

# REPORTS

# **DATE:** 1997

## SITE RESTORATION AND ASSESSMENT SUMMARY REPORT

PRIDE PETROLEUM SERVICES, INC. 3857 SOUTH US HIGHWAY 16 (Between Mile Posts 67 and 68, Four Miles South of Lovington) LOVINGTON, NEW MEXICO

> Prepared For: PRIDE PETROLEUM SERVICES, INC. 1500 CITY WEST BLVD., STE. 400 HOUSTON, TX 77042

TETRA TECH EM INC. PROJECT NO. 001-0594 September 1997

S:\Datashar\Pride\Reports\SumRpt.wpd

#### TABLE OF CONTENTS

·····

| Section | <u>n</u> <u>Page</u>                                                                            |
|---------|-------------------------------------------------------------------------------------------------|
| 1.0     | EXECUTIVE SUMMARY 1                                                                             |
| 2.0     | CHRONOLOGY OF EVENTS 2                                                                          |
| 3.0     | PURPOSE AND SCOPE OF WORK 3                                                                     |
| 4.0     | SITE OVERVIEW                                                                                   |
| 5.0     | SITE BACKGROUND/OPERATING HISTORY 5                                                             |
| 6.0     | ENVIRONMENTAL SETTING66.1REGIONAL GEOLOGIC SETTING6.2LOCAL HYDROGEOLOGY6                        |
| 7.0     | SUBSURFACE ASSESSMENT77.1LEACH FIELD/SEEPAGE PIT EXCAVATION77.2STAINED SURFACE SOIL EXCAVATION8 |
| 8.0     | ANALYTICAL SUMMARY98.1SOIL CHEMISTRY98.2FLUIDS CHEMISTRY11                                      |
| 9.0     | WASTE MANAGEMENT AND DISPOSITION 11                                                             |
| 10.0    | CONCLUSIONS 11                                                                                  |
| 11.0    | RECOMMENDATIONS 12                                                                              |
| 12.0    | LIMITATIONS                                                                                     |

#### TABLE OF CONTENTS (CONTINUED)

Section

#### TABLES

| Table 1 | WATER WELL SURVEY DATA 7                                   |  |
|---------|------------------------------------------------------------|--|
| Table 2 | SURFACE STAINED SOIL CONFIRMATION ANALYSIS                 |  |
| Table 3 | SEEPAGE PIT SOIL CONFIRMATION SAMPLE ANALYTICAL RESULTS 10 |  |
| Table 4 | STOCKPILED SOIL SAMPLE ANALYTICAL RESULTS                  |  |

#### FIGURES

- Figure 1 SITE LOCATION MAP
- Figure 2 SITE MAP
- Figure 3 SAMPLE LOCATION MAP
- Figure 4 MECHANICS PIT/LEACH FIELD DETAIL
- Figure 5 NORTHEAST WASH BAY/LEACH FIELD DETAIL

#### APPENDICES

- APPENDIX A WATER WELL SURVEY
- APPENDIX B FIELD ANALYTICAL TESTING RESULTS
- APPENDIX C FLUIDS/SOILS MANAGEMENT DOCUMENTATION

APPENDIX D PHOTOGRAPHIC DOCUMENTATION

APPENDIX E LABORATORY REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Page

#### **1.0 EXECUTIVE SUMMARY**

Tetra Tech EM Inc. (Tetra Tech) has prepared the following summary based on recent site restoration and assessment developments. Restoration and assessment activities were conducted from the final week of May through August 1997. Work conducted to date was performed in accordance with the April 14, 1997, Site Restoration Workplan, which was verbally approved by Pride Petroleum Services, Inc. (Pride) on April 17, 1997.

Pride formerly operated and maintained an oil field services facility (on property owned by the City of Lovington) located at 3857 Lovington Highway, approximately 4 miles south of Lovington on U.S. Highway 18, between mile post markers 67 and 68, Lovington, Lea County, New Mexico. Site restoration and seepage pit assessment activities were performed as part of a property lease transfer between the City of Lovington and Pride. Assessment activities were performed to determine whether potential liabilities are associated with the seepage pits utilized for routine maintenance and oil field services, material handling units, and waste stream management. A seepage pit was located outside the maintenance building adjacent to the indoor mechanics pit; a second seepage pit was located adjacent to the wash pad area located near the northeast corner of the fenced portion of the maintenance building and parking lot.

Currently, the subject property is vacant; however, minor remaining bulk fluids, cleaners, and paints are still present. Arrangements are being made to schedule the collection of these materials by the proper parties. Land use in the vicinity of the subject property is primarily light industrial and agricultural, with some areas of vacant land. A water well survey of the area within a one-half-mile radius of the property was performed to determine the location of the nearest well and to identify the estimated depth to water. Within this area, the City of Lovington currently operates three municipal water wells with estimated depths to water ranging from 50 to 60 feet below ground surface (BGS).

As part of site restoration activities, E and E Enterprises (E & E) was contracted to remove petroleum fluids and water from the two aboveground storage tanks (ASTs) and the associated containment structure surrounding the ASTs. The fluids were transported off-site to the Controlled Recovery, Inc. (CRI) facility near Midway, New Mexico, for recycling.

E & E also transferred fluids from each seepage pit to an AST, known as a frac tank. Upon evacuation of all liquids from the seepage pits, a composite sample was collected from each pit and submitted for laboratory analysis and disposal characterization. All samples were submitted via overnight courier or hand delivered to Anachem, Inc. for laboratory analyses. Upon approval of the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division (OCD), the fluids will be transported to the CRI Parabo facility near Midway for fuel blending and recycling.

Site restoration activities also involved establishing proper waste management and disposal methods as necessary to eliminate potential environmental liabilities. Miscellaneous oil stained parking areas were identified during initial site inspection activities. The impacted soil was excavated and staged separately pending waste disposal characterization. Soil confirmation samples were collected following excavation activities and submitted for laboratory analysis. Various new and used products were identified during the initial site inspection. During the OCD site inspection, remaining products were documented. The OCD requested proper disposal documentation for items such as used oil, cleaners, paints, brake pads, antifreeze, grease, and miscellaneous by-products associated with routine oil field servicing and maintenance.

As part of seepage pit assessment activities, the overburden material from each pit was excavated and stockpiled independently of the impacted soil. A track-mounted excavator was utilized to remove the

impacted soils. A local mobile testing laboratory, equipped to perform total petroleum hydrocarbon (TPH) analysis (comparable to U.S. Environmental Protection Agency [EPA] Method 418.1), was used to determine excavation limits. Visual observations and olfactory indications assisted in determining excavation limits.

Upon establishing the excavation limits, Tetra Tech personnel collected appropriate soil samples from each seepage pit excavation area. As directed by the OCD, soil samples were collected to determine if hazardous constituents were present in the subsurface soils and to provide complete waste disposal characterization of the excavated soils.

As a result of the data collected during restoration and assessment activities, Tetra Tech concludes that no further action is necessary and requests a "Case Closure" designation from the OCD.

#### 2.0 CHRONOLOGY OF EVENTS

- May 8, 1997: Tetra Tech employee Anthony Herald, performed a site inspection and identified potential environmental liabilities. A work plan and cost estimate were developed based on observed site conditions and regulatory requirements.
- May 30, 1997: John Harrie, a Tetra Tech employee, visited the site to meet with contractors and uncover the seepage pits associated with the mechanics pit and the wash bay. Tires, batteries, stained surface soil, used oil products, and other miscellaneous waste streams were removed and properly disposed of as nonhazardous materials. Water and soil samples were collected to characterize the various waste streams. Remaining regulated products were to be transported to a nearby Dawson Production facility.
- June 2, 1997: Anachem, Inc. received water and soil samples for laboratory analysis.
- June 6, 1997: The laboratory report was received and data organized to submit OCD Form C-138 requesting authorization for fluids and soil disposal.
- July 7, 1997: OCD submitted a letter to CRI denying the request for fluids disposal. OCD also denied the Rhino Environmental Services Goo Yea Landfarm request for soil disposal. Chain-of-custody discrepancies were noted, and OCD requested an on-site inspection.
- July 18, 1997: Anthony Herald met with Wayne Price from the OCD's Hobbs District office to perform an on-site inspection. Numerous remaining waste streams were identified; OCD requested proper disposal and associated manifesting of paints, cleaners, grease, brake pads, and miscellaneous drums containing de-ionized antifreeze and methanol.
- July 16, 1997: CRI initiated excavation of the seepage pits.
- July 18, 1997: Anthony Herald performed an inspection of the excavation progress and directed continued excavation based on visual observations, mobile laboratory data, and olfactory indications.
- August 1, 1997: Anthony Herald returned to the subject property and terminated excavation activities. Wayne Price and Anthony Herald developed a characterization/sample plan.

Seepage pit floor and wall composite soil samples were collected for characterization purposes and to determine the horizontal and vertical extent of delineated petroleum hydrocarbon contamination. Samples were hand delivered to Anachem, Inc. on Monday, August 4, 1997.

Mr. Bob Carter, City Manager of Lovington, visited the site to discuss restoration activities. Mr. Carter requested the plugging and grouting of the mechanics seepage drain lines in order to decommission the mechanics pit and render it unavailable for future use. Mr. Carter also offered clean select fill at no charge to Pride for backfilling of the excavations.

- August 11, 1997: Fluids stored on-site in a frac tank were sampled and submitted for waste characterization.
- August 19, 1997: CRI submitted OCD Form C-138 requesting OCD disposal authorization for fluids.
- August 20, 1997 The laboratory report for the water sample collected from the on-site frac tank was received.
- August 22, 1997: The laboratory report for soil samples collected from the seepage pits and the waste characterization samples collected from the stockpiled soils was received.
- August 23, 1997: OCD authorizes CRI's C-138 request for fluid disposal.
- August 25, 1997: Goo Yea Land Farm re-submitted the OCD Form C-138 requesting disposal authorization for excavated soils.
- September 2, 1997: OCD authorized GooYea Land Farm's OCD Form C-138 request for soil disposal at the Parebo facility.

September 10, 1997: The <u>Site Restoration and Assessment Report</u>, requesting no further action, was submitted to the Santa Fe and Hobbs District offices of the OCD.

#### **3.0 PURPOSE AND SCOPE OF WORK**

The purpose of the restoration project is to (1) document the current subsurface soil conditions in the immediate vicinity of the seepage pits, classified as EPA Class V Injection Wells; (2) record the removal of hydrocarbon-impacted surface soil; and (3) facilitate the proper disposal of the various waste streams left at the subject property (see Figures 1 and 2). Activities performed for this project included the removal of the following items:

- 19 empty 55-gallon drums
- 6 uncharged fire extinguishers

- 5 empty 5-gallon grease containers
- 30 tires
- 1,200 gallons of waste oil and water (mixture) from the AST containment area
- Portions of hydrocarbon-impacted surface soils from various locations across the site

As part of the seepage pit assessment, Tetra Tech excavated and exposed two independent seepage pits. One seepage pit, referred to as the "Mechanics Pit/Leach Field," was located south and adjacent to the existing maintenance shop. A 4-inch diameter polyvinyl chloride (PVC) pipe was connected to an approximately 2-foot by 2-foot sump located in the mechanics pit/trench within the shop. The drain piping was connected to a 5-foot diameter, 7-foot deep seepage pit constructed of concrete blocks. The top of the seepage pit was approximately 5 feet BGS and was used to collect discharged fluids from within the indoor mechanics pit.

The second seepage pit, referred to as the "Northeast Wash Bay/Leach Field," was located north of the wash pad area, near the northeast corner of the fenced property and consisted of a 5-foot diameter, 9.5-foot deep seepage pit. The top of the structure was buried approximately 2 feet below the ground surface. Both pits contained liquids and were observed to be at near capacity during the May 1997 field inspection.

The OCD has determined that the seepage pits are classified by the EPA as Class V Injection Wells. A closure report is required to document the remediation of these pits. The OCD performed a site inspection of the seepage pits both before and after excavation.

During a meeting with Wayne Price of the OCD Hobbs District office on July 18, 1997, four independent waste streams were identified and established based on restoration and assessment-derived wastes. This material, currently staged on-site, was also sampled for waste disposal characterization purposes. The OCD requested a complete toxicity characteristic leaching procedure (TCLP) analysis; hazardous waste determination; reactivity, corrosivity and ignitability (RCI) analysis; and TPH gasoline range organics (GRO) analysis (EPA method 8015).

In order to determine if the seepage pits pose a threat to groundwater, the OCD requested a complete TCLP screening. Additionally, analyses for semivolatiles and volatiles (EPA methods 8270 and 8260) were requested. Volatile and semivolatile analyses include all parameters defined in the State of New Mexico, Water Quality Control Commission (WQCC) Guidance, Permitting and Groundwater Standards. Although the established Human Health Standards for Groundwater are only applicable to groundwater, analyses of soil samples collected from the excavation floors and walls for these parameters will assist in determining if released contaminants associated with the seepage pits are a potential threat to groundwater. Characterization analyses also included analysis for TPH-GRO; TPH-diesel range organics (DRO); and benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA method 8020, methanol extraction. Sample locations are illustrated on Figure 3.

The following EPA analyses were performed on the seepage pit floor and wall samples:

- BTEX/TPH (EPA 8020)
- TPH-DRO (Modified EPA 8015)
- TCLP Volatile Organics (EPA 1311)
- Ignitability (ASTM D92)
- TCLP Mercury Digestion (EPA 7470)
- TCLP Microwave Digestion (EPA 3015)
- TCLP Nonvolatiles Extraction (EPA 1311)
- TCLP Pesticides (EPA 8080A)

- TCLP Semivolatiles (EPA 8270)
- TCLP Volatiles (EPA 8260)
- Corrosivity (EPA 9040)
- Semivolatiles (EPA 8270)
- Volatiles (Expanded EPA 8260)
- Reactivity (full)
- TCLP Herbicides (EPA 8015A)
- TCLP RCRA Metals (EPA 6010)

The investigative derived waste streams identified as a result of assessment activities consist of the following:

•

- Northeast Wash Bay/Leach Field This area contained the former wash bay utilized to clean oil field servicing vehicles.
- Mechanics Pit/Leach Field This area contained the seepage pit utilized for the mechanics pit within the maintenance garage.
- Surficial Oil-Stained Soils Stained surface soils were identified during the initial site inspection and subsequently excavated, staged, and stockpiled. Native soil samples were collected of native material following excavation activities.
- Frac Tank Liquids Stored liquids were vacuumed from each seepage pit prior to excavation activities.

#### 4.0 SITE OVERVIEW

The subject property is located approximately 4 miles south of Lovington City limits on U.S. Highway 18, Lea County, New Mexico. Land use in the vicinity is primarily light industrial and agricultural, with some areas of vacant land. A water well survey of the area within a one-half-mile radius of the property was performed to determine the location of the nearest well and to identify the estimated depth to water. Within this area, the City of Lovington currently operates three municipal water wells with estimated depths to water ranging from 50 to 60 feet BGS. The closest well, L-53-AA, is located 1,100 feet south-southwest of the subject property. The two other wells (L-4058-S-17 and L-4058-S-14) are located respectively 1,600 feet south southwest and 1900 feet due west of the subject property. A complete review of the water well survey can be viewed in Appendix A.

#### 5.0 SITE BACKGROUND/OPERATING HISTORY

The subject property is currently owned by the City of Lovington and is leased to Pride. Pride

occupied a maintenance building and an office building, and operated an underground storage tank (UST) system consisting of one unleaded petroleum UST and two diesel fuel USTs. The UST system was removed in April 12, 1995 and received a designation of no further action from the New Mexico Environment Department (NMED). The UST system was located near the southeast property boundary.

One metal and one fiberglass AST, with estimated capacities of 500 gallons each, were located along the southern wall of the maintenance building. The ASTs were placed within a concrete containment system. The ASTs were utilized to contain bulk oil and used oil products. All fluids within the containment structure and within the ASTs have been removed. Various oil field support equipment such as grout hoppers, roll-off boxes, construction machinery, and miscellaneous servicing equipment was located throughout the subject property boundaries. Currently, the property is vacant; however, minor remaining bulk fluids, cleaners, and paints are still present. Arrangements are being made to schedule the collection of these materials by the proper parties.

#### 6.0 ENVIRONMENTAL SETTING

#### 6.1 Regional Geologic Setting

Hobbs, New Mexico, is located within the Pecos Plains Region and the Pecos River Valley physiographic province of southeastern New Mexico. The subject area is located along the Paleozoic Mescalero Escarpment and bordered to the west by the Guadalupe Mountains, Sacramento Mountains, Capitan Mountains, Jicarilla Mountains, and the Gallinas Mountains, all part of the Sangre De Cristo and San Andreas Ranges. These mountain ranges represent the easternmost edge of the Rio Grande Rift.

The eastern New Mexico farmland and prairie soils are composed of alluvial sediments. Nearsurface sediments consist primarily of Pliocene alluvial and lacustrine deposits in the form of sands, gravel, and caliche beds. (Sources: Roadside Geology of New Mexico, Mountain Press Publishing Company, Halka Chrinic, 1987; Geologic Highway Map, Southern Rocky Mountain Region, American Association of Petroleum Geologists).

#### 6.2 Local Hydrogeology

Subsurface deposits at the subject property consist of consolidated, well sorted sands and gravel that range from fine to coarse in size and contain intermittent zones of caliche. Lithology encountered during excavation activities revealed solidified layers of caliche, gravel, and sands. Resistant caliche bedding was encountered at approximately 8 feet BGS during excavation of the Northeast Wash Bay/Leach Field.

Groundwater was not encountered during excavation activities. The depth to groundwater in this area is estimated to be greater than 50 feet BGS based on water well information reviewed at the New Mexico State Engineer's Office in Santa Fe. The depth to groundwater is also based on

information obtained from Bob Carter, Manager of the City of Lovington. The City of Lovington currently operates three municipal water wells within one half mile of the subject property. Note: There is a plugged/abandoned well due north of the subject property (Source: Bob Carter); the New Mexico State Engineer's office has no records for this well.

A water well survey of the area within a one-half-mile radius of the subject property was performed to determine the location of the nearest well and to identify the estimated depth to water. The information from this survey, which took place at the New Mexico State Engineer's Office in Santa Fe, is detailed in Table 1.

| Well<br>No. | Well ID.    | Owner                       | Year<br>Completed | Total<br>Depth<br>(ft) | Depth To<br>Water (ft) | Status         |
|-------------|-------------|-----------------------------|-------------------|------------------------|------------------------|----------------|
| 1           | L-53-AA     | Lovington                   | 1959              | 126                    | 60                     | Active         |
| 2           | L-4058-S-17 | Lovington                   | 1965              | 266                    | 50                     | Active         |
| 3           | L-4058-S-14 | Lovington                   | 1965              | 260                    | 50                     | Active         |
| 4           | L-2507      | Warren & Bradshaw           | 1954              | 110                    | 41                     | Plugged (1955) |
| 5           | L-3699      | B.L. McFarland, Inc.        | 1957              | 100                    | NA                     | Plugged (1957) |
| 6           | L-4058-S-21 | Lovington                   | 1981              | 251                    | 67                     | Active         |
| 7           | L-2300      | Makin Drilling Company      | NA                | 100                    | NA                     | Capped (1958)  |
| 8           | L-3031      | Velma Petroleum Corporation | 1955              | 115                    | 58                     | Active         |
| 9           | L-6566ª     | NA                          | NA                | NA                     | NA                     | NA             |
| 10          | L-4058-S-15 | Lovington                   | 1965              | 260                    | 50                     | Active         |

# TABLE 1WATER WELL SURVEY DATA

Notes: "Well log missing from the New Mexico State Engineer's Office in Santa Fe. NA Not available

#### 7.0 SUBSURFACE INVESTIGATION

#### 7.1 Leach Field/Seepage Pit Excavation

A track-mounted excavator was used to remove the concrete seepage pits and the soil material immediately surrounding the seepage pits. A local mobile testing laboratory, equipped to perform TPH analysis (comparable to EPA method 418.1), was used to determine excavation limits. Visual observations and hydrocarbon odors assisted in determining excavation limits. A copy of the field laboratory results is included in Appendix B.

Undisturbed soil above each seepage pit was excavated and segregated from the impacted soil material. Excavation limits were guided by field laboratory testing as well as visual and olfactory indications. Composite soil samples were collected from the floor and wall areas of each excavation. Soil samples are identified on the chain of custody as Wash Bay Floor Composite, Wash Bay Wall Composite, Mechanics Pit Floor Composite, and Mechanics Pit Wall Composite.

Prior to the initiation of excavation activities, all fluids were removed by a vacuum truck. E & E (EPA ID No. TXD982 75 6868) removed the petroleum fluids and water from the two seepage pits. The fluid was

then transferred to a 22,000-gallon frac tank. Approximately 1,200 gallons of fluids were also removed from the two ASTs and transported off-site to the E & E Brownfield, Texas, facility (TNRCC Facility Reg No. 41398). Manifest information is provided in Appendix C.

Samples were placed in laboratory-provided glass jars or brass sleeves. Floor and wall samples were each composited from numerous points and placed into a sealable gallon-size plastic bag. The soil was then mixed within the bag to composite the sample. Samples were placed into required brass sleeves or laboratory-provided sample jars; the sleeves were capped and taped on each end, labeled, and placed on ice. All soil samples were hand delivered (due to a freight shipping strike) to Anachem, Inc. in Allen, Texas. Soils remaining in each bag were described using the Unified Soil Classification System (USCS).

Final excavation limits for each seepage pit are illustrated on Figures 4 and 5. Photographic documentation of site conditions, excavation activities, and site restoration activities are contained in Appendix D.

#### 7.2 Stained Surface Soil Excavation

During initial site inspection activities, various areas of soil stained with petroleum hydrocarbons from parked vehicles and minor spills were documented. Arrangements were made to excavate the stained areas and to collect confirmation samples of remaining in-situ soils. This soil material was staged separately from other assessment-derived soils. Dimensions of the various stained surface soils and the confirmation sampling locations are illustrated on Figure 3. Samples were collected and analyzed by the laboratory for TPH using EPA method 418.1. Table 2 presents the sample results which are also provided in Appendix E.

Based on complete TCLP, semi-volatile and volatile analysis of both the stockpiled soil and the seepage pit characterization samples, results obtained from the surfaced stained soils and confirmation sampling of insitu soils, additional excavation of stained soils is not necessary. Complete TCLP screening, hazardous waste determination and RCI analyses from the stained surface spoil pile and included all parameters defined in the State of New Mexico, WQCC Guidance, Permitting and Groundwater Standards. Additionally, since a toxicity value for TPH is not established, remaining hydrocarbons in the surfaced stained soils do not pose a threat.

| Sample ID     | Sample Date | TPH (ppm) |
|---------------|-------------|-----------|
| SP SE1 (0.3") | 05-30-97    | 32        |
| SP SE2 (0.2") | 05-30-97    | 4,800     |
| SP N (O.2")   | 05-30-97    | 2,500     |
| SP S1 (0.2")  | 05-30-97    | 480       |
| SP S2 (0.2")  | 05-30-97    | 12,000    |
| SP S3 (0.2")  | 05-30-97    | 72        |
| SP S4 (0.2")  | 05-30-97    | 13,000    |

# TABLE 2 SURFACE STAINED SOIL CONFIRMATION ANALYSIS

Note: ppm = parts per million (equivalent to milligrams per liter [mg/L])

All sampling equipment was decontaminated prior to sample collection using a solution of trisodium phosphate (Liquinox<sup>TM</sup>) and potable water, followed by a rinse in potable water. All brass sleeves and sample jars were provided by the laboratory. Miscellaneous trash and decontamination water were disposed of properly.

#### 8.0 ANALYTICAL SUMMARY

#### 8.1 Soil Chemistry

As required by the OCD, characterization of each assessment-derived waste stream and analytical confirmation of in-situ soils collected from the excavation floors and walls were required. As part of seepage pit assessment activities, composite soil samples from the floor and wall of areas of each excavation were collected.

Upon establishing the limits of excavation, Tetra Tech personnel collected appropriate soil samples from each seepage pit excavation area. As directed by the OCD, soil samples were collected to determine if hazardous constituents were present in the subsurface soils. In order to determine if the seepage pits may pose a threat to groundwater, a complete TCLP screening, hazardous waste determination and RCI analyses were performed. Additionally, semivolatiles analysis (EPA method 8270) and volatiles analysis (EPA method 8260) was requested. Volatile and semivolatile analyses include all parameters defined in the State of New Mexico, WQCC Guidance, Permitting and Groundwater Standards. Although the established Human Health Standards for Groundwater are only applicable to groundwater, analyses of soil samples collected from the excavation floors and walls for these parameters indicates that the remaining soils are not a potential threat. All semivolatile and volatile parameters analyzed were reported below detection limits (BDL) for samples collected from the mechanics pit floor and walls. The northeast wash bay/seepage pit floor and walls contained minor amounts of butyl benzene, ranging from 31 to 94 parts per billion (ppb); P-isopropyl toluene, ranging from 40 to 71 ppb; and trimethylbenzenes, ranging from 35 to 60 ppb. All other analytes tested were reported as BDL. Analyses of floor and wall confirmation samples also included TPH-DRO and BTEX using EPA method 8020, methanol extraction. A review of the laboratory analyses indicates that TPH-DRO ranged from BDL to 62 parts per million (ppm). All BTEX constituents were reported BDL. Laboratory results of soil confirmation sample analyses are presented in Table 3.

 TABLE 3

 SEEPAGE PIT SOIL CONFIRMATION SAMPLE ANALYTICAL RESULTS

| Sample ID                             | Sample Date | Benzene<br>(ppb) | Toluene<br>(ppb) | Ethyl<br>Benzene<br>(ppb) | Xylenes<br>(ppb) | Total<br>BTEX<br>(ppb) | TPH-<br>DRO<br>(ppm) | Semi-<br>volatiles<br>(ppb) | Volatiles<br>(ppb)                                              |
|---------------------------------------|-------------|------------------|------------------|---------------------------|------------------|------------------------|----------------------|-----------------------------|-----------------------------------------------------------------|
| Wash Bay<br>Floor<br>Composite        | 08-01-97    | <5.0             | <3.0             | <8.0                      | <10.0            | BDL                    | 62.0                 | BDL                         | 94-Butyl Benzene<br>71-P-Iso Benzene<br>60-Trimethyl<br>Benzene |
| Wash Bay<br>Wall<br>Composite         | 08-01-97    | <5.0             | <3.0             | <8.0                      | <10.0            | BDL                    | 21.0                 | BDL                         | 31-Butyl Benzene<br>40-P-Iso Benzene<br>35-Trimethyl<br>Benzene |
| Mechanics<br>Pit Floor<br>Composite   | 08-01-97    | <5.0             | <3.0             | -<8.0                     | <10.0            | BDL                    | <5.0                 | BDL                         | BDL                                                             |
| Mechanics<br>Pit<br>Wall<br>Composite | 08-01-97    | <5.0             | <3.0             | <8.0                      | <10.0            | BDL                    | 7.0                  | BDL                         | BDL                                                             |

Notes: ppm: = Parts Per Million (equivalent to mg/L) ppb = Parts Per Billion (Equivalent to ug/kg) BDL = Below Detection Limits

In order to determine if the soil material excavated from stained surface areas as well as the soil excavated from the seepage pits were considered a hazardous waste, the OCD requested complete TCLP, RCI, TPH, and BTEX analysis. Pesticides, herbicides, TPH-GRO, BTEX, TCLP volatiles, TCLP semivolatiles, TCLP silver, and TCLP cadmium analytes were reported as BDL from all soil pile samples. Additionally, reactivity for all soil pile samples were reported as negative, and ignitability was reported as non-hazardous. Corrosivity ranged from 6.0 to 7.0. Minor levels of metals were reported; however, these levels are well below regulatory action levels and are considered representative of natural background levels. Table 4 presents results for these samples.

 TABLE 4

 STOCKPILED SOIL SAMPLE ANALYTICAL RESULTS

| Sample ID                       | Sample<br>Date | TPH-<br>GRO<br>(ppm) | T BTEX<br>(ppm) | Pesticides/<br>Herbicides<br>(ppm) | Semi-<br>Volatiles<br>(ppm) | Volatiles<br>(ppm) | Corrosivity | Ignitability      | Reactivity | Metals<br>(ppm)                                 |
|---------------------------------|----------------|----------------------|-----------------|------------------------------------|-----------------------------|--------------------|-------------|-------------------|------------|-------------------------------------------------|
| Wash Bay<br>Soil Pile           | 08-01-97       | <10.0                | BDL             | BDL                                | BDL                         | BDL                | 7.0         | Non-<br>Hazardous | Negative   | 0.174-Arsenic<br>0.976-Barium                   |
| Mechanics<br>Pit<br>Soil Pile   | 08-01-97       | <10.0                | BDL             | BDL                                | BDL                         | BDL                | 6.5         | Non-<br>Hazardous | Negative   | 0.001-Mercury<br>1.12-Barium<br>0.062-Lead      |
| Surface<br>Stained<br>Soil Pile | 08-01-97       | <10.0                | BDL             | BDL                                | BDL                         | BDL                | 6.0         | Non-<br>Hazardous | Negative   | 0.0007-Mercury<br>1.11-Barium<br>0.068-Selenium |

Notes: ppm = Parts Per Million (equivalent to mg/l) BDL=Below Detection Limits

#### 8.2 Fluids Chemistry

E & E transferred fluids from each seepage pit to an on-site frac tank. Upon evacuating all liquids from each seepage pit, a composite sample was collected of the fluids and submitted for laboratory analysis and waste disposal characterization. Analytical parameters consisted of TCLP semivolatiles (EPA method 8270), TCLP volatiles (EPA method 8260), TCLP RCRA metals (EPA methods 6010 and 7470), herbicides (EPA method 8080A), and RCI (EPA method 9040 and ASTM method D92). All samples were submitted via overnight courier or hand delivered to Anachem, Inc. for laboratory analyses.

Results of the fluids characterization analysis indicate that all constituents were reported as BDL, with the exception of arsenic (1.111 ppm) and barium (0.410 ppm). A complete laboratory report and chain of custody documentation are provided in Appendix E.

#### 9.0 WASTE MANAGEMENT/DISPOSITION

Soil and fluids removed from each seepage pit have been approved for off-site treatment. The soils and fluids are currently in the process of transportation and off-site treatment. Upon completion of site restoration activities and soil/fluids disposal, manifest documentation will be included in a final Site Closure Report.

Remaining waste streams will be properly disposed of in accordance with local, state and federal guidelines, or returned to principal parties. Manifest documentation, as applicable, will also be included in the Site Closure Report. Soil and fluid requests forms (C-138) were submitted to the OCD and subsequently, disposal approval was authorized (Appendix C, Fluids/Soil Management Documentation).

#### 10.0 CONCLUSIONS

Pride formerly operated and maintained an oil field services facility located on a property owned by the City of Lovington. Site restoration and seepage pit assessment activities were performed as part of a property lease transfer between the City of Lovington and Pride. Assessment activities were performed to determine whether potential liabilities are associated with the seepage pits utilized as part of routine maintenance and oil field services, material handling units, and waste stream management. Seepage pits were assessed and site restoration was performed. The property is currently vacant and unoccupied pending completion of site restoration and closure activities.

A water well survey of the area within a one-half-mile radius was performed to determine the location of the nearest well and to identify the estimated depth to water.

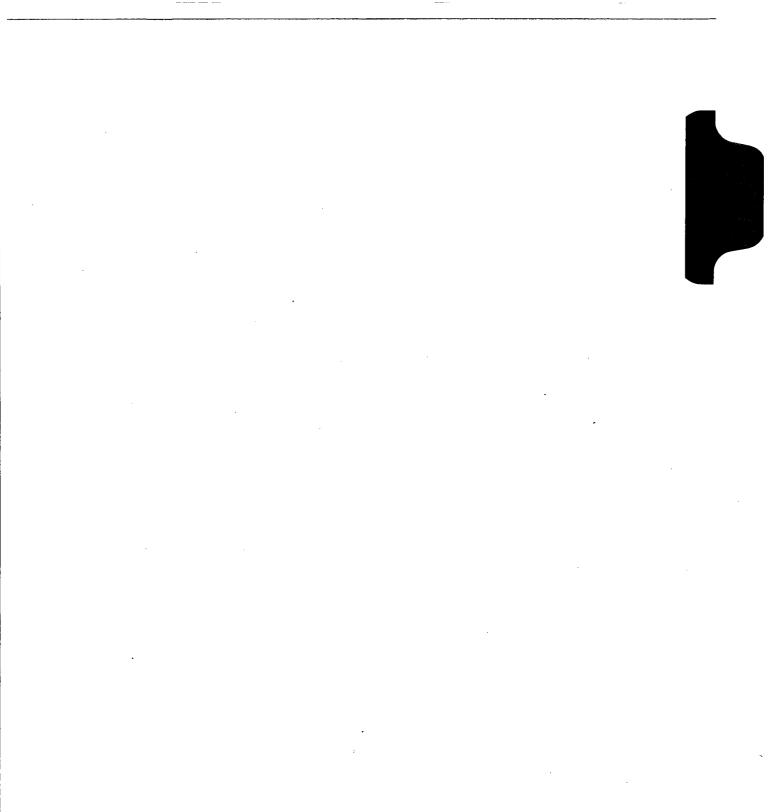
As part of seepage pit assessment activities, a track- mounted excavator was utilized to remove the impacted soils. Upon establishing the limits of seepage pit excavation, Tetra Tech personnel collected appropriate soil samples from each seepage pit excavation area. As directed by the OCD, soil samples were collected to determine if hazardous constituents were present in the subsurface soils and to provide complete waste disposal characterization of the excavated soils.

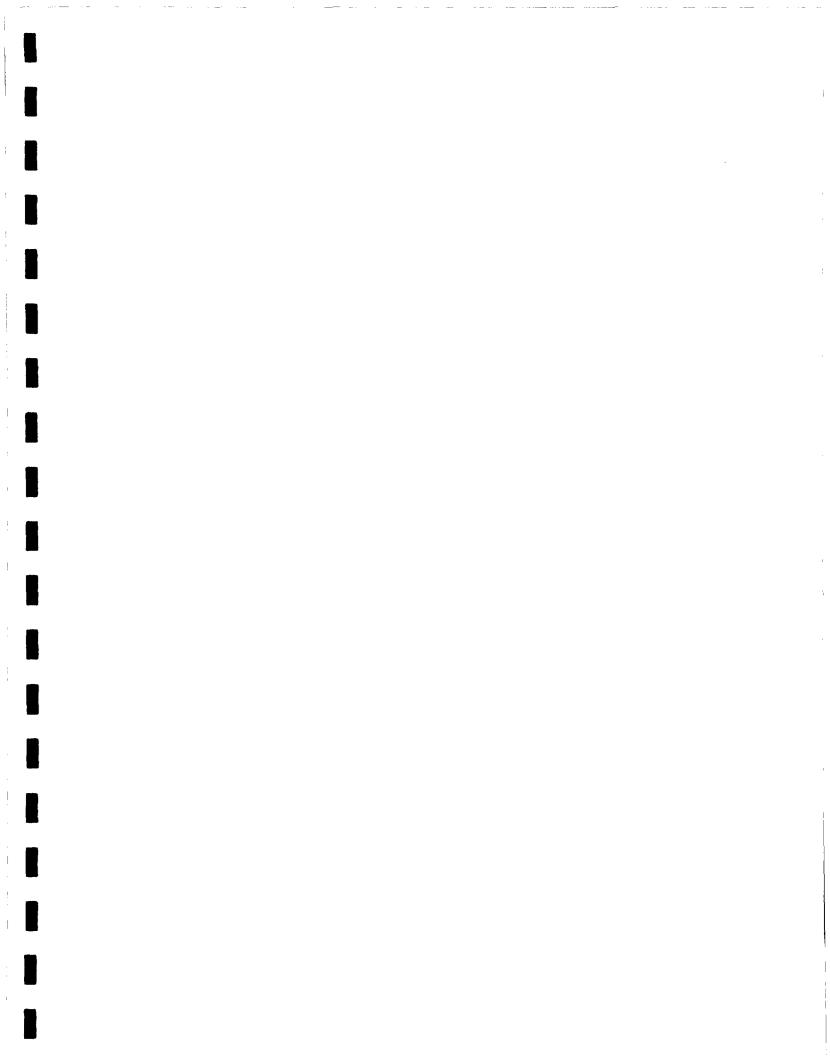
E & E was contracted to remove petroleum fluids and water from the two ASTs and the associated containment structure surrounding the ASTs. The fluids were transported off-site to the E & E Midway, New

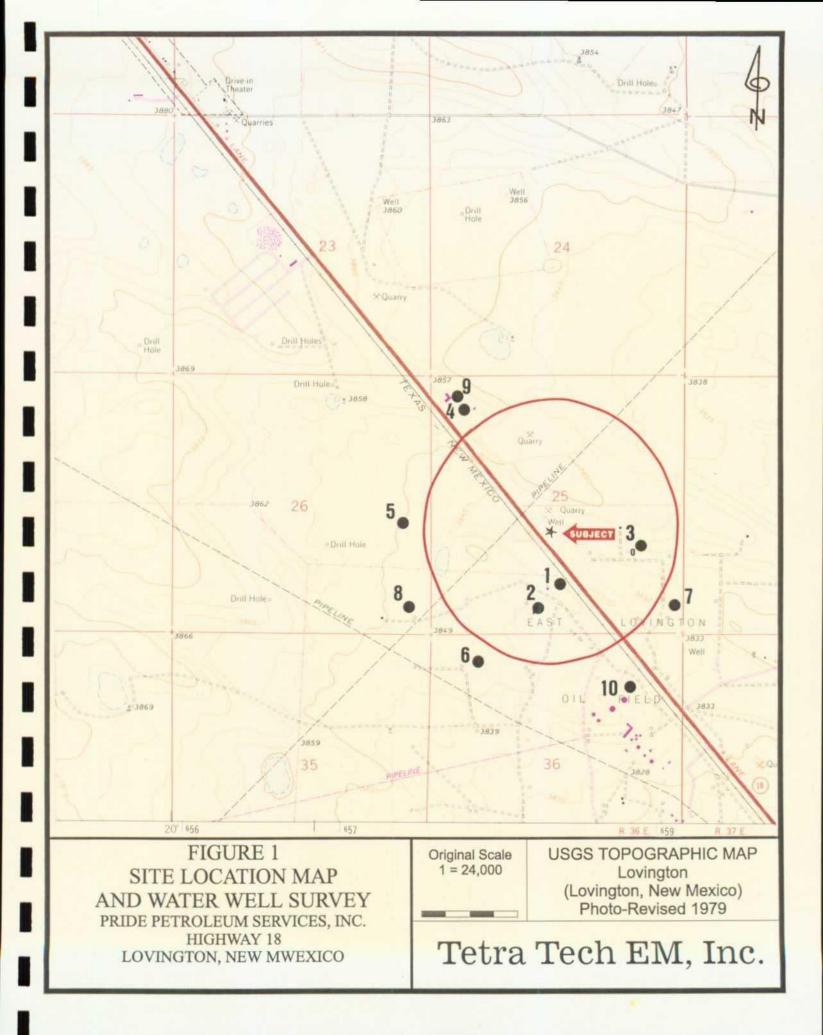
Mexico, facility for recycling. E & E also transferred fluids from each seepage pit to an on-site frac tank. Upon evacuating all liquids from the seepage pits, a composite sample was collected of the fluids and submitted for laboratory analysis and waste disposal characterization. The fluids will be transported to the CRI facility near Midway, New Mexico, for fuel blending and recycling. Soils will be transported to the Rhino Goo-Yea Landfarm facility located near Bronco, Texas.

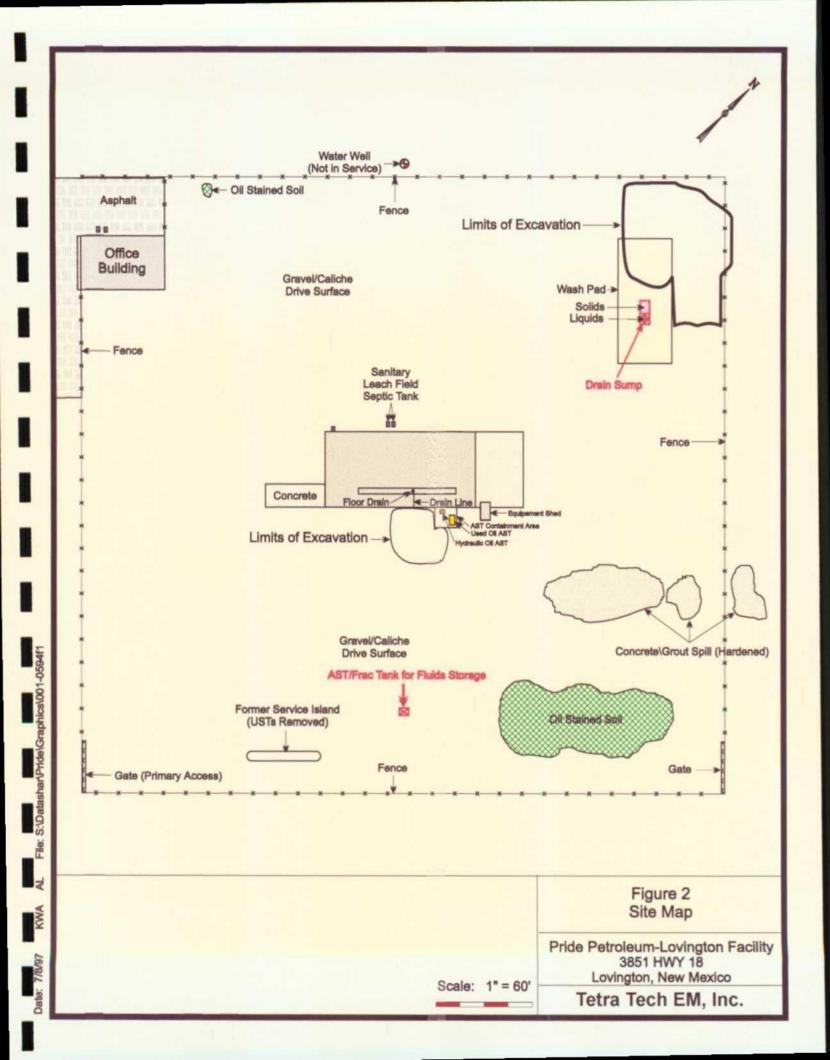
Site restoration activities also involved the excavation of various oil stained parking areas. The impacted soil was excavated and staged separately pending waste disposal characterization. New and used products were identified during OCD site inspection activities and the remaining products were documented. The OCD requested proper disposal documentation for items such as used oil products, cleaners, paints, brake pads, antifreeze, grease and miscellaneous by-products associated with routine oil field servicing and maintenance.

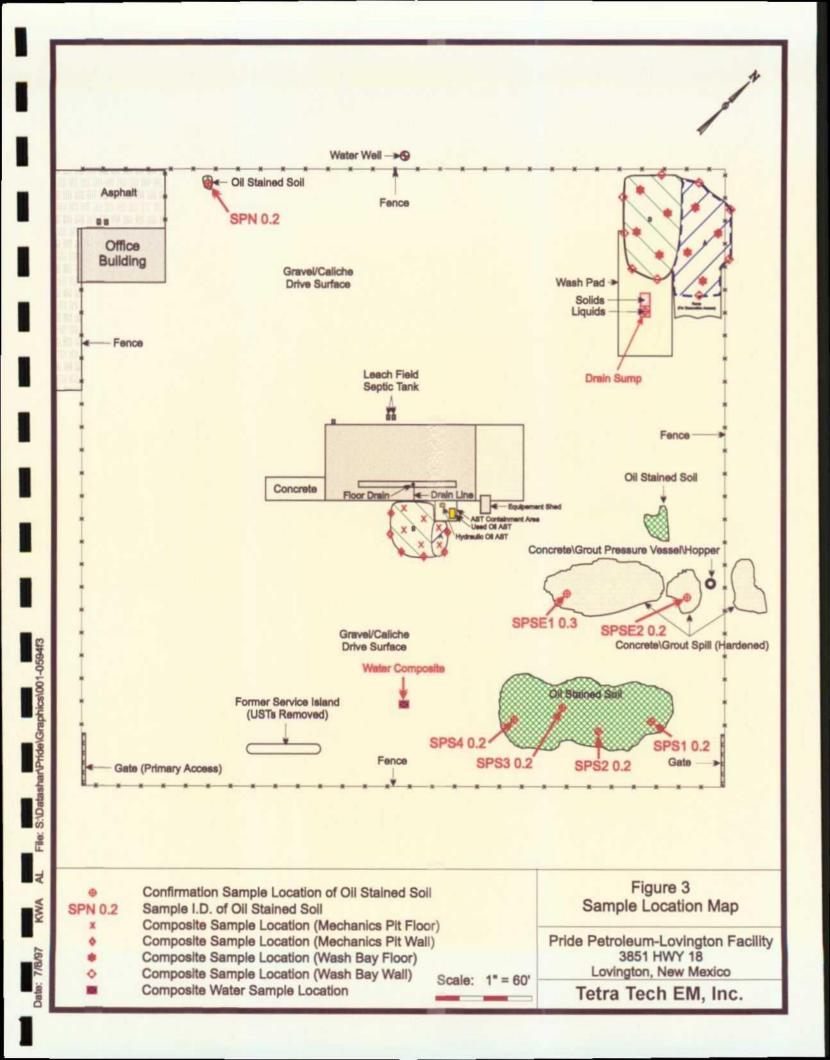
Analyses of soil samples collected from the excavation floors and walls indicates that the regulated parameters are not a threat. All semivolatile and volatile parameters analyzed were reported as BDL for all samples collected from the mechanics pit floor and walls. The northeast wash bay/seepage pit floor and wall samples contained minor amounts of butyl benzene, ranging from 31 to 94 ppb; P-isopropyl toluene, ranging from 40 to 71 ppb; and trimethylbenzenes, ranging from 35 to 60 ppb. All other analytes tested were reported as BDL. Analyses of floor and wall confirmation samples also included TPH-DRO, and BTEX using EPA method 8020, methanol extraction. A review of the laboratory analyses indicates that TPH (DRO) ranged from BDL to 62 ppm. All BTEX constituents were also reported as BDL.

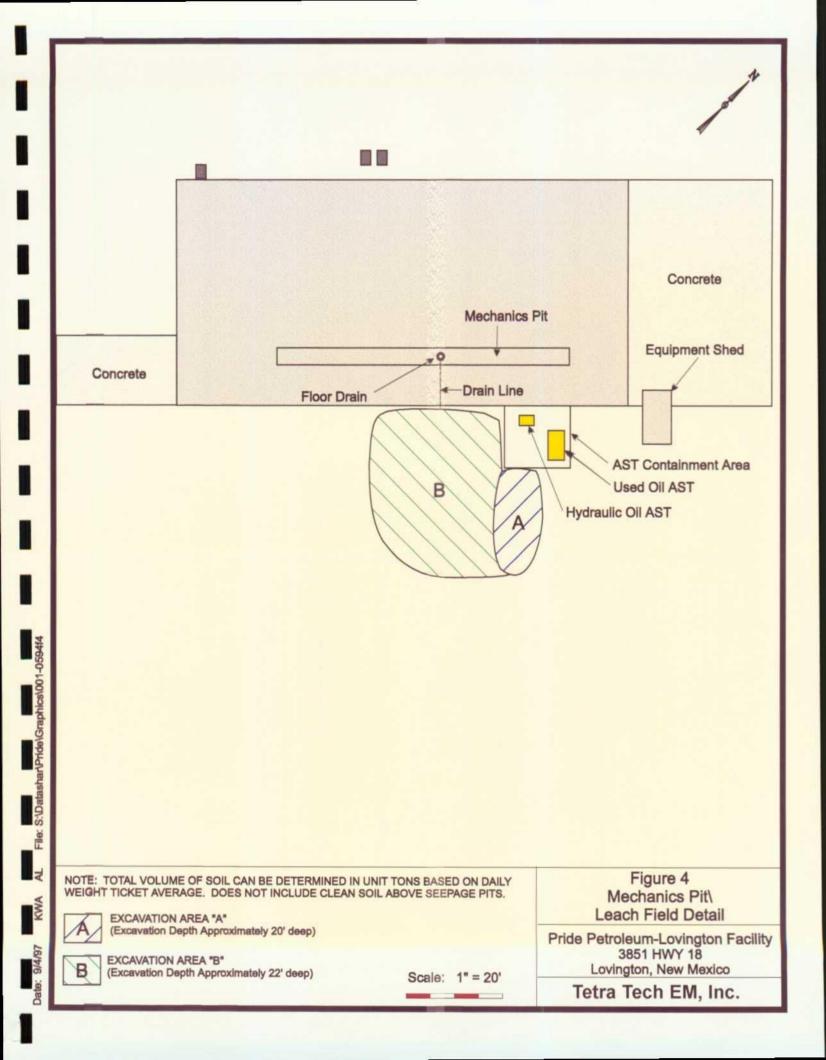

#### 11.0 RECOMMENDATIONS

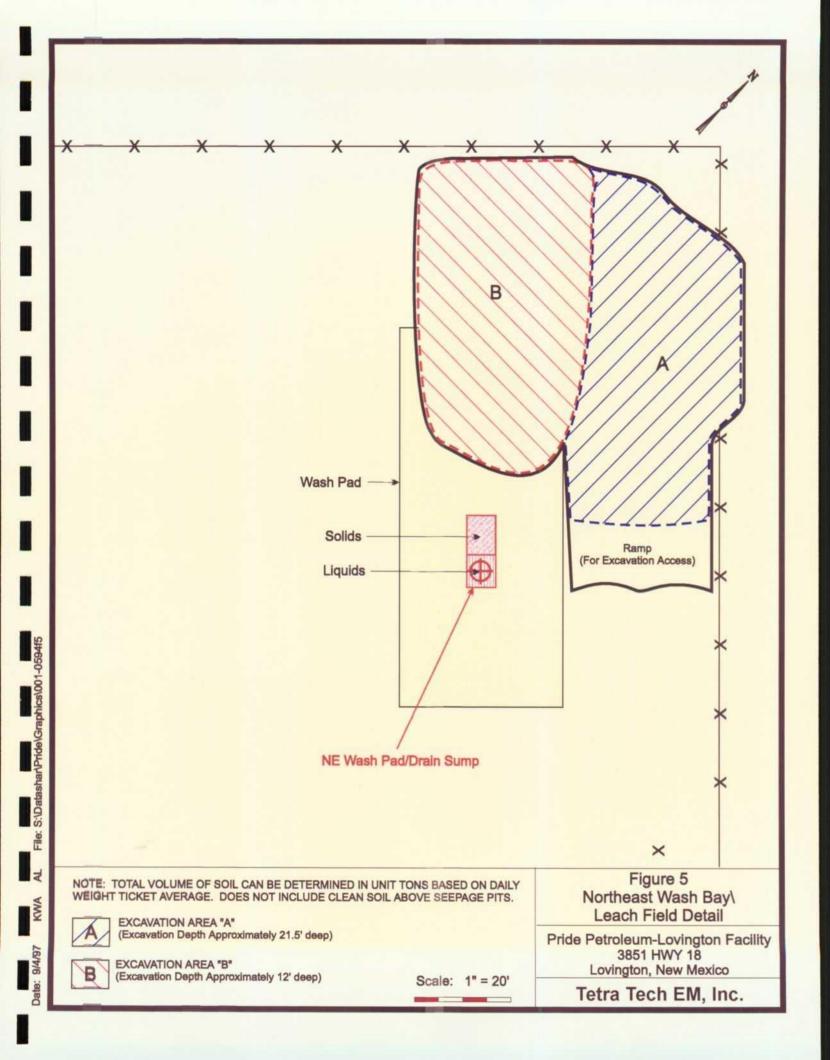

As a result of the analytical data collected during assessment and site restoration activities at the former Pride Petroleum Services Lovington Yard, Tetra Tech EM Inc. recommends that no further action be taken and requests a "Case Closure" designation from the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division.


Following completion of minor restoration activities, including backfill and compaction, Tetra Tech recommends the submission of a final Site Closure Report.


#### 12.0 LIMITATIONS


This report summarizes the results of assessment and restoration activities performed to identify environmental liabilities at the subject property, or adjacent properties, based on readily available information. The conclusions and recommendations presented within this report are based on the results of a limited field investigation performed by Tetra Tech EM Inc. To the best of our knowledge, the information contained in this report is factual. The project was performed in accordance with a scope of work reflecting prudent standards of review. This report includes our investigative methods, the source of the scope of work, the identification of potentially hazardous materials or conditions found during our investigation, and our professional opinions concerning the potential impacts of identified areas of concern.














#### APPENDIX A

į.

#### WATER WELL SURVEY

S:\Datashar\Pride\Reports\SumRpt.wpd

#### USGS Topographic Map - Lovington - Key

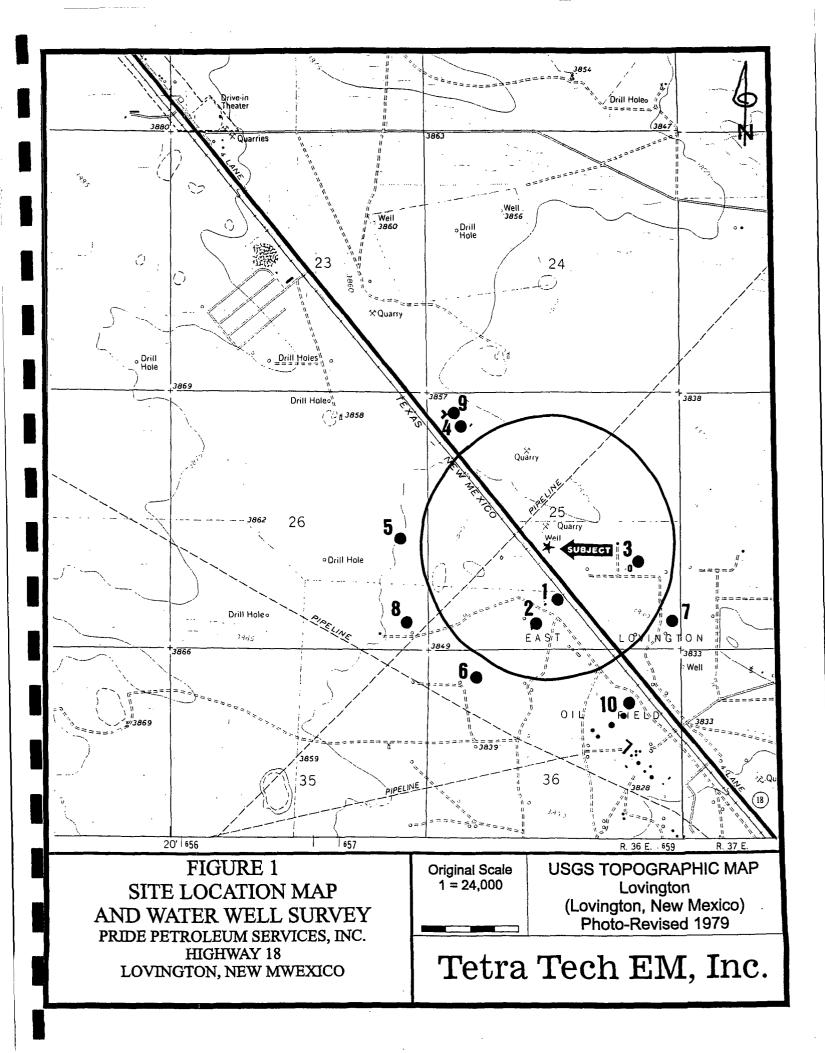
#### Wells Within <sup>1</sup>/<sub>2</sub> Mile Radius:

- \*1 L-53-AA NE¼SW¼SE¼ Township 16 South Range 36 East Section 25 (Jack Cayton, City of Lovington)
- \*2 L-4058-S-17 SE<sup>1</sup>/<sub>4</sub>SW<sup>1</sup>/<sub>4</sub>SW<sup>1</sup>/<sub>4</sub> Township 16 South Range 36 East Section 25 (City of Lovington)
- \*3 L-4058-S-14 SW¼NE¼SE¼ Township 16 South Range 36 East Section 25 (City of Lovington)

#### Wells Outside <sup>1</sup>/<sub>2</sub> Mile Radius:

- 4 L-2507 NW<sup>1</sup>/<sub>4</sub>NW<sup>1</sup>/<sub>4</sub> Township 16 South Range 36 East Section 25
- 5 L-3699 NW<sup>1</sup>/4SE<sup>1</sup>/4 Township 16 South Range 36 East Section 26
- 6 L-4058-S-21 SE<sup>1</sup>/<sub>4</sub>NW<sup>1</sup>/<sub>4</sub>NW<sup>1</sup>/<sub>4</sub> Township 16 South Range 36 East Section 36
- 7 L-2300 SE<sup>1</sup>/<sub>4</sub>SE<sup>1</sup>/<sub>4</sub>SE<sup>1</sup>/<sub>4</sub> Township 16 South Range 36 East Section 25
- 8 L-3031 SE<sup>1</sup>/<sub>4</sub>SE<sup>1</sup>/<sub>4</sub>SE<sup>1</sup>/<sub>4</sub> Township 16 South Range 36 East Section 26
- 9 L-6566 NW<sup>1</sup>/<sub>4</sub>NW<sup>1</sup>/<sub>4</sub>NW<sup>1</sup>/<sub>4</sub> Township 16 South Range 36 East Section 25
- 10 L-4058-S-15 SW<sup>1</sup>/<sub>4</sub>NE<sup>1</sup>/<sub>4</sub>NE<sup>1</sup>/<sub>4</sub> Township 16 South Range 36 East Section 36

Note: One plugged water well is located due North of the subject site; no information is


available for this well.

\* Indicates water well logs attached after Figure 1.

|    | Well ID.    | Owner                       | Year_<br>Completed | Total<br>Depth (ft) | Depth To<br>Water (ft) | - Status       |
|----|-------------|-----------------------------|--------------------|---------------------|------------------------|----------------|
| 1  | L-53-AA     | Lovington                   | 1959               | 126                 | 60                     | Active         |
| 2  | L-4058-S-17 | Lovington                   | 1965               | 266                 | 50                     | Active         |
| 3  | L-4058-S-14 | Lovington                   | 1965               | 260                 | 50                     | Active         |
| 4  | L-2507      | Warren & Bradshaw           | 1954               | 110                 | 41                     | Plugged (1955) |
| 5  | L-3699      | B.L. McFarland, Inc.        | 1957               | 100                 | NA                     | Plugged (1957) |
| 6  | L-4058-S-21 | Lovington                   | 1981               | 251                 | 67                     | Active         |
| 7  | L-2300      | Makin Drilling Company      | NA                 | 100                 | NA                     | Capped (1958)  |
| 8  | L-3031      | Velma Petroleum Corporation | 1955               | 115                 | 58                     | Active         |
| 9  | L-6566a     | NA                          | NA                 | NA                  | NA                     | NA             |
| 10 | L-4058-S-15 | Lovington                   | 1965               | 260                 | 50                     | Active         |

#### WATER WELL SURVEY DATA

<sup>a</sup> Denotes missing well log from the New Mexico State Engineers Office in Santa Fe. NA Denotes data which is not available.



Form WR-22 FIELD ENGR. LOG STATE INGINEZA OFFICE

### WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably "ypewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

| Section 1         | (A) Gweet of well Jank Cu, to City of Lovington -                 |
|-------------------|-------------------------------------------------------------------|
|                   | (A) Cwner of well Bor 1021 "Well No. "                            |
|                   | C!ty State                                                        |
|                   | Walt was drilled under Permit No ind is located in the            |
|                   | (3) Drilling Contractor <u>1121 2. Love</u> <u>License</u> ND-201 |
|                   | Street and Number                                                 |
|                   | Cet: 5 State 59<br>Drilling was commenced 9 19 19                 |
| (Plat of 540 acre | Drilling was completed 19                                         |

126 ft. Elevation at top of casing in feet above semieual .Total depth of well - 17 State whether well is shallow or artesian. 

Section 2

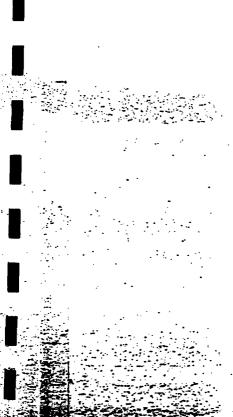
PRINCIPAL WATER-BEARING STRATA

. :

| Depth  | Depth in Feet 👘 Thickness in 🕴 |               | Description of Woor-Bearing Formation       |
|--------|--------------------------------|---------------|---------------------------------------------|
| 17mm   | 1 33                           | Feat          |                                             |
| 1      |                                |               |                                             |
| 1 107  | 123                            |               |                                             |
| á<br>t | 1                              | i             |                                             |
| 1      | ł                              |               |                                             |
| 1      | 1                              | i :           |                                             |
|        | Franz<br>SC                    | Depth in Jest | Depth in Feet Thickness in<br>Franz 13 Feet |

RECORD OF CASING Section 3

| Dia | Pomás | Preads  | 24  | oth Sottem | Test | Test Type Shoe | Perturnations |    |  |
|-----|-------|---------|-----|------------|------|----------------|---------------|----|--|
| 'n. | 2     | 52      | Top | 3 Sottom   | 100  |                | Tress         | 10 |  |
|     | :     | i jfane | 1   | 1          |      |                | 1             |    |  |
|     |       | 1       | 1   | 1          | İ    |                |               |    |  |
|     | 1.    | 1       |     | 1          |      |                |               | 1  |  |
|     | 1     | 1       | 1   | 1          |      |                |               | ]  |  |


Section 4

<u> 11-RR</u>

RECORD OF MUDDING AND CEMENTING

| Depth in Feet         Diameter         Tons         No. Sacks of<br>Cament         Methods Uset           From         To         To         2 sacks         Methods         Methods |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| From To Hole To 2. Cary Comment                                                                                                                                                      |        |
|                                                                                                                                                                                      |        |
|                                                                                                                                                                                      |        |
|                                                                                                                                                                                      |        |
|                                                                                                                                                                                      |        |
|                                                                                                                                                                                      | _      |
| Section 5 MUSGING RECORD                                                                                                                                                             |        |
| Name of Plugging Contractor License No                                                                                                                                               |        |
| Street and Number City State                                                                                                                                                         |        |
| Tons of Clay usedTons of Roughage usedType of roughage                                                                                                                               |        |
| Plagging method usedDete Plagged                                                                                                                                                     | _10    |
| Pingging spinoved by: Cement Pings were placed as follow                                                                                                                             |        |
| No. Dopth of Fing No. of Sada                                                                                                                                                        | lind.  |
|                                                                                                                                                                                      |        |
| FOR USE OF STARE DECIDER CHLT                                                                                                                                                        |        |
| Date Beestred 20110 VIII 1942 1941                                                                                                                                                   |        |
| Date Reserved                                                                                                                                                                        | •      |
| 12 3 HL LI 331 555                                                                                                                                                                   |        |
|                                                                                                                                                                                      | ·      |
| 1- 5 1- 5 B                                                                                                                                                                          | \$1.22 |

77.



Section 5

LCG OF WELL

| Parets 1         |               |                                        |                                       | OFWEL                                  |
|------------------|---------------|----------------------------------------|---------------------------------------|----------------------------------------|
| Depth :          | 2 / tel<br>70 | in Test                                | Colar                                 | The of Material Documented             |
|                  | 7             |                                        |                                       |                                        |
|                  | <u>7</u><br>6 |                                        |                                       |                                        |
| 4                | 75            |                                        |                                       |                                        |
| 3                | 24            |                                        |                                       | 21:0310                                |
|                  | ~             |                                        |                                       | in Liet                                |
| <u>z!.</u><br>51 | 57<br>60      |                                        | · · · · · · · · · · · · · · · · · · · | Sendy Car                              |
|                  | ~~            | +                                      |                                       | datar Sand                             |
| <u>£a</u>        | 77            | <u> </u>                               |                                       | Sundy Tay                              |
| 72               | 35            |                                        |                                       | Sand                                   |
| 35               | <u></u>       |                                        |                                       | Atok Sand                              |
| 95               | 107           |                                        |                                       | Sandy Jlay                             |
| 107              |               | 1 1                                    |                                       |                                        |
| 113              | 125           |                                        |                                       | Sand                                   |
|                  | 1             |                                        |                                       | Sandy Clay                             |
|                  | <u> </u>      | 1                                      |                                       |                                        |
|                  | [<br>         | <u> </u>                               |                                       |                                        |
|                  | <u> </u>      | 1                                      |                                       |                                        |
|                  | ļ             | 1                                      |                                       |                                        |
|                  |               |                                        |                                       | 1377                                   |
|                  |               |                                        |                                       | Deam rait                              |
|                  | i             |                                        |                                       | Elevisi <                              |
|                  | 1             | •                                      |                                       | ······································ |
|                  |               |                                        |                                       |                                        |
|                  | ,<br>I        | 1                                      |                                       | D. To. 15.35.25. 32223                 |
|                  | 1             | ······································ |                                       | Hydro. Survey Had Dieck _ *            |
|                  | 1             | · · · · ·                              |                                       |                                        |
|                  | ;             | · · · ·                                |                                       |                                        |
|                  | 1             |                                        |                                       | ·                                      |
|                  | 1             |                                        |                                       | Source of HERRICE SIVER                |
|                  | 1             |                                        | ·                                     | Interbalated the Time Time             |
|                  |               |                                        |                                       | Satarimned or ise inding               |
|                  | 1             |                                        |                                       | Cther                                  |
|                  | 1             | 1                                      |                                       |                                        |

The undersigned hereby certifies that, to the best of his knowledge and belief, the integring is a true and correct record of the above described well.

1-53-AA

H: Prout CH. Seller Tell.



STATE DIGINIZE OFFICE

#### WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1

|                    | (A) Owner of well-GITY-GF : OVINCTO | KILL City Well No.11  |
|--------------------|-------------------------------------|-----------------------|
|                    | Street and Number_LOVINGTON CITY H  |                       |
|                    | City LOUINGTON                      | State Yole            |
|                    | Weil was drilled under Permit No.   | and is located in the |
|                    | - 32 1/ 34 - 34 - 34 of Section     | Twp-160-382-66        |
|                    | (B) Drilling Contractor             |                       |
|                    | Street and Number_90_30X 3097       |                       |
| <u>_</u>           | City ALBUQUARTUR                    | State                 |
|                    | Drilling was commenced APRIL R      |                       |
|                    | Drilling was completed 12511.29     | 19_55_                |
| (Plat at \$40 scre | 2)                                  |                       |

|   | Dista  | a Jeet | Thickness in | Description of Water-Bearing Formati |
|---|--------|--------|--------------|--------------------------------------|
| Í | 7:20 } | 70     | Test         |                                      |
|   | _ 50   | 255    | 205          | SA117                                |
| ļ | 1      |        |              |                                      |
| i | 1      |        |              |                                      |
| ļ |        |        |              |                                      |
| : |        |        |              |                                      |

| ection 3 |        |           |     | RECOR       | D CF CA | SING       |       |            |
|----------|--------|-----------|-----|-------------|---------|------------|-------|------------|
| 74       | Pounds | Threads   | ्रम | çد <u>ت</u> | Teet    | Type Shoe  | 24    | Cortions . |
| لما      | *      | in        | Top | Bottom      |         |            | 2.000 | :0         |
| 12       | مد!    | 200 - 20- |     | :           | 266     | - STANDARD | =0    | 246        |
|          |        |           |     |             | 1       |            |       | 1          |
|          | ļ      |           |     | 1           | !       | 1          |       |            |
|          |        | 1         |     | 1           |         |            |       | :          |

| Section 4 | RECORD | CF | MUDDING | AND | CEMENTING |
|-----------|--------|----|---------|-----|-----------|
|           |        |    |         |     |           |

|       | in Test | Distante    | Tons | . No. Secto of | Mathods Cant |
|-------|---------|-------------|------|----------------|--------------|
| 1.000 | 73      | Hoie in in. | Cay  | Cament         |              |
|       |         | 1           |      | 1              | •            |
|       |         | 1           |      |                | •            |
|       |         |             |      |                |              |
| •     | i       |             |      | 1              |              |

Section 5

PLUGGING RECORD

Tons of Cisy used\_\_\_\_\_Tons of Roughage used.

Phigging method used\_\_\_\_\_ Phigging approved by:

Cement Plags were placed as follows:

18

Type of roughage.

Date Plaged.

|                                        | - | Dept  | a of Fing |                      |
|----------------------------------------|---|-------|-----------|----------------------|
| English Supervisor                     | - | Tres  | 59        | No. of Sprins Cloud. |
| TOR USE OF PRATE MULTINE CHLY          |   |       |           |                      |
| JJLIIN VILLIU                          |   |       |           |                      |
| Dete Received WH EL Strate Constraints |   | }     |           |                      |
| EL B HY EL TOO                         |   |       |           |                      |
|                                        |   | L     | 1         |                      |
|                                        |   |       |           |                      |
| The No L- 4058-5-17 The mar            |   | <br>T | action Ma | 16.36.25.33424       |

• ;• • • • •

.

|  |                                             | <br>1     |   |
|--|---------------------------------------------|-----------|---|
|  | رده رسیان در مهر اور.<br>میراند از محمد (۲۰ | <br>10.15 | 9 |

Section 5

LOG OF WELL # 11

|          |         |           | LCG         | CFWELL # 11                                          |
|----------|---------|-----------|-------------|------------------------------------------------------|
| Depth    | in Test | Thickness |             |                                                      |
| Tran     | 1 20    | in Test   | Color       | The of Material Economicand                          |
| 0        | 11      | 11        | VHITE       | CALICHIZ                                             |
| 11       | 32      | 21        | INI BROWN   | SAND                                                 |
| 32       | 4       | 12        | WHITE       | CALICRIE                                             |
| 44       | 60      | 16        | BROWN       |                                                      |
| 60       | 30      | 20        | BROWN       | BAND WITE STREEKS OF CALICHIZ<br>BAND AND BANDY CLAY |
| 06       | 39      | 9         | WHITE       | JAND AND LAND! SLAP                                  |
|          | 90      | 1         | BROWN       | HARD JAND STONE                                      |
| <u> </u> | 115     | 25        | WHITE       | CINE STORE                                           |
| _115     | 120     | 5         | עכזל        | AND AND                                              |
| 120      | 122     | 2         | HITT        | SANDSTONE                                            |
| 122      | 140     | 18        | YHITE       | SANCETONS                                            |
| 140      | 150     | · 20      | mend        |                                                      |
| 160      | 135     | 25        | 18          | SAND VITT STOTTS OF SANDSPOND                        |
| 135      | 205     | 20        | BAND AND BA |                                                      |
| 205      | 220     | 15        | BRCAN       | BANEY MLAT AND SPATEL                                |
| 220      | 255     | 35        | BRCVS       | STATE                                                |
| 255      | 255     |           | 920         |                                                      |
|          | 1       |           |             | CRATELAND THE                                        |
|          |         | 1         |             |                                                      |
|          |         | i         |             |                                                      |
|          |         |           |             | Eav of CTrc                                          |
|          |         |           |             |                                                      |
| ·        |         |           |             |                                                      |
| ;        |         |           | 1           | 16.36.25.33424                                       |
|          |         |           |             |                                                      |
|          |         |           |             | SOURCE IF ALTITUDE GIVEN                             |
|          |         |           |             | interstates inter Topa, ibest                        |
|          |         |           |             | Data and by and Leveling                             |
|          |         |           |             | John                                                 |

The undersigned hereby certifies that, to the best of his knowledge and bellet, the foregoing is a true and correct record of the above described well.

will 7. allinge

L-4058-5-17

16.36.25.334

FIÉLD ENGR. LOG

#### ·····

#### WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the meanest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section IA and Section 5 need be completed.

| Section | . 1                  | (A) Gweet of well     | CITY OF LOVINGTON                          | "City Well No. 2"-                                                       |
|---------|----------------------|-----------------------|--------------------------------------------|--------------------------------------------------------------------------|
|         |                      |                       | LOVINOTON CITY IN                          |                                                                          |
|         |                      |                       | Lovington                                  |                                                                          |
|         |                      | Weil was drilled und  | T Permit No. LA058*:<br>38 % of Section 25 | 5-14 and is located in the<br>Twp 16 3 Rep 36 5<br>XCN License No 40 308 |
|         |                      |                       | uquarius                                   | State Note                                                               |
| ļ       |                      | Drilling was commer   | cod YAY 4                                  | 19.65                                                                    |
|         | (Plat of 540 serves) | Drilling was complete | MAY 5                                      | 19 65                                                                    |

|     | Depth | in Test | Thickness in | , Description of Meter-Bearing Formation |
|-----|-------|---------|--------------|------------------------------------------|
| No. | Tran  | 15      | Ztet         |                                          |
| :   | 50    | 253     | 205          | SAND                                     |
| 2   |       |         |              |                                          |
| 3   |       | 1       | 1            |                                          |
| +   |       | i       |              |                                          |
| 3   | ł     |         |              |                                          |

| lection ( | 3      |         |           | RECOR  | 0 CF CA | SING        |      |          |
|-----------|--------|---------|-----------|--------|---------|-------------|------|----------|
| 214       | Pounds | Tureads |           | בזקש   | Teet    | Type Bloe   | 74   | narrúnas |
| 5         |        | ia –    | 209       | Bottom | 1.446   | 1794 1004 - | Trom | To       |
| 12        | . 49   | 121.020 | - <u></u> | 260    | 260     | STAUCARD    | 50   | 240      |
|           | ;      | 1       |           |        |         |             |      | 1        |
|           | 1      | 1       |           |        | 1       | 1           |      | 1        |
|           |        | 1       | }         | 1      | _       | 1           |      | 1        |

| Depth                                          | a Int                                                       | Dismeter    | Tons                                  | No. Sects of | 1 |                         | Mark                                           | ods Used                              |
|------------------------------------------------|-------------------------------------------------------------|-------------|---------------------------------------|--------------|---|-------------------------|------------------------------------------------|---------------------------------------|
| 7.00                                           |                                                             |             | CLAY                                  | Cament       | ļ |                         |                                                |                                       |
|                                                |                                                             |             |                                       | +            |   |                         |                                                |                                       |
|                                                |                                                             |             |                                       |              |   |                         |                                                |                                       |
|                                                |                                                             |             |                                       | 1            |   |                         |                                                |                                       |
|                                                |                                                             |             |                                       | }            | } |                         |                                                |                                       |
|                                                |                                                             |             |                                       | PLUCCING     |   | 0                       |                                                | -                                     |
| Section 5                                      |                                                             |             |                                       |              |   |                         |                                                |                                       |
|                                                |                                                             |             | 900                                   | -            |   |                         | -                                              |                                       |
|                                                |                                                             | Contractor  | NONE                                  |              |   |                         |                                                | lorner No                             |
| Street so                                      | d Numbe                                                     | IT          |                                       | Ct           |   |                         | SI                                             | tate                                  |
| Street an                                      | d Numbe                                                     |             |                                       | Ct           |   |                         | SI                                             | tate                                  |
| Street an<br>Fons of C                         | d Numbe<br>Ley used                                         | Tand        | Tans of Ze                            | Ct           |   | <u> </u>                | Si<br>Type of 1                                | tate                                  |
| Street an<br>Fons of C<br>Pingging             | d Numbe<br>Lay used<br>method u                             | 17<br>3 @@d | Tans of Ze                            | Ct           |   |                         | Si<br>Type of a<br># Plagged_                  | tate                                  |
| Street an<br>Tons of C<br>Plugging<br>Plugging | d Numbe<br>Lay used<br>method u                             | 1           | Tans of Ze                            | Ct           |   | Deb<br>Cemet            | Si<br>Type of a<br># Plagged_                  | roughage<br>•<br>• placed as follows: |
| Street an<br>Tons of C<br>Pingging<br>Pingging | d Numbe<br>Ilay used<br>method t<br>approved                | ar          | Fons of Ze<br>Basin Jap               | City         |   | Deb<br>Cemet            | Si<br>Type of a<br>s Pingged<br>t Pings wer    | tate<br>coughage                      |
| Street an<br>Fons of C<br>Plugging<br>Plugging | d Numbe<br>Ray used<br>method u<br>approved                 | 1 by:       | Tams of Ze<br>Basin Sep               | City         |   | Deb<br>Cemeter<br>Depth | Type of a<br>Pingged.<br>Pings were<br>of Fing | roughage<br>•<br>• placed as follows: |
| Street an<br>Fons of C<br>Pingging<br>Pingging | d Numbe<br>Ray used<br>method u<br>spproved<br>POE UE<br>27 | a by:       | Fans of Re<br>Basin Sep-<br>Hurris Co | City         |   | Deb<br>Cemeter<br>Depth | Type of a<br>Pingged.<br>Pings were<br>of Fing | roughage<br>•<br>• placed as follows: |
| Street an<br>Fons of C<br>Pingging<br>Pingging | d Numbe<br>Ray used<br>method u<br>spproved<br>POE UE<br>27 | a by:       | Fans of Re<br>Basin Sep-<br>Hurris Co | City         |   | Deb<br>Cemeter<br>Depth | Type of a<br>Pingged.<br>Pings were<br>of Fing | roughage<br>•<br>• placed as follows: |
| Street an<br>Tons of C<br>Phageing<br>Phageing | d Numbe<br>Ray used<br>method u<br>spproved<br>POE UE<br>27 | ar          | Fans of Re<br>Basin Sep-<br>Hurris Co | City         |   | Deb<br>Cemeter<br>Depth | Type of a<br>Pingged.<br>Pings were<br>of Fing | roughage<br>•<br>• placed as follows: |

16.35 25 423

|      | Depth 'a Tees |                      |          |                                        |  |
|------|---------------|----------------------|----------|----------------------------------------|--|
| Tron | 70            | Thickness<br>in Iset | Color    | Type of Material Decembered            |  |
| 0    | 60            | 60                   | YHITE    | CALEICHIE                              |  |
| 50   | 104           | <u>مد</u>            | BROWN    | JAND                                   |  |
| ICA  | 132           | 28                   | BROWN    | BAND AND BANDY CLAY                    |  |
| 132  | 204           | 72                   | BROWN    | SAND WITH STREAMS OF SANDSTON          |  |
| 204  | 255           | 51                   | YELLOW   | BAND AND GRAVEL                        |  |
| 255  | 260           | 5                    | 72D      | RED CLAY AND GRAVEL                    |  |
|      |               |                      |          |                                        |  |
|      | <br>          |                      | 1        |                                        |  |
|      | <u>,</u><br>  | ·*                   | <u>}</u> | 1 3 7-3<br>Coom 's KTre                |  |
|      | <u> </u>      |                      | !        |                                        |  |
|      |               |                      |          |                                        |  |
|      | <u></u>       | i                    |          | 1                                      |  |
|      | 1             | ·<br>                |          | ······································ |  |
|      | :             | 1                    | 1        |                                        |  |
|      | ;             |                      | }<br>:   | 16. 36. 25. 42314                      |  |
|      |               | 1                    | ì        | Hydra incury                           |  |
|      | <u>}</u>      | 1                    | 1        |                                        |  |
|      |               |                      | 1        |                                        |  |
|      |               | !                    |          |                                        |  |
|      | <u> </u>      | 1                    |          |                                        |  |
|      | <u> </u>      |                      |          | Source of Altitude Given               |  |
|      |               |                      |          | Interodices from Twee Circo            |  |
|      | !             | <u></u>              |          | Jacantanes by inst central             |  |
|      | 1             |                      |          | Citter                                 |  |
|      |               |                      | ·        |                                        |  |
|      |               |                      |          |                                        |  |

The undersigned hereby certifies that, to the best of his knowledge and belief, the invegting is a true and corract record of the above described well.

2. alkie

· .... 

.

.

.



#### **APPENDIX B**

j

ļ

#### FIELD ANALYTICAL TESTING RESULTS

S:\Datashar\Pride\Reports\SumRpt.wpd



P.O. Box 1816 Hobbs, New Mexico 88241

Phone (505) 392-5021 Fax (505) 397-2597

# SOIL ANALYSIS REPORT

| DATE: 7/21/97<br>CLIENT: Tetra Tech<br>SUPERVISOR: A. I<br>Sample Matrix: Soil | Hodge    | Test Me<br>Order N | FACILITY: Pride Yard Lovington Hwy<br>Test Method: EPA 418.1<br>Order No. Anthony Herald, RPG<br>SAMPLE RECEIVED: Intact on site |  |  |
|--------------------------------------------------------------------------------|----------|--------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| •                                                                              | ГРН      | DEPTH              | LOCATION                                                                                                                         |  |  |
| SAMPLE NO. 1:                                                                  | 66 PPM   | 23'                | Bottom of South pit                                                                                                              |  |  |
| SAMPLE NO. 2: 6                                                                | ,820 PPM | 12'                | West wall                                                                                                                        |  |  |
| SAMPLE NO. 3:                                                                  | 716 PPM  | 12'                | South wall                                                                                                                       |  |  |
| SAMPLE NO. 4:                                                                  | 814 PPM  | 14'                | East wall                                                                                                                        |  |  |
| SAMPLE NO. 5:                                                                  | 3030 PPM | 10'                | North wall                                                                                                                       |  |  |
| SAMPLE NO. 6:                                                                  | PPM      |                    |                                                                                                                                  |  |  |
| SAMPLE NO. 7:                                                                  | PPM      |                    |                                                                                                                                  |  |  |
| SAMPLE NO. 8:                                                                  | PPM      |                    |                                                                                                                                  |  |  |
| SAMPLE NO. 9:                                                                  | PPM      | [                  |                                                                                                                                  |  |  |
| SAMPLE NO. 10:                                                                 | PPM      | [                  |                                                                                                                                  |  |  |

COMMENTS: These samples were taken and run on site by Western Environmental Consultants. These samples were taken from the pit located on the south side of the shop.



P.O. Box 1816 Hobbs, New Mexico 88241

Phone (505) 392-5021 Fax (505) 397-2597

#### SOIL ANALYSIS REPORT

| DATE: 8/1/97<br>CLIENT: Tetra Tech EM, Inc.<br>SUPERVISOR: A. Hodge<br>Sample Matrix: Soil |      | FACILITY: Pride Yard Lovington Hwy<br>Test Method: EPA 418.1<br>Order No. Anthony Herald, RPG<br>SAMPLE RECEIVED: Intact on site |       |                        |
|--------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------|-------|------------------------|
|                                                                                            | TPH  |                                                                                                                                  | DEPTH | LOCATION               |
| SAMPLE NO. 1:                                                                              | 5760 | PPM                                                                                                                              | 19'   | Bottom of wash bay pit |
| SAMPLE NO. 2:                                                                              | 147  | PPM                                                                                                                              | 12'   | Bottom west side       |
| SAMPLE NO. 3:                                                                              | 68   | PPM                                                                                                                              | 18'   | North wall             |
| SAMPLE NO. 4:                                                                              | 42   | PPM                                                                                                                              | 18'   | East wall              |
| SAMPLE NO. 5:                                                                              | 114  | PPM                                                                                                                              | 16'   | South wall             |
| SAMPLE NO. 6:                                                                              | 81   | PPM                                                                                                                              | 10'   | West wall              |
| SAMPLE NO. 7:                                                                              |      | PPM                                                                                                                              |       |                        |
| SAMPLE NO. 8:                                                                              |      | PPM                                                                                                                              |       |                        |
| SAMPLE NO. 9:                                                                              |      | PPM                                                                                                                              |       |                        |
| SAMPLE NO. 10:                                                                             |      | PPM                                                                                                                              |       |                        |

COMMENTS: These samples were taken and run on site by Western Environmental Consultants. These samples were taken from the wash bay pit located in the north east corner of the yard.

.

•



#### APPENDIX C

#### FLUIDS/SOIL MANIFEST DOCUMENTATION

 $S:\Datashar\Pride\Reports\SumRpt.wpd$ 

| Ø9-Ø9-1997Ø2:ØPPMCONTROLLED RECOVERY INCHobbs, NM 88241-1980EnergyInerals and Natural ResourceStrict II - (505) 748-1283Inerals and Natural Resource1 S. FirstOil Conservation DivisionArtesia, NM 882102040 South Pacheco StreetDistrict III - (505) 334-6178Santa Fe, New Mexico 8750100 Rio Brazos Road(505) 827-7131         | ON Submit Original                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| REQUEST FOR APPROVAL TO ACCEPT                                                                                                                                                                                                                                                                                                   | SOLID WASTE                                             |
| 1. RCRA Exempt: 🔲 Non-Exempt: 🔽                                                                                                                                                                                                                                                                                                  | 4. Generator Pride Petroleum                            |
| Verbal Approval Received: Yes 🗋 No 💭                                                                                                                                                                                                                                                                                             | 5. Originating Site Lovington facility                  |
| 2. Management Facility Destination Controlled Recovery, Inc.                                                                                                                                                                                                                                                                     | 6. Transporter Pate Trucking                            |
| 3. Address of Facility Operator P.O. Box 369 Hobbs                                                                                                                                                                                                                                                                               | 8. State NM                                             |
| 7. Location of Material (Street Address or ULSTR) 3851 Hyw 18                                                                                                                                                                                                                                                                    | LOvington, NM                                           |
| 9. <u>Circle One</u> :                                                                                                                                                                                                                                                                                                           |                                                         |
| <ul> <li>A. All requests for approval to accept oilfield exempt wastes will be accept Generator; one certificate per job.</li> <li>B. All requests for approval to accept non-exempt wastes must be accept PROVE the material is not-hazardous and the Generator's certification listing or testing will be approved.</li> </ul> | ompanied by necessary chemical analysis and             |
| All transporters must certify the wastes delivered are only those consigned                                                                                                                                                                                                                                                      | for transport.                                          |
| BRIEF DESCRIPTION OF MATERIAL:                                                                                                                                                                                                                                                                                                   |                                                         |
| The following analytical is from the Pride Refining<br>was generated from oil water seperation and seepage p<br>certificate of waste and a chain of custody.                                                                                                                                                                     | Lovington facility. The waste<br>pit. I have included a |
|                                                                                                                                                                                                                                                                                                                                  |                                                         |
| Estimated Volume 750 gallons cy Known Volume (to be entered by the ope                                                                                                                                                                                                                                                           | $\mathbf{r}_{\mathbf{r}}$                               |
| (RA) Cha                                                                                                                                                                                                                                                                                                                         |                                                         |
| SIGNATURE: <u>Waste Management FacilityAuthorized Agent</u> TITLE: Office M                                                                                                                                                                                                                                                      |                                                         |
| TYPE OR PRINT NAME: Billie Charo TELL                                                                                                                                                                                                                                                                                            | EPHONE NO. (505) 393-1079                               |
| (This sugges for State I lea)                                                                                                                                                                                                                                                                                                    |                                                         |
| (This space for State Use)                                                                                                                                                                                                                                                                                                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                  | DATE                                                    |
| APPROVED BY: TITLE:                                                                                                                                                                                                                                                                                                              | DATE:                                                   |
|                                                                                                                                                                                                                                                                                                                                  |                                                         |

| CONTROLLED PECOVERY INC                                                                                          |                                                              |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| New Mexico                                                                                                       | Form C-1                                                     |
| the NM 88241-1980 Energy Minerals and Natural Resources                                                          |                                                              |
| Strict II - (505) 748-1283<br>1 S. First Oil Conservation Divis                                                  |                                                              |
| note NM 88210 2040 South Pacheco Stree                                                                           | Dian 1 C                                                     |
| Intic III - (505) 334-6178         Santa Fe, New Mexico 8750           00 Rio Brazos Road         (505) 827-7131 | to appropri                                                  |
| er NM 87410                                                                                                      | District O                                                   |
| trict IV - (505) 827-7131                                                                                        |                                                              |
| REQUEST FOR APPROVAL TO ACCEP                                                                                    | T SOLID WASTE                                                |
| 1. RCRA Exempt: I Non-Exempt: I fiy h Michigh                                                                    | 4. Generator Pride Petroleum                                 |
| Verbal Approval Received: Yes 🛛 No 🗋                                                                             | 5. Originating Site Lovington facil:                         |
| 2. Management Facility Destination Controlled Recovery, Inc.                                                     | 6. Transporter Pate Trucking                                 |
| 3. Address of Facility Operator P.O. Box 369 Hobbs                                                               | 8. State NM                                                  |
| 7. Location of Material (Street Address or ULSTR) 3851 Hyw 18                                                    | LOvington, NM                                                |
| 9. <u>Circle One</u> :                                                                                           |                                                              |
| A. All requests for approval to accept oilfield exempt wastes will be a                                          | companied by a certification of waste from the               |
| A. All requests for approval to accept online detempt wastes will be a<br>Generator; one certificate per job.    | Comparied by a certification of waste nom the                |
| $\overline{B}$ . All requests for approval to accept non-exempt wastes must be a                                 | accompanied by necessary chemical analysis to                |
| PROVE the material is not-hazardous and the Generator's certifica                                                | ation of origin. No waste classified hazardous by            |
| listing or testing will be approved.                                                                             |                                                              |
|                                                                                                                  |                                                              |
| All transporters must certify the wastes delivered are only those consign                                        | ned for transport.                                           |
| BRIEF DESCRIPTION OF MATERIAL:                                                                                   |                                                              |
|                                                                                                                  |                                                              |
| The following analytical is from the Pride Refini                                                                | ng Lovington facility. The waste<br>a pit. I have included a |
| was generated from oil water seperation and seepag<br>certificate of waste and a chain of custody.               | e pit. I have included a                                     |
| certificate of waste and a chain of custody.                                                                     |                                                              |
|                                                                                                                  | AUS                                                          |
| ·                                                                                                                | Jan Just                                                     |
|                                                                                                                  | AUG                                                          |
|                                                                                                                  |                                                              |
|                                                                                                                  | CIVE                                                         |
|                                                                                                                  | Siv                                                          |
|                                                                                                                  |                                                              |
|                                                                                                                  |                                                              |
| stimated Volume 750 gallons cy Known Volume (to be entered by the                                                | operations at the and of the basily                          |
| Sumated Volume                                                                                                   |                                                              |
| RANGCAN D                                                                                                        |                                                              |
| IGNATURE: X ///// TTTLE: Offic                                                                                   | ce Manager DATE: 08/19/97                                    |
| Dillio Chama                                                                                                     | (505)393-1079                                                |
|                                                                                                                  | TELEPHONE NO. (3037393-1079                                  |
|                                                                                                                  |                                                              |
|                                                                                                                  |                                                              |
| (This space for State Use)                                                                                       |                                                              |
| APPROVED BY: 1/ MAI MIL TITLE FALL                                                                               | A ENGR DATE 8/23/7                                           |
|                                                                                                                  |                                                              |
|                                                                                                                  | /                                                            |
| VPROVED BY TITLE:                                                                                                |                                                              |

|     | 09/08/97 MON 16:48 FAX 5055989627 LEAD TEST<br>AUG-29-97 15:23 From:8152219<br>. NM 88241-1980 Energy F Jerais and Inatural Kes                                                                                                                                                                                | : 5253929758                           | 12 002<br>T-148 P.CI/JI Job-164                                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|
|     | ci II - (505) 748-1283       Oil Conservation D         First       2040 South Pacheco S         a, NM #8210       2040 South Pacheco S         ci III - (505) 334-6176       Santa Fe, New Mexico S         Ric Brasts Road       (505) 827-7131         Santa Fe, New Mexico S       (505) 827-7131          | ivision<br>urea                        | Submit Orginai<br>Plus ) Čopy<br>to appropriate<br>District Office |
|     | REQUEST FOR APPROVAL TO ACC                                                                                                                                                                                                                                                                                    | EPT SOLID WAST                         | E                                                                  |
|     | RCRA Exempt: Non-Exempt: M PI WHE                                                                                                                                                                                                                                                                              |                                        | Ande Petroleum<br>Services, Inc                                    |
|     | Verbal Approval Received: Yes 🖌 No 🗋                                                                                                                                                                                                                                                                           | 5. Originati                           | ng Size Lovington, NM                                              |
|     | Management Facility Destination GooVea Communical La                                                                                                                                                                                                                                                           | dian 6. Transport                      | E Constructive<br>Solutions, loc                                   |
|     | . Address of Facility Operator Lea County, New Merrice                                                                                                                                                                                                                                                         | 8. State A                             | seu merico                                                         |
| . – | . Location of Material (Sueer Address or ULSTR) 3851 Huy 1                                                                                                                                                                                                                                                     | 8. Louington 1                         | um                                                                 |
|     | <u>Circle One</u>                                                                                                                                                                                                                                                                                              | ·                                      |                                                                    |
| 5   | <ul> <li>All requests for approval to accept oilfield exempt wastes will<br/>Generator; one certificate per job.</li> <li>All requests for approval to accept non-exempt wastes must<br/>PROVE the material is not-hazardous and the Generator's cent<br/>is not-hazardous and the Generator's cent</li> </ul> | be accompanied by nec                  | essary chemical analysis to                                        |
|     | listing or testing will be approved.<br>All transporters must certify the wastes delivered are only those cor                                                                                                                                                                                                  |                                        |                                                                    |
|     | RIEF DESCRIPTION OF MATERIAL                                                                                                                                                                                                                                                                                   |                                        |                                                                    |
| ·   | Hydrocarbon contaminated 5                                                                                                                                                                                                                                                                                     | oil from                               |                                                                    |
|     | seepage pits.                                                                                                                                                                                                                                                                                                  |                                        |                                                                    |
|     |                                                                                                                                                                                                                                                                                                                | <u>*</u>                               | 440 30 400                                                         |
|     |                                                                                                                                                                                                                                                                                                                | <b>A</b>                               | AUG TON THE                                                        |
|     |                                                                                                                                                                                                                                                                                                                | -                                      |                                                                    |
|     |                                                                                                                                                                                                                                                                                                                |                                        |                                                                    |
|     | stimated Volume 2700 - 3000 cy Known Volume (to be entered by                                                                                                                                                                                                                                                  | y the operator at the end <b>a</b>     | frhe haul) cy                                                      |
|     | GNATURE Waste Management Ficility Authonzed Agent TITLE MC                                                                                                                                                                                                                                                     | inager                                 | DATE: 8-25-97                                                      |
|     | YPEOR PRINTNAME Daniele Berardelli                                                                                                                                                                                                                                                                             | _ TELEPHONE NO.                        | 505)598-9626                                                       |
|     | Fun (505) 598-9607,                                                                                                                                                                                                                                                                                            | Address 5CR<br>Fain                    | 6065<br>nington NM 87401                                           |
|     | (This space for State Use)                                                                                                                                                                                                                                                                                     |                                        | ( )                                                                |
|     |                                                                                                                                                                                                                                                                                                                | und Ersch                              | DATE 5/29/90                                                       |
|     | UPPROVED BY:                                                                                                                                                                                                                                                                                                   |                                        | DATE:                                                              |
|     |                                                                                                                                                                                                                                                                                                                | ······································ |                                                                    |

#### E & E ENTERPRISES

• 7

P.O. BOX 683 Brownfield, Tx 79316 CUSTOMER INVOICE

E P A MANIFEST RECORD NON-HAZARDOUS

ŧ.

WASTE MANIFEST

PAY FROM THIS INVOICE

| Prease print or type                                                             |                       |                                       |               |                                       |                      |
|----------------------------------------------------------------------------------|-----------------------|---------------------------------------|---------------|---------------------------------------|----------------------|
| GENERATOR'S MAILING ADDRESS                                                      | PICK-UP LO            | CATION                                |               | ACCOUNT                               |                      |
| PC John Harreie                                                                  | 1 pain T              | and Print                             | Dat- C        | 99APF                                 | ROVED FOR            |
| NE Set                                                                           | 2055 H                | tota to to s                          | po rato       | NU:                                   | AYMENT               |
| 6121 INIDIANED Schoo                                                             | 1 4                   | N: 18 3                               | 7851          | nOol,                                 | a Red                |
|                                                                                  |                       |                                       |               | PONO                                  | aw-top               |
| ALby NM 8711                                                                     | 10-4166               | 2                                     |               |                                       | AIZED SIGNATURE      |
| GENERATOR'S PHONE NO. 505                                                        | 1-500-76              | 2 17241                               |               | EP ID 8                               | 126197               |
|                                                                                  |                       |                                       |               |                                       | DATE                 |
| DESCRIPTION OF NON-HAZARDOUS                                                     | WASTE:                |                                       |               | $\frac{\varphi \varphi I}{\varphi I}$ | <u>\$94</u>          |
|                                                                                  |                       |                                       | Tupo          |                                       | GE NUMBERS           |
| Type of Waste (Include US DOT Shippir<br>Hazard Class, and ID Number, if applica | -                     | QUANTITY                              | Type<br>QTY*  | Cost                                  | Cost                 |
|                                                                                  |                       |                                       |               | 50ª Per                               |                      |
| ، معن غ NON-HAZARDOUS USED OIL                                                   | Hun /                 | 1200                                  | 6             | Se per                                | 600                  |
| NON-HAZARDOUS USED OIL FILTERS                                                   |                       |                                       |               |                                       |                      |
|                                                                                  |                       |                                       | 1             |                                       |                      |
| USED ANTI-FREEZE                                                                 |                       |                                       |               |                                       |                      |
|                                                                                  |                       |                                       |               |                                       | 1 - 2 00             |
| luc 1RH Ser Chy 50.                                                              | an APPROV             | ED POR PANNEN                         | T             |                                       | 150-                 |
| G=Gallons, P=Pounds; T=Tons; D=Dr                                                | 11ms 44               | Lik Kut                               | <b>4</b> η τ  | OTAL CHARGE                           | 750 00               |
| Additional Descriptions of Materials, if n                                       |                       |                                       | Vales 1       |                                       | 37.50                |
|                                                                                  | Procureme             |                                       |               | Trian and                             | 57.50                |
| Special Handling Instructions and Addit                                          | ional Information     |                                       |               | Juman                                 | 181.50               |
|                                                                                  | Fisancial A           | -                                     |               |                                       |                      |
| GENERATOR CERTIFICATION:   hereby d                                              | eclare the sure sont  | ents of this conside                  | ment are fuil | and accurately descr                  | ibed apove by proper |
| GENERATOR CERTIFICATION: I hereby d shipping name and are classified, packed, ma | rked, and labeled, al | nd are in all respects                | ir proper con | dition for transport by               | highway according to |
| applicable international and national govern<br>Print Name of Generator          |                       | gnature of Genera                     |               | ons.                                  | MO, DAY YR.          |
| madel As a                                                                       | > EXP C               |                                       |               |                                       | 1. 5 97              |
| $\frac{1144}{200}$                                                               |                       |                                       |               |                                       |                      |
| DESIGNATED FACILITY: THANSPORT                                                   |                       | · · · · · · · · · · · · · · · · · · · |               |                                       | Y REG NO 85129       |
|                                                                                  |                       | :: (806) 637 9336<br>200 658 2127     | <b>)</b>      | US EPA ID NO T                        |                      |
| P.O. Box 683<br>Brownfield, TX 79316                                             |                       | 100-658-2137<br>(512) 462 7727        | \             | TX RR NO 00001                        | Y REG NO 41398       |
|                                                                                  |                       | (512) 463 7727                        | )             |                                       |                      |
| Transporter Acknowledgement of Recei<br>Print Name of Hauler                     |                       | pature of Hauler                      | 1             | · · ·                                 | MO. DAY YR.          |
| Robert Gonzale                                                                   |                       | Dellet                                | Horas         | le le                                 | 1 5 47               |
| Discrepancy Space                                                                | <u> </u>              | win Z                                 | 10 mgg        |                                       |                      |
|                                                                                  |                       | ····                                  |               |                                       |                      |
| Facility Certification of Receipt of Mater                                       |                       |                                       |               | above)                                |                      |
| Print Name of Facility Operator                                                  | Su.                   | gnature of Facility                   | Operator      |                                       | MO. DAY YR.          |
| 22                                                                               | $ \rightarrow $       |                                       |               |                                       | 16 97                |
| PC-3356 WHITE COPY - Account                                                     | ing YELL              | OW COPY - Plant                       | PINK          | COPY - Generator o                    | :00V                 |

# .

.

. .

•

. .



#### **APPENDIX D**

#### **PHOTOGRAPHIC DOCUMENTATION**

S:\Datashar\Pride\Reports\SumRpt.wpd

.....

#### **Photographic Documentation Index**

| Photograph<br>Number | Caption                                                                                               |
|----------------------|-------------------------------------------------------------------------------------------------------|
| 1                    | View North of maintenance building.                                                                   |
| 2                    | View Northwest of office building located near Northeast corner of subject property.                  |
| 3                    | Miscellaneous fluids staged for disposal.                                                             |
| 4                    | Miscellaneous ancillary servicing equipment.                                                          |
| 5                    | Hydraulic and used oil AST area with containment.                                                     |
| 6                    | Former underground storage tank system (removed, not in service).                                     |
| 7                    | View of mechanics pit.                                                                                |
| 8                    | Fluid recovery activities.                                                                            |
| 9                    | Typical oil stained surface areas.                                                                    |
| 10                   | Typical surface stained soil excavation.                                                              |
| 11                   | Excavated soil staged from surface stained soils.                                                     |
| 12                   | Temporary storage tank (frac tank) for fluids removed from seepage pits.                              |
| 13                   | City of Lovington water well (not in service).                                                        |
| 14                   | Northeast wash pad/seepage pit prior to restoration/assessment activities.                            |
| 15                   | Wash pad drain location. Note Northern sump is near total capacity with solids.                       |
| 16                   | Northeast wash bay seepage pit exposed.                                                               |
| 17                   | Wash bay drain/sump with fluids and solids.                                                           |
| 18                   | Fluids removal from wash bay seepage pit.                                                             |
| 19                   | View Southwest of excavation (arrow indicates drain area at wash pad).                                |
| 20                   | View South of Northeast wash bay/leach field excavation.                                              |
| 21                   | Typical impacted soil excavated from Northeast wash bay/seepage pit.                                  |
| 22                   | View Northeast of final excavation limits of wash bay/leach field.                                    |
| 23                   | View South of Northeast wash bay excavation. Note Floor area excavated to 21 feet below ground level. |
| 24                   | Location of mechanics pit/leach field. Soil staged was removed from above seepage pit.                |
| 25                   | Location of wash bay/seepage pit. Note PVC clean out.                                                 |
| 26                   | Excavation of surface cover above leach field.                                                        |
| 27                   | Drain line entering mechanics pit/leach field.                                                        |
| 28                   | Mechanics pit uncovered. Note access piping port.                                                     |
| 29                   | Typical concrete block constructed seepage pit.                                                       |
| 30                   | Impacted soil contact at mechanics pit/leach field.                                                   |
| 31                   | Typical hydrocarbon impacted soil at mechanics pit/leach field.                                       |
| 32                   | Final excavation limits of mechanics pit/leach field.                                                 |

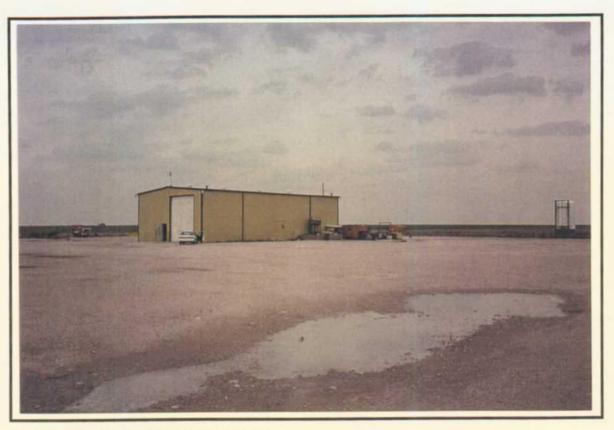



Photo 1: View North of maintenance building.



Photo 2: View Northwest of office building located near Northeast corner of subject property.



Photo 3: Miscellaneous fluids staged for disposal.

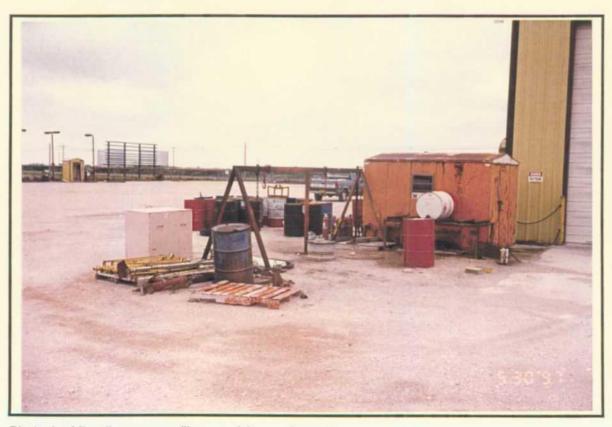



Photo 4: Miscellaneous ancillary servicing equipment.

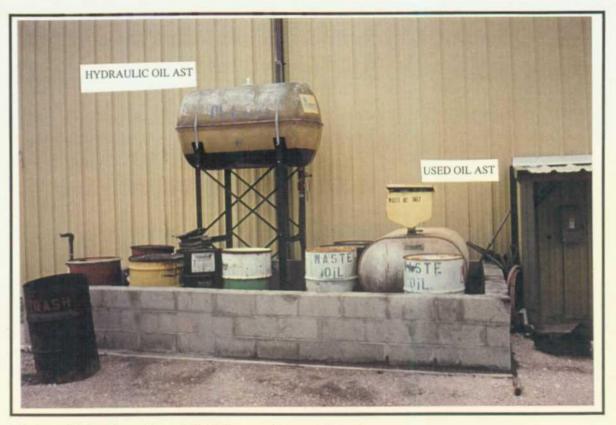
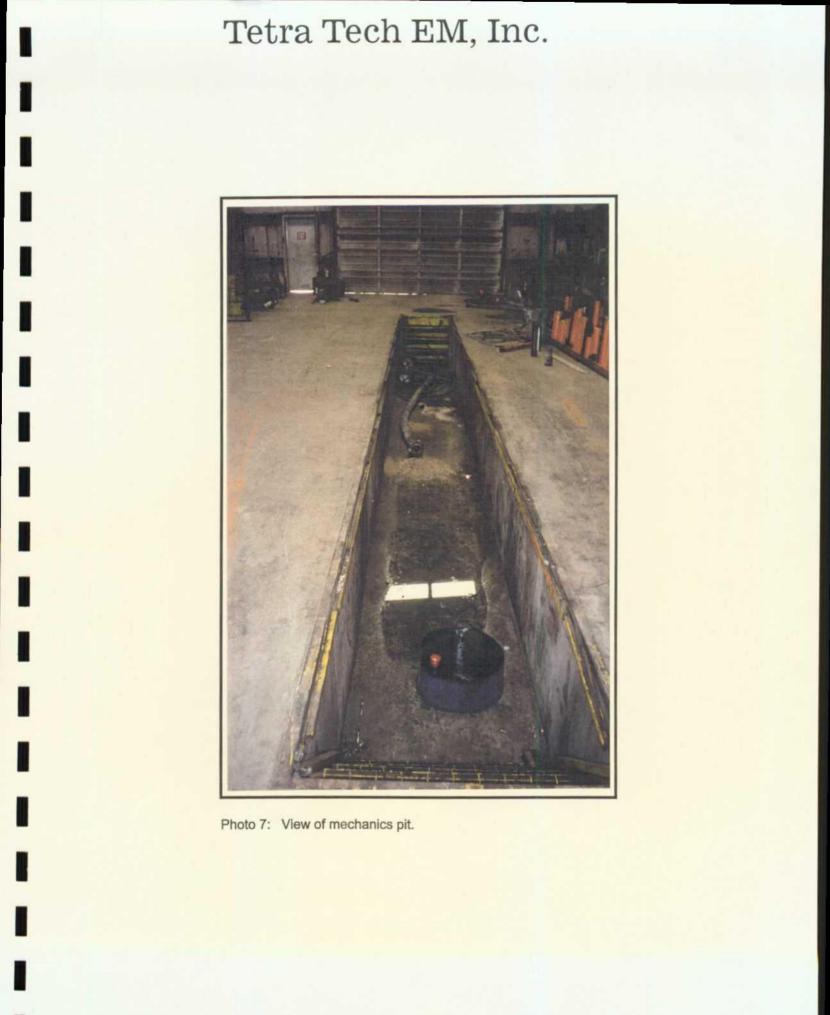




Photo 5: Hydraulic and used oil AST area with containment.



Photo 6: Former underground storage tank system (removed, not in service).



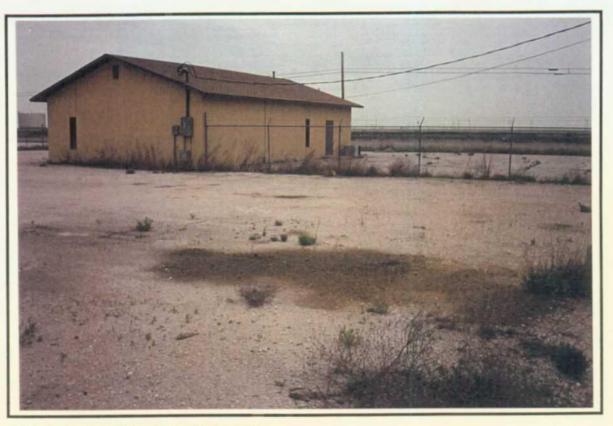



Photo 9: Typical oil stained surface areas.



Photo 10: Typical surface stained soil excavation.

I

I

ł

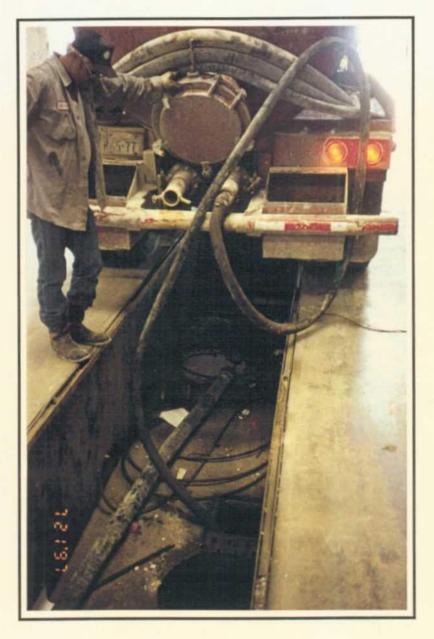



Photo 8: Fluid recovery activities.



Photo 11: Excavated soil staged from surface stained soils.

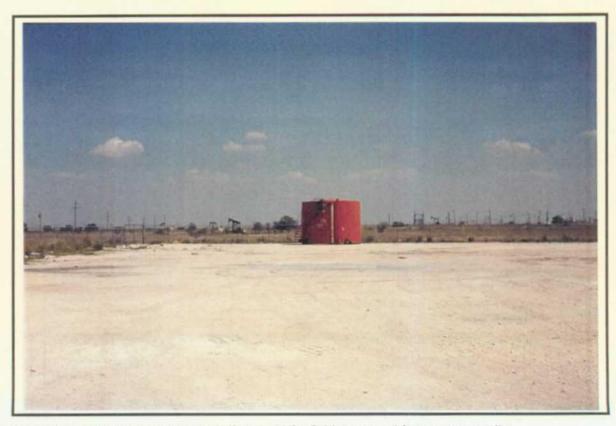



Photo 12: Temporary storage tank (frac tank) for fluids removed from seepage pits.



Photo 13: City of Lovington water well (not in service).

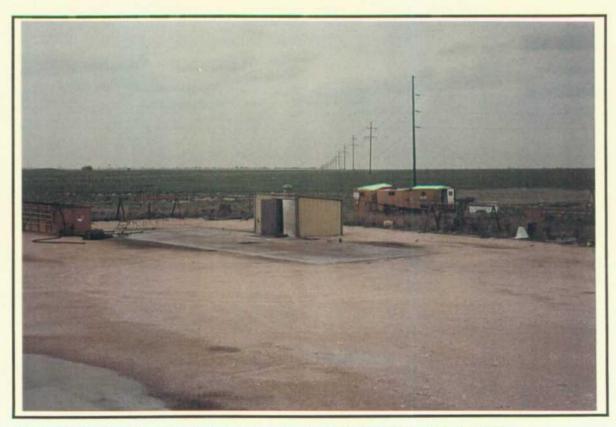



Photo 14: Northeast wash pad/seepage pit prior to restoration/assessment activities.

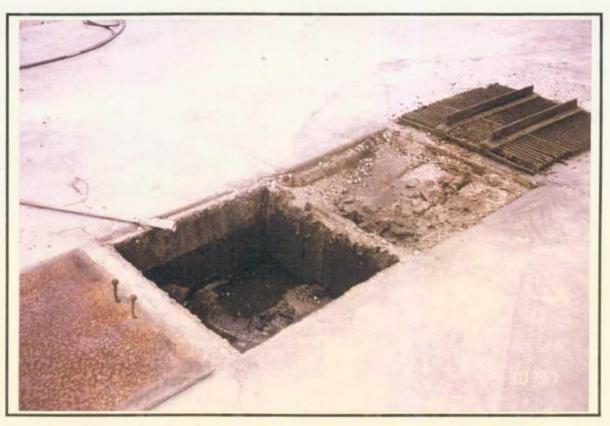
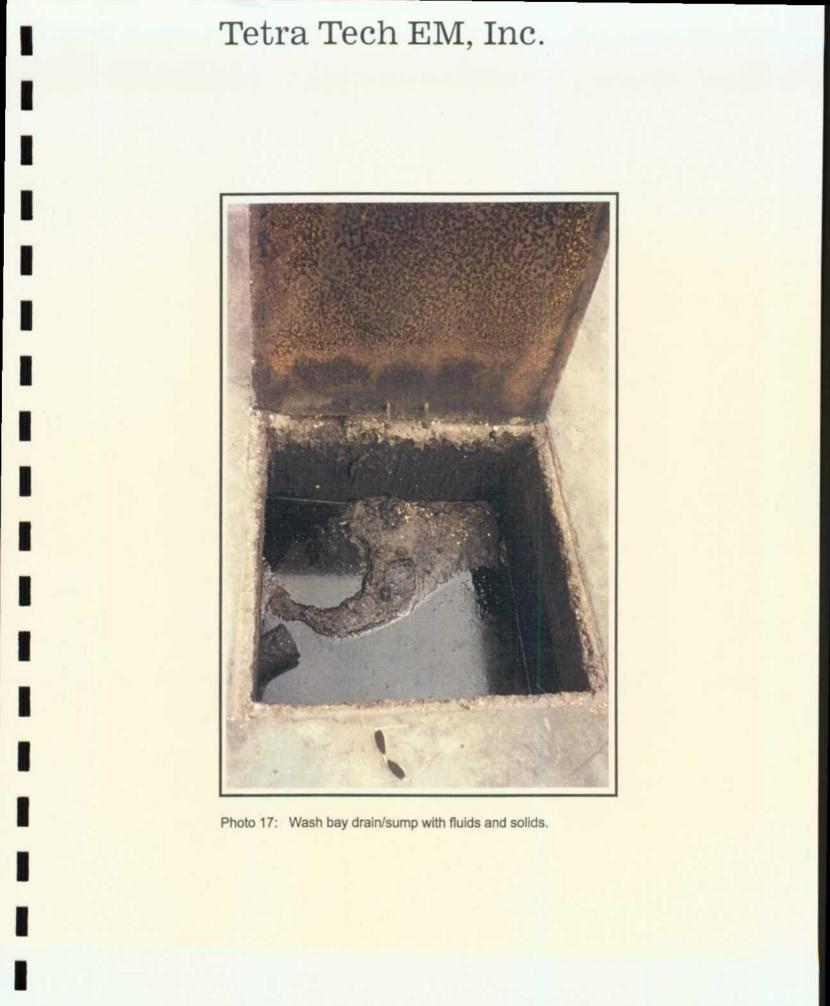




Photo 15: Wash pad drain location. Note Northern sump is near total capacity with solids.



Photo 16: Northeast wash bay seepage pit exposed.



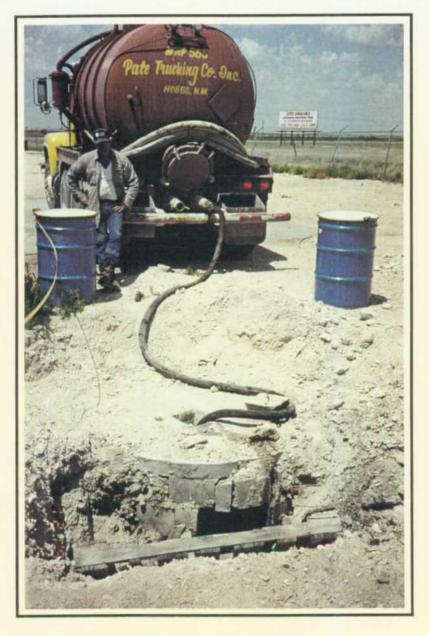



Photo 18: Fluids removal from wash bay seepage pit.



Photo 19: View Southwest of excavation (arrow indicates drain area at wash pad).

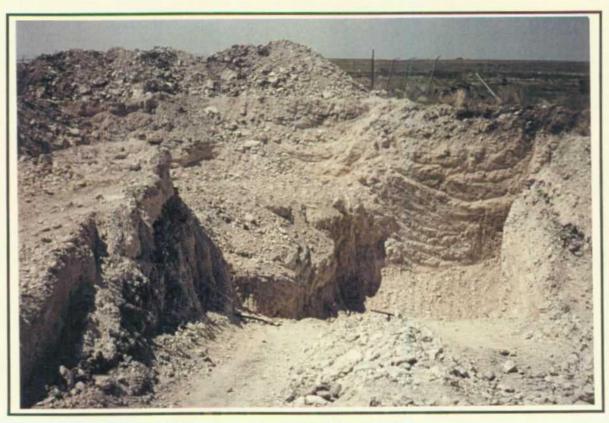



Photo 20: View South of Northeast wash bay/leach field excavation.

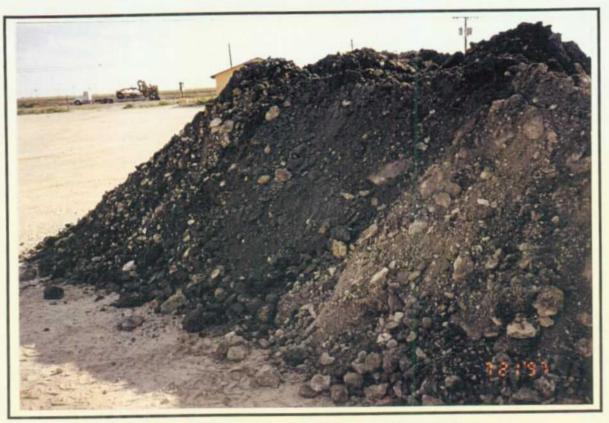



Photo 21: Typical impacted soil excavated from Northeast wash bay/seepage pit.



Photo 22: View Northeast of final excavation limits of wash bay/leach field.

1

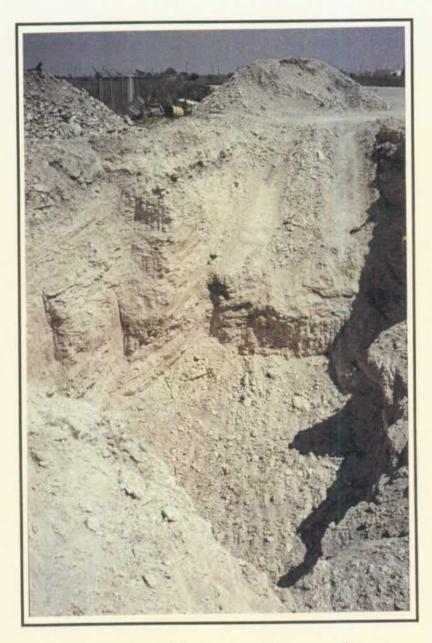



Photo 23: View South of Northeast wash bay excavation. Note Floor area excavated to 21 feet below ground level.



Photo 24: Location of mechanics pit/leach field. Soil staged was removed from above seepage pit.



Photo 25: Location of wash bay/seepage pit. Note PVC clean out.

1

I



Photo 26: Excavation of surface cover above leach field.



Photo 27: Drain line entering mechanics pit/leach field.

I



Photo 28: Mechanics pit uncovered. Note access piping port.



Photo 29: Typical concrete block constructed seepage pit.



Photo 30: Impacted soil contact at mechanics pit/leach field.

7



Photo 31: Typical hydrocarbon impacted soil at mechanics pit/leach field.



Photo 32: Final excavation limits of mechanics pit/leach field.

# . .

.

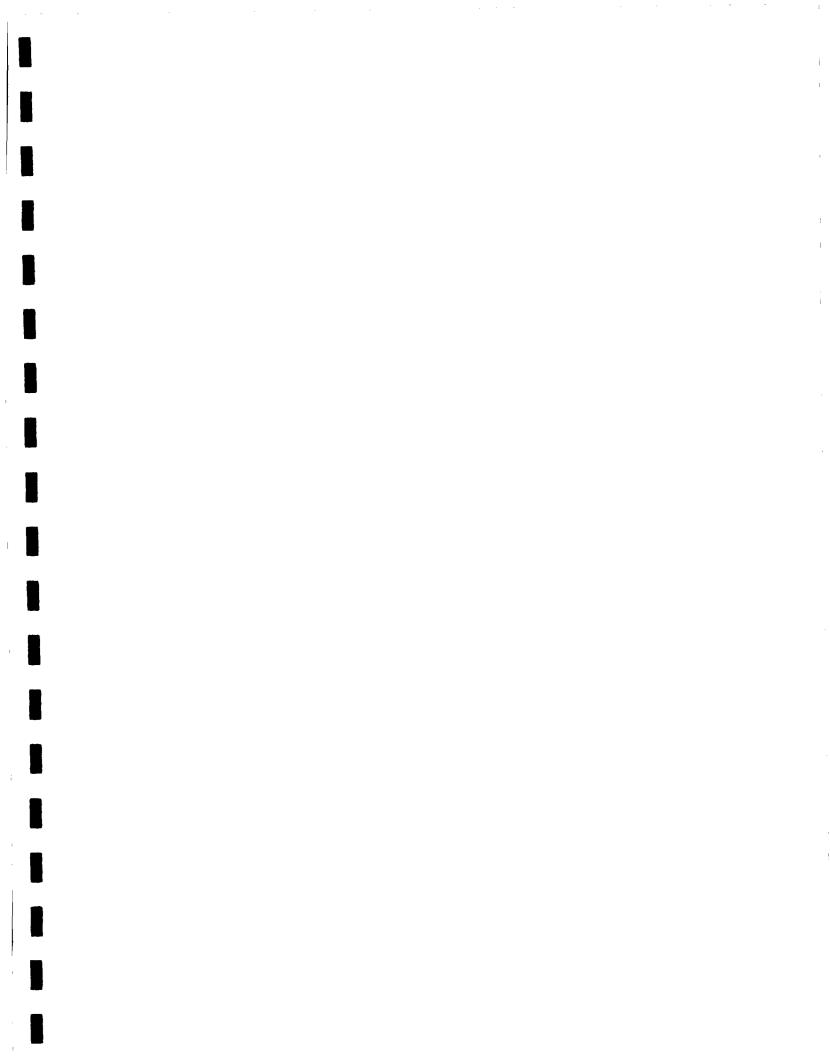
.

· · · · ·

.

.

. .


.

· ·

#### APPENDIX E

----

#### LABORATORY REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION



#### Key For Laboratory Reports

| Date Received   | Date Reported   | Subject                                          |
|-----------------|-----------------|--------------------------------------------------|
| June 2, 1997    | June 6, 1997    | Stained Surface Soil Analysis                    |
| August 13, 1997 | August 15, 1997 | Water Composite Analysis                         |
| August 4, 1997  | August 20, 1997 | Seepage Pit/Spoil Pile Characterization Analysis |



#### ANACHEM INC.

8 Prestige Circle<del>, S</del>uite 104 Allen, Texas 75002 972/727-9003 • FAX # 972/727-9686 • 1-800-966-1186

Customer Name:<br/>Date Received:PRC Environmental Mgmt., Inc.Date Received:<br/>Date Reported:June 2, 1997 at 09:30:00Date Reported:<br/>Submission #:9706000001Project:PRIDE LOVINGTON

**SAMPLES** The submission consisted of 10 samples with sample I.D.'s shown in the attached data tables.

TESTS

The samples listed in the attached result pages were analyzed for: \* CORROSIVITY (EPA 9040)

- \* IGNITABILITY (ASTM D92)
- \* MERCURY DIGESTION, TCLP (EPA 7470)
- \* MICROWAVE DIGESTION, TCLP (EPA 3015)
- \* REACTIVITY (FULL)
- \* TCLP NON-VOLATILE EXTRACTION (EPA 1311)
- \* TCLP RCRA MERCURY (EPA 7470)
- \* TCLP RCRA METALS (EPA 6010)
- \* TCLP SEMI-VOLATILES (EPA 8270)
- \* TCLP VOLATILES (EPA 8260)
- \* TCLP ZHE FOR VOLATILE ORGANICS (EPA 1311)
- \* TPH (EPA 418.1)
- \* TPH GAS-RANGE (MOD EPA 8015)
- \* VOLATILES (EXPANDED EPA 8260)

#### **Distribution Of Reports**

1-Mr. John Harrie of PRC Environmental Mgmt., Inc. Ph. 505-881-3188 Fax 505-881-3283

Respectfully Submitted, Anachem.Inc.

Howard H. Havden, B.S. Chemist

C.E. Newton, Ph.D. Chemist

Submission #: 9706000001 lims

NOTE: Submitted material will be retained for 60 days unless notified or consumed in analysis. Material determined to be hazardous will be returned or a \$20 disposal fee will be assessed. Our letters and reports are for the exclusive use of the client to whom they are addressed. The use of our name must receive our prior written approval. Our letters and reports apply to the sample tested and/or inspected, and are not necessarily indicative of the qualitites of apparently identical or similar materials. 85295 to 85304 Page / of 9 Client Name: PRC En.\_\_onmental Mgmt., Inc. Submission #: 9706000001 Project Name: PRIDE LOVINGTON Report Date: 06/06/97

Client Sample #: So. SEEP PITLaboratory ID #:85295Sample Container:2xVOASampling Location:Not lissSampling Date :05/300

85295 Order Type: Normal Matrix: Liquid 2xVOA Vial Not listed on the chain of custody. 05/30/97

| TPH GAS-RANGE (MOD EPA 8015)<br>Analvte | <u>Results(mg/l)</u> | Detection Timit               |
|-----------------------------------------|----------------------|-------------------------------|
| Gasoline-Range Petroleum Hydrocarbons   | <u>140</u>           | <u>Detection Limit</u><br>1.0 |
| VOLATILES (EXPANDED EPA 8260)           |                      |                               |
| Date Analyzed: 06/03/97                 |                      |                               |
| Analyte                                 | <u>Results(ug/l)</u> | Detection Limit               |
| Acetone                                 | <10                  | 10                            |
| Benzene                                 | <5.0                 | 5.0                           |
| Bromobenzene                            | <5.0                 | 5.0                           |
| Bromochloromethane                      | <15                  | 15                            |
| Bromoform                               | <10                  | 10                            |
| 2-Butanone (MEK)                        | <20                  | 20                            |
| Butyl Benzene (total)                   | 45                   | 10                            |
| Carbon Disulfide                        | `<10                 | 10                            |
| Carbon Tetrachloride                    | <3.0                 | 3.0                           |
| Chlorobenzene                           | <5.0                 | 5.0                           |
| Chlorodibromomethane                    | <5.0                 | 5.0                           |
| Chloroethane                            | <10                  | 10                            |
| Chloroform                              | <10                  | 10                            |
| Chlorotoluenes (total)                  | <10                  | 10                            |
| 1,2-Dibromo-3-chloropropane             | <5.0                 | 5.0                           |
| 1,2-Dibromoethane                       | <10                  | 10                            |
| Dibromomethane                          | <10                  | 10                            |
| 1,2-Dichlorobenzene                     | <5.0                 | 5.0                           |
| 1,3-Dichlorobenzene                     | <5.0                 | 5.0                           |
| 1,4-Dichlorobenzene                     | <5.0                 | 5.0                           |
| Dichlorobromomethane                    | <3.0                 | 3.0                           |
| Dichlorodifluoromethane                 | <10                  | 10                            |
| 1,1-Dichloroethane                      | <5                   | 5                             |
| 1,2-Dichloroethane                      | <5.0                 |                               |
| cis-1,2-Dichloroethene                  | <10                  | 5.0                           |
| trans-1,2-Dichloroethene                | <10                  | 10                            |
| 1,1-Dichloroethene                      | <5.0                 | 10                            |
| 1,2-Dichloropropane                     | <5.0                 | 5.0                           |
| 2,2-Dichloropropane                     | <5.0                 | 6.0                           |
| cis-1,3-Dichloropropene                 | <6.0                 | 5.0 ·                         |
| trans-1,3-Dichloropropene               | <6.0                 | 6.0                           |
| 1,1-Dichloropropene                     | <10                  | 6.0                           |
| Ethyl Benzene                           |                      | 10                            |
| Hexachlorobutadiene                     | 29                   | 8.0                           |
| 2-Hexanone                              | <10                  | 10                            |
| Isopropyl Benzene                       | <10                  | 10                            |
| p-Isopropyl toluene                     | <5.0                 | 5.0                           |
| 4-Methyl-2-Pentanone                    | 55                   | 5.0                           |
| Methyl Bromide                          | <5.0                 | 5.0                           |
| Methyl Chloride                         | <10                  | 10                            |
| Methylene Chloride                      | <10                  | 10                            |
| Naphthalene                             | <15                  | 15                            |
| •                                       | <10                  | 10                            |
| n-Propyl benzene                        | 8.6                  | 5.0                           |
| Styrene                                 | <10                  | 10                            |
| 1,1,2,2-Tetrachloroethane               | <5.0                 | 5.0                           |
|                                         | ~10                  | 10                            |

<10

10

1,1,1,2-Tetrachloroethane

Client Name: PRC En, conmental Mgmt., Inc. Submission #: 9706000001 Project Name: PRIDE LOVINGTON Report Date: 06/06/97

#### VOLATILES (EXPANDED EPA 8260)

| Analyte                   | <u>Results(ug/l)</u> | <b>Detection Limit</b> |
|---------------------------|----------------------|------------------------|
| Tetrachloroethene         | <3.0                 | 3.0                    |
| Toluene                   | 6.3                  | 3.0                    |
| Trichlorobenzenes (total) | <15                  | 15                     |
| 1,1,1-Trichloroethane     | <5.0                 | 5.0                    |
| 1,1,2-Trichloroethane     | <5.0                 | 5.0                    |
| Trichloroethene           | <5.0                 | 5.0                    |
| Trichlorofluoromethane    | <10                  | 10                     |
| 1,2,3-Trichloropropane    | <5.0                 | 5.0                    |
| Trimethylbenzenes (total) | 36                   | 10                     |
| Vinyl Acetate             | <5.0                 | 5.0                    |
| Vinyl Chloride            | <2.0                 | 2.0                    |
| Xylene (Total)            | 210                  | 10                     |

#### Client Sample #: NW SEEP PIT

| Laboratory ID #:   | 85296 Order Type: Normal Matrix: Liquid |
|--------------------|-----------------------------------------|
| Sample Container:  | 2xVOA Vial,Liter Amber Bottle           |
| Sampling Location: | Not listed on the chain of custody.     |
| Sampling Date :    | 05/30/97                                |
|                    |                                         |

#### TPH GAS-RANGE (MOD EPA 8015)

| Analyte                               | <u>Results(mg/l)</u> | <u>Detection Limit</u> |
|---------------------------------------|----------------------|------------------------|
| Gasoline-Range Petroleum Hydrocarbons | 57                   | 1.0                    |
|                                       |                      |                        |

#### VOLATILES (EXPANDED EPA 8260)

| Date Analyzed: 06/03/97     |                      |                        |
|-----------------------------|----------------------|------------------------|
| Analyte                     | <u>Results(ug/l)</u> | <u>Detection Limit</u> |
| Acetone                     | <10                  | 10                     |
| Benzene                     | 25                   | 5.0                    |
| Bromobenzene                | √ <5.0               | 5.0                    |
| Bromochloromethane          | <15                  | 15                     |
| Bromoform                   | <10                  | 10                     |
| 2-Butanone (MEK)            | <20                  | 20                     |
| Butyl Benzene (total)       | 20                   | 10                     |
| Carbon Disulfide            | <10                  | 10                     |
| Carbon Tetrachloride        | <3.0                 | 3.0                    |
| Chlorobenzene               | <5.0                 | 5.0                    |
| Chlorodibromomethane        | <5.0                 | 5.0                    |
| Chloroethane                | <10                  | 10                     |
| Chloroform                  | <10                  | 10                     |
| Chlorotoluenes (total)      | <10                  | 10                     |
| 1,2-Dibromo-3-chloropropane | <5.0                 | 5.0                    |
| 1,2-Dibromoethane           | <10                  | 10                     |
| Dibromomethane              | <10                  | 10                     |
| 1,2-Dichlorobenzene         | <5.0                 | 5.0                    |
| 1,3-Dichlorobenzene         | <5.0                 | 5.0                    |
| 1,4-Dichlorobenzene         | <5.0                 | 5.0                    |
| Dichlorobromomethane        | <3.0                 | 3.0                    |
| Dichlorodifluoromethane     | <10                  | 10                     |
| 1,1-Dichloroethane          | <5                   | 5                      |
| 1,2-Dichloroethane          | <5.0                 | 5.0                    |
| cis-1,2-Dichloroethene      | <10                  | 10                     |
| trans-1,2-Dichloroethene    | <10                  | 10                     |
| 1,1-Dichloroethene          | <5.0                 | 5.0                    |
| 1,2-Dichloropropane         | <6.0                 | 6.0                    |
| 2,2-Dichloropropane         | <5.0                 | 5.0                    |
| cis-1,3-Dichloropropene     | <6.0                 | 6.0                    |
| trans-1,3-Dichloropropene   | <6.0                 | 6.0                    |

VOLATILES (EXPANDED EPA 8260)

| Analyte                   | <u>Results(ug/l)</u> | Detection Limit |
|---------------------------|----------------------|-----------------|
| 1,1-Dichloropropene       | <10                  | 10              |
| Ethyl Benzene             | <8.0                 | 8.0             |
| Hexachlorobutadiene       | <10                  | 10              |
| 2-Hexanone                | <10                  | 10              |
| Isopropyl Benzene         | <5.0                 | 5.0             |
| p-Isopropyl toluene       | 10                   | 5.0             |
| 4-Methyl-2-Pentanone      | <5.0                 | 5.0             |
| Methyl Bromide            | <10                  | 10              |
| Methyl Chloride           | <10                  | 10              |
| Methylene Chloride        | <15                  | 15              |
| Naphthalene               | <10                  | 10              |
| n-Propyl benzene          | <5.0                 | 5.0             |
| Styrene                   | <10                  | 10              |
| 1,1,2,2-Tetrachloroethane | <5.0                 | 5.0             |
| 1,1,1,2-Tetrachloroethane | <10                  | 10              |
| Tetrachloroethene         | <3.0                 | 3.0             |
| Toluene                   | . 30                 | 3.0             |
| Trichlorobenzenes (total) | <15                  | 15              |
| 1,1,1-Trichloroethane     | <5.0                 | 5.0             |
| 1,1,2-Trichloroethane     | <5.0                 | 5.0             |
| Trichloroethene           | <5.0                 | 5.0             |
| Trichlorofluoromethane    | <10                  | _10             |
| 1,2,3-Trichloropropane    | <5.0                 | 5.0             |
| Trimethylbenzenes (total) | <10                  | 10              |
| Vinyl Acetate             | <5.0                 | 5.0             |
| Vinyl Chloride            | <2.0                 | 2.0             |
| Xylene (Total)            | 29                   | 10              |

#### Client Sample #: SP SE 1 03

| Laboratory ID #:   | 85297 Order Type: Normal Matrix: Soil |
|--------------------|---------------------------------------|
| Sample Container:  | 4oz EPA Approved Glass Jar\Aqua Lid   |
| Sampling Location: | Not listed on the chain of custody.   |
| Sampling Date :    | 05/30/97                              |

TPH (EPA 418.1) TPH Prep Date: 06/02/97 <u>Analyte</u> Total Petroleum Hydrocarbons

Results(mg/kg) 32

#### Detection Limit 10

Client Sample #: SP SE 2 02Laboratory ID #:Sample Container:40 Sampling Location: Sampling Date :

85298 Order Type: Normal Matrix: Soil 4oz EPA Approved Glass Jar\Aqua Lid Not listed on the chain of custody. 05/30/97

TPH (EPA 418.1) TPH Prep Date: 06/02/97 <u>Analyte</u> Total Petroleum Hydrocarbons

Results(mg/kg) 4800

**Detection Limit** 10

1-**1** 

#### Client Sample #: SP N 02

Laboratory ID #: Sample Container: Sampling Location: Sampling Date : 85299 Order Type: Normal Matrix: Soil 40z EPA Approved Glass Jar\Aqua Lid Not listed on the chain of custody. 05/30/97

#### TPH (EPA 418.1)

TPH Prep Date: 06/02/97 Analyte Results(mg/kg) Detection Limit Total Petroleum Hydrocarbons 2500 10 Client Sample #: SP S1 02 Laboratory ID #: 85300 Order Type: Normal Matrix: Soil Sample Container: 402 EPA Approved Glass Jar\Aqua Lid Not listed on the chain of custody. Sampling Location: Sampling Date : 05/30/97 *TPH (EPA 418.1)* TPH Prep Date: 06/02/97 <u>Analvte</u> Results(mg/kg) Detection Limit Total Petroleum Hydrocarbons 480 10 Client Sample #: SP S2 02 Laboratory ID #: 85301 Order Type: Normal Matrix: Soil Sample Container: 402 EPA Approved Glass Jar\Aqua Lid Not listed on the chain of custody. Sampling Location: Sampling Date : 05/30/97 TPH (EPA 418.1) TPH Prep Date: 06/02/97 Results(mg/kg) **Detection** Limit <u>Analvte</u> Total Petroleum Hydrocarbons 12000 10 Client Sample #: SP S3 02 Laboratory ID #: 85302 Order Type: Normal Matrix: Soil 402 EPA Approved Glass Jar\Aqua Lid Sample Container: Not listed on the chain of custody. Sampling Location: Sampling Date : 05/30/97 TPH (EPA 418.1) TPH Prep Date: 06/02/97 Results(mg/kg) <u>Analyte</u> **Detection** Limit Total Petroleum Hydrocarbons 72 10 Client Sample #: SP S4 02 85303 Order Type: Normal Matrix: Soil Laboratory ID #: Sample Container: 402 EPA Approved Glass Jar \Aqua Lid Sampling Location: Not listed on the chain of custody. 05/30/97 Sampling Date: TPH (EPA 418.1) TPH Prep Date: 06/02/97

Analyte Total Petroleum Hydrocarbons

Results(mg/kg) 13000 Detection Limit 10

#### Client Sample #: COMPOSITE

Laboratory ID #: Sample Container: Sampling Location: Sampling Date : 85304 Order Type: Normal Matrix: Soil 32oz EPA Approved Glass Jar\Aqua Lid Not listed on the chain of custody. 05/30/97

#### CORROSIVITY (EPA 9040)

Analyte Corrosivity Results 6.5 Detection Limit

Detection

Detection

Detection

#### IGNITABILITY (ASTM D92)

Ignitability: DOES NOT IGNITE AT ROOM TEMPERATURE; NOT HAZARDOUS

MERCURY DIGESTION, TCLP (EPA 7470) Mercury Digestion Date: 06/03/97

#### MICROWAVE DIGESTION, TCLP (EPA 3015) Microwave Digestion Date: 06/03/97

#### REACTIVITY (FULL)

Reactive Cyanide (EPA 9010): <0.2 mg/kg Reactive Sulfide (EPA 9030): <0.3 mg/kg Reactivity To Air: Negative Reactivity To Diluted HCl: Negative Reactivity To Diluted NaOH: Negative Reactivity To Water: Negative

#### TCLP NON-VOLATILE EXTRACTION (EPA 1311) TCLP Extraction Date: 06/02/97

#### TCLP RCRA MERCURY (EPA 7470)

|                |                |                      | Derection |                  |
|----------------|----------------|----------------------|-----------|------------------|
| <u>C.A.S.#</u> | <u>Analvte</u> | <u>Results(mg/l)</u> | Limit     | <u>Haz.Limit</u> |
| 7439-97-6      | TCLP Mercury   | < 0.0004             | 0.0004    | 0.2              |
|                |                |                      |           |                  |

#### TCLP RCRA METALS (EPA 6010)

| <u>C.A.S.#</u> | <u>Analyte</u> | Results(mg/l) | Limit  | <u>Haz.Limit</u> |
|----------------|----------------|---------------|--------|------------------|
| 7440-38-2      | Arsenic        | <0.061        | 0.061  | 5                |
| 7440-39-3      | Barium         | 1.30          | 0.001  | 100              |
| 7440-43-9      | Cadmium        | <0.008        | 0.008  | 1                |
| 7440-47-3      | Chromium       | < 0.0075      | 0.0075 | 5                |
| 7439-92-1      | Lead           | <0.040        | 0.040  | 5                |
| 7482-49-2      | Selenium       | <0.050        | 0.050  | 1                |
| 7440-39-2      | Silver         | <0.030        | 0.030  | 5                |

#### TCLP SEMI-VOLATILES (EPA 8270) Prep Date:: 06/03/97

|                |                     |                      | 1000001014   |                  |
|----------------|---------------------|----------------------|--------------|------------------|
| <u>C.A.S.#</u> | <u>Analyte</u>      | <u>Results(mg/l)</u> | <u>Limit</u> | <u>Haz.Limit</u> |
| no C.A.S.      | Cresol (Total)      | <1.0                 | 1.0          | 200.0            |
| 121-14-2       | 2,4-Dinitrotoluene  | <0.10                | 0.10         | 0.13             |
| 118-74-1       | Hexachlorobenzene   | <0.10                | 0.10         | 0.13             |
| 87-68-3        | Hexachlorobutadiene | <0.20                | 0.20         | 0.5              |
| 67-72-1        | Hexachloroethane    | <0.10                | 0.10         | 3.0              |
| 98-95-3        | Nitrobenzene        | <0.50                | 0.50         | 2.0              |
| 87-86-5        | Pentachlorophenol   | <0.20                | 0.20         | 100.0            |
| 110-86-1       | Pyridine            | <0.50                | 0.50         | 5.0              |
|                | ÷                   |                      |              |                  |

Report To: PRC Environmental Mgmt. Inc. Project: Pride Lovington Lab Number: 9706000001 Page 2 of 9

### QUALITY CONTROL DATA

TPH results are reported in parts per million (ppm) in solid.

|                |             | Value  | 1     | Value 2 | % Var.        |
|----------------|-------------|--------|-------|---------|---------------|
| TPH:           |             | 22     |       | 20      | 9.1           |
| CONCENTRA      | ATION UNITS | 5:     | TPH - | ppm     |               |
| DETECTION      | LIMITS:     |        | TPH - | 10      |               |
| ANALYST        | ANALYTE     | DATE   | EXTR  | ACTED   | DATE ANALYZED |
| Anthony Taylor | TPH         | 6/2/97 | -     |         | 6/2/97        |

#### VOLATILE ORGANICS QUALITY CONTROL DATA

| METHOD                                                                       | <u>ANALYST</u>                                           | MATE                            | RIX DATE                         | EXTRACTED                                      | DATE                           | ANALYZED                             |
|------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------|----------------------------------|------------------------------------------------|--------------------------------|--------------------------------------|
| 8260                                                                         | Howard Hayd                                              | len Liquid                      | 1                                |                                                |                                | 6/3/97                               |
| SPIKE<br>COMPOUND                                                            | SPIKE<br><u>AMOUNT</u>                                   | % REC<br>_1                     | % REC                            | % REC QC<br>LIMIT                              | <u>% VAR.</u>                  | % VAR QC<br><u>LIMIT</u>             |
| 1,1-Dichloroethene<br>Trichloroethene<br>Benzene<br>Toluene<br>Chlorobenzene | 20 ppb<br>20 ppb<br>20 ppb<br>20 ppb<br>20 ppb<br>20 ppb | 107<br>115<br>112<br>110<br>108 | 97.1<br>102<br>105<br>103<br>108 | 20-234<br>71-157<br>37-151<br>47-150<br>37-160 | 9.3<br>11<br>6.3<br>6.4<br>0.0 | 25.0<br>25.0<br>25.0<br>25.0<br>25.0 |

#### TCLP SEMI-VOLATILES QUALITY CONTROL DATA

| METHOD                                             | ANALYST                                  | MATH                         | RIX                          | DATE   | EXTRACTED                            | DA                      | <u>FE ANALYZED</u>           |
|----------------------------------------------------|------------------------------------------|------------------------------|------------------------------|--------|--------------------------------------|-------------------------|------------------------------|
| 8270                                               | Dennis Shaw                              | Liquid                       | ł                            | 6/3/97 |                                      |                         | 6/4/97                       |
| SPIKE<br><u>COMPOUND</u>                           | SPIKE<br><u>AMOUNT</u>                   | % REC<br><u>1</u>            | % RE<br>_2                   | С      | % REC QC<br>LIMIT                    | <u>% VAR.</u>           | % VAR QC<br><u>LIMIT</u>     |
| Phenol<br>2-Chlorophenol<br>Acenaphthene<br>Pyrene | 200 ppb<br>200 ppb<br>100 ppb<br>100 ppb | 99.1<br>92.4<br>66.3<br>79.4 | 97.7<br>92.4<br>75.4<br>86.5 |        | 10-120<br>23-134<br>47-145<br>52-125 | 1.4<br>0.0<br>12<br>8.2 | 42.0<br>40.0<br>31.0<br>31.0 |

ť

Report To: PRC Environmental Mgmt. Inc. Project: Pride Lovington Lab Number: 9706000001 Page <u>9</u> of <u>9</u>

#### QUALITY CONTROL DATA

| ANALYTE          | DATE<br>ANALYZED | SPIKE<br>(ppm) | STAND.<br><u>DEV.</u> | COEFF. OF<br>VAR % | REC1/%         | REC2% |
|------------------|------------------|----------------|-----------------------|--------------------|----------------|-------|
|                  |                  |                |                       |                    |                |       |
| Reactive Cyanide | 6/4/97           | ****           | 9.5                   | 10                 | 7 <del>9</del> | 70.5  |
| Reactive Sulfide | 6/4/97           |                | 74                    | 16                 | 110            | 90    |
| Mercury          | 6/5/97           |                | 0.233                 | 2.8                | 103            | 99    |
| Arsenic          | 6/3/97           |                | 0.041                 | 0.8                | 110            | 109   |
| Barium           | 6/3/97           |                | 0.243                 | 4.0                | 99             | 106   |
| Cadmium          | 6/3/97           | ,<br>**=-      | 0.099                 | 2.0                | 100            | 97    |
| Chromium         | 6/3/97           |                | 0.134                 | 2.3                | 109            | 112   |
| Lead             | 6/3/97           |                | 0.024                 | 0.5                | 8 <del>9</del> | 88    |
| Selenium         | 6/3/97           |                | 0.378                 | <b>*</b> 6.9       | 112            | 101   |
| Silver           | 6/3/97           |                | 0.022                 | 0.8                | 97             | 99    |

Standard Deviation = (x1-x2)/1.414 Coefficient of Variability % = (S.D./Avg.) X 100 Recovery % = [(spiked-unspiked)/expected] X 100

#### TCLP SEMI-VOLATILES (EPA 8270)

| <u>C.A.S.#</u> | <u>Analyte</u>        | <u>Results(mg/l)</u> | Detection<br>_Limit_ | Haz.Limit |
|----------------|-----------------------|----------------------|----------------------|-----------|
| 95-95-4        | 2,4,5-Trichlorophenol | <0.50                | 0.50                 | 400.0     |
| 88-06-2        | 2,4,6-Trichlorophenol | <0.50                | 0.5 <b>0</b>         | 2.0       |

É

## TCLP VOLATILES (EPA 8260) · Date analyzed: 06/03/97

--- --- -

| <u>C.A.S.#</u><br>71-43-2<br>56-23-5<br>108-90-7<br>67-66-3<br>106-46-7<br>107-06-2<br>75-35-4<br>78-93-3<br>127-18-4<br>79-01-6 | Analyte<br>Benzene<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chloroform<br>1,4-Dichlorobenzene<br>1,2-Dichloroethane<br>1,1-Dichloroethylene<br>Methyl Ethyl Ketone<br>Tetrachloroethylene | Results(mg/l)         <0.10         <0.10         <0.10         <0.10         <0.10         <0.10         <0.10         <0.10         <0.10         <0.10         <0.10         <0.10         <0.10         <0.10         <0.10         <0.10         <0.10 | Detection<br>Limit<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.1 | Haz.Limit<br>0.5<br>0.5<br>100<br>6.0<br>7.5<br>0.5<br>0.7<br>200.0<br>0.7 |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 79-01-6<br>75-01-4                                                                                                               | Trichloroethylene<br>Vinyl Chloride                                                                                                                                                          |                                                                                                                                                                                                                                                             | 0.10<br>0.10<br>0.10                                                              | 0.7<br>0.5<br>0.2                                                          |
| -                                                                                                                                | -                                                                                                                                                                                            | *                                                                                                                                                                                                                                                           |                                                                                   |                                                                            |

TCLP ZHE FOR VOLATILE ORGANICS (EPA 1311) TCLP ZHE Extraction Date: 06/02/97

| Bill Te:     (Bayer) $PPC$ Purchase Order #:     Address:       Address:     City, State, Zip:       City, State, Zip:     Quote #:       City, State:     Yhone:       100%     Sampled By:       100%     Sample       100%     Sample       100%     Frempering       100%     Preserve       100%     Preserve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | -01              | 9706-0,            | 197                 | de. #           | Submission #            | Sul           | si Shipment fed-X Submission /<br>Submission /<br>S and conditions on the reverse side. | Method of Shipment | Method ( |          | ting This is |             |            |            | 5       | 009 REV 6/96 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|--------------------|---------------------|-----------------|-------------------------|---------------|-----------------------------------------------------------------------------------------|--------------------|----------|----------|--------------|-------------|------------|------------|---------|--------------|
| Bill Te:       (Hyper) $PPC$ Analysis         Parchane Order #:       Address:       Gly, Shale, <i>Vip</i> :       Fin::       Fin::<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                  |                    |                     |                 |                         | <u></u>       |                                                                                         |                    |          |          |              |             |            |            |         |              |
| Bill Tre (Bayer) $DPC$ Analysis         Purchinge Order #:       Address:       City, State:       Final         City, State:       Phone:       Final       Quold #:       City, State:         City, State:       Quold #:       Quold #:       Phone:       Final         Normality       Matrix       Date/Time       Sample Notes       Fill #:         Normality       Matrix       Date/Time       Sample Notes       Fill #:       Fill #:         Normality       Matrix       Date/Time       Sample Notes       Fill #:       F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | .                | mple               | ned Sa              | Retur           | Accept                  | - <u>+</u>    |                                                                                         | Preserved Proper   |          |          |              |             |            |            |         | ľ            |
| Bill Tre. (Bayer) $\overrightarrow{PR}$ $$ |          | 1                | posal              | ple Dis             | r Sam           | Pay Fo                  | <u> </u>      | 4oc                                                                                     | Temperature        |          | 6/2/97   | muhil        | Shad H      | 67         | 5/30/      | ę.      | P            |
| Hill The (Ruyer)     DPC     Address:     Address:       Address:     Address:     Glay, State, Xip:     Planchase (Index #:       100%     Sampled By:     Plancie #:     Quote #:       100%     Sampled By:     Date/Time     Sample Notes       2/12     5/30/1975     12.8 2-144     PL       2/14     5/30/1975     12.8 2-144     PL       2/15     6/32     7/402     X       2/16     X     5/30/100     PL       2/14     X     X     X       2/14     X     X     X       2/14     X     X     X       2/14     X <td< td=""><td>hat a</td><td>it agrées te</td><td>hem de<br/>he clien</td><td>at Anac<br/>dous, tl</td><td>nt the<br/>hazar</td><td>the eve<br/>nple is</td><td>- In<br/>san</td><td>Votes</td><td></td><td>Time</td><td>Date</td><td></td><td>Received By</td><td></td><td>Date</td><td>1/By</td><td>ishee</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hat a    | it agrées te     | hem de<br>he clien | at Anac<br>dous, tl | nt the<br>hazar | the eve<br>nple is      | - In<br>san   | Votes                                                                                   |                    | Time     | Date     |              | Received By |            | Date       | 1/By    | ishee        |
| Hill Tre: (Bayer) $DPC$ Address:       Address:       Address:         1       Parchase Order #:       Parc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                  |                    |                     |                 | $\left  \times \right $ |               |                                                                                         | V 0945             |          |          |              | ; te        | mpes       | $\frown$   |         | 104          |
| Hill To: (Buyer) $PP$ $Adress:$ $Adress:$ $Adress:$ $Adress:$ City, State, <i>X</i> p: $Adress:$ $Quite t:$ $Quite :$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +        | +                |                    | $\square$           |                 | :                       | X             | R                                                                                       | 3/30               | V        |          |              | 5,          |            | SP         |         | es           |
| Hill Tre. (Buyer) $DP$ Analysis         Purchase Order #:       Address:       Address:         Address:       Gity, State, Zip:       Purchase Order #:         Outlet:       Phone:       Purchase Order #:         Outlet:       Quole #:       Quole #:         Outlet:       Purchase       Sampled By:         Intrix       Date/Time       Sample Notes         Sampled By:       Sample Notes       TPH 4/18.1         Address:       S/30/n?       IAB 2-1244         Sample Notes       Sample Notes       TPH 4/18.1         Virt:       Sample Notes       TCLP / RC1         Sample Notes       Sample Notes       TCLP / RC1         Sample Notes       Sample Notes       TPH 4/18.1         Virt:       Sample Notes       TCLP / RC1         Sample Notes       Sample Notes       TAB 2-124         Sample Notes       Sample Notes       TCLP / RC1         Sample Notes       Sample Notes       TPH 4/18.1         Sample Notes       Sol Upent Scare       Sol Upent Scare         Sample Notes       Sample Notes       Sample Notes         Sample Notes       Sample Notes       Sample Notes         Sample Notes       Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                  |                    |                     |                 |                         | ×             |                                                                                         | 9 130.             |          |          |              | 0.2         |            | S          |         | 2            |
| Bill Te:       (Bill Te: $PDC$ Address:       Fin:       Phone:       Fin:       Fin: </td <td></td> <td>+</td> <td>+</td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td>4480</td> <td></td> <td></td> <td></td> <td>. 2</td> <td>2</td> <td>اەن</td> <td></td> <td>10</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | +                | +                  |                     |                 |                         | ×             |                                                                                         | 4480               |          |          |              | . 2         | 2          | اەن        |         | 10           |
| Bill To: (Buyer) $DPC$ Analysis         Purchase Order #:       Address:       Address:         Address:       City, State, Zip:       Pinx:         Obs:       Sampled By:       Quote #:       Quote #:         100%       Sample Notes       Sample Notes       TPH 418.1         10%       String       Sample Notes       TPH 418.1         10%       Solvent Schw       Solvent Schw         10%       Solvent Schw       X         10%       Solvent Schw       X         10%       Solvent Schw       X         10%       X       Solvent Schw         10%       X       Solvent Schw         10%       X       Solvent Schw         10%       X       Solvent Schw         10%       X       X         10%       X       X         10%       X       X         10%       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                  |                    |                     |                 |                         | ×             |                                                                                         | 2490               |          |          |              | 2           | ~          | <u> </u>   |         | 5306         |
| Bill To: (Buyer) $PP$ Analysis         Purchase Order #:       Purchase Order #:       Address:         Address:       City, State, Nip:       Fix:         City, State, Nip:       Phone:       Fix:         Open Bill To: (Buyer)       PP       Fix:         Open Bill To: (Buyer)       School (Buyer)       Fix:         Open Bill To: (Buyer)       School (Buyer)       School (Buyer)         Open Bill To: (Buyer)       School (Buyer)       School (Buyer)         Open Bill To: (Buyer)       School (Buyer)       School (Buyer)         I OB3E       I OB3E       I Hole (Buyer)       School (Buyer)         I OB3E       I Hole (Buyer)       School (Buyer)       School (Buyer)         I OB3E       I Hole (Buyer)       School (Buyer)       School (Buyer)         I OB3E       I Hole (Buyer)       School (Buyer)       School (Buyer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                  |                    |                     |                 |                         | ×             |                                                                                         | h220               |          |          |              | C           |            | SP         | 5.      | 99           |
| Bill To: (Buyer) $DP$ Address:       Analysis         City, State:       City, State:       Provide #:       Provide #: <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td>8580</td> <td></td> <td></td> <td></td> <td>0.2</td> <td>2</td> <td></td> <td>4.</td> <td>88</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | -                |                    |                     |                 |                         | ×             |                                                                                         | 8580               |          |          |              | 0.2         | 2          |            | 4.      | 88           |
| Bill To: (Buyer) $DP$ $Address$ : $Purchase Order #:$ $Address:$ $Address:$ $City, State, %ip:$ $Pax:$ $Pax:$ $Pax:$ $Pax:$ $Older State, %ip:$ $Pax:$ $Pax:$ $Pax:$ $Pax:$ $Pax:$ $Older State, %ip:$ $Pax:$ $Pax:$ $Pax:$ $Pax:$ $Pax:$ $Older State, %ip:$ $Ouole #:$ $Pax:$ $Pax:$ $Pax:$ $Pax:$ $Older State:$ $Ouole #:$ $Ouole #:$ $Pax:$ $Pax:$ $Pax:$ $Pax:$ $Older State:$ $Ouole #:$ $Ouole #:$ $Ouole #:$ $Pax:$ $Pax:$ $Pax:$ $Pax:$ $Older State:$ $Ouole #:$ $Ouole #:$ $Ouole #:$ $Pax:$ <t< td=""><td>K</td><td></td><td>8</td><td>Ø</td><td></td><td></td><td>X</td><td>1 402</td><td></td><td>S</td><td></td><td></td><td>0.3</td><td>-</td><td>S<br/>P</td><td></td><td>97</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K        |                  | 8                  | Ø                   |                 |                         | X             | 1 402                                                                                   |                    | S        |          |              | 0.3         | -          | S<br>P     |         | 97           |
| Bill To: (Buyer)     PP     Address:     Address:       Purchase Order #:     Address:     City, State, Nip:     Fix:       City, State, Nip:     Phone:     Fix:     Fix:       Op/s     Sampled By:     Quote #:     Quote #:       100%     Sampled By:     Date/Time     Sample Notes       TCLP     RC1     X     Solvent Serve       Matrix     Date/Time     Sample Notes     TCLP       Diesul     Rankee     X     X       Diesul     RASE HOLD     FRASE HOLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ţ.       | (x               | X                  | X                   | $\times$        |                         |               |                                                                                         |                    | 215-     |          |              | 127         | Saep       |            |         | 9%           |
| OHW       HARRELE       Bill To: (Buyer)       PRC       Analysis         PRC       TETER TECIH       Purchase Order #:       Purchase Order #:       Purchase Order #:         I       TWOMO, Sch. 122, WE       Address:       Address:       Address:       Purchase Order #:         ABQ, XM1       871/0       City, State, Xip:       Address:       Fax: 800   3283       Phone:       Fine:       Fine:       Proce       Proce <t< td=""><td></td><td></td><td>X</td><td>X</td><td><math>\times</math></td><td></td><td>•</td><td>12.</td><td>5/30/07</td><td>Lisu</td><td></td><td></td><td>PRt</td><td></td><td></td><td></td><td>Sags</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                  | X                  | X                   | $\times$        |                         | •             | 12.                                                                                     | 5/30/07            | Lisu     |          |              | PRt         |            |            |         | Sags         |
| Bill To:     (Buyer)     DP       Purchase Order #:     Address:       Address:     City, State, Xip:       City, State:     Phone:       Phone:     Pax:       Pax:     Pax:       PH     418.1       City, State:     Quote #:       PH     418.1       City, State:     Quote #:       PH     418.1       City, State:     Quote #:       Diezel     Sampled By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | P                | F.                 |                     | B               |                         | 7             | Sample Notes                                                                            | Date/Time          | Intrix   | N        |              |             | ple ID     | Client Sam |         |              |
| Bill To: (Buyer) PPC<br>Purchase Order #:<br>Address:<br>City, State, Xip:<br>City, State, Xip:<br>Quote #:<br>Quote #:<br>Quote #:<br>PRC1<br>PARCE<br>Dent Scho<br>RANGE<br>MASSE<br>HOLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | £1:      | Die              | - 1-               | 501                 | ,Tex            |                         | <u></u><br>РН |                                                                                         |                    |          | l By:    |              | 50%         | 0%         | Rı         |         | Duc:         |
| Bill To: (Buyer)     PR     Analysis       Purchase Order #:     Address:     Address:       Address:     City, State, "ip:     Fax:       O     Phone:     Fax:       Quote #:     Bill To: (Buyer)     Analysis       IB:     /     /       Address:     Fax:     IB:       IB:     /     /       Quote #:     School       HCLD     HCLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 219      |                  | 2                  | ve                  | -               | P                       |               |                                                                                         |                    |          |          | City, State: |             |            |            |         | t Locat      |
| Bill To: (Buyer)     PR     Analysi       Purchase Order #:     Address:     Address:       Address:     .     .       City, State, Zip:     .     .       J     RC1     Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7        | { .<br>- L       | RAI                | int                 | Ø               |                         | 118           |                                                                                         | Quote #:           |          |          |              | NCION       | Lovi       | ide        |         | t. Nam       |
| Bill To: (Buyer)     PPC     Analysi       Purchase Order #:     Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | KA               | UFE                | Sc.                 |                 | RC                      | , /           |                                                                                         | Fax:               |          |          | Phone:       | 3283        | Fax: 88)   | 13180      |         |              |
| Bill To:     (Buyer)     DPC     Analysi       Purchase Order #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u> | <u> </u>         |                    | Λċ                  |                 | ./                      | <u></u>       |                                                                                         |                    |          | , Xip:   | City, State  | 10          | 17871      | D<br>20    | Zip: AB | State, i     |
| Bill To: (Buyer) DPC<br>Purchase Order #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ل        | $\left.\right\}$ |                    |                     |                 |                         |               |                                                                                         |                    |          |          | Address:     | S NE        | No. Sch /2 | TNDIA      | 121     | 85: L        |
| : JOHN HARRIE Bill To: (Buyer) PRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                  |                    |                     |                 |                         |               |                                                                                         |                    |          | )rder #: | Purchase (   | 5014        | TRA TK     | e Te       | PP      | any:         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                  | alysis             | Anu                 |                 |                         | <u> </u>      |                                                                                         | /                  | PRC      | luyer)   | Bill To: (F  |             | 4121216    |            | JOH     | rt To:       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i        | •                |                    | <br>                |                 |                         |               | ę                                                                                       |                    |          | (        |              | )           |            |            |         |              |

. ->-

**Purchase Order/Chain Of Custody** 

Page\_\_\_of\_\_\_

.

1





## ANACHEM INC.

8 Prestige Circle, Suite 104 Allen, Texas 75002 972/727-9003 • FAX # 972/727-9686 • 1-800-966-1186

**Customer Name: Date Received: Date Reported:** Submission #: **Project:** 

Tetra Tech EM, Inc. -Alb, N.M. August 13, 1997 at 09:30:00 August 15, 1997 9708000140 PRIDE PETROLEUM SERVICES

**SAMPLES** The submission consisted of 1 sample with sample I.D. shown in the attached data table.

TESTS The sample listed in the attached result pages was analyzed for: \* CORROSIVITY (EPA 9040)

- \* IGNITABILITY (ASTM D92)
- \* MERCURY DIGESTION, TCLP (EPA 7470) .
- \* MICROWAVE DIGESTION, TCLP (EPA 3015)
- \* REACTIVITY (FULL)
- \* TCLP HERBICIDES (EPA 8150A)
- \* TCLP PESTICIDES (EPA 8080A)
- \* TCLP RCRA MERCURY (EPA 7470)
- \* TCLP RCRA METALS (EPA 6010)
- \* TCLP SEMI-VOLATILES (EPA 8270)
- \* TCLP VOLATILES (EPA 8260)

**Distribution Of Reports** 

1-Mr. Tony Herald of Tetra Tech EM, Inc. -Alb, N.M. Ph. 505-881-3188 Fax 505-881-3283

Respectfully Submitted, Anachem,Inc.

Howard H. Hayden, B.S.

Chemist

C.E. Newton, Ph.D. Chemist

Submission #: 9708000140 lims

NOTE: Submitted material will be retained for 60 days unless notified or consumed in analysis. Material determined to be hazardous will be returned or a \$20 disposal fee will be assessed. Our letters and reports are for the exclusive use of the client to whom they are addressed. The use of our name must receive our prior written approval. Our letters and reports apply to the sample tested and/or inspected, and are not necessarily indicative of the qualitites of apparently identical or similar materials. Page / of 5 89107 to 89107

#### Client Sample #: WATER COMPOSITE

Laboratory ID #: Sample Container: Sampling Location: Sampling Date : Temperature (Celcius):4 89107 Order Type: Normal Matrix: Liquid 2xVOA Vial,3xLiter Amber,Plastic Bottle LOVINGTON, NM 08/11/97

#### CORROSIVITY (EPA 9040)

Analyte Corrosivity <u>Results(---)</u> 7.0 Detection Limit 0.0

Detection

#### IGNITABILITY (ASTM D92)

Ignitability: DOES NOT IGNITE AT ROOM TEMPERATURE; NOT HAZARDOUS

FLASH POINT = >150F

MERCURY DIGESTION, TCLP (EPA 7470) Mercury Digestion Date: 08/13/97

#### MICROWAVE DIGESTION, TCLP (EPA 3015) Microwave Digestion Date: 08/13/97

#### REACTIVITY (FULL)

Reactive Cyanide (EPA 9010): <0.2 mg/kg Reactive Sulfide (EPA 9030): <0.3 mg/kg Reactivity To Air: Negative Reactivity To Diluted HCl: Negative Reactivity To Diluted NaOH: Negative Reactivity To Water: Negative

#### TCLP HERBICIDES (EPA 8150A) Prep Date: 08/14/97

|                |                   |                      | Detection    |                  |
|----------------|-------------------|----------------------|--------------|------------------|
| <u>C.A.S.#</u> | <u>Analyte</u>    | <u>Results(mg/l)</u> | <u>Limit</u> | <u>Haz.Limit</u> |
| 94-75-7        | 2,4-D             | <0.010               | 0.010        | 10               |
| 93-72-1        | 2,4,5-TP (Silvex) | <0.003               | 0.003        | 1                |

#### TCLP PESTICIDES (EPA 8080A) Prep Date: 08/14/97

| <u>C.A.S.#</u> | <u>Analyte</u>      | Results(mg/l) | Limit | <u>Haz.Limit</u> |
|----------------|---------------------|---------------|-------|------------------|
| 58-89-9        | gamma-BHC (Lindane) | <0.010        | 0.010 | 0.04             |
| 57-74-9        | Chlordane           | <0.010        | 0.010 | 0.03             |
| 72-20-8        | Endrin              | <0.010        | 0.010 | 0.02             |
| 76-44-8        | Heptachlor          | < 0.005       | 0.005 | 0.008            |
| 1024-57-3      | Heptachlor Epoxide  | < 0.005       | 0.005 | 0.008            |
| 72-43-5        | Methoxychlor        | <0.010        | 0.010 | 10.0             |
| 8001-35-2      | Toxaphene           | <0.010        | 0.010 | 0.5              |

#### TCLP RCRA MERCURY (EPA 7470)

| <u>C.A.S.#</u><br>7439-97-6 | <u>Analyte</u><br>TCLP Mercury | <u>Results(mg/l)</u><br><0.0004                             | Detection<br>Limit<br>0.0004 | <u>Haz.Limit</u><br>0.2 |
|-----------------------------|--------------------------------|-------------------------------------------------------------|------------------------------|-------------------------|
| TCLP RCRA                   | METALS (EPA 6010)              |                                                             |                              |                         |
| <b>a</b> • <b>a</b> #       | A 1.4                          | $\mathbf{D}$ = $\mathbf{H}$ ( $\mathbf{r}$ = $\mathbf{H}$ ) | Detection                    | TT T 14                 |

| <u>C.A.S.#</u> | <u>Analyte</u> | <u>Results(mg/l)</u> | <u>Limit</u> | <u>Haz.Limit</u> |
|----------------|----------------|----------------------|--------------|------------------|
| 7440-38-2      | Arsenic        | 0.111                | 0.061        | 5                |
| 7440-39-3      | Barium         | 0.410                | 0.001        | 100.             |

Page 2 of 5

### TCLP RCRA METALS (EPA 6010)

| <u>C.A.S.#</u> | Amalata  |   |                      | Detection |           |
|----------------|----------|---|----------------------|-----------|-----------|
|                | Analyte  |   | <u>Results(mg/l)</u> | Limit     | Haz.Limit |
| 7440-43-9      | Cadmium  |   | < 0.008              | 0.008     | 1         |
| 7440-47-3      | Chromium |   | < 0.0075             |           |           |
| 7439-92-1      | Lead     |   |                      | 0.0075    | Э         |
| 7482-49-2      |          | - | <0.040               | 0.040     | 5         |
|                | Selenium |   | <0.050               | 0.050     | 1         |
| 7440-39-2      | Silver   |   | <0.030               | 0.030     | Ē         |

**n** .

...

## TCLP SEMI-VOLATILES (EPA 8270) Prep Date:: 08/13/97

| <u>C.A.S.</u> # | A m a last a          |                      | Detection |                  |
|-----------------|-----------------------|----------------------|-----------|------------------|
|                 | Analyte               | <u>Results(mg/l)</u> | _Limit    | <u>Haz.Limit</u> |
| no C.A.S.       | Cresol (Total)        | <1.0                 | 1.0       | 200.0            |
| 121 - 14 - 2    | 2,4-Dinitrotoluene    | <0.10                | 0.10      | 0.13             |
| 118-74-1        | Hexachlorobenzene     | <0.10                | 0.10      | 0.13             |
| 87-68-3         | Hexachlorobutadiene   | <0.20                | 0.20      | 0.5              |
| 67-72-1         | Hexachloroethane      | <0.10                | 0.10      | 3.0              |
| 98-95-3         | Nitrobenzene          | < 0.50               | 0.50      | 2.0              |
| 87-86-5         | Pentachlorophenol     | <0.20                | 0.20      | 100.0            |
| 110-86-1        | Pyridine              | <0.50                | 0.50      | 5.0              |
| 95-95-4         | 2,4,5-Trichlorophenol | <0.50                | 0.50      | 400.0            |
| 88-06-2         | 2,4,6-Trichlorophenol | <0.50                | 0.50      | 2.0              |

## TCLP VOLATILES (EPA 8260) Date analyzed: 08/13/97

| Am a last a          |                      | Detection                             |                                                                                                                                                                                                                                                                                                                                                         |
|----------------------|----------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | <u>Results(mg/I)</u> | Limit                                 | <u>Haz.Limit</u>                                                                                                                                                                                                                                                                                                                                        |
|                      | <0.10                |                                       | 0.5                                                                                                                                                                                                                                                                                                                                                     |
| Carbon Tetrachloride |                      |                                       | 0.5                                                                                                                                                                                                                                                                                                                                                     |
| Chlorobenzene        |                      |                                       | 100                                                                                                                                                                                                                                                                                                                                                     |
| Chloroform           |                      |                                       | 6.0                                                                                                                                                                                                                                                                                                                                                     |
| 1,4-Dichlorobenzene  |                      |                                       | 7.5                                                                                                                                                                                                                                                                                                                                                     |
|                      |                      |                                       | 0.5                                                                                                                                                                                                                                                                                                                                                     |
|                      |                      |                                       | 0.5                                                                                                                                                                                                                                                                                                                                                     |
|                      |                      |                                       | 200.0                                                                                                                                                                                                                                                                                                                                                   |
|                      |                      |                                       |                                                                                                                                                                                                                                                                                                                                                         |
|                      |                      |                                       | 0.7                                                                                                                                                                                                                                                                                                                                                     |
|                      |                      |                                       | 0.5                                                                                                                                                                                                                                                                                                                                                     |
| v myr Chloride       | <0.10                | 0.10                                  | 0.2                                                                                                                                                                                                                                                                                                                                                     |
|                      |                      | Benzene<0.10Carbon Tetrachloride<0.10 | AnalyteResults(mg/l)LimitBenzene< $0.10$ $0.10$ Carbon Tetrachloride< $0.10$ $0.10$ Chlorobenzene< $0.10$ $0.10$ Chloroform< $0.10$ $0.10$ 1,4-Dichlorobenzene< $0.10$ $0.10$ 1,2-Dichloroethane< $0.10$ $0.10$ 1,1-Dichloroethylene< $0.10$ $0.10$ Methyl Ethyl Ketone< $0.10$ $0.10$ Tetrachloroethylene< $0.10$ $0.10$ Vinul Chloride< $0.10$ $0.10$ |

Project: Pride Petroleum Services

Report To: Tetra Tech EM, Inc. Lab Number: 9708000140 Page <u>4</u> of <u>5</u>

#### TCLP VOLATILE ORGANICS QUALITY CONTROL DATA

|  | METHOD                                                                       | ANALYST                                                  | MAT                                 | RIX                                  | DATE | EXTRACTED                                      | DATE                             | ANALYZED                                     |
|--|------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------|--------------------------------------|------|------------------------------------------------|----------------------------------|----------------------------------------------|
|  | 8260                                                                         | Howard Hayd                                              | len Liqu                            | id                                   |      |                                                |                                  | 8/13/97                                      |
|  | SPIKE<br>COMPOUND                                                            | SPIKE<br><u>AMOUNT</u>                                   | % REC<br>_1                         | % RE(<br>_2                          | C    | % REC QC<br>LIMIT                              | <u>% VAR.</u>                    | % VAR QC<br><u>LIMIT</u>                     |
|  | 1,1-Dichloroethene<br>Trichloroethene<br>Benzene<br>Toluene<br>Chlorobenzene | 20 ppb<br>20 ppb<br>20 ppb<br>20 ppb<br>20 ppb<br>20 ppb | 83.3<br>86.2<br>91.9<br>91.1<br>103 | 80.6<br>84.5<br>91.8<br>92.3<br>99.1 |      | 20-234<br>71-157<br>37-151<br>47-150<br>37-160 | 3.2<br>2.0<br>0.11<br>1.3<br>3.8 | 25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0 |

### TCLP SEMI-VOLATILES QUALITY CONTROL DATA

| METHOD                                             | ANALYST                                  | MATR                         | <u>DAT</u>                  | <u>E EXTRACTED</u>                   | DATE                         | ANALYZED                     |
|----------------------------------------------------|------------------------------------------|------------------------------|-----------------------------|--------------------------------------|------------------------------|------------------------------|
| 8270                                               | Dennis Shaw                              | Liquid                       |                             | 8/13/97                              |                              | 8/13/97                      |
| SPIKE<br>COMPOUND                                  | SPIKE<br><u>AMOUNT</u>                   | % REC                        | % REC<br>_2                 | % REC QC<br><u>LIMIT</u>             | <u>% VAR.</u>                | % VAR QC<br><u>LIMIT</u>     |
| Phenol<br>2-Chlorophenol<br>Acenaphthene<br>Pyrene | 200 ppb<br>200 ppb<br>100 ppb<br>100 ppb | 68.2<br>65.1<br>86.8<br>99.8 | 74.4<br>68.7<br>92.9<br>101 | 10-120<br>23-134<br>47-145<br>52-125 | 8.31<br>5.16<br>6.48<br>1.30 | 42.0<br>40.0<br>31.0<br>31.0 |

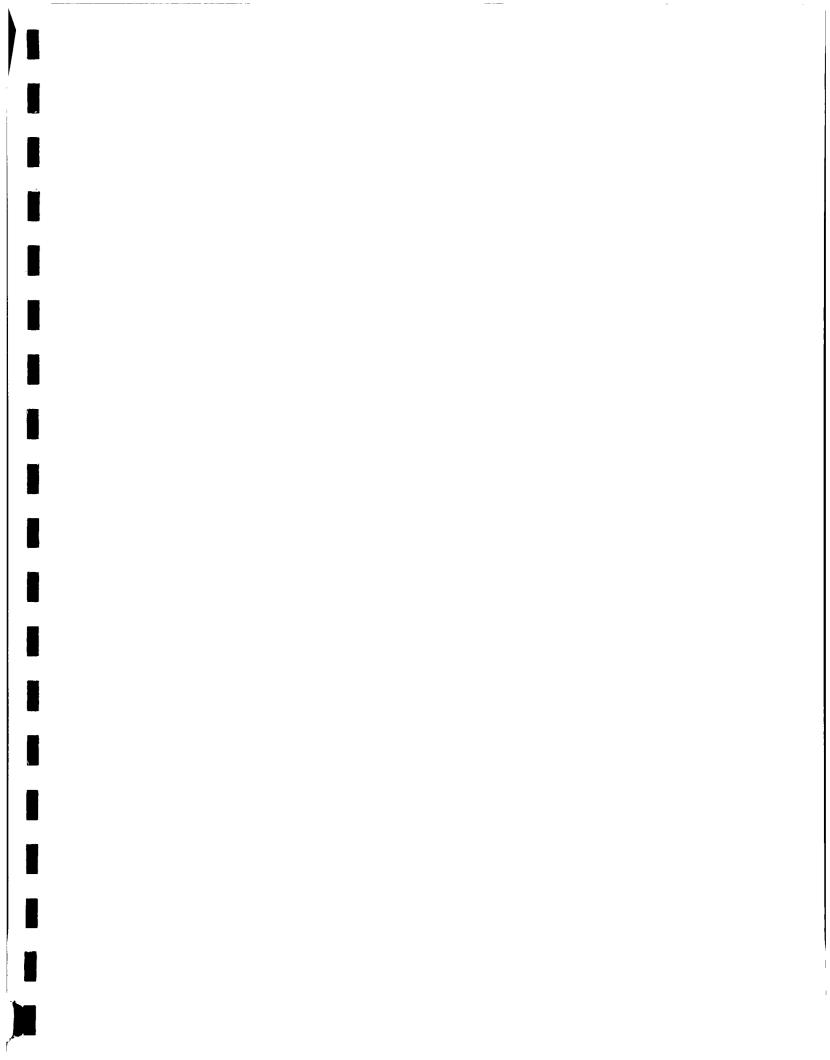
#### TCLP PESTICIDES QUALITY CONTROL DATA

| METHOD                                                             | <u>ANALYST</u>                                        | MATI                             | RIX                              | DATE EXTRACTED                                   | DATE                                 | ANALYZED                             |
|--------------------------------------------------------------------|-------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------|
| 8080                                                               | Dennis Shaw                                           | Liquio                           | ł                                | 8/14/97                                          |                                      | 8/14/97                              |
| SPIKE -<br><u>COMPOUND</u>                                         | SPIKE<br><u>AMOUNT</u>                                | % REC<br>_1                      | % RE<br>_2                       |                                                  | <u>% VAR.</u>                        | % VAR QC<br><u>LIMIT</u>             |
| 4,4'-DDD<br>4,4'-DDT<br>Heptachlor<br>Endosulfan Sulfate<br>Endrin | 1.0 ppb<br>1.0 ppb<br>0.20 ppb<br>1.0 ppb<br>0.20 ppb | 115<br>116<br>95.1<br>122<br>109 | 106<br>109<br>87.0<br>117<br>101 | $31-141 \\ 25-160 \\ 33-135 \\ 26-144 \\ 30-147$ | 7.83<br>6.03<br>8.52<br>4.10<br>7.34 | 35 · ·<br>35<br>35<br>35<br>35<br>35 |

Report To: Tetra Tech EM, Inc. Lab Number: 9708000140 Page <u>5</u> of <u>5</u> Project: Pride Petroleum Services

#### TCLP HERBICIDES QUALITY CONTROL DATA

|   | <u>METHOD</u>            | ANALYST                | N            | ATRIX        | DATE EXTRACTEI             | <u>D</u> <u>D</u> A | TE ANALYZED              |  |
|---|--------------------------|------------------------|--------------|--------------|----------------------------|---------------------|--------------------------|--|
| • | 8150                     | Dennis Shaw            | Li           | iquid        | 8/14/97                    |                     | 8/14/97                  |  |
|   | SPIKE<br><u>COMPOUND</u> | SPIKE<br><u>AMOUNT</u> | % REC<br>_1  | % RE(<br>_2  | C % REC QC<br><u>LIMIT</u> | <u>% VAR.</u>       | % VAR QC<br><u>LIMIT</u> |  |
|   | 2,4-D<br>2,4,5-T         | 0.5 ppm<br>0.5 ppm     | 67.2<br>68.1 | 54.9<br>56.3 | 8.0-170<br>8.0-170         | $18.3 \\ 17.3$      | 35<br>35                 |  |
|   | 2,4,5-TP (Silvex)        | 0.5 ppm                | 73.4         | 62.0         | 8.0-170                    | 15.5                | 35                       |  |


#### QUALITY CONTROL DATA

| ANALYTE                 | DATE<br>ANALYZED | SPIKE<br>(ppm) | STAND.<br><u>DEV.</u> | 、COEFF. OF<br><u>VAR %</u> | <u>REC1/%</u> | REC2/% |
|-------------------------|------------------|----------------|-----------------------|----------------------------|---------------|--------|
| Reactive Cyanide        | 8/14/97          |                | 0                     | 0                          | 105           | 93     |
| <b>Reactive Sulfide</b> | 8/14/97          |                | 284                   | 0.8                        | 70.3          | 105    |
| Mercury                 | 8/14/97          |                | 0.106                 | 1.4                        | 102           | 100    |
| Arsenic                 | 8/14/97          |                | 0.181                 | 5.0                        | 90            | 97     |
| Barium                  | 8/14/97          |                | 0.185                 | 5.2                        | 98            | 91     |
| Cadmium                 | 8/14/97          |                | 0.203                 | 7.7                        | 78            | 87     |
| Chromium                | 8/14/97          |                | 0.139                 | 4.2                        | 91            | 86     |
| Lead                    | 8/14/97          |                | 0.135                 | 4.3                        | 86            | 91     |
| Selenium                | 8/14/97          |                | 0.339                 | 10                         | 85            | 98     |
| Silver                  | 8/14/97          |                | 0.053                 | 1.5                        | 89            | 87     |

Standard Deviation = (x1-x2)/1.414 Coefficient of Variability % = (S.D./Avg.) X 100 Recovery % = [(spiked-unspiked)/expected] X 100

| •                                 |                                        |                   |                  |                      | 70007        | Fav. 079 797 0494 | 7070                                                                                      |
|-----------------------------------|----------------------------------------|-------------------|------------------|----------------------|--------------|-------------------|-------------------------------------------------------------------------------------------|
|                                   | יוורי                                  |                   | Allen, 1A / JUVZ |                      |              | BA:               | Analusia                                                                                  |
| REPOIL IN: ANTHONY F.             | · HEKALT                               | ou to: (an))      |                  |                      |              |                   |                                                                                           |
| Company: TELRA TECH               |                                        | Purchase Order #: |                  |                      |              |                   |                                                                                           |
| Address: G121 INDIAN SCHOOL BOAD, | N SCHOOL BOAD, NE                      | Address:          |                  |                      |              |                   |                                                                                           |
| City, State, Zip: Augurui         | City, State, Zip: AUGUONERAUE, NM 8740 | Clty, State, Zlp: |                  |                      |              | es<br>olat        |                                                                                           |
| Phone: 505-861.518                | Phone: 505-501 -5188Fax: 505-881-3283  | Phone:            |                  | Fax:                 |              | パート               | ন্দ্র                                                                                     |
| Project Name: FRIDE               | Petroleum Services                     |                   |                  | Quote #:             |              | SEN               | HER                                                                                       |
|                                   | NM                                     | City, State:      |                  |                      |              | <b>P</b> :        | P +<br>L                                                                                  |
| 1                                 | 1% 2                                   | Sampled By:       | ALLAN HO         | LODEE                |              | Tel               | د<br>۲                                                                                    |
|                                   | Client Sample ID                       |                   | Matrix           | Date/Time            | Sample Notes |                   | T<br>F                                                                                    |
| <b>9</b> 107 1.                   | NATER COMPOSITE                        |                   | WATER            | 8-11-97              |              | X                 | X                                                                                         |
| 2.                                |                                        |                   |                  | 4:39m                |              |                   |                                                                                           |
| 3.                                |                                        |                   |                  |                      |              |                   |                                                                                           |
| 4.                                |                                        |                   |                  |                      |              |                   |                                                                                           |
| 5.                                |                                        |                   |                  |                      |              |                   |                                                                                           |
| δ.                                |                                        |                   |                  |                      |              |                   |                                                                                           |
| 7.                                |                                        |                   |                  |                      |              |                   |                                                                                           |
| 8.                                |                                        |                   |                  |                      |              |                   |                                                                                           |
| 9.                                |                                        |                   |                  |                      |              | -                 |                                                                                           |
| , 10.                             |                                        |                   |                  |                      |              |                   |                                                                                           |
| Relinquished By                   | Date Time Received By                  | Date              | Time             | Sample Receipt Notes |              | In the event the  | In the event that Anachem determines that a completion is harandous the client agrees to: |
|                                   | 811474.36 June how                     | relill 8/13/97    | 7 9:30           | Temperature          | yor          | Pay For Sam       | Pay For Sample Disposal                                                                   |
|                                   | •                                      |                   |                  | Preserved Properly   | 44           |                   |                                                                                           |
|                                   |                                        |                   |                  | COC Seals Intact     | 44           |                   |                                                                                           |
|                                   |                                        |                   |                  | Method of Shipment   | Fe           | Submission #      |                                                                                           |
|                                   |                                        |                   |                  |                      |              |                   | 04/-8014                                                                                  |

) ) ) ٦. )





## ANACHEM INC.

8 Prestige Circle, Suite 104 Allen, Texas 75002 972/727-9003 • FAX # 972/727-9686 • 1-800-966-1186

| Customer Name:        | Tetra Tech EM, IncAlb, N.M.<br>August 4, 1997 at 15:00:00 |
|-----------------------|-----------------------------------------------------------|
| <b>Date Received:</b> | August 4, 1997 at 15:00:00                                |
| <b>Date Reported:</b> | August 20, 1997                                           |
| Submission #:         | 9708000031                                                |
| <b>Project:</b>       | PRIDE PETROLEUM SERVICES                                  |

**SAMPLES** The submission consisted of 7 samples with sample I.D.'s shown in the attached data tables.

#### TESTS

The samples listed in the attached result pages were analyzed for: \* BTEX/TPH (EPA 8020/MOD 8015 GAS-RANGE)

- \* CORROSIVITY (EPA 9040)
- \* IGNITABILITY (ASTM D92)
- \* MERCURY DIGESTION, TCLP (EPA 7470)
- \* MICROWAVE DIGESTION, TCLP (EPA 3015)
- \* REACTIVITY (FULL)
- \* SEMI-VOLATILES (ÉPA 8270)
- \* TCLP HERBICIDES (EPA 8150A)
- \* TCLP NON-VOLATILE EXTRACTION (EPA 1311)
- \* TCLP PESTICIDES (EPA 8080A)
- \* TCLP RCRA MERCURY (EPA 7470)
- \* TCLP RCRA METALS (EPA 6010)
- \* TCLP SEMI-VOLATILES (EPA 8270)
- \* TCLP VOLATILES (EPA 8260)
- \* TCLP ZHE FOR VOLATILE ORGANICS (EPA 1311)
- \* TPH DIESEL-RANGE (MOD 8015)
- \* VOLATILES (EXPANDED EPA 8260)

#### **Distribution Of Reports**

Submission #: 9708000031 lims

1-Mr. Tony Herald of Tetra Tech EM, Inc. -Alb, N.M. Ph. 505-881-3188 Fax 505-881-3283

Respectfully Submitted, Anachem,Inc.

Howard H. Hayden, B.S. Chemist

C.E. Newton, Ph.D. Chemist

NOTE: Submitted material will be retained for 60 days unless notified or consumed in analysis. Material determined to be hazardous will be returned or a \$20 disposal fee will be assessed. Our letters and reports are for the exclusive use of the client to whom they are addressed. The use of our name must receive our prior written approval. Our letters and reports apply to the sample tested and/or inspected, and are not necessarily indicative of the qualitites of apparently identical or similar materials. 88594 to 89192 Page \_\_\_\_\_ of \_\_\_\_3

.

## SEMI-VOLATILES (EPA 8270) Semi-Volatile prep date: 08/05/97

Ξ,

| Semi-Volatile prep date: 08/05/97     | <u>Results(ug/kg)</u> | Detection Limit |
|---------------------------------------|-----------------------|-----------------|
| Acenaphthene                          | <330                  | <u>330</u>      |
| Acenaphthylene                        | <330                  | 330             |
| Aniline                               | <1650                 |                 |
| Anthracene                            | <330                  | 1650            |
| Benzidine                             | <2500                 | 330             |
| Benzo (a) anthracene                  |                       | 2500            |
| Benzo (a) pyrene                      | <330                  | 330             |
| Benzo (b) fluoranthene                | <660                  | 660             |
| Benzo (g,h,i) perylene                | <660                  | 660             |
| Benzoic Acid                          | <330                  | 330             |
| Benzo (k) fluoranthene                | <1650                 | 1650            |
|                                       | <660                  | 660             |
| Benzyl Alcohol                        | <660                  | 660             |
| 4-Bromophenyl-phenylether             | <660                  | 660             |
| Butylbenzylphthalate                  | <660                  | 660             |
| Carbazole                             | <660                  | 660             |
| 4-Chloro-3-methylphenol               | <660                  | 660             |
| 4-Chloroaniline                       | <660                  | 660             |
| bis (2-Chloroethoxy) methane          | <330                  | 330             |
| bis(2-Chloroethyl) ether              | <330                  | 330             |
| bis(2-Chloroisopropyl) ether          | <660                  | 660             |
| 2-Chloronaphthalene                   | <330                  | 330             |
| 2-Chlorophenol                        | <330                  | 330             |
| 4-Chlorophenyl-phenylether            | <660                  | 660             |
| Chrysene                              | <330                  | 330             |
| Dibenz (a,h) anthracene               | <1650                 | 1650            |
| Dibenzofuran                          | <1650                 | 1650            |
| 1,3-Dichlorobenzene                   | <330                  | 330             |
| 1,4-Dichlorobenzene                   | <330                  | 330             |
| 1,2-Dichlorobenzene                   | <330                  | 330             |
| 3,3'-Dichlorobenzidine                | <670                  | 670             |
| 2,4-Dichlorophenol                    | <660                  | 660             |
| Diethylphthalate                      | <660                  | 660             |
| 2,4-Dimethylphenol                    | <660                  | 660             |
| Dimethylphthalate                     | <660                  | 660             |
| Di-n-butylphthalate                   | <660                  | 660             |
| 4,6-Dinitro-2-methylphenol            | <660                  | 660             |
| 2,4-Dinitrophenol                     | <1650                 | 1650            |
| 2,6-Dinitrotoluene                    | <660                  | 660             |
| 2,4-Dinitrotoluene                    |                       |                 |
| Di-n-octylphthalate                   | <660<br><660          | 660             |
| 1,2-Diphenylhydrazine (as Azobenzene) | <660                  | 660             |
| bis (2-Ethylhexyl) phthalate          |                       | 660             |
| Fluoranthene                          | <660                  | 660             |
| Fluorene                              | <330                  | 330             |
| Hexachlorobenzene                     | <330                  | 330             |
| Hexachlorobutadiene                   | <330                  | 330             |
| Hexachlorocyclopentadiene             | <330                  | 330             |
| Hexachloroethane                      | <330                  | 330             |
| Indeno (1,2,3-cd) pyrene              | <330                  | 330             |
| Isophorone                            | <330<br><660          | 330             |
|                                       | <550                  | 660             |

#### SEMI-VOLATILES (EPA 8270) Analyte

| <u>Results(ug/kg)</u> | <b>Detection</b> Limit                                                                                                                                                                                                     |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | 330                                                                                                                                                                                                                        |
|                       | 660                                                                                                                                                                                                                        |
|                       | 660                                                                                                                                                                                                                        |
|                       | 330                                                                                                                                                                                                                        |
|                       | 660                                                                                                                                                                                                                        |
|                       | 1650                                                                                                                                                                                                                       |
|                       |                                                                                                                                                                                                                            |
|                       | 1650                                                                                                                                                                                                                       |
|                       | 660                                                                                                                                                                                                                        |
|                       | 660                                                                                                                                                                                                                        |
|                       | 1650                                                                                                                                                                                                                       |
|                       | 330                                                                                                                                                                                                                        |
|                       | 330                                                                                                                                                                                                                        |
|                       | 660                                                                                                                                                                                                                        |
| -                     | 1650                                                                                                                                                                                                                       |
|                       | 330                                                                                                                                                                                                                        |
|                       | 330                                                                                                                                                                                                                        |
|                       | 330                                                                                                                                                                                                                        |
| <330                  | 330                                                                                                                                                                                                                        |
| <660                  | 660                                                                                                                                                                                                                        |
| . <660                | 660                                                                                                                                                                                                                        |
|                       | $\begin{array}{c} <330\\ <660\\ <660\\ <330\\ <660\\ <1650\\ <660\\ <660\\ <660\\ <1650\\ <330\\ <330\\ <330\\ <330\\ <330\\ <330\\ <330\\ <330\\ <330\\ <330\\ <330\\ <330\\ <330\\ <330\\ <330\\ <330\\ <660\end{array}$ |

#### VOLATILES (EXPANDED EPA 8260) Date Analyzed: 08/04/97

| Date Analyzed: 08/04/97     |                       |                        |
|-----------------------------|-----------------------|------------------------|
| Analyte                     | <u>Results(ug/kg)</u> | <b>Detection</b> Limit |
| Acetone                     | <10                   | <u>10</u>              |
| Benzene                     | <5.0                  | 5.0                    |
| Bromobenzene                | <5.0                  | 5.0                    |
| Bromochloromethane          | <15                   | 15                     |
| Bromoform                   | <10                   | 10                     |
| 2-Butanone (MEK)            | <20                   | 20                     |
| Butyl Benzene (total)       | 94                    | 10                     |
| Carbon Disulfide            | <10                   | 10                     |
| Carbon Tetrachloride        | <3.0                  |                        |
| Chlorobenzene               | <5.0                  | 3.0                    |
| Chlorodibromomethane        | <5.0                  | 5.0                    |
| Chloroethane                | <5.0<br><10           | 5.0                    |
| Chloroform                  |                       | 10                     |
| Chlorotoluenes (total)      | <10                   | . 10                   |
| 1,2-Dibromo-3-chloropropane | <10                   | 10                     |
| 1,2-Dibromoethane           | <5.0                  | 5.0                    |
| Dibromomethane              | <10                   | 10                     |
| 1,2-Dichlorobenzene         | <10                   | 10                     |
| 1,3-Dichlorobenzene         | <5.0                  | 5.0                    |
| 1,4-Dichlorobenzene         | <5.0                  | 5.0                    |
| Dichlorobromomethane        | <5.0                  | 5.0                    |
| Dichlorodifluoromethane     | <3.0                  | 3.0                    |
| 1,1-Dichloroethane          | <10                   | 10                     |
|                             | <5                    | 5                      |
| 1,2-Dichloroethane          | <5.0                  | 5.0                    |
| cis-1,2-Dichloroethene      | <10                   | 10                     |
| trans-1,2-Dichloroethene    | <10                   | 10                     |
| 1,1-Dichloroethene          | <5.0                  | 5.0                    |
| 1,2-Dichloropropane         | <6.0                  | 6.0                    |
| 2,2-Dichloropropane         | <5.0                  | 5.0                    |
| cis-1,3-Dichloropropene     | <6.0                  | 6.0                    |
| trans-1,3-Dichloropropene   | <6.0                  | 6.0                    |
| 1,1-Dichloropropene         | <10                   | 10                     |
| Ethyl Benzene               | <8.0                  | 8.0                    |
| Hexachlorobutadiene         | <10                   | 10                     |
|                             |                       |                        |

Client Name: Tetra Tech EM, Inc. -Alb, N.M. Submission #: 9708000031

Project Name: PRIDE PETROLEUM SERVICES Report Date: 08/20/97

**VOLATILES (EXPANDED EPA 8260)** 

| <10         <5.0         71         <5.0         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10 | 10<br>5.0<br>5.0<br>10<br>10<br>15<br>10<br>5.0<br>10<br>5.0 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 71<br><5.0<br><10<br><15<br><10<br><5.0<br><10<br><5.0                                                                                                                                                                                                                                                                       | 5.0<br>5.0<br>10<br>10<br>15<br>10<br>5.0<br>10<br>5.0       |
| <5.0<br><10<br><15<br><10<br><5.0<br><10<br><5.0                                                                                                                                                                                                                                                                             | 5.0<br>10<br>10<br>15<br>10<br>5.0<br>10<br>5.0              |
| <10<br><10<br><15<br><10<br><5.0<br><10<br><5.0                                                                                                                                                                                                                                                                              | 10<br>10<br>15<br>10<br>5.0<br>10<br>5.0                     |
| <10<br><15<br><10<br><5.0<br><10<br><5.0                                                                                                                                                                                                                                                                                     | 10<br>15<br>10<br>5.0<br>10<br>5.0                           |
| <15<br><10<br><5.0<br><10<br><5.0                                                                                                                                                                                                                                                                                            | 15<br>10<br>5.0<br>10<br>5.0                                 |
| <10<br><5.0<br><10<br><5.0                                                                                                                                                                                                                                                                                                   | 10<br>5.0<br>10<br>5.0                                       |
| <5.0<br><10<br><5.0                                                                                                                                                                                                                                                                                                          | 5.0<br>10<br>5.0                                             |
| <10<br><5.0                                                                                                                                                                                                                                                                                                                  | 10<br>5.0                                                    |
| <5.0                                                                                                                                                                                                                                                                                                                         | 5.0                                                          |
|                                                                                                                                                                                                                                                                                                                              |                                                              |
| ~10                                                                                                                                                                                                                                                                                                                          | 10                                                           |
| <b>\10</b>                                                                                                                                                                                                                                                                                                                   | 10                                                           |
| <3.0                                                                                                                                                                                                                                                                                                                         | 3.0                                                          |
| <3.0                                                                                                                                                                                                                                                                                                                         | 3.0                                                          |
| <15                                                                                                                                                                                                                                                                                                                          | 15                                                           |
| <5.0                                                                                                                                                                                                                                                                                                                         | 5.0                                                          |
| <5.0                                                                                                                                                                                                                                                                                                                         | 5.0                                                          |
| <5.0                                                                                                                                                                                                                                                                                                                         | 5.0                                                          |
| <10                                                                                                                                                                                                                                                                                                                          | 10                                                           |
| <5.0                                                                                                                                                                                                                                                                                                                         | 5.0                                                          |
|                                                                                                                                                                                                                                                                                                                              | 10                                                           |
| 60                                                                                                                                                                                                                                                                                                                           | 5.0                                                          |
| <b>60</b><br><5.0                                                                                                                                                                                                                                                                                                            | 0.0                                                          |
|                                                                                                                                                                                                                                                                                                                              | 2.0                                                          |
| <5.0                                                                                                                                                                                                                                                                                                                         |                                                              |
| <5.0<br><2.0                                                                                                                                                                                                                                                                                                                 | 2.0                                                          |
|                                                                                                                                                                                                                                                                                                                              | <i 111<="" td=""></i>                                        |

BIS (CHLOROMETHYL) ETHER ALPHA,BETA,GAMMA,TECH-HCH ISOPHORONE <20 u <660 ug/kg <660 ug l kg <20 ug/kg <660 ug/kg <330 ug/kg N-NITROSOPYRROLIDINE 1-METHYLNAPHTHALENE

Client Sample #:WASH BAY WALL COMPOSITELaboratory ID #:88595Order Type: Normal Matrix: SoilSample Container:3x4oz EPA Approved Glass Jar\Aqua LidSampling Location:LOVINGTON, NM Sampling Date : Temperature (Celcius):4 08/01/97

### SEMI-VOLATILES (EPA 8270) Semi-Volatile prep date: 08/05/97

| Semi-volatile prep date: 08/05/97 |                       |                        |
|-----------------------------------|-----------------------|------------------------|
| Analyte                           | <u>Results(ug/kg)</u> | <b>Detection Limit</b> |
| Acenaphthene                      | <330                  | 330                    |
| Acenaphthylene                    | <330                  | 330                    |
| Aniline                           | <1650                 | 1650                   |
| Anthracene                        | <330                  | - 330                  |
| Benzidine                         | <2500                 | 2500                   |
| Benzo (a) anthracene              | <330                  | 330                    |
| Benzo (a) pyrene                  | <660                  | 660                    |
| Benzo (b) fluoranthene            | <660                  | 660                    |
| Benzo (g,h,i) perylene            | <b>&lt;330</b>        | 330                    |
| Benzoic Acid                      | <1650                 | 1650                   |
| Benzo (k) fluoranthene            | <660                  | 660                    |
| Benzyl Alcohol                    | <660                  | 660                    |
| 4-Bromophenyl-phenylether         | <660                  | 660                    |
| Butylbenzylphthalate              | <660                  | 660                    |
| Carbazole                         | <660                  | 660                    |
| 4-Chloro-3-methylphenol           | <660                  | 660                    |
|                                   |                       |                        |

SEMI-VOLATILES (EPA 8270)

| <u>Results(ug/kg)</u><br><660 | Detection Limit<br>660 |
|-------------------------------|------------------------|
|                               | 330                    |
|                               | 330                    |
|                               | 660                    |
|                               | 330                    |
|                               | 330                    |
|                               | 660                    |
|                               | 330                    |
|                               | 1650                   |
|                               | 1650                   |
|                               | 330                    |
|                               | 330                    |
|                               | 330                    |
|                               | 670                    |
|                               |                        |
|                               | 660<br>660             |
|                               | 660<br>660             |
|                               | 660                    |
|                               | 660                    |
|                               | 660                    |
|                               | 660                    |
|                               | 1650                   |
|                               | 660                    |
|                               | 660                    |
|                               | 660                    |
|                               | 660                    |
|                               | 660                    |
|                               | 330                    |
|                               | 330                    |
|                               | 330                    |
| <330                          | 330                    |
| <330                          | 330                    |
| <330                          | 330                    |
| <330                          | 330                    |
| <660                          | 660                    |
|                               | 330                    |
|                               | 660                    |
|                               | 660                    |
|                               | 330                    |
|                               | 660                    |
|                               | 1650                   |
|                               | 1650                   |
|                               | 660                    |
|                               | 660                    |
|                               | 1650                   |
|                               | 330                    |
|                               | 330                    |
|                               | 660                    |
|                               | 1650                   |
|                               | 330                    |
|                               | 330                    |
|                               | 330                    |
|                               | 330                    |
|                               |                        |
| <660                          | 660                    |
|                               | <330<br><330           |

**VOLATILES (EXPANDED EPA 8260)** Date Analyzed: 08/04/97

| Analyte                                          | <u>Results(ug/kg)</u> | Detection Limit |
|--------------------------------------------------|-----------------------|-----------------|
| Acetone                                          | <10                   | 10              |
| Benzene                                          | <5.0                  | 5.0             |
| Bromobenzene                                     | <5.0                  | 5.0             |
| Bromochloromethane                               | . <19                 | 15              |
| Bromoform                                        | <10                   | 10              |
| 2-Butanone (MEK)                                 | <20                   | 20              |
| Butyl Benzene (total)                            | 31                    | 10              |
| Carbon Disulfide                                 | <10                   | 10              |
| Carbon Tetrachloride                             | <3.0                  | 3.0             |
| Chlorobenzene                                    | <5.0                  | 5.0             |
| Chlorodibromomethane<br>Chloroethane             | <5.0                  | 5.0             |
| Chloroform                                       | <10<br><10            | 10              |
| Chlorotoluenes (total)                           | <10<br><10            | 10<br>10        |
| • •                                              | <5.0                  | 5.0             |
| 1,2-Dibromo-3-chloropropane<br>1,2-Dibromoethane | <5.0<br><10           |                 |
| Dibromomethane                                   |                       | 10              |
| 1,2-Dichlorobenzene                              | <10<br>. <5.0         | 10<br>5.0       |
| 1,2-Dichlorobenzene<br>1,3-Dichlorobenzene       | - <5.0<br><5.0        | 5.0             |
| 1,3-Dichlorobenzene                              | <5.0<br><5.0          | 5.0             |
| Dichlorobromomethane                             | <3.0                  | 3.0             |
| Dichlorodifluoromethane                          | <3.0<br><10           |                 |
|                                                  |                       | 10<br>F         |
| 1,1-Dichloroethane<br>1,2-Dichloroethane         | <5<br><5.0            | 5<br>5.0        |
| cis-1,2-Dichloroethene                           | <5.0                  | 5.0<br>10       |
| trans-1,2-Dichloroethene                         | <10<br><10            | 10              |
| 1,1-Dichloroethene                               | <10                   | 5.0             |
| 1,2-Dichloropropane                              | <6.0                  | 6.0             |
| 2,2-Dichloropropane                              | <5.0                  | 5.0             |
| cis-1,3-Dichloropropene                          | <6.0                  | 6.0             |
| trans-1,3-Dichloropropene                        | <6.0                  | 6.0             |
| 1,1-Dichloropropene                              | <10                   | 10              |
| Ethyl Benzene                                    | <8.0                  | 8.0             |
| Hexachlorobutadiene                              | <10                   | 10              |
| 2-Hexanone                                       | <10                   | 10              |
| Isopropyl Benzene                                | <5.0                  | 5.0             |
| p-Isopropyl toluene                              | 40                    | 5.0             |
| 4-Methyl-2-Pentanone                             | <5.0                  | 5.0             |
| Methyl Bromide                                   | <10                   | 10              |
| Methyl Chloride                                  | <10                   | 10              |
| Methylene Chloride                               | <15                   | 15              |
| Naphthalene                                      | <10                   | 10              |
| n-Propyl benzene                                 | <5.0                  | 5.0             |
| Styrene                                          | <10                   | 10              |
| 1,1,2,2-Tetrachloroethane                        | <5.0                  | 5.0             |
| 1,1,1,2-Tetrachloroethane                        | <10                   | 10              |
| Tetrachloroethene                                | <3.0                  | 3.0             |
| Toluene                                          | <3.0                  | 3.0             |
| Trichlorobenzenes (total)                        | <15                   | 15              |
| 1,1,1-Trichloroethane                            | <5.0                  | 5.0             |
| 1,1,2-Trichloroethane                            |                       | 5.0             |
| Trichloroethene                                  | <5.0                  | 5.0             |
| Trichlorofluoromethane                           | <10                   | 10              |
| 1,2,3-Trichloropropane                           | <5.0                  | 5.0             |
| Trimethylbenzenes (total)                        | 35                    | 10              |
| Vinyl Acetate                                    | <5.0                  | 5.0             |
| Vinyl Chloride                                   | <2.0                  | 2.0             |

L

/

#### **VOLATILES (EXPANDED EPA 8260)** Analyte Results(ug/kg) **Detection Limit** Xylene (Total) ACROLEIN <10 10 <20 ug/kg <20 ug/kg ACRYLONITRILE <660 ug / kg <660 ug / kg BIS (CHLOROMETHYL) ETHER ALPHA, BETA, GAMMA, TECH-HCH ISOPHÓRONÉ <20 ug/kg N-NITROSOPYRROLIDINE 1-METHYLNAPHTHALENE <660 ug/kg <330 ug/kg

#### Client Sample #: MECHANICS PIT FLOOR COMPOSITE

| Laboratory ID #:        | 88596 Order Type: Normal Matrix: Soil |
|-------------------------|---------------------------------------|
| Sample Container:       | 3x4oz EPA Approved Glass Jar\Aqua Lid |
| Sampling Location:      | LOVINGTOÑ, NM                         |
| Sampling Date :         | 08/01/97                              |
| Temperature (Celcius):4 |                                       |

### SEMI-VOLATILES (EPA 8270) Semi-Volatile prep date: 08/05/97

| Semi-Volatile prep date: 08/05/97 |                       | •                      |
|-----------------------------------|-----------------------|------------------------|
| Analyte                           | <u>Results(ug/kg)</u> | <u>Detection Limit</u> |
| Acenaphthene                      | <330                  | 330                    |
| Acenaphthylene                    | <330                  | 330                    |
| Aniline                           | <1650                 | 1650                   |
| Anthracene                        | <330                  | . 330                  |
| Benzidine                         | <2500                 | 2500                   |
| Benzo (a) anthracene              | <330                  | 330                    |
| Benzo (a) pyrene                  | <660                  | 660                    |
| Benzo (b) fluoranthene            | <660                  | 660                    |
| Benzo (g,h,i) perylene            | <330                  | 330                    |
| Benzoic Acid                      | <1650                 | 1650                   |
| Benzo (k) fluoranthene            | <660                  | 660                    |
| Benzyl Alcohol                    | <660                  | 660                    |
| 4-Bromophenyl-phenylether         | <660                  | 660                    |
| Butylbenzylphthalate              | <660                  | 660                    |
| Carbazole                         | <660                  | 660                    |
| 4-Chloro-3-methylphenol           | <660                  | 660                    |
| 4-Chloroaniline                   | <660                  | 660                    |
| bis (2-Chloroethoxy) methane      | <330                  | 330                    |
| bis(2-Chloroethyl) ether          | <330                  | 330                    |
| bis(2-Chloroisopropyl) ether      | <660                  | 660                    |
| 2-Chloronaphthalene               | <330                  | 330                    |
| 2-Chlorophenol                    | <330                  | 330                    |
| 4-Chlorophenyl-phenylether        | <660                  | 660                    |
| Chrysene                          | <330                  | 330                    |
| Dibenz (a,h) anthracene           | <1650                 | 1650                   |
| Dibenzofuran                      | <1650                 | 1650                   |
| 1,3-Dichlorobenzene               | <330                  | 330                    |
| 1,4-Dichlorobenzene               | <330                  | 330                    |
| 1,2-Dichlorobenzene               | <330                  | 330                    |
| 3,3'-Dichlorobenzidine            | <670                  | 670                    |
| 2,4-Dichlorophenol                | <660                  | 660                    |
| Diethylphthalate                  | <660                  | 660                    |
| 2,4-Dimethylphenol                | <660                  | 660                    |
| Dimethylphthalate                 | <660                  | 660                    |
| Di-n-butylphthalate               | <660                  | 660                    |
| 4,6-Dinitro-2-methylphenol        | <660                  | 660                    |
| 2,4-Dinitrophenol                 | <1650                 | 1650                   |
| 2,6-Dinitrotoluene                | <660                  | 660                    |
| 2,4-Dinitrotoluene                | <660                  | 660                    |

~ ^ ~ ~

#### SEMI-VOLATILES (EPA 8270) Analyte

•

| Analyte                               | Results(ug/kg) | <b>Detection</b> Limit |
|---------------------------------------|----------------|------------------------|
| Di-n-octylphthalate                   | <660           | <u>660</u>             |
| 1,2-Diphenylhydrazine (as Azobenzene) | <660           | 660                    |
| bis (2-Ethylhexyl) phthalate          | <660           | 660                    |
| Fluoranthene                          | <330           | 330                    |
| Fluorene                              | <330           | 330                    |
| Hexachlorobenzene                     | <330           | 330                    |
| Hexachlorobutadiene                   | <330           | 330                    |
| Hexachlorocyclopentadiene             | <330           | 330                    |
| Hexachloroethane                      | <330           |                        |
| Indeno (1,2,3-cd) pyrene              | <330           | 330                    |
| Isophorone                            | <660           | 660                    |
| 2-Methylnaphthalene                   | <330           | 330                    |
| 2-Methylphenol                        | <660           | 660                    |
| 4-Methylphenol                        | <660           | 660                    |
| Naphthalene                           | <330           | 330                    |
| 2-Nitroaniline                        | <660           | 660                    |
| 4-Nitroaniline                        | <1650          | 1650                   |
| 3-Nitroaniline                        | <1650          | 1650                   |
| Nitrobenzene                          | <660           | 660                    |
| 2-Nitrophenol                         | <660           | 660                    |
| 4-Nitrophenol                         | <1650          | 1650                   |
| N-Nitrosodimethylamine                | <330           | 330                    |
| N-Nitrosodi-n-propylamine             | <330           | 330                    |
| N-Nitrosodiphenylamine (1)            | <660           | 660                    |
| Pentachlorophenol                     | <1650          | 1650                   |
| Phenanthrene                          | <330           | 330                    |
| Phenol                                | <330           |                        |
| Pyrene                                | <330           | 330                    |
| 1,2,4-Trichlorobenzene                | <330           | 330                    |
| 2,4,6-Trichlorophenol                 | <660           | 330                    |
| 2,4,5-Trichlorophenol                 | <660           | 660<br>660             |
|                                       |                | 000                    |

•

#### **VOLATILES (EXPANDED EPA 8260)** Date Analyzed: 08/04/97

| Results(ug/kg) | <b>Detection</b> Limit                     |
|----------------|--------------------------------------------|
|                | <u>10</u>                                  |
|                | 5.0                                        |
|                | 5.0                                        |
|                | 15                                         |
|                |                                            |
|                | 10                                         |
|                | 20                                         |
|                | 10                                         |
|                | 10                                         |
|                | 3.0                                        |
|                | 5.0                                        |
|                | 5.0                                        |
|                | 10                                         |
|                | 10                                         |
|                | 10                                         |
|                | 5.0                                        |
|                | 10                                         |
|                | 10                                         |
|                | 5.0                                        |
|                | 5.0                                        |
|                | 5.0                                        |
| <3.0           | 3.0                                        |
| <10            | 10                                         |
| <5             | 5                                          |
|                | <10<br><5.0<br><5.0<br><5.0<br><3.0<br><10 |

^

**VOLATILES (EXPANDED EPA 8260)** 

| Analyte                                                        | <u>Results(ug/kg)</u> | <b>Detection Limit</b> |
|----------------------------------------------------------------|-----------------------|------------------------|
| 1,2-Dichloroethane                                             | <5.0                  | 5.0                    |
| cis-1,2-Dichloroethene                                         | <10                   | 10                     |
| trans-1,2-Dichloroethene                                       | <10                   | 10                     |
| 1,1-Dichloroethene                                             | <5.0                  | 5.0                    |
| 1,2-Dichloropropane                                            | <6.0                  | 6.0                    |
| 2,2-Dichloropropane                                            | <5.0                  | 5.0                    |
| cis-1,3-Dichloropropene                                        | <6.0                  | 6.0                    |
| trans-1,3-Dichloropropene                                      | <6.0                  | 6.0                    |
| 1,1-Dichloropropene                                            | <10                   | · 10                   |
| Ethyl Benzene                                                  | <8.0                  | 8.0                    |
| Hexachlorobutadiene                                            | <10                   | 10                     |
| 2-Hexanone                                                     | <10                   | 10                     |
| Isopropyl Benzene                                              | <5.0                  | 5.0                    |
| p-Isopropyl toluene                                            | <5.0                  | 5.0                    |
| 4-Methyl-2-Pentanone                                           | <5.0                  | 5.0                    |
| Methyl Bromide                                                 | <10                   | 10                     |
| Methyl Chloride                                                | <10                   | 10                     |
| Methylene Chloride                                             | <15                   | 10                     |
| Naphthalene                                                    | <10                   | 10                     |
| n-Propyl benzene                                               | <5.0                  | 5.0                    |
| Styrene                                                        | <10                   | 10                     |
| 1,1,2,2-Tetrachloroethane                                      | <5.0                  | 5.0                    |
| 1,1,1,2-Tetrachloroethane                                      | <10                   | 10                     |
| Tetrachloroethene                                              | <3.0                  | 3.0                    |
| Toluene                                                        | <3.0                  | 3.0                    |
| Trichlorobenzenes (total)                                      | <15                   | 15                     |
| 1,1,1-Trichloroethane                                          | <5.0                  | 5.0                    |
| 1,1,2-Trichloroethane                                          | <5.0                  | 5.0                    |
| Trichloroethene                                                | <5.0                  | 5.0                    |
| Trichlorofluoromethane                                         | <10                   | 10                     |
| 1,2,3-Trichloropropane                                         | <5.0                  | 5.0                    |
| Trimethylbenzenes (total)                                      | <10                   | 10                     |
| Vinyl Acetate                                                  | <5.0                  | 5.0                    |
| Vinyl Chloride                                                 | <2.0                  | 2.0                    |
| Xylene (Total)                                                 | <10                   | 10                     |
| ACROLEIN <20 ug/kg                                             |                       | • •                    |
|                                                                |                       |                        |
| ACRYLONITRILE <20 ug/kg<br>BIS (CHLOROMETHYL) ETHER <660 ug/kg |                       |                        |

ALPHA,BETA,GAMMA,TECH-HCH ISOPHORONE <20 u <660 ug l kg <20 ug/kg N-NITROSOPYRROLIDINE 1-METHYLNAPHTHALENE <660 ug/kg <330 ug/kg

Client Sample #:MECHANICS PIT WALL COMPOSITELaboratory ID #:88597Order Type: Normal Matrix: SoilSample Container:3x402 EPA Approved Glass Jar\Aqua LidSampling Location:LOVINGTON, NMSampling Date:08/01/97 Sampling Location: Sampling Date : Temperature (Celcius):4

| SEMI-VOLATILES (EPA 8270)         | ••                    |                        |
|-----------------------------------|-----------------------|------------------------|
| Semi-Volatile prep date: 08/05/97 |                       |                        |
| Analyte                           | <u>Results(ug/kg)</u> | <u>Detection Limit</u> |
| Acenaphthene                      | <330                  | 330                    |
| Acenaphthylene                    | <330                  | 330                    |
| Aniline                           | <1650                 | 1650                   |
| Anthracene                        | <330                  | 330                    |
| Benzidine                         | <2500                 | 2500                   |

^

#### SEMI-VOLATILES (EPA 8270)

------

| Analyte<br>Benzo (a) anthracene                        | <u>Results(ug/kg)</u><br><330 | Detection Limit<br>330 |
|--------------------------------------------------------|-------------------------------|------------------------|
| Benzo (a) pyrene                                       | <660                          | 660                    |
| Benzo (b) fluoranthene                                 | : <660                        | 660                    |
| Benzo (g,h,i) perylene                                 | <330                          | 330                    |
| Benzoi (g,n,i) perylene<br>Benzoic Acid                | <1650                         | 1650                   |
| Benzo (k) fluoranthene                                 | <660                          |                        |
|                                                        |                               | 660                    |
| Benzyl Alcohol                                         | <660                          | 660                    |
| 4-Bromophenyl-phenylether                              | <660                          | 660                    |
| Butylbenzylphthalate                                   | <660                          | <i>·</i> 660           |
| Carbazole                                              | <660                          | 660                    |
| 4-Chloro-3-methylphenol                                | <660                          | 660                    |
| 4-Chloroaniline                                        | <660                          | 660                    |
| bis (2-Chloroethoxy) methane                           | <330                          | 330                    |
| bis(2-Chloroethyl) ether                               | <330                          | 330                    |
| bis(2-Chloroisopropyl) ether                           | <660                          | 660                    |
| 2-Chloronaphthalene                                    | <330                          | 330                    |
| 2-Chlorophenol                                         | <330                          | 330                    |
| 4-Chlorophenyl-phenylether                             | . <660                        | 660                    |
| Chrysene                                               | <330                          | 330                    |
| Dibenz (a,h) anthracene                                | <1650                         | 1650                   |
|                                                        |                               |                        |
| Dibenzofuran                                           | <1650                         | 1650                   |
| 1,3-Dichlorobenzene                                    | <330                          | 330                    |
| 1,4-Dichlorobenzene                                    | <330                          | 330                    |
| 1,2-Dichlorobenzene                                    | <330                          | 330                    |
| 3,3'-Dichlorobenzidine                                 | <670                          | 670                    |
| 2,4-Dichlorophenol                                     | <660                          | 660                    |
| Diethylphthalate                                       | <660                          | 660                    |
| 2,4-Dimethylphenol                                     | <660                          | 660                    |
| Dimethylphthalate                                      | <660                          | 660                    |
| Di-n-butylphthalate                                    | <660                          | 660                    |
| 4,6-Dinitro-2-methylphenol                             | <660                          | 660                    |
| 2,4-Dinitrophenol                                      | <1650                         | 1650                   |
| 2,6-Dinitrotoluene                                     | <660                          | 660                    |
| 2,4-Dinitrotoluene                                     | <660                          | 660                    |
| Di-n-octylphthalate                                    | <660                          | 660                    |
|                                                        | <660                          | 660                    |
| 1,2-Diphenylhydrazine (as Azobenzene)                  |                               |                        |
| bis (2-Ethylhexyl) phthalate                           | <660                          | 660                    |
| Fluoranthene                                           | <330                          | 330                    |
| Fluorene                                               | <330                          | 330                    |
| Hexachlorobenzene                                      | <330                          | 330                    |
| Hexachlorobutadiene                                    | <330                          | 330                    |
| Hexachlorocyclopentadiene                              | <330                          | 330                    |
| Hexachloroethane                                       | <330                          | 330                    |
| Indeno (1,2,3-cd) pyrene                               | <330                          | 330                    |
| Isophorone                                             | <660                          | 660                    |
| 2-Methylnaphthalene                                    | <330                          | 330                    |
| 2-Methylphenol                                         | <660                          | 660                    |
| 4-Methylphenol                                         | <660                          | 660                    |
| Naphthalene                                            | <330                          | 330                    |
| 2-Nitroaniline                                         | <660                          | 660                    |
| 4-Nitroaniline                                         | <1650                         | 1650                   |
| 3-Nitroaniline                                         | <1650                         | 1650                   |
| Nitrobenzene                                           | <660                          | 660                    |
|                                                        |                               |                        |
| 2-Nitrophenol                                          | <660                          | 660                    |
| 4-Nitrophenol                                          | <1650                         | 1650                   |
| N-Nitrosodimethylamine                                 | <330                          | 330                    |
|                                                        |                               |                        |
| N-Nitrosodin-propylamine<br>N-Nitrosodiphenylamine (1) | <330<br><660                  | 330<br>660             |

- ----

.

### SEMI-VOLATILES (EPA 8270)

1

| Analyte                | <u>Results(ug/kg)</u> | <b>Detection</b> Limit |
|------------------------|-----------------------|------------------------|
| Pentachlorophenol      | <1650                 | 1650                   |
| Phenanthrene           | <330                  | 330                    |
| Phenol                 | <330                  | 330                    |
| Pyrene                 | <330                  | 330                    |
| 1,2,4-Trichlorobenzene | <330                  | 330                    |
| 2,4,6-Trichlorophenol  | <660                  | 660                    |
| 2,4,5-Trichlorophenol  | <660                  | 660                    |

#### **VOLATILES (EXPANDED EPA 8260)** Date Analyzed: 08/04/97

| Analyte<br>Acetone          | <u>Results(ug/kg)</u> | Detection Limit |
|-----------------------------|-----------------------|-----------------|
| Benzene                     | <10                   | 10              |
| Bromobenzene                | <5.0                  | 5.0             |
| Bromochloromethane          | <5.0                  | 5.0             |
|                             | <15                   | 15              |
| Bromoform                   | <10                   | 10              |
| 2-Butanone (MEK)            | <20                   | 20              |
| Butyl Benzene (total)       | . <10                 | 10              |
| Carbon Disulfide            | <10                   | 10              |
| Carbon Tetrachloride        | <3.0                  | 3.0             |
| Chlorobenzene               | <5.0                  | 5.0             |
| Chlorodibromomethane        | <5.0                  | 5.0             |
| Chloroethane                | <10                   | 10              |
| Chloroform                  | <10                   | 10              |
| Chlorotoluenes (total)      | <10                   | 10              |
| 1,2-Dibromo-3-chloropropane | <5.0                  | 5.0             |
| 1,2-Dibromoethane           | <10                   | 10              |
| Dibromomethane              | <10                   | 10              |
| 1,2-Dichlorobenzene         | <5.0                  | 5.0             |
| 1,3-Dichlorobenzene         | <5.0                  | 5.0             |
| 1,4-Dichlorobenzene         | <5.0                  | 5.0             |
| Dichlorobromomethane        | <3.0                  | 3.0             |
| Dichlorodifluoromethane     | <10                   | 10              |
| 1,1-Dichloroethane          | <5                    |                 |
| 1,2-Dichloroethane          | <5.0                  | 5               |
| cis-1,2-Dichloroethene      | <10                   | 5.0             |
| trans-1,2-Dichloroethene    | <10                   | 10              |
| 1,1-Dichloroethene          | <10<br><5.0           | 10              |
| 1,2-Dichloropropane         |                       | 5.0             |
| 2,2-Dichloropropane         | <6.0                  | 6.0             |
| cis-1,3-Dichloropropene     | <5.0                  | 5.0             |
| trans-1,3-Dichloropropene   | <6.0                  | 6.0             |
| 1,1-Dichloropropene         | <6.0                  | 6.0             |
| Ethyl Benzene               | <10                   | 10              |
| Hexachlorobutadiene         | <8.0                  | 8.0             |
| 2-Hexanone                  | <10                   | 10              |
|                             | <10                   | 10              |
| Isopropyl Benzene           | <5.0                  | 5.0             |
| p-Isopropyl toluene         | <5.0                  | 5.0             |
| 4-Methyl-2-Pentanone        | <5.0                  | 5.0             |
| Methyl Bromide              | <10                   | 10              |
| Methyl Chloride             |                       | 10              |
| Methylene Chloride          | <15                   | 15              |
| Naphthalene                 | <10                   | 10              |
| n-Propyl benzene            | <5.0                  | 5.0             |
| Styrene                     | <10                   | 10              |
| 1,1,2,2-Tetrachloroethane   | <5.0                  | 5.0             |
| 1,1,1,2-Tetrachloroethane   | <10                   | 10              |
| Tetrachloroethene           | <3.0                  | 3.0             |

**VOLATILES (EXPANDED EPA 8260)** 

| Analyte                                                                                               | <u>Results(ug/kg)</u> | <b>Detection Limit</b> |
|-------------------------------------------------------------------------------------------------------|-----------------------|------------------------|
| Toluene                                                                                               | <3.0                  | 3.0                    |
| Trichlorobenzenes (total)                                                                             | <15                   | 15                     |
| 1,1,1-Trichloroethane                                                                                 | <5.0                  | 5.0                    |
| 1,1,2-Trichloroethane                                                                                 | <5.0                  | 5.0                    |
| Trichloroethene                                                                                       | <5.0                  | 5.0                    |
| Trichlorofluoromethane                                                                                | <10                   | 10                     |
| 1,2,3-Trichloropropane                                                                                | <5.0                  | 5.0                    |
| Trimethylbenzenes (total)                                                                             | <10                   | 10                     |
| Vinyl Acetate                                                                                         | <5.0                  | ´ 5.0                  |
| Vinyl Chloride                                                                                        | <2.0                  | 2.0                    |
| Xylene (Total)                                                                                        | <10                   | 10                     |
| ACROLEIN <20 ug/kg                                                                                    |                       |                        |
| ACRYLONITRILE <20 ug/kg                                                                               |                       |                        |
| BIS (CHLOROMETHYL) ETHER<br><br>ALPHA,BETA,GAMMA,TECH-HCH <660 ug/kg                                  | •                     |                        |
| ALPHA,BETA,GAMMA,TECH-HCH <660 <sup>°</sup> ug <sup>†</sup> kg<br>ISOPHORONE <20 <sup>°</sup> ug / kg |                       |                        |
| N-NITROSOPYRROLIDINE <660 ug/kg                                                                       |                       |                        |
| 1-METHYLNAPHTHALENE <330 ug/kg                                                                        |                       |                        |
|                                                                                                       |                       |                        |

#### Client Sample #: WASH BAY SOIL PILE

Laboratory ID #: Sample Container: Sampling Location: Sampling Date : Temperature (Celcius):4 88598 Order Type: Normal Matrix: Soil 3x4oz EPA Glass Jar\Aqua Lid,Methanol Jar LOVINGTON, NM 08/01/97

#### BTEX/TPH (EPA 8020/MOD 8015 GAS-RANGE)

| <u>Analyte</u> | <u>_Results</u> | <u>Detection Limit</u> |
|----------------|-----------------|------------------------|
| Benzene        | <0.40           | 0.40                   |
| Toluene        | <0.50           | 0.50                   |
| Ethyl Benzene  | <0.50           | 0.50                   |
| Xylenes        | <0.50           | 0.50                   |
| TPH            | <10             | 10                     |

BTEX results are reported in parts per million (ppm) in soil and parts per billion (ppb) in water and air. TPH results are reported in parts per million (ppm) in soil, air, and water.

#### MERCURY DIGESTION, TCLP (EPA 7470) Mercury Digestion Date: 08/06/97

#### MICROWAVE DIGESTION, TCLP (EPA 3015) Microwave Digestion Date: 08/05/97

#### TCLP HERBICIDES (EPA 8150A) Prep Date: 08/06/97

| <u>C.A.S.#</u> | <u>Analvte</u>    | Results(mg/l) | Limit | Haz.Limit |
|----------------|-------------------|---------------|-------|-----------|
| 94-75-7        | 2,4-D             | <0.010        | 0.010 | 10        |
| 93-72-1        | 2,4,5-TP (Silvex) | <0.003        | 0.003 | 1         |

Detection

**TCLP NON-VOLATILE EXTRACTION (EPA 1311)** TCLP Extraction Date: 08/05/97

#### TCLP PESTICIDES (EPA 8080A) Prep Date: 08/06/97

|                |                     |                      | Detection    | •                |
|----------------|---------------------|----------------------|--------------|------------------|
| <u>C.A.S.#</u> | <u>Analyte</u>      | <u>Results(mg/l)</u> | <u>Limit</u> | <u>Haz.Limit</u> |
| 58-89-9        | gamma-BHC (Lindane) | <0.010               | 0.010        | 0.04             |
| 57-74-9        | Chlordane           | <0.010               | 0.010        | 0.03             |

#### TCLP PESTICIDES (EPA 8080A)

| ~ . ~          |                       |                      | Detection    |                  |
|----------------|-----------------------|----------------------|--------------|------------------|
| <u>C.A.S.#</u> | <u>Analyte</u>        | <u>Results(mg/l)</u> | _Limit_      | <u>Haz.Limit</u> |
| 72-20-8        | Endrin                | <0.010               | 0.010        | 0.02             |
| 76-44-8        |                       |                      |              |                  |
|                | Heptachlor            | <0.005               | 0.005        | 0.008            |
| 1024-57-3      | Heptachlor Epoxide    | <br>< 0.005          | 0.005        | 0.008            |
| 72-43-5        | Methoxychlor          | <0.010               | 0.010        | 10.0             |
| 8001-35-2      | Toxaphene             | <0.010               | 0.010        | 0.5              |
| 0001-00-2      | Toxaphene             | <0.010               | 0.010        | 0.5              |
| TCLP RCRA      | MERCURY (EPA 7470)    |                      |              |                  |
| - · -          |                       |                      | ´ Detection  |                  |
| <u>C.A.S.#</u> | <u>Analyte</u>        | <u>Results(mg/l)</u> | Limit        | <u>Haz.Limit</u> |
| 7439-97-6      | TCLP Mercury          | <0.0004              | 0.0004       | 0.2              |
| TCLP RCRA      | METALS (EPA 6010)     |                      |              |                  |
|                |                       |                      | Detection    |                  |
| <u>C.A.S.#</u> | <u>Analyte</u>        | <u>Results(mg/l)</u> | _Limit_      | <u>Haz.Limit</u> |
| 7440-38-2      | Arsenic               | 0.174                | 0.061        | 5                |
|                |                       |                      |              | -                |
| 7440-39-3      | Barium                | 0.976                | 0.001        | 100              |
| 7440-43-9      | Cadmium               | <0.008               | 0.008        | 1                |
| 7440-47-3      | Chromium              | < 0.0075             | 0.0075       | 5                |
| 7439-92-1      | Lead                  | <0.040               | 0.040        | 5                |
| 7482-49-2      | Selenium              |                      |              |                  |
|                |                       | < 0.050              | 0.050        | 1                |
| 7440-39-2      | Silver                | <0.030               | 0.030        | 5                |
| TCLP SEMI      | VOLATILES (EPA 8270)  |                      |              |                  |
| Prep Date:: 0  | 8/06/97               |                      |              |                  |
| <b>a</b> . a   | <b>. .</b> <i>.</i>   |                      | Detection    |                  |
| <u>C.A.S.#</u> | Analyte               | <u>Results(mg/l)</u> | <u>Limit</u> | <u>Haz.Limit</u> |
| no C.A.S.      | Cresol (Total)        | <1.0                 | 1.0          | 200.0            |
| 121-14-2       | 2,4-Dinitrotoluene    | <0.10                | 0.10         | 0.13             |
| 118-74-1       | Hexachlorobenzene     | <0.10                | 0.10         | 0.13             |
| 87-68-3        | Hexachlorobutadiene   | <0.20                | 0.10         |                  |
|                |                       |                      |              | 0.5              |
| 67-72-1        | Hexachloroethane      | <0.10                | 0.10         | 3.0              |
| 98-95-3        | Nitrobenzene          | <0.50                | 0.50         | 2.0              |
| 87-86-5        | Pentachlorophenol     | <0.20                | 0.20         | 100.0            |
| 110-86-1       | Pyridine              | <0.50                | 0.50         | 5.0              |
| 95-95-4        | 2,4,5-Trichlorophenol | <0.50                | 0.50         | 400.0            |
|                | ,, , <b>1</b>         |                      |              |                  |
| 88-06-2        | 2,4,6-Trichlorophenol | <0.50                | 0.50         | 2.0              |
|                | TILES (EPA 8260)      |                      |              |                  |
| Date analyze   | a: 08/06/97           |                      | Detection    |                  |
| 0 4 0 4        | A 3                   |                      | Detection    | TT. T. 1         |
| <u>C.A.S.#</u> | Analyte               | <u>Results(mg/l)</u> | <u>Limit</u> | <u>Haz.Limit</u> |
| 71-43-2        | Benzene               | <0.10                | 0.10         | 0.5              |
| 56-23-5        | Carbon Tetrachloride  | <0.10                | 0.10         | 0.5              |
| 108-90-7       | Chlorobenzene         | <0.10                | 0.10         | 100              |
| 67-66-3        | Chloroform            |                      |              |                  |
|                |                       | <0.10                | 0.10         | 6.0              |
| 106-46-7       | 1,4-Dichlorobenzene   | <0.10                | 0.10         | 7.5              |
| 107-06-2       | 1,2-Dichloroethane    | <0.10                | 0.10         | 0.5              |
| 75-35-4        | 1,1-Dichloroethylene  | <0.10                | 0.10         | 0.7              |
| 78-93-3        | Methyl Ethyl Ketone   | <0.10                | 0.10         | 200.0            |
| 127-18-4       | Tetrachloroethylene   | <0.10                | 0.10         | 0.7              |
| 79-01-6        |                       |                      |              |                  |
|                | Trichloroethylene     |                      | 0.10         | 0.5              |
| 75-01-4        | Vinyl Chloride        | <0.10                | 0.10         | 0.2              |
|                |                       |                      |              |                  |

.

Detection

**TCLP ZHE FOR VOLATILE ORGANICS (EPA 1311)** TCLP ZHE Extraction Date: 08/05/97

•

Client Sample #: MECHANICS PIT SOIL PILELaboratory ID #:88599 Order Type: Normal Matrix: SoilSample Container:3x4oz EPA Glass Jar\Aqua Lid,Methanol JarSampling Location:LOVINGTON, NM Sampling Location: Sampling Date : 08/01/97 Temperature (Celcius):4 · ...

#### BTEX/TPH (EPA 8020/MOD 8015 GAS-RANGE)

| Analyte       | Results | <b>Detection Limit</b> |
|---------------|---------|------------------------|
| Benzene       | <0.40   | 0.40                   |
| Toluene       | <0.50   | 0.50                   |
| Ethyl Benzene | <0.50   | 0.50                   |
| Xylenes       | <0.50   | 0.50                   |
| ТРН           | <10     | 10                     |

BTEX results are reported in parts per million (ppm) in soil and parts per billion (ppb) in water and air. TPH results are reported in parts per million (ppm) in soil, air, and water.

## **MERCURY DIGESTION, TCLP (EPA 7470)** Mercury Digestion Date: 08/06/97

MICROWAVE DIGESTION, TCLP (EPA 3015) Microwave Digestion Date: 08/05/97

#### **TCLP HERBICIDES (EPA 8150A)** Prep Date: 08/06/97

| T Tep Date. Vo | 100/91                         |                      | Detection    |                                 |
|----------------|--------------------------------|----------------------|--------------|---------------------------------|
| <u>C.A.S.#</u> | Analyte                        | Results(mg/l)        | _Limit_      | <u>Haz.Limit</u>                |
| 94-75-7        | 2,4-D                          | <0.010               | 0.010        | 10                              |
| 93-72-1        | 2,4,5-TP (Silvex)              | <0.003               | 0.003        | 1                               |
|                |                                |                      |              | -                               |
|                | VOLATILE EXTRACTION (EPA 1311) |                      |              |                                 |
| TCLP Extrac    | tion Date: 08/05/97            |                      |              |                                 |
| TCLP PEST      | ICIDES (EPA 8080A)             |                      |              |                                 |
| Prep Date: 08  |                                |                      |              |                                 |
| •              |                                |                      | Detection    |                                 |
| <u>C.A.S.#</u> | <u>Analyte</u>                 | <u>Results(mg/l)</u> | <u>Limit</u> | <u>Haz.Limit</u>                |
| 58-89-9        | gamma-BHC (Lindane)            | <0.010               | 0.010        | 0.04                            |
| 57-74-9        | Chlordane                      | <0.010               | 0.010        | 0.03                            |
| 72-20-8        | Endrin                         | <0.010               | 0.010        | 0.02                            |
| 76-44-8        | Heptachlor                     | <0.005               | 0.005        | 0.008                           |
| 1024-57-3      | Heptachlor Epoxide             | <0.005               | 0.005        | 0.008                           |
| 72-43-5        | Methoxychlor                   | <0.010               | 0.010        | 10.0                            |
| 8001-35-2      | Toxaphene                      | <0.010               | 0.010        | 0.5                             |
| TCLP RCRA      | MERCURY (EPA 7470)             |                      |              |                                 |
|                | MERCONI (ERR 1410)             |                      | Detection    |                                 |
| <u>C.A.S.#</u> | Analyte                        | Results(mg/l)        | Limit        | <u>Haz.Limit</u>                |
| 7439-97-6      | TCLP Mercury                   | 0.001                | 0.0004       | 0.2                             |
|                |                                |                      |              |                                 |
| TCLP RCRA      | METALS (EPA 6010)              |                      | Detection    |                                 |
| <u>C.A.S.#</u> | Analyte                        |                      | Limit        | <u>Haz.Limit</u>                |
| 7440-38-2      | Arsenic                        | <0.061               | 0.061        | <u>114<i>a</i>.1711110</u><br>5 |
| 7440-39-3      | Barium                         | 1.12                 | 0.001        | 100                             |
| 7440-43-9      | Cadmium                        | <0.008               | 0.001        | 1                               |
| 7440-47-3      | Chromium                       | <0.0075              | 0.0075       | $\overline{5}$                  |
| 7439-92-1      | Lead                           | 0.062                | 0.040        | 5                               |
| 7482-49-2      | Selenium                       | <0.050               | 0.050        | 1                               |
|                |                                |                      | 0.000        | <b>▲</b>                        |
|                |                                |                      |              |                                 |

#### TCLP RCRA METALS (EPA 6010)

|                                 |                                         |                                     | <b>D</b> ( );                      |                       |
|---------------------------------|-----------------------------------------|-------------------------------------|------------------------------------|-----------------------|
| <u>C.A.S.#</u><br>7440-39-2     | <u>Analyte</u><br>Silver                | <u>Results(mg/l)</u><br><0.030      | Detection<br><u>Limit</u><br>0.030 | <u>Haz.Limit</u><br>5 |
| TCLP SEMI-V<br>Prep Date:: 08/0 | <b>OLATILES (EPA 8270)</b><br>06/97     |                                     |                                    |                       |
| <b>C 1 C H</b>                  | A                                       | $\mathbf{p}_{1}$ = 1 + $\mathbf{r}$ | Detection                          | <b>TT T</b> • • •     |
| <u>C.A.S.#</u><br>no C.A.S.     | <u>Analyte</u><br>Cresol (Total)        | Results(mg/l)                       | _Limit_                            | <u>Haz.Limit</u>      |
| 121-14-2                        |                                         | <1.0                                | 1.0                                | 200.0                 |
| 121-14-2<br>118-74-1            | 2,4-Dinitrotoluene<br>Hexachlorobenzene | <0.10                               | · 0.10                             | 0.13                  |
| 87-68-3                         | Hexachlorobutadiene                     | <0.10                               | 0.10                               | 0.13                  |
| 67-72-1                         |                                         | <0.20                               | 0.20                               | 0.5                   |
| 98-95-3                         | Hexachloroethane<br>Nitrobenzene        | <0.10                               | 0.10                               | 3.0                   |
| 87-86-5                         |                                         | <0.50                               | 0.50                               | 2.0                   |
| 110-86-1                        | Pentachlorophenol<br>Pyridine           | <0.20                               | 0.20                               | 100.0                 |
| 95-95-4                         | 2,4,5-Trichlorophenol                   | <0.50<br><0.50                      | 0.50<br>0.50                       | 5.0                   |
| 88-06-2                         | 2,4,5-Trichlorophenol                   | <0.50                               | 0.50                               | 400.0                 |
| 00-00-2                         | 2,4,0-1110110pnen01                     | <0.50                               | 0.50                               | 2.0                   |
| TCLP VOLAT                      | ILES (EPA 8260)                         |                                     |                                    |                       |
| Date analyzed:                  |                                         |                                     |                                    |                       |
| Date analyzed.                  |                                         |                                     | Detection                          |                       |
| <u>C.A.S.#</u>                  | Analyte                                 | Results(mg/l)                       | Limit                              | <u>Haz.Limit</u>      |
| 71-43-2                         | Benzene                                 | <0.10                               | 0.10                               | 0.5                   |
| 56-23-5                         | Carbon Tetrachloride                    | <0.10                               | 0.10                               | 0.5                   |
| 108-90-7                        | Chlorobenzene                           | <0.10                               | 0.10                               | 100                   |
| 67-66-3                         | Chloroform                              | <0.10                               | 0.10                               | 6.0                   |
| 106-46-7                        | 1,4-Dichlorobenzene                     | <0.10                               | 0.10                               | 7.5                   |
| 107-06-2                        | 1,2-Dichloroethane                      | <0.10                               | 0.10                               | 0.5                   |
| 75-35-4                         | 1,1-Dichloroethylene                    | <0.10                               | 0.10                               | 0.7                   |
| 78-93-3                         | Methyl Ethyl Ketone                     | <0.10                               | 0.10                               | 200.0                 |
| 127-18-4                        | Tetrachloroethylene                     | <0.10                               | 0.10                               | 0.7                   |
| 79-01-6                         | Trichloroethylene                       | <0.10                               | 0.10                               | 0.5                   |
| 75-01-4                         | Vinyl Chloride                          | <0.10                               | 0.10                               | 0.2                   |
|                                 |                                         |                                     |                                    |                       |

**TCLP ZHE FOR VOLATILE ORGANICS (EPA 1311)** TCLP ZHE Extraction Date: 08/05/97

Sampling Location: Sampling Date : Temperature (Celcius):4

Client Sample #: SURFACE STAINED SOIL PILELaboratory ID #:88600 Order Type: Normal Matrix: SoilSample Container:3x4oz EPA Glass Jar \Aqua Lid, Methanol Jar LOVINGTON, NM 08/01/97

#### BTEX/TPH (EPA 8020/MOD 8015 GAS-RANGE)

| Analyte       | Results | <u>Detection Limit</u> |
|---------------|---------|------------------------|
| Benzene       | <0.40   | 0.40                   |
| Toluene       | <0.50   | 0.50                   |
| Ethyl Benzene | <0.50   | 0.50                   |
| Xylenes       | <0.50   | 0.50                   |
| ТРН           | <10     | 10                     |

BTEX results are reported in parts per million (ppm) in soil and parts per billion (ppb) in water and air. TPH results are reported in parts per million (ppm) in soil, air, and water.

## MERCURY DIGESTION, TCLP (EPA 7470) Mercury Digestion Date: 08/06/97

## MICROWAVE DIGESTION, TCLP (EPA 3015) Microwave Digestion Date: 08/05/97

### **TCLP HERBICIDES (EPA 8150A)**

Prep Date: 08/06/97

|                |                   | 22                   | Derection    |                  |
|----------------|-------------------|----------------------|--------------|------------------|
| <u>C.A.S.#</u> | <u>Analyte</u>    | <u>Results(mg/l)</u> | <u>Limit</u> | <u>Haz.Limit</u> |
| 94-75-7        | 2,4-D             | <0.010               | 0.010        | 10               |
| 93-72-1        | 2,4,5-TP (Silvex) | <0.003               | 0.003        | 1                |
|                |                   |                      |              |                  |

Detection

Detection

11 ^

### **TCLP NON-VOLATILE EXTRACTION (EPA 1311)** TCLP Extraction Date: 08/05/97

TCLP PESTICIDES (EPA 8080A) Prep Date: 08/06/97

| 1 Top Date: 00 |                     | Detection            |              |                  |  |
|----------------|---------------------|----------------------|--------------|------------------|--|
| <u>C.A.S.#</u> | <u>Analyte</u>      | <u>Results(mg/l)</u> | <u>Limit</u> | <u>Haz.Limit</u> |  |
| 58-89-9        | gamma-BHC (Lindane) | <0.010               | 0.010        | 0.04             |  |
| 57-74-9        | Chlordane           | <0.010               | 0.010        | 0.03             |  |
| 72-20-8        | Endrin              | <0.010               | 0.010        | 0.02             |  |
| · 76-44-8      | Heptachlor          | < 0.005              | 0.005        | 0.008            |  |
| 1024-57-3      | Heptachlor Epoxide  | <0.005               | 0.005        | 0.008            |  |
| 72-43-5        | Methoxychlor        | <0.010               | 0.010        | 10.0             |  |
| 8001-35-2      | Toxaphene           | <0.010               | 0.010        | 0.5              |  |

#### TCLP RCRA MERCURY (EPA 7470)

| <u>C.A.S.#</u> | <u>Analyte</u> | <u>Results(mg/l)</u> | Limit  | <u>Haz Limit</u> |
|----------------|----------------|----------------------|--------|------------------|
| 7439-97-6      | TCLP Mercury   | 0.0007               | 0.0004 | 0.2              |

#### TCLP RCRA METALS (EPA 6010)

|                |                | Detection            |              |                  |  |
|----------------|----------------|----------------------|--------------|------------------|--|
| <u>C.A.S.#</u> | <u>Analyte</u> | <u>Results(mg/l)</u> | <u>Limit</u> | <u>Haz.Limit</u> |  |
| 7440-38-2      | Arsenic        | <0.061               | 0.061        | 5                |  |
| 7440-39-3      | Barium         | 1.11                 | 0.001        | 100              |  |
| 7440-43-9      | Cadmium        | <0.008               | 0.008        | 1                |  |
| 7440-47-3      | Chromium       | < 0.0075             | 0.0075       | 5                |  |
| 7439-92-1      | Lead           | <0.040               | 0.040        | 5                |  |
| 7482-49-2      | Selenium       | 0.068                | 0.050        | 1                |  |
| 7440-39-2      | Silver         | <0.030               | 0.030        | 5                |  |

#### TCLP SEMI-VOLATILES (EPA 8270) Prep Date:: 08/06/97

|                |                       |                      | Detection |                  |
|----------------|-----------------------|----------------------|-----------|------------------|
| <u>C.A.S.#</u> | <u>Analyte</u>        | <u>Results(mg/l)</u> | Limit     | <u>Haz.Limit</u> |
| no C.A.S.      | Cresol (Total)        | <1.0                 | 1.0       | 200.0            |
| 121-14-2       | 2,4-Dinitrotoluene    | <0.10                | 0.10      | 0.13             |
| 118-74-1       | Hexachlorobenzene     | <0.10                | 0.10      | 0.13             |
| 87-68-3        | Hexachlorobutadiene   | <0.20                | 0.20      | 0.5              |
| 67-72-1        | Hexachloroethane      | <0.10                | 0.10      | 3.0              |
| 98-95-3        | Nitrobenzene          | <0.50                | 0.50      | 2.0              |
| 87-86-5        | Pentachlorophenol     | <0.20                | 0.20      | 100.0            |
| 110-86-1       | Pyridine              | <0.50                | 0.50      | 5.0              |
| 95-95-4        | 2,4,5-Trichlorophenol | <0.50                | 0.50      | 400.0            |
| 88-06-2        | 2,4,6-Trichlorophenol | <0.50                | 0.50      | 2.0              |

#### TCLP VOLATILES (EPA 8260) Date analyzed: 08/06/97

| Davo anary 20a. | 00/00/07       |               | Detection |                  |
|-----------------|----------------|---------------|-----------|------------------|
| <u>C.A.S.#</u>  | <u>Analyte</u> | Results(mg/l) | Limit     | <u>Haz.Limit</u> |
| 71-43-2         | Benzene        | <0.10         | 0.10      | 0.5              |

#### **TCLP VOLATILES (EPA 8260)**

|                |                      |         |                      | Detection |                  |
|----------------|----------------------|---------|----------------------|-----------|------------------|
| <u>C.A.S.#</u> | Analyte              |         | <u>Results(mg/l)</u> | _Limit_   | <u>Haz.Limit</u> |
| 56-23-5        | Carbon Tetrachloride |         | <0.10                | 0.10      | 0.5              |
| 108-90-7       | Chlorobenzene        | ÷       | <0.10                | 0.10      | 100              |
| 67-66-3        | Chloroform           | ۔<br>بو | <0.10                | 0.10      | 6.0              |
| 106-46-7       | 1,4-Dichlorobenzene  |         | <0.10                | 0.10      | 7.5              |
| 107-06-2       | 1,2-Dichloroethane   |         | <0.10                | 0.10      | 0.5              |
| 75-35-4        | 1,1-Dichloroethylene |         | <0.10                | 0.10      | 0.7              |
| 78-93-3        | Methyl Ethyl Ketone  |         | <0.10                | 0.10      | 200.0            |
| 127-18-4       | Tetrachloroethylene  |         | <0.10                | · 0.10    | 0.7              |
| 79-01-6        | Trichloroethylene    |         | <0.10                | 0.10      | 0.5              |
| 75-01-4        | Vinyl Chloride       |         | <0.10                | 0.10      | 0.2              |

TCLP ZHE FOR VOLATILE ORGANICS (EPA 1311) TCLP ZHE Extraction Date: 08/05/97

#### Client Sample #: WASH BAY FLOOR COMPOSITE

| Laboratory ID #:        | 89074 Order Type: Normal Matrix: Soil |
|-------------------------|---------------------------------------|
| Sample Čontainer:       | 4oz EPA Approved Glass Jar\Agua Lid   |
| Sampling Location:      | LOVINGTÔN, NM                         |
| Sampling Date :         | 08/01/97                              |
| Temperature (Celcius):4 |                                       |

| TPH DIESEL-RANGE (MOD 8015)                                          |                |                        |
|----------------------------------------------------------------------|----------------|------------------------|
| Analyte                                                              | Results(mg/kg) | <b>Detection Limit</b> |
| Diesel-Range Petroleum Hydrocarbons<br>Sample contains 37 mG/kG oil. | 62             | 5.0                    |

Client Sample #: WASH BAY WALL COMPOSITELaboratory ID #:89075 Order Type: Normal Matrix: SoilSample Container:402 EPA Approved Glass Jar\Aqua LidSampling Location:LOVINGTON, NMSampling Date :08/01/97Temperature (Celcius):408/01/97

| TPH DIESEL-RANGE<br>Analyte<br>Diesel-Range Petroleum                                                                             |                                                                                               | <u>Results(mg/kg)</u><br><b>21</b> | Detection Limit<br>5.0 |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------|------------------------|
| Sample contains 29 mG/                                                                                                            | kG oil.                                                                                       | <b>—</b> .                         |                        |
| Client Sample #: MEC<br>Laboratory ID #:<br>Sample Container:<br>Sampling Location:<br>Sampling Date :<br>Temperature (Celcius):4 | HANICS PIT FLOOR CC<br>89076 Order Type:<br>40z EPA Approved Gla<br>LOVINGTON, NM<br>08/01/97 | Normal Matrix: Soil                |                        |
| TPH DIESEL-RANGE                                                                                                                  | (MOD 8015)                                                                                    | Results(mg/kg)                     | Detection Limit        |

<u>Analyte</u> Diesel-Range Petroleum Hydrocarbons Sample contains 64 mG/kG oil.

<u>Results(mg/kg)</u> <5.0

Detection Limit 5.0

#### Client Sample #: MECHANICS PIT WALL COMPOSITE

Laboratory ID #: Sample Container: Sampling Location: Sampling Date : *Temperature (Celcius):4* 

89077 Order Type: Normal Matrix: Soil 402 EPA Approved Glass Jar\Aqua Lid LOVINGTON, NM 08/01/97

#### **TPH DIESEL-RANGE (MOD 8015)**

<u>Analyte</u> **Diesel-Range Petroleum Hydrocarbons** Sample contains 16 mG/kG oil.

<u>Results(mg/kg)</u> <5.0

Detection Limit 5.0

#### Client Sample #: WASH BAY SOIL PILE

Laboratory ID #: Sample Container: Sampling Location: Sampling Date : Temperature (Celcius):4

89190 Order Type: Additional Matrix: Soil 4oz EPA Approved Glass Jar\Aqua Lid LOVINGTON, NM 08/01/97

#### CORROSIVITY (EPA 9040)

<u>Analyte</u> Corrosivity <u>Results</u> 7.0

Detection Limit

#### **IGNITABILITY (ASTM D92)** Ignitability: DOES NOT IGNITE AT ROOM TEMPERATURE; NOT HAZARDOUS

#### **REACTIVITY** (FULL)

Reactive Cyanide (EPA 9010): <0.2 mg/kg Reactive Sulfide (EPA 9030): 893 mg/kg **Reactivity To Air: Negative Reactivity To Diluted HCl: Negative** Reactivity To Diluted NaOH: Negative **Reactivity To Water: Negative** 

#### Client Sample #: MECHANICS PIT SOIL PILE

Laboratory ID #: Sample Čontainer: Sampling Location: Sampling Date : Temperature (Celcius):4

Order Type: Additional Matrix: Soil 89191 40z EPA Approved Glass Jar \Aqua Lid LOVINGTÓN, NM 08/01/97

CORROSIVITY (EPA 9040)

<u>Analyte</u>

Corrosivity

Results 6.5

Detection Limit

**IGNITABILITY (ASTM D92)** Ignitability: DOES NOT IGNITE AT ROOM TEMPERATURE; NOT HAZARDOUS

#### **REACTIVITY (FULL)**

Reactive Cyanide (EPA 9010): <0.2 mg/kg Reactive Sulfide (EPA 9030): 120 mg/kg Reactivity To Air: Negative Reactivity To Diluted HCl: Negative Reactivity To Diluted NaOH: Negative

#### **REACTIVITY (FULL)**

**Reactivity To Water: Negative** 

#### Client Sample #: SURFACE STAINED SOIL PILE

Laboratory ID #: Sample Container: Sampling Location: Sampling Date : Temperature (Celcius):4

08/01/97

89192 Order Type: Additional Matrix: Soil 4oz EPA Approved Glass Jar\Aqua Lid LOVINGTÔN, NM

#### CORROSIVITY (EPA 9040)

Analyte Corrosivity <u>Results</u> 6.0

**Detection Limit** 

#### **IGNITABILITY (ASTM D92)**

Ignitability: DOES NOT IGNITE AT ROOM TEMPERATURE; NOT HAZARDOUS

#### · REACTIVITY (FULL)

Reactive Cyanide (EPA 9010): <0.2 mg/kg Reactive Sulfide (EPA 9030): 195 mg/kg Reactivity To Air: Negative **Reactivity To Diluted HCl: Negative** Reactivity To Diluted NaOH: Negative **Reactivity To Water: Negative** 

Report To: Tetra Tech EM, Inc. Lab Number: 9708000031 Page <u>20</u> of <u>23</u>

A < 7

### **QUALITY CONTROL DATA**

| METHOD            | ANALYST                | MAT         | <u>RIX DAT</u> | <u>E EXTRACTEI</u> | <u>DATE AN</u> | ALYZED                   |
|-------------------|------------------------|-------------|----------------|--------------------|----------------|--------------------------|
| BTEX<br>8020      | Howard Hay             | rden Solid  | 8/4/9          | 7                  | 8/4/97         | 7                        |
| SPIKE<br>COMPOUND | SPIKE<br><u>AMOUNT</u> | % REC<br>_1 | % REC          | % REC QC<br>LIMIT  | <u>% VAR.</u>  | % VAR QC<br><u>LIMIT</u> |
| Benzene           | 100 ppb                | 96.2        | 111            | 80-120             | 13             | 20.0                     |
| Toluene           | 100 ppb                | 96.5        | 111            | 80-120             | 13             | 20.0                     |
| Ethyl Benzene     | 100 ppb                | 96.9        | 112            | 80-120             | 13             | 20.0                     |
| Xylenes           | 300 ppb                | 106         | 115            | 80-120             | 7.8            | 20.0                     |

#### **TCLP VOLATILE ORGANICS QUALITY CONTROL DATA**

| <b>METHOD</b>      | <u>ANALYST</u>         | MATE        | RIX DAT     | <u>E EXTRACTEI</u>       | DATE          | ANALYZED                 |
|--------------------|------------------------|-------------|-------------|--------------------------|---------------|--------------------------|
| 8260               | Howard Hay             | den Liquio  | 1           |                          |               | 8/6/97                   |
| SPIKE<br>COMPOUND  | SPIKE<br><u>AMOUNT</u> | % REC<br>_1 | % REC<br>_2 | % REC QC<br><u>LIMIT</u> | <u>% VAR.</u> | % VAR QC<br><u>LIMIT</u> |
| 1,1-Dichloroethene | 20 ppb                 | 94.3        | 99.8        | 20-234                   | 5.5           | 25.0                     |
| Trichloroethene    | 20 ppb                 | 102         | 98.6        | 71-157                   | 3.3           | 25.0                     |
| Benzene            | 20 ppb                 | 108         | 106         | 37-151                   | 1.9           | 25.0                     |
| Toluene            | 20 ppb                 | 104         | 100         | 47-150                   | 3.8           | 25.0                     |
| Chlorobenzene      | 20 ppb                 | 109         | 103         | 37-160                   | 5.5           | 25.0                     |

#### TCLP SEMI-VOLATILES QUALITY CONTROL DATA

| METHOD                                             | ANALYST                                  | MATH                        | RIX                         | DATE   | EXTRACTED                            | DAT                          | <u>E ANALYZED</u>            |
|----------------------------------------------------|------------------------------------------|-----------------------------|-----------------------------|--------|--------------------------------------|------------------------------|------------------------------|
| 8270                                               | Dennis Shaw                              | Liquio                      | 1                           | 8/6/97 |                                      |                              | 8/6/97                       |
| SPIKE<br>COMPOUND                                  | SPIKE<br><u>AMOUNT</u>                   | % REC<br>_1                 | % RE                        | C      | % REC QC<br><u>LIMIT</u>             | <u>% VAR.</u>                | % VAR QC<br><u>LIMIT</u>     |
| Phenol<br>2-Chlorophenol<br>Acenaphthene<br>Pyrene | 200 ppb<br>200 ppb<br>100 ppb<br>100 ppb | 73.3<br>80.4<br>91.9<br>103 | 74.2<br>81.6<br>99.4<br>111 |        | 10-120<br>23-134<br>47-145<br>52-125 | 1.23<br>1.46<br>7.62<br>6.61 | 42.0<br>40.0<br>31.0<br>31.0 |

Report To: Tetra Tech EM, Inc. Lab Number: 9708000031 Page <u>21</u> of <u>23</u>

Project: Pride Petroleum Services

| TCLP PESTICIDES QUALITY | CONTROL DATA |
|-------------------------|--------------|
|                         |              |

| METHOD                                                             | ANALYST                                               | -                                    | MATRIX                             | DATE EXTRACTED             | DATE                                   | ANALYZED                   |
|--------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|------------------------------------|----------------------------|----------------------------------------|----------------------------|
| 8080                                                               | Dennis Shaw                                           |                                      | Liquid                             | 8/6/97                     |                                        | 8/6/97                     |
| SPIKE<br>COMPOUND                                                  | SPIKE<br><u>AMOUNT</u>                                | % REC<br>_1                          | % REC<br>_2                        | •                          | % VAR.                                 | % VAR QC<br><u>LIMIT</u>   |
| 4,4'-DDD<br>4,4'-DDT<br>Heptachlor<br>Endosulfan Sulfate<br>Endrin | 1.0 ppb<br>1.0 ppb<br>0.20 ppb<br>1.0 ppb<br>0.20 ppb | 75.2<br>68.4<br>101.4<br>116<br>49.0 | 71.5<br>60.9<br>110<br>116<br>56.0 | 25-160<br>33-135<br>26-144 | 4.92<br>11.0<br>7.82<br>0.0215<br>12.5 | 35<br>35<br>35<br>35<br>35 |

#### TCLP HERBICIDES QUALITY CONTROL DATA

| METHOD                                | ANALYST                       | MAT                  | <u>RIX</u>           | DATE   | EXTRACTED                     | DATE                 | ANALYZED                 |
|---------------------------------------|-------------------------------|----------------------|----------------------|--------|-------------------------------|----------------------|--------------------------|
| 8150                                  | Dennis Shaw                   | Liquid               | 1                    | 8/6/97 |                               |                      | 8/7/97                   |
| SPIKE<br><u>COMPOUND</u>              | SPIKE<br><u>AMOUNT</u>        | % REC<br><u>1</u>    | % REC<br>_2          | 2      | % REC QC<br>LIMIT             | <u>% VAR.</u>        | % VAR QC<br><u>LIMIT</u> |
| 2,4-D<br>2,4,5-T<br>2,4,5-TP (Silvex) | 0.5 ppm<br>0.5 ppm<br>0.5 ppm | 81.1<br>73.6<br>76.7 | 70.7<br>60.9<br>63.0 |        | 8.0-170<br>8.0-170<br>8.0-170 | 12.8<br>17.2<br>17.9 | 35<br>35<br>35           |

#### VOLATILE ORGANICS QUALITY CONTROL DATA

| METHOD             | ANALYST                | MA                | TRIX        | DATE EXTRACTE              | D DAT         | E ANALYZED               |
|--------------------|------------------------|-------------------|-------------|----------------------------|---------------|--------------------------|
| 8260               | Howard Hayo            | len Sol           | id          |                            |               | 8/4/97                   |
| SPIKE<br>COMPOUND  | SPIKE<br><u>AMOUNT</u> | % REC<br><u>1</u> | % RE(<br>_2 | C % REC QC<br><u>LIMIT</u> | <u>% VAR.</u> | % VAR QC<br><u>LIMIT</u> |
| 1,1-Dichloroethene | 20 ppb                 | 109               | 95.6        | 20-234                     | 12            | 25.0                     |
| Trichloroethene    | 20 ppb                 | 108               | 107         | 71-157                     | 0.93          | 25.0                     |
| Benzene            | 20 ppb                 | 110               | 109         | 37-151                     | 0.91          | 25.0                     |
| Toluene            | 20 ppb                 | 111               | 109         | 47-150                     | 1.8           | 25.0                     |
| Chlorobenzene      | 20 ppb                 | 113               | 109         | 37-160                     | 3.5           | 25.0                     |

Report To: Tetra Tech EM, Inc. Lab Number: 9708000031 Page <u>2 2 of 23</u>

Project: Pride Petroleum Services

| SEMI-VOLATILES QUALITY CONTROL DATA                |                                          |                              |       |                             |        |                                      |                              |          |                              |          |
|----------------------------------------------------|------------------------------------------|------------------------------|-------|-----------------------------|--------|--------------------------------------|------------------------------|----------|------------------------------|----------|
| METHOD                                             | ANALYST                                  | <u>N</u>                     | IATRE | <u>×</u>                    | DATE   | EXTRACTED                            |                              | DATE     | ANALYZEI                     | <u>D</u> |
| 8270                                               | Dennis Shaw                              | S                            | olid  |                             | 8/5/97 |                                      |                              |          | 8/5/97                       |          |
| SPIKE<br>COMPOUND                                  | SPIKE<br><u>AMOUNT</u>                   | % REC<br>_1                  |       | % REC<br>_2                 |        | % REC QC<br>LIMIT                    | <u>% VAF</u>                 | <u>.</u> | % VAR QC<br><u>LIMIT</u>     |          |
| Phenol<br>2-Chlorophenol<br>Acenaphthene<br>Pyrene | 200 ppb<br>200 ppb<br>100 ppb<br>100 ppb | 64.1<br>75.0<br>86.3<br>99.3 | 7     | 73.6<br>79.6<br>96.2<br>111 |        | 10-120<br>23-134<br>47-145<br>52-125 | 13.0<br>6.05<br>10.3<br>10.2 |          | 42.0<br>40.0<br>31.0<br>31.0 |          |

#### QUALITY CONTROL DATA

| ANALYTE  | DATE<br>ANALYZED | SPIKE<br>(ppm) | STAND.<br><u>DEV.</u> | COEFF. OF<br><u>VAR %</u> | <u>REC1/%</u> | <u>REC2/%</u> |
|----------|------------------|----------------|-----------------------|---------------------------|---------------|---------------|
| Mercury  | 8/8/97           |                |                       |                           | 106           | 106           |
| Arsenic  | 8/8/97           |                | 0.153                 | 3.4                       | 105           | 110           |
| Barium   | 8/8/97           |                | 0.044                 | 1.4                       | 95            | 97            |
| Cadmium  | 8/8/97           |                | 0.064                 | 2.2                       | 103           | 107           |
| Chromium | 8/8/97           |                | 0.070                 | 2.1                       | 102           | 99            |
| Lead     | 8/8/97           |                | 0.053                 | 1.5                       | 105           | 107           |
| Selenium | 8/8/97           |                | 0.318                 | 8.4                       | 97            | 109           |
| Silver   | 8/8/97           |                | 0.094                 | 2.7                       | 96            | 100           |

Standard Deviation = (x1-x2)/1.414 Coefficient of Variability % = (S.D./Avg.) X 100 Recovery % = [(spiked-unspiked)/expected] X 100 Report To: Tetra Tech EM, Inc. Lab Number: 9708000031 Page <u>23</u> of <u>23</u> Project: Pride Petroleum Services

### QUALITY CONTROL DATA

| METHOD            | <u>ÁNALYST</u>         | MATE        | <u>RIX</u>  | DATE   | EXTRACTEI         | <u>D</u> <u>D</u> A | TE ANALYZED              |
|-------------------|------------------------|-------------|-------------|--------|-------------------|---------------------|--------------------------|
| 8015 Mod.         | Dennis Shaw            | Solid       |             | 8/14/9 | 7                 |                     | 8/14/97                  |
| SPIKE<br>COMPOUND | SPIKE<br><u>AMOUNT</u> | % REC<br>_1 | % RE(<br>_2 | 2      | % REC QC<br>LIMIT | <u>% VAR.</u>       | % VAR QC<br><u>LIMIT</u> |
| Diesel Fuel       | 6085 ppm               | 97.0        | 102         |        | 20-150            | 4.90                | 30                       |

#### **QUALITY CONTROL DATA**

| ANALYTE          | DATE<br>ANALYZED | SPIKE<br>(ppm) | STAND.<br><u>DEV.</u> | COEFF. OF<br><u>VAR %</u> | <u>REC1/%</u> | <u>REC2/%</u> |
|------------------|------------------|----------------|-----------------------|---------------------------|---------------|---------------|
| Reactive Cyanide | 8/19/97          |                | 0.06                  | 2.3                       | 102.4         | 105.6         |
| Reactive Sulfide | 8/19/97          |                | 15.6                  | 3.8                       | 71.1          | 75            |

Standard Deviation = (x1-x2)/1.414 Coefficient of Variability % = (S.D./Avg.) X 100 Recovery % = [(spiked-unspiked)/expected] X 100

### ANACHEM, INC.

#### PURCHASE ORDER TERMS

### **ACCEPTANCE OF ORDERS**

All orders are subject to acceptance by the general office of ANACHEM in Allen, Texas, by an authorized personnel of ANACHEM. Buyer's order, when accepted, shall constitute the complete contract between ANACHEM and buyer, subject to and incorporating therein the purchase order terms herein-stated and terms and conditions on ANACHEM'S current price list. Any additional, inconsistent or conflicting terms contained in buyer's order are rejected. Prices are subject to change without notice.

#### INTEREST ON PAST DUE ACCOUNTS

Unless otherwise specified, terms are NET 60 days. Buyer a grees that ANACHEM may charge Buyer a 31/2% late payment fee on all past due accounts.

#### LIMITED EXPRESS WARRANTY

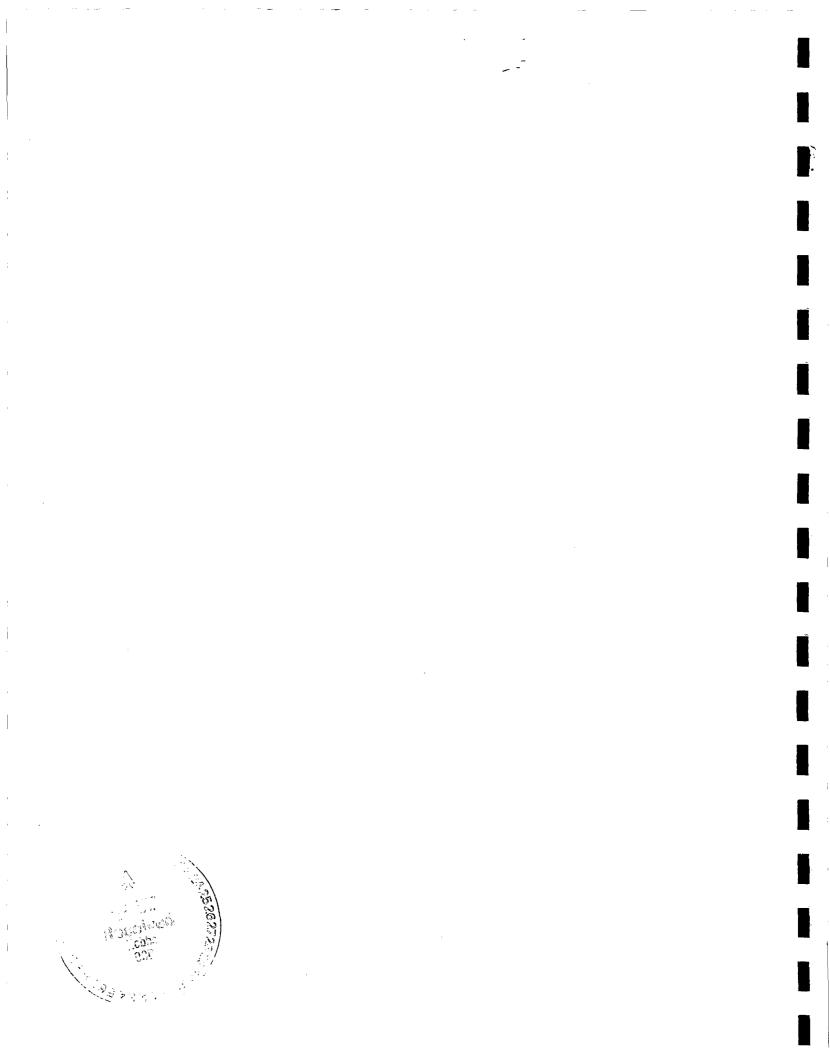
ANACHEM warrants that its testing procedures will conform to the published standards of the EPA, the TNRCC or other standard published institutions accepted by ANACHEM as being authoritative. The sole obligation of ANACHEM under this warranty, and Buyer's exclusive remedy, is repretormance of any procedure found to be defective or to refund Buyer's purchase price, or part thereof; at ANACHEM's option. ANACHEM shall have no liability for Buyer's incidental or consequential damages, including, without limitation, damages for loss of use, loss of 'time, inconvenience, loss of profits or other commercial loss.

THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED. ANACHEM EXPRESSLY NEGATES AND DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING THE IMPLIED WARRANTY OF MERCHANTABILITY AND ANY IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE.

All orders are subject to strikes, accidents or other causes beyond ANACHEM's control.

attention of the as games being a control of the

# CANCELLATION


RISKS

Purchase Crder/Cliain Of Clastody

Orders are not subject to cancellation after work has begun.

TAXES was added to be and the second se

To the prices and terms quoted ANACHEM will add any applicable sales or use taxes payable under any federal or state statute.

