1R - 2

REPORTS

DATE:

6/01/2006

[R 0002

2006 JUN 5 PM 2 02

FEBRUARY 2006 SOIL AND GROUNDWATER SAMPLING REPORT HOBBS (FRACMASTER), NEW MEXICO FACILITY

BJ SERVICES COMPANY, U.S.A.

June 1, 2006

FEBRUARY 2006 SOIL AND GROUNDWATER SAMPLING REPORT HOBBS (FRACMASTER), NEW MEXICO FACILITY

Prepared for

BJ Services Company, U.S.A. 11211 FM 2920 Tomball, Texas 77375

BC Project Number: 128125

Jen Camacho Jen Low

Scientist

Richard L. Rexroad J.G.

Project Manager

June 1, 2006

Brown and Caldwell

1415 Louisiana, Suite 2500 Houston, Texas 77002 - (713) 759-0999

P:\Wp\BJSERV\128125\003R.doc

Lynn Wright

"This report was prepared in accordance with the standards of the environmental consulting industry at the time it was prepared. It should not be relied upon by parties other than those for whom it was prepared, and then only to the extent of the scope of work which was authorized. This report does not guarantee that no additional environmental contamination beyond that described in this report exists at this site."

2.0 FIELD ACTIVITIES

Brown and Caldwell installed three monitor wells in the vicinity of the formerly excavated area using hollow stem auger drilling techniques to determine the direction of groundwater flow, to more fully evaluate impact to groundwater at the site, and to define the define the lateral extent of soil impacts. An area approximately 25 feet by 30 feet was determined to be the extent of the excavated area (See Figure 2). The sampling event included three monitor wells (MW-1, MW-2, and MW-3) that were installed and sampled for the first time in February 2006. The locations of the monitor wells in the area of the facility are shown in Figure 3. Soil samples were collected from the borings associated with the monitor wells MW-1 and MW-2. The following subsections describe the field activities conducted by Brown and Caldwell during the groundwater sampling and soil sampling event. Section 3.0 presents an evaluation of these data.

2.1 Soil Sampling Activities

Soil samples were collected from the approximate 19- to 20-foot depth interval of the MW-1 boring and from the 14- to 15-foot interval of the MW-2 boring in an attempt to define the lateral extent of soil impacts detected at those depths at the respective July 2005 WS and ES locations.

Brown and Caldwell advanced one soil boring each at the MW-1 and MW-2 locations. Soil cores were collected at approximate 5-foot centers from the ground surface to the total depth (TD) of the boring at each of these locations. Recovered soil cores were logged in accordance with the Unified Soil Classification System (USCS) and scanned with a calibrated photoionization detector (PID). The soil borings were advanced until the top of the saturated zone was encountered. Soil boring logs, indicating lithology and PID responses, are provided in Appendix A.

The soil samples were analyzed for the following parameters:

- TPH-G and TPH-D by Method 8015M; and
- BTEX by Method 8021.

CONTENTS

1.0	INTRODUCTION	1
2.0	FIELD ACTIVITIES 2.1 Soil Sampling Activities 2.2 Monitor Well Installation and Development Activities 2.3 Groundwater Sampling Activities 2.4 Quality Assurance/Quality Control Samples 2.5 Decontamination and Waste Managment	
3.0	ANALYTICAL RESULTS	6
4.0	CONCLUSIONS AND RECOMMENDATIONS 4.1 Conclusions 4.2 Recommendations	8
DIST	TRIBUTION AND QA/QC REVIEWER'S SIGNATURE	
FIGU	URES	
1 2 3	Site Location Map Site Map Groundwater Elevation Map for February 23, 2006	
TAB	BLES	
1 2 3	Groundwater Elevation Data Analytical Results for Soil Samples Summary of Detected Constituents in Groundwater Samples	
APP	ENDICES	
A B C	Boring Logs and Monitor Well Construction Diagrams: Monitor Wells MW-1 and MW-3 Groundwater Sampling Forms Laboratory Analytical Reports	, MW-2,

1.0 INTRODUCTION

Brown and Caldwell conducted a monitor well installation and soil and groundwater sampling investigation at the BJ Services Company, U.S.A. (BJ Services) FracMaster facility located at 1329 N. West County Road in Hobbs, New Mexico on February 21-23, 2006 (See Figure 1). This report presents a description of the field activities and a summary and evaluation of the analytical results. A site location map and a groundwater potentiometric surface map are included.

A layout of the facility is shown in Figure 2. A former field waste tank and approximately 1,400 tons of soil were previously removed at the inactive BJ Services FracMaster facility in Hobbs, New Mexico. Post-excavation samples reportedly indicated impacts to soil by gasoline- and diesel-range total petroleum hydrocarbons (TPH-G and TPH-D). Volatile and semivolatile organic compounds (VOCs and SVOCs) were reportedly detected in the post-excavation floor sample; the post-excavation sidewall samples were not analyzed for VOCs and SVOCs. The approximately 25-foot deep excavated area was subsequently backfilled. Subsurface sampling conducted by Brown and Caldwell in July 2005 indicated impacts to vadose zone soils by benzene, toluene, ethylbenzene and xylenes (BTEX) and total petroleum hydrocarbons (TPH) at the Sample ES and WS locations to the east and west of the former field waste tank area, as well as impacts to underlying groundwater by benzene, naphthalene, and xylenes. Pursuant to a request by BJ Services, Brown and Caldwell installed three monitor wells in the area of the former field waste tank to determine the direction of groundwater flow and to more fully evaluate impact to groundwater at the site.

2.0 FIELD ACTIVITIES

Brown and Caldwell installed three monitor wells in the vicinity of the formerly excavated area using hollow stem auger drilling techniques to determine the direction of groundwater flow, to more fully evaluate impact to groundwater at the site, and to define the define the lateral extent of soil impacts. An area approximately 25 feet by 30 feet was determined to be the extent of the excavated area (See Figure 2). The sampling event included three monitor wells (MW-1, MW-2, and MW-3) that were installed and sampled for the first time in February 2006. The locations of the monitor wells in the area of the facility are shown in Figure 3. Soil samples were collected from the borings associated with the monitor wells MW-1 and MW-2. The following subsections describe the field activities conducted by Brown and Caldwell during the groundwater sampling and soil sampling event. Section 3.0 presents an evaluation of these data.

2.1 Soil Sampling Activities

Soil samples were collected from the approximate 19- to 20-foot depth interval of the MW-1 boring and from the 14- to 15-foot interval of the MW-2 boring in an attempt to define the lateral extent of soil impacts detected at those depths at the respective July 2005 WS and ES locations.

Brown and Caldwell advanced one soil boring each at the MW-1 and MW-2 locations. Soil cores were collected at approximate 5-foot centers from the ground surface to the total depth (TD) of the boring at each of these locations. Recovered soil cores were logged in accordance with the Unified Soil Classification System (USCS) and scanned with a calibrated photoionization detector (PID). The soil borings were advanced until the top of the saturated zone was encountered. Soil boring logs, indicating lithology and PID responses, are provided in Appendix A.

The soil samples were analyzed for the following parameters:

- TPH-G and TPH-D by Method 8015M; and
- BTEX by Method 8021.

The laboratory analytical reports and chain-of-custody documentation for the soil samples are provided in Appendix B.

2.2 Monitor Well Installation and Development Activities

Monitor wells MW-1, MW-2, and MW-3 were installed in the area of the former field waste tank to determine the direction of groundwater flow and to more fully evaluate impact to groundwater at the site. The wells were installed in accordance with New Mexico Environment Department guidelines. Soil cores were collected at approximate 5-foot centers from ground surface to TD at each well location. Recovered cores were scanned with a calibrated PID and classified in accordance with the USCS. Monitor well MW-1 was installed approximately 20 feet west of the July 2005 WS location, west of the former field waste tank excavation. Monitor well MW-2 was installed approximately 50 feet east of the July 2005 ES location, east of the former field waste tank excavation. Monitor well MW-3 was installed approximately 50 feet north of the former field waste tank excavation.

The monitor well soil borings were advanced to an approximate depth of 64 feet to 65 feet below ground surface, and approximately 15 feet below the observed top of the uppermost saturated zone. The depth to static water was measured at approximately 53.64 feet below top of casing (btoc) at the MW-1 location, 52.78 feet btoc at the MW-2 location, and 53.22 feet btoc at the MW-3 location. Groundwater appears to exist under unconfined conditions in the uppermost aquifer at the facility (see boring logs in Appendix A).

The wells were constructed with 20 feet of 2-inch diameter 0.010-inch slotted Schedule 40 PVC screen, a 1-foot Schedule 40 PVC sediment sump, and sufficient 2-inch diameter Schedule 40 PVC riser to extend the top of the riser to approximately 2.5 feet above grade. The well screens were placed to capture the saturated zone such that approximately 5 feet of screen are situated above the apparent top of the saturated zone and approximately 15 feet of screen are situated below the apparent top of the saturated zone. The annular area of each well was backfilled with 20/40-grade filter sand installed from the total depth of the well to approximately 2 feet above the top of the screen. A 2-foot hydrated bentonite seal was placed atop the filter pack, and the remaining annular area was backfilled with cement-bentonite grout. The wells were constructed with a P:\Wp\BJSERV\128125\003R.doc

concrete surface pad measuring approximately 2 feet by 2 feet by 4 inches thick, with an above-grade locking steel protective cover. Construction diagrams for monitor wells MW-1, MW-2, and MW-3 are presented in Appendix A.

The newly installed monitor wells were developed with previously unused disposable bailers and monitored with a turbidity meter until produced groundwater was clear and reasonably free of suspended sediment. The development methods of the new wells were monitored by Brown and Caldwell in order to acknowledge that the wells were free of suspended sediment.

The top-of-casing (TOC) elevations of monitor wells MW-1, MW-2, and MW-3 were surveyed relative to an arbitrary benchmark of 100.00 feet, located on the concrete surface near the warehouse, using field surveying techniques. The horizontal locations of the wells were measured relative to existing features at the facility.

2.3 Groundwater Sampling Activities

After allowing the wells to return to static conditions following development, the monitor wells were gauged using a decontaminated electronic water-level indicator prior to purging and sampling. Current groundwater elevation data for each well are presented in Table 1. A groundwater elevation map for February 23, 2006 is presented in Figure 3. The groundwater elevation data indicate that the groundwater flow direction is to the north.

Monitor wells MW-1, MW-2, and MW-3 were purged with a submersible pump and previously unused down-hole tubing until groundwater stabilization occurred. Low flow/low stress purging was performed to maintain the water level at or near the static water level. Field parameter measurements for pH, temperature, specific conductivity, dissolved oxygen, and redox potential were collected during purging activities. Each well was purged until variability of less than 10 percent for specific conductivity, less than 0.1 standard pH units, and less than 0.5°C for temperature was achieved. Groundwater dissolved oxygen and ferrous iron concentrations were measured in each monitor well upon conclusion of purging activities. Field parameter readings were recorded on the groundwater sampling forms included in Appendix B.

Groundwater samples were obtained directly from the discharge line of the submersible pump. The groundwater samples were placed in laboratory-prepared, clean glass containers, sealed with Teflon[®]-lined lids, labeled, and placed on ice in an insulated cooler for delivery to Southern Petroleum Laboratory in Houston, Texas for analysis using standard chain-of-custody procedures. The laboratory analytical reports and chain-of-custody documentation for groundwater samples collected during the current sampling event are provided in Appendix C.

Groundwater samples were analyzed for gasoline- and diesel-range total petroleum hydrocarbons (TPH-G and TPH-D) by Method 8015M, chloride (Method 325.3), and the Method 8260B volatile organic compounds (VOCs) and Method 8270C semivolatile organic compounds (SVOCs) detected in site soil samples collected in July 2005.

2.4 Quality Assurance / Quality Control (QA/QC) Samples

A trip blank and a field blank were collected on each day that a soil or groundwater sample was collected. The QA/QC samples associated with groundwater samples were analyzed for TPH-G (Method 8015M) and VOCs (Method 8260B). The QA/QC samples associated with soil samples were analyzed for TPH-G (Method 8015M) and BTEX (Method 8021B). An equipment rinse blank pertaining to soil samples and an equipment rinse blank pertaining to groundwater samples were also collected. The rinsate samples were analyzed for the same parameters as the corresponding soil or groundwater samples (omitting chloride).

2.5 Decontamination and Waste Management

Decontamination procedures consisted of washing drilling equipment with a pressurized steam cleaner and potable water. The sampling equipment was decontaminated using distilled water and a non-phosphate detergent. Soil cuttings, decontamination fluids, and produced groundwater were containerized in DOT-approved 55-gallon drums. A composite sample was collected for the characterization and waste profiling of investigation-derived waste (IDW) from the field activities.

3.0 ANALYTICAL RESULTS

The following subsections present the analytical results for soil and groundwater samples collected during the February 2006 sampling event.

3.1 Soil Samples

The soil samples were analyzed for the following parameters using the indicated analytical methodologies:

- TPH-G and TPH-D by Method 8015M; and
- BTEX by Method 8021.

TPH and BTEX analysis results were compared to New Mexico Oil Conservation Divivison (NMOCD) criteria listed in "Guidelines for Remediation of Leaks, Spills, and Releases (NMOCD, August 13, 1993). The NMOCD soil remediation action levels for unsaturated contaminated soils (for a NMOCD hazard ranking of >19, based on groundwater occurrence at <50 feet) are benzene at 10 milligrams per kilogram (mg/kg), total benzene, toluene, ethylbenzene, and xylenes (BTEX) at 50 mg/kg, and TPH at 100 mg/kg. TPH and BTEX were not detected above the associated method detection limits in both soil samples MW-1-19-20' and MW-2-14-15'. Table 2 summarizes the results for soil samples collected from soil borings MW-1 and MW-2. The laboratory analytical report and chain-of-custody documentation for soil samples collected during the February 2006 sampling activities are provided in Appendix C.

3.2 Groundwater Samples

Groundwater samples from monitor wells MW-1, MW-2, and MW-3 were analyzed for the following parameters using the indicated analytical methodologies:

- (TPH-G and TPH-D) by Method 8015M;
- Chloride by Method 325.3;
- SVOCs by Method 8270C; and
- VOCs by Method 8260B.

Table 3 presents results for analyses of the groundwater samples collected at the facility.

With the exception of chloride concentrations in MW-1 and MW-2, concentrations of TPH-G, TPH-D, and all VOCs and SVOCs are less than applicable New Mexico Water Quality Control Commission (NMWQCC) standards. Chloride concentrations ranged from 1,070 milligrams per liter (mg/L) in the on-site up-gradient monitor well (MW-1) to 512 mg/L in lateral to down-gradient monitor well MW-2 to 66.6 mg/L in down-gradient monitor well MW-3. The NMWQCC standard for chloride is 250 mg/L. Naphthalene, 1,2,4,-trimethylbenzene, and m,p-xylenes were detected in MW-2, but at concentrations less than the applicable NMWQCC criteria, as indicated in Table 2. TPH-G was also detected in the MW-2 groundwater sample.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are based on information obtained during the February 2006 sampling event at the BJ Services FracMaster Hobbs, New Mexico facility.

4.1 Conclusions

- TPH and BTEX concentrations measured in on-site soil borings MW-1 and MW-2 during the current soil sampling event are less than the NMOCD remediation action levels, indicating that the lateral extents of impacted soils at the ES and WS soil boring locations are defined on-site.
- Groundwater is present at approximately 49 feet to 50 feet below grade under unconfined conditions in the uppermost aquifer in the vicinity of the formerly excavated area at the site.
- The groundwater elevation data indicate that the groundwater flow direction is to the north.
- Chloride concentrations measured in up-gradient monitor well MW-1 and lateral to down-gradient MW-2 during the current groundwater sampling event are greater than the NMWQCC standard of 250 mg/L; the chloride concentration in the down-gradient onsite monitor well MW-3 is less than the NMWQCC standard.
- TPH-G, naphthalene, 1,2,4,-trimethylbenzene, and m,p-xylenes were detected in the groundwater sample collected from the uppermost aquifer at the MW-2 location, but concentrations of these constituents are less than the applicable NMWQCC criteria.

4.2 Recommendations

• Conduct follow-up sampling of monitor wells MW-1, MW-2, and MW-3 in 6 months to verify that concentrations of organics are stable and are less than NMWQCC criteria.

DISTRIBUTION

February 2006 Soil and Groundwater Sampling Report BJ Services Company, U.S.A. Hobbs (Fracmaster), New Mexico Facility

April 14, 2006

Final Distribution as follows:

1 copy to: State of New Mexico

Energy, Minerals, and Natural Resources Department

Oil Conservation Division 1220 South Saint Francis Drive Santa Fe, New Mexico 87505

Attention:

Mr. Wayne Price

1 copy to: State of New Mexico

Oil Conservation Division, Hobbs District Office

1625 N. French Dr. Post Office Box 1980 Hobbs, New Mexico 88240

Attention:

Mr. Chris Williams

1 copy to:

BJ Services Company, U.S.A.

2708 West County Road Hobbs, New Mexico 88240

Attention:

Mr. John Adcock

1 copy to:

BJ Services Company, U.S.A.

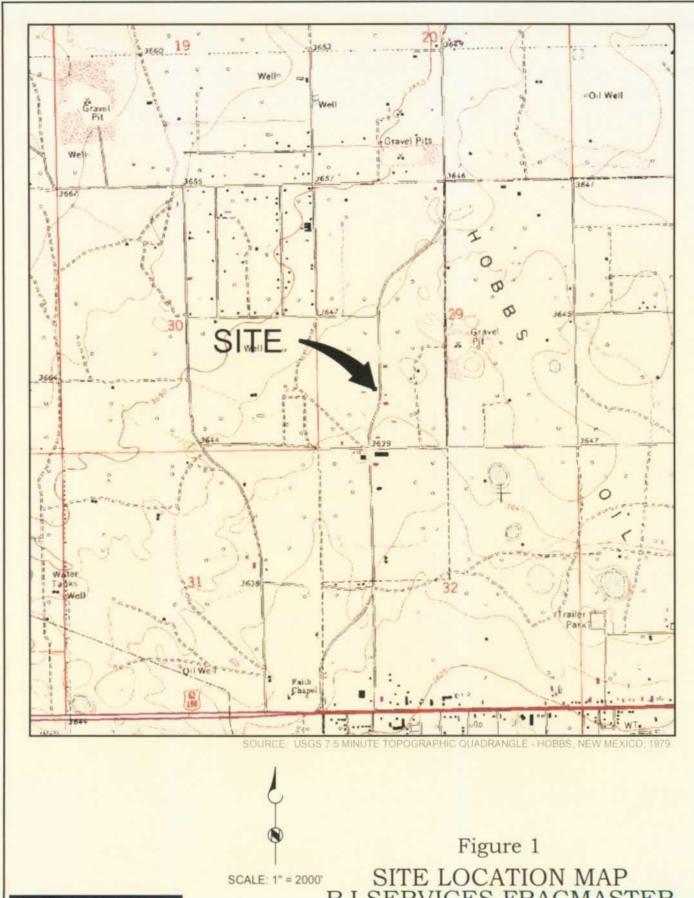
11211 FM 2920

Tomball, Texas 77375

Attention:

Ms. Jo Ann Cobb

1 copy to:

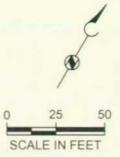

Brown and Caldwell Project File

OUALITY CONTROL REVIEW Dright

Lann M. Wright, P.G.

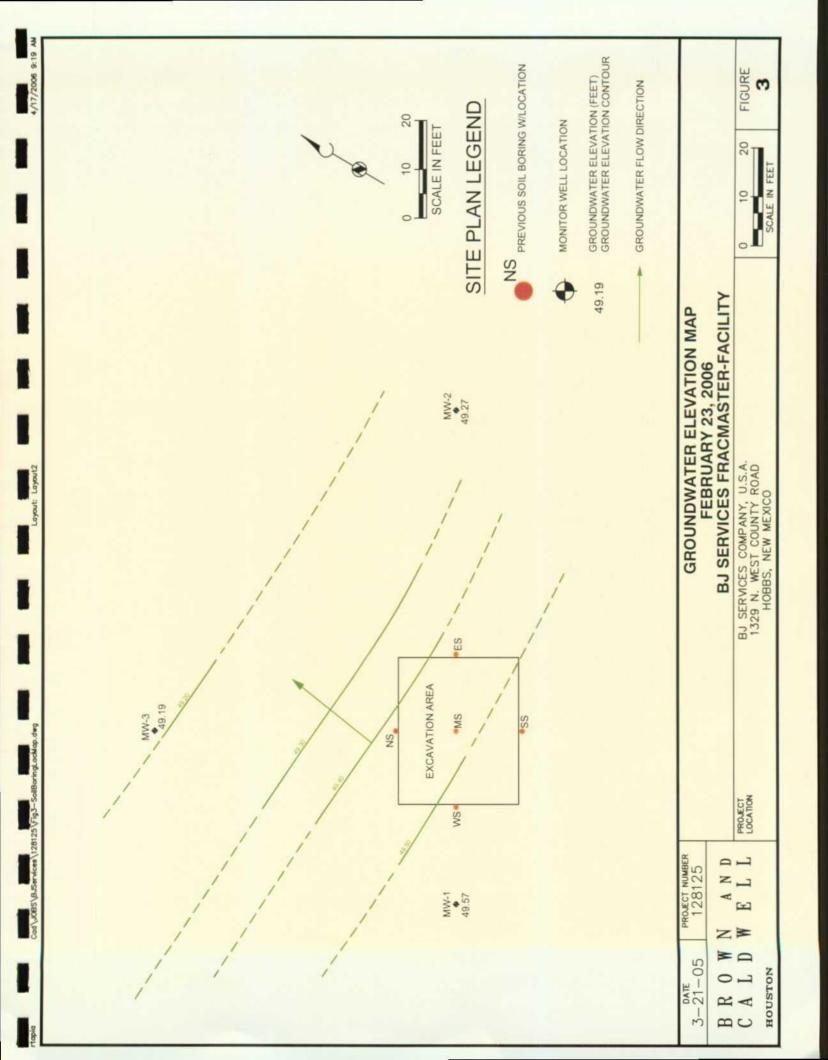
Supervising Geologist

FIGURES


CALDWELL

BROWN AND

BJ SERVICES FRACMASTER
BJ SERVICES COMPANY, U.S.A.
1329 N. WEST COUNTY ROAD
HOBBS, NEW MEXICO


(West Property Boundary not defined) RD - Excavated Office 1329 N. West County Concrete Ramp Gravel lot Concrete Concrete Catch Block Warehouse SITE PLAN LEGEND Figure 2

BROWN AND CALDWELL

SITE MAP BJ SERVICES FRACMASTER BJ SERVICES COMPANY, U.S.A.
1329 N. WEST COUNTY ROAD
HOBBS, NEW MEXICO

TABLES

Table 1 Groundwater Elevation Data BJ Services Fracmaster Facility Hobbs, New Mexico

Well Number	Date	TOC Elevation	Depth to Groundwater	Corrected Groundwater Elevation ⁽¹⁾	Depth to Product	Total Product Thickness
MW-1	2/23/2006	103.21	53.64	49.57	-	-
MW-2	2/23/2006	102.05	52.78	49.27	-	-
MW-3	2/23/2006	102.41	53.22	49.19	_	-

⁽¹⁾ Groundwater elevation calculated with the following formula: Groundwater Elevation = (TOC Elevation - Depth to Groundwater)

BJ Services - Hobbs (Fracmaster Facility), New Mexico Analytical Results⁽¹⁾ for Soil Samples Table 2

					BTEX ⁽²⁾			TPH-D ⁽²⁾	TPH-G ⁽²⁾
Sample ID	Depth (feet)	Sample Date	Benzene ⁽²⁾	Toluene ⁽²⁾	ızene ⁽²⁾ Toluene ⁽²⁾ Ethylbenzene ⁽²⁾ Total Xylenes ⁽²⁾ Total BTEX ⁽²⁾	Total Xylenes ⁽²⁾	Total BTEX ⁽²⁾	Diesel Range Organics (C10-C28)	Gasoline Range Organics
MW-1	19-20	2/21/2006	<0.001	<0.001	<0.001	<0.001	<0.001	<5.0	<0.1
MW-2	14-15	2/22/2006	<0.001	<0.001	<0.001	<0.001	<0.001	<5.0	<0.1

(¹) - All analytical results in mg/kg (²) - NMOCD Soil Remediation Action Levels for Unsaturated Contaminated Soils, based on Hazard Ranking >19 Renzene | 10 mg/kg |

Penzene	IV IIIG/KG
Total BTEX	50 mg/kg
ТРН	100 mg/kg

(3) - Hazard Ranking determined at >19, based on groundwater occurrence at <50 feet (4) - from NMOCD Publication "Guidelines for Remediation of Leaks, Spills and Releases" (August 18, 1993) (www.emnrd.state.nm.us\OCD)

Table 3
Summary of Detected Constituents⁽¹⁾ in Groundwater
BJ Services - Hobbs (Fracmaster Facility), New Mexico

Monitor Well ID Sample Date	MW-1 2/23/2006	MW-2 2/23/2006	MW-3 2/23/2006	NMWQCC Groundwater Standard ⁽²⁾
VOCs				
Naphthalene ⁽³⁾	<0.005	0.006	<0.005	0.03
1,2,4-Trimethylbenzene	<0.005	0.019	<0.005	-
m,p-Xylenes	<0.005	0.056	<0.005	-
Total Xylenes	<0.005	0.056	< 0.005	0.62
Chloride	1070	512	66.6	250
TPH-D	<1.0	<1.0	<1.0	-
TPH-G	<0.1	0.19	<0.1	
SVOCs ⁽⁴⁾	ND	ND	ND	-

^{(1) -} All analytical results and standards in mg/L

Bold font indicates exceedance of Groundwater Standard

^{(2) -} from NMOCD Publication "Guidelines for Remediation of Leaks, Spills and Releases" (August 18, 1993) (www.emnrd.state.nm.us\OCD)

^{(3) -} Standard applies to PAHs: naphthalene plus monomethylnaphthalenes

^{(4) -} ND - not detected

APPENDIX A

Boring Logs and Monitor Well Construction Diagrams: Monitor Wells MW-1, MW-2, and MW-3

MW-1

Project Name: BJ Services Company, U.S.A Fracmaster Facility								Pro	oject Nu	mber: <u>12</u>	8125	Sheet 1 of 2		
Project Location: Hobbs, NM									Logged I	Ву: В.Сат	acho	Checked By: R.Rexroad		
Drill	ing C	Contra	ctor:	Geoprojects International	I	Date Star	rted: 2/21/	Date Finished: 2/22/06						
Drilling Equipment: CME-75 Driller: Richard									Total Boring Depth: (feet) 65.0 Depth to Static Water: (feet) 49.00					
Drilling Method: Hollow Stem Auger Borehole Diameter: 8"									TOC Elevation: 103.21 Ground Elevation:					
Sampling Method: Split Spoon								I	Diameter and Type of Well Casing: 2" Schedule 40 PVC					
Comments:									Slot Size	: 0.010	Filter N	Material: 20/40		
								Ī	Developr	ment Method:	Bail	er		
								ada as		/viddanim.km.km.km.	and an area	and the second s		
)))))))))))))))))))							Sampled Interval	(feet)				Monitoring Well		
J (fee	Depth to Water	USC Soil Type	logy	Description	1	Readings	led I	Recovery (feet)	Sample ID			Remarks		
Depth (feet)	Deptl	USC	Lithology		PID	Samp	Reco	Samp						
				Fill - cobbles, gravel, sand, silt, et	c	0		2				3X3 Above-grade completion.		
SC CLAYEY SAND (SC); Dark brown; slightly moist;							\bigwedge							
1 '								1.5						
4-	-				6									
-							X	2		l 🛭				
Tan; moist							\vdash	2		l				
Tan; moist										l 📓				
SD SAND (SD). Toru Jacca slightly mai						14	M	2						
SP SAND (SP); Tan; loose; slightly mo grained sand; poorly sorted; conta nodules of fine lithified sandstone				ntains <1/4" diameter		\square	1							
-				nodules of tine lithined sandsto	one nodules			1						
12-	1					11	\bigvee	1.5		l 🔉				
14-							Δ							
-	_							.5						
16-				SANDSTONE; Pinkish; dry; hard	1	15	H	1.5						
-				, , ,			X	1.5		l				
18-		SP		SAND (SP); Pinkish tan; moist; f	ine to medium grained			1.5	19-20	🛭				
sand; contains 1/4" to 1/2" diameter nodules of ver										📓	\sim	Sampled MW-1-19-20'		
9 -						19	X	1.25		I		Bentonite-cement grout.		
22-								1.5						
5 -														
24- 5 -						2	\bigvee	1.5						
26-	-						Д							
-]							l l		🐰				
28-						0	M	1.5						
31 -	1	SM	LTT.	SILTV SAND (SM): Tan: mediu	m dense: moist: fine	1	١X١		1	I 🚫	K			

MW-1

BJ Services Company, U.S.A. - Fracmaster Facility 128125 Sheet 2 of 2 Project Name: Project Number: Sampled Interval Readings Recovery (feet) Depth to Water USC Soil Type Monitoring Well Depth (feet) Sample ID Description Remarks Lithology grained sand; contains <1/2" diameter nodules of very fine lithified sandstone nodules 32-0 2 " Diameter Schedule 40 PVC 36-SAND (SW); Pinkisk tan; moist; fine grained sand; contains 1/4" to 1/2" diameter nodules of very fine lithified sandstone nodules 38-40-Bentonite Seal 0 42-46-SAA, wet 20/40 Silica filter pack 52-0.01 slotted PVC screen 0 56-0 58 60-HOUSTON 4 128125.GPJ CHRIS10.GDT 4/3/06 very fine to fine grained sand; wet 64.0_ 0 SANDSTONE; Pinkish tan; slightly moist; coarse 2" Diameter Schedule 40 PVC 65.0 Bottom Cap. grained sand to fine gravel

MW-2

BJ Services Company, U.S.A. - Fracmaster Facility 128125 Sheet 1 of 2 Project Number: Project Name: Project Location: Hobbs, NM Logged By: B.Camacho Checked By: R. Rexroad **Geoprojects International** 2/22/06 2/22/06 Drilling Contractor: Date Started: Date Finished: **Total Boring** Depth to Static Drilling Equipment: **CME-75** Driller: Richard Depth: (feet) 65.0 Water: (feet) 49.00 102.05 Drilling Method: **Hollow Stem Auger** Borehole Diameter: TOC Elevation: Ground Elevation: Diameter and Type 2" Schedule 40 PVC Sampling Method: Split Spoon of Well Casing: Comments: Filter Material: 20/40 Slot Size: **0.010** Development Method: Bailer Readings Sampled Interval Depth to Water USC Soil Type Recovery (feet) Monitoring Well Sample ID Lithology Description Remarks PID Fill - cobbles, gravel, sand, silt, etc. 3X3 Above-grade completion. SILTY SAND (SM); Tan; moist; fine grained sand; contains caliche rock 2-0 SP SAND (SP); Pinkish tan; loose; slightly moist; fine to medium grained sand; poorly sorted; contains 1/2" to 1" diameter nodules of very fine lithified sandstone 0 12 0 14-15 16-0 SANDSTONE; Pinkish; dry; hard 18-SP SAND (SP); Pinkish tan; moist; fine to medium grained Sampled MW-2-14-15' Bentonite-cement grout. 0 contains <1/4" diameter nodules of very fine lithified sandstone nodules 24 0 26 28 0 SAND (SW); Pinkisk tan; moist; fine grained sand;

MW-2

BJ Services Company, U.S.A. - Fracmaster Facility 128125 Sheet 2 of 2 Project Number: Project Name: Sampled Interval Readings Recovery (feet) Depth to Water USC Soil Type Monitoring Well Remarks Sample ID Description PID contains 1/4" to 1/2" diameter nodules of very fine lithified sandstone nodules 32-0 2 " Diameter Schedule 40 PVC 36-38-40-Bentonite Seal 0 42.0_ 42slightly moist 48wet; very fine to fine grained sand 50 20/40 Silica filter pack 52-0.01 slotted PVC screen 58-0 HOUSTON 4 128125 GPJ CHRIS10 GDT 4/3/06 62 SANDSTONE; Pinkish tan; slightly moist; fine to medium grained sand; hard 64.0 2" Diameter Schedule 40 PVC 65.0 Bottom Cap.

MW-3

BJ Services Company, U.S.A. - Fracmaster Facility 128125 Sheet <u>1</u> of <u>2</u> Project Name: Project Number: Project Location: Hobbs, NM Logged By: B.Camacho Checked By: R.Rexroad **Geoprojects International** 2/21/05 2/21/05 **Drilling Contractor:** Date Started: Date Finished: Total Boring Depth to Static Drilling Equipment: **CME-75** Driller: Richard Depth: (feet) 64.0 Water: (feet) 48.00 102.41 Drilling Method: **Hollow Stem Auger** Borehole Diameter: TOC Elevation: Ground Elevation: Diameter and Type 2" Schedule 40 PVC Sampling Method: Split Spoon of Well Casing: Comments: Slot Size: 0.010 Filter Material: 20/40 Bailer Development Method: Sampled Interval Recovery (feet) Depth to Water Monitoring Well Depth (feet) Sample ID Soil Description Remarks **USC**: PID Fill - cobbles, gravel, sand, silt, etc. 3X3 Above-grade completion. CLAYEY SAND (SC); Tan; moist; medium to coarse grained sand; contains caliche rock slightly moist; contains caliche rock 0 SM SILTY SAND (SM); Tan; moist; fine grained sand; calcareous nodules 0 SP SAND (SP); Tan; loose; moist; fine to medium grained sand; poorly sorted; contains 1/2" to 1" diameter nodules of very fine lithified sandstone nodules 0 SANDSTONE; Pinkish brown; dry; hard 16 SP SAND (SP); Pinkish tan; slightly moist; fine to medium grained sand; poorly sorted; contains <1/4" diameter nodules of very fine lithified sandstone nodules Bentonite-cement grout. 0 contains 1/4" to 1/2" diameter nodules of very fine lithified sandstone nodules 22 0 HOUSTON 4 28 moist

MW-3

BJ Services Company, U.S.A. - Fracmaster Facility 128125 Sheet 2 of 2 Project Number: Project Name: Readings Sampled Interval USC Soil Type Recovery (feet) Depth to Water Monitoring Well Depth (feet) Sample ID Description Remarks 2 " Diameter Schedule 40 PVC Riser. 0 36-SAND (SW); Pinkisk tan; moist; fine grained sand; contains 1/4" to 1/2" diameter nodules of very fine lithified sandstone nodules 38 39.0 Bentonite Seal 0 41.0 slightly moist; contains <1/4" diameter nodules of very fine lithified sandstone nodules wet; very fine to fine grained sand 0 50-20/40 Silica filter pack 0.01 slotted PVC screen 0 0 60 0 HOUSTON 4 128125.GPJ CHRIS10.GDT 4/3/06 63.0 2" Diameter Schedule 40 PVC 64.0_ Bottom Cap. 0

APPENDIX B

Groundwater Sampling Forms

B R O W N A N D C A L D W E L L

GROUNDWATER SAMPLING FIELD DATA SHEET

WELL ID: MW-1

1. PROJECT INFORMATION										
Project Number: 1)&135 Task Number: *** Date: 2-23-06 Time: 1500										
Client: B5-Services Personnel: BICAMACHO										
Project Location: Hobbs NM Weather: 50°F, Faining										
2. WELL DATA										
Casing Diameter: 7 inches Type: PVC Stainless Galv. Steel Teflon® Other:										
Screen Diameter:inchesType: po PVC □ Stainless: □ Galv. Steel □ Teflon® □ Other:										
Total Depth of Well: 65 feet From: Top of Well Casing (TOC) Top of Protective Casing Other:										
Depth to Static Water: 53.64 feet From: (2/Top of Well Casing (TOC)										
Depth to Product: From: Top of Well Casing (TOC) Top of Protective Casing Other.										
Length of Water Column: 1/36 feet Well Volume: 1,82 gal Screened Interval (from GS): 44-64										
Pump intake depth (from GS) (oc Note: 2-inch well = 0.16 gal/ft 4-inch well = 0.65 gal/ft										
3. PURGE DATA										
Purge M	ethod: Gent	r, Size: rifuqal Pumi	_ 🚨 Bladd	er Pump 2	" Submersible nertial Lift Pum	Pump 134" S	Submersible P	ump	Equipment Model(s)	
Centrifugal Pump Peristaltic Pump Inertial Lift Pump Other: Equipment Model(s)										
Materials: Pump/Bailer Stainless PVC Teflon® Other: Dedicated Prepared Off-Site Pield Cleaned Disposable 1. Full to										
Materials: Rope/fubing										
Was well purged dry? Yes V No Dumping Rote: (2)										
Time Cum. Gallons Removed pH Temp Spec. Eh Dissolved Oxygen Turbidity (TOC) Comments										
1523 6 7.07 18.72 3.021 -281.6 2.46 580 53.78										
1526 1.1 7.05 19.20 2.964 -321.7 1.72 458 53.79										
1529 1.8 7.07 20.43 2.942 -3728 0.92 329 53.85 1532 2.4 7.02 20.09 2.973 -405.4 0.79 265 53.82										
1535	3.0									
1535 3.0 7.02 20,11 3.664 .442,1 0.68 121 53.83 1538 3.6 7.01 20,55 3.056 -426.7 0.60 67 53.83										
170-		.,07	u 0,87		, , , , ,	, , ,	, , ,	7.85		
		· ·						 		
								 		
1 SAME	PLING DA	<u>_</u> ΓΔ	-		l		· ·	Georg	hemical Analyses	
	□ Bailer Siz		3 Bladder Pu	ump X2" Sul	bmersible Pum	np 🗖 4" Subn	nersible Pumr	_		
Method(S): Peristaltic	Pump 🗆 li	nertial Lift Po	ump 🚨 Other:		•	·	Ferro	us Iron: 7/0 mg/L	
Materia	: Pump/Bailer		ess PVC		Official Clear	ned Dispo	osable	DO:	/, 7 mg/L	
Materials Tubing/Rope Dedicated Prepared Off-Site Field Cleaned Disposable DO: // / mg/L										
Depth to	Water at Time	of Samplii	ng: <u>5</u> 3	. 83	Field Filtere	d? □ Yes	Mo _	Sulfa	te: mg/L	
Sample	10: MW-1		Sample Ti	me: <u> 154</u>	5	# of Contain	ers:	- All		
Dunlicate	e Sample Collec	ted?	Yes 💆	No ID:		<u>.</u>		Alkali	nity: mg/L	
Сарпоак	o Jampio Jones		•		·*			,		
				· · · · ·	······································					
5. COM	MENTS								· · · · · · · · · · · · · · · · · · ·	
	,									
Note: Include	comments such as	well condit	ion, odor, pr	esence of NAI	PL, or other ite	ms not on the	field data ehe	et.)		
Gen\nor	n-proi\forms\Fie	eld Data S	heet.xls\F	3C-gallons			4 19	811		

Gen\non-proj\forms\Field Data Sheet.xls\BC-gallons
FORM GW-1 (Rev 2/26/02 - dg)

Signature

GROUNDWATER SAMPLING FIELD DATA SHEET

WELL ID: MW-2

1. PROJECT INFORMATION										
Project Number: 12/13/26 Time: 2000										
Client: B5-Set Vice 5 Personnel: B. CAMACHO										
Project Location: Hobbs, NM Weather: 50° + Cainy										
2. WELL DATA										
Casing Diameter: Z inches Type: XPVC Stainless Galv. Steel GTeflon® GOther.										
Screen Diameter: inches Type: A PVC □ Stainless □ Galv. Steel □ Teflon® □ Other:										
Total Depth of Well: 65 feet From: Top of Well Casing (TOC) Top of Protective Casing Other.										
Depth to Static Water: 52.7 € feet From: Top of Well Casing (TOC) □ Top of Protective Casing □ Other:										
Depth to Product: feet										
Length of Water Column: <u>まねみ</u> feet Well Volume: <u>1, 9 を</u> gal Screened Interval (from GS): <u>44 - 6 年</u>										
Pump intake depth 56' (from 95) 70c Note: 2-inch well = 0.16 gal/ft 4-inch well = 0.65 gal/ft										
3. PURGE DATA										
Purge Method: Bailer, Size: Bladder Pump 2 2" Submersible Pump 4" Submersible Pump										
1	Pump/Bailer				Other:				Equipment Model(s)	
•		¥			-				(to brind	
Materials	Materials: Rope// ubing Polyethylene Polypropylene Teflon® Other: Dedicated Prepared Off-Site Field Cleaned Disposable 2. 15 1 600 X L									
Was well purged dry? D Yes X No. Bumping Rote: A college										
Cum Callons Spec Discalved Donth to Water										
Time	Removed	рН	Temp	Cond.	Eh	Oxygen	Turbidity	(TOC)	Comments	
2003	, 6	7,25	15.07	2.595	-150,7	7,57	>500	52.81	Tuchld	
2006 1,2 7,22 14.14 2.594 -207.4 7,40 384 52.85										
2009 1.8 7,19 15,33 2.534 - 205,5 6.78 203 52.83										
3012	2.4	7,17	15.37	2.542	-218,8	6.59	175	52.84		
2015	3.0	7,17	18,00	2.398	-324.1	41.70	101	52,84		
2014										
2031	4.2	7.16	18.87	2.366	- 334.6	4,36	40	52.85		
						-				
4. SAMF	PLING DAT	ΓΑ			<u> </u>		<u> </u>	Geocl	hemical Analyses	
4. SAMPLING DATA Geochemical Analyses Method(s): Bailer, Size: Bladder Pump 22" Submersible Pump 4" Submersible Pump Force Ison: 5 = 6 mg/l										
Metriod(s). □ Peristaltic Pump □ Inertial Lift Pump □ Other: Ferrous Iron: → 6 mg/L										
Waterials	Pun p/Bailer	☐ Dedica	ited 🔾 Prep	ared Off-Site	A Field Clear		osable	DO:		
Materials	:: Tubing/Rope	☐ Dedica	ited 🗆 Pre	-orypropylene pared Off-Site	☐ Teflon® ☐	aned Disp	oosable	- Nitrate	e:mg/L	
	Water at Time		ng: <u></u> 5ఎ (<u>85</u>	Field Filtered	d? □ Yes ,	No No	Sulfat	te: mg/L	
Sample I	D: MW	<u>-</u> d	Sample Ti	me:201	. ð	# of Contain	iers: <u>9</u>	_		
Dunlicate	e Sample Collec	ted?	☐ Yes 💢	No ID:		<u>.</u>		Alkali	nity:/ mg/L	
Japhodii					., .				· .	
5. COM	MENTS		···							
			~							

Gen\non-proj\forms\Field Data Sheet.xls\BC-gallons FORM GW-1 (Rev 2/26/02 - dg)

Note: Include comments such as well condition, odor, presence of NAPL, or other items not on the field data sheet.

BROWN AND CALDWELL

GROUNDWATER SAMPLING FIELD DATA SHEET

WELL ID: MW-3

1. PROJECT INFORMATION										
Project Number: 128 25 Task Number: ** Date: 2-23-06 Time: 1344 Client: \$5-5e 101/2 ces Personnel: 5 d° f dizzle										
Client: 55-Selvices		<u> </u>	Personnel:_	520	f drizzle	<u>e</u>				
Project Location: Hobbs NM Weather:										
2. WELL DATA										
Casing Diameter 7 inches Type: 12 PVC Stainless Galv. Steel Teflon® GOther.										
Screen Diameter: 2 inches Type: DPVC Distainless Digalv. Steel Diffion® Digital Other:										
Total Depth of Well: 64 feet From: trop of Well Casing (TOC) Top of Protective Casing Other.										
Depth to Static Water: 53,22 feet From: Top of Well Casing (TOC) Top of Protective Casing Other:										
Depth to Product:feet From: □ Top of Well Casing (TOC) □ Top of Protective Casing □ Other										
Length of Water Column: 10-78 feet Well Volume: 1,72 gal Screened Interval (from GS): 43'-63'										
Pump intake depth\$8 / (from 6\$) To C Note: 2-inch well = 0.16 gal/ft 4-inch well = 0.65 gal/ft										
3. PURGE DATA										
Purge Method: Bailer, Size: Bladder Pump 22" Submersible Pump 4" Submersible Pump Centrifugal Pump Peristaltic Pump 1 Inertial Lift Pump 0 Other: Equipment Model(s)										
Materials: Pump Bailer Dedicated Der	C _ Teflon@		ned Dispo	osable	_	tz Dumo				
Dedicated Prepared Off-Site Pr										
Waterials. Note: Tubility Dedicated Prepared Off-Site Dedicated Prepared Off-Site Dedicated Dedi										
Was well purged dry? I Yes No Pumping Rate: 0,2 get/min 3. HACH TOCK! J. Ty										
Time Cum. Gallone pH Temp	Spec. Cond.	Eh	Dissolved Oxygen	Turbidity	Depth to Water (TOC)	Comments				
1347 6 7,2c 19.52	┭╼╼	-119. X	2,46	283	54.01					
1350 1.2 7.22 19.55				203	54,03					
1353 1.4 7.26 19.64		T	1,27	165	54.05					
	0.816	2.5. 2	1,01	79	54.05					
1359 3.0 7.31 1966	1	7		48	54.06					
	0,901	-298,5	0,64	25,6	54.06					
4. SAMPLING DATA		 		<u> </u>	Geocl	hemical Analyses				
Bailer, Size: CI Bladder	Pump 🞉 2" Su	bmersible Pum	ıp □ 4" Subr	mersible Pump	Ferro	us Iron: (mg/L				
Pensianic Pump Li inertial Lift					1 6110	7 /				
Dedicated Pro	epared Off-Site	Field Clear	ned Disp	osable	DO:					
Materials Publing/Rope Dedicated DP	Polypropylene repared Off-Site	☐ Teflon® ☐ Field Clea	□ Other: aned ⊃ ≲ LDis	posable	- Nitrat	e: mg/L				
Depth to Water at Time of Sampling:			,		Sulfat	te: mg/L.				
Sample ID: MW-3 Sample	Time: 141	D	# of Contain	ners: <u>\$9</u>	<u>}</u>					
Duplicate Sample Collected?	No ID:				Alkali	nity: mg/L				
Duplicate dample dollotted.		.,								
		· · · · · ·								
5. COMMENTS										

Gen\non-proj\forms\Field Data Sheet.xls\BC-gallons FORM GW-1 (Rev 2/26/02 - dg)

Note: Include comments such as well condition, odor, presence of NAPL, or other items not on the field data sheet.

Signature

APPENDIX C

Laboratory Analytical Reports

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

Certificate of Analysis Number:

06021136

Report To:

Brown & Caldwell Rick Rexroad

1415 Louisiana Suite 2500 Houston TX

77002-

ph: (713) 759-0999

fax:

Project Name:

BJ Service, Hobbs, NM

Site:

Hobbs,NM

Site Address:

PO Number:

State:

State Cert. No.:

Date Reported:

3/9/2006

New Mexico

This Report Contains A Total Of 31 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: Brown & Caldwell

Certificate of Analysis Number:

06021136

Report To:

Brown & Caldwell

Rick Rexroad

1415 Louisiana Suite 2500 Houston

TX 77002-

ph: (713) 759-0999

fax:

Project Name:

BJ Service, Hobbs, NM

Site:

Hobbs,NM

Site Address:

PO Number:

O Manibori

State:

New Mexico

State Cert. No.:
Date Reported:

3/9/2006

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Sonia West

06021136 Page 1 3/10/2006

Sonia West

Date

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

Certificate of Analysis Number:

06021136

Report To:

Fax To:

Brown & Caldwell

Rick Rexroad

1415 Louisiana

Suite 2500

Houston

ΤX

77002-

ph: (713) 759-0999

fax: (713) 308-3886

Project Name:

me: BJ

BJ Service, Hobbs, NM

Site:

Hobbs,NM

Site Address:

PO Number:

State:

New Mexico

State Cert. No.:

Date Reported:

3/9/2006

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COCID	HOLD
MW-3	06021136-01	Water	2/23/2006 2:10:00 PM	2/25/2006 10:00:00 AM	237452	
MW-1	06021136-02	Water	2/23/2006 3:45:00 PM	2/25/2006 10:00:00 AM	237446	
Trip Blank	06021136-03	Water	2/23/2006	2/25/2006 10:00:00 AM	237452	

Donia West

3/10/2006

Date

Sonia West

Senior Project Manager

Joel Grice Laboratory Director

Ted Yen

Quality Assurance Officer

Surr: 1,4-Difluorobenzene

Surr: 4-Bromofluorobenzene

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

03/08/06 1:10 DY

03/08/06 1:10 DY

3191662

3191662

Client Sample ID: MW-3 Collected: 02/23/2006 14:10 SPL Sample ID: 06021136-01

				Sit	e: Hob	bs,NM					
Analyses/Method	Re	sult	QUAL	R	ep.Limit		Dil. Facto	or Date Anal	yzed	Analyst	Seq. #
CHLORIDE, TOTAL						MCL		E325.2	Ur	nits: mg/L	•
Chloride	6	6.6			1		1	03/06/06	17:32	T_H	3189805
DIESEL RANGE ORGA	ANICS					MCL		SW8015B	Ur	nits: mg/L	
Diesel Range Organics (C10-C28)	ND			1		1	03/04/06	2:19	NW	3189087
Surr: n-Pentacosane	8	2.8		%	20-150		1	03/04/06	2:19	NW	3189087
Prep Method	Prep Date		Prep Initials	Prep	Factor						
SW3510C	03/02/2006 13:12		N_M	1.00							
GASOLINE RANGE O	RGANICS					MCL		SW8015B	Ur	nits: mg/L	
Gasoline Range Organics	S	ND			0.1		1	03/08/06	1:10	DY	3191662

60-155

50-158

%

1

1

98.7

96.7

Client Sample ID:MW-3

Collected: 02/23/2006 14:10

SPL Sample ID:

06021136-01

Site: Hobbs,NM

Analyses/Method	Result QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
SEMIVOLATILE ORGANICS B	SY METHOD 8270C		MCL SV	/8270C Un	its: ug/L	
1,2,4-Trichlorobenzene	ND	5	1	03/03/06 19:43	GQ	3188645
1,2-Dichlorobenzene	ND	5	1	03/03/06 19:43	GQ	3188645
1,2-Diphenylhydrazine	ND	10	1	03/03/06 19:43	GQ	3188645
1,3-Dichlorobenzene	ND	5	1	03/03/06 19:43	GQ	3188645
1,4-Dichlorobenzene	ND	5	1	03/03/06 19:43	GQ	3188645
2,4,5-Trichlorophenol	ND	10	1	03/03/06 19:43	GQ	3188645
2,4,6-Trichlorophenol	ND	5	1	03/03/06 19:43	GQ	3188645
2,4-Dichlorophenol	ND	5	1	03/03/06 19:43	GQ	3188645
2,4-Dimethylphenol	ND	5	1	03/03/06 19:43	GQ	3188645
2,4-Dinitrophenol	ND	25	1	03/03/06 19:43	GQ	3188645
2,4-Dinitrotoluene	ND	5	1	03/03/06 19:43	GQ	3188645
2,6-Dinitrotoluene	ND	5	1	03/03/06 19:43	GQ	3188645
2-Chloronaphthalene	ND	5	1	03/03/06 19:43	GQ	3188645
2-Chlorophenoi	ND	5	1	03/03/06 19:43	GQ	3188645
2-Methylnaphthalene	ND	5	1	03/03/06 19:43	GQ	3188645
2-Nitroaniline	ND	25	1	03/03/06 19:43	GQ	3188645
2-Nitrophenol	ND	5	1	03/03/06 19:43	GQ	3188645
3,3'-Dichlorobenzidine	ND	10	1	03/03/06 19:43	GQ	3188645
3-Nitroaniline	ND	25	1	03/03/06 19:43	GQ	3188645
4,6-Dinitro-2-methylphenol	ND	25	1	03/03/06 19:43	GQ	3188645
4-Bromophenyl phenyl ether	ND	5	1	03/03/06 19:43	GQ	3188645
4-Chloro-3-methylphenol	ND	5	1	03/03/06 19:43	GQ	3188645
4-Chloroaniline	ND	5	1	03/03/06 19:43	GQ	3188645
4-Chlorophenyl phenyl ether	ND	5	1	03/03/06 19:43	GQ	3188645
4-Nitroaniline	ND	25	1	03/03/06 19:43	GQ	3188645
4-Nitrophenol	ND	25	1	03/03/06 19:43	GQ	3188645
Acenaphthene	ND	5	1	03/03/06 19:43	GQ	3188645
Acenaphthylene	ND	5	1	03/03/06 19:43	GQ	3188645
Aniline	ND	5	1	03/03/06 19:43	GQ	3188645
Anthracene	ND	5	1	03/03/06 19:43	GQ	3188645
Benz(a)anthracene	ND	5	1	03/03/06 19:43	GQ	3188645
Benzo(a)pyrene	ND	5	1	03/03/06 19:43	GQ	3188645
Benzo(b)fluoranthene	ND	5	1	03/03/06 19:43	GQ	3188645
Benzo(g,h,i)perylene	ND	5	1	03/03/06 19:43	GQ	3188645
Benzo(k)fluoranthene	ND	5	1	03/03/06 19:43	GQ	3188645
Benzoic acid	ND	25	1	03/03/06 19:43	GQ	3188645
Benzyl alcohol	ND	5	1	03/03/06 19:43	GQ	3188645
Bis(2-chloroethoxy)methane	ND	5	1	03/03/06 19:43	GQ	3188645
Bis(2-chloroethyl)ether	ND	5	1	03/03/06 19:43	GQ	3188645
Bis(2-chloroisopropyl)ether	ND	5	1	03/03/06 19:43	GQ	3188645

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Client Sample ID:MW-3

Collected: 02/23/2006 14:10

SPL Sample ID:

06021136-01

Site:	Hobi	MN 2r

			Oito					
Analyses/Method	Result	QUAL	Rep	o.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Bis(2-ethylhexyl)phthalate	ND			5	1	03/03/06 19:43	GQ	3188645
Butyl benzyl phthalate	ND			5	1	03/03/06 19:43	GQ	3188645
Carbazole	ND			5	1	03/03/06 19:43	GQ	3188645
Chrysene	ND			5	1	03/03/06 19:43	GQ	3188645
Dibenz(a,h)anthracene	ND			5	1	03/03/06 19:43	GQ	3188645
Dibenzofuran	ND			5	1	03/03/06 19:43	GQ	3188645
Diethyl phthalate	ND			5	1	03/03/06 19:43	GQ	3188645
Dimethyl phthalate	ND	-		5	1	03/03/06 19:43	GQ	3188645
Di-n-butyl phthalate	ND	-		5	1	03/03/06 19:43	GQ	3188645
Di-n-octyl phthalate	ND			5	1	03/03/06 19:43	GQ	3188645
Fluoranthene	ND			5	1	03/03/06 19:43	GQ	3188645
Fluorene	ND			5	1	03/03/06 19:43	GQ	3188645
Hexachlorobenzene	ND			5	1	03/03/06 19:43	GQ	3188645
Hexachlorobutadiene	ND			5	1	03/03/06 19:43	GQ	3188645
Hexachlorocyclopentadiene	ND			5	1	03/03/06 19:43	GQ	3188645
Hexachloroethane	ND			5	1	03/03/06 19:43	GQ	3188645
Indeno(1,2,3-cd)pyrene	ND			5	1	03/03/06 19:43	GQ	3188645
Isophorone	ND			5	1	03/03/06 19:43	GQ	3188645
Naphthalene	ND			5	1	03/03/06 19:43	GQ	3188645
Nitrobenzene	ND			5	1	03/03/06 19:43	GQ	3188645
N-Nitrosodi-n-propylamine	ND			5	1	03/03/06 19:43	GQ	3188645
N-Nitrosodiphenylamine	ND			5	1	03/03/06 19:43	GQ	3188645
Pentachlorophenoi	ND			25	1	03/03/06 19:43	GQ	3188645
Phenanthrene	ND			5	1	03/03/06 19:43	GQ	3188645
Phenol	ND			5	1	03/03/06 19:43	GQ	3188645
Pyrene	ND			5	1	03/03/06 19:43	GQ	3188645
Pyridine	ND			5	1	03/03/06 19:43	GQ	3188645
2-Methylphenol	ND			5	1	03/03/06 19:43	GQ	3188645
3 & 4-Methylphenol	ND			5	1	03/03/06 19:43	GQ	3188645
Surr: 2,4,6-Tribromophenol	86.7		%	10-123	1	03/03/06 19:43	GQ	3188645
Surr: 2-Fluorobiphenyl	66.0		%	23-116	1	03/03/06 19:43	GQ	3188645
Surr: 2-Fluorophenol	42.7		%	16-110	1	03/03/06 19:43	GQ	3188645
Surr: Nitrobenzene-d5	56.0		%	21-114	· 1	03/03/06 19:43	GQ	3188645
Surr: Phenol-d5	30.7		%	10-110	1	03/03/06 19:43	GQ	318864
Surr: Terphenyl-d14	80.0		%	22-141	1	03/03/06 19:43	GQ	3188645

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	03/01/2006 17:48	N_M	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Client Sample ID:MW-3

Collected: 02/23/2006 14:10

SPL Sample ID:

06021136-01

Analyses/Method	Result	QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq.#
VOLATILE ORGANICS BY ME	THOD 8260B		<u> </u>	MCL SV	V8260B Un	its: ug/L	
1,1,1,2-Tetrachloroethane	ND		5	1	03/02/06 21:43		3188597
1,1,1-Trichloroethane	ND		5	1	03/02/06 21:43		3188597
1,1,2,2-Tetrachloroethane	ND		5	1	03/02/06 21:43		3188597
1,1,2-Trichloroethane	ND		5	1	03/02/06 21:43	C_V	3188597
1,1-Dichloroethane	ND		5	1	03/02/06 21:43	C_V	3188597
1,1-Dichloroethene	ND		5	1	03/02/06 21:43	C_V	3188597
1,1-Dichloropropene	ND		5	1	03/02/06 21:43	C_V	3188597
1,2,3-Trichlorobenzene	ND		5	1	03/02/06 21:43	C_V	3188597
1,2,3-Trichloropropane	ND		5	1	03/02/06 21:43	C_V	3188597
1,2,4-Trichlorobenzene	ND		5	1	03/02/06 21:43	C_V	3188597
1,2,4-Trimethylbenzene	ND		5	1	03/02/06 21:43	C_V	3188597
1,2-Dibromo-3-chloropropane	ND		5	1	03/02/06 21:43	C_V	3188597
1,2-Dibromoethane	ND		5	1	03/02/06 21:43	C_V	3188597
1,2-Dichlorobenzene	ND	**	5	1	03/02/06 21:43	C_V	3188597
1,2-Dichloroethane	ND		5	1	03/02/06 21:43	C_V	3188597
1,2-Dichloropropane	ND		5	1	03/02/06 21:43	C_V	3188597
1,3,5-Trimethylbenzene	ND		5	1	03/02/06 21:43	C_V	3188597
1,3-Dichlorobenzene	ND		5	1	03/02/06 21:43	C_V	3188597
1,3-Dichloropropane	ND		5	1	03/02/06 21:43	C_V	3188597
1,4-Dichlorobenzene	ND		5	1	03/02/06 21:43	C_V	3188597
2,2-Dichloropropane	ND		5	1	03/02/06 21:43	C_V	3188597
2-Butanone	ND		20	1	03/02/06 21:43	C_V	3188597
2-Chloroethyl vinyl ether	ND		10	1	03/02/06 21:43	C_V	3188597
2-Chlorotoluene	ND		5	1	03/02/06 21:43	C_V	3188597
2-Hexanone	ND		10	1	03/02/06 21:43	C_V	3188597
4-Chlorotoluene	ND		5	1	03/02/06 21:43	C_V	3188597
4-Isopropyttoluene	ND		5	1	03/02/06 21:43	C_V	3188597
4-Methyl-2-pentanone	ND		10	1	03/02/06 21:43	C_V	3188597
Acetone	ND		100	1	03/02/06 21:43	C_V	3188597
Acrylonitrile	ND		50	1	03/02/06 21:43	C_V	3188597
Benzene	ND		5	1	03/02/06 21:43	C_V	3188597
Bromobenzene	ND		5	1	03/02/06 21:43	C_V	3188597
Bromochloromethane	ND		5	1	03/02/06 21:43	C_V	3188597
Bromodichloromethane	ND		5	1	03/02/06 21:43	C_V	3188597
Bromoform	ND		5	1	03/02/06 21:43	C_V	3188597
Bromomethane	ND		10	1	03/02/06 21:43	C_V	3188597
Carbon disulfide	ND		5	1	03/02/06 21:43	C_V	3188597
Carbon tetrachloride	ND		5	1	03/02/06 21:43		3188597
Chlorobenzene	ND		5	1	03/02/06 21:43		3188597
Chloroethane	ND		10	1	03/02/06 21:43	C_V	3188597

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Client Sample ID:MW-3

Collected: 02/23/2006 14:10

SPL Sample ID:

06021136-01

			Site:	Hobbs,	NM			
Analyses/Method	Result	QUAL	Rep.L	imit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Chloroform	ND			5	1	03/02/06 21:43	C_V	3188597
Chloromethane	ND			10	1	03/02/06 21:43	C_V	3188597
Dibromochloromethane	ND			5	1	03/02/06 21:43	C_V	3188597
Dibromomethane	ND			5	1	03/02/06 21:43	C_V	3188597
Dichlorodifluoromethane	ND			10	1	03/02/06 21:43	C_V	3188597
Ethylbenzene	ND			5	1	03/02/06 21:43	C_V	3188597
Hexachlorobutadiene	ND			5	1	03/02/06 21:43	C_V	3188597
Isopropylbenzene	ND			5	1	03/02/06 21:43	C_V	3188597
Methyl tert-butyl ether	ND			5	1	03/02/06 21:43	C_V	3188597
Methylene chloride	ND			5	1	03/02/06 21:43	C_V	3188597
Naphthalene	ND			5	1	03/02/06 21:43	C_V	3188597
n-Butylbenzene	ND			5	1	03/02/06 21:43	C_V	3188597
n-Propylbenzene	ND			5	1	03/02/06 21:43	C_V	3188597
sec-Butylbenzene	ND			5	1	03/02/06 21:43	C_V	3188597
Styrene	ND			5	1	03/02/06 21:43	C_V	3188597
tert-Butylbenzene	ND			5	1	03/02/06 21:43	C_V	3188597
Tetrachloroethene	ND			5	1	03/02/06 21:43	C_V	3188597
Toluene	ND			5	1	03/02/06 21:43	C_V	3188597
Trichloroethene	ND			5	1	03/02/06 21:43	C_V	3188597
Trichlorofluoromethane	ND			5	1	03/02/06 21:43	C_V	3188597
Vinyl acetate	ND			10	1	03/02/06 21:43	C_V	3188597
Vinyl chloride	ND			10	1	03/02/06 21:43	C_V	3188597
cis-1,2-Dichloroethene	ND			5	1	03/02/06 21:43	C_V	3188597
cis-1,3-Dichloropropene	ND			5	1	03/02/06 21:43	C_V	3188597
m,p-Xylene	ND			5	1	03/02/06 21:43	C_V	3188597
o-Xylene	ND			5	1	03/02/06 21:43	C_V	3188597
trans-1,2-Dichloroethene	ND			5	1	03/02/06 21:43	C_V	3188597
trans-1,3-Dichloropropene	ND			5	1	03/02/06 21:43	C_V	3188597
1,2-Dichloroethene (total)	ND			5	1	03/02/06 21:43	C_V	3188597
Xylenes,Total	ND			5	1	03/02/06 21:43	C_V	3188597
Surr: 1,2-Dichloroethane-d4	110		% 62	-130	1	03/02/06 21:43	C_V	3188597

%

70-130

% 74-122

Qualifiers:

Surr: 4-Bromofluorobenzene

Surr: Toluene-d8

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

76.0

90.0

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

03/02/06 21:43 C_V

03/02/06 21:43 C_V

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

1

1

3188597

3188597

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-1

Surr: 1,4-Difluorobenzene

Surr: 4-Bromofluorobenzene

Collected: 02/23/2006 15:45

SPL Sample ID:

03/08/06 7:11 DY

03/08/06 7:11 DY

1

06021136-02

3191671

3191671

Site: Hobbs,NM

				Sit	te: Hob	bs,NM					
Analyses/Method	F	Result	QUAL	R	ep.Limit	Ε	Dil. Fact	or Date Anal	yzed	Analyst	Seq.#
CHLORIDE, TOTAL						MCL		E325.2	Ur	nits: mg/L	
Chloride		1070			20		20	03/06/06	18:21	T_H	3189811
DIESEL RANGE ORGA	NICS					MCL	1	SW8015B	Ur	nits: mg/L	
Diesel Range Organics (C	(10-C28)	ND			1		1	03/04/06	2:42	NW	3189088
Surr: n-Pentacosane		74.0		%	20-150		1	03/04/06	2:42	NW	3189088
Prep Method	Prep Date		Prep Initials	Pre	o Factor						
SW3510C	03/02/2006 13:12		N_M	1.00)						
GASOLINE RANGE OF	RGANICS					MCL		SW8015B	Ur	nits: mg/L	
Gasoline Range Organics	i	ND			0.1		1	03/08/06	7:11	DY	3191671

% 60-155

% 50-158

107

96.7

Client Sample ID:MW-1

Collected: 02/23/2006 15:45

SPL Sample ID:

06021136-02

Site: Hobbs,NM

Analyses/Method	Result QI	UAL Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq.#
SEMIVOLATILE ORGANICS BY	METHOD 8270	C	MCL SV	V8270C Un	its: ug/L	
1,2,4-Trichlorobenzene	ND	5	1	03/03/06 20:13	GQ	3188646
1,2-Dichlorobenzene	ND	5	1	03/03/06 20:13	GQ	3188646
1,2-Diphenylhydrazine	ND	10	1	03/03/06 20:13	GQ	3188646
1,3-Dichlorobenzene	ND	5	1	03/03/06 20:13	GQ	3188646
1,4-Dichlorobenzene	ND	5	1	03/03/06 20:13	GQ	3188646
2,4,5-Trichlorophenol	ND	10	1	03/03/06 20:13	GQ	3188646
2,4,6-Trichlorophenol	ND	5	1	03/03/06 20:13	GQ	3188646
2,4-Dichlorophenol	ND	5	1	03/03/06 20:13	GQ	3188646
2,4-Dimethylphenol	ND	5	1	03/03/06 20:13	GQ	3188646
2,4-Dinitrophenol	ND	25	1	03/03/06 20:13	GQ	3188646
2,4-Dinitrotoluene	ND	5	1	03/03/06 20:13	GQ	3188646
2,6-Dinitrotoluene	ND	5	1	03/03/06 20:13	GQ	3188646
2-Chloronaphthalene	ND	5	1	03/03/06 20:13	GQ	3188646
2-Chlorophenol	ND	5	1	03/03/06 20:13	GQ	3188646
2-Methylnaphthalene	ND	5	1	03/03/06 20:13	GQ	3188646
2-Nitroaniline	ND	25	1	03/03/06 20:13	GQ	3188646
2-Nitrophenol	ND	5	1	03/03/06 20:13	GQ	3188646
3,3´-Dichlorobenzidine	ND	10	1	03/03/06 20:13	GQ	3188646
3-Nitroaniline	ND	25	1	03/03/06 20:13	GQ	3188646
4,6-Dinitro-2-methylphenol	ND	25	1	03/03/06 20:13	GQ	3188646
4-Bromophenyl phenyl ether	ND	5	1	03/03/06 20:13	GQ	3188646
4-Chloro-3-methylphenol	ND	5	1	03/03/06 20:13	GQ	3188646
4-Chloroaniline	ND	5	1	03/03/06 20:13	GQ	3188646
4-Chlorophenyl phenyl ether	ND	5	1	03/03/06 20:13	GQ	3188646
4-Nitroaniline	ND	25	1	03/03/06 20:13	GQ	3188646
4-Nitrophenol	ND	25	1	03/03/06 20:13	GQ	3188646
Acenaphthene	ND	5	1	03/03/06 20:13	GQ	3188646
Acenaphthylene	ND	5	1	03/03/06 20:13	GQ	3188646
Aniline	ND	5	1	03/03/06 20:13	GQ	3188646
Anthracene	ND	5	1	03/03/06 20:13	GQ	3188646
Benz(a)anthracene	ND	5	1	03/03/06 20:13	GQ	3188646
Benzo(a)pyrene	ND	5	1	03/03/06 20:13	GQ	3188646
Benzo(b)fluoranthene	ND	5	1	03/03/06 20:13	GQ	3188646
Benzo(g,h,i)perylene	ND	5	1	03/03/06 20:13	GQ	3188646
Benzo(k)fluoranthene	ND	5	1	03/03/06 20:13	GQ	3188646
Benzoic acid	ND	25	1	03/03/06 20:13	GQ	3188646
Benzyl alcohol	ND	5	1	03/03/06 20:13	GQ	3188646
Bis(2-chloroethoxy)methane	ND	5	1	03/03/06 20:13	GQ	3188646
Bis(2-chloroethyl)ether	ND	5	1	03/03/06 20:13	GQ	3188646
Bis(2-chloroisopropyl)ether	ND	5	1	03/03/06 20:13	GQ	3188646

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Client Sample ID:MW-1

Collected: 02/23/2006 15:45

SPL Sample ID:

06021136-02

Site:	Н	n	h	h	e	N	I٨	Л	
one.	п	u	u	u	э.	ŀ٦	ш	"	

Analyses/Method	Result	QUAL	Re	p.Limit	Dil. Factor	Date Analyzed	Analyst	Seq.#
Bis(2-ethylhexyl)phthalate	ND			5 .	1	03/03/06 20:13	GQ	3188646
Butyl benzyl phthalate	ND			5	1	03/03/06 20:13	GQ	3188646
Carbazole	ND			5	1	03/03/06 20:13	GQ	3188646
Chrysene	ND			5	1	03/03/06 20:13	GQ	3188646
Dibenz(a,h)anthracene	ND			5	1	03/03/06 20:13	GQ	3188646
Dibenzofuran	ND	- · · · · -		5	1	03/03/06 20:13	GQ	3188646
Diethyl phthalate	ND			5	1	03/03/06 20:13	GQ	3188646
Dimethyl phthalate	ND			5	1	03/03/06 20:13	GQ	3188646
Di-n-butyl phthalate	ND			5	1	03/03/06 20:13	GQ	3188646
Di-n-octyl phthalate	ND			5	1	03/03/06 20:13	GQ	3188646
Fluoranthene	ND			5	1	03/03/06 20:13	GQ	3188646
Fluorene	ND			5	1	03/03/06 20:13	GQ	3188646
Hexachiorobenzene	ND		•	5	1	03/03/06 20:13	GQ	3188646
Hexachlorobutadiene	ND			5	1	03/03/06 20:13	GQ	3188646
Hexachlorocyclopentadiene	ND			5	1	03/03/06 20:13	GQ	3188646
Hexachloroethane	ND			5	1	03/03/06 20:13	GQ	3188646
Indeno(1,2,3-cd)pyrene	DN			5	1	03/03/06 20:13	GQ	3188646
Isophorone	ND			5	1	03/03/06 20:13	GQ	3188646
Naphthalene	ND			5	1	03/03/06 20:13	GQ	3188646
Nitrobenzene	ND			5	1	03/03/06 20:13	GQ	3188646
N-Nitrosodi-n-propylamine	ND			5	1	03/03/06 20:13	GQ	3188646
N-Nitrosodiphenylamine	ND			5	1	03/03/06 20:13	GQ	3188646
Pentachlorophenol	ND			25	1	03/03/06 20:13	GQ	3188646
Phenanthrene	ND			5	1	03/03/06 20:13	GQ	3188646
Phenol	ND			5	1	03/03/06 20:13	GQ	3188646
Pyrene	ND			5	1	03/03/06 20:13	GQ	3188646
Pyridine	ND			5	1	03/03/06 20:13	GQ	3188646
2-Methylphenol	ND			5	1	03/03/06 20:13	GQ	3188646
3 & 4-Methylphenol	ND			5	1	03/03/06 20:13	GQ	3188646
Surr: 2,4,6-Tribromophenol	85.3		%	10-123	1	03/03/06 20:13	GQ	3188646
Surr: 2-Fluorobiphenyl	64.0		%	23-116	1	03/03/06 20:13	GQ	3188646
Surr: 2-Fluorophenoi	45.3		%	16-110	1	03/03/06 20:13	GQ	3188646
Surr: Nitrobenzene-d5	60.0		%	21-114	1	03/03/06 20:13	GQ	3188646
Surr: Phenol-d5	33.3		%	10-110	1	03/03/06 20:13	GQ	3188646
Surr: Terphenyl-d14	74.0		%	22-141	1	03/03/06 20:13	GQ	3188646

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	03/01/2006 17:48	N_M	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-1

Collected: 02/23/2006 15:45

SPL Sample ID:

06021136-02

Site:	Hobb	s,NM
-------	------	------

Analyses/Method	Result QUAL	Rep.Limit	Dil. Factor	Date Analyzed Analy	st Seq.#
VOLATILE ORGANICS BY ME	THOD 8260B		MCL SV	V8260B Units: ug	/L
1,1,1,2-Tetrachloroethane	ND	5	1	03/02/06 22:10 C_V	3188598
1,1,1-Trichloroethane	ND	5	1	03/02/06 22:10 C_V	3188598
1,1,2,2-Tetrachloroethane	ND	5	1	03/02/06 22:10 C_V	3188598
1,1,2-Trichloroethane	ND	5	1	03/02/06 22:10 C_V	3188598
1,1-Dichloroethane	ND	5	1	03/02/06 22:10 C_V	3188598
1,1-Dichloroethene	ND	5	1	03/02/06 22:10 C_V	3188598
1,1-Dichloropropene	ND	5	1	03/02/06 22:10 C_V	3188598
1,2,3-Trichlorobenzene	ND	5	1	03/02/06 22:10 C_V	3188598
1,2,3-Trichloropropane	ND	5	1	03/02/06 22:10 C_V	3188598
1,2,4-Trichlorobenzene	ND	5	1	03/02/06 22:10 C_V	3188598
1,2,4-Trimethylbenzene	ND	5	1	03/02/06 22:10 C_V	3188598
1,2-Dibromo-3-chloropropane	ND	5	1	03/02/06 22:10 C_V	3188598
1,2-Dibromoethane	ND	5	1	03/02/06 22:10 C_V	3188598
1,2-Dichlorobenzene	ND	5	1	03/02/06 22:10 C_V	3188598
1,2-Dichloroethane	ND	5	1	03/02/06 22:10 C_V	3188598
1,2-Dichloropropane	ND	5	1	03/02/06 22:10 C_V	3188598
1,3,5-Trimethylbenzene	ND	5	1	03/02/06 22:10 C_V	3188598
1,3-Dichlorobenzene	ND	5	1	03/02/06 22:10 C_V	3188598
1,3-Dichloropropane	ND	5	1	03/02/06 22:10 C_V	3188598
1,4-Dichlorobenzene	ND	5	1	03/02/06 22:10 C_V	3188598
2,2-Dichloropropane	ND	5	1	03/02/06 22:10 C_V	3188598
2-Butanone	ND	20	1	03/02/06 22:10 C_V	3188598
2-Chloroethyl vinyl ether	ND	10	1	03/02/06 22:10 C_V	3188598
2-Chlorotoluene	ND	5	1	03/02/06 22:10 C_V	3188598
2-Hexanone	ND	10	1	03/02/06 22:10 C_V	3188598
4-Chlorotoluene	ND	5	1	03/02/06 22:10 C_V	3188598
4-Isopropyttoluene	ND	5	1	03/02/06 22:10 C_V	3188598
4-Methyl-2-pentanone	ND	10	1	03/02/06 22:10 C_V	3188598
Acetone	ND	100	1	03/02/06 22:10 C_V	3188598
Acrylonitrile	ND	50	1	03/02/06 22:10 C_V	3188598
Benzene	ND	5	1	03/02/06 22:10 C_V	3188598
Bromobenzene	ND	5	1	03/02/06 22:10 C_V	3188598
Bromochloromethane	ND	5	1	03/02/06 22:10 C_V	3188598
Bromodichloromethane	ND	5	1	03/02/06 22:10 C_V	3188598
Bromoform	ND	5	1	03/02/06 22:10 C_V	3188598
Bromomethane	ND	10	1	03/02/06 22:10 C_V	3188598
Carbon disulfide	ND	5	1	03/02/06 22:10 C_V	3188598
Carbon tetrachloride	ND	5	1	03/02/06 22:10 C_V	3188598
Chlorobenzene	ND	5	1	03/02/06 22:10 C_V	3188598
Chloroethane	ND	10	1	03/02/06 22:10 C V	3188598

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW-1 Collected: 02/23/2006 15:45

SPL Sample ID:

06021136-02

Site:	Hobbs,NM
-------	----------

			Site. Hobb	3,14101			
Analyses/Method	Result	QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Chloroform	ND		5	1	03/02/06 22:10	C_V	3188598
Chloromethane	ND		10	1	03/02/06 22:10	C_V	3188598
Dibromochloromethane	ND		5	1	03/02/06 22:10	C_V	3188598
Dibromomethane	ND		5	1	03/02/06 22:10	C_V	3188598
Dichlorodifluoromethane	ND		10	1	03/02/06 22:10	C_V	3188598
Ethylbenzene	ND		5	1	03/02/06 22:10	C_V	3188598
Hexachlorobutadiene	ND		5	1	03/02/06 22:10	C_V	3188598
Isopropylbenzene	ND		5	1	03/02/06 22:10	C_V	3188598
Methyl tert-butyl ether	ND		5	1	03/02/06 22:10	C_V	3188598
Methylene chloride	ND		5	1	03/02/06 22:10	C_V	3188598
Naphthalene	ND		5	1	03/02/06 22:10	C_V	3188598
n-Butylbenzene	ND		5	1	03/02/06 22:10	C_V	3188598
n-Propylbenzene	ND		5	1	03/02/06 22:10	C_V	3188598
sec-Butylbenzene	ND		5	1	03/02/06 22:10	C_V	3188598
Styrene	ND		5	1	03/02/06 22:10	C_V	3188598
tert-Butylbenzene	ND		5	1	03/02/06 22:10	C_V	3188598
Tetrachloroethene	ND		5	1	03/02/06 22:10	C_V	3188598
Toluene	ND		5	1	03/02/06 22:10	C_V	3188598
Trichloroethene	ND		5	1	03/02/06 22:10	C_V	3188598
Trichlorofluoromethane	ND		5	1	03/02/06 22:10	C_V	3188598
Vinyl acetate	ND		10	1	03/02/06 22:10	C_V	3188598
Vinyl chloride	ND		10	1	03/02/06 22:10	C_V	3188598
cis-1,2-Dichloroethene	ND		5	1	03/02/06 22:10	C_V	3188598
cis-1,3-Dichloropropene	ND		5	1	03/02/06 22:10	C_V	3188598
m,p-Xylene	ND		5	1	03/02/06 22:10	C_V	3188598
o-Xylene	ND		5	1	03/02/06 22:10	C_V	3188598
trans-1,2-Dichloroethene	ND		5	1	03/02/06 22:10	C_V	3188598
trans-1,3-Dichloropropene	ND		5	1	03/02/06 22:10	C_V	3188598
1,2-Dichloroethene (total)	ND		5	1	03/02/06 22:10	C_V	3188598
Xylenes,Total	ND		5	1	03/02/06 22:10	C_V	3188598
Surr: 1,2-Dichloroethane-d4	110		% 62-130	1	03/02/06 22:10	C_V	3188598
Surr: 4-Bromofluorobenzene	78.0		% 70-130	1	03/02/06 22:10	C_V	3188598
Surr: Toluene-d8	90.0		% 74-122	1	03/02/06 22:10	C_V	3188598
							

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: Trip Blank Collected: 02/23/2006 0:00 SPL Sample ID: 06021136-03

Site: Hobbs,NM

Analyses/Method	Result	QUAL	R	ep.Limit	D	il. Fact	or Date Analy	yzed	Analyst	Seq. #
GASOLINE RANGE ORGANICS					MCL		SW8015B	Un	its: mg/L	
Gasoline Range Organics	ND			0.1		1	03/08/06	6:41	DY	3191670
Surr: 1,4-Difluorobenzene	99.7		%	60-155		1	03/08/06	6:41	DY	3191670
Surr: 4-Bromofluorobenzene	99.3		%	50-158		1	03/08/06	6:41	DY	3191670

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: Trip Blank

Collected: 02/23/2006 0:00

SPL Sample ID:

06021136-03

Site:	Hobbs,	MM
-------	--------	----

Analyses/Method	Result	QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
VOLATILE ORGANICS BY MET	HOD 8260B			MCL SV	V8260B Ur	its: ug/L	
1,1,1,2-Tetrachloroethane	ND		5	1	03/02/06 15:55	C_V	3188596
1,1,1-Trichloroethane	ND		5	1	03/02/06 15:55	C_V	3188596
1,1,2,2-Tetrachloroethane	ND		5	1	03/02/06 15:55	CV	3188596
1,1,2-Trichloroethane	ND		5	1	03/02/06 15:55	C_V	3188596
1,1-Dichloroethane	ND		5	1	03/02/06 15:55	C_V	3188596
1,1-Dichloroethene	ND		5	1	03/02/06 15:55	C_V	3188596
1,1-Dichloropropene	ND		5	1	03/02/06 15:55	C_V	3188596
1,2,3-Trichlorobenzene	ND		5	1	03/02/06 15:55	C_V	3188596
1,2,3-Trichloropropane	ND		5	1	03/02/06 15:55	C_V	3188596
1,2,4-Trichlorobenzene	ND		5	1	03/02/06 15:55	C_V	3188596
1,2,4-Trimethylbenzene	ND		5	1	03/02/06 15:55	C_V	3188596
1,2-Dibromo-3-chloropropane	ND		5	1	03/02/06 15:55	C_V	3188596
1,2-Dibromoethane	ND		5	1	03/02/06 15:55	C_V	3188596
1,2-Dichlorobenzene	ND		5	1	03/02/06 15:55	C_V	3188596
1,2-Dichloroethane	ND		5	1	03/02/06 15:55	C_V	3188596
1,2-Dichloropropane	ND		5	1	03/02/06 15:55	C_V	3188596
1,3,5-Trimethylbenzene	ND		5	1	03/02/06 15:55	C_V	3188596
1,3-Dichlorobenzene	ND	,	5	1	03/02/06 15:55	C_V	3188596
1,3-Dichloropropane	ND		5	1	03/02/06 15:55	C_V	3188596
1,4-Dichlorobenzene	ND		5	1	03/02/06 15:55	C_V	3188596
2,2-Dichloropropane	ND		5	1	03/02/06 15:55	C_V	3188596
2-Butanone	ND		20	1	03/02/06 15:55	C_V	3188596
2-Chloroethyl vinyl ether	ND		10	1	03/02/06 15:55	C_V	3188596
2-Chlorotoluene	ND		5	1	03/02/06 15:55	C_V	3188596
2-Hexanone	ND		10	1	03/02/06 15:55	C_V	3188596
4-Chlorotoluene	ND		5	1	03/02/06 15:55	C_V	3188596
4-Isopropyttoluene	ND		5	1	03/02/06 15:55	C_V	3188596
4-Methyl-2-pentanone	ND		10	1	03/02/06 15:55	C_V	3188596
Acetone	ND		100	1	03/02/06 15:55	C_V	3188596
Acrylonitrile	ND		50	1	03/02/06 15:55	C_V	3188596
Benzene	ND		5	1	03/02/06 15:55	C_V	3188596
Bromobenzene	ND		5	1	03/02/06 15:55	C_V	3188596
Bromochloromethane	ND		5	1	03/02/06 15:55	C_V	3188596
Bromodichloromethane	ND		5	1	03/02/06 15:55	C_V	3188596
Bromoform	ND		5	1	03/02/06 15:55	C_V	3188596
Bromomethane	ND		10	1	03/02/06 15:55		3188596
Carbon disulfide	ND		5	1	03/02/06 15:55	C_V	3188596
Carbon tetrachloride	ND		5	1	03/02/06 15:55	C_V	3188596
Chlorobenzene	ND		5	1	03/02/06 15:55	C_V	3188596
Chloroethane	ND		10	1	03/02/06 15:55	C_V	3188596

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Client Sample ID: Trip Blank

Collected: 02/23/2006 0:00

SPL Sample ID:

06021136-03

Site:	Hobbs,NM
-------	----------

			Oite.	110003,1	• • • • • • • • • • • • • • • • • • • •			
Analyses/Method	Result	QUAL	Rep.L	imit	Dil. Factor	Date Analyzed	Analyst	Seq.#
Chloroform	ND			5	1	03/02/06 15:55	C_V	3188596
Chloromethane	ND			10	1	03/02/06 15:55	C_V	3188596
Dibromochloromethane	ND			5	1	03/02/06 15:55	C_V	3188596
Dibromomethane	ND			5	1	03/02/06 15:55	C_V	3188596
Dichlorodifluoromethane	ND			10	1	03/02/06 15:55	C_V	3188596
Ethylbenzene	ND			5	1	03/02/06 15:55	C_V	3188596
Hexachlorobutadiene	ND			5	1	03/02/06 15:55	C_V	3188596
Isopropylbenzene	ND			5	1	03/02/06 15:55	C_V	3188596
Methyl tert-butyl ether	ND			5	1	03/02/06 15:55	C_V	3188596
Methylene chloride	ND			5	1	03/02/06 15:55	C_V	3188596
Naphthalene	ND			5	1	03/02/06 15:55	C_V	3188596
n-Butylbenzene	ND			5	1	03/02/06 15:55	C_V	3188596
n-Propylbenzene	ND			5	1	03/02/06 15:55	C_V	3188596
sec-Butylbenzene	ND			5	1	03/02/06 15:55	C_V	3188596
Styrene	ND			5	1	03/02/06 15:55	C_V	3188596
tert-Butylbenzene	ND			5	1	03/02/06 15:55	C_V	3188596
Tetrachloroethene	ND			5	1	03/02/06 15:55	C_V	3188596
Toluene	ND			5	1	03/02/06 15:55	C_V	3188596
Trichloroethene	ND			5	1	03/02/06 15:55	C_V	3188596
Trichlorofluoromethane	ND			5	1	03/02/06 15:55	C_V	3188596
Vinyl acetate	ND			10	1	03/02/06 15:55	C_V	3188596
Vinyl chloride	ND			10	1	03/02/06 15:55	C_V	3188596
cis-1,2-Dichloroethene	ND			5	1	03/02/06 15:55	C_V	3188596
cis-1,3-Dichloropropene	ND			5	1	03/02/06 15:55	C_V	3188596
m,p-Xylene	ND			5	1	03/02/06 15:55	C_V	3188596
o-Xylene	ND			5	1	03/02/06 15:55	C_V	3188596
trans-1,2-Dichloroethene	ND			5	1	03/02/06 15:55	C_V	3188596
trans-1,3-Dichloropropene	ND			5	1	03/02/06 15:55	C_V	3188596
1,2-Dichloroethene (total)	ND			5	1	03/02/06 15:55	C_V	3188596
Xylenes,Total	ND			5	1	03/02/06 15:55	C_V	3188596
Surr: 1,2-Dichloroethane-d4	116		% 62-	-130	1	03/02/06 15:55	C_V	3188596
Surr: 4-Bromofluorobenzene	72.0		% 70-	-130	1	03/02/06 15:55	C_V	3188596
Surr: Toluene-d8	90.0		% 74-	-122	1	03/02/06 15:55	C_V	3188596

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Quality Control Documentation

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

Analysis:

Diesel Range Organics

Method:

RunID:

SW8015B

BJ Service, Hobbs, NM

WorkOrder:

06021136

Lab Batch ID:

55558

Method Blank

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

HP_V_060303I-3189079

03/03/2006 21:41

NW Analyst:

Units:

06021136-01D

MW-3

Preparation Date:

03/02/2006 13:12

Prep By: N_M Method SW3510C 06021136-02D

MW-1

Analyte	Result	Rep Limit
Diesel Range Organics (C10-C28)	ND	1.0
Surr: n-Pentacosane	75.6	20-150

Laboratory Control Sample (LCS)

RunID:

HP_V_060303I-3189080

Units: mg/L

Analysis Date:

03/03/2006 22:04

NW Analyst:

Preparation Date: 03/02/2006 13:12 Prep By: N_M Method SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Diesel Range Organics (C10-C28)	2 00	1 90	95.0	21	130

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021169-05

RunID:

HP_V_060303I-3189082

Units:

mg/L NW

Analysis Date:

03/03/2006 22:51

Analyst:

Preparation Date:

03/02/2006 13:12

Prep By: N_M Method SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Diesel Range Organics (C10-C28)	ND	4	4.38	105	4	3.97	95.1	9.93	39	26	130

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021136 Page 17 3/10/2006 10:39:11 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

Analysis:

Gasoline Range Organics

Method:

SW8015B

BJ Service, Hobbs, NM

WorkOrder:

06021136

Lab Batch ID:

R164356

Method Blank

HP_J_060307C-3191657 RunID:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

03/07/2006 21:12

Analyst:

Units:

06021136-01B

MW-3

Preparation Date:

03/07/2006 21:12

DY Prep By:

Method SW5030B

06021136-02B

MW-1

06021136-03B

Trip Blank

Analyte	Result	Rep Limit
Gasoline Range Organics	ND	0.10
Surr: 1,4-Difluorobenzene	98.3	60-155
Surr: 4-Bromofluorobenzene	93.0	50-158

Laboratory Control Sample (LCS)

RunlD:

HP_J_060307C-3191656

Units:

mg/L Analyst: DY

Analysis Date: Preparation Date: 03/07/2006 20:42 03/07/2006 20:42

Prep By:

Method SW5030B

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Gasoline Range Organics	1.00	0.881	88.1	42	136

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021135-03

RunID:

HP_J_060307C-3191665

Units:

mg/L

Analysis Date:

03/08/2006 3:40

DΥ Analyst:

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Gasoline Range Organics	ND	0.9	0.960	107	0.9	0.887	98.6	7.84	36	22	174

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

The percent recoveries for QC samples are correct as reported. Due to significant figures and

rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

06021136 Page 18 3/10/2006 10:39:11 AM

Brown & Caldwell

BJ Service, Hobbs, NM

Analysis: Method:

RuniD:

Semivolatile Organics by Method 8270C

od: SW8270C

WorkOrder:

06021136

Lab Batch ID:

55541A

Method Blank

Units:

ug/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

J_060306D-3190374

03/06/2006 12:20

Analyst: S_G

06021136-01C

MW-3

Preparation Date:

03/01/2006 17:48

Prep By: N_M Method SW3510C

06021136-02C

MW-1

Analyte	Result	Rep Limi
1,2,4-Trichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Diphenylhydrazine	ND	10
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
2,4,5-Trichlorophenol	ND	10
2,4,6-Trichlorophenol	ND	5.0
2,4-Dichlorophenol	ND	5.0
2,4-Dimethylphenol	ND	5.
2,4-Dinitrophenol	ND	2
2,4-Dinitrotoluene	ND	5.0
2,6-Dinitrotoluene	ND	5.
2-Chloronaphthalene	ND	5.0
2-Chlorophenol	ND	5.
2-Methylnaphthalene	ND ND	5.
2-Nitroaniline	ND	2
2-Nitrophenol	ND	5.
3,3'-Dichlorobenzidine	ND	1
	ND	2
3-Nitroaniline	ND	
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether		2
	ND ND	5.
4-Chloro-3-methylphenol	ND ND	5.
4-Chloroaniline	ND ND	5.
4-Chlorophenyl phenyl ether	ND ND	5.
4-Nitroaniline	ND ND	2
4-Nitrophenol	ND ND	2
Acenaphthene	ND ND	5.
Acenaphthylene	ND ND	5.
Aniline	ND.	5,
Anthracene	ND.	5.
Benz(a)anthracene	ND.	5.
Benzo(a)pyrene	ND	1
Benzo(b)fluoranthene	ND	
Benzo(g,h,i)perylene	ND.	1
Benzo(k)fluoranthene	ND	t .
Benzoic acid	ND	
Benzyl alcohol	ND	
Bis(2-chloroethoxy)methane	ND	
Bis(2-chloroethyl)ether	ND	
Bis(2-chloroisopropyl)ether	ND	5.
Bis(2-ethylhexyl)phthalate	ND	5.
Butyl benzyl phthalate	ND ND	5.
Carbazole	ND	5.
Chrysene	ND	5.
Dibenz(a,h)anthracene	ND	5.
Dibenzofuran	ND	5.
Diethyl phthalate	ND	5.
Dimethyl phthalate	ND	

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

06021136 Page 19

3/10/2006 10:39:11 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell BJ Service, Hobbs, NM

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

06021136

Lab Batch ID:

55541A

Method Blank

RunID:

J_060306D-3190374

Units:

ug/L

Analysis Date:

03/06/2006 12:20

Analyst:

S_G

Preparation Date: 03/01/2006 17:48 Prep By:

N_M Method SW3510C

Analyte	Result	Rep Limit
Di-n-butyl phthalate	ND	5,0
Di-n-octyl phthalate	ND	5.0
Fluoranthene	ND	5.0
Fluorene	ND	5.0
Hexachlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Hexachlorocyclopentadiene	ND	5.0
Hexachloroethane	ND	5.0
Indeno(1,2,3-cd)pyrene	ND	5.0
Isophorone	ND	5.0
Naphthalene	ND	5.0
Nitrobenzene	ND	5.0
N-Nitrosodi-n-propylamine	ND	5.0
N-Nitrosodiphenylamine	ND	5.0
Pentachlorophenol	ND	25
Phenanthrene	ND	5.0
Phenol	ND	5.0
Pyrene	ND	5.0
Pyridine	ND	5.0
2-Methylphenol	ND	5.0
3 & 4-Methylphenol	ND	5.0
Surr: 2,4,6-Tribromophenol	70.7	10-123
Surr: 2-Fluorobiphenyl	68.0	23-116
Surr: 2-Fluorophenol	66.7	16-110
Surr: Nitrobenzene-d5	66.0	21-114
Surr: Phenol-d5	73.3	10-110
Surr: Terphenyl-d14	68.0	22-141

Laboratory Control Sample (LCS)

RunID:

J_060306D-3190375

Units: ug/L

Analysis Date:

03/06/2006 12:59

Analyst: S_G

Preparation Date:

03/01/2006 17:48

Prep By:

N_M Method SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,2,4-Trichlorobenzene	25.0	20.0	80.0	21	120
1,2-Dichlorobenzene	25.0	20.0	80.0	20	150
1,2-Diphenylhydrazine	25.0	18.0	72.0	10	160
1,3-Dichlorobenzene	25.0	20.0	80.0	20	150
1,4-Dichlorobenzene	25.0	19.0	76.0	20	150
2,4,5-Trichlorophenol	25.0	20.0	80.0	30	150

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021136 Page 20 3/10/2006 10:39:11 AM

Brown & Caldwell BJ Service, Hobbs, NM

Analysis: Method: Semivolatile Organics by Method 8270C

Analysis Date:

SW8270C

WorkOrder:

rkOrder:

06021136

Lab Batch ID:

55541A

Laboratory Control Sample (LCS)

RunID:

J_060306D-3190375

Units:

Analyst:

ug/L S_G

Preparation Date: 0

03/06/2006 12:59 03/01/2006 17:48

Prep By: N_M Method SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
2,4,6-Trichlorophenol	25.0	20.0	80.0	30	150
2,4-Dichlorophenol	25.0	20.0	80.0	30	150
2,4-Dimethylphenol	25.0	21.0	84.0	32	140
2,4-Dinitrophenol	25.0	15.0	60.0	10	160
2,4-Dinitrotoluene	25.0	22.0	88.0	30	150
2,6-Dinitrotoluene	25.0	22.0	88.0	30	150
2-Chloronaphthalene	25.0	19.0	76.0	30	150
2-Chlorophenol	25.0	19.0	76.0	23	134
2-Methylnaphthalene	25.0	21.0	84.0	20	170
2-Nitroaniline	25.0	18.0	72.0	20	160
2-Nitrophenol	25.0	19.0	76.0	29	182
3,3´-Dichlorobenzidine	25.0	17.0	68.0	30	200
3-Nitroaniline	25.0	19.0	76.0	20	160
4,6-Dinitro-2-methylphenol	25.0	15.0	60.0	10	160
4-Bromophenyl phenyl ether	25.0	16.0	64.0	30	150
4-Chloro-3-methylphenol	25.0	21.0	84.0	25	160
4-Chloroaniline	25.0	17.0	68.0	20	160
4-Chlorophenyl phenyl ether	25.0	20.0	80.0	25	158
4-Nitroaniline	25.0	19.0	76.0	20	160
4-Nitrophenol	25.0	21.0	84.0	10	132
Acenaphthene	25.0	21.0	84.0	30	150
Acenaphthylene	25.0	21.0	84.0	33	250
Aniline	25.0	14.0	56.0	10	135
Anthracene	25.0	19.0	76.0	27	133
Benz(a)anthracene	25.0	20.0	80.0	33	143
Benzo(a)pyrene	25.0	23.0	92.0	17	163
Benzo(b)fluoranthene	25.0	23.0	92.0	24	159
Benzo(g,h,i)perylene	25.0	23.0	92.0	30	160
Benzo(k)fluoranthene	25.0	24.0	96.0	11	162
Benzoic acid	25.0	8.00	32.0	10	400
Benzyl alcohol	25.0	18.0	72.0	30	160
Bis(2-chloroethoxy)methane	25.0	22.0	88.0	33	184
Bis(2-chloroethyl)ether	25.0	17.0	68.0	12	158
Bis(2-chloroisopropyl)ether	25.0	19.0	76.0	20	160
Bis(2-ethylhexyl)phthalate	25.0	20.0	80.0	10	158

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

06021136 Page 21 3/10/2006 10:39:12 AM

Brown & Caldwell BJ Service, Hobbs, NM

Analysis: Method: Semivolatile Organics by Method 8270C

SW8270C

J Service, Hobbs, NIVI

WorkOrder:

06021136

Lab Batch ID:

55541A

Laboratory Control Sample (LCS)

RunID:

J_060306D-3190375

Units:

ug/L

Analysis Date:

03/06/2006 12:59

Analyst: S_G

Preparation Date: 03/01/2006 17:48

Prep By: N_M Method SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Butyl benzyl phthalate	25.0	21.0	84.0	30	160
Carbazole	25.0	20.0	80.0	30	150
Chrysene	25.0	19.0	76.0	17	168
Dibenz(a,h)anthracene	25.0	23.0	92.0	30	160
Dibenzofuran	25.0	21.0	84.0	30	150
Diethyl phthalate	25.0	23.0	92.0	30	160
Dimethyl phthalate	25.0	22.0	88.0	30	160
Di-n-butyl phthalate	25.0	20.0	80.0	30	160
Di-n-octyl phthalate	25.0	19.0	76.0	20	150
Fluoranthene	25.0	21.0	84.0	26	137
Fluorene	25.0	21.0	84.0	30	150
Hexachlorobenzene	25.0	18.0	72.0	20	150
Hexachlorobutadiene	25.0	22.0	88.0	20	140
Hexachlorocyclopentadiene	25.0	13.0	52.0	10	150
Hexachloroethane	25.0	20.0	80.0	14	120
Indeno(1,2,3-cd)pyrene	25.0	18.0	72.0	30	160
Isophorone	25.0	25.0	100	21	196
Naphthalene	25.0	21.0	84.0	21	133
Nitrobenzene	25.0	20.0	80.0	20	160
N-Nitrosodi-n-propylamine	25.0	20.0	80.0	30	160
N-Nitrosodiphenylamine	50.0	37.0	74.0	30	150
Pentachlorophenol	25.0	16.0	64.0	14	176
Phenanthrene	25.0	19.0	76.0	10	140
Phenol	25.0	19.0	76.0	10	112
Pyrene	25.0	20.0	80.0	30	150
Pyridine	25.0	13.0	52.0	10	150
2-Methylphenol	25.0	19.0	76.0	30	160
3 & 4-Methylphenol	25.0	19.0	76.0	10	160

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

06021136 Page 22 3/10/2006 10:39:12 AM

Brown & Caldwell BJ Service, Hobbs, NM

Analysis:

Semivolatile Organics by Method 8270C

RunID:

Method:

SW8270C

WorkOrder: Lab Batch ID: 06021136

06021107-02

55541A

Sample Spiked:

J_060306D-3190376

Units:

Analysis Date:

03/06/2006 15:32

mg/L

Preparation Date:

03/01/2006 17:48

Analyst: S_G

Prep By: N_M Method SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,2,4-Trichlorobenzene	ND	0.05	0.0400	80.0	0.05	0.0390	78.0	2.53	28	10	142
1,2-Dichlorobenzene	ND	0.05	0.0390	78.0	0.05	0.0370	74.0	5.26	50	20	150
1,2-Diphenylhydrazine	ND	0.05	0.0420	84.0	0.05	0.0420	84.0	0	50	10	160
1,3-Dichlorobenzene	ND	0.05	0.0380	76.0	0.05	0.0360	72.0	5.41	50	20	150
1,4-Dichlorobenzene	ND	0.05	0.0360	72.0	0.05	0.0360	72.0	0	45	20	150
2,4,5-Trichlorophenol	ND	0.05	0.0440	88.0	0.05	0.0430	86.0	2.30	50	30	150
2,4,6-Trichlorophenol	ND	0.05	0.0430	86.0	0.05	0.0420	84.0	2.35	50	30	150
2,4-Dichlorophenol	ND	0.05	0.0420	84.0	0.05	0.0430	86.0	2.35	50	30	150
2,4-Dimethylphenol	ND	0.05	0.0420	84.0	0.05	0.0430	86.0	2.35	50	32	140
2,4-Dinitrophenol	ND	0.05	0.0380	76.0	0.05	0.0360	72.0	5.41	50	10	160
2,4-Dinitrotoluene	ND	0.05	0.0460	92.0	0.05	0.0420	84.0	9.09	50	30	150
2,6-Dinitrotoluene	ND	0.05	0.0460	92.0	0.05	0.0430	86.0	6.74	50	30	150
2-Chloronaphthalene	ND	0.05	0.0430	86.0	0.05	0.0420	84.0	2.35	50	30	150
2-Chlorophenol	ND	0.05	0.0400	80.0	0.05	0.0410	82.0	2.47	40	23	134
2-Methylnaphthalene	ND	0.05	0.0440	88.0	0.05	0.0430	86.0	2.30	50	20	170
2-Nitroaniline	ND	0.05	0.00800	16.0 *	0.05	0.00800	16.0 *	0	50	20	160
2-Nitrophenol	ND	0.05	0.0410	82.0	0.05	0.0410	82.0	0	50	29	182
3,3'-Dichlorobenzidine	ND	0.05	0	0 *	0.05	0	0*	0	50	30	200
3-Nitroaniline	ND	0.05	0.00900	18.0 *	0.05	0.00900	18.0 *	0	50	20	160
4,6-Dinitro-2-methylphenol	ND	0.05	0.0380	76.0	0.05	0.0360	72.0	5.41	50	10	160
4-Bromophenyl phenyl ether	ND	0.05	0.0350	70.0	0.05	0.0350	70.0	0	50	30	150
4-Chloro-3-methylphenol	ND	0.05	0.0450	90.0	0.05	0.0450	90.0	0	42	25	160
4-Chloroaniline	ND	0.05	0.0290	58.0	0.05	0.0280	56.0	3.51	50	20	160
4-Chlorophenyl phenyl ether	ND	0.05	0.0420	84.0	0.05	0.0400	80.0	4.88	50	25	158
4-Nitroaniline	ND	0.05	0.00200	4.00 *	0.05	0.00200	4.00 *	0	50	20	160
4-Nitrophenol	ND	0.05	0.0310	62.0	0.05	0.0340	68.0	9.23	50	10	132
Acenaphthene	ND	0.05	0.0450	90.0	0.05	0.0420	84.0	6.90	31	30	150
Acenaphthylene	ND	0.05	0.0450	90.0	0.05	0.0430	86.0	4.55	50	33	250
Aniline	ND	0.05	0.0270	54.0	0.05	0.0220	44.0	20.4	50	10	135
Anthracene	ND	0.05	0.0430	86.0	0.05	0.0410	82.0	4.76	50	27	133
Benz(a)anthracene	ND	0.05	0.0430	86.0	0.05	0.0430	86.0	0	50	33	143
Benzo(a)pyrene	ND	0.05	0.0490	98.0	0.05	0.0490	98.0	0	50	17	163
Benzo(b)fluoranthene	ND	0.05	0.0500	100	0.05	0.0480	96.0	4.08	50	24	159
Benzo(g,h,i)perylene	ND	0.05	0.0520	104	0.05	0.0540	108	3.77	50	30	160

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

The percent recoveries for QC samples are correct as reported. Due to significant figures and

06021136 Page 23

rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

3/10/2006 10:39:12 AM

Brown & Caldwell

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

BJ Service, Hobbs, NM

WorkOrder:

06021136

Lab Batch ID:

55541A

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021107-02

RunID:

J_060306D-3190376

Units:

mg/L

Analysis Date:

03/06/2006 15:32

Analyst:

S_G

Preparation Date:

03/01/2006 17:48

Prep By: N_M Method SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzo(k)fluoranthene	ND	0.05	0.0500	100	0.05	0.0510	102	1.98	50	11	162
Benzoic acid	ND	0.05	0.0100	20.0	0.05	0.0190	38.0	62.1 *	50	10	400
Benzyl alcohol	ND	0.05	0.0410	82.0	0.05	0.0420	84.0	2.41	50	30	160
Bis (2-chloroethoxy)methane	ND	0.05	0.0470	94.0	0.05	0.0460	92.0	2.15	50	33	184
Bis (2-chloroethyl)ether	ND	0.05	0.0400	80.0	0.05	0.0390	78.0	2.53	50	12	158
Bis (2-chloroisopropyl)ether	ND	0.05	0.0430	86.0	0.05	0.0430	86.0	0	50	20	160
Bis(2-ethylhexyl)phthalate	ND	0.05	0.0480	96.0	0.05	0.0470	94.0	2.11	50	10	158
Butyl benzyl phthalate	ND	0.05	0.0480	96.0	0.05	0.0470	94.0	2.11	50	30	160
Carbazole	ND	0.05	0.0440	88.0	0.05	0.0420	84.0	4.65	50	30	150
Chrysene	ND	0.05	0.0430	86.0	0.05	0.0420	84.0	2.35	50	17	168
Dibenz(a,h)anthracene	ND	0.05	0.0500	100	0.05	0.0510	102	1.98	50	30	160
Dibenzofuran	ND	0.05	0.0450	90.0	0.05	0.0430	86.0	4.55	50	30	150
Diethyl phthalate	ND	0.05	0.0470	92.0	0.05	0.0450	88.0	4.35	50	30	160
Dimethyl phthalate	ND	0.05	0.0450	90.0	0.05	0.0440	88.0	2.25	50	30	160
Di-n-butyl phthalate	ND	0.05	0.0460	92.0	0.05	0.0440	88.0	4.44	50	30	160
Di-n-octyl phthalate	ND	0.05	0.0450	90.0	0.05	0.0440	88.0	2.25	50	20	150
Fluoranthene	ND	0.05	0.0470	94.0	0.05	0.0430	86.0	8.89	50	26	137
Fluorene	ND	0.05	0.0440	88.0	0.05	0.0420	84.0	4.65	50	30	150
Hexachlorobenzene	ND	0.05	0.0410	82.0	0.05	0.0400	80.0	2.47	50	20	150
Hexachlorobutadiene	ND	0.05	0.0450	90.0	0.05	0.0430	86.0	4.55	50	20	140
Hexachlorocyclopentadiene	ND	0.05	0.0300	60.0	0.05	0.0280	56.0	6.90	50	10	150
Hexachloroethane	ND	0.05	0.0380	76.0	0.05	0.0380	76.0	0	50	10	140
Indeno(1,2,3-cd)pyrene	ND	0.05	0.0440	88.0	0.05	0.0440	88.0	0	50	30	160
Isophorone	ND	0.05	0.0530	106	0.05	0.0530	106	0	50	21	196
Naphthalene	ND	0.05	0.0620	124	0.05	0.0590	118	4.96	50	21	133
Nitrobenzene	ND	0.05	0.0540	108	0.05	0.0510	102	5.71	50	20	160
N-Nitrosodi-n-propylamine	ND	0.05	0.0450	90.0	0.05	0.0460	92.0	2.20	38	30	160
N-Nitrosodiphenylamine	ND	0.1	0.0810	81.0	0.1	0.0810	81.0	0	50	30	150
Pentachlorophenol	ND	0.05	0.0370	64.0	0.05	0.0400	70.0	7.79	50	14	176
Phenanthrene	ND	0.05	0.0410	82.0	0.05	0.0400	80.0	2.47	50	10	140
Phenol	ND	0.05	0.0250	50.0	0.05	0.0330	66.0	27.6	42	10	112
Pyrene	ND	0.05	0.0420	84.0	0.05	0.0430	86.0	2.35	31	30	150
Pyridine	ND	0.05	0.0140	28.0	0.05	0.00600	12.0	80.0 *	50	10	150

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021136 Page 24 3/10/2006 10:39:12 AM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Brown & Caldwell

BJ Service, Hobbs, NM

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

06021136

Lab Batch ID:

55541A

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021107-02

RunID:

J_060306D-3190376

Units:

mg/L

Analysis Date:

03/06/2006 15:32

Analyst:

S_G

Preparation Date: 03/01/2006 17:48

Prep By: N_M Method SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
2-Methylphenol	ND	0.05	0.0410	82.0	0.05	0.0440	88.0	7.06	50	30	160
3 & 4-Methylphenol	ND	0.05	0.0370	74.0	0.05	0.0420	84.0	12.7	50	10	160

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021136 Page 25 3/10/2006 10:39:12 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell BJ Service, Hobbs, NM

Analysis:

Volatile Organics by Method 8260B

Method:

Analysis Date:

Preparation Date:

SW8260B

WorkOrder:

Samples in Analytical Batch:

06021136

Lab Batch ID:

R164154

Method Blank

RunID: Q_060302G-3188464

03/02/2006 15:02

03/02/2006 15:02

Units: Analyst: Prep By:

ug/L C_V

Method

Lab Sample ID

06021136-01A

06021136-02A

MW-3 MW-1

06021136-03A

Trip Blank

Client Sample ID

Analyte	Result	Rep Limi
1,1,1,2-Tetrachloroethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,1,2-Trichloroethane	ND	5.0
1,1-Dichloroethane	ND	
1,1-Dichloroethene	ND	
1,1-Dichloropropene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0
1,2,3-Trichloropropane	ND	5.
1,2,4-Trichlorobenzene	ND	5.
1,2,4-Trimethylbenzene	ND	5.
1,2-Dibromo-3-chloropropane	ND	5.
1,2-Dibromoethane	ND ND	5.
1,2-Dichlorobenzene	ND	5.
1,2-Dichloroethane	ND ND	5.
1,2-Dichloropropane	ND	5.
1,3,5-Trimethylbenzene	ND ND	5.
1,3-Dichlorobenzene	ND ND	5.
1,3-Dichloropropane	ND	5.
1,4-Dichlorobenzene	ND	5.
2,2-Dichloropropane	ND	5.
2-Butanone	ND	2
2-Chloroethyl vinyl ether	ND	1
	ND	
2-Chiorotoluene 2-Hexanone	ND ND	1
	ND ND	
4-Chlorotoluene	ND	5. 5.
4-Isopropyltoluene	ND ND	3.
4-Methyl-2-pentanone	ND ND	10
Acetone		
Acrylonitrile	ND	
Benzene	ND	5.
Bromobenzene	ND	
Bromochloromethane	ND	
Bromodichloromethane	ND	
Bromoform	ND.	
Bromomethane	ND ND	1
Carbon disulfide	ND	5.
Carbon tetrachloride	ND.	
Chlorobenzene	ND.	5.
Chloroethane	ND.	1
Chloroform	ND.	
Chloromethane	ND.	
Dibromochloromethane	ND	
Dibromomethane	ND.	
Dichlorodifluoromethane	ND.	
Ethylbenzene	ND	
Hexachlorobutadiene	ND	
Isopropylbenzene	ND	5.

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021136 Page 26 3/10/2006 10:39:12 AM

Brown & Caldwell BJ Service, Hobbs, NM

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B WorkOrder:

06021136

Lab Batch ID:

R164154

Method Blank

RunID: Q_060302G-3188464

Units:

Prep By:

ug/L

Analysis Date:

03/02/2006 15:02

C_V Analyst:

Preparation Date:

03/02/2006 15:02

Method

Analyte	Result	Rep Limit
Methyl tert-butyl ether	ND	5.0
Methylene chloride	ND	5.0
Naphthalene	ND	5.0
n-Butylbenzene	ND	5.0
n-Propylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
Styrene	ND	5.0
tert-Butylbenzene	ND	5.0
Tetrachloroethene	ND	5.0
Toluene	ND	5.0
Trichloroethene	ND	5.0
Trichlorofluoromethane	ND	5.0
Vinyl acetate	ND	10
Vinyl chloride	ND.	10
cis-1,2-Dichloroethene	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
m,p-Xylene	ND.	5.0
o-Xylene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,2-Dichloroethene (total)	ND	5.0
Xylenes,Total	ND	5.0
Surr: 1,2-Dichloroethane-d4	116.0	62-130
Surr: 4-Bromofluorobenzene	74.0	70-130
Surr: Toluene-d8	88.0	74-122

Laboratory Control Sample (LCS)

RunID:

Q_060302G-3188463

Units:

Analysis Date: Preparation Date: 03/02/2006 13:03 03/02/2006 13:03

ug/L Analyst: C_V

Prep By:

Method

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,1-Dichloroethene	50.0	46.0	92.0	71	146
Benzene	50.0	49.0	98.0	76	126
Chlorobenzene	50.0	49.0	98.0	78	125
Toluene	50.0	52.0	104	83	131
Trichloroethene	50.0	47.0	94.0	64	137

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021136 Page 27 3/10/2006 10:39:12 AM

Brown & Caldwell BJ Service, Hobbs, NM

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

0

06021136

WorkOrder: Lab Batch ID:

R164154

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021136-01

RunID:

Q_060302G-3188599

Units:

ug/L

Analysis Date:

03/02/2006 22:36

Analyst: 0

C V

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,1-Dichloroethene	ND	50	43.0	86.0	50	43.0	86.0	0	14	71	146
Benzene	ND	50	48.0	96.0	50	48.0	96.0	0	11	78	126
Chlorobenzene	ND	50	47.0	94.0	50	46.0	92.0	2.15	13	78	125
Toluene	ND	50	49.0	98.0	50	48.0	96.0	2.06	13	83	131
Trichloroethene	ND	50	45.0	90.0	50	45.0	90.0	0	14	77	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

06021136 Page 28 3/10/2006 10:39:12 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

Analysis:

Chloride, Total

Method:

RunID:

E325.2

BJ Service, Hobbs, NM

WorkOrder:

06021136

Lab Batch ID:

R164251

Method Blank

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

KONELAB_060306C-3189797 03/06/2006 17:31

T_H Analyst:

06021136-01E

MW-3

06021136-02E

MW-1

Analyte	Result	Rep Limit
Chloride	ND	1.0

Laboratory Control Sample (LCS)

RunID:

KONELAB_060306C-31897 Units:

mg/L

Analysis Date:

03/06/2006 17:31

Analyst: T_H

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Chloride	50.00	52.77	105.5	80	120

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021136-01

RunID:

KONELAB_060306C-31898 Units:

mg/L

Analysis Date:

03/06/2006 18:29

Analyst: T_H

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Chloride	66.61	50	113.3	93.35	50	113.2	93.12	0.1016	20	76	131

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

06021136 Page 29 3/10/2006 10:39:13 AM

Sample Receipt Checklist And Chain of Custody

Sample Receipt Checklist

Workorder: Date and Time Received: Temperature:	06021136 2/25/2006 10:00:00 AM 2.5°C			Received By Carrier name Chilled by:	9 :	RE Fedex-Priority Water Ice	
1. Shipping container/co	poler in good condition?	Yes	/	No 🗌		Not Present	
2. Custody seals intact	on shippping container/cooler?	Yes 5	/	No 🗆		Not Present	
3. Custody seals intact	on sample bottles?	Yes [No 🗌		Not Present	lacksquare
4. Chain of custody pre	sent?	Yes	/	No 🗆			
5. Chain of custody sign	ned when relinquished and received?	Yes	7	No \square			
6. Chain of custody agre	ees with sample labels?	Yes	~	No 🗆			
7. Samples in proper co	ntainer/bottle?	Yes [✓	No 🗌			
8. Sample containers in	tact?	Yes [✓	No 🗆			
9. Sufficient sample vol	ume for indicated test?	Yes [✓	No 🗌			
10. All samples received	within holding time?	Yes [~	No 🗌			
11. Container/Temp Blan	k temperature in compliance?	Yes [~	No 🗆			
12. Water - VOA vials have	ve zero headspace?	Yes	✓	No 🗆	VOA Via	s Not Present	
13. Water - Preservation	checked upon receipt (except VOA*)?	Yes [✓	No 🗆	ı	Not Applicable	
*VOA Preservation C	hecked After Sample Analysis						
SPL Representat Client Name Contact		Contac	ct Date & T	ime:			
Non Conformance Issues:							
Client Instructions:							

PM review (initial): zz 237446 ්ත් × × Temp: 2.5 3 page Requested Analysis Intact? Ice? أوراطو 6. Byceived by Laborator 1602/13 SPL Workorder No. Special Detection Limits (specify): 4. Received by: 2. Received by: ₹D €012 160 108 1098 time /၁၀) 0001 J time 9 Number of Containers Email | PDF | pres. A TO X=other 3=H2SO4 Standard QCX Level 3 QC Level 4 QC TX TRRP L LA RECAP date 2/24/6.6 Analysis Request & Chain of Custody Record 1975/00 S=HNO3 I=HCI アンチものまべ P. J. A 4016X Size 8=80z 16=160z X=other 0 7 faiv=()4 ZO+=+ Laboratory remarks: matrix bottle C=glass V=vial X=other Fax A=amber glass b=plastic SPL. Inc. 3 X=other SL=sludge lio=O fioz=2 W=water Special Reporting Requirements Results: comp grab Ph: 713-759-0999 2500 1. Relinguished by Sampler: 521881 Fracmaster TIME 5251 amacho 1410 DiePare 3. Relinquished by: 5. Relinquished by: ハナト 2/22/06 3/22/8 | 8880 Interchange Drive | Houston, TX 77054 (713) 660-0901 Project Name No.: BS-FIRE MAS ter DATE Email: Louisiana 3 7,3-759-0999 Z Z Site Name: BJ - Services Client Contact: R. Rexfood Browna F8-4-60 AB-3-00 Standard 8 Requested TAT Invoice To: K. REX FOCA Client/Consultant Remarks: Site Location: //a/b/b/5 SAMPLE ID Fig blank MW-3 138 †2 ***** Client Name: Contract [__ Phone/Fax: Address: Other 24hr 48hr

500 Ambassador Caffery Parkway Scott, LA 70583 (337) 237-4775

LJ 459 Hughes Drive Traverse City, MI 49686 (231) 947-5777

Brown & Caldwell

Certificate of Analysis Number:

06021075

Report To:

Brown & Caldwell

Rick Rexroad

1415 Louisiana Suite 2500

Houston

TX

77002-

ph: (713) 759-0999

fax:

Project Name:

BJ Service Fracmaster 128125.002

Site: Hobbs, NM

Site Address:

PO Number:

State:

New Mexico

State Cert. No.:

Date Reported:

3/9/2006

This Report Contains A Total Of 28 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

3/9/2006

Case Narrative for: Brown & Caldwell

Certificate of Analysis Number:

06021075

Report To: Project Name: BJ Service Fracmaster 128125.002 Hobbs, NM **Brown & Caldwell** Rick Rexroad Site Address: 1415 Louisiana **Suite 2500** PO Number: Houston State: **New Mexico** TX 77002-State Cert. No.: ph: (713) 759-0999 fax: 3/9/2006 **Date Reported:**

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Any other exception's associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Sonia West

06021075 Page 1 3/9/2006

Sonia West

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Brown & Caldwell

Certificate of Analysis Number:

06021075

Report To:

Brown & Caldwell

Rick Rexroad

1415 Louisiana

Suite 2500

Houston

ΤX

77002-

ph: (713) 759-0999

fax: (713) 308-3886

Project Name:

BJ Service Fracmaster 128125.002

Site:

Hobbs, NM

Site Address:

PO Number:

State:

New Mexico

State Cert. No.:

Fax To:

Date Reported:

3/9/2006

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
MW-1-19-20	06021075-01	Soil	2/21/2006 4:00:00 PM	2/24/2006 9:30:00 AM	237447	
FB-1	06021075-02	Water	2/21/2006 6:30:00 PM	2/24/2006 9:30:00 AM	237447	
Trip Blank	06021075-03	Water	2/21/2006	2/24/2006 9:30:00 AM	237447	
RB-1	06021075-04	Water	2/21/2006 6:40:00 PM	2/24/2006 9:30:00 AM	237447	
MW-2-14-15	06021075-05	Soil	2/22/2006 1:40:00 PM	2/24/2006 9:30:00 AM	237447	
IDW	06021075-06	Soil	2/22/2006 3:45:00 PM	2/24/2006 9:30:00 AM	237447	
FB-2	06021075-07	Water	2/22/2006	2/24/2006 9:30:00 AM	237447	
RB-2	06021075-08	Water	2/22/2006	2/24/2006 9:30:00 AM	237447	
Trip Blank	06021075-09	Water	2/22/2006	2/24/2006 9:30:00 AM	237447	

Donia West

3/9/2006

Date

Sonia West

Senior Project Manager

Joel Grice Laboratory Director

Ted Yen
Quality Assurance Officer

06021075 Page 2

3/9/2006 10:27:33 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-1-19-20

Collected: 02/21/2006 16:00

SPL Sample ID:

06021075-01

Site: Hobbs, NM

						~~, ·····					
Analyses/Method		Result	QUAL	R	ep.Limit	Di	il. Fact	or Date Anal	yzed	Analyst	Seq.#
DIESEL RANGE OR	GANICS					MCL		SW8015B	Un	its: mg/Kg	
Diesel Range Organics	(C10-C28)	ND			5		1	03/04/06	4:37	AE	3191762
Surr: n-Pentacosane)	88.8		%	20-154		1	03/04/06	4:37	AE	3191762
Prep Method	Prep Date		Prep Initials	Prep	Factor						
SW3550B	02/28/2006 1	5:38	LLL	1.00							
GASOLINE RANGE	ORGANICS					MCL		SW8015B	Ur	its: mg/Kg	
Gasoline Range Organ	ics	ND			0.1		1	02/27/06	17:30	JWW	3180534
Surr: 1,4-Difluorober	nzene	98.0		%	63-142		1	02/27/06	17:30	JWW	3180534
Surr: 4-Bromofluorol	oenzene	99.7		%	50-159		1	02/27/06	17:30	JWW	3180534
Prep Method	Prep Date		Prep Initials	Prep	Factor						
SW5030B	02/27/2006 9	:15	ЕМВ	1.00							
PURGEABLE AROM	ATICS					MCL		SW8021B	Ur	its: ug/Kg	
Benzene		ND			1		1	02/27/06	17:30	JWW	3180514
T-lucas		MD						00/07/00	47.00	DA/38/	240054

URGEABLE AROMATICS			MCL		SW8021B	Units: ug/Kg	
Benzene	ND	1		1	02/27/06	17:30 JWW	3180514
Toluene	ND	1		1	02/27/06	17:30 JWW	3180514
Ethylbenzene	ND	1		1	02/27/06	17:30 JWW	3180514
m,p-Xylene	ND	1		1	02/27/06	17:30 JWW	3180514
o-Xylene	ND	1		1	02/27/06	17:30 JWW	3180514
Xylenes,Total	ND	1		1	02/27/06	17:30 JWW	3180514
Surr: 1,4-Difluorobenzene	101	% 77-126		1	02/27/06	17:30 JWW	3180514
Surr: 4-Bromofluorobenzene	91.5	% 60-160		1	02/27/06	17:30 JWW	3180514

Prep Method	Prep Date	Prep Initials	Prep Factor
SW5030B	02/27/2006 9:15	ЕМВ	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:FB-1

Collected: 02/21/2006 18:30

SPL Sample ID:

06021075-02

Site: Hobbs, NM

Analyses/Method	Result	QUAL	Re	ep.Limit	[Oil. Facto	or Date Ana	lyzed	Analyst	Seq. #
GASOLINE RANGE ORGANICS					MCL	S	W8015B	Uı	nits: mg/L	
Gasoline Range Organics	ND			0.1		1	03/01/06	13:40	DMN	3183805
Surr: 1,4-Difluorobenzene	100		%	60-155		1	03/01/06	13:40	DMN	3183805
Surr: 4-Bromofluorobenzene	100		%	50-158		1	03/01/06	13:40	DMN	3183805
PURGEABLE AROMATICS					MCL	5	W8021B	Uı	nits: ug/L	
Benzene	ND			1		1	03/02/06	18:55	DMN	3185594
Toluene	ND			1		1	03/02/06	18:55	DMN	3185594
Ethylbenzene	ND			1		1	03/02/06	18:55	DMN	3185594
m,p-Xylene	ND			1		1	03/02/06	18:55	DMN	3185594
o-Xylene	ND			1		1	03/02/06	18:55	DMN	3185594
Xylenes,Total	ND			1		1	03/02/06	18:55	DMN	3185594
Surr: 1,4-Difluorobenzene	101		%	39-163		1	03/02/06	18:55	DMN	3185594
Surr: 4-Bromofluorobenzene	101		%	57-157		1	03/02/06	18:55	DMN	3185594

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

 Client Sample ID: Trip Blank
 Collected: 02/21/2006 0:00
 SPL Sample ID: 06021075-03

Site:	Нс	hhe	. NM

Analyses/Method	Result	QUAL	R	ep.Limit	D	il. Facto	r Date Anal	lyzed	Analyst	Seq.#
GASOLINE RANGE ORGANICS					MCL	S	W8015B	Un	its: mg/L	
Gasoline Range Organics	ND			0.1		1	03/01/06	14:07	DMN	3183806
Surr: 1,4-Difluorobenzene	102		%	60-155		1	03/01/06	14:07	DMN	3183806
Surr: 4-Bromofluorobenzene	98.3		%	50-158		1	03/01/06	14:07	DMN	3183806
PURGEABLE AROMATICS					MCL	S	W8021B	Un	its: ug/L	
Benzene	ND			1		1	03/01/06	14:07	DMN	3183626
Toluene	ND			1		1	03/01/06	14:07	DMN	3183626
Ethylbenzene	ND			1		1	03/01/06	14:07	DMN	3183626
m,p-Xylene	ND			1		1	03/01/06	14:07	DMN	3183626
o-Xylene	ND			1		1	03/01/06	14:07	DMN	3183626
Xylenes,Total	ND			1		1	03/01/06	14:07	DMN	3183626
Surr: 1,4-Difluorobenzene	102		%	39-163		1	03/01/06	14:07	DMN	3183626
Surr: 4-Bromofluorobenzene	101		%	57-157		1	03/01/06	14:07	DMN	3183626

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

03/01/06 14:34 DMN

03/01/06 14:34 DMN

03/01/06 14:34 DMN

03/01/06 14:34 DMN

Client Sample ID:RB-1	Collected: 02/21/2006 18:40	SPL Sample ID:	06021075-04

Site:	Hobbs.	A 1 A A
SITO'	HODDE	N M

1

1

39-163

57-157

1

1

1

				Sit	e: Hob	DS, NM					
Analyses/Method		Result	QUAL	R	ep.Limit	Dil	l. Factor	Date Analy	zed	Analyst	Seq.#
DIESEL RANGE ORG	GANICS	• •				MCL	SV	V8015B	Ur	nits: mg/L	
Diesel Range Organics	(C10-C28)	ND			1		1	03/07/06 2	0:39	NW	3191470
Surr: n-Pentacosane		85.8		%	20-150		1	03/07/06 2	0:39	NW	3191470
Prep Method	Prep Date		Prep Initials	Prep	Factor						
SW3510C	02/28/2006 1	6:29	N_M	1.00							
GASOLINE RANGE	ORGANICS					MCL	SV	V8015B	Ur	nits: mg/L	
Gasoline Range Organ	ics	ND			0.1		1	03/01/06 1	4:34	DMN	3183807
Surr: 1,4-Difluorober	izene	99.3		%	60-155		1	03/01/06 1	4:34	DMN	3183807
Surr: 4-Bromofluorok	enzene	96.7		%	50-158		1	03/01/06 1	4:34	DMN	3183807
PURGEABLE AROM	ATICS					MCL	SV	V8021B	Ur	nits: ug/L	
Benzene		ND			1		1	03/01/06 1	4:34	DMN	3183627
Toluene		ND			1		1	03/01/06 1	4:34	DMN	3183627
Ethylbenzene		ND			1		1	03/01/06 1	4:34	DMN	3183627
m,p-Xylene		ND			1		1	03/01/06 1	4:34	DMN	3183627
										•	

o-Xylene Xylenes,Total

Surr: 1,4-Difluorobenzene

Surr: 4-Bromofluorobenzene

ND

ND

100

99.7

- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

- D Surrogate Recovery Unreportable due to Dilution
- MI Matrix Interference

3183627

3183627

3183627

3183627

Client Sample ID:MW-2-14-15

Collected: 02/22/2006 13:40

SPL Sample ID:

06021075-05

Site:	н	۸ŀ	bs	N	IN	A

Analyses/Method	Result	QUAL	R	ep.Limit	Di	l. Facto	or Date Anal	lyzed	Analyst	Seq. #
DIESEL RANGE ORGANICS					MCL		SW8015B	Un	its: mg/Kg	
Diesel Range Organics (C10-C28)	ND			5		1	03/04/06	5 5:46	AE	3191765
Surr: n-Pentacosane	86.5		%	20-154		1	03/04/06	5 5:46	AE	3191765

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3550B	02/28/2006 15:38	LLL	1.00

GASOLINE RANGE ORGANICS				MCL	S	W8015B	Units: mg/Kg	
Gasoline Range Organics	ND		0.1		1	02/27/06	19:04 JWW	3180535
Surr: 1,4-Difluorobenzene	97.7	%	63-142		1	02/27/06	19:04 JWW	3180535
Surr: 4-Bromofluorobenzene	97.7	%	50-159		1	02/27/06	19:04 JWW	3180535

Prep Method	Prep Date	Prep Initials	Prep Factor	
SW5030B	02/27/2006 9:27	ЕМВ	1.00	

URGEABLE AROMATICS			MCL	SW8021B	Units: ug/Kg	
Benzene	ND	1		1 02/27/06	6 19:04 JWW	3180517
Toluene	ND	1		1 02/27/06	6 19:04 JWW	3180517
Ethylbenzene	ND	1		1 02/27/06	5 19:04 JWW	3180517
m,p-Xylene	ND	1		1 02/27/06	5 19:04 JWW	3180517
o-Xylene	ND	1		1 02/27/06	5 19:04 JWW	3180517
Xylenes,Total	ND	1		1 02/27/06	5 19:04 JWW	3180517
Surr: 1,4-Difluorobenzene	102	% 77-126		1 02/27/06	5 19:04 JWW	3180517
Surr: 4-Bromofluorobenzene	90.8	% 60-160		1 02/27/06	6 19:04 JWW	3180517

Prep Method	Prep Date	Prep Initials	Prep Factor
SW5030B	02/27/2006 9:27	EMB	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:IDW	Collected: 02/22/2006 15:45	SPL Sample ID:	06021075-06

0:4	Habba	MIRE
Site:	Hobbs.	NIN

Analyses/Method		Result	QUAL	Rep.Limit	Dil. Fact	tor Date Analy	zed	Analyst	Seq.#
DIESEL RANGE ORG	ANICS				MCL	SW8015B	Uni	its: mg/Kg	
Diesel Range Organics ((C10-C28)	8.8		5	1	03/04/06	4:14	AE	3191761
Surr: n-Pentacosane		75.7		% 20-154	1	03/04/06	4:14	AE	3191761
Prep Method	Prep Date		Prep Initials	Prep Factor					
SW3550B	02/28/2006 15:3	8	LLL	1.00					
GASOLINE RANGE C	RGANICS				MCL	SW8015B	Uni	ts: mg/Kg	
Gasoline Range Organic	·c	ND		0.1	1	02/27/06 1	9:36	iww	3180536

Surr: 1,4-Difluorober	nzene	98.0	% 63-142	1	02/27/06 19:36 JWW	3180536
Surr: 4-Bromofluorok	enzene	99.3	% 50-159	1	02/27/06 19:36 JWW	3180536
Drop Mathad	Drop Data		nitiala Dran Fastor			_

Prep Method	Prep Date	Prep Initials	Prep Factor
SW5030B	02/27/2006 9:29	EMB	1.00

MERCURY, TOTAL			MCL	SI		Units: mg/Kg	
Mercury	ND	0.03		1	03/01/06	10:19 T_H	3182513

Prep Method	Prep Date	Prep Initials	Prep Factor
SW7471A	03/01/2006 8:00	EMB	1.00

METALS BY METHOD 6	010B, TOTAL		MCL	5	SW6010B	Uni	ts: mg/Kg	
Arsenic	2.69	0.5		1	03/01/06 1	2:05	MW	3182976
Lead	1.82	0.5		1	03/01/06 1	2:05	MW	3182976
Selenium	ND	0.5		1	03/01/06 1	2:05	MW	3182976
Barium	240	0.5		1	03/01/06 2	23:54	EG	3184786
Cadmium	ND	0.5		1	03/01/06 2	23:54	EG	3184786
Chromium	6.45	1		1	03/01/06 2	23:54	EG	3184786
Silver	ND	1		1	03/01/06 2	23:54	EG	3184786

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3050B	02/28/2006 7:30	ACW	1.00

PURGEABLE AROMATICS				MCL		SW8021B	Units: ug/Kg	
Benzene	ND		1		1	02/27/06	19:36 JWW	3180518
Toluene	ND		1		1	02/27/06	19:36 JWW	3180518
Ethylbenzene	ND		1		1	02/27/06	19:36 JWW	3180518
m,p-Xylene	ND		1		1	02/27/06	19:36 JWW	3180518
o-Xylene	ND		1		1	02/27/06	19:36 JWW	3180518
Xylenes,Total	ND		1		1	02/27/06	19:36 JWW	3180518
Surr: 1,4-Difluorobenzene	102	%	77-126		1	02/27/06	19:36 JWW	3180518
Surr: 4-Bromofluorobenzene	90.3	%	60-160		1	02/27/06	19:36 JWW	3180518

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Client Sample ID:IDW

Collected: 02/22/2006 15:45

SPL Sample ID:

06021075-06

Site:

Hobbs, NM

Analyses/Method

QUAL Result

Rep.Limit

Dil. Factor Date Analyzed Analyst

Seq.#

Prep Method	Prep Date	Prep Initials	Prep Factor
SW5030B	02/27/2006 9:29	ЕМВ	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

06021075 Page 9 3/9/2006 10:27:46 AM

(713) 660-0901

Client Sample ID:FB-2

Collected: 02/22/2006 0:00

SPL Sample ID:

06021075-07

Site: Hobbs, NM

Analyses/Method	Result	QUAL	R	ep.Limit	Dil.	Factor	r Date Ana	lyzed	Analyst	Seq. #
GASOLINE RANGE ORGANICS					MCL	S	W8015B	Uı	nits: mg/L	
Gasoline Range Organics	ND			0.1		1	03/01/06	15:01	DMN	3183808
Surr: 1,4-Difluorobenzene	99.0		%	60-155		1	03/01/06	15:01	DMN	3183808
Surr: 4-Bromofluorobenzene	95.3		%	50-158		1	03/01/06	15:01	DMN	3183808
PURGEABLE AROMATICS					MCL	S	W8021B	Ui	nits: ug/L	
Benzene	ND			1		1	03/01/06	15:01	DMN	3183628
Toluene	ND			1		1	03/01/06	15:01	DMN	3183628
Ethylbenzene	ND			1		1	03/01/06	15:01	DMN	3183628
m,p-Xylene	ND			1		1	03/01/06	15:01	DMN	3183628
o-Xylene	ND			1		1	03/01/06	15:01	DMN	3183628
Xylenes,Total	ND			1		1	03/01/06	15:01	DMN	3183628
Surr: 1,4-Difluorobenzene	101		%	39-163		1	03/01/06	15:01	DMN	3183628
Surr: 4-Bromofluorobenzene	99.6		%	57-157		1	03/01/06	15:01	DMN	3183628

- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

D - Surrogate Recovery Unreportable due to Dilution

(713) 660-0901

Client Sample ID:RB-2	Collected: 02/22/2006 0:00	SPL Sample ID:	06021075-08

Site: Hobbs, NI		
	М	ı

	Result	QUAL	R	ep.Limit	Di	I. Facto	r Date Anal	yzed	Analyst	Seq.#
RGANICS					MCL	S	W8015B	Ur	nits: mg/L	
ics (C10-C28)	ND			1		1	03/07/06	21:03	NW	3191471
ane	69.2		%	20-150		1	03/07/06	21:03	NW	3191471
Prep Date		Prep Initials	Prep	Factor						
02/28/2006 1	6:29	N_M	1.00)				_		
E ORGANICS					MCL	S	W8015B	Ur	nits: mg/L	
ganics	ND			0.1		1	03/01/06	15:28	DMN	3183809
benzene	99.3		%	60-155		1	03/01/06	15:28	DMN	3183809
probenzene	95.7		%	50-158		1	03/01/06	15:28	DMN	3183809
		Prep Date 02/28/2006 16:29 E ORGANICS panics ND 02/28/2006 9:20 Department of the prep Date of the prep Da	Prep Date	PRGANICS prices (C10-C28) ND prep Date Prep Initials Prep O2/28/2006 Prep Date N_M 1.00 Prep Initials Prep Initials Prep Initials Prep Initials N_M 1.00 Prep Initials Prep Initials Prep Initials Prep Initials Prep	PRGANICS Dics (C10-C28) ND 1 pane 69.2 % 20-150 Prep Date Prep Initials Prep Factor 02/28/2006 16:29 N_M 1.00 E ORGANICS Spanics ND 0.1 benzene 99.3 % 60-155	NCL MCL MCL	Prep Date Prep Initials Prep Factor 02/28/2006 16:29 ND 1.00 E ORGANICS MCL Sanics ND 0.1 1 benzene 99.3 % 60-155 1	Prep Date Prep Initials Prep Factor 02/28/2006 16:29 ND 1 1 03/07/06 2 Be ORGANICS MCL SW8015B Beanics ND 0.1 1 03/01/06 2 Beanics ND 0.1 1 03/01/06 2 Beanics 99.3 % 60-155 1 03/01/06 2	NCL SW8015B Ur 1 03/07/06 21:03 Ur 1 03/07/06 Ur 1 03/07/06 Ur 1 03/07/06 Ur 1 03/07/06 Ur 1 Ur	MCL SW8015B Units: mg/L

95.7	% 50-158			03/01/06 1	13.20 L		3183809
		MCL		SW8021B	Uni	ts: ug/L	
ND	1		1	03/01/06 1	5:28	OMN	3183629
ND	1		1	03/01/06 1	15:28 E	OMN	3183629
ND	1		1	03/01/06 1	5:28 [OMN	3183629
ND	1		1	03/01/06 1	15:28 E	OMN	3183629
ND	1		1	03/01/06 1	15:28 I	OMN	3183629
ND	1		1	03/01/06 1	5:28 I	OMN	3183629
102	% 39-163		1	03/01/06 1	5:28 [OMN	3183629
100	% 57-157		1	03/01/06 1	5:28	OMN	3183629
	ND ND ND ND ND ND ND	ND 1	MCL ND 1 102 % 39-163	ND 1 1 102 % 39-163 1	MCL SW8021B ND 1 1 03/01/06 f 102 % 39-163 1 03/01/06 f	MCL SW8021B Uni ND 1 1 03/01/06 15:28 I 102 % 39-163 1 03/01/06 15:28 I	MCL SW8021B Units: ug/L ND 1 1 03/01/06 15:28 DMN ND 39-163 1 03/01/06 15:28 DMN

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Quality Control Documentation

(713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125.002

Analysis:

Diesel Range Organics

Method:

RunID:

SW8015B

06021075

Lab Batch ID:

WorkOrder:

55503

Method Blank

Units:

mg/Kg

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date: Preparation Date:

HP_V_060304A-3191759

03/04/2006 3:28 02/28/2006 15:38 Analyst: Prep By:

ΑE

LLL Method SW3550B

06021075-01B 06021075-05B MW-1-19-20 MW-2-14-15

06021075-06B

IDW

Analyte	Result	Rep Limit
Diesel Range Organics (C10-C28)	ND	5.0
Surr: n-Pentacosane	90.7	20-154

Laboratory Control Sample (LCS)

RuniD:

HP_V_060304A-3191760

mg/Kg

Units:

Analysis Date: Preparation Date:

03/04/2006 3:51 02/28/2006 15:38

ΑE Analyst:

Prep By: LLL Method SW3550B

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Diesel Range Organics (C10-C28)	66.6	59.8	89.8	57	150

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021075-01

RunID: Analysis Date: HP_V_060304A-3191763

Units:

Analyst:

Preparation Date:

03/04/2006 5:00 02/28/2006 15:38

ΑE Method SW3550B Prep By: LLL

mg/Kg

MS MS MS % MSD MSD MSD % RPD RPD Analyte Sample Low High Result Spike Result Recovery Spike Result Limit Limit Recovery Limit Added Added Diesel Range Organics (C10-C28) ND 66.6 54.3 81.5 66.6 56.1 84.2 3.29 50 21 175

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021075 Page 14 3/9/2006 10:27:48 AM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125.002

Analysis:

Diesel Range Organics

Method:

RunID:

SW8015B

WorkOrder:

Samples in Analytical Batch:

06021075

Lab Batch ID:

55511

Method Blank

HP_V_060307B-3191464

mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

03/07/2006 15:13

NW Analyst:

Units:

06021075-04B

RB-1

Preparation Date:

02/28/2006 16:29

N_M Method SW3510C Prep By:

06021075-08B

RB-2

Analyte	Result	Rep Limit
Diesel Range Organics (C10-C28)	ND	1.0
Surr: n-Pentacosane	81.2	20-150

Laboratory Control Sample (LCS)

RunID:

HP_V_060307B-3191465

Units: mg/L

Analysis Date:

03/07/2006 15:36

NW Analyst:

Preparation Date: 02/28/2006 16:29

Prep By: N_M Method SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Diesel Range Organics (C10-C28)	2.00	1.36	67.9	21	130

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021067-01

RunID:

HP_V_060307B-3191466

Units:

mg/L

Analysis Date: Preparation Date: 03/07/2006 17:10

NW Analyst:

02/28/2006 16:29

N_M Method SW3510C Prep By:

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Diesel Range Organics (C10-C28)	ND	4	3.37	79.2	4	3.49	82.2	3.53	39	26	130

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021075 Page 15 3/9/2006 10:27:48 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

Analysis:

Purgeable Aromatics

Method:

RunID:

Analysis Date: Preparation Date: SW8021B

02/27/2006 12:14

BJ Service Fracmaster 128125.002

WorkOrder:

06021075

Lab Batch ID:

R163711

Method Blank

HP_O_060227A-3180505

Units:

ug/Kg

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

02/27/2006 12:14

Analyst: Prep By:

JWW Method 06021075-01A 06021075-05A

MW-1-19-20 MW-2-14-15

06021075-06A

IDW

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1.0
Toluene	ND	1.0
m,p-Xylene	ND	1.0
o-Xylene	ND	1.0
Xylenes,Total	ND	1.0
Surr: 1,4-Difluorobenzene	101.9	77-126
Surr: 4-Bromofluorobenzene	91.3	60-160

Laboratory Control Sample (LCS)

RunID:

HP_O_060227A-3180504

Units:

ug/Kg JWW

Analysis Date: Preparation Date: 02/27/2006 11:11 02/27/2006 11:11 Analyst: Prep By:

Method SW5030B

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	17.0	84.9	70	130
Ethylbenzene	20.0	18.6	92.8	70	130
Toluene	20.0	18.3	91.5	70	130
m,p-Xylene	40.0	37.4	93.5	70	130
o-Xylene	20.0	18.7	93.3	70	130
Xylenes,Total	60.0	56.1	93.4	70	130

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021075-01

RunID:

HP_O_060227A-3180515

Units:

ug/Kg

Analysis Date:

02/27/2006 18:01

Analyst:

JWW

Preparation Date: 02/27/2006 9:18 Prep By: EMB Method SW5030B

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	ND	20	20.1	101	20	18.6	92.8	7.94	32	36	139
Ethylbenzene	ND	20	19.9	99.4	20	18.4	91.8	7.95	32	25	138

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021075 Page 16 3/9/2006 10:27:48 AM

Brown & Caldwell

BJ Service Fracmaster 128125.002

Analysis:

Purgeable Aromatics

Method:

SW8021B

WorkOrder:

06021075

Lab Batch ID:

R163711

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

06021075-01

HP_O_060227A-3180515

Units:

ug/Kg

Analysis Date:

02/27/2006 18:01

Analyst:

JWW

Preparation Date: 02/27/2006 9:18

Prep By: EMB Method SW5030B

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Toluene	. ND	20	19.9	99.3	20	18.3	91.5	8.18	34	31	138
m,p-Xylene	ND	40	39.5	98.7	40	36.4	91.1	8.02	34	25	139
o-Xylene	ND	20	19.7	98.5	20	18.1	90.5	8.45	32	19	144
Xylenes,Total	ND	60	59.2	98.6	60	54.5	90.9	8.16	34	19	144

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021075 Page 17 3/9/2006 10:27:49 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

Gasoline Range Organics

Method:

Analysis:

RunID:

SW8015B

BJ Service Fracmaster 128125.002

WorkOrder:

06021075

Lab Batch ID:

R163713

Method Blank

HP_O_060227B-3180531

mg/Kg

JWW

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date: 02/27/2006 12:14

Analyst:

Units:

06021075-01A

MW-1-19-20

Preparation Date:

02/27/2006 12:14

Prep By: Method 06021075-05A

MW-2-14-15

06021075-06A

IDW

Analyte	Result	Rep Limit
Gasoline Range Organics	ND	0.10
Surr: 1,4-Difluorobenzene	98.3	63-142
Surr: 4-Bromofluorobenzene	100.0	50-159

Laboratory Control Sample (LCS)

RunID:

HP_O_060227B-3180530

Units:

mg/Kg JWW 02/27/2006 11:43 Analyst:

Analysis Date: Preparation Date:

02/27/2006 11:43

Prep By:

Method SW5030B

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Gasoline Range Organics	1.00	0.907	90.7	70	130

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021075-01

RunID:

HP_O_060227B-3180539

Units:

mg/Kg

Analysis Date:

02/27/2006 23:48

JWW Analyst:

Preparation Date: 02/27/2006 9:22 Prep By: EMB Method SW5030B

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Gasoline Range Organics	ND	1	0.808	80.8		0.818	81.8	1.17	50	26	147

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021075 Page 18 3/9/2006 10:27:49 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

Analysis:

Purgeable Aromatics

Method:

SW8021B

03/01/2006 4:17

03/01/2006 4:17

BJ Service Fracmaster 128125.002

WorkOrder:

06021075

Lab Batch ID:

R163888

Method Blank

RunID: VARD

Analysis Date:

Preparation Date:

VARD_060301A-3183620

Units: Analyst:

Prep By:

ug/L

DMN

Method SW5030B

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

06021075-03A 06021075-04A

RB-1

06021075-07A

FB-2

Trip Blank

06021075-08A 06021075-09A RB-2 Trip Blank

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1.0
Toluene	ND	1.0
m,p-Xylene	ND	1.0
o-Xylene	ND ND	1.0
Xylenes,Total	ND ND	1.0
Surr: 1,4-Difluorobenzene	100.4	39-163
Surr: 4-Bromofluorobenzene	102.8	57-157

Laboratory Control Sample (LCS)

RunID:

VARD_060301A-3183619

Units: ug/L Analyst: DMN

Analysis Date: Preparation Date: 03/01/2006 3:50 03/01/2006 3:50

Prep By:

Method SW5030B

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	20.1	100	70	130
Ethylbenzene	20.0	20.2	101	70	130
Toluene	20.0	20.4	102	70	130
m,p-Xylene	40.0	40.2	101	70	130
o-Xylene	20.0	20.3	101	70	130
Xylenes,Total	60.0	60.5	101	70	130

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021000-01

RunID:

VARD_060301A-3183622

Units:

ug/L

Analysis Date:

03/01/2006 9:13

Analyst:

DMN

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	15.8	20	30.3	72.6	20	29.8	70.4	1.49	26	40	165
Ethylbenzene	45.1	20	60.2	75.7	20	59.8	73.6	0.701	34	51	156

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

06021075 Page 19 3/9/2006 10:27:49 AM

(713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125.002

Analysis: Method:

Purgeable Aromatics

SW8021B

WorkOrder:

06021075

Lab Batch ID:

R163888

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021000-01

VARD_060301A-3183622

Units:

ug/L

Analysis Date:

RunID:

03/01/2006 9:13

Analyst:

DMN

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Toluene	2.58	20	21.0	92.0	20	21.0	92.1	0.0124	25	58	153
m,p-Xylene	4.38	40	45.1	102	40	44.9	101	0.583	27	51	155
o-Xylene	2.63	20	23.7	105	20	23.6	105	0.514	25	58	151
Xylenes,Total	7.01	60	68.8	103	60	68.5	102	0.559	27	51	155

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021075 Page 20 3/9/2006 10:27:49 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125.002

Analysis:

Gasoline Range Organics

Method:

RunID:

SW8015B

WorkOrder:

06021075

Lab Batch ID:

R163896

Method Blank

VARD_060301C-3183799

mg/L

DMN

Lab Sample ID 06021075-02A

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

03/01/2006 4:17

Analyst:

Units:

FB-1

Preparation Date:

03/01/2006 4:17

Prep By:

Method SW5030B

06021075-03A

06021075-04A

Trip Blank RB-1

06021075-07A

FB-2

Result Rep Limit Analyte Gasoline Range Organics ND Surr: 1,4-Difluorobenzene 101.0 60-155 50-158 100.0 Surr: 4-Bromofluorobenzene

06021075-08A 06021075-09A

RB-2 Trip Blank

Laboratory Control Sample (LCS)

RunID:

VARD 060301C-3183798

Units: Analyst: DMN

mg/L

Analysis Date: Preparation Date: 03/01/2006 3:23 03/01/2006 3:23

Prep By:

Method SW5030B

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Gasoline Range Organics	1.00	0.896	89.6	42	136

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021000-02

RunID:

VARD_060301C-3183801

mg/L

Analysis Date:

03/01/2006 10:06

Analyst: DMN

Units:

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Gasoline Range Organics	2.28	0.9	2.82	60.0	0.9	2.86	64.6	1.46	36	22	174

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021075 Page 21 3/9/2006 10:27:49 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125.002

Analysis:

Purgeable Aromatics

Method:

SW8021B

WorkOrder:

06021075

Lab Batch ID:

R163984

Method Blank

Samples in Analytical Batch:

VARD_060302A-3185571 RunID:

Units: ug/L

Lab Sample ID

Client Sample ID

Analysis Date:

03/02/2006 8:58

Analyst: DMN 06021075-02A

FB-1

Preparation Date:

03/02/2006 8:58

Prep By:

Method SW5030B

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1.0
Toluene	ND	1.0
m,p-Xylene	ND	1.0
o-Xylene	ND	1.0
Xylenes,Total	ND	1.0
Surr: 1,4-Difluorobenzene	100.9	39-163
Surr: 4-Bromofluorobenzene	98.0	57-157

Laboratory Control Sample (LCS)

RunID:

VARD_060302A-3185569

Units: ug/L

DMN

Analysis Date:

Preparation Date:

03/02/2006 8:31 03/02/2006 8:31 Analyst: Prep By:

Method SW5030B

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	19.7	98.7	70	130
Ethylbenzene	20.0	19.6	98.2	70	130
Toluene	20.0	19.9	99.3	70	130
m,p-Xylene	40.0	39.0	97.5	70	130
o-Xylene	20.0	19.5	97.6	70	130
Xylenes,Total	60.0	58.5	97.5	70	130

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

Analysis Date:

06021114-04

03/02/2006 19:48

RunID:

VARD_060302A-3185597

Units: Analyst:

ug/L DMN

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	ND	20	19.9	99.4	20	19.9	99.3	0.143	26	40	165
Ethylbenzene	ND	20	19.6	98.0	20	19.6	98.1	0.132	34	51	156

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021075 Page 22 3/9/2006 10:27:49 AM

(713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125.002

Analysis:

Purgeable Aromatics

Method:

SW8021B

WorkOrder:

06021075

Lab Batch ID:

R163984

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021114-04

RunID:

VARD_060302A-3185597

Units:

ug/L

Analysis Date:

03/02/2006 19:48

Analyst:

DMN

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Toluene	ND	20	19.9	99.4	20	20.0	100	0.743	25	58	153
m,p-Xylene	ND	40	38.7	96.8	40	38.9	97.4	0.611	27	51	155
o-Xylene	ND	20	19.7	98.4	20	19.6	98.0	0.364	25	58	151
Xylenes,Total	ND	60	58.4	97.3	60	58.5	97.6	0.284	27	51	155

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

06021075 Page 23 3/9/2006 10:27:49 AM

٧.

Brown & Caldwell

BJ Service Fracmaster 128125.002

Analysis: Method:

RunID:

Metals by Method 6010B, Total

SW6010B

WorkOrder:

06021075

Lab Batch ID:

55485

Method Blank

Units:

mg/Kg

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

TJA_060301A-3184317

03/01/2006 23:45

Analyst: EG

06021075-06C

IDW

Preparation Date:

02/28/2006 7:30

Prep By: AC

AC Method SW3050B

Analyte	Result	Rep Limit
Barium	ND	0.5
Cadmium	ND	0.5
Chromium	ND	1
Silver	ND	1

Laboratory Control Sample (LCS)

RunID:

TJA_060301A-3184318

Units:

mg/Kg

Analysis Date:

03/01/2006 23:49

Analyst: EG

Preparation Date: 02/28/2006 7:30

Prep By: AC Method SW3050B

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Barium	156.0	149.1	95.59	82	119
Cadmium	233.0	200.4	86.02	81	119
Chromium	60.80	56.54	93.00	78	121
Silver	80.00	73.50	91.88	61	139

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021075-06

RunID:

TJA_060301A-3184787

Units:

mg/Kg

Analysis Date:

03/01/2006 23:59

Analyst: EG

Preparation Date:

02/28/2006 7:30

Prep By: A

AC Method SW3050B

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Barium	239.8	100	349.3	109.4	100	346.7	106.8	0.7423	20	75	125
Cadmium	ND	100	96.44	96.44	100	92.96	92.96	3.676	20	75	125
Chromium	6.448	100	100.0	93.57	100	97.39	90.94	2.666	20	75	125
Silver	ND	100	98.22	98.22	100	96.15	96.15	2.122	20	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

Brown & Caldwell BJ Service Fracmaster 128125.002

Analysis:

Metals by Method 6010B, Total

Method:

RunID:

SW6010B

WorkOrder:

06021075

Lab Batch ID:

55485-T

Method Blank

Samples in Analytical Batch:

TJAT_060301A-3182973

Units:

mg/Kg

Lab Sample ID

Client Sample ID

Analysis Date:

03/01/2006 11:54

MW Analyst:

06021075-06C

IDW

Preparation Date:

02/28/2006 7:30

Prep By: AC Method SW3050B

Analyte	Result	Rep Limit
Arsenic	NC	0.5
Lead	NE	0.5
Selenium	N	0.5

Laboratory Control Sample (LCS)

RunID:

TJAT_060301A-3182975

Units:

mg/Kg MW

Analysis Date: Preparation Date: 03/01/2006 11:59 02/28/2006 7:30

Analyst: Prep By:

AC Method SW3050B

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Arsenic	80.90	75.06	92.79	79	121
Lead	76.80	71.23	92.75	81	120
Selenium	82.90	80.66	97.30	76	124

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: RunID:

06021075-06

TJAT_060301A-3182977

Units:

mg/Kg

Analysis Date:

03/01/2006 12:10

MW Analyst:

Preparation Date:

02/28/2006 7:30

Prep By:

AC Method SW3050B

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Arsenic	2.693	10	13.28	105.8	10	12.80	101.1	3.666	20	75	125
Lead	1.822	10	12.19	103.7	10	11.74	99.21	3.768	20	75	125
Selenium	ND	10	10.49	104.9	10	10.04	100.4	4.315	20	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021075 Page 25 3/9/2006 10:27:50 AM

(713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125.002

Analysis:

Mercury, Total

Method:

SW7471A

WorkOrder:

06021075

Lab Batch ID:

55502

Method Blank

Samples in Analytical Batch:

HGLC_060301A-3182499

Units:

mg/Kg

Lab Sample ID

Client Sample ID

Analysis Date:

03/01/2006 9:32

Analyst:

T_H

06021075-06C

IDW

Preparation Date:

03/01/2006 8:00

Prep By: EMB Method SW7471A

Analyte	Result	Rep Limit
Mercury	ND	0.03

Laboratory Control Sample (LCS)

RunID:

HGLC_060301A-3182500

Units: mg/Kg Analyst: T_H

Analysis Date: Preparation Date: 03/01/2006 9:34 03/01/2006 8:00

EMB Method SW7471A Prep By:

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Mercury	3.710	3.543	95.50	68	132

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021191-01

RunID:

HGLC_060301A-3182502

Units:

mg/Kg-dry Analyst: TH

Analysis Date: Preparation Date:

03/01/2006 9:47 03/01/2006 8:00

Prep By: EMB Method SW7471A

	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Мє	ercury	5.860	0.3302	5.389	N/C	0.3302	5.408	N/C	N/C	20	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021075 Page 26 3/9/2006 10:27:50 AM

Sample Receipt Checklist And Chain of Custody

Sample Receipt Checklist

Workorder:	06021075		Received By:	R_R
Date and Time Received:	2/24/2006 9:30:00 AM		Carrier name:	Fedex-Standard Overnight
Temperature:	3.0°C		Chilled by:	Water Ice
1. Shipping container/c	ooler in good condition?	Yes 🗸	No 🗆	Not Present
2. Custody seals intact	on shippping container/cooler?	Yes 🗹	No 🗌	Not Present
3. Custody seals intact	on sample bottles?	Yes 🗌	No 🗆	Not Present
4. Chain of custody pre	esent?	Yes 🗸	No 🗆	
5. Chain of custody sig	ned when relinquished and received?	Yes 🗹	No 🗆	
6. Chain of custody ago	rees with sample labels?	Yes 🗹	No 🗆	
7. Samples in proper co	ontainer/bottle?	Yes 🗹	No 🗌	
8. Sample containers in	ntact?	Yes 🗹	No 🗌	
9. Sufficient sample vo	lume for indicated test?	Yes 🗹	No 🗆	
10. All samples received	within holding time?	Yes 🗹	No 🗆	
11. Container/Temp Blan	nk temperature in compliance?	Yes 🗹	No 🗆	
12. Water - VOA vials ha	ve zero headspace?	Yes 🗹	No □ VO	A Vials Not Present
13. Water - Preservation	checked upon receipt (except VOA*)?	Yes 🗹	No 🗌	Not Applicable
*VOA Preservation C	hecked After Sample Analysis			
SPL Representa	tive:	Contact Date &	Time:	
Client Name Contac	ted:			
Non Conformance Issues:				
Client Instructions:				

			SP	L, Inc.					S	SPL Workorder No.	rder No	•	23	237447
	√	Analysis Request &		Chain of Custody Record	f Custo	dy Rec	ord			O'A/O	210	25	page	of
Client Name: Action A	77	1100		matrix bottle	bottle	size	pres.				Requested		Analysis	
15 100,	10999 0999	4	2500	fio=O	er glass X=other	40=vial		ers	16	5103	Slos	C10		
ne/No.: BJ-	Email:	faciona	mas fer	S=sorth	dms=A (lsiv=\	zo p=p	X=othe	Contain	03s	(±KO	you.	· Kasar		
Site Location: Hobbs NM	7						90¢	····	Xa	! - 1 - H	48			
R. Rexra-		Ph: 715 -759-0999	159-0999	sw= Je=,	plas glas	ıil I so8	HTS HC			14 14	<u>ر .</u>			
AM	DATE	TIME	comp grab		i i	Į.	i i		র	<u>-</u> 1	4			
NW-1-19-20	3/17/7	0091	×	5	F	T	X	2	X X	×				
F8-1	2/21/06	1230	X	3	>	40.	-	2	X					
Tr. blank	L'h otopatou	1	×	3	>	22	_	7						
A	2/21/06	0/2/	×	3	A, Y	#6,X		7	X	\times	•			
S1-41-2-1MM	2/24/2	1340	×	N	4	7	×	7	, <u> </u>	×				
1	10/cc/2		メ	N	ۍ	7	\times	6	XX	>	X			
FR-2	safex/2		×	3	7	40	/	0	X					
N X	2/22/28		×	\mathcal{B}	\ \ \ \ \ \ \ \	18,X	•	7	.× ′×	X				
Trin blank	lah Pre	Proported	X	3	>	40	~~~	7	X					
	i								-					
Client/Consultant Remarks:				Laboratory remarks:	ıry remar	ks:						Inta Ice? Tem	ct? p: <i>§</i> "ć	
TAT Laboure	Special Repor	Special Reporting Requirements	ents Results:	ts: Fax		Email 🔲 PI	PDF 🔲 S	Special Detection Limits (specify):	tection L	imits (spo	cify):			PM review (initial):
Contract 72hr	Standard QC	Standard QC K Level 3 QC Level 4 QC	Level 4 Q	, Marrie	TX TRRP	LA RECAP	AP [(0)	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1. Relinquishe	1. Relinquished by Sampler:				date/23/6	in ti	time 1000	2. 1	2. Received by	;;			
		Ì				date	13	time	4	4. Received by:	;;			
Other	5. Relinquished by:	ed by:				date 7/24	106	time IS	ind.	6. Regained by Laboratory:	ig Jabo	atory:		
X 8880 Interchange Drive Houston, TX 77054 (713) 660-0901	Drive () 660-0901		o °	500 Ambassador Caffery Parkway Scott, LA 70583 (337) 237-4775	70583	r Caffer (337) 23	y Parks 17-4775	vay		<u> </u>	verse (Traverse City, MI 49686	459 Hughes Drive y, MI 49686 (231)	Drive (231) 947-5777

Brown & Caldwell

Certificate of Analysis Number:

06021135

Report To: **Brown & Caldwell Rick Rexroad** 1415 Louisiana **Suite 2500** Houston

77002-

ph: (713) 759-0999

fax:

Project Name:

BJ Service Fracmaster 128125

Site:

Hobbs,NM

Site Address:

PO Number:

State:

New Mexico

State Cert. No.:

Date Reported:

3/14/2006

This Report Contains A Total Of 31 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: Brown & Caldwell

Certificate of Analysis Number:

06021135

Report To: **Project Name:** BJ Service Fracmaster 128125 Site: Hobbs,NM **Brown & Caldwell** Rick Rexroad Site Address: 1415 Louisiana **Suite 2500** PO Number: Houston State: **New Mexico** 77002-State Cert. No.: ph: (713) 759-0999 fax: **Date Reported:** 3/14/2006

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

The pH of sample ID "RB-3" (SPL ID:06021135-03) was checked at the time of the Volatile Organics analysis and the pH was greater than 2. Although the sample was collected in a VOA vial preserved with HCl, the sample was not properly preserved to a pH less than 2, which may be due to the matrix of the sample. The analysis of the sample was not completed within seven days of the collection date.

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Sonia West

06021135 Page 1 3/14/2006

Sonia West

Date

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

Certificate of Analysis Number:

06021135

Report To:

Fax To:

Brown & Caldwell

Rick Rexroad

1415 Louisiana

Suite 2500

Houston

ΤX

77002-

ph: (713) 759-0999

fax: (713) 308-3886

Site:

BJ Service Fracmaster 128125

Hobbs,NM

Site Address:

Project Name:

PO Number:

State:

New Mexico

State Cert. No.:

Date Reported:

3/14/2006

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
MW-2	06021135-01	Water	2/23/2006 8:20:00 PM	2/25/2006 10:00:00 AM	237452	
FB-3	06021135-02	Water	2/23/2006 8:30:00 PM	2/25/2006 10:00:00 AM	237452	
RB-3	06021135-03	Water	2/23/2006 8:50:00 PM	2/25/2006 10:00:00 AM	237452	

Sonia West

3/14/2006

Date

Sonia West

Senior Project Manager

Joel Grice Laboratory Director

Ted Yen Quality Assurance Officer

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Surr: 1,4-Difluorobenzene

Surr: 4-Bromofluorobenzene

Collected: 02/23/2006 20:20

1

1

SPL Sample ID:

03/08/06 2:10 DY

03/08/06 2:10 DY

06021135-01

3191664

3191664

				Sit	e: Hob	bs,NM			_		
Analyses/Method		Result	QUAL	R	ep.Limit	1	Dil. Facto	r Date Analy	zed	Analyst	Seq. #
CHLORIDE, TOTAL						MCL		E325.2	Ur	nits: mg/L	
Chloride		512			10		10	03/06/06 1	7:43	T_H	3189806
DIESEL RANGE ORGA	ANICS					MCL	S	W8015B	Ur	nits: mg/L	
Diesel Range Organics (C10-C28)	ND			1		1	03/04/06	1:33	NW	3189085
Surr: n-Pentacosane		71.2		%	20-150		1	03/04/06	1:33	NW	3189085
Prep Method	Prep Date		Prep Initials	Prep	Factor						
SW3510C	03/02/2006 13:1:	2	N_M	1.00							
GASOLINE RANGE O	RGANICS					MCL	S	W8015B	Ur	nits: mg/L	
Gasoline Range Organic	S	0.19			0.1		1	03/08/06	2:10	DY	3191664

60-155

50-158

%

103

97.3

D - Surrogate Recovery Unreportable due to Dilution

Client Sample ID:MW-2

Collected: 02/23/2006 20:20

SPL Sample ID:

06021135-01

Site:	Hobbs	,NM
-------	-------	-----

Analyses/Method	Result QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
SEMIVOLATILE ORGANICS B	Y METHOD 8270C		MCL SV	V8270C Un	its: ug/L	
1,2,4-Trichlorobenzene	ND	5	1	03/03/06 18:42	GQ	3188643
1,2-Dichlorobenzene	ND	5	1	03/03/06 18:42	GQ	3188643
1,2-Diphenylhydrazine	ND	10	1	03/03/06 18:42	GQ	3188643
1,3-Dichlorobenzene	ND	5	1	03/03/06 18:42	GQ	3188643
1,4-Dichlorobenzene	ND	5	1	03/03/06 18:42	GQ	3188643
2,4,5-Trichlorophenol	ND	10	1	03/03/06 18:42	GQ	3188643
2,4,6-Trichlorophenol	ND	5	1	03/03/06 18:42	GQ	3188643
2,4-Dichlorophenol	ND	5	1	03/03/06 18:42	GQ	3188643
2,4-Dimethylphenol	ND	5	1	03/03/06 18:42	GQ	3188643
2,4-Dinitrophenol	ND	25	1	03/03/06 18:42	GQ	3188643
2,4-Dinitrotoluene	ND	5	1	03/03/06 18:42	GQ	3188643
2,6-Dinitrotoluene	ND	5	1	03/03/06 18:42	GQ	3188643
2-Chloronaphthalene	ND	5	1	03/03/06 18:42	GQ	3188643
2-Chlorophenol	ND	5	1	03/03/06 18:42	GQ	3188643
2-Methylnaphthalene	ND	5	1	03/03/06 18:42	GQ	3188643
2-Nitroaniline	ND	25	1	03/03/06 18:42	GQ	3188643
2-Nitrophenol	ND	5	1	03/03/06 18:42	GQ	3188643
3,3'-Dichlorobenzidine	ND	10	1	03/03/06 18:42	GQ	3188643
3-Nitroaniline	ND	25	1	03/03/06 18:42	GQ	3188643
4,6-Dinitro-2-methylphenol	ND	25	1	03/03/06 18:42	GQ	3188643
4-Bromophenyl phenyl ether	ND	5	1	03/03/06 18:42	GQ	3188643
4-Chloro-3-methylphenol	ND	5	1	03/03/06 18:42	GQ	3188643
4-Chloroaniline	ND	5	1	03/03/06 18:42	GQ	3188643
4-Chlorophenyl phenyl ether	ND	5	1	03/03/06 18:42	GQ	3188643
4-Nitroaniline	ND	25	1	03/03/06 18:42	GQ	3188643
4-Nitrophenol	ND	25	1	03/03/06 18:42	GQ	3188643
Acenaphthene	ND	5	1	03/03/06 18:42	GQ	3188643
Acenaphthylene	ND	5	1	03/03/06 18:42	GQ	3188643
Aniline	ND	5	1	03/03/06 18:42	GQ	3188643
Anthracene	ND	5	1	03/03/06 18:42	GQ	3188643
Benz(a)anthracene	ND	5	1	03/03/06 18:42	GQ	3188643
Benzo(a)pyrene	ND	5	1	03/03/06 18:42	GQ	3188643
Benzo(b)fluoranthene	ND	5	1	03/03/06 18:42	GQ	3188643
Benzo(g,h,i)perylene	ND	5	1	03/03/06 18:42	GQ	3188643
Benzo(k)fluoranthene	ND	5	1	03/03/06 18:42	GQ	3188643
Benzoic acid	ND	25	1	03/03/06 18:42	GQ	3188643
Benzyl alcohol	ND	5	1	03/03/06 18:42	GQ	3188643
Bis(2-chloroethoxy)methane	ND	5	1	03/03/06 18:42	GQ	3188643
Bis(2-chloroethyl)ether	ND	5	1	03/03/06 18:42	GQ	3188643
Bis(2-chloroisopropyl)ether	ND	5	1	03/03/06 18:42	GQ	3188643

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

(713) 660-0901

Client Sample ID:MW-2

Collected: 02/23/2006 20:20

SPL Sample ID:

06021135-01

Site:	Hobbs.NM
-------	----------

			Oite. Hobbs	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Analyses/Method	Result	QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq.#
Bis(2-ethylhexyl)phthalate	ND		5	1	03/03/06 18:42	GQ	3188643
Butyl benzyl phthalate	ND		5	1	03/03/06 18:42	GQ	3188643
Carbazole	ND		5	1	03/03/06 18:42	GQ	3188643
Chrysene	ND		5	1	03/03/06 18:42	GQ	3188643
Dibenz(a,h)anthracene	ND		5	1	03/03/06 18:42	GQ	3188643
Dibenzofuran	ND		5	1	03/03/06 18:42	GQ	3188643
Diethyl phthalate	ND		5	1	03/03/06 18:42	GQ	3188643
Dimethyl phthalate	ND		5	1	03/03/06 18:42	GQ	3188643
Di-n-butyl phthalate	ND		5	1	03/03/06 18:42	GQ	3188643
Di-n-octyl phthalate	ND		5	1	03/03/06 18:42	GQ	3188643
Fluoranthene	ND		5	1	03/03/06 18:42	GQ	3188643
Fluorene	ND		5	1	03/03/06 18:42	GQ	3188643
Hexachlorobenzene	ND		5	1	03/03/06 18:42	GQ	3188643
Hexachlorobutadiene	ND		5	1	03/03/06 18:42	GQ	3188643
Hexachlorocyclopentadiene	ND		5	1	03/03/06 18:42	GQ	3188643
Hexachloroethane	ND		5	1	03/03/06 18:42	GQ	3188643
Indeno(1,2,3-cd)pyrene	ND		5	1	03/03/06 18:42	GQ	3188643
Isophorone	ND		5	1	03/03/06 18:42	GQ	3188643
Naphthalene	ND		5	1	03/03/06 18:42	GQ	3188643
Nitrobenzene	ND		5	1	03/03/06 18:42	GQ	3188643
N-Nitrosodi-n-propylamine	ND		5	1	03/03/06 18:42	GQ	3188643
N-Nitrosodiphenylamine	ND		5	1	03/03/06 18:42	GQ	3188643
Pentachlorophenol	ND		25	1	03/03/06 18:42	GQ	3188643
Phenanthrene	ND		5	1	03/03/06 18:42	GQ	3188643
Phenol	ND		5	1	03/03/06 18:42	GQ	3188643
Pyrene	ND		5	1	03/03/06 18:42	GQ	3188643
Pyridine	ND		5	1	03/03/06 18:42	GQ	3188643
2-Methylphenol	ND		5	1	03/03/06 18:42	GQ	3188643
3 & 4-Methylphenol	ND		5	1	03/03/06 18:42	GQ	3188643
Surr: 2,4,6-Tribromophenol	72.0		% 10-123	1	03/03/06 18:42	GQ	3188643
Surr: 2-Fluorobiphenyl	54.0		% 23-116	1	03/03/06 18:42	GQ	3188643
Surr: 2-Fluorophenol	34.7		% 16-110	1	03/03/06 18:42	GQ	3188643
Surr: Nitrobenzene-d5	48.0		% 21-114	1	03/03/06 18:42	GQ	3188643
Surr: Phenol-d5	24.0		% 10-110	1	03/03/06 18:42	GQ	3188643
Surr: Terphenyl-d14	56.0		% 22-141	1	03/03/06 18:42	GQ	3188643

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	03/01/2006 17:48	N_M	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Client Sample ID:MW-2

Collected: 02/23/2006 20:20

SPL Sample ID:

06021135-01

Site: Hobbs,NM

Analyses/Method	Result QUAL	Rep.Limit	Dil. Factor	Date Analyzed Analyst	Seq.#
VOLATILE ORGANICS BY ME	THOD 8260B		MCL SV	/8260B Units: ug/L	
1,1,1,2-Tetrachloroethane	ND	5	1	03/01/06 21:24 LU_L	3187412
1,1,1-Trichloroethane	ND	5	1	03/01/06 21:24 LU L	3187412
1,1,2,2-Tetrachloroethane	ND	5	1	03/01/06 21:24 LU L	3187412
1,1,2-Trichloroethane	ND	5	1	03/01/06 21:24 LU_L	3187412
1,1-Dichloroethane	ND	5	1	03/01/06 21:24 LU_L	3187412
1,1-Dichloroethene	ND	5	1	03/01/06 21:24 LU_L	3187412
1,1-Dichloropropene	ND	5	1	03/01/06 21:24 LU_L	3187412
1,2,3-Trichlorobenzene	ND	5	1	03/01/06 21:24 LU_L	3187412
1,2,3-Trichloropropane	ND	5	1	03/01/06 21:24 LU_L	3187412
1,2,4-Trichlorobenzene	ND	5	1	03/01/06 21:24 LU_L	3187412
1,2,4-Trimethylbenzene	19	5	1	03/01/06 21:24 LU_L	3187412
1,2-Dibromo-3-chloropropane	ND	5	1	03/01/06 21:24 LU_L	3187412
1,2-Dibromoethane	ND	5	1	03/01/06 21:24 LU_L	3187412
1,2-Dichlorobenzene	ND	5	1	03/01/06 21:24 LU_L	3187412
1,2-Dichloroethane	ND	5	1	03/01/06 21:24 LU_L	3187412
1,2-Dichloropropane	ND	5	1	03/01/06 21:24 LU_L	3187412
1,3,5-Trimethylbenzene	ND	5	1	03/01/06 21:24 LU_L	3187412
1,3-Dichlorobenzene	ND	5	1	03/01/06 21:24 LU_L	3187412
1,3-Dichloropropane	ND	5	1	03/01/06 21:24 LU_L	3187412
1,4-Dichlorobenzene	ND	5	1	03/01/06 21:24 LU_L	3187412
2,2-Dichloropropane	ND	5	1	03/01/06 21:24 LU_L	3187412
2-Butanone	ND	20	1	03/01/06 21:24 LU_L	3187412
2-Chloroethyl vinyl ether	ND	10	1	03/01/06 21:24 LU_L	3187412
2-Chlorotoluene	ND	5	1	03/01/06 21:24 LU_L	3187412
2-Hexanone	ND	10	1	03/01/06 21:24 LU_L	3187412
4-Chlorotoluene	ND	5	1	03/01/06 21:24 LU_L	3187412
4-Isopropyltoluene	ND	5	1	03/01/06 21:24 LU_L	3187412
4-Methyl-2-pentanone	ND	10	1	03/01/06 21:24 LU_L	3187412
Acetone	ND	100	1	03/01/06 21:24 LU_L	3187412
Acrylonitrile	ND	50	1	03/01/06 21:24 LU_L	3187412
Benzene	ND	5	1	03/01/06 21:24 LU_L	3187412
Bromobenzene	ND	5	1	03/01/06 21:24 LU_L	3187412
Bromochloromethane	ND	5	1	03/01/06 21:24 LU_L	3187412
Bromodichloromethane	ND	5	1	03/01/06 21:24 LU_L	3187412
Bromoform	ND	5	1	03/01/06 21:24 LU_L	3187412
Bromomethane	ND	10	1	03/01/06 21:24 LU_L	3187412
Carbon disulfide	ND	5	1	03/01/06 21:24 LU_L	3187412
Carbon tetrachloride	ND	5	1	03/01/06 21:24 LU_L	3187412
Chlorobenzene	ND	5	1	03/01/06 21:24 LU_L	3187412
Chloroethane	ND	10	1	03/01/06 21:24 LU_L	3187412

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-2

Collected: 02/23/2006 20:20

SPL Sample ID:

06021135-01

Site: Hobbs,NN

					,			
Analyses/Method	Result	QUAL	Re	p.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Chloroform	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Chloromethane	ND			10	1	03/01/06 21:24 LU	J_L	3187412
Dibromochloromethane	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Dibromomethane	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Dichlorodifluoromethane	ND			10	1	03/01/06 21:24 LU	J_L	3187412
Ethylbenzene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Hexachlorobutadiene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Isopropylbenzene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Methyl tert-butyl ether	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Methylene chloride	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Naphthalene	6			5	1	03/01/06 21:24 Lt	J_L	3187412
n-Butylbenzene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
n-Propylbenzene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
sec-Butylbenzene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Styrene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
tert-Butylbenzene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Tetrachloroethene	ND			5	1	03/01/06 21:24 Lt	J_L	3187412
Toluene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Trichloroethene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Trichlorofluoromethane	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Vinyl acetate	ND			10	1	03/01/06 21:24 Lt	J_L	3187412
Vinyl chloride	ND			10	1	03/01/06 21:24 LU	J_L	3187412
cis-1,2-Dichloroethene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
cis-1,3-Dichloropropene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
m,p-Xylene	56			5	1	03/01/06 21:24 LU	J_L	3187412
o-Xylene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
trans-1,2-Dichloroethene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
trans-1,3-Dichloropropene	ND			5	1	03/01/06 21:24 LU	J_L	3187412
1,2-Dichloroethene (total)	ND			5	1	03/01/06 21:24 LU	J_L	3187412
Xylenes,Total	56			5	1	03/01/06 21:24 LU	J_L	3187412
Surr: 1,2-Dichloroethane-d4	98.0		%	62-130	1	03/01/06 21:24 LU	J_L	3187412
Surr: 4-Bromofluorobenzene	88.0		%	70-130	1	03/01/06 21:24 LU	J_L	3187412
Surr: Toluene-d8	94.0		%	74-122	1	03/01/06 21:24 LU	J_L	3187412

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:FB-3

Collected: 02/23/2006 20:30

SPL Sample ID:

06021135-02

Analyses/Method	Result	QUAL	R	ep.Limit	Dil	. Facto	or Date Analy	yzed	Analyst	Seq. #
GASOLINE RANGE ORGANICS		***			MCL		SW8015B	Un	its: mg/L	
Gasoline Range Organics	ND			0.1		1	03/08/06	6:11	DY	3191669
Surr: 1,4-Difluorobenzene	98.3		%	60-155		1	03/08/06	6:11	DY	3191669
Surr: 4-Bromofluorobenzene	96.7		%	50-158		1	03/08/06	6:11	DY	3191669

D - Surrogate Recovery Unreportable due to Dilution

(713) 660-0901

Client Sample ID:FB-3

Collected: 02/23/2006 20:30

SPL Sample ID:

06021135-02

Site:	Hobbs	MN,
-------	-------	-----

Analyses/Method	Result	QUAL	Rep.Limit	Dil. Factor	Date Analyzed Ar	nalyst	Seq. #
VOLATILE ORGANICS BY ME	THOD 8260B			MCL SV	V8260B Units:	ug/L	
1,1,1,2-Tetrachloroethane	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,1,1-Trichloroethane	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,1,2,2-Tetrachloroethane	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,1,2-Trichloroethane	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,1-Dichloroethane	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,1-Dichloroethene	ND		5	1	03/01/06 20:31 LU_	Ļ	3187410
1,1-Dichloropropene	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,2,3-Trichlorobenzene	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,2,3-Trichloropropane	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,2,4-Trichlorobenzene	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,2,4-Trimethylbenzene	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,2-Dibromo-3-chloropropane	ND		5	1	03/01/06 20:31 LU_	Ļ	3187410
1,2-Dibromoethane	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,2-Dichlorobenzene	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,2-Dichloroethane	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,2-Dichloropropane	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,3,5-Trimethylbenzene	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,3-Dichlorobenzene	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,3-Dichloropropane	ND		5	1	03/01/06 20:31 LU_	L	3187410
1,4-Dichlorobenzene	ND		5	1	03/01/06 20:31 LU_	L	3187410
2,2-Dichloropropane	ND		5	1	03/01/06 20:31 LU_	L	3187410
2-Butanone	ND		20	1	03/01/06 20:31 LU_	L	3187410
2-Chloroethyl vinyl ether	ND		10	1	03/01/06 20:31 LU_	L	3187410
2-Chlorotoluene	ND		5	1	03/01/06 20:31 LU_	L	3187410
2-Hexanone	ND		10	1	03/01/06 20:31 LU_	L	3187410
4-Chlorotoluene	ND		5	1	03/01/06 20:31 LU_	L	3187410
4-Isopropyttoluene	ND		5	1	03/01/06 20:31 LU_	L	3187410
4-Methyl-2-pentanone	ND		10	1	03/01/06 20:31 LU_	L	3187410
Acetone	ND		100	1	03/01/06 20:31 LU_	L	3187410
Acrylonitrile	ND		50	1	03/01/06 20:31 LU_	L	3187410
Benzene	ND		5	1	03/01/06 20:31 LU_	L	3187410
Bromobenzene	ND		5	1	03/01/06 20:31 LU_	L	3187410
Bromochloromethane	ND		5	1	03/01/06 20:31 LU_	L	3187410
Bromodichloromethane	ND		5	1	03/01/06 20:31 LU_	L	3187410
Bromoform	ND		5	1	03/01/06 20:31 LU_	L	3187410
Bromomethane	ND		10	1	03/01/06 20:31 LU_	L	3187410
Carbon disulfide	ND		5	1	03/01/06 20:31 LU_	L	3187410
Carbon tetrachloride	ND		5	1	03/01/06 20:31 LU_	L	3187410
Chlorobenzene	ND		5	1	03/01/06 20:31 LU_	L	3187410
Chloroethane	ND		10	1	03/01/06 20:31 LU_	L	3187410

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:FB-3

Collected: 02/23/2006 20:30

SPL Sample ID:

06021135-02

Site:	Hobbs,NM
Oile.	110000,1111

			Site:	HODDS,NIN	Л			
Analyses/Method	Result	QUAL	Rep.L	imit	Dil. Factor	Date Analyzed	Analyst	Seq.#
Chloroform	ND			5	1	03/01/06 20:31	LU_L	3187410
Chloromethane	ND			10	1	03/01/06 20:31	LU_L	3187410
Dibromochloromethane	ND			5	1	03/01/06 20:31	LU_L	3187410
Dibromomethane	ND			5	1	03/01/06 20:31	LU_L	3187410
Dichlorodifluoromethane	ND			10	1	03/01/06 20:31	LU_L	3187410
Ethylbenzene	ND			5	1	03/01/06 20:31	LU_L	3187410
Hexachlorobutadiene	ND			5	1	03/01/06 20:31	LU_L	3187410
Isopropylbenzene	ND			5	1	03/01/06 20:31	LU_L	3187410
Methyl tert-butyl ether	ND			5	1	03/01/06 20:31	LU_L	3187410
Methylene chloride	ND			5	1	03/01/06 20:31	LU_L	3187410
Naphthalene	ND			5	1	03/01/06 20:31	LU_L	3187410
n-Butylbenzene	ND			5	1	03/01/06 20:31	LU_L	3187410
n-Propylbenzene	ND			5	1	03/01/06 20:31	LU_L	3187410
sec-Butylbenzene	ND			5	1	03/01/06 20:31	LU_L	3187410
Styrene	ND			5	1	03/01/06 20:31	LU_L	3187410
tert-Butylbenzene	ND			5	1	03/01/06 20:31	LU_L	3187410
Tetrachloroethene	ND			5	1	03/01/06 20:31	LU_L	3187410
Toluene	ND			5	1	03/01/06 20:31	LU_L	3187410
Trichloroethene	ND			5	1	03/01/06 20:31	LU_L	3187410
Trichlorofluoromethane	ND			5	1	03/01/06 20:31	LU_L	3187410
Vinyl acetate	ND			10	1	03/01/06 20:31	LU_L	3187410
Vinyl chloride	ND			10	1	03/01/06 20:31	LU_L	3187410
cis-1,2-Dichloroethene	ND			5	1	03/01/06 20:31	LU_L	3187410
cis-1,3-Dichloropropene	ND			5	1	03/01/06 20:31	LU_L	3187410
m,p-Xylene	ND			5	1	03/01/06 20:31	LU_L	3187410
o-Xylene	ND			5	1	03/01/06 20:31	LU_L	3187410
trans-1,2-Dichloroethene	ND			5	1	03/01/06 20:31	LU_L	3187410
trans-1,3-Dichloropropene	ND			5	1	03/01/06 20:31	LU_L	3187410
1,2-Dichloroethene (total)	ND			5	1	03/01/06 20:31	LU_L	3187410
Xylenes,Total	ND			5	1	03/01/06 20:31	LU_L	3187410
Surr: 1,2-Dichloroethane-d4	94.0		% 62·	-130	1	03/01/06 20:31	LU_L	3187410
Surr: 4-Bromofluorobenzene	82.0		% 70-	-130	1	03/01/06 20:31	LU_L	3187410
Surr: Toluene-d8	94.0		% 74-	-122	1	03/01/06 20:31	LU_L	3187410
							·	

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:RB-3

Collected: 02/23/2006 20:50

SPL Sample ID:

06021135-03

Site:	Hobbs,NM
-------	----------

Analyses/Method	Result	QUAL	Re	ep.Limit	Dil	. Fact	or Date Anal	yzed	Analyst	Seq.#
DIESEL RANGE ORGANICS					MCL		SW8015B	Ur	nits: mg/L	
Diesel Range Organics (C10-C28)	ND			1		1	03/04/06	1:56	NW	3189086
Surr: n-Pentacosane	86.0		%	20-150		1	03/04/06	1:56	NW	3189086

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	03/02/2006 13:12	N_M	1.00

GASOLINE RANGE ORGANICS	 ··			MCL	S	W8015B	Uni	its: mg/L	
Gasoline Range Organics	ND		0.1		1	03/08/06	1:41	DY	3191663
Surr: 1,4-Difluorobenzene	97.7	%	60-155		1	03/08/06	1:41	DY	3191663
Surr: 4-Bromofluorobenzene	97.3	%	50-158		1	03/08/06	1:41	DY	3191663

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:RB-3

Collected: 02/23/2006 20:50

SPL Sample ID:

06021135-03

Site:	Hob	ıbs.	NM

Analyses/Method	Result QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq.#
SEMIVOLATILE ORGANICS B	SY METHOD 8270C		MCL SV	V8270C Ur	its: ug/L	
1,2,4-Trichlorobenzene	ND	5	1	03/03/06 19:12	GQ	3188644
1,2-Dichlorobenzene	ND	5	1	03/03/06 19:12	GQ	3188644
1,2-Diphenylhydrazine	ND	10	1	03/03/06 19:12	GQ	3188644
1,3-Dichlorobenzene	ND	5	1	03/03/06 19:12	GQ	3188644
1,4-Dichlorobenzene	ND	5	11	03/03/06 19:12	GQ	3188644
2,4,5-Trichlorophenol	ND	10	1	03/03/06 19:12	GQ	3188644
2,4,6-Trichlorophenol	ND	5	1	03/03/06 19:12	GQ	3188644
2,4-Dichlorophenol	ND	5	1	03/03/06 19:12	GQ	3188644
2,4-Dimethylphenol	ND	5	1	03/03/06 19:12	GQ	3188644
2,4-Dinitrophenol	ND	25	1	03/03/06 19:12	GQ	3188644
2,4-Dinitrotoluene	ND	5	1	03/03/06 19:12	GQ	3188644
2,6-Dinitrotoluene	ND	5	1	03/03/06 19:12	GQ	3188644
2-Chloronaphthalene	ND	5	1	03/03/06 19:12	GQ	3188644
2-Chlorophenol	ND	5	1	03/03/06 19:12	GQ	3188644
2-Methylnaphthalene	ND	5	1	03/03/06 19:12	GQ	3188644
2-Nitroaniline	ND	25	1	03/03/06 19:12	GQ	3188644
2-Nitrophenol	ND	5	1	03/03/06 19:12	GQ	3188644
3,3'-Dichlorobenzidine	ND	10	1	03/03/06 19:12	GQ	3188644
3-Nitroaniline	ND	25	1	03/03/06 19:12	GQ	3188644
4,6-Dinitro-2-methylphenol	ND	25	1	03/03/06 19:12	GQ	3188644
4-Bromophenyl phenyl ether	ND	5	1	03/03/06 19:12	GQ	3188644
4-Chloro-3-methylphenol	ND	5	1	03/03/06 19:12	GQ	3188644
4-Chloroaniline	ND	5	1	03/03/06 19:12	GQ	3188644
4-Chlorophenyl phenyl ether	ND	5	1	03/03/06 19:12	GQ	3188644
4-Nitroaniline	ND	25	1	03/03/06 19:12	GQ	3188644
4-Nitrophenol	ND	25	1	03/03/06 19:12	GQ	3188644
Acenaphthene	ND	5	1	03/03/06 19:12	GQ	3188644
Acenaphthylene	ND	5	1	03/03/06 19:12	GQ	3188644
Aniline	ND	5	1	03/03/06 19:12	GQ	3188644
Anthracene	ND	5	1	03/03/06 19:12	GQ	3188644
Benz(a)anthracene	ND	5	1	03/03/06 19:12	GQ	3188644
Benzo(a)pyrene	ND	5	1	03/03/06 19:12	GQ	3188644
Benzo(b)fluoranthene	ND	5	1	03/03/06 19:12	GQ	3188644
Benzo(g,h,i)perylene	ND	5	1	03/03/06 19:12	GQ	3188644
Benzo(k)fluoranthene	ND	5	1	03/03/06 19:12	GQ	3188644
Benzoic acid	ND	25	1	03/03/06 19:12	GQ	3188644
Benzyl alcohol	ND	5	1	03/03/06 19:12	GQ	3188644
Bis(2-chloroethoxy)methane	ND	5	1	03/03/06 19:12	GQ	3188644
Bis(2-chloroethyl)ether	ND	5	1	03/03/06 19:12	GQ	3188644
Bis(2-chloroisopropyl)ether	ND	5	1	03/03/06 19:12	GQ	3188644

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:RB-3

Collected: 02/23/2006 20:50

SPL Sample ID:

06021135-03

Site:	Hobbs.	NIBA

Analyses/Method	Result	QUAL	Re	p.Limit	Dil. Factor	Date Analyzed	Analyst	Seq.#
Bis(2-ethylhexyl)phthalate	ND			5	1	03/03/06 19:12	GQ	3188644
Butyl benzyl phthalate	ND			5	1	03/03/06 19:12	GQ	3188644
Carbazole	ND			5	1	03/03/06 19:12	GQ	3188644
Chrysene	ND			5	1	03/03/06 19:12	GQ	3188644
Dibenz(a,h)anthracene	ND	_		5	1	03/03/06 19:12	GQ	3188644
Dibenzofuran	ND			5	1	03/03/06 19:12	GQ	3188644
Diethyl phthalate	ND			5	1	03/03/06 19:12	GQ	3188644
Dimethyl phthalate	ND			5	1	03/03/06 19:12	GQ	3188644
Di-n-butyl phthalate	ND			5	1	03/03/06 19:12	GQ	3188644
Di-n-octyl phthalate	ND			5	1	03/03/06 19:12	GQ	3188644
Fluoranthene	ND			5	1	03/03/06 19:12	GQ	3188644
Fluorene	ND			5	1	03/03/06 19:12	GQ	3188644
Hexachlorobenzene	ND			5	1	03/03/06 19:12	GQ	3188644
Hexachlorobutadiene	ND			5	1	03/03/06 19:12	GQ	3188644
Hexachlorocyclopentadiene	ND			5	1	03/03/06 19:12	GQ	3188644
Hexachloroethane	ND			5	1	03/03/06 19:12	GQ	3188644
Indeno(1,2,3-cd)pyrene	ND			5	1	03/03/06 19:12	GQ	3188644
Isophorone	ND			5	1	03/03/06 19:12	GQ	3188644
Naphthalene	ND			5	1	03/03/06 19:12	GQ	3188644
Nitrobenzene	ND			5	1	03/03/06 19:12	GQ	3188644
N-Nitrosodi-n-propylamine	ND			5	1	03/03/06 19:12	GQ	3188644
N-Nitrosodiphenylamine	ND			5	1	03/03/06 19:12	GQ	3188644
Pentachlorophenol	ND			25	1	03/03/06 19:12	GQ	3188644
Phenanthrene	ND			5	1	03/03/06 19:12	GQ	3188644
Phenol	ND	· · · · · · · · · · · · · · · · · · ·		5	1	03/03/06 19:12	GQ	3188644
Pyrene	ND			5	1	03/03/06 19:12	GQ	3188644
Pyridine	ND		•	5	1	03/03/06 19:12	GQ	3188644
2-Methylphenol	ND			5	1	03/03/06 19:12	GQ	3188644
3 & 4-Methylphenol	ND	*		5	1	03/03/06 19:12	GQ	3188644
Surr: 2,4,6-Tribromophenol	80.0		%	10-123	1	03/03/06 19:12	GQ	3188644
Surr: 2-Fluorobiphenyl	72.0		%	23-116	1	03/03/06 19:12	GQ	3188644
Surr: 2-Fluorophenol	46.7	· · · · · · · · · · · · · · · · · · ·	%	16-110	1	03/03/06 19:12	GQ	3188644
Surr: Nitrobenzene-d5	68.0		%	21-114	1	03/03/06 19:12	GQ	3188644
Surr: Phenol-d5	28.0	· · · · · · · · · · · · · · · · · · ·	%	10-110	1	03/03/06 19:12	GQ	3188644
Surr: Terphenyl-d14	78.0	-	%	22-141	1	03/03/06 19:12	GQ	3188644

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	03/01/2006 17:48	N_M	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:RB-3

Collected: 02/23/2006 20:50

SPL Sample ID:

06021135-03

Site:	Hobbs.	2124
SITO.	HODDS	TVI IVI

Analyses/Method	Result C	QUAL Rep.Limit	Dil. Facto	or Date Analyzed	Analyst	Seq.#
VOLATILE ORGANICS BY MET	HOD 8260B		MCL S	W8260B Un	its: ug/L	
1,1,1,2-Tetrachloroethane	ND	5	1	03/01/06 20:57	LU_L	3187411
1,1,1-Trichloroethane	ND	5	1	03/01/06 20:57	LU_L	3187411
1,1,2,2-Tetrachloroethane	ND	5	1	03/01/06 20:57	LU_L	3187411
1,1,2-Trichloroethane	ND	5	1	03/01/06 20:57	LU_L	3187411
1,1-Dichloroethane	ND	5	1	03/01/06 20:57	LU_L	3187411
1,1-Dichloroethene	ND	5	1	03/01/06 20:57	LU_L	3187411
1,1-Dichloropropene	ND	5	1	03/01/06 20:57	LU_L	3187411
1,2,3-Trichlorobenzene	ND	5	1	03/01/06 20:57	LU_L	3187411
1,2,3-Trichloropropane	ND	5	1	03/01/06 20:57	LU_L	3187411
1,2,4-Trichlorobenzene	ND	5	1	03/01/06 20:57	LU_L	3187411
1,2,4-Trimethylbenzene	ND	5	1	03/01/06 20:57	LU_L	3187411
1,2-Dibromo-3-chloropropane	ND	5	1	03/01/06 20:57	LU_L	3187411
1,2-Dibromoethane	ND	5	1	03/01/06 20:57	LU_L	3187411
1,2-Dichlorobenzene	ND	5	1	03/01/06 20:57	LU_L	3187411
1,2-Dichloroethane	ND	5	1	03/01/06 20:57	LU_L	3187411
1,2-Dichloropropane	ND	5	1	03/01/06 20:57	LU_L	3187411
1,3,5-Trimethylbenzene	ND	5	1	03/01/06 20:57	LU_L	3187411
1,3-Dichlorobenzene	ND	5	1	03/01/06 20:57	LU_L	3187411
1,3-Dichloropropane	ND	5	1	03/01/06 20:57	LU_L	3187411
1,4-Dichlorobenzene	ND	5	1	03/01/06 20:57	LU_L	3187411
2,2-Dichloropropane	ND	5	1	03/01/06 20:57	LU_L	3187411
2-Butanone	ND	20	1	03/01/06 20:57	LU_L	3187411
2-Chloroethyl vinyl ether	ND	10	1	03/01/06 20:57	LU_L	3187411
2-Chlorotoluene	ND	5	1	03/01/06 20:57	LU_L	3187411
2-Hexanone	ND	10	1	03/01/06 20:57	LU_L	3187411
4-Chlorotoluene	ND	5	1	03/01/06 20:57	LU_L	3187411
4-Isopropyltoluene	ND	5	1	03/01/06 20:57	LU_L	3187411
4-Methyl-2-pentanone	ND	10	1	03/01/06 20:57	LU_L	3187411
Acetone	ND	100	1	03/01/06 20:57	LU_L	3187411
Acrylonitrile	ND	50	1	03/01/06 20:57	LU_L	3187411
Benzene	ND	5	1	03/01/06 20:57	LU_L	3187411
Bromobenzene	ND	5	1	03/01/06 20:57	LU_L	3187411
Bromochloromethane	ND	5	1	03/01/06 20:57	LU_L	3187411
Bromodichloromethane	ND	5	1	03/01/06 20:57	LU_L	3187411
Bromoform	ND	5	1	03/01/06 20:57	LU_L	3187411
Bromomethane	ND	10	1	03/01/06 20:57	LU_L	3187411
Carbon disulfide	ND	5	1	03/01/06 20:57	LU_L	3187411
Carbon tetrachloride	ND	5	1	03/01/06 20:57	LU_L	3187411
Chlorobenzene	ND	5	1	03/01/06 20:57	LU_L	3187411
Chloroethane	ND	10	1	03/01/06 20:57	LU_L	3187411

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Client Sample ID:RB-3

Collected: 02/23/2006 20:50

SPL Sample ID:

06021135-03

Site:	Hobbs,NM

Analyses/Method	Result	QUAL	Re	p.Limit	Dil. Factor	Date Analyzed	Analyst	Seq.#
Chloroform	ND			5	1	03/01/06 20:57	LU_L	3187411
Chloromethane	ND			10	1	03/01/06 20:57	LU_L	3187411
Dibromochloromethane	ND			5	1	03/01/06 20:57	LU_L	3187411
Dibromomethane	ND			5	1	03/01/06 20:57	LU_L	3187411
Dichlorodifluoromethane	ND			10	1	03/01/06 20:57	LU_L	3187411
Ethylbenzene	ND			5	1	03/01/06 20:57	LU_L	3187411
Hexachlorobutadiene	ND			5	1	03/01/06 20:57	LU_L	3187411
Isopropylbenzene	ND			5	1	03/01/06 20:57	LU_L	3187411
Methyl tert-butyl ether	ND			5	1	03/01/06 20:57	LU_L	3187411
Methylene chloride	ND			5	1	03/01/06 20:57	LU_L	3187411
Naphthalene	ND			5	1	03/01/06 20:57	LU_L	3187411
n-Butylbenzene	ND			5	1	03/01/06 20:57	LU_L	3187411
n-Propylbenzene	ND			5	1	03/01/06 20:57	LU_L	3187411
sec-Butylbenzene	ND			5	1	03/01/06 20:57	LU_L	3187411
Styrene	ND			5	1	03/01/06 20:57	LU_L	3187411
tert-Butylbenzene	ND	·		5	1	03/01/06 20:57	LU_L	3187411
Tetrachloroethene	ND			5	1	03/01/06 20:57	LU_L	3187411
Toluene	ND			5	1	03/01/06 20:57	LU_L	3187411
Trichloroethene	ND			5	1	03/01/06 20:57	LU_L	3187411
Trichlorofluoromethane	ND			5	1	03/01/06 20:57	LU_L	3187411
Vinyl acetate	ND			10	1	03/01/06 20:57	LU_L	3187411
Vinyl chloride	ND			10	1	03/01/06 20:57	LU_L	3187411
cis-1,2-Dichloroethene	ND			5	1	03/01/06 20:57	LU_L	3187411
cis-1,3-Dichloropropene	ND			5	1	03/01/06 20:57	LU_L	3187411
m,p-Xylene	ND			5	1	03/01/06 20:57	LU_L	3187411
o-Xylene	ND			5	1	03/01/06 20:57	LU_L	3187411
trans-1,2-Dichloroethene	ND			5	1	03/01/06 20:57	LU_L	3187411
trans-1,3-Dichloropropene	ND			5	1	03/01/06 20:57	LU_L	3187411
1,2-Dichloroethene (total)	ND			5	1	03/01/06 20:57	LU_L	3187411
Xylenes,Total	ND			5	1	03/01/06 20:57	LU_L	3187411
Surr: 1,2-Dichloroethane-d4	96.0		%	62-130	1	03/01/06 20:57	LU_L	3187411
Surr: 4-Bromofluorobenzene	86.0	·	%	70-130	1	03/01/06 20:57	LU_L	3187411
Surr: Toluene-d8	98.0		%	74-122	1	03/01/06 20:57	LU_L	3187411

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Quality Control Documentation

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125

Analysis:

Diesel Range Organics

Method:

SW8015B

WorkOrder:

06021135

Lab Batch ID:

55558

Method Blank

HP_V_060303I-3189079 RunID:

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

03/03/2006 21:41

Analyst:

NW

06021135-01D

MW-2

Preparation Date:

03/02/2006 13:12

Prep By:

N_M Method SW3510C

06021135-03D

RB-3

Analyte	Result	Rep Limit
Diesel Range Organics (C10-C28)	ND	1.0
Surr: n-Pentacosane	75.6	20-150

Laboratory Control Sample (LCS)

RunID:

HP_V_060303I-3189080

Units:

Analysis Date:

03/03/2006 22:04

Analyst: NW

Preparation Date: 03/02/2006 13:12 Prep By: N_M Method SW3510C

mg/L

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Diesel Range Organics (C10-C28)	2.00	1.90	95.0	21	130

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021169-05

RunID:

HP_V_060303I-3189082

Units:

mg/L

Analysis Date:

03/03/2006 22:51

Analyst: NW

Preparation Date:

03/02/2006 13:12

Prep By: N_M Method SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Diesel Range Organics (C10-C28)	ND	4	4.38	105	4	3.97	95.1	9.93	39	26	130

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021135 Page 17 3/14/2006 2:05:52 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125

Analysis:

Gasoline Range Organics

Method:

SW8015B

Samples in Analytical Batch:

WorkOrder:

06021135

Lab Batch ID:

R164356

Method Blank

Units:

mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

RunID: HP_J_060307C-3191657

03/07/2006 21:12

Analyst: DY 06021135-01B

MW-2

Preparation Date:

03/07/2006 21:12

Method SW5030B

06021135-02B

FB-3

Prep By:

06021135-03B

RB-3

Analyte	Result	Rep Limit
Gasoline Range Organics	ND	0.10
Surr: 1,4-Difluorobenzene	98.3	60-155
Surr: 4-Bromofluorobenzene	93.0	50-158

Laboratory Control Sample (LCS)

RunID:

HP_J_060307C-3191656

Units: mg/L

Analysis Date:

Preparation Date:

03/07/2006 20:42 03/07/2006 20:42

DY Analyst: Prep By:

Method SW5030B

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Gasoline Range Organics	1.00	0.881	88.1	42	136

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021135-03

RunID:

HP_J_060307C-3191665

Units:

mg/L

Analysis Date:

03/08/2006 3:40

Analyst: DY

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Gasoline Range Organics	ND	0.9	0.960	107	0.9	0.887	98.6	7.84	36	22	174

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125

Analysis:

Semivolatile Organics by Method 8270C

WorkOrder:

06021135

Method:

SW8270C

Lab Batch ID:

55541A

Method Blank

Samples in Analytical Batch:

RunID:

J_060306D-3190374

Units:

ug/L

Lab Sample ID 06021135-01C

Client Sample ID

Analysis Date:

03/06/2006 12:20

Analyst: S_G

MW-2

Preparation Date:

03/01/2006 17:48

N_M Method SW3510C Prep By:

06021135-03C

RB-3

Analyte	Result	Rep Limi
1,2,4-Trichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Diphenylhydrazine	ND	10
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
2,4,5-Trichlorophenol	ND	10
2,4,6-Trichlorophenol	ND	5.0
2,4-Dichlorophenol	ND	5.0
2,4-Dimethylphenol	ND	5.0
2,4-Dinitrophenol	ND	2
2,4-Dinitrotoluene	ND	5.0
2,6-Dinitrotoluene	ND	5.0
2-Chloronaphthalene	ND	5.0
2-Chlorophenol	ND	5.0
2-Methylnaphthalene	ND	5.0
2-Nitroaniline	ND	2:
2-Nitrophenol	ND	5.0
3,3´-Dichlorobenzidine	ND	10
3-Nitroaniline	ND	2:
4,6-Dinitro-2-methylphenol	ND	2:
4-Bromophenyl phenyl ether	ND	5.0
4-Chloro-3-methylphenol	ND	5.0
4-Chloroaniline	ND	5.0
4-Chlorophenyl phenyl ether	ND	5.0
4-Nitroaniline	ND	2
4-Nitrophenol	ND	2:
Acenaphthene	ND	5.0
Acenaphthylene	ND	5.0
Aniline	ND	5.0
Anthracene	ND	5.0
Benz(a)anthracene	ND	5.0
Benzo(a)pyrene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(g,h,i)perylene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzoic acid	ND	2!
Benzyl alcohol	ND	5.0
Bis(2-chloroethoxy)methane	ND	5.0
Bis(2-chloroethyl)ether	ND ND	5.0
Bis(2-chloroisopropy)ether	ND	5.0
Bis(2-ethylhexyl)phthalate	ND	5.0
Butyl benzył phthalate	ND ND	5.0
Carbazole	ND	5.0
Chrysene	ND	5.0
Dibenz(a,h)anthracene	ND	5.
Dibenzofuran	ND	5.
Diethyl phthalate	ND ND	5.
Dimethyl phthalate	ND	5.

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021135 Page 19 3/14/2006 2:05:53 PM

Brown & Caldwell

BJ Service Fracmaster 128125

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

06021135

Lab Batch ID:

55541A

Method Blank

RunID:

J_060306D-3190374

Units:

ug/L

Analysis Date:

03/06/2006 12:20

Analyst:

S_G

Preparation Date:

03/01/2006 17:48

N_M Method SW3510C Prep By:

Analyte	Result	Rep Limit
Di-n-butyl phthalate	ND	5.0
Di-n-octyl phthalate	ND	5.0
Fluoranthene	ND	5.0
Fluorene	ND	5.0
Hexachlorobenzene	ND.	5.0
Hexachlorobutadiene	ND.	5.0
Hexachlorocyclopentadiene	ND	5.0
Hexachloroethane	ND	5.0
Indeno(1,2,3-cd)pyrene	ND	5.0
Isophorone	ND	5.0
Naphthalene	ND	5.0
Nitrobenzene	ND	5.0
N-Nitrosodi-n-propylamine	ND	5.0
N-Nitrosodiphenylamine	ND	5.0
Pentachlorophenol	ND	25
Phenanthrene	ND	5.0
Phenol	ND	5.0
Pyrene	ND	5.0
Pyridine	ND	5.0
2-Methylphenol	ND	5.0
3 & 4-Methylphenol	ND	5.0
Surr: 2,4,6-Tribromophenol	70.7	10-123
Surr: 2-Fluorobiphenyl	68.0	23-116
Surr: 2-Fluorophenol	66.7	16-110
Surr: Nitrobenzene-d5	66.0	21-114
Surr: Phenol-d5	73.3	10-110
Surr: Terphenyl-d14	68.0	22-141

Laboratory Control Sample (LCS)

RunID:

J_060306D-3190375

Units: ug/L

Analysis Date:

03/06/2006 12:59

Analyst: S_G

Preparation Date:

03/01/2006 17:48

Prep By:

N_M Method SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,2,4-Trichlorobenzene	25.0	20.0	80.0	21	120
1,2-Dichlorobenzene	25.0	20.0	80.0	20	150
1,2-Diphenylhydrazine	25.0	18.0	72.0	10	160
1,3-Dichlorobenzene	25.0	20.0	80.0	20	150
1,4-Dichlorobenzene	25.0	19.0	76.0	20	150
2,4,5-Trichlorophenol	25.0	20.0	80.0	30	150

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021135 Page 20 3/14/2006 2:05:53 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125

Analysis: Method: Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

06021135

Lab Batch ID:

55541A

Laboratory Control Sample (LCS)

RunID:

J_060306D-3190375

Units: ug/L

03/06/2006 12:59

Analyst: S_G

Analysis Date: Preparation Date:

03/01/2006 17:48

Alialyst. 3_G

Prep By: N_M Method SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
2,4,6-Trichlorophenol	25.0	20.0	80.0	30	150
2,4-Dichlorophenol	25.0	20.0	80.0	30	150
2,4-Dimethylphenol	25.0	21.0	84.0	32	140
2,4-Dinitrophenol	25.0	15.0	60.0	10	160
2,4-Dinitrotoluene	25.0	22.0	88.0	30	150
2,6-Dinitrotoluene	25.0	22.0	88.0	30	150
2-Chloronaphthalene	25.0	19.0	76.0	30	15
2-Chiorophenol	25.0	19.0	76.0	23	13
2-Methylnaphthalene	25.0	21.0	84.0	20	17
2-Nitroaniline	25.0	18.0	72.0	20	16
2-Nitrophenol	25.0	19.0	76.0	29	18
3,3'-Dichlorobenzidine	25.0	17.0	68.0	30	20
3-Nitroaniline	25.0	19.0	76.0	20	16
4,6-Dinitro-2-methylphenol	25.0	15.0	60.0	10	16
4-Bromophenyl phenyl ether	25.0	16.0	64.0	30	15
4-Chloro-3-methylphenol	25.0	21.0	84.0	25	16
4-Chloroaniline	25.0	17.0	68.0	20	16
4-Chlorophenyl phenyl ether	25.0	20.0	80.0	25	15
4-Nitroaniline	25.0	19.0	76.0	20	16
4-Nitrophenol	25.0	21.0	84.0	10	13
Acenaphthene	25.0	21.0	84.0	30	15
Acenaphthylene	25.0	21.0	84.0	33	25
Aniline	25.0	14.0	56.0	10	13
Anthracene	25.0	19.0	76.0	27	13
Benz(a)anthracene	25.0	20.0	80.0	33	14
Benzo(a)pyrene	25.0	23.0	92.0	17	16
Benzo(b)fluoranthene	25.0	23.0	92.0	24	15
Benzo(g,h,i)perylene	25.0	23.0	92.0	30	16
Benzo(k)fluoranthene	25.0	24.0	96.0	11	16
Benzoic acid	25.0	8.00	32.0	10	40
Benzyl alcohol	25.0	18.0	72.0	30	16
Bis(2-chloroethoxy)methane	25.0	22.0	88.0	33	18
Bis(2-chloroethyl)ether	25.0	17.0	68.0	12	15
Bis(2-chloroisopropyl)ether	25.0	19.0	76.0	20	16
Bis(2-ethylhexyl)phthalate	25.0	20.0	80.0	10	15

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

06021135 Page 21 3/14/2006 2:05:53 PM

Brown & Caldwell

BJ Service Fracmaster 128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

06021135

Lab Batch ID:

Laboratory Control Sample (LCS)

RunID:

J 060306D-3190375

Units: ug/L

55541A

Analysis Date:

03/06/2006 12:59

Analyst: S_G

Preparation Date: 03/01/2006 17:48 Prep By: N_M Method SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Butyl benzyl phthalate	25.0	21.0	84.0	30	160
Carbazole	25.0	20.0	80.0	30	150
Chrysene	25.0	19.0	76.0	17	168
Dibenz(a,h)anthracene	25.0	23.0	92.0	30	160
Dibenzofuran	25.0	21.0	84.0	30	150
Diethyl phthalate	25.0	23.0	92.0	30	160
Dimethyl phthalate	25.0	22.0	88.0	30	160
Di-n-butyl phthalate	25.0	20.0	80.0	30	160
Di-n-octyl phthalate	25.0	19.0	76.0	20	150
Fluoranthene	25.0	21.0	84.0	26	137
Fluorene	25.0	21.0	84.0	30	150
Hexachlorobenzene	25.0	18.0	72.0	20	150
Hexachlorobutadiene	25.0	22.0	88.0	20	140
Hexachlorocyclopentadiene	25.0	13.0	52.0	10	150
Hexachloroethane	25.0	20.0	80.0	14	120
Indeno(1,2,3-cd)pyrene	25.0	18.0	72.0	30	160
Isophorone	25.0	25.0	100	21	196
Naphthalene	25.0	21.0	84.0	21	133
Nitrobenzene	25.0	20.0	80.0	20	160
N-Nitrosodi-n-propylamine	25.0	20.0	80.0	30	160
N-Nitrosodiphenylamine	50.0	37.0	74.0	30	150
Pentachlorophenol	25.0	16.0	64.0	14	176
Phenanthrene	25.0	19.0	76.0	10	140
Phenol	25.0	19.0	76.0	10	112
Pyrene	25.0	20.0	80.0	30	150
Pyridine	25.0	13.0	52.0	10	150
2-Methylphenol	25.0	19.0	76.0	30	160
3 & 4-Methylphenol	25.0	19.0	76.0	10	160

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021135 Page 22 3/14/2006 2:05:53 PM

Brown & Caldwell BJ Service Fracmaster 128125

Semivolatile Organics by Method 8270C

SW8270C Method:

Analysis:

WorkOrder:

06021135

Lab Batch ID:

55541A

Sample Spiked:

RunID:

06021107-02

J_060306D-3190376

mg/L Units:

Analysis Date:

03/06/2006 15:32

Analyst: S_G

Preparation Date:

Prep By: N_M Method SW3510C 03/01/2006 17:48

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,2,4-Trichlorobenzene	ND	0.05	0.0400	80.0	0.05	0.0390	78.0	2.53	28	10	142
1,2-Dichlorobenzene	ND	0.05	0.0390	78.0	0.05	0.0370	74.0	5.26	50	20	150
1,2-Diphenylhydrazine	ND	0.05	0.0420	84.0	0.05	0.0420	84.0	0	50	10	160
1,3-Dichlorobenzene	ND	0.05	0.0380	76.0	0.05	0.0360	72.0	5.41	50	20	150
1,4-Dichlorobenzene	ND	0.05	0.0360	72.0	0.05	0.0360	72.0	0	45	20	150
2,4,5-Trichlorophenol	ND	0.05	0.0440	88.0	0.05	0.0430	86.0	2.30	50	30	150
2,4,6-Trichlorophenol	ND	0.05	0.0430	86.0	0.05	0.0420	84.0	2.35	50	30	150
2,4-Dichlorophenol	ND	0.05	0.0420	84.0	0.05	0.0430	86.0	2.35	50	30	150
2,4-Dimethylphenol	ND	0.05	0.0420	84.0	0.05	0.0430	86.0	2.35	50	32	140
2,4-Dinitrophenol	ND	0.05	0.0380	76.0	0.05	0.0360	72.0	5.41	50		160
2,4-Dinitrotoluene	ND	0.05	0.0460	92.0	0.05	0.0420	84.0	9.09	50	30	150
2,6-Dinitrotoluene	ND	0.05	0.0460	92.0	0.05	0.0430	86.0	6.74	50	30	150
2-Chloronaphthalene	ND	0.05	0.0430	86.0	0.05	0.0420	84.0	2.35	50	30	150
2-Chlorophenol	ND	0.05	0.0400	80.0	0.05	0.0410	82.0	2.47	40	23	134
2-Methylnaphthalene	ND	0.05	0.0440	88.0	0.05	0.0430	86.0	2.30	50	20	170
2-Nitroaniline	ND	0.05	0.00800	16.0 *	0.05	0.00800	16.0 *	0	50	20	160
2-Nitrophenol	ND	0.05	0.0410	82.0	0.05	0.0410	82.0	0	50	29	182
3,3´-Dichlorobenzidine	ND	0.05	0	0*	0.05	0	0*	0	50	30	200
3-Nitroaniline	ND	0.05	0.00900	18.0 *	0.05	0.00900	18.0 *	0	50	20	160
4,6-Dinitro-2-methylphenol	ND	0.05	0.0380	76.0	0.05	0.0360	72.0	5.41	50		160
4-Bromophenyl phenyl ether	ND	0.05	0.0350	70.0	0.05	0.0350	70.0	0		l	
4-Chloro-3-methylphenol	ND	0.05	0.0450	90.0	0.05	0.0450	90.0	0		1	
4-Chloroaniline	ND	0.05	0.0290	58.0	0.05	0.0280	56.0	3.51	50		
4-Chlorophenyl phenyl ether	ND	0.05	0.0420	84.0	0.05	0.0400	80.0	4.88	50	25	158
4-Nitroaniline	ND	0.05	0.00200	4.00 *	0.05	0.00200	4.00 *	0		1	
4-Nitrophenol	ND	0.05	0.0310	62.0	0.05	0.0340	68.0	9.23			
Acenaphthene	ND	0.05	0.0450	90.0	0.05	0.0420	84.0	6.90	31	30	
Acenaphthylene	ND	0.05	0.0450	90.0	0.05	0.0430	86.0	4.55	50	33	250
Aniline	ND	0.05	0.0270	54.0	0.05	0.0220	44.0	20.4			135
Anthracene	ND	0.05	0.0430	86.0	0.05	0.0410	82.0	4.76	50	27	133
Benz(a)anthracene	ND	0.05	0.0430	86.0	0.05	0.0430	86.0	0	50		
Benzo(a)pyrene	ND	0.05	0.0490	98.0	0.05	0.0490	98.0	0	50	17	163
Benzo(b)fluoranthene	ND	0.05	0.0500	100	0.05	0.0480	96.0	4.08			159
Benzo(g,h,i)perylene	ND	0.05	0.0520	104	0.05	0.0540	108	3.77	50	30	160

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and $% \left(1\right) =\left(1\right) \left(1\right) \left$ rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021135 Page 23 3/14/2006 2:05:53 PM

Brown & Caldwell

BJ Service Fracmaster 128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

06021135

Lab Batch ID:

55541A

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021107-02

RunID:

J_060306D-3190376

Units:

mg/L

Analysis Date:

03/06/2006 15:32

Analyst:

S_G

Preparation Date: 03/01/2006 17:48

Prep By: N_M Method SW3510C

Analyte	Sample	MS	MS	MS %	MSD	MSD	MSD %	RPD	RPD	Low	High
	Result	Spike Added	Result	Recovery	Spike Added	Result	Recovery		Limit	Limit	Limit
Benzo(k)fluoranthene	ND	0.05	0.0500	100	0.05	0.0510	102	1.98	50	11	162
Benzoic acid	ND	0.05	0.0100	20.0	0.05	0.0190	38.0	62.1 *	50	10	400
Benzyl alcohol	ND	0.05	0.0410	82.0	0.05	0.0420	84.0	2.41	50	30	160
Bis (2-chloroethoxy)methane	ND	0.05	0.0470	94.0	0.05	0.0460	92.0	2.15	50	33	184
Bis (2-chloroethyl)ether	ND	0.05	0.0400	80.0	0.05	0.0390	78.0	2.53	50	12	158
Bis (2-chloroisopropyl)ether	ND	0.05	0.0430	86.0	0.05	0.0430	86.0	0	50	20	160
Bis (2-ethylhexyl)phthalate	ND	0.05	0.0480	96.0	0.05	0.0470	94.0	2.11	50	10	158
Butyl benzyl phthalate	ND	0.05	0.0480	96.0	0.05	0.0470	94.0	2.11	50	30	160
Carbazole	ND	0.05	0.0440	88.0	0.05	0.0420	84.0	4.65	50	30	150
Chrysene	ND	0.05	0.0430	86.0	0.05	0.0420	84.0	2.35	50	17	168
Dibenz(a,h)anthracene	ND	0.05	0.0500	100	0.05	0.0510	102	1.98	50	30	160
Dibenzofuran	ND	0.05	0.0450	90.0	0.05	0.0430	86.0	4.55	50	30	150
Diethyl phthalate	ND	0.05	0.0470	92.0	0.05	0.0450	88.0	4.35	50	30	160
Dimethyl phthalate	ND	0.05	0.0450	90.0	0.05	0.0440	88.0	2.25	50	30	160
Di-n-butyl phthalate	ND	0.05	0.0460	92.0	0.05	0.0440	88.0	4.44	50	30	160
Di-n-octyl phthalate	ND	0.05	0.0450	90.0	0.05	0.0440	88.0	2.25	50	20	150
Fluoranthene	ND	0.05	0.0470	94.0	0.05	0.0430	86.0	8.89	50	26	137
Fluorene	ND	0.05	0.0440	88.0	0.05	0.0420	84.0	4.65	50	30	150
Hexachlorobenzene	ND	0.05	0.0410	82.0	0.05	0.0400	80.0	2.47	50	20	150
Hexachlorobutadiene	ND	0.05	0.0450	90.0	0.05	0.0430	86.0	4.55	50	20	140
Hexachlorocyclopentadiene	ND	0.05	0.0300	60.0	0.05	0.0280	56.0	6.90	50	10	150
Hexachloroethane	ND	0.05	0.0380	76.0	0.05	0.0380	76.0	0	50	10	140
Indeno(1,2,3-cd)pyrene	ND	0.05	0.0440	88.0	0.05	0.0440	88.0	0	50	30	160
Isophorone	ND	0.05	0.0530	106	0.05	0.0530	106	0	50	21	196
Naphthalene	ND	0.05	0.0620	124	0.05	0.0590	118	4.96	50	21	133
Nitrobenzene	ND	0.05	0.0540	108	0.05	0.0510	102	5.71	50	20	160
N-Nitrosodi-n-propylamine	ND	0.05	0.0450	90.0	0.05	0.0460	92.0	2.20	38	30	160
N-Nitrosodiphenylamine	ND	0.1	0.0810	81.0	0.1	0.0810	81.0	0	50	30	150
Pentachlorophenol	ND	0.05	0.0370	64.0	0.05	0.0400	70.0	7.79	50	14	176
Phenanthrene	ND	0.05	0.0410	82.0	0.05	0.0400	80.0	2.47	50	10	140
Phenol	ND	0.05	0.0250	50.0	0.05	0.0330	66.0	27.6	42	10	112
Pyrene	ND	0.05	0.0420	84.0	0.05	0.0430	86.0	2.35	31	30	150
Pyridine	ND	0.05	0.0140	28.0	0.05	0.00600	12.0	80.0 *	50	10	150

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021135 Page 24

3/14/2006 2:05:53 PM

Brown & Caldwell

BJ Service Fracmaster 128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

06021135

Lab Batch ID:

55541A

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021107-02

RunID:

J_060306D-3190376

Units:

mg/L

Analysis Date: Preparation Date: 03/06/2006 15:32 03/01/2006 17:48 Analyst: S_G

Prep By: N_M Method SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
2-Methylphenol	ND	0.05	0.0410	82.0	0.05	0.0440	88.0	7.06	50	30	160
3 & 4-Methylphenol	ND	0.05	0.0370	74.0	0.05	0.0420	84.0	12.7	50	10	160

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

06021135 Page 25 3/14/2006 2:05:53 PM

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125

Analysis:

RuniD:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

06021135

Method:

03/01/2006 13:01

Lab Batch ID:

R164107

Method Blank

K_060301B-3187405

Units:

ug/L

Lab Sample ID 06021135-01A

Client Sample ID

Analysis Date: Preparation Date:

03/01/2006 13:01

Analyst: Prep By: LU_L Method

06021135-02A

Samples in Analytical Batch:

MW-2 FB-3

06021135-03A

RB-3

Analyte	Result	Rep Limit
1,1,1,2-Tetrachloroethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,1,2-Trichloroethane	ND	5.0
1,1-Dichloroethane	ND	5.0
1,1-Dichloroethene	ND	5.0
1,1-Dichloropropene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0
1,2,3-Trichloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
1,2-Dibromo-3-chloropropane	ND	
1,2-Dibromoethane	ND	
1,2-Dichlorobenzene	ND	5.0
1,2-Dichloroethane	ND	5.0
1,2-Dichloropropane	ND	5.0
1,3,5-Trimethylbenzene	ND	
1,3-Dichlorobenzene	ND	5.0
1,3-Dichloropropane	ND	
1,4-Dichlorobenzene	ND	
2,2-Dichloropropane	ND	
2-Butanone	ND	
2-Chloroethyl vinyl ether	ND	
2-Chlorotoluene	ND	5.0
2-Hexanone	ND	
4-Chlorotoluene	ND	5.0
4-Isopropyltoluene	ND	-
4-Methyl-2-pentanone	ND	
Acetone	ND	
Acrylonitrile	ND	
Benzene	ND	5.0
Bromobenzene	ND	
Bromochloromethane	ND	
Bromodichloromethane	ND	
Bromoform	ND	5.0
Bromomethane	ND	
Carbon disulfide	ND	5.0
Carbon tetrachloride	ND	
Chlorobenzene	ND	
Chloroethane	ND	
Chloroform	ND	
Chloromethane	ND	
Dibromochloromethane	ND	
Dibromomethane	ND	
Dichlorodifluoromethane	ND	
Ethylbenzene	ND	
Hexachlorobutadiene	ND	
Isopropylbenzene	ND	

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021135 Page 26 3/14/2006 2:05:54 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

06021135

Lab Batch ID:

R164107

Method Blank

RunID: K

K_060301B-3187405

Units:

ug/L

Analysis Date:

: 03/01/2006 13:01

Analyst:

LU_L

Preparation Date:

03/01/2006 13:01

Prep By:

Method

Analyte	Result	Rep Limit
Methyl tert-butyl ether	ND	5.0
Methylene chloride	ND	5.0
Naphthalene	ND	5.0
n-Butylbenzene	ND	5.0
n-Propylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
Styrene	ND	5.0
tert-Butylbenzene	ND	5.0
Tetrachloroethene	ND	5.0
Toluene	ND	5.0
Trichloroethene	ND	5.0
Trichlorofluoromethane	ND	5.0
Vinyl acetate	ND	10
Vinyl chloride	ND	10
cis-1,2-Dichloroethene	ND	5.0
cis-1,3-Dichloropropene	_ND	5.0
m,p-Xylene	ND	5.0
o-Xylene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,2-Dichloroethene (total)	ND	5.0
Xylenes, Total	ND	5.0
Surr: 1,2-Dichloroethane-d4	96.0	62-130
Surr: 4-Bromoffuorobenzene	80.0	70-130
Surr: Toluene-d8	92.0	74-122

Laboratory Control Sample (LCS)

RunID:

K_060301B-3187404

Units: ug/L

Analysis Date:

03/01/2006 11:01

Analyst: LU_L

Preparation Date:

03/01/2006 11:01

Prep By:

Method

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,1-Dichloroethene	50.0	47.0	94.0	71	146
Benzene	50.0	50.0	100	76	126
Chlorobenzene	50.0	53.0	106	78	125
Toluene	50.0	56.0	112	83	131
Trichloroethene	50.0	54.0	108	64	137

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

06021135 Page 27 3/14/2006 2:05:54 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B WorkOrder:

06021135

Lab Batch ID:

R164107

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06020994-01

RunID:

K_060301B-3187408

Units:

ug/L

Analysis Date:

03/01/2006 18:46

Analyst: LU_L

Analyte	Sample	MS	MS	MS %	MSD	MSD	MSD

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,1-Dichloroethene	ND	50	39.0	78.0	50	39.0	78.0	0	14	71	146
Benzene	ND	50	46.0	92.0	50	46.0	92.0	0	11	78	126
Chlorobenzene	ND	50	48.0	96.0	50	47.0	94.0	2.11	13	78	125
Toluene	ND	50	51.0	102	50	49.0	98.0	4.00	13	83	131
Trichloroethene	ND	50	50.0	100	50	50.0	100	0	14	77	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021135 Page 28 3/14/2006 2:05:54 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Brown & Caldwell

BJ Service Fracmaster 128125

Analysis:

Chloride, Total

Method:

RunID:

E325.2

WorkOrder:

06021135

Lab Batch ID:

R164251

Method Blank

Samples in Analytical Batch:

KONELAB_060306C-3189797

mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

03/06/2006 17:31

Analyst: T_H

Units:

06021135-01E

MW-2

Analyte	Result	Rep Limit
Chloride	ND	1.0

Laboratory Control Sample (LCS)

RunID:

KONELAB_060306C-31897 Units:

mg/L

Analysis Date:

03/06/2006 17:31

T_H Analyst:

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Chloride	50.00	52.77	105.5	80	120

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

06021136-01

RunID:

KONELAB_060306C-31898 Units:

mg/L

Analysis Date:

03/06/2006 18:29

Analyst: T_H

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Chloride	66.61	50	113.3			113.2	93.12	0.1016	20	76	131

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported. 06021135 Page 29 3/14/2006 2:05:54 PM

Sample Receipt Checklist And Chain of Custody

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Date	rkorder: e and Time Received: nperature:	06021135 2/25/2006 10:00:00 AM 4.0°C			Received By Carrier name Chilled by:		RE Fedex-Priority Water Ice	
1.	Shipping container/co	oler in good condition?	Yes	V	No 🗆	•••	Not Present	
2.	Custody seals intact of	on shippping container/cooler?	Yes	\checkmark	No 🗆		Not Present	
3.	Custody seals intact of	on sample bottles?	Yes		No 🗆		Not Present	V
4.	Chain of custody pres	ent?	Yes	\checkmark	No 🗆			
5.	Chain of custody sign	ed when relinquished and received?	Yes	$ \checkmark $	No 🗆			
6.	Chain of custody agre	ees with sample labels?	Yes	\checkmark	No 🗆			
7.	Samples in proper cor	ntainer/bottle?	Yes	✓	No 🗆			
8.	Sample containers int	act?	Yes	V	No 🗆			
9.	Sufficient sample volu	ume for indicated test?	Yes	~	No 🗆			
10.	All samples received v	within holding time?	Yes	✓	No 🗆			
11.	Container/Temp Blank	temperature in compliance?	Yes	V	No 🗆			
12.	Water - VOA vials hav	e zero headspace?	Yes	\checkmark	No 🗆 🕠	VOA Via	als Not Present	
13.	Water - Preservation of	checked upon receipt (except VOA*)?	Yes	✓	No 🗌		Not Applicable	
	*VOA Preservation Ch	necked After Sample Analysis						
	SPL Representati	ve:	Cont	act Date & T	ime:			
	Client Name Contacto	ed:						
	Non Conformance Issues:			<u>.</u>				
	Client Instructions:							
	L_							

PM review (initial): ZΖ 237452 Temp: 4.0 LY ď B Requested Analysis Ch 101,00 of Receifed by Laborator 0602113 Die SPL Workorder No. -497 Special Detection Limits (specify): 2. Received by: 4. Received by: 8300 13 500V 000/ time / SO O time time Number of Containers α 5 Q Email | PDF | pres. 3=H2SO4 X=other Standard QCX Level 3 QC Level 4 QC TX TRRP L LA RECAP 10/20/200 90/57/2 Analysis Request & Chain of Custody Record I=HCI 2=HNO3 X'8 40,164 matrix bottle size 8=80z 16=160z X=other 60 date date 40=vial Z01/=1/ 1=1 liter Laboratory remarks: C=glass V=vial X=other Fax P=plastic A=amber glass SPL, Inc. 3L=sludge X=other 3 3 3 lio=O fios=2 W=water Special Reporting Requirements Results: comp grab Ph: 713-75-0999 amound Ç 1. Relinquished by Sampler: 350 TIME 2050 2070 2030 3. Relinquished by: 5. Relinquished by: Ste FracMaster 2/2/66 2/23/06 213-759-0999 2/23/00 DATE Email: DUISIANA K. Kextoon Mex roce Standard Project Name/No.: / AS 125 Requested TAT 14 6 bs Brand Client/Consultant Remarks: SAMPLE ID MW-2 417 FB-3 ζ, 88 Client Contact: Site Location: lient Name: Invoice To: Contract Phone/Fax: Site Name: Other 24hr 48hr

500 Ambassador Caffery Parkway Scott, LA 70583 (337) 237-4775

L 459 Hughes Drive Traverse City, MI 49686 (231) 947-5777

| 8880 Interchange Drive Hoaston, TX 77054 (713) 660-0901