD is based C Batch: 3'	i on the spi 756	ke and spike	e duplica	ate result.		
_	LCS	LCSD			Spike	Matrix	~		Rec.	RPD
Param	Result	Result	Units	Dil.	Amount	Result	Rec.	RPD	Limit	Limit
Fluoride	2.50	2.38	mg/L	1	2.50	< 0.0153	100	5	90 - 110	20
Sullate	12.5	12.2	mg/L	<u>I</u>	12.5	<0.171	100	2	90 - 110	20
Laboratory (y is based of Control Sp	on the spike bike (LCS-1	result. R.	PD is based C Batch: 37	i on the spi 757	ke and spike	e duplica	ate result.		
	LCS	LCSD			Spike	Matrix			Rec.	RPD
Param	\mathbf{Result}	Result	Units	Dil.	Amount	Result	Rec	. RPD	Limit	Limit
Nitrite-N	0.0830	0.0813	mg/L	1	0.0800	< 0.000820	104	2	95 - 106	20

Laboratory Control Spike (LCS-1) QC Batch: 3765

⁴received out of holding time

Report Date: August 20, 2003 CH 2100				Work Order: 3081414 Champion							Page Number: 19 of 33 Hobbs		
Param	$\begin{array}{c} { m LCS} \\ { m Result} \end{array}$	LCSD Result	Unit	s E	Dil.	Spike Amount	Matr Resu	'ix lt	Rec.	RPD	Rec. Limit	RPD Limit	
GRO	0.933	0.950	mg/l		1	1.00	< 0.02	261	93	2	78.1 - 124	20	
Percent recov	very is based	on the spi	ke result	t. RPD	is base	d on the	spike and	l spike	duplicat	e result.			
]	LCS	LCSI	D			Spike	LCS	LCSD	Rec.	
Surrogate			R	esult	Resu	lt Uni	ts Di	il. 4	Amount	Rec.	Rec.	Limit	
Trifluorotolu	ene (TFT)		0	0.104	0.10	6 mg	/L 1		0.100	104	106	73 - 120	
A-Bromofluo	robenzene (A.	RFR)	56 O	0711	0.070	15 mg	/T. 1		0 100	71	70	78 - 120	

0.0705

mg/L

1

0.100

71

70

78 - 120

Laboratory Control Spike (LCS-1) QC Batch: 3782

4-Bromofluorobenzene (4-BFB)

Param	$\begin{array}{c} \mathrm{LCS} \\ \mathrm{Result} \end{array}$	$\begin{array}{c} \mathrm{LCSD} \\ \mathrm{Result} \end{array}$	Units	Dil.	Spike Amount	Matrix Result	Rec.	RPD	Rec. Limit	RPD Limit
1,1-Dichloroethene	103	101	$\mu g/L$	1	100	< 0.136	103	2	70 - 130	20
Benzene	101	102	$\mu { m g}/{ m L}$	1	100	< 0.146	101	1	70 - 130	20
Trichloroethene (TCE)	105	108	$\mu \mathrm{g/L}$	1	100	<0.117	105	3	70 - 130	20
Toluene	100	101	$\mu g/L$	1	100	0.09	100	1	70 - 130	20
Chlorobenzene	100	102	$\mu { m g}/{ m L}$	1	100	< 0.0540	100	2	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

0.0711

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Dibromofluoromethane	48.9	47.9	$\mu g/L$	1	50.0	98	96	70 - 130
Toluene-d8	49.0	49.3	$\mu { m g/L}$	1	50.0	98	99	70 - 130
4-Bromofluorobenzene (4-BFB)	50.9	52.2	$\mu { m g/L}$	1	50.0	102	104	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch: 3813

	LCS	LCSD			Spike	Matrix			Rec.	RPD
Param	\mathbf{Result}	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Result}	Rec.	RPD	\mathbf{Limit}	Limit
Phenol	26.7	25.2	mg/L	1	80.0	< 0.490	33	6	1 - 56.82	20
2-Chlorophenol	53.1	52.0	mg/L	1	80.0	< 1.63	66	2	13.99 - 107.11	20
1,4-Dichlorobenzene (para)	57.6	57.6	mg/L	1	80.0	$<\!1.93$	72	0	9.09 - 113.45	20
n-Nitrosodi-n-propylamine	64.4	55.0	mg/L	1	80.0	$<\!2.26$	80	16	17.91 - 139.92	20
1,2,4-Trichlorobenzene	62.4	63.7	$\mathrm{mg/L}$	1	80.0	< 1.52	78	2	16.63 - 117.68	20
4-Chloro-3-methylphenol	50.8	43.9	m mg/L	1	80.0	< 1.60	64	14	22.33 - 107.93	20
Acenaphthene	73.0	71.6	m mg/L	1	80.0	$<\!\!1.58$	91	2	36.91 - 123.61	20
4-Nitrophenol	25.4	25.0	$\mathrm{mg/L}$	1	80.0	<3.83	32	2	0 - 69.1	20
2,4-Dinitrotoluene	74.4	74.1	$\mathrm{mg/L}$	1	80.0	$<\!\!2.09$	93	0	44.81 - 136.34	20
Pentachlorophenol	63.5	64.7	mg/L	1	80.0	< 3.04	79	2	28.5 - 125.7	20
Pyrene	82.0	80.8	mg/L	1	80.0	<1.81	102	1	42.61 - 159.68	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	\mathbf{Result}	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
2-Fluorophenol	48.2	45.7	mg/L	1	80.0	60	57	0 - 94.7
Phenol-d5	34.0	32.5	mg/L	1	80.0	42	41	0 - 67.6
Nitrobenzene-d5	74.2	76.2	mg/L	1	80.0	93	95	6.75 - 139

continued ...

⁵Low BFB surrogate recovery due to prep. TFT surrogate recovery shows the method to be in control. ⁶Low BFB surrogate recovery due to prep. TFT surrogate recovery shows the method to be in control.

CH 2100	ıst 20, 2003			Work (Page Number: 20 of 33 Hobbs					
control spikes contin	nued	T 00	T COD			a		T GG	•	005	
Surrogate		LCS Result	LCSD Besult	Uni	te Dil	Spike A mour	nt	LCS	L(F	CSD	Rec. Limit
2-Fluorobiphenvl		82.9	82.4	0m	$\frac{15}{L}$ 1	80.0		$\frac{1000}{104}$		$\frac{100}{103}$	14.7 - 135
2,4,6-Tribromophen	ol	76.9	77.6	8/ mg/	 ′L 1	80.0		96		97	44.9 - 152
Terphenyl-d14		85.5	84.8	mg/	′L 1	80.0		107]	106	44.5 - 162
Laboratory Con	trol Spike (LCS-1)	QC Ba	itch: 382	3						
	LCS L	CSD			Spike	Matrix				Rec.	RPD
Param H	Result Re	esult U	Jnits 1	Dil. A	Amount	Result	Rec.	RPI)	Limit	Limit
Chloride	12.4 1	2.5 n	ng/L	1	12.5	<1.49	99	1		90 - 110	20
Laboratory Cont	rol Spike (LCS-1)	QC Ba	tch: 384	9						
		1 000			~					р	חסק
	LCS	LCSD			Spike	Matrix				Rec.	πD
Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount	Matrix Result	Re	c. RI	PD	Limit	Limit
Param Dissolved Silver Percent recovery is 1	LCS Result 0.110 based on the	LCSD Result 0.111 spike resu	Units mg/L lt. RPD i	Dil. 1 s based o	Spike Amount 0.125 on the spike	Matrix Result <0.000779 and spike d	Re 88 uplica	c. RI 8 te result	PD 1	Rec. Limit 85 - 11	Limit 5 20
Param Dissolved Silver Percent recovery is I Laboratory Cont	LCS Result 0.110 based on the crol Spike (LCS	LCSD Result 0.111 spike resu LCS-1) LCSD	Units mg/L lt. RPD i QC Ba	Dil. 1 s based o .tch: 3849	Spike Amount 0.125 on the spike	Matrix Result <0.000779 and spike d Matrix	Re 88 uplica	c. RI 3 te result	PD 1	Rec. Limit 85 - 11: Rec.	Limit 5 20 RPD
Param Dissolved Silver Percent recovery is I Laboratory Cont Param	LCS Result 0.110 based on the crol Spike (LCS Result	LCSD Result 0.111 spike resu LCS-1) LCSD Result	Units mg/L lt. RPD i QC Ba Units	Dil. 1 s based o .tch: 3849 Dil.	Spike Amount 0.125 on the spike Spike Amount	Matrix Result <0.000779 and spike d Matrix Result	Re 88 uplica Re	c. RI 3 te result cc. RI	PD 1 5. PD	Rec. Limit 85 - 11! Rec. Limit	RPD Limit 5 20
Param Dissolved Silver Percent recovery is l Laboratory Cont Param Dissolved Arsenic Percent recovery is l Laboratory Cont	LCS Result 0.110 based on the crol Spike (LCS Result 0.423 based on the	LCSD Result 0.111 spike resu LCS-1) LCSD Result 0.516 spike resu LCS-1)	Units mg/L lt. RPD i QC Ba Units mg/L lt. RPD i QC Ba	Dil. 1 s based o tch: 3849 Dil. 1 s based o tch: 3849	Spike Amount 0.125 on the spike Spike Amount 0.500 on the spike	Matrix Result <0.000779 and spike d Matrix Result <0.00593 and spike d	Re luplica Re uplica	c. RI 3 te result cc. RI 5 2 te result	2D 1 5. 2D 00	Rec. Limit 85 - 11: Rec. Limit 85 - 11:	RPD Limit 5 20 RPD Limit 5 20
Param Dissolved Silver Percent recovery is l Laboratory Cont Param Dissolved Arsenic Percent recovery is l Laboratory Cont	LCS Result 0.110 based on the crol Spike (LCS Result 0.423 based on the crol Spike (LCSD Result 0.111 spike resu LCS-1) LCSD Result 0.516 spike resu LCS-1)	Units mg/L lt. RPD i QC Ba Units mg/L lt. RPD i QC Ba	Dil. 1 s based o tch: 3849 Dil. 1 s based o tch: 3849	Spike Amount 0.125 on the spike Spike Amount 0.500 on the spike	Matrix Result <0.000779 and spike d Matrix Result <0.00593 and spike d	Re luplica Re uplica	c. RI 3 te result c. RI 5 2 te result	2D 1 2D 00	Rec. Limit 85 - 11: Rec. Limit 85 - 11:	RPD Limit 5 20 RPD Limit 5 20
Param Dissolved Silver Percent recovery is 1 Laboratory Cont Param Dissolved Arsenic Percent recovery is 1 Laboratory Cont	LCS Result 0.110 based on the crol Spike (LCS Result 0.423 based on the crol Spike (LCSD Result 0.111 spike resu LCS-1) LCSD Result 0.516 spike resu LCS-1)	Units mg/L lt. RPD i QC Ba Units mg/L lt. RPD i QC Ba	Dil. 1 s based o tch: 3849 Dil. 1 s based o tch: 3849	Spike Amount 0.125 on the spike Spike Amount 0.500 on the spike	Matrix Result <0.000779 and spike d Matrix Result <0.00593 and spike d Matrix	Re luplica Re uplica	c. RI te result	2D 1 2D 00	Rec. Limit 85 - 11: Rec. Limit 85 - 11:	RPD Limit 5 20 RPD Limit 5 20
Param Dissolved Silver Percent recovery is 1 Laboratory Cont Param Dissolved Arsenic Percent recovery is 1 Laboratory Cont Param	LCS Result 0.110 based on the crol Spike (LCS Result 0.423 based on the crol Spike (LCS Result	LCSD Result 0.111 spike resu LCS-1) LCSD Result 0.516 spike resu LCS-1) LCSD Result	Units mg/L lt. RPD i QC Ba Units mg/L lt. RPD i QC Ba Units	Dil. 1 s based o tch: 3849 Dil. 1 s based o tch: 3849 Dil.	Spike Amount 0.125 on the spike Spike Amount 0.500 on the spike Spike Amount	Matrix Result <0.000779 and spike d Matrix Result <0.00593 and spike d Matrix Result	Re luplica Re uplica	c. RI te result <u>c. RI</u> <u>5 2</u> te result	PD 1 PD 0 	Rec. Limit 85 - 11: Rec. Limit 85 - 11: Rec. Limit	RPD Limit 5 20 RPD Limit 5 20 RPD Limit
Param Dissolved Silver Percent recovery is l Laboratory Cont Param Dissolved Arsenic Percent recovery is l Laboratory Cont Param Dissolved Barium	LCS Result 0.110 based on the crol Spike (LCS Result 0.423 based on the crol Spike (LCS Result 0.858	LCSD Result 0.111 spike resu LCS-1) LCSD Result 0.516 spike resu LCS-1) LCSD Result 0.962	Units mg/L lt. RPD i QC Ba Units mg/L lt. RPD i QC Ba Units mg/L	Dil. 1 s based o tch: 3849 Dil. 1 s based o tch: 3849 Dil. 1	Spike Amount 0.125 on the spike Spike Amount 0.500 on the spike Spike Amount 1.00	Matrix Result <0.000779 and spike d Matrix Result <0.00593 and spike d Matrix Result <0.000343	Re luplica Re uplica Re 8	c. RI te result c. RI 5 2 te result ec. RI 6 1	PD 1 PD 0 PD 1	Rec. Limit 85 - 11: Rec. Limit 85 - 11: Rec. Limit 80 - 120	RPD Limit 5 20 RPD Limit 5 20 RPD Limit 0 20
Param Dissolved Silver Percent recovery is l Laboratory Cont Param Dissolved Arsenic Percent recovery is l Laboratory Cont Param Dissolved Barium Percent recovery is l Laboratory Cont	LCS Result 0.110 based on the crol Spike (LCS Result 0.423 based on the crol Spike (LCS Result 0.858 based on the crol Spike (LCSD Result 0.111 spike resu LCS-1) LCSD Result 0.516 spike resu LCS-1) LCSD Result 0.962 spike resu	Units mg/L lt. RPD i QC Ba Units mg/L lt. RPD i QC Ba Units mg/L lt. RPD i	Dil. 1 s based o tch: 3849 Dil. 1 s based o tch: 3849 Dil. 1 s based o tch: 3849	Spike Amount 0.125 on the spike Spike Amount 0.500 on the spike Amount 1.00 on the spike	Matrix Result <0.000779 and spike d Matrix Result <0.00593 and spike d Matrix Result <0.000343 and spike d	Re aluplica Re aluplica Re aluplica	c. RI te result c. RI 5 2 te result ec. RI 6 1 te result	PD 1 PD 0 PD 1 	Rec. Limit 85 - 11: Rec. Limit 85 - 11: Rec. Limit 80 - 12(RPD Limit 5 20 RPD Limit 5 20 RPD Limit 0 20
Param Dissolved Silver Percent recovery is I Laboratory Cont Param Dissolved Arsenic Percent recovery is I Laboratory Cont Param Dissolved Barium Percent recovery is I Laboratory Cont	LCS Result 0.110 based on the crol Spike (LCS Result 0.423 based on the crol Spike (LCS Result 0.858 based on the crol Spike (LCSD Result 0.111 spike resu LCS-1) LCSD Result 0.516 spike resu LCS-1) LCSD Result 0.962 spike resu LCS-1)	Units mg/L lt. RPD i QC Ba Units mg/L lt. RPD i QC Ba Units mg/L lt. RPD i	Dil. 1 s based o tch: 3849 Dil. 1 s based o tch: 3849 Dil. 1 s based o tch: 3849	Spike Amount 0.125 on the spike Spike Amount 0.500 on the spike Spike Amount 1.00 on the spike	Matrix Result <0.000779 and spike d Matrix Result <0.00593 and spike d Matrix Result <0.000343 and spike d	Re 83 uplica 84 uplica 85 uplica	c. RI te result c. RI 5 2 te result ec. RI 6 1 te result	PD 1 PD 0 PD 1 	Rec. Limit 85 - 11: Rec. Limit 85 - 11: Rec. Limit 80 - 120 Rec.	RPD Limit 5 20 RPD Limit 5 20 RPD Limit 0 20 RPD
Param Dissolved Silver Percent recovery is I Laboratory Cont Param Dissolved Arsenic Percent recovery is I Laboratory Cont Param Dissolved Barium Percent recovery is I Laboratory Cont Param	LCS Result 0.110 based on the crol Spike (LCS Result 0.423 based on the crol Spike (LCS Result 0.858 based on the rol Spike (LCSD Result 0.111 spike resu LCS-1) LCSD Result 0.516 spike resu LCS-1) LCSD Result 0.962 spike resu LCS-1)	Units mg/L lt. RPD i QC Ba Units mg/L lt. RPD i QC Ba Units mg/L lt. RPD i QC Ba	Dil. 1 s based o ttch: 3849 Dil. 1 s based o ttch: 3849 Dil. 1 s based o ttch: 3849 Dil. 1 s based o	Spike Amount 0.125 on the spike Spike Amount 0.500 on the spike Amount 1.00 on the spike Amount	Matrix Result <0.000779 and spike d Matrix Result <0.00593 and spike d Matrix Result <0.000343 and spike d Matrix	Re luplica Re uplica Re Re	c. RI te result c. RI 5 2 te result ec. RI 6 1 te result ec. R	PD 1 2 2 2 2 2 0 3 3 3 4 2 2 0 3 3 4 3 4 3 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Rec. Limit 85 - 11: Rec. Limit 85 - 11: Rec. Limit 80 - 120 Rec. Limit	RPD Limit 5 20 RPD Limit 5 20 RPD Limit 0 20 RPD

Laboratory Control Spike (LCS-1) QC Batch: 3849

Report Date: August	20, 2003			Work	Page Number: 21 of 3					
CH 2100					Champion			c	,	Hobbs
		S LCSI)		Spike	Matrix			Rec.	RPD
Param	Resu	ilt Resul	t Unit	s Dil.	Amount	Result	Rec.	RPD	Limit	Limit
Dissolved Chromium	0.09	50 0.103	B mg/l	L 1	0.100	< 0.000660	95	8	80 - 120	20
Percent recovery is ba	ased on the	spike resul	t. RPD is	s based	on the spike	and spike du	plicate r	esult.		
Laboratory Contro	ol Spike (l	LCS-1)	QC Ba	tch: 384	19					
_	LCS	LCSD		Dil	Spike	Matrix			Rec.	RPD
Param	Result	Result	Units	Dil.	Amount	Result	Rec.	RPD	Limit	Limit
Dissolved Copper	0.108	0.113	mg/L	1	0.125	<0.00177	86	4	85 - 115	20
Percent recovery is ba	ased on the	spike resul	t. RPD is QC Ba	s based (tch: 384	on the spike	and spike du	plicate r	esult.		
Laboratory Contro	or spike (i	100-1)	್ಮರ ವಿಚ							
	LCS	LCSD			Spike	Matrix			Rec.	RPD
Param	Result	Result	Units	Dil.	Amount	Result	Rec.	RPD	Limit	Limit
Dissolved Iron	0.422	0.480	mg/L	1	0.500	< 0.00220	84	13	80 - 120	20
Param	LC: Resu	S LCSI) lt Unit	s Dil.	Spike Amount	Matrix Result	Rec.	RPD	Rec. Limit	RPD Limit
Dissolved Manganese	0.22	4 0.25	7 mg/	<u> </u>	0.250	< 0.000275	90	14	85 - 115	20
Percent recovery is ba	ased on the ol Spike (I	spike resul	t. RPD is QC Ba	s based o tch: 384	on the spike 9	and spike du	plicate r	esult.		
-		,								
D	LCS	LCSD	TT •-	D.1	Spike	Matrix	ъ	DDD	Rec.	RPD
Param Director d	Result	Result	Units	$\frac{D1l}{1}$	Amount	Result	Rec.	RPD	Limit	Limit
Percent recovery is ba	0.415 used on the	0.437 spike resul	$\frac{\text{mg/L}}{\text{t. RPD is}}$	s based o	0.500 on the spike	and spike du	 plicate re	esult.	80 - 120	20
Laboratory Contro	ol Spike (I	LCS-1)	QC Ba	tch: 384	9					
	LCS	LCSD			Spike	Matrix			Rec.	RPD
Param	Result	t Result	Units	Dil.	Amount	Result	Rec.	RPD	Limit	Limit
Dissolved Selenium	0.441	0.472	mg/L	1	0.500	< 0.00650	88	7	80 - 120	20
Percent recovery is ba	used on the	spike resul [.]	t. RPD is	s based o	on the spike	and spike du	plicate r	esult.		
Laboratory Contro	ol Spike (I	LCS-1)	QC Ba	tch: 384	9					
Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	RPD	Rec. Limit	RPD Limit

Dissolved Zinc

ļ

1

0.216

0.220

mg/L

1

0.250

< 0.00907

86

2

85 - 115

20

	•	•
Report Date: August 20, 2003	Work Order: 3081414	Page Number: 22 of 33
CH 2100	Champion	Hobbs

Laboratory Control Spike (LCS-1) QC Batch: 3857

	LCS	LCSD			Spike	Matrix			Rec.	RPD
Param	\mathbf{Result}	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Result}	Rec.	RPD	Limit	\mathbf{Limit}
Dissolved Mercury	0.00113	0.000980	$\mathrm{mg/L}$	1	0.00100	< 0.0000360	113	14	86.7 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1) QC Batch: 3866

	LCS	LCSD			Spike	Matrix			Rec.	RPD
Param	Result	Result	Units	Dil.	Amount	Result	Rec.	RPD	Limit	Limit
Dissolved Calcium	91.7	89.9	mg/L	1	100	< 0.183	92	2	85 - 115	20
Dissolved Potassium	95.5	97.5	mg/L	1	100	< 0.135	96	2	85 - 115	20
Dissolved Magnesium	90.6	91.1	mg/L	1	100	< 0.183	91	0	85 - 115	20
Dissolved Sodium	94.7	93.6	mg/L	1	100	< 0.105	95	1	85 - 115	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3756

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	\mathbf{Result}	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	RPD	\mathbf{Limit}	Limit
Nitrate-N	249	247	mg/L	100	2.50	<12.6	100	1	62.2 - 121	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3756

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	\mathbf{Result}	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	RPD	Limit	Limit
Fluoride	193	190	mg/L	100	2.50	11.7	72	2	30.1 - 187	20
Sulfate	2900	2900	mg/L	100	12.5	1640	101	0	69.9 - 114	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3757

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	\mathbf{Result}	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Result}	Rec.	RPD	Limit	Limit
Nitrite-N	0.0739	0.0765	mg/L	1	0.0800	< 0.000820	92	3	65.9 - 119	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3823

Report Date: CH 2100	August 20, 2	:003		W	ork Order: 3 Champion	081414 n		Page Number:			
<i>matrix spikes</i> Param	continued MS Result	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	RPD	Rec. Limit	RPD Limit	
Param	MS Result	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	RPD	Rec. Limit	RPD Limit	
Chloride	1660	1660	mg/L	100	12.5	594	85	0	32.7 - 136	20	

Matrix Spike (MS-1) QC Batch: 3849

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	Result	\mathbf{Result}	Units	Dil.	Amount	Result	Rec.	RPD	Limit	Limit
Dissolved Silver	0.127	0.139	mg/L	1	0.125	< 0.000779	102	9	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3849

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	Result	Result	Units	Dil.	Amount	Result	Rec.	RPD	Limit	Limit
Dissolved Arsenic	0.470	0.445	mg/L	1	0.500	< 0.00593	94	5	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3849

Dissolved Barium	0.996	1.02	m mg/L	1	1.00	< 0.000343	100	2	75 - 125	20
Param	\mathbf{Result}	Result _	Units	Dil.	Amount	Result	Rec.	RPD	Limit	Limit
	MS	MSD			Spike	Matrix			Rec.	RPD

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3849

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	Result	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	RPD	Limit	Limit
Dissolved Cadmium	0.249	0.254	mg/L	1	0.250	< 0.000268	100	2	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3849

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	Result	Result	Units	Dil.	Amount	Result	Rec.	RPD	Limit	\mathbf{Limit}
Dissolved Chromium	0.101	0.104	mg/L	1	0.100	< 0.000660	101	3	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3849

Report Date: August 20, 2003	Work Order: 3081414	Page Number: 24 of 33
CH 2100	Champion	Hobbs

Param	MS Besult	MSD Result	Units	Dil	Spike Amount	Matrix Besult	Rec	RPD	Rec. Limit	RPD Limit
Dissolved Copper	0.100	0.105	mg/L	1	0.125	<0.00177	80	5	75 - 125	20

Matrix Spike (MS-1) QC Batch: 3849

	\mathbf{MS}	MSD			Spike	Matrix			Rec.	RPD
Param	Result	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Result}	Rec.	RPD	Limit	\mathbf{Limit}
Dissolved Iron	0.521	0.548	$\rm mg/L$	1	0.500	< 0.00220	104	5	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3849

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	Result	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Result}	Rec.	RPD	Limit	Limit
Dissolved Manganese	0.261	0.263	mg/L	1	0.250	0.021	96	1	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3849

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	\mathbf{Result}	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	RPD	Limit	\mathbf{Limit}
Dissolved Lead	0.578	0.552	mg/L	1	0.500	< 0.00367	116	5	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3849

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	Result	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	RPD	Limit	Limit
Dissolved Selenium	0.376	0.381	mg/L	1	0.500	< 0.00650	75	1	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3849

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	\mathbf{Result}	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	RPD	Limit	\mathbf{Limit}
Dissolved Zinc	0.544	0.546	mg/L	1	0.250	0.326	87	0	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3857

	MS	MSD			Spike	Matrix			Rec.	RPD
Param	\mathbf{Result}	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	RPD	Limit	Limit
Dissolved Mercury	0.00147	0.00148	mg/L	1	0.00100	< 0.0000360	147	1	40 - 177	20
	•	•								
------------------------------	---------------------	-----------------------								
Report Date: August 20, 2003	Work Order: 3081414	Page Number: 25 of 33								
CH 2100	Champion	Hobbs								

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) QC Batch: 3866

		MS	MSD			Spike	Matrix			Rec.	RPD
Param		Result	\mathbf{Result}	Units	Dil.	Amount	Result	Rec.	RPD	\mathbf{Limit}	\mathbf{Limit}
Dissolved Calcium		140	125	mg/L	1	100	49.9	90	11	75 - 125	20
Dissolved Potassium		103	97.2	mg/L	1	100	5.93	97	6	75 - 125	20
Dissolved Magnesium	78	84.4	79.7	mg/L	1	100	12.3	72	6	75 - 125	20
Dissolved Sodium		226	202	mg/L	1	100	116	110	11	75 - 125	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (ICV-1) QC Batch: 3734

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
Total Dissolved Solids		mg/L	1000	1019	102	90 - 110	2003-08-15

Standard (CCV-1) QC Batch: 3734

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
Total Dissolved Solids		m mg/L	1000	1002	100	90 - 110	2003-08-15

Standard (ICV-1) QC Batch: 3747

			\mathbf{CCVs}	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/L	250	238	95	75 - 125	2003-08-14

Standard (CCV-1) QC Batch: 3747

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/L	250	225	90	75 - 125	2003-08-14

Standard (ICV-1) QC Batch: 3756

Param	$\mathbf{F}\mathbf{lag}$	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Nitrate-N		mg/L	2.50	2.35	94	90 - 110	2003-08-15

⁷ms recovery out of range due to matrix effect/spiking error, use lcs/lcsd

⁸ms recovery out of range due to matrix effect/spiking error, use ks/ksd

Report Da CH 2100	te: August 2	20, 2003	·	Work Order: 30 Champion	81414	Page N	Jumber: 26 of 33 Hobbs
Standard	(ICV-1)	QC Batch: 3756					
			CCVs	$\rm CCVs$	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Fluoride		mg/L	2.50	2.42	97	90 - 110	2003-08-15
Sulfate		mg/L	12.5	12.3	98	90 - 110	2003-08-15
Standard	(CCV-1)	QC Batch: 3756					
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Nitrate-N		mg/L	2.50	2.33	93	90 - 110	2003-08-15
Standard	(CCV-1)	QC Batch: 3756					
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Fluoride		mg/L	2.50	2.36	94	90 - 110	2003-08-15
Sulfate		mg/L	12.5	12.2	98	90 - 110	2003-08-15
Standard Param	(ICV-1) Flag	QC Batch: 3757 Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Nitrite-N	<u> </u>	mg/L	0.0800	0.0816	102	85 - 115	2003-08-15
Standard Param	(CCV-1) Flag	QC Batch: 3757 Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Nitrite-N		mg/L	0.0800	0.0807	101	85 - 115	2003-08-15
Standard	(ICV-1)	QC Batch: 3765					
			CCVs	CCVs Four-1	CCVs Democrat	Percent	Data
Param	Flag	Unite	Conc	rouna	Recovery	Limite	Date
GRO	1 lag	mg/L	1.00	1 14		85 - 115	2003-08-15
		<u>6</u> / 12		L: + ⁻ Z			
Standard ((CCV-1)	QC Batch: 3765					
			CCVs	CCVs	CCVs	Percent	
n	E.	TT •	True	Found	Percent	Recovery	Date
Param CBO	Flag	Units	<u>Uonc.</u>	Lonc.		Limits	Analyzed
GRU		mg/L	1.00	1.05	105	60 - 110	2003-08-15

Report Date: August 20, 2003	Work Order: 3081414	Page Number: 27 of 33
CH 2100	Champion	Hobbs
	-	

Standard (CCV-1) QC Batch: 3782

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
Vinyl Chloride		$\mu { m g/L}$	50.0	49.1	98	80 - 120	2003-08-17
1,1-Dichloroethene		$\mu { m g/L}$	50.0	46.4	93	80 - 120	2003-08-17
Chloroform		$\mu { m g/L}$	50.0	46.3	93	80 - 120	2003-08-17
1,2-Dichloropropane		$\mu { m g/L}$	50.0	48.5	97	80 - 120	2003-08-17
Toluene		$\mu { m g/L}$	50.0	49.4	99	80 - 120	2003-08-17
Chlorobenzene		$\mu { m g/L}$	50.0	49.5	99	80 - 120	2003-08-17
Ethylbenzene		$\mu { m g/L}$	50.0	51.2	102	80 - 120	2003-08-17

Standard (ICV-1) QC Batch: 3806

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Hydroxide Alkalinity		mg/L as CaCo3	0.00	<1.00		0 - 200	2003-08-15
Carbonate Alkalinity		mg/L as CaCo3	0.00	< 1.00		0 - 200	2003-08-15
Bicarbonate Alkalinity		mg/L as CaCo3	0.00	$<\!4.00$		0 - 200	2003-08-15
Total Alkalinity		mg/L as CaCo3	250	250	100	90 - 110	2003-08-15

Standard (CCV-1) QC Batch: 3806

			\mathbf{CCVs}	\mathbf{CCVs}	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Hydroxide Alkalinity		mg/L as CaCo3	0.00	<1.00		0 - 200	2003-08-15
Carbonate Alkalinity		mg/L as CaCo3	0.00	< 1.00		0 - 200	2003-08-15
Bicarbonate Alkalinity		mg/L as CaCo3	0.00	$<\!4.00$		0 - 200	2003-08-15
Total Alkalinity		mg/L as CaCo3	250	240	96	90 - 110	2003-08-15

Standard (CCV-1) QC Batch: 3813

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Phenol		mg/L	60.0	70.0	117	80 - 120	2003-08-18
1,4-Dichlorobenzene (para)		m mg/L	60.0	57.8	96	80 - 120	2003-08-18
2-Nitrophenol		m mg/L	60.0	54.2	90	80 - 120	2003-08-18
2,4-Dichlorophenol		m mg/L	60.0	63.4	106	80 - 120	2003-08-18
Hexachlorobutadiene		m mg/L	60.0	49.3	82	80 - 120	2003-08-18
4-Chloro-3-methylphenol		m mg/L	60.0	61.4	102	80 - 120	2003-08-18
2,4,6-Trichlorophenol		m mg/L	60.0	59.4	99	80 - 120	2003-08-18
Acenaphthene		m mg/L	60.0	60.1	100	80 - 120	2003-08-18
Diphenylamine		m mg/L	60.0	61.4	102	80 - 120	2003-08-18
Pentachlorophenol		m mg/L	60.0	67.0	112	80 - 120	2003-08-18
Fluoranthene		mg/L	60.0	58.6	98	80 - 120	2003-08-18
Di-n-octylphthalate		$\mathrm{mg/L}$	60.0	50.7	84	80 - 120	2003-08-18
Benzo(a)pyrene		m mg/L	60.0	59.1	98	80 - 120	2003-08-18

Report D CH 2100	ate: August	20, 2003		Wor	k Order: 308 Champion	51414	-	Page Nu	umber: 28 of 33 Hobbs
Surrogate		Flag	Result	Units	Dilut	ion	Spike Amount	Percent Recovery	Recovery Limit
2-Fluorop	henol		61.8	mg/L	1		60.0	103	80 - 120
Phenol-d5			67.0	mg/L	- 1		60.0	112	80 - 120
Nitrobenz	ene-d5		60.0	mg/L	. 1		60.0	100	80 - 120
2-Fluorobi	iphenyl		61.7	mg/L	1		60.0	103	80 - 120
2,4,6-Trib	romophenol		56.3	mg/L	1		60.0	94	80 - 120
Terphenyl	-d14		55.2	mg/L	1		60.0	92	80 - 120
Standard	l (ICV-1)	QC Batch:	3823						
	. ,		CCV	⁷ s	CCVs	CC	Vs	Percent	
			True	e	Found	Perc	cent	Recovery	Date
Param	Flag	Units	Cond	2.	Conc.	Reco	overv	Limits	Analyzed
Chloride	0	mg/L	12.5	5	12.6	1(01	90 - 110	2003-08-19
Standard	(CCV-1)	QC Batch	: 3823 CCV	7s	CCVs	CC	2Vs	Percent	Data
Dorom	Floor	Unita	Conc	9	Cong	Pere	cent	Limits	Applyzod
Chlorido	r lag		12.5		11.5	necu 0	nvery	<u>00110</u>	2003 08 10
Standard Param	(ICV-1)	QC Batch:	3830 CCVs True Conc.		CCVs Found Conc.	CC ¹ Perce Recov	Vs ent very	Percent Recovery Limits	Date Analyzed
рн		<u>s.u.</u>	7.00		1.00	10		98 - 102	2003-08-14
Standard	(CCV-1)	QC Batch	: 3830 CCVs True		CCVs Found	CC ¹ Perce	Vs ent	Percent Recovery	Date
Param	\mathbf{Flag}	Units	Conc.		Conc.	Recov	very	Limits	Analyzed
pН		s.u.	7.00		7.00	10	0	98 - 102	2003-08-14
Standard	(ICV-1)	QC Batch:	3849		aau				
			(CVs	CCVs	C	CVs	Percent	n /
Demo			T-it-	True	Found	Pe	ercent	Kecovery	Date
Param		Flag (Units (Jone.	<u> </u>	Ke	covery	Limits	Analyzed
Dissolved		<u>r</u>	ng/ь (J.120	0.123		30	90 - 110	2003-08-19
Standard	(ICV-1)	QC Batch:	3849	CCVs True	CCVs Found	(P	CCVs ercent	Percent Recovery	Date
Param		Flag	Units	Conc.	Conc.	Re	ecovery	Limits	Analyzed
Dissolved A	Arsenic	<u>_</u>	mg/L	1.00	1.06		106	90 - 110	2003-08-19
					··			······································	· · · · -

Report Date: August CH 2100	20, 2003		Work	Order: 30814 Champion	14	Page Number: 29 of 33 Hobbs					
Standard (ICV-1)	QC Bate	ch: 3849									
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recoverv	Percent Recovery Limits	Date Analyzed				
Dissolved Barium	0	mg/L	1.00	1.00	100	90 - 110	2003-08-19				
Standard (ICV-1)	QC Bate	ch: 3849									
Param Dissolved Cadmium	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed				
		III <u>B</u> / L	1.00	1.04	104	30 - 100	2003-00-13				
Standard (ICV-1)	QC Bate	ch: 3849									
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed				
Dissolved Chromium	1.00	mg/L	1.00	1.02	102	90 - 110	2003-08-19				
Standard (ICV-1)	QC Bate	h: 3849	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date				
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed				
Dissolved Copper		mg/L	1.00	0.966	97	90 - 110	2003-08-19				
Standard (ICV-1)	QC Bate	h: 3849	CCVs	CCVs	CCVs	Percent					
D		TT •/	True	Found	Percent	Recovery	Date				
Param Dissolved Iron	Flag	Units mg/I	$\frac{\text{Conc.}}{1.00}$	<u>Conc.</u>	Recovery	Limits	Analyzed				
		IIIg/ L	1.00	1.05	105	90 - 110	2003-08-19				
Standard (ICV-1)	QC Bate	h: 3849									
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed				
Dissolved Manganese		mg/L	1.00	1.01	101	90 - 110	2003-08-19				
Standard (ICV-1)	QC Batc	h: 3849									
			CCVs	CCVs Found	CCVs Porgent	Percent	Data				
		T T •/		Come	Descent	Limite					
Param	Flag	Units	Conc.	Conc.	Recoverv	Limits	Anaivzed				

T

Standard (ICV-1) QC Batch: 3849

Report Date: Augus CH 2100	t 20, 2003		Work	Order: 30814 Champion	14	Page N	umber: 30 of 33 Hobbs
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Dissolved Selenium		mg/L	1.00	1.02	102	95 - 105	2003-08-19
		ing/ L	1.00	1.02	102	00 100	
Standard (ICV-1)	QC Bat	tch: 3849					
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Zinc		mg/L	1.00	1.06	106	90 - 110	2003-08-19
Standard (CCV-1)	QC Ba	atch: 3849	CCVa	CCVa	CCVa	Porcont	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Silver		mg/L	0.125	0.129	103	90 - 110	2003-08-19
Standard (CCV-1) Param	QC Ba Flag	tch: 3849 Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Dissolved Arsenic	<u>_</u>	mg/L	1.00	1.09	109	90 - 110	2003-08-19
Standard (CCV-1)	QC Ba	.tch: 3849	CCVs	CCVs	CCVs	Percent	
_			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Barium	<u> </u>	mg/L	1.00	1.08	108	90 - 110	2003-08-19
Standard (CCV-1)	QC Ba	tch: 3849	0.011	COL	001	D. I	
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	Percent Recovery	Percent Recovery Limits	Date Analyzed
Dissolved Cadmium		mg/L	1.00	1.06	106	90 - 110	2003-08-19
Standard (CCV-1)	QC Ba	tch: 3849				_	
			CCVs	CCVs	CCVs	Percent	
D	ורד	T T •.	'Irue	Found	Percent	Recovery	Date
Param Dissolved Character	Flag	Units	<u> </u>	0.075	Recovery		Analyzed
Dissolved Chromium		mg/L	1.00	0.975	<u>эо</u>	90 - 110	2003-08-19

Standard (CCV-1) QC Batch: 3849

		3					
Report Date: August CH 2100	20, 2003		Work	Order: 308141 Champion	14	Page N	umber: 31 of 33 Hobbs
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Dissolved Copper		mg/L	1.00	0.923	92	90 - 110	2003-08-19
Standard (CCV-1)	QC Ba	atch: 3849					
Danam	Flog	Unita	CCVs True Conc	CCVs Found Cone	CCVs Percent	Percent Recovery	Date
Param Dissolved Iron	riag		1.00	0.964	<u> </u>	$\frac{110}{90-110}$	2003.08 10
Dissolved from		mg/L	1.00	0.904	90	90 - 110	2003-06-19
Standard (CCV-1)	QC Ba	atch: 3849	CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Manganese		mg/L	1.00	0.958	96	90 - 110	2003-08-19
Standard (CCV-1)	QC Ba	atch: 3849	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Lead		mg/L	1.00	0.933	93	90 - 110	2003-08-19
Standard (CCV-1)	QC Ba	atch: 3849	CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Selenium		mg/L	1.00	0.902	90	90 - 110	2003-08-19
Standard (CCV-1)	QC Ba	utch: 3849	00V	COV	COV	Deced	
Param	Flag	Units	CCVs True Conc.	Found Conc.	Percent Recovery	Percent Recovery Limits	Date Analyzed
Dissolved Zinc		mg/L	1.00	0.984	98	90 - 110	2003-08-19
Standard (ICV-1)	QC Bat	ch: 3857	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Mercury		mg/L	0.00100	0.000900	90	80 - 120	2003-08-19

Standard (CCV-1) QC Batch: 3857

Report Date: August CH 2100		Work	Order: 3081414 Champion	Page Nu	mber: 32 of 33 Hobbs		
			CCVs True	CCVs Found	CCVs	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Mercury		mg/L	0.00100	0.000900	90	80 - 120	2003-08-19

Standard (ICV-1) QC Batch: 3866

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Calcium		mg/L	25.0	25.0	100	90 - 110	2003-08-18
Dissolved Potassium		mg/L	25.0	26.0	104	90 - 110	2003-08-18
Dissolved Magnesium		mg/L	25.0	24.6	98	90 - 110	2003-08-18
Dissolved Sodium		mg/L	25.0	25.7	103	90 - 110	2003-08-18

Standard (CCV-1) QC Batch: 3866

			$\rm CCVs$	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Calcium		mg/L	25.0	22.9	92	90 - 110	2003-08-18
Dissolved Potassium		mg/L	25.0	24.3	97	90 - 110	2003-08-18
Dissolved Magnesium		mg/L	25.0	23.5	94	90 - 110	2003-08-18
Dissolved Sodium		$\mathrm{mg/L}$	25.0	23.8	95	90 - 110	2003-08-18

6701 Abardaan A													ı. 						(ĴČ	Ċ	.t	ŧ-	7	8					Pag	e_/	/ 	of_/	
Lubbock, Tex Tel (806) 79 Fax (806) 79	41296 Trac	eA:	na	ly	/ S	is	9.	I	nc			15! E	5 McC I Pas Tel (9 Fay #	Culcheor 10, Texas 115) 585 915) 585	n,Suile I 79932 -3443 -4944				СН	AIN	I-OF	-CU	ST	OD'	ү A २	ND	AN		ช	SR	EQ	UES	T	
1 (800) 37	3-1296						1600				. <u> </u>	<u> </u>	1 (8	88) 588-	3443					LAE	3 Orc	ier IC)#				<u>s/-</u>	<u></u>	<u> </u>					ন্থ
E State	TGI					[(4)	5 <u>0</u>	<u>,)</u>	<u>59</u>]3	1	<u>!]:</u>	<u>39</u>							10		ALY:	SIS	RE		JES	iT No i					14	のか
Address: (S	J. (JA] M.C	LAN	d_{i}	TX	7	97	fax,# ∋∋	4	32	05		۵-	4	31A		ł	I	1		~	1			 					1	1	I	11	י 	5
Contact-Person	(noban			,					,											B/200													6	Kii s
Invoice to:															·,					6010														dard
Project #						F	roje	ci, N	ame	:										Se Hg	Se H			ł										n stan
Project Location:	<u>2106</u>						(' Samp	D oler 5	() Signa	<u>))</u> ature:	<u>)</u> r	61)							۲ ۳	ສິ ວ					325		İ						nt fron
100	<u>105, 17 m</u>							-	4	\leq	2	2	N	\leq	2	_				aCd	a Cd				54	10C/6		_						dittere
		ERS	tung (M	IATRI	χC	1		PHES	ETH		IVE	s	AMPL	ING	8 8	1005) As B	g As I	latiles	8		608/6	Vol B		1A/60						meil
LAB #	FIELD CODE	CONTAIN	lume/Amo	ATER	F	H	Inde		. ģ	so,	НО	ω	ЫN		VTE	ME	BE 80218	H 418 1/TX	H 8270C	al Metals A	LP Metals	LP Semi Vo	LP Pesticid		MS Vol 82	MS Semi	8's 8082/60	slicides 808	D TSS pH					n Around T
IT 20/26		-	<u> </u>	3 V	ŝ	<u>₹</u> ;	5	╧	ÉÉ	Ŧ	Z	<u>9</u>	ž		à	<u> </u>	T L	i F	PA	ğ	2 1	2 2	12	ц С	8	ဗ္ဗ	8	å		+		-	-	
10-504 (X	Carate(1 Well	-40-		\square			+	+	+	$\left \right $		X		5.	3.61	024		┼╾				+	+-		┝			\vdash		-+-				ľ
				+		-+-	╋	╉	+-	+	_	-			-+			+-	$\left \right $		+			+			$\left - \right $	\vdash	-+	+-				
	·			+	-		┽	╋		+					-+-			+			+	┿	+-		-		$\left - \right $	\vdash	-+	+	╉		-+	-
a contract for	·			+		-		┢	+	+							+	┽╾			-+	╈	+-	╀─	$\left \right $	╞		H		+			-+-	-
	(+			\uparrow	+-	1	\uparrow					-†						+	┿	┢	+		\vdash		i-†	-	+	┿			
	· · · · · · · · · · · · · · · · · · ·	1						╈	+-								-	╈			+	+-	\uparrow	+-				H		+	┢			-
, Anna Ann		-						T									_					1		\square						+				-
				\square			T											1			1	Т								+	T	1		-
																		Τ				Τ	Ι					Π		Τ				-
Relinquished by:	Date: Time:	Rece	eved t	iy:					D	ate;		Tir	ne:	•				LA	B	JS	E		REN C'J		KS:		4	cí	้วก	ne	04	- 1	<u></u>	~
	8-13-03 15	10			<u></u>		-					T .						C	NI לא	LY			\sum_{i}	-e 0.0	. 1- . 1.	יי הי		~	Ŕŧ	201	- - 1 (st	0.	
Helinquisned by:	Date: nme:	Hece	ived t	y:					U	ale;		i II	me:				Intac		<u>'</u> Y	<u>N</u>	T.	τ^{\prime}	-71 	i it. Li	LU	λ_{i}	51~	2 200	1 1 1 V a c	٦Ç	~~:		La	
Relinguished by:	Date: Time:	Rece	ived a	t-Lab	orate	ary b	y:		D	ate:	7	Tir	me:				Temp	spac	e			•	114	י+ז ר	er 81	A	HI Ja	ľĽ,	للار چيک	34	י ז <u>י</u> ייק	r n	ret	â
				il	:1	1	MA	1	R	.14	to	З	1	10:5	υ		Log-i	n Re	view	4	2	_	L	J	Limi	uk li Is Ar	e Ne	iedet	1000 1	ապ			-	
			· / `	~/	• • T	11/	N	Δ					-116 a.	4 C 2 C 2 C 2		1.1	12.20	12.20	1	1														

L

NEW MXICO ENERGY, MIDERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary

August 13, 2003

Lori Wrotenbery Director Oil Conservation Division

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT NO. 39299901</u>

Mr. Ralph Corry Champion Technologies, Inc. P.O. Box 450499 Houston, Texas 77245

Re: Abatement Plan (AP-14) Stage 2 Abatement Plan Proposal Comprehensive Status Report Champion's Hobbs, NM Facility GW-199

Dear Mr. Corry:

The New Mexico Oil Conservation Division (OCD) has completed a review of Champion Technologies, Inc.'s (Champion) March 31, 2003 Stage 2 Abatement Plan Comprehensive Status Report with addendum received on May 06, 2003, June 03, 2003 response to OCD's request for additional information dated May 08, 2003, and Champions E-mail response dated August 12, 2003 to OCD's comments dated August 05, 2003. These documents describe the procedures that Champion proposes to use to perform additional investigation, remediate and monitor the existing soil and groundwater impacts at the site. OCD hereby approves of the plan.

Please be advised that NMOCD approval of this plan does not relieve Champion Technologies, Inc. of liability should their operations fail to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve Champion Technologies, Inc. of responsibility for compliance with any OCD, federal, state, or local laws and/or regulations.

If you have any questions, please contact Wayne Price of my staff at (505-476-3487) or E-mail WPRICE@state.nm.us. On behalf of the staff of the OCD, I wish to thank you and your staff for your cooperation during this abatement process.

Sincerely,

Roger C. Anderson Environmental Bureau Chief

RCA/lwp xc: OCD Hobbs Office

From: Sent: To: Cc: Subject:	Ralph Corry [Ralph.Corry@CHAMP-TECH.com] Tuesday, August 12, 2003 9:15 AM Price, Wayne Todd Choban (E-mail); Sheeley, Paul; Johnson, Larry; Melvin Davis RE: Champion Abatement Plan AP-14	
Champion Technologie August 5, 2003.	s, Inc. accepts your reply and recommendations in the email dat	ted
Ralph Corry Environmental Specia Champion Technologie	list s, Inc.	
Original Messag From: Price, Wayne [Sent: Tuesday, Augus To: Price, Wayne; Ra Cc: 'Todd Choban (E- Subject: RE: Champio	e mailto:WPrice@state.nm.us] t 05, 2003 5:51 PM .lph Corry mail)'; Sheeley, Paul; Johnson, Larry on Abatement Plan AP-14	
Corrected version. <	<pre><stg 2="" 8_04_03.doc="" approval="">></stg></pre>	
<pre>>Original Mes > From: Price, W > Sent: Tuesday, > To: 'RALPH.CORRY@C > Cc: Todd Choban (E > Subject: Champion</pre>	sage 'ayne August 05, 2003 4:17 PM HAMP-TECH.COM' -mail); Sheeley, Paul; Johnson, Larry A Abatement Plan AP-14	
> << File: Stg 2 ap	proval 8_04_03.DOC >>	
<pre>> Sincerely: > << OLE Object: Pi > Wayne Price > New Mexico Oil Con > 1220 S. Saint Fran > Santa Fe, NM 87505 > 505-476-3487 > fax: 505-476- > E-mail: WPRICE@st > ></pre>	cture (Metafile) >> servation Division cis Drive 3462 ate.nm.us	

Price, Wayne

From: Sent: To: Cc: Subject:

ž

Price, Wayne Tuesday, August 05, 2003 4:17 PM 'RALPH.CORRY@CHAMP-TECH.COM' Todd Choban (E-mail); Sheeley, Paul; Johnson, Larry Champion Abatement Plan AP-14

Contacts:

1

Stg 2 approval 8_04_03.DOC

Sincerely:

Useper Pini

Wayne Price New Mexico Oil Conservation Division 1220 S. Saint Francis Drive Santa Fe, NM 87505 505-476-3487 fax: 505-476-3462 E-mail: WPRICE@state.nm.us

Ralph Corry

1

August 05, 2003

<u>E-MAIL:</u>

Mr. Ralph Corry Champion Technologies, Inc. P.O. Box 450499 Houston, Texas 77245

Re: Abatement Plan (AP-14) Stage 2 Abatement Plan Proposal Comprehensive Status Report Champion's Hobbs, NM Facility GW-199

Dear Mr. Corry:

The New Mexico Oil Conservation Division (OCD) has completed a review of Champion Technologies, Inc.'s (Champion) March 31, 2003 Stage 2 Abatement Plan Comprehensive Status Report with addendum received on May 06, 2003, and June 03, 2003 response to OCD's letter dated May 08, 2003 requesting additional information. These documents describe the procedures that Champion proposes to use to remediate and monitor the existing soil and groundwater impacts at the site.

OCD has evaluated Champions last response dated June 03, 2003 and will respond by line item as <u>OCD Response:</u>

Required Information:

- 1. OCD requires a copy of the Hydrus model with instructions, input parameters, weather input data and a copy of the excel spreadsheet that contains the groundwater mixing model. Due to the complex nature of this model, OCD request a technical meeting with the consultant concerning the model and submitted report. <u>OCD Response: Complete.</u>
- 2. Modeling Comments and Questions:
 - A. OCD is having a difficult time understanding how calibration of the model can be made using a hypothetical one-time release at this particular site. Please explain.
 OCD Response: Explanation Complete.

- B. OCD does not agree using 80 or100 feet of aquifer thickness in the mixing model. OCD will require 10 feet. Please recalculate using 10 feet.
 <u>OCD Response: OCD agrees since long term monitoring includes monitoring at</u> the base and top of the aquifer. Therefore Champion will include the on-site water for sampling.
- C. Explanation of Fig #1 and #4: In Fig #1 (Simulated Chloride distribution in the Vadose zone) the units of the measured concentrations do not match the actual soil conditions. For example one point is labeled approximately 1.5 E+05. Is this ppm in soil or soil water and what are the units? Please explain and provide example calculations on how these numbers were obtained and which sample data was used.

OCD Response: Explanation Complete.

- D. Engineering controls to reduce precipitation by 70 %. Please demonstrate that reducing precipitation is the same as reducing the infiltration. <u>OCD Response:</u> <u>Explanation complete.</u>
- E. Champion will have to demonstrate that a calichie pad will provide a proper barrier and demonstrate how this barrier will be maintained. OCD's experience is that calichie pads become very plastic during rainstorm events and notwithstanding the fact that heavy truck traffic used during these times may deteriorate the integrity of the barrier and thus may not provide the protection as suggested. OCD Response: Since Champion has committed to removing the higher chloride concentrations around Area (5) and SB-3, which will substantially lower the overall chloride loading to a much lower concentration average and the fact that the model simulations used the highest worst case numbers, OCD agrees with the compacted calichie barrier if maintained properly and meets or exceeds the 1x10⁻⁵ cm/s conductivity. In addition, the chlorides around Area (3) D-34&D-35 shall be removed until the levels meet or be less than the statistical average of soils remaining in Area (3).
- F. The area size used in the calculations do not take into account chlorides found outside of Area #3. and the rest of the yard. This would increase the overall chloride load and physical geometry of the model. Please delineate Area #3 and adjust the model input parameters to correct for this deficiency and resubmit the new results. <u>OCD</u> <u>Response: Champion has committed to removing the higher chloride</u> <u>concentrations around Area (5) and SB-3, which will substantially lower the overall chloride loading to a much lower concentration average.</u>

- 3. Section 1.2: The old water well found abandoned under the chemical storage pad shall be sampled and analyzed for BTEX, TPH, and Chemicals of Concern using EPA approved methods. A plugging and abandonment plan shall be submitted for OCD approval. OCD Response: To be completed.
- Appendix G Photographs (Drain system from warehouse) Please describe the past history concerning this system. Is any drain system currently in use? If so please explain. <u>OCD</u>
 <u>Response: Complete. Champion will properly plug and abandoned these lines.</u>
- 5. Section 4.2: Please provide the total feet of screen placed in monitor wells and the amount placed above and below groundwater. <u>OCD Response: Complete.</u>
- 6. Section 4.5.6: (Background Data). OCD is reluctant to consider on-site monitor wells MW-1 and MW-7 as being background wells because of the fact that contamination has been found through out Champion's yard i.e. chlorides. MW-7 is located near Area 3 where the delineation of chlorides has not been completed and may have impacted the groundwater in this area, in addition MW-1 and MW-9 lie in proximity to the northwest part of the yard area where natural drainage from Champions yard has occurred for many years. Therefore, please revise the background Chloride data utilizing off-site up-gradient monitor well MW-15 (chlorides noted at 156, 200, 221 mg/l) and any other off-site up-gradient well such as those sampled by OCD i.e. Harmon and Morrow residences wells (chlorides in these wells were 137 mg/l and 241 mg/l. respectively). OCD calculates the average to be (221+137+241)/3 = 199 mg/l. Please provide the recalculated results from the model using this background input data.

<u>OCD Response: After further review of the data OCD agrees that background data used</u> by Champion is staticially close enough to OCD's interpretation to not warrant any further discussion, plus the fact this site will have long term monitoring.

- 7. Section 9.1: Soil Remediation and Assessment: Page 27 bullet point 7. OCD assumes Soil Borings SB-9, 10,13,14,15 are located in Area 3. This section of the report indicated benzene concentrations in subsurface soils that have a potentional to leach into groundwater and a clay cap over these locations will assist in stopping further migration. However, there is no mention of a clay cap in the final recommendations for this area. Please explain. OCD Response: No further explanation required.
- 8. Section 7.1: Historical and Current Land Use: Please provide the aerial photos mentioned in this section. *OCD Response: Complete.*

- 9. The plan did not address Area 5: SB-3, 37,38,39 and 40 for chlorides. Please address. OCD Response: <u>Champion has committed to removing the higher chloride concentrations</u> <u>around Area (5) and SB-3, which will substantially lower the overall chloride loading to a</u> <u>much lower concentration average.</u>
- 10. Section 7.2 page 23 of 31 Scenario 3: Which area is this for? <u>OCD Response: The</u> <u>chlorides around Area (3) D-34&D-35 shall be removed until the levels meet or be less</u> <u>than the statistical average of soils remaining in Area (2).</u>
- 11. Section 7.2 page 23 of 31 hydraulic saturated conductivity of .7 cm/day: Is this for the vadose zone or groundwater? Please explain and supply laboratory analysis mentioned in the report. OCD Response: Complete.
- 12. Section 7.2 page 23 of 31 "Compaction of either sandy (caliche) soils or clayey soils generally results in a decrease of permeability by approximately 70 percent": OCD's question here is 70 % of what permeability number? Other words will the caliche soils meet the specifications listed in Item #2B below. OCD Response: Complete.

OCD Approval of Section 10 Recommendations: OCD Response: No Change and still applies.

- 1. OCD hereby approves bullet points #1 through #5 and #9 and considers these as commitments.
- 2. <u>Bullet point #6 (Area 2):</u> OCD approves the backfilling and proper compaction of Area 2 and installation of a barrier that meets the following specifications:
 - A. The excavation shall be backfilled and properly compacted to the 5-feet-belowgrade level with clean fill or with blended soils remaining on site. If blended soils are used then a composite sample shall be collected every three feet and analyzed for TPH, BTEX, Chlorides and any on-site Chemical-of-Concern (COC) already identified.
 - B. The excavation will be then lined with an impermeable barrier that is with a hydraulic conductivity of not more that 1×10^{-7} cm/sec. If a clay barrier is to be used, it shall be either two feet thick, after compaction, or compacted so as to meet or exceed 95% of a Proctor Test ASTM-D-698, as shown by three tests on

the site, and have the following physical characteristics:

- a. Plasticity index greater than 10%;
- b. Liquid limit between 25% and 50%;
- c. More than 40% by weight of the material passing a No. 200 sieve;
- d. Clay content greater than 18% by weight; and
- e. Be free of particles greater than one inch in any dimension.
- C. If a clay barrier is to be used, it will be built in a series of 6-inch lifts so that compaction requirements can be met, and the clay layers should be moisture conditioned, as well as covered with the at least 1 foot of cover soils within 24-48 hours so that the clay layer does not desiccate.
- D. Impermeable barriers should be domed to promote lateral movement of percolation water.
- E. The impermeable barrier must be covered with a protective soil layer at least three feet thick composed of clean porous soil and contoured to be compatible with the adjacent elevations.
- 3. <u>Bullet point #7 (Area 3)</u>: OCD will forgo any approval until clarification is provided as requested in the above <u>Required Information</u>:
- 4. <u>Bullet point #8 (Bulk Tank and Drum Storage Area):</u> If this area is going to be rebuilt as previously constructed then OCD hereby approves of this new construction. If not, then any remaining area that was previously part of the storage area shall be included as part of area 2 and shall conform to the requirements of Item #2 above.

Champion shall respond to this response within 30 days. If Champion agrees to the conditions stated above then OCD will issue final approval of the project via certified mail. If you have any questions,

please contact Wayne Price at (505) 476-3487 or E-Mail WPRICE@state.nm.us.

Sincerely,

Maps Pini

Wayne Price Environmental Engineer

June 3, 2003

Mr. Wayne Price Environmental Engineer New Mexico Oil Conservation Division 1220 South St. Francis Dr Santa Fe, NM 87505

RE: Abatement Plan (AP-14) Stage 2 Abatement Plan Proposal Comprehensive Status Report Champion's Hobbs, NM Facility GW-199

Dear Mr. Price:

Environmental Technology Group, Inc. (ETGI) is pleased to present this response to your letter dated May 8, 2003, on behalf of Champion Technologies (Champion) for the above referenced site. The format of this letter is to specify the New Mexico Oil Conservation Division (NMOCD) concerns followed by ETGI's response.

<u>Required Information:</u>

1. OCD requires a copy of the Hydrus model with instructions, input parameters, weather input data and a copy of the excel spreadsheet that contains the groundwater mixing model. Due to the complex nature of this model, OCD request a technical meeting with the consultant concerning the model and submitted report.

R.T. Hicks Consultants, Ltd (Hicks) the Consultant that completed the chloride simulation, is coordinating a Hydrus seminar to be presented to interested individuals in the NMOCD and industry. Hicks will provide a copy of the Hydrus-1D model/software and provide technical guidance to the NMOCD at this seminar. As of this writing, the seminar is scheduled for Thursday June 26th. Details on time and location are to be determined shortly and will be communicated to the NMOCD by Hicks.

2. Modeling Comments and Questions:

A. OCD is having a difficult time understanding how calibration of the model can be made using hypothetical one-time release at this particular site. Please explain.

The use of the word "calibration" in this application was somewhat ambiguous. The initial simulation was run to determine if site input parameters based on professional judgment and the model's library database (e.g. unsaturated hydraulic conductivity) could render a reasonable prediction of chloride migration. A onetime theoretical release of chloride was employed due to the absence of data that indicate how chlorides were introduced into the pit area or onto the site. Hicks found that by assuming a single release event, a chloride distribution in the unsaturated zone developed that was very similar to observed field data. Actual field data that was used in the simulation required no adjustment to calibrate the model.

B. OCD does not agree using 80 or 100 feet of aquifer thickness in the mixing model. OCD will require 10 feet. Please recalculate using 10 feet.

The use of 80-100 feet is based directly on published data for thickness of saturated Ogallala formation in the area of the Champion site.

Research suggests that mixing of the chloride ion in groundwater happens readily. Dispersion horizontally and vertically will take place. In addition, gravity flow will directly affect the denser chloride concentration in the groundwater allowing transport to the lower reaches of the aquifer. Groundwater analysis collected from on/offsite

domestic water wells (which are primarily screened near the lower section of the aquifer in this area) indicates that chloride concentrations are present at these lower depths in similar concentrations. This illustrates that mixing has occurred throughout the aquifer with regard to the chloride ion.

Based on previous communication on other projects with the NMOCD, Hicks originally used an aquifer thickness input parameter of 10 feet. This input value of a 10-foot aquifer thickness yielded chloride concentration results (from the simulation) that were many times higher than those actually observed in an adjacent monitor well. When the simulation is run with a true representative aquifer thickness of 100 feet, the results match approximately the chloride concentrations that have actually been detected in onsite monitor wells. Moreover, since the chloride ion has higher specific gravity than a hydrocarbon and does not remain in only the top 10 feet of the saturated zone, employing an 80-100 foot aquifer thickness is appropriate.

C. Explanation of Fig #1 and #4: In Fig #1 (Simulated Chloride distribution in the Vadose zone) the units of the measured concentrations do not match the actual soil conditions. For example one point is labeled approximately 1.5 E+05. Is this ppm in soil or soil water and what are the units? Please explain and provide example calculations on how these numbers were obtained and which sample data was used.

Figure #1 and #4 represent the simulated distribution of chloride in soil water throughout the soil profile. Figure #1 represents initial conditions and figure #4 represents Scenario 3.

Figure #1 in Hick's chloride modeling report represents Hydrus output data that is different from laboratory report data in that it represents values of chloride concentration in milligrams/liter of **soil water**.

The actual measured concentrations were converted to express soil water concentrations. Soil concentrations provided by the laboratory are in grams chloride/grams soil. The vast majority of chloride in the soil resides in soil moisture. If the soil moisture and chloride concentration are known, a calculation can be used to determine chloride concentration in the soil (pore) water.

Hicks used the following equation to convert laboratory chloride soil concentration values to chloride concentration values in soil (pore) water:

[Soil chloride (mg/kg)] x [soil bulk density (kg/m³)] / [soil moisture (%)] x [soil bulk density (kg/m³)] x [1kg/1L] = (mg/L)

For example, using this equation to determine the chloride concentration of soil water for a sample analysis of 11,009 mg/kg with soil moisture content of 8% and a bulk density 1858 kg/m³ yields a value of 137,612 mg/L or 1.40E+5.

D. Engineering controls to reduce precipitation by 70%. Please demonstrate that reducing precipitation is the same as reducing the infiltration.

Engineering controls specified were never meant to control precipitation amounts. Engineering controls will be used to control precipitation infiltration. This will be completed by reducing the permeability of the material through compaction and/or by constructing a surface gradient that sheds precipitation. The Hydrus model simulates such engineering controls by precipitation reduction.

E. Champion will have to demonstrate that a caliche pad will provide a proper barrier and demonstrate how this barrier will be maintained. OCD's experience is that caliche pads become very plastic during rainstorm events and notwithstanding the fact that heavy truck traffic used during these times may deteriorate the integrity of the barrier and thus not provide the protection as suggested.

The numerous layers of caliche placed by Champions and past operators at the site has resulted in approximately eight (8) to nine (9) inches of compacted caliche on the poorly developed native soil. ETGI will conduct proctor tests to determine if the existing caliche pad throughout the yard is currently sufficient to attain the infiltration reduction required.

As illustrated in the modeling results (Figs. 2 and 3 of Hicks report), if infiltration had not been reduced by the existing compacted caliche layer, groundwater chloride concentrations should have exceeded 1500 parts per million (ppm).

F. The area size used in the calculations does not take into account chlorides found outside of Area #3 and the rest of the yard. This would increase the overall chloride load and physical geometry of the model. Please delineate Area #3 and adjust the model input parameters to correct for this deficiency and resubmit the new results.

The chloride loading was calculated using worst-case conditions and not a concentration average. The loading is appropriate based on our considerations. It was not stated in the Comprehensive Site Report (CSR) that the surficial area around boring SB-3 with chloride concentrations of 12,428 mg/kg (Area 5) would be removed. This will be completed as part of any additional/follow-up activities to address this letter. Soil confirmation samples will be collected from Area 5 to verify that chloride concentration is primarily in the near surface (0-2' bgs). The values used in load calculations or scenario 3 of this simulation take into account all the areas of the yard that data is available.

Four soil borings were installed in Area 5 by Enercon Services in May 2001, to delineate the chloride concentrations around soil boring SB-3. All soil samples collected by Enercon from this area are from the depth interval of 0 (surface) - 1 foot below ground surface (bgs). The four additional soil borings SB-37, SB-38, SB-39 and SB-40 showed chloride concentrations of 2076 mg/kg, 2093 mg/kg, 3511 mg/kg and 2460 mg/kg respectively.

The chloride loading was calculated based on worst-case concentrations from soil data that was available assuming the removal of chloride concentrations around the isolated area associated with area SB-3.

3. Section 1.2: The old water well found abandoned under the chemical storage pad shall be sampled and analyzed for BTEX, TPH, and Chemicals of Concern using EPA approved methods. A plugging and abandonment plan shall be submitted for OCD approval.

The abandoned water well discovered beneath the bulk chemical storage area is constructed in such a way as to preclude conventional sampling methodology. The well material consists of an inner $\frac{3}{4}$ inch diameter metal "shaft" that is surrounded by a 4 inch metal casing. The "shaft" is held in the middle of the 4-inch casing by metal centralizers

that are welded to the interior of the 4-inch pipe. The centralizers are not removable and do not allow a conventional sampling bailer to pass. Executing an EPA method of removing a minimum of 3 well volumes of water prior to sample collection is doubtful. A groundwater sample collected without properly purging the well is not believed to represent current groundwater environmental conditions. The 4-inch metal casing is surrounded by an outer 6-inch metal casing that appears to be grouted in place. ETGI proposes to plug and abandon this water well by using a winch truck to make an attempt to pull the casing. If the casing cannot be removed then the well will be filled with the required slurry mixture and then cemented and capped by welding a metal cover over the well.

4. Appendix G Photographs (Drain system from warehouse) please describe the past history concerning this system. Is any drain system currently in use? If so please explain.

Evidence suggests that this was what is commonly referred to as a "French Drain" system. A French drain typically transports liquids from sinks, floors etc through a metal piping system and discharges through and open-ended pipe or diffuser into a pit or trench.

Champion has no record of using this drain. Observations of the location where the drain line exits the warehouse are inconclusive to determine usage. The drain system appears to have been installed and used by the former tenants of this facility prior to Champion Technologies. The drain pipe system consisted of at least two sets of three (3) metal pipes. One set drained or serviced the warehouse and another appeared to run beneath portions of the bulk chemical storage containment area and were subsequently excavated. The three pipes in the set from the warehouse contained one (1) three-inch diameter, one (1) three-inch diameter with an electric lead and one (1) one point five-inch line. The pipes originate from near the southwest corner of the warehouse approximately three feet above the ground surface. The warehouse has a cut-away in the sidewall of the structure that would allow access from the interior. From the exterior of the warehouse, two metal pipes descended to below the ground surface and angled into the former pit where they terminated without caps. Observations of the pipes discovered beneath the former bulk chemical containment area are inconclusive in regards to origins or destinations.

The only known drain systems in use are the current septic system that services the current office and former laboratory. The former septic line was excavated and removed and a new drain-line was installed during the drain-line investigation. There is a second drain system that services a sink(s) and restroom in the warehouse. Champion has stated that these facilities are being used for sanitary waste only.

5. Section 4.2: Please provide the total feet of screen placed in monitor wells and the amount placed above and below groundwater.

Well construction information and diagrams can be found in Appendix D, Monitor Well Logs and Well Completion Materials in the Comprehensive Status Report.

Monitor Well MW-14 well construction was reported incorrectly in the Comprehensive Status Report. The Monitor Well Detail should read Depth of PVC well to be 68 feet bgs and not 78 feet bgs. The 68 feet accurately describes the location of the bottom of the screened interval in this monitor well. The corrected

copy of MW-14 well completion diagram and a summary of well screen data for the onsite monitor wells are enclosed in Attachment A.

Typically, monitor wells installed by ETGI are constructed with 20 feet of PVC screen or slotted pipe. Approximately 15 feet of screen is placed below the groundwater table and 5 feet above groundwater table.

6. Section 4.5.6: (Background Data). OCD is reluctant to consider on-site monitor wells MW-1 and MW-7 as being background wells because of the fact that contamination has been found through out Champion's yard i.e. chlorides. MW-7 is located near Area 3 where the delineation of chlorides has not been completed and may have impacted the groundwater in this area, in addition MW-1 and MW-9 lie in proximity to the northwest part of the yard area where natural drainage from Champions yard has occurred for many years. Therefore, please revise the background Chloride data utilizing off-site up-gradient monitor well MW-15 (chlorides noted at 156, 200, 221 mg/l.) and any other off-site up-gradient well such as those sampled by OCD i.e. Harmon and Morrow residences wells (chlorides in these wells were 137 mg/l and 241 mg/l. respectively). OCD calculates the average to be (221+137+241)/3 =199 mg/l. Please provide the recalculated results from the model using this background input data.

Data for monitor well MW-7 was incorrectly reported by the laboratory and subsequently by ETGI in the CSR. The chloride concentration report as 510 mg/L was actually 255 mg/L. The corrected laboratory report is enclosed as Attachment B.

Monitor well MW-7 was originally installed as SB-35 by Enercon Services approximately 38 feet east of the western property line and up-gradient of the rest of the property. Soil samples were collected at the 3-5', 13-15', 23-25', 33-35' and 43-45' intervals. The greatest concentration of chloride was found at the 13-15'interval at 3388 ppm. Despite this concentration and a concentration of 1405 ppm at the 43-45' interval, there has not been a spike increase in the groundwater chloride concentration detected in MW-7 (Attachment C). This is directly related to the lack of transport medium (water) in the unsaturated zone due to the existing compacted caliche surface layer restricting vertical migration of precipitation across the Champion yard. The fact that chloride is found in the soil column does not negate this monitor well from representing background concentrations of chloride in the **groundwater**.

Monitor well MW-9 was installed by ETGI to be out of the runoff flow path for the facility. Monitor well MW-9 is located approximately 50 feet south of the flow path. Observed rain event runoffs of last season did not approach the MW-9 location. Monitor well MW-9 is constructed with a raised surface completion that stands approximately 4 feet above the surrounding surface. A soil sample collected during placement of monitoring well MW-9 @ 5 feet below ground surface yielded a chloride concentration of 73.9 ppm (Attachment C).

In the conditionally approved (by OCD) Stage 2 Abatement Plan Proposal by Enercon

Services dated February 5, 2002, an off-site, up-gradient monitor well is proposed to monitor groundwater conditions entering the facility (Enercon's MW-8). This proposed monitor well placement is assumed to be approved by the OCD since there was no deficiency associated with this item. Enercon's Figure 5 of the Stage 2 Abatement Plan Proposal indicates where Enercon proposed to place MW-8 (Attachment D).

In the letter Response to Notice of Deficiency dated June 3, 2002 by ETGI it is stated that a proposed monitor well will be placed off-site, up-gradient to the west or northwest of the facility to ascertain background soil and groundwater quality. A Site Map figure was attached to the Response Letter indicating where the proposed monitor well(s) would be located (Attachment D). The OCD did not respond or comment on the proposed monitor well locations and it is assumed by lack of comment that the locations are approved.

Monitor well MW-1 was installed by Enercon Services near the north-east corner of the site to evaluate groundwater coming on-site. A soil boring SB-1 (installed by Enercon) nearest to monitoring well MW-1 had a reported chloride concentration from 0-1 foot bgs of 151 ppm. Monitoring well MW-1 has been inspected for faulty well cap or well box gasket. Both are in place and appear to be functioning according to design.

Champion and ETGI maintain that monitoring wells MW-1, MW-7, MW-9 and MW-15 are legitimate representations of (up-gradient) background groundwater monitoring points. These monitor wells have a calculated average groundwater chloride concentration of 311 ppm ((435 + 255 + 332 + 221)/4) based on data collected in the February 2003 sampling event and 291 mg/L based on all samples collected from these wells by ETGI from August 2002 through February 2003.

Regardless of the background concentration selected, the chloride simulations illustrate a potential net increase of approximately 1226 mg/L in Scenario 1 (without controls) and a maximum potential increase of approximately 100 mg/L for Scenario 2 (with Controls).

7. Section 9.1: Soil Remediation and Assessment: Page 27 bullet point 7. OCD assumes Soil Borings SB-9, 10, 13, 14, 15 are located in Area 3. This section of the report indicated benzene concentrations in subsurface soils that have a potential to leak into groundwater and a clay cap cover over these locations will assist in stopping further migration. However, there is no mention of a clay cap in the final recommendations for this area. Please explain.

Soil borings SB-9, 10, 13, 14 and 15 are all located in Area 2. This area is planned to have a clay cap to prevent precipitation infiltration.

Area 3 is not planned to have a clay cap cover but will have a compacted caliche cover that will restrict infiltration. The compacted caliche cover will have a hydraulic conductivity of less then $1 \ge 10^{-5}$ cm/s which is similar to the requirements of a cover over a municipal landfill.

8. Section 7.1: Historical and Current Land Use: Please provide the aerial photos mentioned in this section.

Copies of the aerial photos referenced in this section are provided as an Attachment E.

9. The plan did not address Area 5: SB-3, 37, 38, 39 and 40 for chlorides. Please address.

Sample SB-3 in area 5 indicates near-surface impact only. Additional delineation completed in this area showed chloride concentrations ranging from 2093 mg/kg to 3511 mg/kg. Champion will have the top 1-2 feet removed from Area 5 associated with sample SB-3. Confirmation soil samples will be collected to illustrate chloride removal/reduction. The area will be covered with a compacted caliche surface to reduce precipitation infiltration and prevent any remaining chloride migration into groundwater.

10. Section 7.2 page 23 of 31 Scenario 3: Which area is this for?

Scenario 3 is a simulation for all chloride impacted areas outside of Area 2. Scenario 3 takes into account the worst-case condition(s) found at 5 feet bgs in Area 3 at sample location D-34 (11,900 ppm). This is not an average concentration but ETGI elected to run the chloride simulations with the most conservative values. Even though the concentration of 12,428 ppm at soil sample location SB-3 (collected by Enercon) is statistically very similar to the 11,900 at location D-34 this impacted material, as discussed in number 9 above, specifically soil associated with sample SB-3 will be removed.

11. Section 7.2 page 23 of 31 hydraulic saturated conductivity of .7 cm/day: Is this for the vadose zone or groundwater? Please explain and supply laboratory analysis mentioned in the report.

The hydraulic saturated conductivity is representative of the vadose zone. A soil sample core was collected at location SB-46 @ 42-45 feet bgs and submitted for geotechnical soil analysis at Stork Southwestern Laboratories.

A copy of the laboratory report is enclosed as Attachment F.

12. Section 7.2 page 23 of 31 "Compaction of either sandy (caliche) soils or clayey soils generally results in a decrease of permeability by approximately 70 percent": OCD's question here is 70 % of what permeability number? Other words will the caliche meet the specifications listed in Item #2B below.

The compacted caliche will meet the criteria in Item #2B as it pertains to use as a cover to prevent infiltration of precipitation. A demonstration will be made by the completion of at least three Proctor Tests (ASTM-D-698) on the compacted caliche base to illustrate a hydraulic conductivity of not more than 1×10^{-5} cm/sec. The parameters stated in Item #2B to meet hydraulic conductivity values of 1×10^{-7} are criteria developed for municipal landfill liners according to 40 CFR 258.40(b) landfill design, not 40 CFR 258.60(a)(1), Closure and Post Closure- Final Cover Design. A compacted caliche layer of approximately 8-9 inches thick across the site can be demonstrated to have a hydraulic conductivity of 1×10^{-5} cm/sec. Appendix G of this letter contains the recent paper referenced in section 7.1 of the CSR titled, "Compacted Urban Soils Effects on Infiltration and Bioretention Stormwater Control Designs". This paper discusses the significance of compacted urban/industrial soils relating to precipitation infiltration (including compacted sand and clay).

The specification referenced in the OCD approval of Section 10 Recommendations specifically 2B, are for an EPA specification municipal bottom liner. Champion refers to the above regulation regarding final cover design for Municipal Solid Waste landfills specific to construction of a cover with a permeability of not more than 1×10^{-5} cm/sec. These regulations indicate the relevance to the technical consideration of the cover required to minimize the infiltration of precipitation into the subsurface.

I hope this letter address the concerns raised. Upon your review of this document and attachments, should have any questions or concerns please do not hesitate to contact us.

Sincerely,

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

Todd K. Choban Sr. Geologist/Project Manager Chan B. Patel Sr. Project Manager

Attachments

cc: Larry Johnson - OCD Hobbs District Office Ralph Corry - Champion Technologies, Fresno, TX Dwight E. Vorpahl - Attorney, Houston, TX Richard Cox - Champion Technologies, Guthrie, OK Champion Technologies - Hobbs, NM ETGI - Midland, TX ETGI - Houston, TX

ATTACHMENT A

MONITOR WELL SCREEN DATA ATTACHMENT A

Monitor	Total Screen	Total Depth	Average	Screen Above	Screen Below
Well No.	Length	of PVC Used	Water Level	Water Level	Water Level
MW-8	20	69'	60'	11	9
MW-9	20	61'	53'	12	8
MW-10	20	67'	59'	12	8
MW-11	20	70'	57'	7	13
MW-12	20	70'	60'	10	10
MW-13	20	71'	60'	9	11
MW-14*	20	68'	57'	9	11
MW-15	20	68'	53'	5	15
MW-16	20	71'	60'	9	11

* An error was observed on the boring log submitted. Attachment _____ contains the corrected log and relevant copies of the page from the field log.

ATTACHMENT B

Lubbock, TX 79424-1515

(806) 794-1296

Report Date: May 23, 2003Order Number: A03022118 CH2100 Champion Tech Page Number: 1 of 5 Hobbs,NM

May 23, 2003

Summary Report

Todd Choban E.T.G.I. PO Box 4845 Midland, Tx. 79704

TraceAnalysis, Inc.

Report Date:

Order ID Number: A03022118

Project Number:CH2100Project Name:Champion TechProject Location:Hobbs,NM

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
222041	WChamp 21903 MW-1	Water	2/19/03	10:01	2/21/03
222042	WChamp 21903 MW-2	Water	2/19/03	8:46	2/21/03
222043	WChamp 21903 MW-3	Water	2/19/03	9:17	2/21/03
222044	WChamp 21903 MW-4	Water	2/19/03	9:40	2/21/03
222045	WChamp 21903 MW-5	Water	2/19/03	9:30	2/21/03
222046	WChamp 21903 MW-7	Water	2/19/03	8:20	2/21/03
222047	WChamp 21903 MW-8	Water	2/19/03	9:12	2/21/03
222048	WChamp 21903 MW-9	Water	2/19/03	8:27	2/21/03
222049	WChamp 21903 MW-10	Water	2/19/03	10.16	2/21/03
222050	WChamp 21903 MW-13	Water	2/19/03	9:22	2/21/03
222051	WChamp 21903 MW-14	Water	2/19/03	9:35	2/21/03
222052	WChamp 21903 MW-15	Water	2/19/03	8:13	2/21/03
222053	WChamp 21903 MW-16	Water	2/19/03	8:52	2/21/03
222054	WChamp Onsite 21903	Water	2/19/03	10:53	2/21/03
222055	WChamp Offsite 21903	Water	2/19/03	10:42	2/21/03

Comment: CORRECTED CHLORIDE FOR 222046

This report consists of a total of 5 page(s) and is intended only as a summary of results for the sample(s) listed above.

Sample: 222041 - WChamp 21903 MW-1				
Param	Flag	\mathbf{Result}	Units	
Dissolved Chromium		<0.011	mg/L	
Chloride		435	mg/L	

Sample: 222042 - WChamp 21903 MW-2

Param	\mathbf{Flag}	Result	Units
Dissolved Chromium		0.0134	mg/L
Chloride		384	mg/L

Lubbock, TX 79424-1515

(806) 794-1296

Report Date: May 23, 2003Order Number: A03022118 CH2100 Champion Tech			Page Number: 2 of 5 Hobbs,NM
Sample: 222043	- WChamp 21903 MW-3	Result	Units
Dissolved Chromium		0.0122	mg/L
Chloride		658	mg/L

Sample: 222044 - WChamp 21903 MW-4

TraceAnalysis, Inc.

Param	Flag	Result	Units
Dissolved Chromium	····	0.271	mg/L
Chloride		485	m mg/L

Sample: 222045 - WChamp 21903 MW-5ParamFlagResultUnitsDissolved Chromium<0.011</td>mg/LChloride476mg/L

Param	\mathbf{Flag}	Result	\mathbf{Units}
Dissolved Chromium		<0.011	mg/L
Chloride		255	mg/L

Sample: 222047 - WChamp 21903 MW-8

Param	\mathbf{Flag}	\mathbf{Result}	\mathbf{Units}
Dissolved Chromium		<0.011	mg/L
Chloride		397	m mg/L

Sample: 222048 - WChamp 21903 MW-9ParamFlagResultUnitsDissolved Chromium<0.011</td>mg/LChloride332mg/L

Sample: 222049 - WChamp 21903 MW-10

Param	\mathbf{Flag}	\mathbf{Result}	Units
Dissolved Chromium		0.0163	mg/L
Chloride		355	mg/L

Lubbock, TX 79424-1515

(806) 794-1296

Report Date: May 23, 2003Order Number: A03022118 CH2100 Champion Tech

TraceAnalysis, Inc.

Page Number: 3 of 5 Hobbs,NM

Sample: 222050 - WChamp 21903 MW-13				
Param	\mathbf{Flag}	Result	\mathbf{Units}	
Dissolved Chromium		0.151	mg/L	
Chloride		332	mg/L	

Sample: 222051 - WChamp 21903 MW-14

Param	Flag	Result	\mathbf{Units}
Dissolved Arsenic		<0.011	mg/L
Dissolved Chromium		< 0.011	m mg/L
Chloride		342	mg/L

Sample: 222052 - WChamp 21903 MW-15

Param	Flag	Result	\mathbf{Units}
Dissolved Chromium		< 0.011	mg/L
Chloride		221	mg/L

Sample: 222053 - WChamp 21903 MW-16

Param	\mathbf{Flag}	\mathbf{Result}	Units
Dissolved Chromium		< 0.011	mg/L
Chloride		474	m mg/L
Bromochloromethane		<1.00	$\mu { m g/L}$
Dichlorodifluoromethane		<1.00	$\mu { m g}/{ m L}$
Chloromethane (methyl chloride)		<1.00	$\mu { m g/L}$
Vinyl Chloride		<1.00	$\mu { m g}/{ m L}$
Bromomethane (methyl bromide)		< 5.00	$\mu { m g}/{ m L}$
Chloroethane		<1.00	$\mu { m g}/{ m L}$
Trichlorofluoromethane		<1.00	$\mu { m g}/{ m L}$
Acetone		<10.0	$\mu g/L$
Iodomethane (methyl iodide)		<5.00	$\mu \mathrm{g/L}$
Carbon Disulfide		<1.00	$\mu { m g}/{ m L}$
Acrylonitrile		<1.00	$\mu \mathrm{g}/\mathrm{L}$
2-Butanone (MEK)		< 5.00	$\mu { m g}/{ m L}$
4-methyl-2-pentanone (MIBK)		$<\!5.00$	$\mu { m g}/{ m L}$
2-hexanone		< 5.00	$\mu { m g}/{ m L}$
trans 1,4-Dichloro-2-butene		<10.0	$\mu { m g}/{ m L}$
1,1-Dichloroethene		<1.00	$\mu { m g}/{ m L}$
Methylene chloride		$<\!5.00$	$\mu { m g}/{ m L}$
MTBE		<1.00	$\mu { m g}/{ m L}$
trans-1,2-Dichloroethene		<1.00	$\mu { m g}/{ m L}$
1,1-Dichloroethane		1.64	$\mu { m g}/{ m L}$
cis-1,2-Dichloroethene		<1.00	$\mu { m g}/{ m L}$
2,2-Dichloropropane		<1.00	$\mu { m g}/{ m L}$
1,2-Dichloroethane (EDC)		<1.00	$\mu { m g}/{ m L}$
Chloroform		<1.00	$\mu { m g}/{ m L}$
1,1,1-Trichloroethane		<1.00	$\mu { m g}/{ m L}$
		Continue	d on next page

Lubbock, TX 79424-1515

(806) 794-1296

Report Date: May 23, 2003Order Number: A03022118 CH2100 Champion Tech Page Number: 4 of 5 Hobbs,NM

Sample 222053 continued ...

TraceAnalysis, Inc.

Param	Flag Result	Units
1,1-Dichloropropene	<1.00	$\mu g/L$
Benzene	<1.00	$\mu \mathrm{g/L}$
Carbon Tetrachloride	<1.00	$\mu { m g}/{ m L}$
1,2-Dichloropropane	<1.00	$\mu g/L$
Trichloroethene (TCE)	<1.00	$\mu \mathrm{g}/\mathrm{L}$
Dibromomethane (methylene bromide)	<1.00	$\mu g/L$
Bromodichloromethane	<1.00	$\mu g/L$
2-Chloroethyl vinyl ether	$<\!5.00$	$\mu g/L$
cis-1,3-Dichloropropene	<1.00	$\mu g/L$
trans-1,3-Dichloropropene	<1.00	$\mu g/L$
Toluene	<1.00	$\mu g/L$
1,1,2-Trichloroethane	<1.00	$\mu g/L$
1,3-Dichloropropane	<1.00	$\mu g/L$
Dibromochloromethane	<1.00	$\mu { m g}/{ m L}$
1,2-Dibromoethane (EDB)	<1.00	$\mu g/L$
Tetrachloroethene (PCE)	1.62	$\mu \mathrm{g/L}$
Chlorobenzene	<1.00	$\mu g/L$
1,1,1,2-Tetrachloroethane	<1.00	$\mu g/L$
Ethylbenzene	<1.00	$\mu g/L$
m,p-Xylene	<1.00	$\mu \mathrm{g/L}$
Bromoform	<1.00	$\mu { m g}/{ m L}$
Styrene	<1.00	$\mu { m g}/{ m L}$
o-Xylene	<1.00	$\mu g/L$
1,1,2,2-Tetrachloroethane	<1.00	$\mu { m g}/{ m L}$
2-Chlorotoluene	<1.00	$\mu { m g}/{ m L}$
1,2,3-Trichloropropane	<1.00	$\mu { m g}/{ m L}$
Isopropylbenzene	<1.00	$\mu { m g/L}$
Bromobenzene	<1.00	$\mu { m g}/{ m L}$
n-Propylbenzene	<1.00	$\mu { m g}/{ m L}$
1,3,5-Trimethylbenzene	<1.00	$\mu { m g/L}$
tert-Butylbenzene	<1.00	$\mu { m g/L}$
1,2,4-Trimethylbenzene	<1.00	$\mu { m g/L}$
1,4-Dichlorobenzene (para)	<1.00	$\mu { m g}/{ m L}$
sec-Butylbenzene	<1.00	$\mu { m g/L}$
1,3-Dichlorobenzene (meta)	<1.00	$\mu { m g}/{ m L}$
p-Isopropyltoluene	<1.00	$\mu { m g}/{ m L}$
4-Chlorotoluene	<1.00	$\mu { m g}/{ m L}$
1,2-Dichlorobenzene (ortho)	<1.00	$\mu { m g}/{ m L}$
n-Butylbenzene	<1.00	$\mu \mathrm{g}/\mathrm{L}$
1,2-Dibromo-3-chloropropane	<5.00	$\mu \mathrm{g/L}$
1,2,3-Trichlorobenzene	<5.00	$\mu g/L$
1,2,4-Trichlorobenzene	<5.00	$\mu { m g}/{ m L}$
Naphthalene	<5.00	$\mu { m g}/{ m L}$
Hexachlorobutadiene	<5.00	$\mu { m g} / { m L}$

Sample: 222054 - WChamp Onsite 21903

Param	\mathbf{Flag}	\mathbf{Result}	Units
Dissolved Chromium		<0.011	mg/L
			Continued on next page

TraceAnalysis, Inc. 6701 Aberdeen Ave., Suite 9 Lubbock, TX 79424-1515 (806) 794-1296 Report Date: May 23, 2003Order Number: A03022118 Page Number: 5 of 5 CH2100 Champion Tech Hobbs,NM Sample 222054 continued ... Result Units Param Flag 347 mg/L Chloride

Sample: 222055 - WChamp Offsite 21903

i

Param	Flag	Result	Units
Dissolved Chromium		< 0.011	mg/L
Chloride		479	m mg/L

ATTACHMENT C
CORRELATION OF SOIL DATA TO MONITOR WELL DATA AND BACKGROUND WELL DATA

Champion Technology ETGI Project No. CH2100 ATTACHMENT C

MONITOR	DEPTH	SOIL CONC.	DATE	GW CONC.
WELL #	in feet	mg/kg	m/d/y	mg/L
MW-1	(SB-1) 1	151	08/02/02	408
			10/31/02	356
			02/19/03	435
MW-2	5-7	868	08/02/02	372
	15 - 17	3122	10/21/02	397
			02/19/03	384
MW-3	(SB-52) 5	53	08/02/02	381
	25	43.7	10/21/02	464
	45	38.7	02/19/03	658
MW-4	W-Trench S 2.5	4130	08/02/02	354
			10/21/02	377
			02/19/03	435
MW-5			08/02/02	346
			10/21/02	508
			02/19/03	476
MW-6	3 - 5	3582	08/02/02	443
	13 - 15	1195	10/21/02	469
	23 - 25	197	11/13/02	390
	33 - 35	68.7	02/19/03	533
	43 - 45	57.2	08/02/02	239
MW-7	3 - 5	1339	10/21/02	235
	13 - 15	3388	02/19/03	255
	23 - 25	1579		
	33 - 35	1480		
	43 - 45	1405		
MW-8	(SB-24) 3 - 5	198	08/02/02	257
	10 - 12	220	10/21/02	304
	23 - 25	821	02/19/03	397
	38 - 40	166		
MW-9	5	73.9	08/02/02	348
			10/21/02	305
	[02/19/03	332
MW-10	5	240	10/21/02	260
	10	153	02/19/03	355
	20	243		
	40	7.8		
MW-11	(SB-30) 3 - 5	<3.0	10/21/02	298
	í í 15 - 17	33.1	02/19/03	298
	56	37.6		
MW-12	15	390	10/21/02	357
	45	43.7	02/19/03	353
MW-13	5	2280	10/21/02	464
	10	501	02/19/03	332
MW-14	5	61.4	10/21/02	272

CORRELATION OF SOIL DATA TO MONITOR WELL DATA AND BACKGROUND WELL DATA

> Champion Technology ETGI Project No. CH2100 ATTACHMENT C

MONITOR WELL #	DEPTH in feet	SOIL CONC. mg/kg	DATE m/d/y	GW CONC. mg/L
	30	575	02/19/03	342
	50	243		
MW-15	5	46.7	10/21/02	156
	25	37.4	11/13/02	200
	40	137	02/19/03	221
MW-16	5	2820	10/21/02	416
			02/19/03	474

(SB-X) indicates boring data closest to the monitor well used when monitoring well soil data is not available

ATTACHMENT D

ATTACHMENT E

Longitude: -103° 7' 43.1" Latitude: 32° 39' 26.3"

UTM Easting: 675504 meters UTM Northing: 3614656 meters UTM Zone: NAD 13

County: LEA

Project: NAPP Quadrangle: Date: 19 Sep 1995 Film Type: Black & White Scale: 1 inch to 400 feet UTM North Is straight up

Source: U.S. Dept of Interior, Geological Survey

Longitude: -103° 7' 43.1" Latitude: 32° 39' 26.3"

UTM Easting: 675504 meters UTM Northing: 3614656 meters UTM Zone: NAD 13

County: LEA

Project: NHAP02 474 66 Quadrangle: Date: 1986/07/19 Film Type: Black & White Scale: 1 inch to 800 feet UTM North is straight up

Source: U.S. Dept of Interior, Geological Survey

AERIAL PHOTOGRAPH OF THE VICINITY OF THE SUBJECT SITE LOCATED AT

Longitude: -103° 7' 43.1" Latitude: 32° 39' 26.3"

UTM Easting: 675504 meters UTM Northing: 3614656 meters UTM Zone: NAD 13

County: LEA

Project: VBQG 1-70 Quadrangle: Date: 1967 Film Type: Black & White Scale: 1 inch to 500 feet UTM North is straight up

Source: U.S. Dept of Interior, Geological Survey

AERIAL PHOTOGRAPH OF THE VICINITY OF THE SUBJECT SITE LOCATED AT

ATTACHMENT F

STORIS

SOUTHWESTERN LABORATORIES

222 Cavalcade Street, 77009-3213 P.O. Box 8768, Houston, Texas 77249-8768 Tel (713) 692-9151 Fax (713) 696-6307

HYDRAULIC CONDUCTIVITY (ASTM D 5084), ORGANIC CONTENT (ASTM D2974) BULK DENSITY(ASTM D2937), MOISTURE CONTENT (ASTM D2216)

Projec	Project Name: Environmental Technoloy Gro			oup		Proj. No.:				
Sample ID:		42-45 ft		Lab No.:	51409					
Descri	ption o	f Soil:	Pale Brow	Pale Brown Caliche Cemented Sand						
Porosity			31.0 %	31.0 % Fraction Organic Corban = 0.3 %						
Back Pressure Saturation Conditions:				s:	B Coefficient			> or =	= 0.95	
Conso	lidatior	and Perm	eation Cond	litions:	Effective Stre	ss, psi:			30.0	
Pipet Length, Lp (cm)			11.237 in	in 28.542 cm Pipet Area, a (25			m ³ /Lp)		0.876 cm ²	
					Specific Grav	Specific Gravity of Water, $G_{W} = 1.00$				
SPECIMEN DIMENSIONS AND PROPERTIES										
	Item		Initial				Final			
			Input Data	Cor. Factor	Output Data	Input	Data	Cor. Factor	Output Data	
Sampl	e Diam	eter	2.825 in	2.54	7.18 cm	2.820	in	2.54	7.16 cm	
Sampl	e Area		6.27 ir		40.44 cm ²	6.25			40.30 cm ²	
Sampl	e Lengt	h	3.65 in	2.54	9.27 cm	3.64	in	2.54	9.25 cm	
Tare N	lumber		6			100				
Tare V	Veight (gm)	144.86			130.26			<u></u>	
Wet So	sil + Ta	re (gm)	786.60		608.2					
Dry Sc	oil + Tar	re (gm)	734.00		542.10					
Water	Weight	(gm)		52.60					66.10	
Dry Sc	oil Weig	ht (gm)		589.14					411.84	
Moist	ure Cor	itent (%)		·	8.9				16.0	
Wet So	oil Weig	sht (gm)	760.60			798.20			1	
Wet B	ulk Der	nsity (pcf)			126.7				133.7	
Dry B	ulk Der	usity (pcf)			116.3				115.3	
Satura	tion (%)			53.7				95.0	
Specifi	Specific Gravity		2.700			TESTED			ASSUMEDX	
		H)	(DRAULIC	CONDUCI	IVITY TESTI	NG MEA	ASURE	MENT		
Confining Pressure (psi)		82	Influent Pressure (psi)		52 Effluen		t Press. (psi)	50.5		
Resct?	Men	s. Time	ha _{out}	ha _{in}	Temperature	Grad	ient	k	k ₂₀	
1=Yes	Date	Time	(cm)	(cm)	(°C)	Min.	Max.	(cm/s)	(cm/s)	
1	08/13	16:12:00	24.00	1.00	22.5	10	34			
	08/13	16:23:00	20.65	4.30	22.5	13		9.0E-06	8.5E-06	
	08/13	16:36:00	16.85	7.10	22.5	13		8.1E-06	7.6E-06	
08/13 16:45:00		14.40	9.65	22,5	12		9.3E-06	8.7E-06		
AVERAGE VALUES						13		8.8E-06	8.3E-06	

Calculated by: M. Medi, E.I.T.

Date: 08-14-2002

STORK

SOUTHWESTERN LABORATORIES

222 Cavalcade Street, 77009-3213 P.O. Box 8768, Houston, Texas 77249-8768 Tel (713) 692-9151 Fax (713) 696-6307

HYDRAULIC CONDUCTIVITY (ASTM D 5084), ORGANIC CONTENT (ASTM D2974) BULK DENSITY(ASTM D2937), MOISTURE CONTENT (ASTM D2216)

Projec	t Name	ne: Environmental Technoloy (roup Proj. No.:						
Sample ID:		42-45 ft						Lab No.:	Lab No.: 51409		
Description of Soil:			Pale Brown Caliche Cemented Sand								
Porosity		31.0 % Fra				action Organic Corban = 0.3 %					
Back Pressure Saturation		n Conditions: B Coefficie			nt > or = 0.95						
Consc	lidation	n and Perm	eation Cond	Effective St	Effective Stress, psi:			-	30.0		
Pipet	Length,	Lp (cm)	11.237 in	28.542 cm Pipet Area, a ($(25.000 \text{ cm}^3/\text{Lp}) = 0.876 \text{ cm}^2$				
		1.18			Specific Gra	vity o	of We	ater, G	W =	1.003	
				SPECIMEN	DIMENSIC	ONS A	ND	PROPE	RTIES		
141	Item			Initial			Final				
2.47		1.1.1.	Input Data	Cor. Factor	Output Data	a In	put l	Data	Cor. Factor	Output Data	
Sampl	e Diam	eter	2.825 in	2.54	7.18 ст	n 2	.820	in	2.54	7.16 cm	
Sampl	e Area		6.27 in		40.44 ci	n^2	6.25			40.30 cm ²	
Sampl	e Lengi	lh	3.65 in	2.54	9.27 cr	n	3.64	in	2.54	9.25 cm	
Tare N	Jumber	1919/91	6				100	199	SiNella dei		
Tare V	Veight (gm)	144.86	HEAL	CALCER AND	13	0.26	PHU			
Wet Soil + Tare (gm)		786.60			60	8.20	12.2				
Dry Se	oil + Ta	re (gm)	734.00			54	2.10				
Water	Weight	t (gm)	1	52.60						66.10	
Dry Se	oil Weig	ght (gm)	Ray -		589.14					411.84	
Moist	are Cor	ntent (%)			8.9		121		Sus Lines	16.0	
Wet Se	oil Weig	ght (gm)	760.60			79	8.20				
Wet Bulk Density (pcf)				126.7		T A			133.7		
Dry B	ulk Der	nsity (pcf)			116.3				1. 1. 1.	115.3	
Satura	tion (%)	States -		53.7					95.0	
Specific Gravity		2.700			TES	TED		Cherry I	ASSUMED X		
		HY	DRAULIC	CONDUCT	IVITY TEST	TING	MEA	SURE	MENT	Sector Sector	
Confining Pressure (psi)		82	Influent Pressure (psi)			52 Effluent Press. (psi		t Press. (psi)	50.5		
Reset?	Mea	s. Time	ha _{out}	hain	Temperature	e (Grad	ient	k	k ₂₀	
1=Yes	Date	Time	(cm)	(cm)	(°C)	M	lin.	Max.	(cm/s)	(cm/s)	
1	08/13	16:12:00	24.00	1.00	22.5		10	34	時代に世界		
	08/13	16:23:00	20.65	4.30	22.5		13		9.0E-06	8.5E-06	
08/13 16:36:00		16.85	7.10	22.5		13		8.1E-06	7.6E-06		
	08/13	16:45:00	14.40	9.65	22.5		12		9.3E-06	8.7E-06	
AVER	AGE V.	ALUES					13		8.8E-06	8.3E-06	

Calculated by: M. Medi, E.I.T.

Date: 08-14-2002