

REPORTS

10601 Lomas NE Suite 106 Albuquerque, NM 87112 505-237-8440 505-237-8656 fax

July 18, 2003

Mr. William Olson, Hydrogeologist New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87504 RECEIVED

JUL 2 1 2003

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

RE: Reed A Groundwater Investigation Cooper Ranch Lea County, New Mexico

Dear Mr. Olson:

Attached is a copy of the results of the recent groundwater investigation at the former Conoco Reed A site, Lea County, New Mexico. We would appreciate your review and concurrence on the path forward stated in the report.

Please let me know if you have any questions regarding the attached report.

Sincerely,

MAXIM TECHNOLOGIES, INC.

aulas , L Clyde L. Yancey, P.G.

Senior Project Manager

Cc: Neal Goates, ConocoPhillips

Attachment

[&]quot;Providing Cost-Effective Solutions to Clients Nationwide"

Olson, William

From: Goates, R. Neal [Neal.Goates@conocophillips.com]

Sent: Wednesday, June 04, 2003 6:17 AM

To: Clyde Yancey; WOlson@state.nm.us

Subject: RE:

Bill,

FYI, Clyde and I went over this memo prior to sending to you. We feel the investigation scope of work was completed.

Page 1 of 1

1R324

Neal Goates RM&R Site Manager ConocoPhillips Threadneedle Office PO Box 2197 Houston, TX 77252-2197 phone: 832-379-6427 etn: 679-6427 fax: 801-382-1674 cell: 832-465-4123 email: Neal.Goates@conocophillips.com

> -----Original Message----- **From:** Clyde Yancey [mailto:CYancey@maximusa.com] **Sent:** Monday, June 02, 2003 2:46 PM **To:** WOlson@state.nm.us **Cc:** Goates, R. Neal **Subject:**

Bill,

Please find attached a memo addressing your recent letter (5/23/03) concerning approval to install monitor wells at the Reed A site in Lea County, NM, case #1R-324.

Regards, Clyde <<BOIson Memo 060203.pdf>> **Clyde L. Yancey, P.G.** Maxim Technologies, Inc. 10601 Lomas Blvd. NE, Suite 106 Albuquerque, NM 87112 (505) 237-8440 phone (505) 237-8656 fax cyancey@maximusa.com <mailto:cyancey@maximusa.com>

\$

1 z .

10601 Lomas NE, Suite 106 Albuquerque, NM 87112 (505) 237-8440

MEMORANDUM

DATE: June 2, 2003

TO:Bill Olson, NMOCD – Neal Goates, ConocoPhillipsFROM:Clyde Yancey, Maxim Technologies

SUBJECT: NMOCD May 23, 2003 Reed "A" Letter

Maxim Technologies is in receipt of your May 23, 2003 letter granting approval of the work plan to install three monitor wells at the Reed "A" site in Lea County, New Mexico. Your conditions of approval are noted and will be followed during field activities currently scheduled to commence on June 10, 2003.

In the closing paragraph of said letter, you indicated that Maxim did not carry out our previous fieldwork pursuant to OCD's work plan approval conditions (letter dated 9/19/03). You state in your recent letter "that soil from each borehole be sampled on 10 foot intervals and be analyzed for concentrations of BTEX, (TPH), and chloride. ConocoPhillips did not conduct borehole soil sampling from 10 foot intervals as required." The actual language from the September 19, 2001 is as follows:

- I. Soil from each boring shall be sampled on 10 foot intervals.
- 2. All soil samples shall be obtained and analyzed for concentrations of benzene, toluene, ethylbenzene, xylene (BTEX), total petroleum hydrocarbons (TPH) and chloride using EPA approved methods and quality assurance/quality control (QA/QC).

Note: Field PID readings of less than 100 ppm may be substituted for a laboratory analysis of BTEX.

In regards to item #1, we took continuous split-spoon soil samples in all borings and performed headspace analyses on each sample collected. We believed that methodology clearly achieved the condition set forth. We did not interpret item #1 as requiring actual laboratory analyses on all samples at ten-foot intervals, and would have questioned OCD at the time if this were our interpretation. The questions would have been based on excessive costs to our client and redundancy of information.

In regards to item #2, samples collected for analyses per our work plan were all analyzed for TPH and chloride using EPA approved methods. We did not analyze for BTEX based on your

stated "note" regarding substituting field PID readings less than 100 ppm for a laboratory analysis.

You further state "that there were no sample analyses of heavily contaminated soils in the source areas obtained during the soil investigations showing actual BTEX, TPH and chloride source contaminant concentrations, other than SPLP composite samples. The lack of this information will make it difficult to assess remedial options for contamination at the site."

In regards to this statement, we take exception based on the following:

5-5-

- The composite SPLP samples from the two areas of concern consisted of four representative samples from across that site and from depth, consisting of the most heavily contaminated material present. True, bulk analyses were not obtained, but if they were, they would not be useful in "assessing remedial options for contamination at the site." Only the SPLP data can assess potential groundwater impacts.
- The SPLP analyses, which tell us what constituent of concern will leach from the most heavily contaminated material and possibly impact groundwater, are critical in determining remedial options at the site. The leachate was analyzed for TPH, BTEX and chloride.
- SPLP data is used in fate and transport modeling of constituents of concern to determine if the site warrants closure or some other abatement process. It is our understanding that the OCD typically requires this information.
- This sampling methodology was presented in our work plan, and was not questioned by NMOCD at the time.

Olson, William

From: Clyde Yancey [CYancey@maximusa.com]

Sent: Wednesday, May 07, 2003 4:13 PM

To: Goates, R. Neal; Olson, William

Cc: Crouch, Ronald P.

Subject: RE: Reed Monitor Well Locations

Attached is the proposal to install 3 monitor wells at the Cooper Reed A site. Clyde

Clyde L. Vancey, P.G. Senior Vice President Maxim Technologies, Inc. 10601 Lomas Blvd. NE, Suite 106 Albuquerque, NM 87112 (505) 237-8440 phone (505) 237-8656 fax cyancey@maximusa.com <mailto:cyancey@maximusa.com>

Neal Goates Site Manager Risk Management & Remediation

Threadneedle 5022 600 North Dairy Ashford Houston, TX 77079-1175 phone 832.379.6427 fax 801-382-1674 Neal.Goates@conocophillips.com

May 5, 2003

Mr. Bill Olson, Hydrogeologist New Mexico Oil Conservation Division 1230 South St. Francis Drive Santa Fe, NM 87505

ConocoPhillips

RE: ConocoPhillips "Cooper Reed A" Pit Site Lea County, New Mexico

Dear Mr. Olson:

I am forwarding an additional copy of the August 26, 2002, report produced by Maxim Technologies, Inc. (Maxim) entitled *Cooper Reed A Soil Investigation, Leas County, New Mexico*, for your use.

Please note that a total of 11 soil borings were installed in and around the natural depression/pit area and the former tank battery site. The deepest boring (46 feet below ground surface [bgs]) was installed within the natural depression/pit. Within this boring, the soil photo-ionization detector (PID) readings were less than 100 parts per million (ppm), and the total petroleum hydrocarbons (TPH) values were below action levels. This boring was allowed to stay open for several hours, and no groundwater infiltration was noted. Also, a total of 15 test pits were installed within the natural depression/pit area, and no groundwater accumulated in the pits overnight. SPLP samples were taken of both pit material and former tank battery material. The non-detect results indicated no leachability potential from the hydrocarbon material.

The results summarized above and presented in the attached report and the SPLP results indicate source migration to groundwater is not occurring. To confirm groundwater is not being impacted, ConocoPhillips proposes the following:

 Installation of three monitor wells to groundwater to confirm our conclusion that the former tank battery area and the natural depression/pit area have not contributed leachate to the natural groundwater system underlying the Cooper Reed A site. Mr. Bill Olson, Hydrogeologist May 7, 2003 Page 2 of 2

- The monitor wells will be configured in a triangular pattern to insure that the localized gradient can be determined; thus presenting both site-specific downgradient data as well as site-specific background data (Figure 1).
- The wells will be installed, developed and sampled per NM Oil Conservation Division protocols. The wells will be drilled to first water or red beds.
- Groundwater will be analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX), TPH and chloride.

Please let me know if you have additional questions or comments relative to this proposal. We are prepared to install the wells within two weeks of receiving your concurrence on this plan and approval of access from the landowner.

Very truly yours,

oald

Neal Goates Project Manager ConocoPhillips Risk Management and Remediation

Attachments

CC: Clyde L. Yancey, Maxim Technologies, Albuquerque, NM

Olson, William

From: Sent: To: Subject:

î

ĩ

Sheeley, Paul Tuesday, August 31, 2004 8:38 AM Olson, William CP Reed A Pix 8/5/04

Ê

IR324

DCP_4639.JPG

DCP_4641.JPG DCP_4642.JPG

1

Ē DCP_4643.JPG

Ē

DCP_4646.JPG

August 26, 2004

10601 Lomas NE, Suite 106. Albuquerque, NM 87112 (505) 237-8440

RECEIVE,

AUG 3 0 2004 OIL CONTERNATION LIVIDIDE

Mr. William Olson Hydrogeologist, Environmental Bureau New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Reed A Historic Tank Battery Site NE¹/4, SW¹/4, Sec 24, T20S, R36E Perched Water Issue NMOCD Case No. 1R-324 Maxim Project No. 4690024

Dear Mr. Olsen:

On behalf of ConocoPhillips, Maxim Technologies (Maxim) submits this review of environmental conditions at ConocoPhillips historic Reed A Tank Battery (site). This is in response to Mr. Dale Cooper's concern about water seeping into the excavation at Reed A. The site is located approximately 5.9 miles southwest of Monument (Latitude 32° 33' 18.9" N and Longitude 103° 18' 42.4"W) in Lea County, New Mexico.

During remedial excavations at the site, very shallow perched water was observed seeping from the contact between the overlying dune sands and the underlying clay beds at depths of approximately 4 to 10 feet below ground surface (fbgs; photos). This shallow perched water occurs where the highly permeable dune sands transmit precipitation downward until it encounters the underlying impermeable clays. The unconfined water then may flow laterally along the sand – clay contact due to gravity or remain in retention in low-lying areas of the clay surface. The perched water may also accumulate in larger quantities in erosional basins within the upper clay surface. During times of very low precipitation, a majority of the perched water is discharged from the subsurface by evaportranspiration.

In past conversations and correspondence regarding this site, the occurrence of this limited, shallow, perched water has been referred to as a natural "spring" by the landowner or landowner representatives. By definition, a spring occurs where the land surface intersects the water table. To investigate the occurrence of a water table underlying the site, Maxim on behalf of ConocoPhillips, performed two detailed subsurface investigations. These investigations were performed during March 2002 and June 2003. The results are presented below.

During an investigation performed in March, 2002, soil borings were drilled to depths ranging from 15 to 46 fbgs. The deepest boring (46 fbgs) was allowed to remain open for approximately two hours, after which it was plugged back to surface when no groundwater was observed in the borehole. Groundwater was not encountered in any of the other borings, as well. Lithology encountered in these borings consisted of approximately 5 to 10 feet of unconsolidated dune sand underlain by varying consistencies of clays and sands, and occasional discrete caliche beds. Also during this investigation, fifteen test pits were excavated to depths of between 4 and 13.5 fbgs at the site. No groundwater was encountered in any of the pits during excavation. Four of the pits, with bottom depths of 8 to 9 fbgs, were allowed to remain open overnight for observation. No groundwater or seepage was found in any of these four pits the following morning, and they were subsequently backfilled. The results of this investigation concluded that groundwater was not encountered at the site in any of the borings or excavations. A formal letter report detailing this investigation was provided to the NMOCD.

Page 2

In June 2003, to further investigate the potential for the occurrence of groundwater underlying the site, three pilot borings were advanced until either groundwater or Triassic "Red Beds" were encountered per a NMOCD approved work plan. Triassic "Red Beds" were encountered in all three pilot borings at approximately 75 feet below ground surface. The borings were allowed to stand open over night to facilitate any potential groundwater infiltration. All three pilot borings were observed to be dry the day following installation. The borings were plugged and abandoned. A formal letter report detailing this investigation was provided to the NMOCD.

The Reed A site appears to be situated on the edge of a major regional groundwater boundary. According to New Mexico State Engineer Well Reports, shallow groundwater occurs in the Triassicaged Chinle Formation approximately 0.5 miles south of the Reed A site. Groundwater in the Chinle Formation is usually found under confined conditions. Two wells identified as being in the Chinle Formation located approximately 1.2 miles south-southwest of the site were drilled to depths of 265 and 400 fbgs, and exhibited static groundwater levels of approximately 120 and 170 fbgs, respectively. To the north and west of the Reed A site, shallow groundwater occurs under unconfined conditions in the Tertiary-aged Ogallala Formation and in Quaternary alluvium deposits at depths of less than 40 fbgs. A number of wells drilled to depths of 125 to greater than 400 fbgs in this area have not encountered any groundwater.

Based on data collected during the two site investigations, it appears that the Ogallala Formation and Quaternary alluvium are non-water bearing, and groundwater as defined by the New Mexico Water Quality Control Commission (NMWQCC), does not occur within strata between ground surface and 75 fbgs at the Reed A site. Therefore, the occurrence of the limited water discharge into the open excavations does not meet the definition of a spring or groundwater per the NMWQCC (*interstitial water which occurs in saturated earth material and which is capable of entering a well in sufficient amounts to be utilized as a water supply*). Therefore, ConocoPhillips requests that the NMOCD concur with the decision to backfill the open excavations and complete the approved site restoration plan.

Mr. Olson, if you have any questions concerning this perched water issue, please call Mr. Neal Goates (832-379-6427) or me (505-237-8440).

Sincerely,

MAXIM TECHNOLOGIES

auce Clyde L. Yancey, P.G. Senior Project Manager

Cc: Mr. Neal Goates, ConocoPhillips Mr. Paul Scheeley, NMOCD District 1

Olson, William

From:	Goates, R. Neal [Neal.Goates@conocophillips.com]
Sent:	Tuesday, September 28, 2004 6:11 AM
То:	Bill Olson
Subject:	FW: Reed A Photos
Importance:	High
Follow Up Flag:	Follow up
Due By:	Thursday, September 30, 2004 4:00 PM
Flag Status:	Flagged

Bill,

>

It's my opinion and the professionals that are working the job that this project needs to stay on path of the original procedure for closure. There is no evidence of a spring at this location.

-----Original Message-----From: Cwdurrett1@aol.com [mailto:Cwdurrett1@aol.com] Sent: Friday, September 24, 2004 5:17 PM To: Goates, R. Neal Cc: cyancey@maximusa.com Subject: Reed A Photos

Attached are photos showing 3 dry trenchs. Photos taken today.

This email has been scanned by the MessageLabs Email Security System. For more information please visit http://www.messagelabs.com/email

ConocoPhillips/Cooper Ranch Reed A Excavation

Reed A West Side Trench

Reed A West Side Trench

Reed A East Side Trench

Reed A East Side Trench₂

ຸ່ມ

Olson, William

From: Sent: To: Subject: Goates, R. Neal [Neal.Goates@conocophillips.com] Thursday, August 12, 2004 2:11 PM Bill Olson FW: Reed A Edited Photos

-----Original Message-----From: Cwdurrett1@aol.com [mailto:Cwdurrett1@aol.com] Sent: Saturday, August 07, 2004 4:09 PM To: Goates, R. Neal; Crouch, Ronald P. Cc: cyancey@maximusa.com Subject: Reed A Edited Photos

<<Reed A Water.pdf>> See Attached

Charlie Durrett Maxim Technologies 1703 W. Industrial Ave. Midland, TX 79701 P 432-686-8081 F 432-686-8085

++++++CONFIDENTIALITY NOTICE++++++

The information in this email may be confidential and/or privileged. This email is intended to be reviewed by only the individual or organization named above. If you are not the intended recipient or an authorized representative of the intended recipient, you are hereby notified that any review, dissemination or copying of this email and its attachments, if any, or the information contained herein is prohibited. If you have received this email in error, please immediately notify the sender by return email and delete this email from your system.

This email has been scanned by the MessageLabs Email Security System. For more information please visit http://www.messagelabs.com/email

Approximate location of standing water

MAXIM Technologies

West Excavation

West Excavation

West Trench

East Excavation

East Excavation

East Excavation

MAXIM Technologies

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H

Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79932 888058803443 E-Mail: lab@traceanalysis.com 806 • 794 • 1296 FAX 806 • 794 • 1298 915•585•3443

FAX 915•585•4944

Analytical and Quality Control Report

Paul Sheeley OCD Hobbs Office 1625 N. French Drive Hobbs, NM 88240

Report Date:

August 22, 2001

Order ID Number: A01081010

Project Number: West Landfarm Monument Spring Project Name: N/A **Project Location:** Cooper Landowner

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
176869	0108091340A	Water	8/9/01	13:40	8/10/01
176870	0108091345	Water	8/9/01	13:40	8/10/01

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 7 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Report Date: August 22, 2001 West Landfarm Monument Spring

r

Analytical Report

Sample:	176869 -	0108091340A	
---------	----------	-------------	--

Analysis: Analyst:	BTEX CG	Analytical Method: Preparation Method:	S 8021B E 5030B	QC Batch: Prep Batch:	QC13479 PB11493	Date Analyzed: Date Prepared:	8/20/01 8/20/01
Param		Flag	Result	Units	Dilt	ation	RDL
Benzene			< 0.005	mg/L		5	0.001
Toluene			< 0.005	mg/L		5	0.001
Ethylbenze	ne	•	< 0.005	$\mathrm{mg/L}$		5	0.001
M,P,O-Xyle	ene	•	< 0.005	mg/L		5	0.001
Total BTE	X		< 0.005	mg/L		5	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		0.528	mg/L	1	0.10	105	72 - 128
4-BFB		0.422	mg/L	1	0.10	84	72 - 128

Sample: 176869 - 0108091340A

Analysis: Analyst:	TPH DRO JJ	Analytical Method: Preparation Method:	Mod. 8015B 3510C - Mod.	QC Batch: Prep Batch:	QC13307 PB11356	Date Analyzed: Date Prepared:	8/13/01 8/13/01
Param	Flag	Result	Units	Dilutio	on		RDL
DRO		8.9	m mg/L	0.10			50

					Spike	Percent	Recovery
Surrogate	Flag	Result	\mathbf{Units}	Dilution	Amount	Recovery	Limits
n-Octane		17	m mg/L	0.10	25	68	70 - 130

176869 -	0108091340A					
TPH GRO	Analytical Method:	8015B	QC Batch:	QC13480	Date Analyzed:	8/20/01
CG	Preparation Method:	5030	Prep Batch:	PB11493	Date Prepared:	8/20/01
	-		-		_	
Flag	\mathbf{Result}	Units	\mathbf{Dil}	lution		RDL
	< 0.5	mg/L		5		0.10
	176869 - TPH GRO CG Flag	176869 - 0108091340ATPH GRO CGAnalytical Method: Preparation Method:FlagResult< 0.5	176869 - 0108091340ATPH GROAnalytical Method:8015BCGPreparation Method:5030FlagResultUnits<0.5	176869 - 0108091340ATPH GROAnalytical Method:8015BQC Batch:CGPreparation Method:5030Prep Batch:FlagResultUnitsDil<0.5	176869 - 0108091340ATPH GROAnalytical Method:8015BQC Batch:QC13480CGPreparation Method:5030Prep Batch:PB11493FlagResultUnitsDilution<0.5	176869 - 0108091340ATPH GRO CGAnalytical Method:8015B 5030QC Batch:QC13480 Prep Batch:Date Analyzed:CGPreparation Method:5030Prep Batch:PB11493Date Prepared:FlagResultUnitsDilution<0.5

Sample: 176870 - 0108091345

Analysis:	Ion Chromatography (IC) Analytical Method:				0 QC Batch:	QC13281 Date Analyzed: 8/10/01
Analyst:	\mathbf{JS}		Preparation Method	l: N/A	Prep Batch:	PB11327 Date Prepared: 8/10/01
Param	Flag	Result	units	Diluti	ion	RDL
$\overline{\mathrm{CL}}$		91.3	mg/L	5		0.50
Nitrate-N		<1.0	mg/L	5		0.20

Report Date: August 22, 2001 West Landfarm Monument Spring

Quality Control Report Method Blank

Method Bla	ank	QCBatch:	QC13281				
Param		Flag	R	lesults	Units		Reporting Limit
CL				<2.0	mg/L	· · · · · · · · · · · · · · · · · · ·	0.50
Nitrate-N				< 0.2	mg/L	ı	0.20
Method Bla	ank	QCBatch:	QC13307				
Param		Flag	Re	sults	Units		Reporting Limit
DRO				<5	mg/L		50
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Octane		20	mg/L	1	25	80	70 - 130
Method Bla	ank	QCBatch: Flag	QC13479	Results	Unit	S	Reporting Limit
Renzene		1 145				т.	0.001
Toluene				<0.001	mg/	L T.	0.001
Ethylbenzene				< 0.001		 Т,	0.001
M.P.O-Xylene				< 0.001	mg/	L	0.001
Total BTEX				<0.001	mg/	- L	0.001
Method Bla	ank	QCBatch:	QC13480				
Param		Flag	Re	eulte	Units		Reporting Limit
GRO				<0.1	mg/L		0.10
Laboratory	Contro	Q Lab Contr l Spikes	Quality Col Spike	Control Re s and Du	eport plicate Spi	kes	

Param	LCS Result	$\begin{array}{c} \mathrm{LCSD} \\ \mathrm{Result} \end{array}$	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
CL	12.13	12.36	mg/L	1	12.50	<2.0	97	1	90 - 110	20
Nitrate-N	2.34	2.35	mg/L	1	2.50	< 0.2	93	0	90 - 110	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes

OCBatch	0012207
QCBatch:	QC13307

					Spike					
	LCS	LCSD			Amount	Matrix			$\% { m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	$\% { m Rec}$	RPD	Limit	Limit
DRO	< 50	< 50	mg/L	1	250	<5	10	0	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Recovery
Surrogate	Result	\mathbf{Result}	Units	Dilution	Amount	$\% { m Rec}$	$\% { m Rec}$	Limits
n-Octane	21.1	20.6	mg/L	1	25	84	82	70 - 130

Laboratory Control Spikes

QCBatch: QC13479

Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
MTBE	0.098	0.097	mg/L	1	0.10	< 0.001	98	1	80 - 120	20
Benzene	0.098	0.097	mg/L	1	0.10	< 0.001	98	1	80 - 120	20
Toluene	0.101	0.101	mg/L	1	0.10	< 0.001	101	0	80 - 120	20
Ethylbenzene	0.104	0.103	mg/L	1	0.10	< 0.001	104	0	80 - 120	20
M,P,O-Xylene	0.313	0.31	mg/L	1	0.30	< 0.001	104	0	80 - 120	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Recovery
Surrogate	Result	Result	Units	Dilution	Amount	$\% { m Rec}$	$\% \mathrm{Rec}$	Limits
TFT	0.096	0.092	mg/L	1	0.10	96	92	72 - 128
4-BFB	0.105	0.101	mg/L	1	0.10	105	101	72 - 128

Laboratory Control Spikes QCBatch: QC13480

					Spike					
	LCS	LCSD			Amount	Matrix			$\% { m Rec}$	RPD
Param	\mathbf{Result}	\mathbf{Result}	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
GRO	0.948	0.898	mg/L	1	1	< 0.1	94	5	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
TFT	0.096	0.095	mg/L	1	0.10	96	95	70 - 130
<u>4-BFB</u>	0.092	0.092	mg/L	1	0.10	92	92	70 - 130

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

Report Date: August 22, 2001 West Landfarm Monument Spring

CON (1)

Order Number: A01081010 N/A Page Number: 5 of 7 Cooper Landowner

	MS	MSD			Spike Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	\mathbf{Result}	$\% { m Rec}$	RPD	Limit	Limit
CL	1 207.06	2208.75	mg/L	1	125	91.3	99	1	52 - 131	20
Nitrate-N	3 25.24	⁴ 24.12	mg/L	1	25	<1.0	100	4	84 - 105	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

0010001

Quality Control Report Continuing Calibration Verification Standards

CCV(I)	QU	Batch: (2013281				
			$\rm CCVs$	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
CL		mg/L	12.50	12.16	97	90 - 110	8/10/01
Nitrate-N		mg/L	2.50	2.36	94	90 - 110	8/10/01

ICV (1) QCBatch: QC13281

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
CL		mg/L	12.50	12.10	96	90 - 110	8/10/01
Nitrate-N		mg/L	2.50	2.35	94	90 - 110	8/10/01

CCV (1) QCBatch: QC13307

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/L	250	246	98	85 - 115	8/13/01
n-Octane		mg/L	250	210	84	85 - 115	8/13/01

ICV (1) QCBatch: QC13307

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
DRO		mg/L	250	286	114	85 - 115	8/13/01
n-Octane		mg/L	250	208	83	85 - 115	8/13/01

¹I spiked the *10 dilution for 176870, but reported the *5 dilution. The correct %EA = 99.

 2 I spiked the *10 dilution for 176870, but reported the *5 dilution.

 $^{3}\mathrm{I}$ spiked the *10 dilution for 176870, but reported the *5 dilution.

⁴I spiked the *10 dilution for 176870, but reported the *5 dilution.

Report Date: August 22, 2001 West Landfarm Monument Spring

Order	Number:	A01081010
	N / A	

Page Number: 6 of 7 Cooper Landowner

CCV (1) QC13479 QCBatch:

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.094	94	85 - 115	8/20/01
Benzene		mg/L	0.10	0.094	94	85 - 115	8/20/01
Toluene		mg/L	0.10	0.096	96	85 - 115	8/20/01
Ethylbenzene		mg/L	0.10	0.098	98	85 - 115	8/20/01
M,P,O-Xylene		mg/L	0.30	0.296	98	85 - 115	8/20/01

N/A

CCV (2) QCBatch: QC13479

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
MTBE		mg/L	0.10	0.094	94	85 - 115	8/20/01
Benzene		m mg/L	0.10	0.09	90	85 - 115	8/20/01
Toluene		mg/L	0.10	0.093	93	85 - 115	8/20/01
Ethylbenzene		m mg/L	0.10	0.095	95	85 - 115	8/20/01
M,P,O-Xylene		mg/L	0.30	0.286	95	85 - 115	8/20/01

ICV (1) QCBatch:

QC13479

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
MTBE	·····	mg/L	0.10	0.091	91	85 - 115	8/20/01
Benzene		mg/L	0.10	0.089	89	85 - 115	8/20/01
Toluene		mg/L	0.10	0.092	92	85 - 115	8/20/01
Ethylbenzene		mg/L	0.10	0.093	93	85 - 115	8/20/01
M,P,O-Xylene		mg/L	0.30	0.282	94	85 - 115	8/20/01

CCV (1) QCBatch: QC13480

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/L	1	0.951	95	85 - 115	8/20/01

CCV (2) QCBatch: QC13480

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/L	1	1.05	105	85 - 115	8/20/01

.

Report Date: August 22, 2001 West Landfarm Monument Spring				Order Number: N/A	A01081010	Page Number: 7 of 7 Cooper Landowner		
ICV (1)		QCBatch:	QC13480					
			CCVs	CCVs	CCVs	Percent		
			True	Found	Percent	Recovery	Date	
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
GRO		mg/L	1	0.908	90	85 - 115	8/20/01	

·- - -

ł

-

-6

e e	l aismenter	155 McCutch El Paso, Te Tel (915)	eon,Suite H xas 79932 585-3443	CHAIN-OF-(CUSTODY AND A	ANALYSIS REQUE	ST
	cealialysis, I	111Ce - Fax (915) 1 (888) 5	585-3443 585-4944 88-3443	LAB Order	10 # AD10	81010	
	CONSENVATION DIVISIO	#: (SOS) 393-1	6161	A	NALYSIS REQUE	EST	
rei	HOL Dr. Hobbs NM	88240 East 393	0720-	 	sie or specify metrioc	(.on b	
e <				08/200			
\mathbf{F}				бн 1109 бн 2 0			andard
W	Dupst Land Raw M	A Name: Spring		əs qd Həs qd	<u> </u>		ste mort
1-	and ou ver Samp	1978 (gratures)		a Cd Cr Cd Cr	0C/052		ifferent
	RS Int MATRIX	PRESERVATIVE METHOD	SAMPLING	005 005 88 28 88 28 88 28 83 28	3111es 508/62 601.827	809/∀	ib îi en
ų	JUMATI JomA\a JOMA JE			6021B/60 6131B/60 61315 Ag 70C 61315 Ag 70C	semi Vols esticides Vol. 826 Semi. V 3082/608	1808 səl	niT bruo
	# CON	NONE ICE N ^g OH H ⁵ 20 ⁴ HNO ³	ataq amit	МТВЕ 4 ВТЕХ 8 ТСLP W ТОtal Md ТСLP W Тоtal Md ТСLP W	<u>РСВ'я в</u> GC/MS RCI TCLP P	Резтісіd 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Turn And Turn And
401	A 1 40 4 X	X X	8-9 1340	x x			
401	3 (YOMI X	XX	11 11	XX			
40 0	- I YOM X	XXX	11 [1	××			
10	D 1 40ml X	XXXX	11 11	XX			
5	1 17 X	×	11 ((۲ ۲	
		1 JUN					
		1					
					· · · · · · · · · · · · · · · · · · ·		/
Time	e: Received by:	Date: Time:		LAB USE ONLY	REMARKS: H	40-unt tor	1 BTG
Time	e: Received by:	Date: Time:		Intact (y)/ N Headspace Y / M	8	1L for	
Lime	e: Received at Laboratory by	Date: Time:	Logo1	Temp 3 °	Check If Sp Limits Are N	vecial Reporting TCA	L NU3
ment to T	ferms and Cenditions listed on reverse	side of C.O.C.		Carrier # TN/M \$0	-HL 7- 206	L-6ts	
	ORIG	GINAL COPY				,	

TraceAnalysis, Inc. General Terms and Conditions

Article 1: General

11 The words "we", "us", and 'our" refer to TraceAnalysis. You will deliver samples to us for analysis, accompanied, or preceded by a signed Chain of Custody/Analysis Request defining the scope and timing of our work and stating either the testing criteria you require or identifying the agency to which the results will be submitted.

Article 2: Our General Responsibilities

2.1 We agree to provide the professional services described in this agreement. We will provide you with written reports containing analytical results. In performing our service, we will use that degree of care and skill ordinarily exercised under similar circumstances by reputable members of our profession practicing in the same locality.

2.2 Test and observations will be conducted using test procedures and laboratory protocols as specified in accepted Chain of Custody/Analysis Request. If you direct a manner of making tests that varies from our standard or recommended procedures, you agree to hold us harmless from all claims, damages, and expenses arising out of your direction.

2.3 We will not release information regarding our services for you or any information that we receive from you, except for information that is in the public domain and except as we are required by law.

Article 3: Your General Responsibilities

3.1 Cn each Chain of Custody/Analysis Request you will designate a representative who has authority to transmit instructions, receive information, and make decisions relative to our work.

0.2 You will respond in a reasonable time to our request for decisions, authorization for changes, additional compensation, or schedule extensions.

3.3 For each Chain of Custody/Analysis Request you will either provide us with the exact methods for analysis of each fraction or you will identify the regulations and agency under which or for which the analysis are to be prepared. If pormits, consent orders, work plans, quality assurance plans, or correspondence with regulatory agencies address laboratory requirements, you will provide us with copies of the relevant provisions prio: to our initiation of the analyses

Article 4: Reports and Records

4 1 We will furnish copies of each report to you as specified in the Chain of Custody and Analysis Request. We will retain analytical data for seven years and financial data for three years relating to the services performed following transmittal of our final report.

4.2 if you do not pay for our services as agreed, you agree that we may retain all reports and work not yet delivered to you. You also agree that our work will not be used by you for any purpose unless paid for.

Articls 5: Delivery and Acceptance of Samples

5.1 Until we accept delivery of samples by notation on chain of custody documents or otherwise in writing accept the samples, you are responsible for loss of or damage to samples. Until so accepted, we have no responsibility as to samples

5 2 As to any samples that are suspected of containing hazardous substances or radioactive material, such that would make special handling required, you will specify the suspected or known substances, and level and type of adjoinctive ectivity. This information will be given to us in writing as a part of the Chain of Custody/Analysis Request and will precede or accompany samples suspected of containing hazardous substances. 5.3 Samples accepted by us remain your property while in our castody. We will retain samples for a beriod of 14 days following the date of submission of our report. We will extend the retention period if you so direct.

alrowing the retuntion person we will dispose of non-hazardous samples. We may return highly hazardous; acutely toxic, or radioactive samples and samples containers and residues to you. You agree to accept them. 5.4 Aegardless of a prior acceptance, we may refuse acceptance or revoke acceptance of samples if we determine that the samples present a risk to health, safety, or the environment, or that we are not authorized to

130

^____

5 ° Cr

n

accept them. If we revoke acceptance of any sample, you will have it removed from our facilities promptly.

Article 6: Changes to Task Orders

3.1 No persons o her than the designated representatives for each Chain of Custody/Analysis Request are authorized to act regarding changes to a Chain of Custody/Analysis Request. We will notify you promptly if we rdentify any activity that we regard as a change to the terms and conditions of a Chain of Custogy/Analysis Request. Our notice will include the date, nature, circumstance, and cause of the activity regarded as a change. We will specify the particular elements of project performance for which we may seek an equitable adjustment.

0.2 You will respond to the notice provided for in paragraph 6.1 promptly. Changes may be made to a Chain of Custody/Analysis Request through issuance of an amendment. The amendment will specify the reason for the change and, as appropriate, include any modified budgets, schedules, scope of work, and other necessary provisions.

5.5 Until agreement is reached concerning the proposed change, we may regard the situation as a suspension directed by you.

Article 7; Óomponsation

7.1 Our pricing to: the work is predicated upon your acceptance of the conditions and allocations of risks and responsibilities described in this agreement. You agree to pay for services as stated in our proposal and accepted by you or according to our then current standard pricing documents if there is no other written agreement as to price. An estimate or statement of probable cost is not a firm figure unless stated as such.

7.2 Unless otherwise agreed to elsewhere, you agree to pay invoices within 30 days of receipt unless, within 15 days from receipt of the invoice, you notify us in writing of a particular item that is alleged to be incorrect. You agree to pay the uncontested portions of the invoices within 30 days of receipt. You agree to pay interest on unpaid balances beginning 60 days after receipt of invoice at the rate of 1.5% per month, but not to exceed the maximum rate allowed by law.

7.3 if you infact us to invoice another, we will do so, but you agree to be ultimately responsible for our compensation until you provide us with that third party's written acceptance of all terms of our agreement and until via agrice to the substitution.

7.4 You agree to compensate us for our services and expenses if we are required to respond to legal process related to our services for you. Compensable services include hourly charges for all personnel involved in the response and attorney fees reasonably incurred in obtaining advice concerning the response, the preparation of the testifier, and appearances related to the legal process.

7.5 if we are dalayed by, or the penod of performance is materially extended because of, factors beyond our control, or if project condition or the scope or amount of work change, or if the standards or methods of testing charge, we will give you timely notice of the charge and we will receive an equitable adjustment of our compensation.

Article 8: Fisk Allocation, Disputes, and Damages

8.1 Neither we nor you will be liable to the other for special, incidental, consequential or punitive losses or damages, including but not limited to those arising from delay, loss of use, loss of profits or revenue, or the cost of capital.

8.2 We will not be fielde to you for damages unless suit is commenced within two years of injury or loss or within two years of the date of the completion of our services, whichever is earlier. In no event will we be liable to you unless you have holified us of the discovery of the negligent act, error, cmission or breach within 30 days of the dats of its discovery and unless you have given us an opportunity to investigate and to recommend ways of miligating your damages.

8.3 In the event you fail to pay us within 90 days following the invoice date, we may consider the default a total breach of our agreement and we may, at our option, terminate all of our duties without liability to you or to others

8.4 If it is claimed by a third party that we did not complete an acceptable analysis, at your request we will seek further review and acceptance of the completed work by the third party and use your best efforts to obtain that ecceptance. We will assist you as directed.

2.5 You and we agree that bisputes will be submitted to "Alternative Dispute Resolution" (ADR) as a condition precedent to litigation and other remedies provided by law. Each of us agrees to exercise good faith efforts 15 reachive disputes through modified nucless we both agree upon another ADR procedure. All disputes will be governed by the law of the place where our services are rendered, or if our services are rendered in more than one state, you and we agree that the law of the place that services were first rendered will govern.

8 6 If either of us makes a claim against the other as to issues out of the performance of this agreement, the prevailing party will be entitled to recover its reasonable expenses of litigation, including reasonable attorney's tees. If we bring lawsuit against you to collect our invoiced fees and expenses, you agree to pay our reasonable collection expenses including attorney fees.

Article 9: Indemnities

9 1 V/o will indomnify and hold you harmless from and against demands, damages, and expenses caused by our negligent acts and omissions and breach of contract and by the negligent acts and omissions and breach of contract of persons for whom we are legally responsible. You will indemnify and hold us harmless from and against demands, damages, and expenses caused by your negligent act and omissions and breach of entract and by the regigent acts and omissions and breach of contract of persons for whom you are legally responsible. These indemnities are subject to specific limitations provided for in this agreement.

Article 10: Miccelleneous Provisions

10.1 This agreement constitutes the entire agreement between you and us, and it supersedes all prior agreements. Any term, condition, prior course of dealing, course of performance, usage of trade, understanding, purchase order conditions, or other agreement purporting to modify, vary, supplement, or explain any provision of this agreement is of no effect until placed in writing and signed by boto parties subsequent to the date or this agreement. In no event will the printed terms or conditions stated in a purchase or work order, other than an agreed upon Chain of Custody/Analysis/Request, be considered a part this agreement, even if the occument is signed by both of us.

10.2 Neither party will assign this agreement without the express written approval of the other, but we may subcontract laboratory procedures with your approval as we deem necessary to gree t our obligations to you. 10.3 If any of the provisions of this agreement are held to be invalid or unentorceable in any respect, the remaining terms will be in full effect and the agreement will be constructed in the invalidation of the invalidation of the second s nenforceable matters were never included in it. No waiver of any default will be waiver of any future default.

10.4 Neither you or we will have any liability for nonperformance caused in whole or in part by causes beyond our reasonable control. Such causes include but are technical of the cause of God, Give inrest and war, labor

unrest and strikes, equipment failures matrix interference, acts of authorities, and failures of subcontractors that could not be reasonably anticipated. the effective time of a suspension or termination directive. We will be compensated for service rendered and expenses incurred prior to termination that cannot reasonably be avoided.

Olson, William

From:WrotenberSent:WednesdaTo:Williams,Cc:Salisbury,Subject:RE: Phone

Wrotenbery, Lori Wednesday, August 08, 2001 4:46 PM Williams, Chris Salisbury, Jennifer; Anderson, Roger; Olson, William RE: Phone call from Senator Carroll Leavell

Thanks for the report, Chris. Let us know what you find.

From:Williams, ChrisSent:Wednesday, August 08, 2001 4:44 PMTo:Wrotenbery, LoriSubject:Phone call from Senator Carroll Leavell

I received a call from the Senator requesting information on a possible contamination site on Clay and Kenna Coopers land behind their land farm. It appears that there is contamination of some sort, but it is hard to tell due to the cattle tracks and various things left behind. Paul Sheeley had photographed the site and talked Bill Olson back in late May early June. Paul's second trip therehe was locked out and couldn't get in. He will make a trip out tomorrow to grab a water sample for analysis. It appears that the contamination may be nitrates, but the lab sample will confirm or deny.

3R324

New Mexico State Senate

State Capitol Santa Fe COMMITTEES:

MEMBER: • Corporations & Transportation • Ways & Means

SENATOR CARROLL H. LEAVELL R-Eddy & Lea-41

> P.O. Drawer D Jal, NM 88252

Business: 393-2550 Home: 395-3154

August 7, 2001

Mr. Chris Williams Oil Conservation Division 1625 N. Frence Drive Hobbs, NM 88240 OIL CONSERVATION DIV.

Dear Chris,

Thanks for your call today. Attached is the letter I received from Kena Kay Cooper On the Dale Cooper Ranch Spring water contamination.

Appreciate your attention to their concerns.

Sincerely,

Carroll H. Leavell

cc: Ms. Lori Wrotenbery, Director Oil Conservation Division 1220 St. Francis Drive Santa Fe, New Mexico 87505

Senator Carroll H. Leavell Drawer D Jal, NM 88252

RE: DALE COOPER RANCH SPRING WATER CONTAMINATION

Dear Senator Leavell:

I am writing this letter as per your conversation with David Walton concerning the contamination of the natural spring waters on the Dale Cooper Ranch in Monument, New Mexico. In December 2000 Clay Cooper contacted Conoco, Inc., about possible contamination of the spring water. He had a meeting with Mr. R.V. Pauli from Conoco about cleaning up the site. He never heard back from Conoco. In February, 2001, when a coyote was found dead by the spring waters, the Oil Conservation Division in Hobbs was contacted and a representative was sent to the site. Ronald Crouch, with Conoco, was then contacted by the O.C.D. Again, another 2 months went by, with no contact from Conoco or the O.C.D. Both were contacted in April, 2001 and Conoco stated a report had been made for clean up and submitted to the O.C.D. office in Santa Fe. Clay contacted Wayne Price, O.C. D., who stated that he did have the report on his desk. As of this date we have still not heard back from Santa Fe and have been told it could take 6 months or more. Any assistance you could give us to help get something done on this matter would be greatly appreciated.

Sincerely,

Kena Lay Coopa

Kena Kay Cooper

1224 Cimberron 170665, NM 88240 (505) 392 - 1180 (505) 390 - 7996 (cell) - Cky Cooper

10601 Lomas NE Suite 106 Albuquerque, NM 87112

505-237-8440

¢ .1	ß	G	E	Ŋ	ij	i. F		7
		MAR	2	7	2001			
- 	(NSEP	RV/Q	nc	d ric	V?	a Statistica Carlos and	-

March 26, 2001

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87504

RE: Subsurface Investigation – Reed "A" Site Section 24, T20S, R36E Lea County, New Mexico

Dear Wayne:

Attached is a work plan to investigate a former tank battery and the occurrence of potentially perched groundwater on the Tuffy Cooper Ranch, southwest of Monument, Lea County, New Mexico.

Please let me know if you have any questions regarding the attached plan.

Sincerely, MAXIM TECHNOLOGIES, INC.

Clyde L. Yancey, P.G. Senior Project Manager

Attachment

"Providing Cost-Effective Solutions to Clients Nationwide"

B

ŝ

Ŧ

10601 Lomas NE Suite 106 Albuquerque, NM 87112

505-237-8440

March 7, 2001

Mr. John E. Skopak Conoco Inc. 600 North Dairy Ashford Houston, TX 77079-1175

RE: Work Plan – Reed A Investigation Eunice, New Mexico Maxim Project 1690010.100

Dear John:

Following the review of the information provided by Conoco Inc. (Conoco) and a site visit on January 25, 2001, Maxim Technologies, Inc. (Maxim) proposes the following work plan to investigate the Reed A site. It is our understanding that the areas to be investigated include a former tank battery location and a manifestation of potentially perched groundwater. Conoco is currently investigating if a separate former tank battery in the immediate vicinity may also require investigation. Maxim has included this separate tank battery in this work plan, with the understanding that it can be dropped from the plan if it is not a Conoco responsibility. Following completion of this proposed investigation, and receipt of the investigation-derived analytical results, Maxim will formulate a site conceptual model. Subsequently, Maxim will provide Conoco with a path-forward for this site within the framework of the New Mexico Oil Conservation Division (OCD) *Guidelines for Remediation of Leaks, Spills and Releases* (1993), and if appropriate, utilize a risk-based approach to site closure.

Scope of Work

Former Tank Battery Sites

In order to determine the vertical and horizontal extent of any potential impacts to soil underlying and surrounding the historic tank battery sites, the following scope of work is proposed for each of the two sites:

1. Maxim will advance a minimum of six soil borings at each site and collect soil samples from the borings to establish current soil conditions with respect to potential impacts from the batteries. The borings will be within and surrounding the immediate perimeter of the battery. Perimeter (outside the potential influence of the former battery) borings will be installed first to ascertain if any soil impacts extend to groundwater, and provide stratigraphic control prior to boring through the base of the former battery location. It should be noted that depending on

[&]quot;Providing Cost-Effective Solutions to Clients Nationwide"

ĉ

contaminant distribution (if any) within the soils surrounding the former battery, additional delineation borings might be required.

- 2. The borings will be advanced with a truck-mounted drill rig. The drill rig is equipped with air rotary capabilities if refusal is encountered during split spoon sampling.
- 3. The borings will be continuously sampled during drilling activities and logged according to the Unified Soil Classification System so that observations concerning soil types, lithologic changes, and the environmental condition of the soils can be noted.
- 4. The soil samples will be field screened with a photo-ionization detector (PID) to detect the presence of volatile organic vapors.
- 5. All sampling equipment will be cleaned between each boring installation. Rinse water will be contained and disposed of per appropriate regulatory procedures.
- 6. One soil sample from the bottom of each boring will be retained and submitted to the laboratory for analyses (more may be required depending on any constituent or lithologic heterogeneity's). One sample from each battery material will be collected and submitted for SPLP analysis. The objective of the soil analytical program will be to provide verification of the vertical and horizontal extent of any impacts, and if required, provide data for determining acceptable risk based closure levels. If groundwater is encountered prior to reaching unimpacted soil conditions (if present), a soil sample will be collected from immediately above the groundwater interface.
- 7. The soil samples will be placed into 4-oz. glass sample jars, sealed with Teflonlined lids, and placed on ice for transportation to an analytical laboratory where they will be analyzed for total petroleum hydrocarbons (TPH) (USEPA Method 8015). Battery material samples will be analyzed for SPLP volatiles analysis (USEPA Method 1312). All soil samples will be scanned with a PID, and per OCD Guidance, PID readings of 100 ppm will be substituted for a laboratory analysis of benzene and BTEX concentration limits.
- 8. If groundwater is encountered, three temporary PVC monitor wells will be installed, developed, and sampled at each location. The temporary wells will stay in place until the project is closed. Following project closure, the PVC will be removed and the borings plugged-back to the surface with bentonite pellets. Groundwater samples will be analyzed for BTEX (USEPA Method 8260), major cations and anions (various methods), RCRA metals (USEPA Method 6010), and polynuclear aromatic hydrocarbons (USEPA Method 8270), per OCD Guidance. A maximum of three borings will be sampled for groundwater. A survey relative to ground surface will be performed to determine the groundwater gradient.

9. Soil cuttings generated by soil boring activities will be drummed and disposed of offsite at a permitted facility. Purge water from the temporary monitor wells will also be drummed and disposed of offsite.

Potential Perched Groundwater Area

Appearances indicate that the area to be investigated is located within a natural depression or "buffalo wallow", surrounded on all sides by vegetated sand dunes, typical of the area. A shallow excavation has been opened in the middle of the depression to a depth of approximately eight feet. This excavation contained standing water, approximately three feet below ground surface (bgs), and the water had a "sheen" at the time of the site visit.

At this time, it is unclear if the water represents a shallow, perched aquifer system, or simply an area of localized recharge, with saturated conditions maintained by the relatively impermeable material within the depression. The landowner has stated that he would like to maintain saturated conditions if possible following investigation of the site. To that end, the following scope of work was developed to formulate a site conceptual model to ascertain the nature and extent of saturated conditions within the depression area, and guide the path-forward for the area.

- 1. A minimum of four soil borings will be installed immediately adjacent to, and outside of the vegetated sand dunes surrounding the depression. The purpose of these borings is to define the hydrostratigraphy and determine the lateral extent of any potential hydrocarbon impacts in the depression. The borings will be continuously sampled and scanned with a photo-ionization detector (PID).
- 2. Soil borings will be advanced until impacts are no longer observed or groundwater is encountered, at which point a soil sample will be collected for analysis. If impacts are not encountered, the boring will be terminated at 20 feet bgs, and a verification soil sample will be collected for analysis.
- 3. If impacts (if any) extend to groundwater, a temporary monitor well will be installed and a groundwater sample collected.
- 4. The borings will be advanced with a truck-mounted drill rig. The drill rig is equipped with air rotary capabilities if refusal is encountered during split spoon sampling.
- 5. The borings will be continuously sampled during drilling activities and logged according to the Unified Soil Classification System so that observations concerning soil types, lithologic changes, and the environmental condition of the soils can be noted.

March 7, 2001 Page 4 of 5

ĩ

1

- 6. All sampling equipment will be cleaned between each boring installation. Rinse water will be contained and disposed of per appropriate regulatory procedures.
- 7. The soil samples will be placed into 4-oz. glass sample jars, sealed with Teflon-lined lids, and placed on ice for transportation to an analytical laboratory where they will be analyzed for total petroleum hydrocarbons (TPH) (USEPA Method 8015). All soil samples will be scanned with a PID, and per OCD Guidance, PID readings of 100 ppm will be substituted for a laboratory analysis of benzene and BTEX concentration limits per OCD guidelines.
- 8. If groundwater is encountered, three temporary PVC monitor wells will be installed, developed, and sampled. The temporary wells will remain in place until the project is closed. Following project closure, the PVC will be removed and the borings plugged-back to the surface with bentonite pellets. Groundwater samples will be analyzed for BTEX (USEPA Method 8260), major cations and anions (various methods), RCRA metals (USEPA Method 6010), and polynuclear aromatic hydrocarbons (USEPA Method 8270), per OCD Guidance. A maximum of three borings will be sampled for groundwater. A survey relative to ground surface will be performed to determine the groundwater gradient. This scenario would indicate that a shallow aquifer system exists under the site. A report to the OCD will be made within 24 hours of encountering impacted groundwater.
- 9. Soil cuttings generated by soil boring activities will be drummed and disposed of offsite at a permitted facility. Purge water from the temporary monitor wells will also be drummed and disposed of offsite.
- 10. If groundwater is not encountered in the borings outside of the natural depression, it will be assumed that the standing water within the depression is a result of local recharge, with saturated conditions maintained by relatively impermeable material within the depression. The following steps would be taken to investigate the nature of the standing pit water.
- 11. Because of the sandy nature of the soils, it is anticipated that the drill rig will not be able to enter the pit area. Also, because of the shallow saturation, there is concern that the drilling equipment may become stuck. Therefore, Maxim proposes to use a trackhoe to install investigation excavations within the confines of the depression. The purpose of the excavations will be to ascertain the thickness of any hydrocarbon-related material within the depression. Care will be taken not to breach the bottom of the depression in order to prohibit communication between saturated waters in the depression and natural material underlying the depression (assumed to be actual existing conditions).

Mr. John E. Skopak March 7, 2001 Page 5 of 5

1

- 12. If water accumulates in the excavations, a minimum of four piezometers will be installed within excavations by the trackhoe and Maxim field personnel. Piezometer excavations will be evenly distributed across the depression. Following piezometer installation, and equilibration of water levels, the water from the existing excavation (installed by the landowner) will be pumped into a holding tank (frac-tank), and water level fluctuations will be monitored within the piezometers. If water levels drop within the piezometers during or following pumping, it will be evident that communication exists, and dewatering of the pit can be accomplished prior to removing the solid materials (assuming saturated conditions do not represent a laterally extensive, perched aquifer system). The pumped water will be analyzed and disposed of per appropriate regulatory guidelines.
- 13. Four composite samples of the material within the depression will be collected and submitted to the laboratory for SPLP volatiles analysis (USEPA Method 1312) to provide data for determining acceptable risk based closure levels.
- 14. The piezometers will be left in place pending the development of a remediation plan.

Project Schedule

Maxim is prepared to commence work on this project immediately following receipt of your notification to proceed.

Project Approach

Mr. Clyde L. Yancey will serve as the Project Manager and field coordinator, and will have the authority to commit whatever resources are necessary to support the project team. It will be his responsibility to assure that the Clients needs are met in terms of scope of work and schedule.

Maxim appreciates this opportunity to provide Conoco with this scope of work. If you should have any questions, please do not hesitate to me at 505-237-8440.

Sincerely, MAXIM TECHNOLOGIES, INC.

Clyde L. Yancey, P.G. Senior Project Manager

Maxim Technologies, Inc.