

April 30, 2001

Soil Restoration Plan for Township 19S Range 37E Section 7 Spill

RICE OPERATING COMPANY HOBBS , NEW MEXICO

Prepared for:

Rice Operating Company 122 West Taylor Hobbs, New Mexico 88240

R.T. HICKS CONSULTANTS, LTD.

4665 Indian School NE, Suite 106, Albuquerque, NM 87110

Table of Contents

1 Executive Summary	1
2 Introduction	3
2.1 Duration, Flowrate and Chemistry of Release	3
2.2 Location and Access	
2.2 Regulatory Considerations	
2.3 Evaluation of Criteria of Soil Alternatives	
3 Regional Environmental Setting	
3.1 Climate Precipitation Data	
3.2 Soils	
3.3 Regional Hydrogeology	
4 Description of Investigative Programs	
4.1 January 2001 Sampling Program	
4.2 March 2001 Field Program 4.3 Vadose Zone and Groundwater Modeling	
•	
5 Pre-Release Site Characteristics	
5.2 Site Hydrogeology	
5.3Human and Ecological Receptors	
6 Release Characteristics and Post-Release Characteristics	
6.1 Duration Flowrate and Chemistry of Release	
6.2 Surface Extent of Release	
6.3 Vertical Extent of Release	
6.4 Influence on Soil and Vegetation	
6.5 Influence on the Deep Unsaturated Zone and the Ogallala Aquifer	
7 Evaluation of Surface Soil Restoration Alternatives	
7.01 The Alternative of Natural Restoration	
7.02 The Alternative of In-Place Chemical Amendment 7.03 The Alternative of Mechanical Restoration	
7.05 The Alternative of Mechanical Restoration	
8 Description and Justification of Proposed Remedy	
· ·	
9 Implementation Schedule	.30

FIGURES

Figure 1: Location Map	3
Figure 2: Photo of Site looking Northwest	3
Figure 3: Photo of Site looking South from State Land	3
Figure 4: Photo of Soil Pit	16
Figure 5: Photo of Vegetation at the Site	

TABLES

Table 1: Precipitation Data at Pearl Station	
Table 2: Precipitation Data at Lea County Airpo	rt
Table 3: Water Quality Data	
Table 4: Rice Data - January 2001	
Table 5: Assaigai Laboratory Data	
Table 6: SWAT Data	
Talbe 7: March 2001 Field Data	

PLATES

Plate 1: Map Showing Sampling Locations Plate 2: Caliche Schematic Plate 3: Potentiometric Surface Plate 4: Sample Locations Plate 5: Chloride with Depth Plate 6: Chloride at Grid Points

APPENDICES

Appendix A: Natural Resources Conservation Service Soil Data Appendix B: SWAT Analysis List Appendix C: HYDRUS Model Specifications Appendix D: Assaigai Laboratory Results Appendix E: SWAT Laboratory Results Appendix F: Modeling Results

1.0 EXECUTIVE SUMMARY

Rice Operating Company (ROC) is the service provider (operator) for the Eunice-Monument-Eumount (EME) Saltwater Disposal System and has no ownership of any portion of pipeline, well, or facility. The EME System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis. Major projects require System Partner authorization of expenditures (AFE) approval and work begins as funds are received.

During a routine inspection on December 29, 2000, Rice Operating Company (ROC) discovered a pipeline failure in Section 7, Township 19S, Range 37E. The pipeline is regularly inspected and the last inspection was in October 2000. Because cooling tower blowdown water from the Linam Ranch Gas Plant comprises a significant portion of the water in the pipe, we believe the chloride concentration of the released water is less than 10,000 mg/L. Soil sampling data support this estimate of water quality.

Under contract to ROC, R.T. Hicks Consultants, Ltd. evaluated existing reports, collected additional field data, met with the surface landowner and then developed this soil restoration plan. The principal findings of our study are:

1. The spill released wastewater containing chloride and minor amounts of hydrocarbons to a 1-acre area of land belonging to the State of New Mexico and Mr. Jimmy Cooper.

2. The soil affected by the spill is low-permeability clayloam, 4-12 feet thick and underlain by caliche.

3. Background chloride concentration in the native soil is about 200-500 parts per million (ppm) (Assaigai laboratory analysis by EPA Method 300 in Pit 3).

4. The average chloride concentration in soils obviously affected by the release is 1500 ppm (EPA Method 300).

5. Sodium from the released wastewater has replaced calcium in the clay soils, causing swelling and further reduction in the natural permeability.

6. Chloride concentration in soils decreases with depth. Near surface soil samples contain twice as much chloride as samples obtained from immediately above the caliche horizo, which occurs at appoximately 3.5-6 feet below ground surface.

7. Depth to groundwater at the site is about 60 feet.

8. The nearest down gradient water supply well is more than 2 miles from the release.

Our evaluation of the data relating to the spill allow us to conclude:

A. The release has not impaired groundwater quality. Simulation modeling using the HYDRUS unsaturated flow model show that migration of chloride to groundwater will require more than three years under average precipitation conditions.

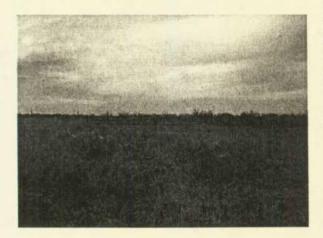
B. The addition of gypsum to the soil will cause restoration of the calcium/sodium ratio in the clays and thereby return the soil to its natural permeability.

C. Application of supplemental water to the soil after chemical amendment (gypsum addition) will flush the chloride below the top caliche horizon. At this depth, the chloride will not migrate up.

D. Over many years, the flushed chloride will slowly drain to the water table. The rate of drainage is very slow relative to the natural movement of groundwater in the underlying Ogallala aquifer. We currently believe that the resultant water quality in the Ogallala aquifer will meet New Mexico groundwater standards. Aquifer simulation modeling will test this hypothesis.

We recommend that a small portion of the release, the 0.1 acre of state land, undergo natural restoration. Here we will not add gypsum or supplemental water as described above. We recommend that the southern quarter of the site undergo mechanical restoration through excavation of the impaired soil and importation of clean soil. For the remainder of the release site, we recommend in-place chemical amendment to restore the soil to its productive capacity. We propose the addition of 20-30 tons of gypsumfollowed by the application of up to 2 acre feet of supplemental water.

We recommend monitoring the efficacy of each method over the next 12-24 months to determine which method is most effective for soil restoration of salt water impacted landscapes.


2.0 INTRODUCTION

2.1 DURATION, FLOWRATE AND CHEMISTRY OF RELEASE

The December 2000 release is the second time this pipeline released fluids at this location. At least six years earlier, ROC personnel discovered a small release, which impaired an area of about 20 feet by 15 feet. We believe that this past release was below reporting limits. Interviews with ROC personnel and examination of the surrounding area permit us to conclude that these two incidents are the only releases from the pipeline at the site.

2.2 LOCATION AND ACCESS

The spill site is located in Township 19S Range 37E Section 7. Figure 1 is a location map of release relative to Hobbs, New Mexico. To access the site from Hobbs, drive east on State Road 62 past the Linam Ranch Gas Plant. Turn left (south) on County Road 41

and drive approximately 2 miles, an electrical transfer station is visible on the east side of the road. Turn left and pass the substation. The spill site is on Figure 1: Location of the site

Figures 2 and 3: Photographs of the site looking northwest from the spill and a view from state land north of the site looking south towards the site.

the north side of the dirt road approximately 0.25 miles west of County Road 41. Plate 1 is a topographic map that shows site access from US 62 west of Hobbs. Figure 2 and 3 are photographs of the site.

2.3 REGULATORY CONSIDERATIONS

Section 3105 of the New Mexico Water Quality Control Commission regulations (20 NMAC 6.2) state that Discharges from ..."Effluent or leachate discharges which are regulated by the Oil Conservation Commission and the regulation of which by the Water Quality Control Commission would interfere with the exclusive authority granted under Section 7-2-12 NMSA 1978 (Oil and Gas Act), or under other laws, to the Oil Conservation Commission" are exempt from WQCC authority.

The Oil and Gas Act (70-2-12NMSA) states that included in the powers of the Oil Conservation Commission is the power..."(21) to regulate the disposition of nondomestic wastes resulting from the oil exploration, development, production or storage of crude oil or natural gas to protect public health and the environment; and (22) to regulate the disposition of nondomestic wastes resulting from the oil field service industry, the transportation of crude oil or natural gas, the treatment of natural gas or the refinement of crude oil to protect public health and the environment...."

The Oil Conservation Commission regulations (19 NMAC 3.SL05.12) state that "(b.) Hazardous or toxic wastes or petroleum products may not be disposed of on the lease of permit premises, and all such materials used in the operations must be removed from the lease area immediately upon termination of the lease or permit. Due care shall be used to prevent leaks and spills of such materials; clean up of any spills and reclamation of the area shall be performed in consultation with the Commissioner." According to the above regulations and statues, produced water pipeline spills are under the jurisdiction of the Oil Conservation Commission.

2.4 EVALUATION CRITERIA OF SOIL RESTORATION ALTERNATIVES

We followed guidance provided by American Petroleum Institute (API) Publication 4663 *Remediation of Salt-Affected Soils at Oil and Gas Production Facilities* (Carty et al., 1997). According to this guidance and commonly accepted agricultural practices, the soil restoration alternatives for spills are:

1. **Passive or natural restoration**, which does not employ human intervention. This remedial method employs natural

processes of precipitation and chemical diffusion to restore the soil within an acceptable time.

2. Mechanical restoration employs machinery to remove impacted soils and replaces them with "clean soils." This method has a high success rate but can cause erosion and the introduction of non-native plants from imported soil. Often, this practice may simply move the problem to a different location, outside of the control of the responsible party.

3. In-place chemical amendment involves adding materials such as gypsum, surfactants, and water to the soil. The chemicals are necessary to avoid or repair damage to the soil structure. Structural damage to the soil occurs when sodium in the released water replaces calcium within the clay minerals in the soil. This calcium/sodium replacement causes swelling of the clay minerals and closing of soil pores. Open soil pores are essential to a healthy soil. After the sodium/calcium ratio in the soil is repaired by addition of amendments (e.g. gypsum) water application promotes vertical flushing of constituents of concern to a depth that is below the root zone but generally above the water table. This technique is the most widely used method of soil restoration yet can be the most difficult to implement.

Passive restoration may be considered a poor choice because of landowner objections to this alternative. Natural restoration is a viable alternative at sites where:

- Chloride, hydrocarbon and other constituent concentra tions in soil are within tolerance limits of the native vegetation
- Constituent concentrations are 1-2 times background conditions and natural precipitation is sufficient to dilute pore water and flush the constituents below the root zone
- Re-vegetation with salt-tolerant (halophytic) species is acceptable to the surface landowner
- The topography of the site suggests that land disturbance, required by other restoration techniques would result in uncontrollable and unacceptable erosion
- A sensitive habitat (e.g. wetlands) at or near the site would become unacceptably damaged by heavy equipment use or the restoration process associated with mechani

cal or chemical amendment remedies

The damage is extensive and severe, making mechanical or chemical amendment restoration impractical relative to acquisition of the property

Mechanical restoration is feasible at most sites and is generally acceptable to the landowner. Two basic types of mechanical restoration are common: (1) disposal of affected soil and replacement with new soil and (2) in-place mixing of unaffected soil with affected soil (dilution). Mechanical restoration may be employed with a variety of site conditions. Typically, mechanical restoration is the remedy of choice where:

- The total volume of soil impact is small (e.g. less than 20 cubic yards)
- The depth of spill intrusion is small, permitting effective soil mixing (dilution)
- The spilled material is dominantly hydrocarbons and tilling/mixing is sufficient to promote bio-remediation
- The soils are ill-suited for in-place chemical amendment or natural restoration methods

Evaluation of in-place chemical amendment requires more field analysis and testing than the other alternatives. The Natural Resources Conservation Commission's (formerly the Soil Conservation Service) Soil Surveys contain some information to assist in determining if in-place chemical amendment is an appropriate soil restoration strategy, thereby minimizing the field-testing program. In-place Chemical Amendment is feasible and warrants further investigation if the following are true for the subject site:

- The soil drains relatively well.
- Depth to groundwater is greater than 6 feet below ground surface.
- Depth to an impermeable layer (Redbeds or thick clay) is greater than 6 feet.
- The site is not exceedingly sloped and subject to uncon trolled erosion if disturbed.
- The soil shrink-swell potential is relatively low
- The soil is neither too acidic nor too alkaline

The site is not a wetland or very near a wetland

Application of irrigation water for flushing the soil will not result in an unacceptable degradation of groundwater quality.

After meeting with the landowner, we eliminated natural restoration as a presumptive remedy. The landowner expressed confidence in mechanical restoration. Our preliminary evaluation of the site suggested that mechanical restoration and inplace chemical amendment warrant careful consideration.

3.0 REGIONAL ENVIRONMENTAL SETTING

The majority of the ROC operated EME-SWD pipeline system lies on the southwestern extent of the High Plains, also termed the Llano Estacado, in Lea County, New Mexico. The High Plains is an isolated mesa covering large parts of western Texas and eastern New Mexico. This mesa, which is a deposition surface with little topographic relief, slopes gently towards the southeast (Nicholson and Clebsch, 1961). The Mescalero Ridge, a small escarpment to the west and south of Hobbs, NM, marks the southwestern extent of the High Plains.

3.1 CLIMATE AND PRECIPITATION DATA

The climate of southern Lea County is classified as semiarid/ arid and is characterized by low annual precipitation, low humidity and high average temperatures (Nicholson and Clebsch, 1961). Table 1 presents monthly average climatic data measured at the Pearl, New Mexico weather station located 5.7 miles southwest of and at approximately the same elevation as the Section 07 spill site. The maximum average temperature at Pearl is 92.3 °F, and the minimum average temperature is 26.0 °F. These averages occur in July and December, respectively. Annual precipitation is 13.8 inches with the majority of the precipitation falling during the monsoon season between the months of July and October. Annual snowfall is 5.0 inches (5 inches of snow is equal to approximately 0.5 inches of rain). Average annual pan evaporation measured at the Hobbs FAA Airport is 51.7 inches (Gabin and Lesperance, 1977).

Table 2 provides monthly rainfall data measured at the Lea County Regional Airport from January 2001 to March 2001, the three months following the discovery of the release. The Lea County Regional Airport is located approximately 4.5 miles northeast of the spill site. Although little precipitation fell in January, the airport measured 1.8 inches and 1.08 inches of precipitation in February and March, respectively. The majority of the February precipitation fell during a single storm event on the 27th.

3.2 SOILS

The Lea County Soil Survey states that soil in the area of the spill is Mixed Alluvial Land (MU). The Soil Survey classifies MU as a *Dryland Capability Unit* (VIe-1). This soil unit is generally used for range and wildlife habitat. Field and farm windbreaks can be established including Russian-olive, Rocky Mountain juniper, and Siberian Elm.

The soil surrounding the site is Kimbrough-Lea complex (KU). KU is also *Dryland Capability Unit* (VIIs-1). This unit is used for range and wildlife habitat.

Appendix A presents more detailed descriptions of MU and KU from the Lea County Soil Survey. The appendix also contains tables from the Soil Survey that list physical characteristics and potential uses of MU and KU. Due to soil variability, estimates for the physical properties of MU are not provided.

3.3 REGIONAL HYDROGEOLOGY

Groundwater of the Ogallala aquifer, which underlies the High Plains, is a principal source of water supply in southern Lea County. The aquifer supplies water to agriculture, industry, municipalities, and domestic water users (Nicholson and Clebsch, 1961). The Ogallala aquifer is a water-table aquifer and precipitation is its primary source of recharge. Due to low precipitation and high evapotranspiration rates, the recharge rate of this aquifer is low, 0.25-0.5 inches/year (Nicholson and Clebsch, 1961). Low recharge and extensive groundwater use has depleted areas of the aquifer (Native and Smith, 1987).

The Ogallala aquifer consists of saturated sediments of the Pliocene age Ogallala Formation. The Ogallala Formation consists of fine-grained calcareous sand with some clay, silt and sand (Nicholson and Clebsch, 1961). The Ogallala Formation varies in thickness from a few inches to approximately 300 feet (Nicholson and Clebsch, 1961). Some of the variability of thickness is due to the subsurface topo-graphy of the Dockrum Group, which underlies the Ogallala Formation. The Triassic Dockrum Group consists of the Chinle Formation and Santa Rosa Sandstone and many workers refer to these units as "the red beds." The Santa Rosa Sandstone consists of fine-to-coarsegrains, while red and green clay stone dominate the Chinle Formation (Nicholson and Clebsch, 1961).

An indurated layer of caliche often caps the Ogallala Formation. The caliche is formed by the accumulation of calcium carbonate

R.T. HICKS CONSULTANTS, LTD.

DRAFT

at some depth beneath the land surface, typically 1-10 feet. Due to its low permeability, areal extent, and thickness, the caliche can be a barrier to the downward movement of water. Water perches on the caliche, accumulating in depressions or small "channels" on the uppermost surface of the caliche. The perched water can migrate to open fractures and solution channels, penetrating the caliche then infiltrating into the Ogallala Formation. The water then flows downward under unsaturated conditions to the water table of the Ogallala aquifer. Plate 2 is schematic showing the influence of the caliche on the vertical migration of water.

Plate 3 is a water-table elevation map of the Ogallala aquifer near the spill site. The general direction of groundwater flow is towards the southeast. We estimate the hydraulic gradient at 0.003 feet per foot. The average flow rate of groundwater in the southern High Plains Ogallala aquifer has been estimated at 0.6 feet/day (Native and Smith, 1987). Hydraulic conductivity values for this portion of the aquifer range from 3 to 260 feet/day with an average value of 31 feet/day, and the specific yield of the aquifer varies between 22% and 4% (Native and Smith, 1987). The saturated thickness of the Ogallala aquifer in the southern High Plains varies between 0 to 300 feet and depth to water ranges from 0 to 460 feet (Native and Smith, 1987). The saturated thickness is controlled by the subsurface topography of the Dockrum Group.

The Ogallala aquifer yields high quality water that can be used for domestic, agricultural, and industrial uses. Table 3 provides chemical data of water sampled from two windmills located northeast of the spill site. Both windmills are screened in the Ogallala aquifer. The average total dissolves solids (TDS) content of water sampled from these windmills is 475 ppm. The Water Quality Control Commission (WQCC) Standard for TDS is 1000 ppm.

4.0 DESCRIPTION OF INVESTIGATIVE PROGRAMS

4.1 JANUARY 2001 SAMPLING PROGRAM

In response to the pipeline release report on December 29, 2000 to the NMOCD, ROC personnel conducted a preliminary site investigation in January 2001. The purpose of the investigation was to assess the lateral and vertical impact of the release on native soil.

ROC personnel dug and trenched 25 pits and collected soil samples at discrete depths. Plate 4 shows the sample locations and Table 4 provides the sample depths of each location. ROC personnel analyzed the soil samples for chloride using EPA method 9253. They analyzed for chloride because the pipeline that ruptured is used to carry water that contains relatively high concentrations of sodium chloride (NaCl).

4.2 MARCH 2001 FIELD PROGRAM

Hicks Consultants was contracted by ROC to expand the characterization and to recommend a remediation plan for the impacted soil. In March 2001, we implemented a field program that included sampling of surface soil and soil at discrete depths. We outlined the general approach in a letter to the New Mexico Oil Conservation Division (NMOCD) dated March 28, 2001.

Before we collected any samples, we created a rectangular grid that encompassed the area of the spill (Plate 4). We placed the origin of the grid 23-feet south of a fence and 60 feet west of the pipeline release. The fence, used to establish the axis of the sampling grid, runs east/west and separates the Cooper property from State of New Mexico land located to the north. On Plate 4, A-1 marks the origin of the grid. We located grid points east and south of this point using a spacing of 50 feet. Alphabetical letters identify grid points located east of the origin, and numbers distinguish grid points to the south.

4.2.1 SURFACE SOIL SAMPLING

We collected surface samples at each grid point shown in Plate 4 at a depth of two to six inches below ground surface. Samples collected from sample locations (i.e., grid points) with similar

vegetation and soil characteristics as adjacent sample locations were combined in the field in order to create composite samples. When creating the composite samples, we used approximately the same mass of sample from each sample location. ROC personnel analyzed the soil samples for chloride using EPA method 9253. Table 5 shows how we created the composite samples.

4.2.2 DEPTH SAMPLING

We constructed three backhoe trenches. We dug each trench to a total depth of 4.5 feet in order to collect soil samples at discrete depths. An indurated layer of caliche encountered at a depth of 4.5 feet prevented sampling at greater depths with the backhoe. From each Pit, we collected soil samples from the following depth intervals: 0-0.25 feet, 0.25-0.5 feet, 0.5-1.0 feet, and 2.5-4.5 feet.

Plate 4 shows the locations of the three pits. Two of the pits were located in areas heavily stained by the spill and where vegetation appeared stressed or dead. We located the third trench (Pit 3) in an area where vegetation appeared to be unaffected by the spill and where surface indication of the spill did not exist. We installed Pit 3 to establish background soil chemistry and to monitor the efficacy of a soil restoration program.

We dug a fourth pit approximately 10 feet west of the pipeline release in a barren area with little to no vegetation. The total depth of this pit was 3.5 feet, where we encountered the uppermost surface of the caliche layer. We collected a single sample from this pit just above the caliche.

We submitted all soil samples from the pits to Assaigai Analytical Laboratories, Inc. (Assaigai) for analysis of benzene, toluene, ethylbenzene, xylenes (BTEX), naphthalene, common alkaline earth and alkali metals (Ca, Mg, K and Na), iron (Fe), Chromium (Cr) and chloride (Cl). Assaigai analyzed for BTEX and naphthalene by EPA method 8260A, metals by EPA method 6010A and chloride by EPA method 300.0. Organic constituents and chloride were extracted from the samples using water. For metals, the laboratory dissolved the soil in acid, yielding a total concentration of metals in both pore water and the solid matrix.

In addition to the above chemical analysis, we also submitted samples to the New Mexico State University (NMSU) Soil, Water, and Plant Testing Laboratory (SWAT). This laboratory performed a "standard soil test" of each sample collected from the pits. Appendix B provides a list of the chemical and physical soil

characteristics evaluated by the "standard soil test". SWAT uses a saturated paste method (i.e. water mixed with sample) to extract constituents from the soil.

In addition to the depth discrete samples, we collected relatively undisturbed core samples from Pits 1-3. We collected the core samples by digging down 2.5 feet and driving a 1-foot section of 6-inch diameter PVC into the soil with the aid of a backhoe. We then removed the PVC with the core sample intact and wrapped it in plastic. We submitted the core samples to Dr. Jan Hendrickx's laboratory at the New Mexico Institute of Mining and Technology (NMIMT), where they evaluated the saturated conductivity of each sample.

4.2.3 DELINEATION OF THE SPILL BOUNDARY

On March 28, when we mapped the aerial extent of the spill, we observed no standing water. However, surface indications of areas impacted by the spill were evident. These indications included (1) stressed and dead vegetation, (2) stained vegetation and surface soil, (3) plant litter and other debris pushed to the perimeter of the spill by the flowing water, and (4) grass flattened by the spill. We used these surface indications and the grid to delineate the spill boundary.

4.3 VADOSE ZONE AND GROUNDWATER MODELING

4.3.1 OVERVIEW

We used HYDRUS-1D (Simunek et al., 1998) and a simplemixing model to assist us in predicting potential impacts of the release and restoration alternatives to groundwater quality in the Ogallala aquifer. In addition, we used HYDRUS-1D to evaluate the efficacy of each restoration alternative (mechanical restoration, natural restoration, and in-place chemical amendment).

HYDRUS-1D is a modeling environment that can be used to assess the one-dimensional movement of water and solutes in unsaturated, partially saturated, or fully saturated porous media. Dr. J. Simunek and Dr. R. van Genuchten of the U.S. Salinity Laboratory developed the model (www.ussl.ars.usda.gov/ <u>MODELS/HYDR1D1.HTM</u>). HYDRUS-1D is a finite element model that numerically solves the Richards' equation and Fickian-based advection dispersion equations. The Richards equation describes water flow, and the Fickian-base equations simulate heat and solute transport. Appendix C contains a more detailed description of HYDRUS-1D.

R.T. HICKS CONSULTANTS, LTD.

Because of the ability of HYDRUS-1D to describe unsaturated flow and solute transport, we used the model to simulate the movement of chloride from surface soil to the water table of the Ogallala aquifer. The flexibility of HYDRUS-1D allowed us to include major processes in the model that would influence the movement of chloride and water such as water uptake by plants, root growth, and soil heterogeneity.

To assess potential groundwater impairment of each restoration alternative, we applied HYDRUS-1D results to a simple mixing model we created using Microsoft Excel. The mixing model combined the volumetric fluxes of water and chloride of the Ogallala aquifer with the water and chloride fluxes predicted by HYDRUS for the vadose zone. In order to apply the HYDRUS results to the mixing model, we scaled the HYDRUS results to the aerial extent of impacted soil at the spill site. To provide a conservative estimate of potential groundwater quality impairment, we used only the upper 10-feet of the Ogallala aquifer in the mixing calculations. The Ogallala aquifer is about 110 feet thick in this area and dispersion throughout the saturated zone would significantly dilute any high chloride flux to groundwater. Nevertheless, we believe a 10-foot mixing zone provides a conservative estimate of the chloride concentration that would be expected in a monitoring well located immediately down-gradient from the spill site. Typical monitoring well screens are 15 feet in length with 10 feet of that length below the water table. Below is a brief description of how we simulated each restoration alternative using HYDRUS-1D:

- 1. Mechanical restoration: We assumed removal of the top 60 cm (2.0 feet) of soil and then modeled precipitation as a mechanism to leach chloride from underlying soil. We used precipitation data from Las Cruces. Because annual precipitation is 8 inches in Las Cruces and 15 inches in Hobbs, we multiplied the Las Cruces precipitation data by days (0.5 cm/day). We also assumed that amendment of gypsum to the soil minimized significant clay swelling. Swelling clay would reduce the hydrualic conductivity of the soil.
- 2. In-Place Chemical Amendment: We simulated application of 100 cm of water (3.3 acre-feet) to the surface over a period of 200 days (0.5 cm/day). We also assumed that amendment of gypsum to the soil minimized significant clay swelling. Swelling clay would reduce the hydrualic conductivity of the soil.

R.T. HICKS CONSULTANTS, LTD.

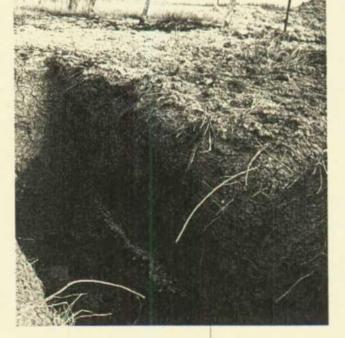
DRAFT

3. Natural restoration: We relied only on precipitation to leach chloride from the surface soil. This simulation was also used to assess the immediate impact of the spill on soil. We used the same precipitation and PET data as number one above (mechanical removal).

For all simulations, we used a 4 meter-thick soil profile consisting of heavy clay and a 20-cm thick layer of caliche. We placed the caliche layer 1.35 to 1.55 meters below ground surface. We used a saturated hydrualic conductivity of 1.0 cm/day for the caliche and 0.5 cm/day for the heavy clay. We assumed a chloride concentration of 10,000 ppm for a brine spill of 20-cm (of standing water).

We ran two simulations for each alternative listed above. The first with a dispersivity of 200 cm, and the second with a dispersivity of 20 cm. We believe a dispersivity of 200 cm better reflects the uneven solute flux of real soil. Soil heterogeniety contributes to an uneven solute flux.

Parameters of the Ogallala aquifer used in mixing model calculations where obtained from investigations at the Linam Ranch Gasoline Plant (IT Corporation, 1993; Daniel B. Stephens, 1994). The hydraulic gradient was estimated at 0.003 feet per foot, and the hydraulic conductivity was estimated at 3.6 feet/day.


5.0 PRE-RELEASE SITE CHARACTERISTICS

5.1 SOILS AND VEGETATION

5.1.1 BACKGROUND SOILS

Figure 4 is a photograph of a soil pit trenched on State land approximately 20 feet north of the pipeline release. The photo shows the caliche layer that underlies the High Plains and dark clay of the Quaternary alluvium.

To define pre-release soil characteristics, we trenched soil Pit 3 approximately 25 feet east of the release in an area unaffected by spill (see Plate 4). SWAT classified the soil texture of soils from this pit as clay and clay loam. Table 6 shows Assaigai's laboratory results for samples collected from Pit 3, and Plate 5 shows the distribution of chloride, sodium, and calcium with depth. Sodium concentration decreases with depth, and calcium concentration increases with depth. Chloride and the other metals analyzed show consistent concentrations with depth (Table 6). The average concentrations of chromium, iron, magnesium, and potassium are 14; 9,778; 2,758; and 3,048 mg/Kg soil, respectively. Chloride ranges from 182 to 502 mg/Kg soil with an average of 321 mg/Kg. Appendix D contains Assaigai's Laboratory reports.

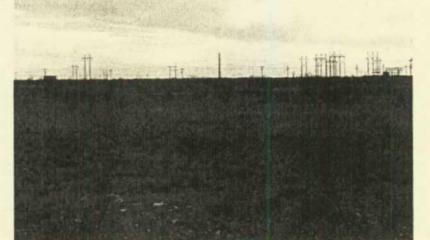
In addition to the chloride concentrations of Pit 3, we also measured the chloride concentrations of surface soils located at grid points located outside the spill boundary (Plate 6). The average chloride concentration of these samples was 49 mg/Kg soil.

The higher chloride concentrations of Pit 3 relative to samples collected at grid points are the result of differences in laboratory and field protocols. Both laboratory and field protocols use water to extract chloride from soil samples. However, while the field methodology is clearly precise, the laboratory methodology is more accurate. Figure 4: Photograph of a soil pit directly north of the release

Table 7 shows results from the SWAT laboratory. The average pH, electrical conductance (EC), sodium absorption ratio (SAR), and cation exchange capacity (CEC) of samples collected between the land surface and a depth of 1.0 foot are 6.57 s.u., 4.04 mmhos/cm, 17.25, and 35.13 meq/100 g, respectively. The deepest sample (2.5-4.5 feet bgs) shows a higher pH due to the proximity of the caliche to the sample location and a much lower SAR (1.93) than the shallower samples. The concentration range of chloride in extraction water of all samples from Pit 3 is 692-1567 mg/L. Appendix E provides SWAT's complete analysis.

Figure 5: Photograph of the vegetation at the site

5.1.2 VEGETATION


Figure 5 is photograph showing the vegetation at the spill site. Gramma grasses and mesquite are dominate vegetation types at the spill site. Because the site is located in slight depression vegetation is abundant relative to surrounding areas.

5.2 SITE HYDROGEOLOGY

Well logs from a groundwater investigation at the Linam

Ranch Gasoline Plant (Daniel B. Stephens & Associate, Inc., 1994) show that the local hydrogeology is consistent with the regional hydrogeologic description of Section 3.3. The Ogallala Formation near the spill site consists of very fine-to-mediumgrained sand. Well logs of the Linam Ranch show that the caliche layer above the Ogallala Formation varies in thickness from 0-24 feet with a median thickness of 13 feet. When installing four soil pits during the March 2001 field campaign, we encountered the caliche layer at depths of 3.5 to 4.5 feet bgs.

We estimate the groundwater elevation at the field site at 3,657 feet, and depth to water at approximately 60 feet. The hydraulic conductivity of the aquifer near the spill site has been estimated at 1.7-5.5 feet/day (IT Corporation, 1993).

As described in earlier, Table 3 presents groundwater chemistry data of samples collected from nearby windmills in March 2001.

5.3 HUMAN AND ECOLOGICAL RECEPTORS

Human and ecological receptors in this area of Lea County are cattle and water supply wells. The closest reported down gradient water well is approximately 2.5 miles from the site according to the New Mexico Office of the State Engineer's records. We field-checked the position of the well and were unable to locate it.

6.0 RELEASE CHARACTERISTICS AND POST-RELEASE CHARACTERISTICS

6.1 DURATION, FLOWRATE AND CHEMISTRY OF RELEASE

Before the December 29, 2000 pipeline inspection and consequent discovery of the release, ROC personnel had conducted a similar inspection on September 13, 2000 and found no evidence of a release. During the December 29 inspection, ROC discovered surface flow from the release point and about 1-inch of standing water in the lower elevation area adjacent to the pipeline right-of-way. Interviews with ROC staff regarding the characteristics of the release suggest that the observed surface flow began sometime before the December 29 inspection.

The clay-rich soil that lies beneath the pipeline and disturbed fill that covers the pipeline creates a preferential flow path to the ground surface for any pipeline release.

ROC staff did not measure the flowrate of the release. Instead, ROC responded immediately, using a vacuum truck to remove the standing water and repaired the leak. We were unable to estimate the flowrate at this time.

We know that the pipeline carries produced water from one tank battery and wastewater from the Linam Ranch Gasoline Plant. We know that fluid character is highly variable from day to day and week to week. Therefore, we elected to forego sampling of the pipeline liquids as a means of characterizing the chemistry of the release. Based on soil sample results from the January and March 2001 field programs, the pipeline rupture released water with a high concentration of sodium chloride and only trace amounts of volatile organic compounds (BTEX and naphthalene). Chromium, magnesium, iron, calcium, and potassium concentrations of background samples and samples collected within the spill boundary are similar, indicating that the spill did not contain significant quantities of these metals.

6.2 SURFACE EXTENT OF RELEASE

Table 4 presents results from the January 2001 field campaign. The average chloride concentration of impacted surface soil is 2,282 mg/kg soil, and the median concentration is 2,550 mg/kg. The range of chloride concentration in the surface soil was 210 to 3,600 mg/kg. The highest chloride concentration was observed at sample location number 3 approximately 225 feet south of the release (see Plate 5).

Plate 6 shows the aerial extent of land impacted by the release based primarily on the presence of stressed and stained vegetation observed during the March 2001 field program. The total area of impacted land is approximately 1.0 acre. Plate 6 also provides chloride concentrations measured during the March 2001 field campaign. The average soil chloride concentration of sample locations located within the spill boundary (the same area sampled in January) is 1,141 mg/Kg soil with a median of 1,000 mg/Kg. The average chloride concentration of samples located in areas that appeared unaffected by the release was 49 mg/Kg. Table 5 provides the observed chloride concentrations and surface characteristics of each sample location.

We sent samples from Pits 1, 2, and 3 to Assaigai and SWAT. Assaigai results for chloride concentrations are 1,990; 3,170; and 296 mg/kg, respectively. SWAT results, using a different analytical protocol showed a similar relationship (see table 6). Pit 3 is in an area unaffected by the release and represents background conditions.

6.3 VERTICAL EXTENT OF RELEASE

Tables 6 and 7 present chloride data from the four backhoe trenches (Pits 1-4), and Plate 5 shows chloride variability with depth at Pits 1-4. At Pit 3, chloride showed little variability with depth, ranging from 182 to 502 mg/kg. The average chloride concentration at Pit 3 was 321 mg/kg. Pits 1, 2, and 4 all show greater chloride concentration relative to Pit 3. In the areas of Pits 1, 2 and 4, the release has infiltrated to the top of the caliche, which is located 3.5 to 4.5 feet bgs. Chloride concentrations decrease with depth, samples from immediately above the caliche are about 50% less than samples collected closer to the land surface. Appendix D contains all analytical results from Assaigai.

The field data in table 4 also provide information regarding the vertical distribution of chloride in the soil. These data also show the same decline in concentration with depth. Using field techniques, samples above the caliche exhibit 50% less chloride than the shallow surface soil.

6.4 INFLUENCE ON SOIL AND VEGETATION

6.4.1 METALS AND CHLORIDE CONCENTRATIONS IN SOIL The release has resulted in elevated levels of sodium chloride in soil. The lateral and vertical extent of the chloride impact is discussed above in sections 6.2 and 6.3.

Sodium concentrations of soil in Pits 1 and 2 were greater than the background concentrations observed in Pit 3 (see Plate 5 and Tables 6 and 7). The sodium concentration of Pit 4 measured above the caliche was also greater than background. All pits showed a decrease of sodium concentration with depth.

Pits 1, 2 and 4 contained chromium, iron, magnesium and potassium at concentrations similar to background (table 5). These pits showed elevated concentrations of calcium relative to background. In all pits, calcium was greatest near the caliche (see plate 5).

6.4.2 VOLATILE ORGANIC COMPOUNDS IN SOIL

BTEX was not detected in the soils samples of Pit 3 (table 6). The soil sample of Pit 4 contained 12.1 milligrams of BTEX plus naphthalene per Kilogram of soil. This concentration is much greater than the concentrations observed in samples from Pits 1 and 2 (Table 6). The highest concentrations observed at Pits 1 and 2 were 0.013 and 0.963 mg/Kg soil, respectively.

6.4.3 OTHER SOIL CHARACTERISTICS (SWAT ANALYSIS)

Table 7 presents results of the SWAT analysis. The SWAT laboratory classifies soil within the spill boundary as clay loam and clay. The spill has elevated the electric conductance (EC), sodium absorption ratio (SAR), and percent of exchangeable sodium (ESP) and extractable chloride of the soil. The cation exchange capacity (CEC) of impacted soil has decreased relative to background. Appendix E provides the SWAT analysis of each sample.

6.4.4 HYDRUALIC PROPERTIES

We are waiting for final results of the hydrologic analysis (i.e., saturated hydraulic conductivity). Prelimanary results suggested that the hydrualic conductivity of unaffected soil is 0.2 in/day (0.5 cm/day) and affected soils is 0.02 in/day (0.05 cm/day). The lower conductivity of the affected soil is most likely due to the swelling of clay caused by high concentration of sodium in the pipeline release.

6.4.5 VEGETATION

The high concentrations of salt (sodium chloride) have resulted in stressed and dead vegetation. For example, gramma grasses within the spill boundary appear gray and pale yellow. Whereas, gramma grasses in unaffected areas are green. We could not determine the impact of the spill on mesquite during the March 2001 field program because mesquite was still dormant.

6.5 INFLUENCE ON THE DEEP UNSATURATED ZONE AND THE OGALLALA AQUIFER

Currently, we have no chemical or physical analyses of the deep subsurface at the site. However, the soil samples show a significant decline in chloride concentration with depth. In the absence of significant precipitation, we expect the remaining 50 feet of the unsaturated zone to attenuate and/or absorb the released water. We do not believe that significant amounts of chloride have entered the Ogallala aquifer at the time of writing. Therefore, we did not simulate the movement of the release through the unsaturated zone. We discuss our simulations of water and chloride migration during and after soil restoration in the next section of this report.

R.T. HICKS CONSULTANTS, LTD.

7.0 EVALUATION OF SURFACE SOIL RESTORATION ALTERNATIVES

7.01 THE ALTERNATIVE OF NATURAL RESTORATION

Passive or natural restoration may be effective where chloride concentrations are low or limited to the uppermost soil zone. At this site, the land owned by the State of New Mexico may fit these criteria.

7.02 THE ALTERNATIVE OF IN-PLACE CHEMICAL AMENDMENT

In-Place Chemical Amendment uses the analytical parameters discussed earlier to determine the amount of chemicals and water needed for soil restoration. API Publication 4663 provides formulae and worksheets to calculate the amount of chemical and water needed to treat the soil then flush the salt to a depth where it will not impair plant growth. For the subject site, theparameters employed by the worksheets are presented in the table on the following page.

Parameter	Criteria	Site Characteristic
Texture of Soil	Soil must drain well so as not to create ponding when water is added	High clay content may require engineered increased permeability
pH of Soil Saturation Paste	Must not be too acidic or too basic (between 5.5-8.5)	The soil has a neutral pH of 7
Erosion Potential	Errosion potential must be low enough that water will not wash away soil and create gullies	The site is flat and not subject to erosion of disturbed soil
Electroconductivity [EC] The percent decrease in EC (1-[target EC / current EC]*100) is used with the annual precipitation/ evaporation [precipitation – evaporation] index and soil texture to determine the amount of supplemental water needed to flush salts from soil	If the annual precipitation/evaporation index is very low [<-12 to- 28], the EC is very high then large amounts of supplemental water is needed. If supplemental water is unavailable due to cost or location, then fine grained, highly impacted soils in an arid climate may not be acceptable for in-situ chemical amendment.	Due to a relatively high EC and low permeability, large amounts of water must be available for irrigation. Because of a probable monitoring well requirement, a supply well will be available for irrigation use at the spill site.
SAR-Soil Adsorption Ratio The SAR is used to calculate the Exchangeable Sodium Percentage [ESP] (see below)	ESP and the CEC (below) are used in a calculation to determine the amount of chemical amendment needed (ESP*CEC *.078=1bs gypsum/sq feet). Ten to thirty tons of gypsum per acre appears to be a normal range.	In an acceptable range. Using the ESP and CEC from the most highly impacted area of the spill, the amount of gypsum needed for 67% [2800C sq. feet] of an acre is approximately 20 tons.
CEC-Cation Exchange Capacity	The higher the number, the more chemical amendment needed	Acceptable-see above
ESP-Exchangeable Sodium Percentage	The higher the number, the more chemical amendment needed	Acceptable-see above
Precipitation Evaporation Index	Evaporation may necessitate the need for covering	PEI is very low [-38]; need covering

Page 24

R.T. HICKS CONSULTANTS, LTD.

Using the parameters listed above, we calculated that between 15-25 tons of gypsum are required to effectively return the sodium/calcium ratio to acceptable conditions, thereby restoring the soil permeability, at the 1-acre site. Although the worksheets suggest that approximately 2 acre-feet of water will dissolve the gypsum into the soil, we will monitor the application and use only sufficient water to restore soil permeability. Then, the API worksheets suggest that application of up to 2 acre-feet of supplemental water will effectively flush the chloride from the root zone into the subsoil. Again, we will carefully monitor the application rate. Finally, we will apply water periodically to move the chloride to at or below the caliche horizon, below the depth which osmotic forces during drought will cause upward migration of chloride to the root zone. These calculations of water application assume minimal evaporation.

For the subject site, in-place chemical amendment will follow the process outlined below.

- 1. We will till the uppermost two feet of soil to incorporate surface organic matter (grass, roots, etc.) into the soil and increase permeability. Then, we will add 10-30 tons of gypsum and re-till the soil.
- 2. Over the next several months, we will apply about two acre-feet of water to dissolve the gypsum into the soil and subsoil. We will construct a simple flood irrigation system using several distribution pipes. To minimize evaporation, black plastic will cover most of the site. We will "tent" the plastic to direct precipitation to the soil. Irrigation will occur in pulses of about 1/2 to 2 inches every week. The application rate will be determined in the field and will depend upon the permeability of the soil. To monitor the saturation of the soil, we will install tensiometers at 1foot, 2.5 feet and 4 feet at two locations. We will use readings from the tensiometers to adjust the application rate. We also propose a 4-inch well located about 100-300 feet down gradient from the site. The well will serve as a supply well for irrigation water.
- 3. After restoration of soil permeability through the application of gypsum, we will use about two-acre feet of water to flush the chloride below the root zone. We will employ the same flood irrigation system described above, applying as much as 1-2 inches per week. The amount of water

applied to flush the chloride is limited by the permeability of the clay-rich horizon underlying the root zone. Moni toring the system with the tensiometers will allow appro priate application of chemical amendment and water.

- 4. After chloride is below the root zone, we will remove the plastic evaporation barrier and seed the site with native grass.
- 5. After seeding, periodic application of supplemental water will continue to flush chloride to a depth at or below the caliche horizon. We anticipate application of 1-2 inches of water per month during the typically dry seasons of fall and winter.
- 6. The project ends when soil sampling confirms chloride flushing.

7.03 THE ALTERNATIVE OF MECHANICAL RESTORATION

As discussed earlier, mechanical restoration uses heavy equipment to remove the impacted soil or dilute the effect of the impact by mixing affected soil with underlying or nearby soil unaffected by the spill.

We concluded that restoration by dilution was not practical. Although the chloride content of the soil at the 4-foot depth is 50% less than near surface soil, this deeper impaired soil is 2-5 times greater than background. Mixing the 4-foot soil column at Pit 1, for example, would yield a chloride concentration of about 1,500 mg/Kg soil. This concentration is above the tolerance level for the native grasses. Incorporating unimpaired soil adjacent to the spill significantly expands the size of the disturbance. We concluded that mechanical restoration by removal and replacement is the better of the two mechanical restoration alternatives.

Mechanical restoration by removal and replacement involves:

- 1. excavation of sufficient impaired soil to permit successful natural restoration,
- 2. transportation to a facility that accepts salt impacted media,
- 3. restoration and/or long term monitoring of the soil at the centralized facility (e.g. landfarm).
- 4. placement of new soil of the same general type in the excavation, and

7.1 SOIL AND VADOSE ZONE MODELING

- 1. Natural Restoration: Preliminary results show that precipitation as the sole mechanism for chloride removal is not effective at reducing chloride concentration in the soil water of the root zone. The results also show that over 5000 days the chloride concentration shows high variability; for example, between 2000 and 3000 days chloride concentration fluctuates between 3500 and 6000 mg/L (ppm) (Appendix F).
- 2. In-place chemical amendment: Preliminary results show that soil leaching is the most effective mechanism for removing chloride from the root zone. The application of 39 inches (100 cm) of water for 200 days results in an immediate chloride concentration decrease. In addition, chloride concentration shows little variability past 1000 days.
- 3. Mechanical Restoration: Preliminary results show that mechanical removal of only the upper 2 feet (60 cm) of surface soil causes a slight decrease in chloride concen tration in the soil water of the subsoil. In addition, ap proximately 13 years of precipitation are needed before chloride concentration returns to background lev els. Background soil water concentration measured at Pit 3 is approximately 1100 mg/L (ppm). Like natural restoration, chloride concentration fluctuates significantly.

7.1.1 MIXING MODEL

Our preliminary modeling results have been used to assess the efficiency of each restoration alternative. A future draft will include results from the mixing model and assess potential groundwater quality impairment.

8.0 DESCRIPTION AND JUSTIFICATION OF PROPOSED REMEDY

We propose in-place chemical amendment as the primary soil restoration strategy. The design of the remedy is generally outlined in the previous section of this report. We believe inplace chemical amendment offers several advantages over excavation and replacement. First, replacement of native soil with soil of different characteristics could conflict with the existing ecosystem. Second, excavation of impaired soil often simply transports a contamination from one site (the spill site) to another site, such as a landfill. Third, the environmental damage due to excavation equipment, transport trucks, etc. is significantly greater than the impact from chemical amendment. In addition to these advantages, preliminary modeling results show that in-place chemical amendment is the most effective remedy.

In-place chemical amendment is widely used to restore soils damaged by high water tables, poor agricultural practices, and oilfield releases. When implemented and monitored by professionals, this strategy can show dramatic results in a relatively short time.

We also propose to compare the effectiveness of in-place chemical amendment to natural restoration and to excavation and replacement. We propose that the impacted property north of the fence line, on state land, undergo natural restoration. South of the fence line, we propose excavation and soil replacement for the southernmost quarter of the site.

9.0 IMPLEMENTATION SCHEDULE

May 1-4 2001

- · Present draft plan to landowner.
- Present plan to NMOCD and obtain input.
- · Obtain soil samples from state land
- Meet with potential contractors to perform work
- · Obtain initial comments from landowner and NMOCD

May 14-18

• Submit final plan to landowner and NMOCD.

May 21-25

- Answer questions and address comments of landowner and/or NMOCD.
- · Order materials and prepare for field program.

May 28-June 15

- Excavate and remove soil from southern quarter of site
- · Import and place clean soil into excavation
- For the remainder of the site, till uppermost 1-2 feet of soil to incorporate vegetation
- Observe soil excavation/removal and tilling process to develop more detailed description of soil profile and char acteristics throughout the site, sample subsoil for chloride as necessary
- Add 15-25 tons of gypsum to tilled soil
- Drill water supply well and install submersible pump
- · Install one 100-barrel tank and plumbing to well
- Test groundwater pumping system, fill storage tank, sample groundwater

R.T. HICKS CONSULTANTS, LTD.

DRAFT

- · Install irrigation system
- Install rain gauge at storage tank and tensiometers in gypsum/soil area
- · Install fence around site
- Complete any remaining installation tasks
- Brief test of irrigation system for leaks and operation characteristics
- Obtain initial tensiometer measurements, instruct Rice personnel
- Implement first supplemental water application (1/2 inch) to dissolve gypsum into soil
- Observe infiltration patterns (horizontal and vertical)
- · Adjust irrigation system as required
- · Re-test system after adjustments
- · Finally, install black plastic

June 15-September

- Apply water at rate of 1-2 inches per week (including rainfall events)
- Sample soil in mid August to monitor effect of gypsum amendment, adjust water application rates, add gypsum to irrigation water as required
- Sample soil at various depths in late September to moni tor chloride migration

October-November

- Apply 2 inches of water per week to flush chloride from root zone
- Remove black plastic and seed with native grass in No vember
- Sample soil at various depths in late November to monitor chloride migration

December 2001-June 2002

DRAFT

- Continue supplemental irrigation as required to flush chloride from clay-rich subsoil
- Sample soil at various depths in late May to monitor chlo ride migration

July

- Submit final restoration report to landowner and NMOCD
- Remove restoration equipment as required
- Return site to grazing

TABLES

Table 1	. Pearl	Precipitation	Data
---------	---------	---------------	------

	Average Maximum Temperature (F)	Average Minimum Temperature (F)	Precipitation (inches)	Snow Fall (inches)
January	56.2	26.0	0.40	1.2
February	60.9	29.5	0.42	1.1
March	68.1	35.3	0.40	0.4
April	77.0	44.3	0.61	0.1
Мау	83.8	53.2	1.66	0.0
June	91.0	61.3	1.84	0.0
July	92.3	65.1	1.82	0.0
August	90.7	63.8	2.10	0.0
September	84.4	56.9	2.30	0.0
October	76.4	46.8	1.27	0.1
November	65.0	34.4	0.46	0.8
December	57.8	27.8	0.51	1.2
Annual	75.3	45.4	13.79	5.0

Data provided by the Western Regional Climatic Center (www.wrcc.dri.edu/cgibin/cliMAIN.pl?nmpear) and represent month averages from 1915 to 1996 recorded at the Pearl weather station in Section20 of Township-19-South, Range-36-East.

	Precipitation (inches)	
January	0.26	
February	1.80	
March	1.08	

Table 2. Lea County Regional Airport Precipitation Data

		Wind	dmill	
Parameter	Units	Weber	North	
TDS	mg/L	378	572	······
Bicarbonate	mg/L	174	228	
Carbonate	mg/L	nd	nd	
Chloride	mg/L	39.8	63.6	
Nitrate	mg/L	1.88	4.14	
Sulfate	mg/L	48.1	88.9	
Calcium	mg/L	69.8	101	
Iron	mg/L	0.06	0.23	
Magnesium	mg/L	11.4	17.5	
Potassium	mg/L	2.7	2.8	
Silicon	mg/L	20.6	22.0	
Sodium	mg/L	33.0	56.2	
Zinc	mg/L	0.03	0.06	
Location	miles	2.1	1.4	
Relative to Site	/direction	/NE	/NE	
not detected (nd)				

Table 3. Water Quality of the Ogallala Aquifer

not detected (nd)

			Sample	Sample Depths (feet bgs)	et bgs)		
Sample							
Locations	0.01	1	2	3	5	7	œ
-	2500	1800	1700	1500	su	su	su
2	210	SU	su	รม	ns	ns	ns
б	3600	300	1900	1700	su	SU	ns
4	2800	2200		1900	su	รม	us
5	2900	2600	2200	1900	ns	มร	su
9	2700	2800	2200	1900	лs	ns	su
7	3300	2900	2300	1900	SU	SU	ns
8	1800	1500	1300	1100	su	su	ns
6	3000	2700	2200	1800	su	ns	ns
10	300	su	SU	su	su	ns	su
11	940	430	SU	su	SU	รน	ns
15	SU	SU	ns	450	430	430	ns
16	SU	su	SU	1200	960	960	800
17	SU	su	SU	510	540	510	SU
18	SU	SU	su	920	520	480	ns
19	SU	su	SU	950	970	1200	ns
20	su	SU	SU	006	510	850	ns
21	SU	SU	SU	200	su	มร	ns
22	su	su	SU	1200	850	750	ns
23	su	3600	1850	1300	875	su	ns
24	SU	2500	1500	800	800	SU	ns
25	ns	1800	1800	1600	1600	มร	ns
26	ns	3000	2700	1800	1200	รม	ns
27	SU	1300	006	600	1700	720	ns
28	us	•	1500	800	1700	200	us
Median	2	550					
Average	5	2282					
Standard		010					

Table 4. January 2001 Surface Soil Chloride Concentrations (mg/kg soil)

٠

~

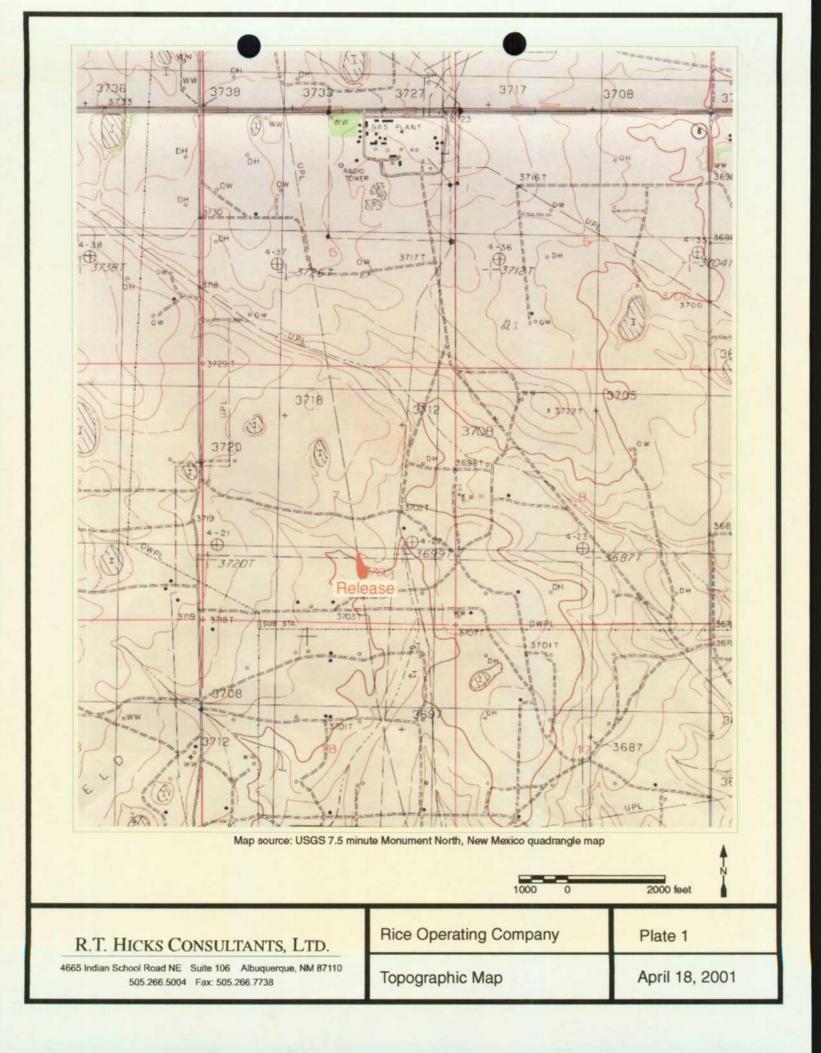
- - ----

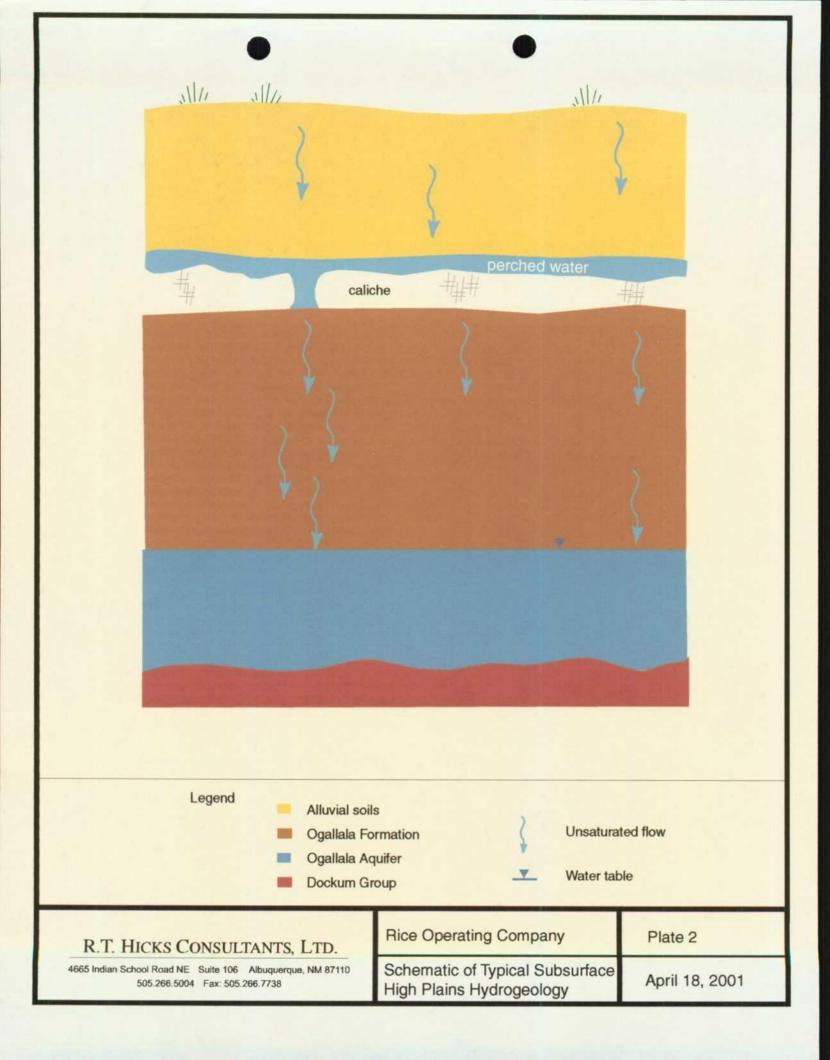
		Extracted								
	Sample	BTEX +	Extracted	Digested	Digested	Digested	Digested	Digested	Digested	olamo
	Ueptn (feet bgs)	Napntnaiene (ppm)	Chloride (ppm)	(ppm)	Chromium (ppm)	lron (ppm)	Magnesium (ppm)	Potassium (ppm)	(mqq)	Date
Pit 1	0.0-0.25	pu	1990	2450	15.9	10700	2620	3410	4240	3/28/01
Pit 1	0.5-1.0	pu	1870	2510	15.9	10900	2820	3300	3530	3/28/01
Pit 1	2.5-4.5	0.013	956	10500	16.9	11500	3960	3040	1060	3/28/01
Pit 2	0.0-0.25	0.006		3170	14	9920	2490	2990	3180	3/28/01
Pit 2	0.25-0.5	0.095	1860	3750	15.9	10700	3260	3250	3100	3/28/01
Pit 2	0.5-1.0	0.963	1080	13400	15.4	10400	3550	2550	890	3/28/01
Pit 2	2.5-4.5	0.135	486	15600	14.3	9680	3600	2310	686	3/28/01
Pit 3	0.0-0.25	pu	296	2970	11.7	8410	2080	2760	846	3/28/01
Pit 3	0.25-0.5	pu	304	3820	14.3	10000	2610	3120	506	3/28/01
Pit 3	0.5-1.0	pu	502	4570	14.8	10600	3050	3210	210	3/28/01
Pit3	2.5-4.5	pu	182	7730	14	10100	3290	3100	176	3/28/01
Pit 4	Above Caliche	12.085	1450	9270	15	10500	4150	2690	1700	3/28/01
averane of										
Pit 3 samples	I	pu	321	4773	14	9778	2758	3048	435	
standard		-	0	L C C			C C L	001	070	
deviation	-	pu	133	2011	-	949	232	198	312	

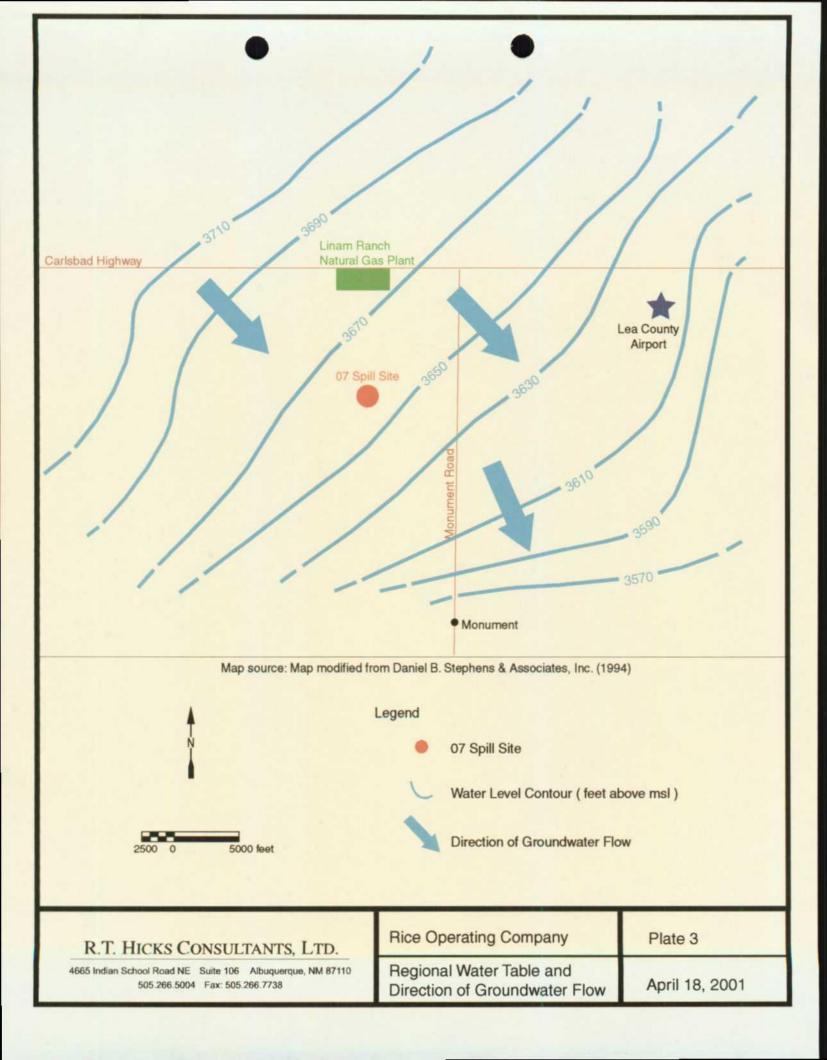
Table 5. Soil Chemistry of Backhoe Trenches

ĺ

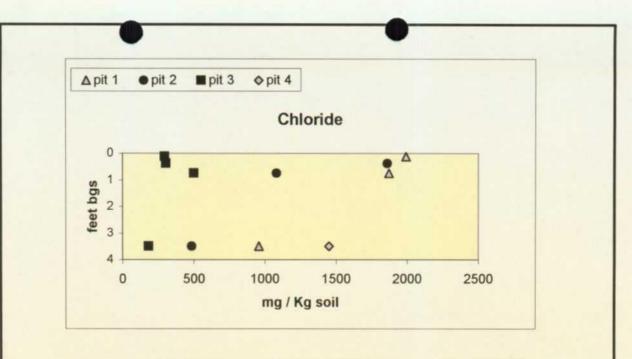
Table 6: SWAT Data

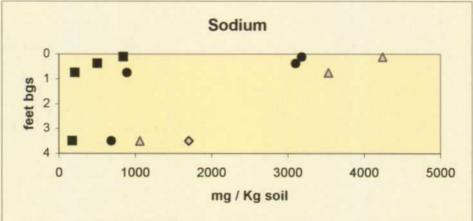

					SWAT Test Parameter	Parameter			
					Exchangeable	Organic			
Sample	Depth		С		Na	Matter		Chloride	CEC
Location	(feet)	Hq	(mmhos/cm)	SAR	(%)	(%)	Texture	(mg/L)	(meq/100 gr)
Pit 1	0.0-0.25	6.59	24.1	44.97	39.4	3.90	clay loam	8086	29.2
Pit 1	0.5-1.0	7.60	22.7	48.37	41.2	1.72	clay loam	8689	24.7
Pit 1	2.5-4.5	7.37	12.1	10.05	11.9	0.50	clay loam	4330	30.8
Pit 2	0.25-0.5	7.26	27.7	33.90	33.9	1.20	clay	11817	30.8
Pit 2	0.5-1.0	7.33	11.6	10.95	13.0	1.04	clay	4458	33.3
Pit 2	2.5-4.5	7.48	8.59	9.40	11.2	1.06	clay	3220	32.8
Pit 3	0.0-0.25	6.57	4.39	10.97	13.0	1.38	clay loam	1361	30.6
Pit 3	0.25-0.5	6.53	3.05	20.69	22.6	1.03	clay loam	816	36.2
Pit 3	0.5-1.0	6.62	4.69	20.10	5.1	1.72	clay	1567	38.6
Pit 3	2.5-4.5	7.40	3.68	1.93	1.6	1.48	clay loam	692	35.8

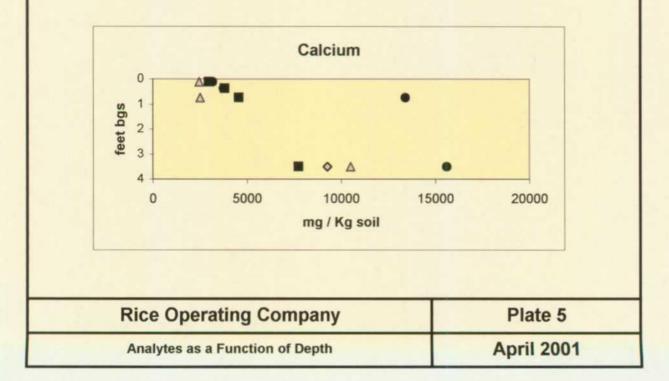

Ì


Table 7. March 2001 Field Data

Sample	Chloride	
Location	(mg / Kg soil)	Vegetation and Soil Characteristics
A1	100	stiff brown clay, stressed vegetation to the east
A2	50	stiff brown clay, stressed vegetation to the east
composite:		
B1, B2 and C2	1475	brown clay, stressed vegetation
B3	600	silty brown clay, stressed vegetation
composite:		
B4 and B5	50	silty brown clay, vegetation not stressed
composite:		
B6 and B7	15	stiff dark brown clay, vegetation not stressed
B8	50	brown clayey silt, vegetation not stressed
C1	3050	stiff black clay, stressed vegetation
C3	1100	not assessed
composite:		
C4, C5, D4 and		
D5	1000	stiff black clay, stressed vegetation
composite:		
C6, C7, D6 and		
D7	600	stiff black clay, stressed vegetation
composite:		
C8 and D8	1400	stiff dark brown to black clay, stressed vegetation
		brown silty clay, transition between stressed and
D1	400	non-stressed vegetation
		dark brown clay, very moist soil, stressed
D2	850	vegetation
D3	1800	stiff dark brown clay, moist soil, stressed vegetation
E1	50	brown silty clay, vegetation thin but not stressed
composite:		
E2 and E3	1000	brown silty clay, stressed vegetation
composite:		slightly stiff brown clay with silt, vegetation not
E4 and E5	50	stressed
E5	ns	ns
composite:		
E6, E7 and E8	25	stiff black clay, stressed vegetation


PLATES





APPENDIX A

brown to brown loam subsoil (see Lea Series). Indurated

121

caliche is at a depth of 20 to 40 inches. The soils in this complex are used as range, wildlife habitat, and recreational areas. They are also a source of caliche for use in road construction. Kimbrough soil: Dryland capability unit VIIs-1; Shallow (HP) range site; wildlife habitat group K. Lea soil: Dryland capability unit VIIs-1; Loamy range site; wildlife habitat group K.

Kimbrough-Lea complex (0 to 3 percent slopes) (KU).--In some areas this complex is about 50 percent Kimbrough gravelly loam and 25 percent Lea loam, and in a few about 40 percent Kimbrough soils and 40 percent Lea soils. It is 20 to 25 percent inclusions of Stegall, Arvana, Slaughter, and Sharvana soils. The Kimbrough soil is gently sloping and is on the tops and sides of low ridges. The Lea soil is nearly level and is in swales between the ridges.

The soils in this complex are used as range, wildlife habitat, and recreational areas. They are also a source of caliche for use in construction. Kimbrough soil: Dryland capability unit VIIs-1; Shallow (HP) range site; wildlife habitat group K. Lea soil: Dryland capability unit VIIs-1; Loamy range site; wildlife habitat group K.

Kimbrough-Sharvana complex (0 to 3 percent slopes) (Ks).—This complex is on smooth broad prairies in association with the Kimbrough-Lea complex in the northern part of Lea County. It is about 60 percent Kimbrough gravelly loam, 25 percent Sharvana fine sandy loam, and 15 percent inclusions of Slaughter, Stegall, and Arvana soils.

The Kimbrough soil is underlain by indurated caliche at a depth of 6 to 16 inches. The Sharvana soil is similar to Sharvana loamy fine sand (see Sharvana Series), but its surface layer is fine sandy loam about 6 inches thick.

These soils are eroded in places. Soil blowing has re-moved most of the original surface layer in old abandoned fields and exposed caliche at the surface, or it has exposed fragments of caliche and the reddish-brown sandy clay loam subsoil of the Sharvana soil. The Kimbrough soil is on slightly elevated level areas and has a few small caliche pebbles on the mounds. The underlying caliche undulates irregularly near the surface. Runoff generally accumulates in small intermittent lakes and potholes.

These soils are used for range and wildlife and as a source of caliche. Kimbrough soil: Dryland capability unit VIIs-1; Shallow (HP) range site; wildlife habitat group K. Sharvana soil: Dryland capability unit VIIs-1; Sandy range site; wildlife habitat group K.

Kimbrough-Sharvana complex (0 to 3 percent slopes) (KX).—This complex is about 55 percent Kimbrough gravelly loam, 25 percent Sharvana fine sandy loam, and 20 percent inclusions of Slaughter, Stegall, and Arvana soils. The Kimbrough soil is gently sloping and is on the tops and sides of low ridges in the northern part of Lea County. The Sharvana soil is nearly level to gently sloping and is between the ridges. It is similar to Sharvana loamy fine sand, but its surface layer is fine sandy loam about 6 inches thick.

The soils in this complex are used for range and wild-life and as a source of caliche. Kimbrough soil: Dryland capability unit VIIs-1; Shallow (HP) range

site; wildlife habitat group K. Sharvana soil: Dryland capability unit VIIs-1; Sandy range site; wildlife habitat group K.

Largo Series

The Largo series consists of well-drained, calcareous soils that have a light loam surface layer underlain by loam to clay loam. These gently sloping soils are on alluvial fans below outcrops of Triassic materials, in the southern part of Lea County. They formed in calcareous loamy alluvium. Slopes are 0 to 3 percent. The vegetation is short and mid grasses, forbs, and shrubs. The average annual precipitation is 10 to 12 inches, the average annual air temperature is 60° to 62° F., and the frost-free season is 190 to 200 days. Elevations range from 3,200 to 3,700 feet. These soils are associated with Pajarito and Palomas soils.

Typically, the surface layer is brown light loam about 6 inches thick. The next layer is reddish-brown to yellowish-red stratified loam, light silty clay loam, and clay loam about 24 inches thick. The substratum, to a depth of about 60 inches, is weak red silty and clayey shale. These soils are calcareous throughout.

Largo soils are used as range, wildlife habitat, and recreational areas. Indian artifacts can be found in this area

Largo-Pajarito complex (0 to 3 percent slopes) (LP).--The soils in this complex formed on alluvial fans and plains and on foot slopes having outcrops of Triassic red-bed material. This complex is about 45 percent Largo loam, about 40 percent Pajarito loamy fine sand, and 15 percent inclusions of Palomas and Maljamar soils. It occurs only in the Southern Desertic Basins, Plains, and Mountains Resource Area in the southern part of Lea County.

The Largo soil is on alluvial plains and lower alluvial fans near deep gullied channels or in valley-filled channels where overflow and flooding are common after torrential rains.

Representative profile of Largo loam in an area of Largo-Pajarito complex, one-half mile south of State Highway No. 128, northwest of Jal, about 0.3 mile east of Jal Dump grounds, sec. 24, T. 25 S., R. 36 E.:

- A11—0 to 1 inch, brown (7.5YR 5/4) fine sandy loam, dark brown (10YR 4/4) when moist; weak, thin, platy structure; slightly hard, very friable when moist, slightly sticky and slightly plastic when wet; many fine roots; many fine interstitial pores; few dark organic stains; mildly alkaline (pH 7.7), slightly calcareous; abrupt boundary. 0 to 1 inch thick.
- A12--1 to 6 inches, brown (7.5YR 5/5) light loam, dark brown (10YR 4/4) when moist; moderate, thick, platy and weak. fine, granular structure; soft, very friable when moist, slightly sticky and slightly plastic when wet; few fine roots; few coarse tubular pores; few organic stains; few worm casts; few root channels; few mycelia; mildly alkaline (pH 7.7), slightly calcareous: abrupt boundary. 4 to 12 inches thick.
- AC1-6 to 13 inches, reddish-brown (5YR 5/4) loam, reddish brown (5YR 4/4) when moist; weak, coarse, sub-angular blocky and moderate, medium, granular structure; hard, firm when moist, sticky and plastic when wet; few fine roots; few small shale fragments intermixed; many worm casts; moderately alkaline (pH 7.9), strongly calcareous; clear boundary. 6 to 10 inches thick.

23

plastic when wet; few fine roots; mildly alkaline (pH 7.7), slightly calcareous; abrupt boundary. 2 to 4 inches thick.

A12-2 to 4 inches, dark grayish-brown (10YR 4/2) loam, very dark grayish brown (10YR 3/2) when moist; moderate, fine, subangular blocky structure; slightly hard, friable when moist, slightly sticky and slightly plastic when wet; few fine roots; few worm casts; mildly alkaline (pH 7.8), slightly calcareous; abrupt boundary. 2 to 3 inches thick.

t

)

l

١.

a

)

13

٦f

۰s

л,

 \mathbf{d}

đ.

ð-

lv

el

to

ed

.s.

 \mathbf{rt}

i-

·n -

m

00

ls.

n

n.

m

60

n-

١d

oil

2st

of

ιm,

st;

re;

tly

開始に

States -

4

Ťŧ

.1.

B21—4 to 12 inches, grayish-brown (10YR 5/2) clay loam, brown (10YR 5/3) when moist; moderate, medium, subangular blocky structure; hard, firm when moist, sticky and plastic when wet; few fine roots; many fine tubular pores; few worm casts; many fine calcium carbonate concretions; moderately alkaline (pH 8.2), strongly calcareous; clear boundary. 7 to 20 inches thick.

B22-12 to 22 inches, pale-brown (10YR 6/3) clay loam, brown (10YR 5/3) when moist; moderate, medium, subangular blocky structure; slightly hard, very friable when moist, sticky and plastic when wet; few fine roots; many, soft and hard, fine calcium carbonate concretions; moderately alkaline (pH 8.4), strongly calcareous; gradual boundary. 9 to 12 inches thick.

Cca—22 to 60 inches, light-gray (10YR 7/2), soft caliche consisting of clay loam, gray (10YR 6/1) when moist; moderate, fine, subangular blocky structure; hard, firm when moist, sticky and plastic when wet: about 35 percent chalky or silty soils mixed with soft calcium carbonate, decreasing in lime content below a depth of 48 inches; moderately alkaline (pH 8.4), strongly calcareous.

The A horizon ranges from dark grayish brown to brown light loam to heavy loam. The B horizon is 20 to 30 percent clay and ranges from loam to clay loam. Depth to chalky material or caliche is 20 to 39 inches.

This soil is moderately permeable. Runoff is slow. Water intake is moderate, and the available water holding capacity is 4 to 7 inches. Roots penetrate to a depth of 20 to 39 inches to the strong lime zone. Soil blowing is a moderate hazard.

This soil is used as range and wildlife habitat. Dryland capability unit VIIe-3; Loamy range site; wildlife habitat group G.

Midessa and Wink fine sandy loams (0 to 3 percent slopes) (MN).—This unit is about 45 percent Midessa fine sandy loam and 40 percent Wink fine sandy loam. Some areas are mostly Midessa soil or Wink soil, and other areas are made up of both soils. Included in mapping are areas of Maljamar, Palomas, and Kermit soils that make up the remaining 15 percent of this unit.

The Midessa soil is similar to Midessa loam, but its surface layer is fine sandy loam. The Wink soil is similar to Wink fine sand (see Wink Series), but its surface layer differs in texture and is about 6 inches thick. Surface runoff is slow. Water intake is moderate to rapid. There is a strong lime zone at a depth of 20 to 40 inches. Soil blowing is a moderate hazard.

These soils are used as range, wildlife habitat, and recreational areas. Dryland capability unit VIIe-3; Sandy range site; wildlife habitat group G.

Mixed Alluvial Land

Mixed alluvial land (MU) consists of unconsolidated, stratified alluvium of varying texture. It is mainly along Monument Draw and its tributaries in the southeastern

part of Lea County. It occurs intermittently in drainageways. A small acreage is along swales in the northeastern part. Included in mapping are small areas of Amarillo and Portales soils.

The alluvium is generally no more than 24 to 36 inches thick over a buried soil or the parent material of adjacent soils. Evidence of the origin of this material is the stratification, the location in drainageways, and the debris from floods that has accumulated on the vegetation within the drainageway.

The alluvium consists of recently deposited soil material from adjacent slopes. In places where the adjacent soils are fine to medium textured, the alluvium is loamy. In places where the adjacent soils are moderately coarse textured and coarse textured, the alluvium is sandy. Where the adjacent soils are of varying textures, the alluvium is stratified, loamy, and sandy.

Loamy alluvium is most extensive. It is generally darkgray, calcareous loam that is moderately deep over caliche. The sandy alluvium consists of deep sands that bury the original soils, or of deep windblown sands that were subsequently flooded.

Permeability is moderate to rapid. Runoff is slow. Water intake is moderate to rapid, and the available water holding capacity is 4 to 7 inches. Roots penetrate to a depth of about 40 to 60 inches, or more. The vegetation consists of mid grasses, forbs, and shrubs. Erosion is a moderate hazard.

Mixed alluvial land is used as range and wildlife habitat. Some tracts are cut for native hay. Dryland capability unit VIe-1; Bottomland range site; wildlife habitat group C.

Mobeetie Series

The Mobeetie series consists of well-drained soils that have a light fine sandy loam subsoil. These soils formed in calcareous sandy loam sediments derived from outcrops of the Ogallala Formation. They are mainly on foot slopes and on alluvial fans along the margins of the Southern High Plains. These soils are nearly level to rolling. Slopes are 1 to 10 percent. The vegetation consists of mid grasses and shrubs. The average annual precipitation is 10 to 13 inches, the average annual temperature is 60° to 62° F., and the frost-free season is 195 to 205 days. Elevations range from 3,700 to 4,000 feet. These soils are closely associated with Potter and Mansker soils.

Typically, the surface layer is brown fine sandy loam about 4 inches thick. The subsoil is brown light fine sandy loam about 20 inches thick. The substratum, to a depth of 60 inches, is brown fine sandy loam that contains lime. This soil is calcareous throughout the profile.

The Mobeetie soils in Lea County are mapped only with Potter soils. They are used as range and wildlife habitat.

Mobeetie-Potter association, 1 to 15 percent slopes $(M \vee)$.—This association is about 70 percent Mobeetie fine sandy loam and about 25 percent Potter gravelly fine sandy loam. Slopes range from 1 to 10 percent in the Mobeetie soil and from 5 to 15 percent in the Potter soil, but are dominantly 4 to 6 percent. These soils are along the escarpment of the Southern High Plains and draws

SOIL SURVEY

TABLE 6.-Estimated engineering

[An asterisk in the first column indicates that at least one mapping unit in this series is made up of two or more kinds of soil. The soils for referring to other series that appear in the

properties of the soils in such mapping units may have different properties and limitations, and for this reason it is necessary to follow carefully the instructions inst column of table. Symbol > means more than] 54 ···

Soil series and map symbols	Depth to bedrock or	Depth from	Classific	ation		Percen	tage passing	sieve—	Permeability	Available	Reaction	G. Y. Y.		Comercia
	indurated caliche	surface	Dominant USDA texture	Unified	AASHO	No. 4	No. 10	No. 200		water capacity	ITCACIIOII	Salinity	Shrink-swell potential	Corrosivity of uncoated stee
ctive dune land: Aa	^{Ft.} >5	In. 0-60	Fine sand	SP	A-3	100	100	0-5	In./hr. >20	In.]in. of soil 0. 04–0. 06	pH 6. 6-7. 8	Mmhos./cm. 0-1	Low	Low.
Amarillo: Ad, Ae, Af, Ag, Ah, Ak, AB, AL, AS, AU. For Arvana part of AB, AL, and AS, see Arvana series; for Gomez part of Ak and AU, see Gomez series.	>5	0-36 36-60	Sandy clay loam Chalky loam	SM or SC SC	A-4 or A-6 A-4	100 95–100	100 90–100	4050 4050	0. 63-2. 0 0. 63-2. 0	0. 14-0. 16	6. 6–7. 3 7. 9–8. 4	0-1 0-1	Moderate Low	Moderate. Low.
Arch: Am, AV For Drake part of AV, see Drake series.	>5	0-16 16-60	Loam Soft caliche (clay loam to silty clay loam).	ML or CL	A-4 or A-6 A-6	100 100	100 100	78-80 83-95	0. 63–2. 0 0. 63–2. 0	0. 16-0. 18	7. 9-8. 4 8. 5-9. 0	0-2 0-4	Moderate Moderate	Moderate. High.
Arvana: An, Ao, Ap, Ar, At, AW For Lea part of AW, see Lea series.	11/2-3	0-28 28	Sandy clay loam Indurated caliche.	SC	A-6	100	100	35-50	0. 63–2. 0	0. 14-0. 16	6 6-7.3	0-1	Moderate	Moderate.
Badland: BD. Variable: no estimates of properties.														
Berino: BE, BF, BH For Cacique part of BE, BF, and BH, see Cacique series.	>5	0-48 48-60	Sandy clay loam Soft caliche (sandy clay loam)	SC SC	A-6 A-6	100 100	100 100	35-45 35-50	0. 63-2. 0 0. 63-2. 0	0. 14-0. 16	6. 6-7. 8 7. 9-8. 4	0-2 0-2	Moderate Moderate	Moderate. Moderate.
Brownfield: Bp, BN, Br, BO, BS. For Patricia part of Br, Bp, and BN, see Patricia scries; for Springer part of BO and BS, see Springer series.	>2	0-22 22-63	Fine sand Sandy clay loam	SM SM or SC	A-1 or A-2 A-4 or A-6	100 100	100 100	2030 4050	6. 3-20. 0 0. 63-2. 0	0. 06-0. 08 0. 14-0. 16	6. 6-7. 3 6. 6-7. 8	0-1 0-1	Low Moderate	Low. Moderate.
Cacique Mapped only with Berino soils.	1½-3	0-12 12-28 28	Loamy fine sand Sandy clay loam Indurated caliche.	SM SC	A-2 or A-4 A-6	100 100	100 100	25–50 35–50	2. 0-6. 3 0. 63-2. 0	0. 09-0. 15 0. 14-0. 16	6. 6-7. 3 6. 6-7. 3	0-1 0-1	Low Moderate	Low. Moderate.
Cottonwood Mapped only with Reeves soils.	(2)	0-8	Loam Gypsum.	ML	A-4	100	100	60-80	0. 63–2. 0	0. 16–0. 18	8. 5–9. 0	8-15	Low	High.
Drake: Dr	>5	0-30 30-60		ML SC	A-4 A-6	t 100 1 100	100 100	50-60 35-45	0. 63-2. 0 0. 63-2. 0	0. 13-0. 15 0. 14-0. 16	7. 4–7. 8 7. 9–8. 4	0-4 0-4	Low Moderate	Moderate. Moderate.
Drake, low rainfall variant Mapped only with Jal soils.	>5	012 12-60	Loamy fine sand Sandy clay loam	SM SC	A-2 A-6	100 100	100 100	20-35 35-45	6. 3–20. 0 0. 63–2. 0	0. 08-0. 10 0. 14-0. 16	7. 4–7. 8 7. 9–8. 4	0-4 0-4	Low Moderate	Moderate. Moderate.
Gomez: GF, Go, GM, Gs	>5	0-15 15-22 22-60	Loamy fine sand Fine sandy loam Soft caliche (fine sandy loam)	I SM	A-2 A-4 A-4	100 100 100	100 100 100	15–30 35–50 35–50	6. 3-20. 0 2. 0-6. 3 2. 0-6. 3	0. 05-0. 09 0. 13-0. 15	$\begin{array}{c} 6. & 6-7. \\ 7. & 4-7. \\ 7. & 9-8. \\ 4\end{array}$	0-1 0-1 0-2	Low Low Low	Low.
*Jal: JA For Drake part of JA, see Drake, low rainfall variant.	>5	0-12 12-60		SM ML	A-2 or A-4 A-4	100 100	100 100	30-40 50-65	2. 0-6. 3 0. 63-2. 0	0. 11–0. 13	7. 9–8. 4 8. 5–9. 0	0-2 0-4	Low Low	Moderate.
*Kermit: KD, KE, KM For Palomas part of KD, see Palomas series; for Dune land part of KM, see Active dune land; for Wink part of KE, see Wink series.	>5	0-60	Fine sand	SP-SM or SM	A-2 or A-3	100	100	5-15	>20. 0	0. 04–0. 06	6. 6–7. 3	0–1	Low	Low.
*Kimbrough: Kb, KN, Kc, Kg, KO, Kh, KU, Ks, KX. For Sharvana part of Ks and KX, see Sharvana series; for Lea part of Kh and KU, see Lea series.	3/2-13	0-6 6	Gravelly loam Indurated caliche.	SM, SC, or ML	A-4	5 85–95	75-90	40-60	0. 63–2. 0	0. 12-0. 18	7. 4–7. 8	0–2	Low	Low to mode ate.
Largo: LP For Pajarito part of LP, see Parjarito series.	2 to 5	5 0-30 30	Loam, silty clay loam, and clay loam. Shale.	ML or CL	A-4 or A-6	100	100	65-85	0. 2-0. 63	0. 17-0. 19	7. 4–8. 4	01 •	Moderate	Moderate.

461-652-73----6

66

LEA COUNTY, NEW MEXICO

66

SOIL SURVEY

TABLE 6.-Estimated engineering

[An asterisk in the first column indicates that at least one mapping unit in this series is made up of two or more kinds of soil. The soils for referring to other series that appear in the

in such mapping units may have different properties and limitations, and for this reason it is necessary to follow carefully the instructions first column of table. Symbol > means more than]

Soil series and map symbols	Depth to bedrock or	Depth from	Classifie	cation		Percer	tage passing	sieve—	Permeability	Available				
	indurated caliche	surface	Dominant USDA texture	Unified	AASHO	No. 4	No. 10	No. 200	rermeability	water capacity	Reaction	Salinity	Shrink-swell potential	Corrosivity of uncoated steel
Active dune land: Aa	Ft. >5	In. 0–60	Fine sand	SP	A-3	100	100	0–5	In./hr. >20	In./in. of soil 0. 04–0. 06	<i>pH</i> 6. 6–7. 8	Mmhos./cm. 0-1	Low	Low.
Amarillo: Ad. Ae, Af, Ag, Ah, Ak, AB, AL, AS, AU. For Arvana part of AB, AL, and AS, see Arvana series; for Gomez part of Ak and AU, see Gomez series.	>5	0-36 36-60	Sandy clay loam Chalky loam	SM or SC SC	A-4 or A-6 A-4	100 95-100	100 90-100	40–50 40–50	0. 63–2. 0 0. 63–2. 0	0. 14-0. 16	6. 6–7. 3 7. 9–8. 4	0-1 0-1	Moderate Low	Moderate.
Arch: Am, AV For Drake part of AV, see Drake series.	>5	0-16 16-60	Loam Soft caliche (clay loam to silty clay loam).	ML or CL CL	A-4 or A-6 A-6	100 100	100 100	78–80 85–95	0. 63–2. 0 0. 63–2. 0	0. 16–0. 18	7. 9-8. 4 8. 5-9. 0	0-2 0-4	Moderate Moderate	Moderate. High.
Arvana: An, Ao, Ap, Ar, At, AW For Lea part of AW, see Lea series.	11/2-3	0-28 28	Sandy clay loam Indurated caliche.	sc	A-6	100	100	35-50	0. 63–2. 0	0. 14-0. 16	6. 6-7. 3	0-1	Moderate	Moderate.
Badland: BD. Variable: no estimates of properties.														
*Berino: BE, BF, BH For Cacique part of BE, BF, and BH, see Cacique series.	>5		Sandy clay loam Soft caliche (sandy clay loam)	SC SC	A-6 A-6	100 100	100 100	35–43 35–50	0. 63–2. 0 0. 63–2. 0	0. 14–0. 16	6, 6-7. 8 7, 9-8. 4	0-2 0-2	Moderate Moderate	Moderate. Moderate.
*Brownfield: Bp, BN, Br, BO, BS. For Patricia part of Br, Bp, and BN, see Patricia series; for Springer part of BO and BS, see Springer series.	>5	0-22 22-63	Fine sand Sandy clay loam	SM SM or SC	A-1 or A-2 A-4 or A-6	100 100	100 100	20–30 40–50	6. 3–20. 0 0. 63–2. 0	0. 06-0. 08 0. 14-0. 16	6 6-7.3 6 6-7.8	0-1 0-1	Low Moderate	Low. Moderate.
Cacique Mapped only with Berino soils.	11/2-3	0-12 12-28 28	Loamy fine sand Sandy clay loam Indurated caliche.	SM SC	A-2 or A-4 A-6	100 100	100 100	25–50 35–50	2. 0-6. 3 0. 63-2. 0	0. 09–0. 15 0. 1 4 –0. 16	6. 6-7. 3 6. 6-7. 3	0-1 0-1	Low Moderate	Low. Moderate.
Cottonwood. Mapped only with Reeves soils.	- (²)	0-8	Loam Gypsum.	ML	A-4	100	100	60-80	0. 63–2. 0	0. 16-0. 18	8. 5-9. 0	8-15	Low	High.
Drake: Dr	- >5	0-30 30-60	Fine sandy loam	ML SC	A-4 A-6	t 100 1 100	100 100	50-60 35-45	0. 63-2. 0 0. 63-2. 0	0. 13-0. 15 0. 14-0. 16	7. 4–7. 8 7. 9–8. 4	0-4 0-4	Low Moderate	Moderate. Moderate.
Drake, low rainfall variant Mapped only with Jal soils.	- >5	0-12 12-60		SM SC	A-2 A-6	100 100	100 100	$\begin{array}{c} 20-35\ 35-45 \end{array}$	6. 3–20. 0 0. 63–2. 0	0. 08-0. 10 0. 14-0. 16	7. 4–7. 8 7. 9–8. 4	0-4 0-4	Low Moderate	Moderate.
Gomez: GF, Go, GM, Gs	- >5	0-15 15-22 22-60	Fine sandy loam	_ SM	A-2 A-4 A-4	100 100 100	100 100 100	15–30 35–50 35–50	6. 3-20. 0 2. 0-6. 3 2. 0-6. 3	0.05-0.09 0.13-0.15	6. ⁻ 6-7. 8 7. 4-7. 8 7. 9-8. 4	0-1 0-1 0-2	Low Low Low	Low.
*Jal: JA For Drake part of JA, see Drake, low rainfall variant.	- >5	0-12 12-60		SM ML	A-2 or A-4 A-4	100 100	100 100	3040 50-65	2. 0-6. 3 0. 63-2. 0	0. 11-0. 13	7. 9–8. 4 8. 5–9. 0	0-2 0-4	Low	Moderate.
*Kermit: KD, KE, KM For Palomas part of KD, see Palomas series; for Dune land part of KM, see Active dune land; for Wink part of KE, see Wink series.		0-60	Fine sand	SP-SM or SM	A-2 or A-3	100	100	5-15	>20. 0	0. 04–0. 06	6. 6-7. 3	0-1	Low	Low.
*Kimbrough: Kb, KN, Kc, Kg, KO, Kh, KU, Ks, KX, For Sharvana part of Ks and KX, see Sharvana series; for Lea part of Kh and KU, see Lea series.		}∕2 0−6 6	Gravelly loam Indurated caliche.	SM, SC, or ML	A-4	5 85-95	75-90	40-60	0. 63–2. 0	0. 12–0. 18	7. 4–7. 8	0-2	Low	Low to moder- ate.
*Largo: LP For Pajarito part of LP, see Parjarito series.	2 to 5	5 0-30 30	Loam, silty clay loam, and clay loam. Shale.	ML or CL	A-4 or A-6	100	100	65-85	0. 2–0. 63	0. 17-0. 19	7. 4-8. 4	0-1 •	Moderate	Moderate.
See footnotes at end of table.		•		•				·			•	1		ι.

461-652-73---6

LEA COUNTY, NEW MEXICO

SOIL SURVEY

properties of the soil-Continued TABLE 6.—Estimated engineerin

LEA COUNTY, NEW MEXICO

Available

water

capacity

In./in. of soil 0. 16-0. 18

0.05-0.07

0. 14-0. 16

0.16 - 0.18

0. 19-0. 21

0. 19-0. 21

0.13-0.15

0.09-0.11 0.13-0.15

0.05-0.07

0. 14-0. 16

0.06-0.08

0. 14-0. 16

0.17-0.19

0.10-0.12

0. 06-0. 08 0. 13-0. 15

0. 19-0. 21

0. 13-0. 15

0. 14-0. 16

0.09-0.15

0.16-0.18

0.05-0.09

0. 13-0. 15

0. 17-0. 19

In./hr. 0.63-2.0

6. 3-20. 0

0. 63-2. 0

0. 63-2. 0

0. 63-2. 0

0. 63-2. 0

0.63-2.0

0. 63–2. Ŏ

2.0-6.3

6. 3–20. 0 2. 0–6. 3

6. 3-20. 0

0. 63-2. 0

0. 63-2. 0

0. 63-2. 0

0. 63-2. 0

0. 63-2. 0

0.63-2.0

6. 3-20. 0 2. 0-6. 3

0. 63–2. 0 0. 63–2. 0

0. 63-2. 0

2. 0-6. 3

0.06-0.2

6. 3-20. 0 2. 0-6. 3

0.06-0.2

6. 3-20. 0

Percentage passing sieve-Depth to bedrock or indurated Depth Classification Permeability Soil series and map symbols from surface No. 10 No. 200 Dominant USDA texture Unified AASHO No. 4 caliche Ft. In. 100 100 60-75 134-35 Loam_____ Indurated caliche. Lea: La, Le_____ 0-26 ML or CL A-4 26 15–25 35–45 *Maljamar: MF_____ For Palomas part of MF, see Palomas SM SC 100 100 Fine sand_____ Sandy clay loam_____ Indurated caliche. 100 3½->5 0 - 24A-2 24 - 50A-6 100 50 series. 100 60-75 70-80 70-80 100 Mansker: Ma, MK, Me_____ >50-10 Loam. MLA-4 ------100 100 Clay loam Soft caliche (light clay loam 10 - 19A-6 $_{\rm CL}^{\rm CL}$ 19-60 A-6 100 100 texture). 100 100 70-80 $0-22 \\ 22-60$ *Midessa: MM, MN Clay loam >5A-6 100 100 70-80 For Wink part of MN, see Wink series. Soft caliche (clay loam texture) _. \mathbf{CL} A-6 Mixed alluvial land: MU______ Variable; no estimates of properties. 100 100 40-50 *Mobeetie: MW_____ For Potter part of MW, see Potter series. >50-60 Fine sandy loam SMA-4 Pajarito_____ Mapped only with Largo soils. 100 100 20-30 35-50 0-16 Loamy fine sand A-2 $\begin{array}{c} 100 \\ 100 \end{array}$ >5SM Fine sandy loam ŠЙ A-4 16-60 Palomas______ Mapped only with Kermit and Maljamar 100 100 20-30 A-2 >50 - 16Fine sand. 100 100 35-50 SM or SC 16 - 60Fine sandy loam and sandy A-4clay loam. Soft caliche (sandy loam)..... soils 100 30-40 100 60-66 SMA-2 or A-100 20-30 Patricia______ Mapped only with Brownfield soils. Fine sand 100 >50-16 A-1 or A-2100 100 40-50 SM or SC 16-70 Sandy clay loam A-4 or A-6 Playas: Pb______ Variable; no estimates of properties. 65-75 65-75 *Portales: Pe, Pf, Ph, PC, Po, PG, PS_____ For Stegall part of PS, see Stegall series; for Gomez part of PG, see Gomez series. Loam and clay loam_____ Soft caliche (loam texture)_____ A-6 A-6 100 100 $0-26 \\ 26-60$ CL CL >5100 100 85-95 70-85 20-30 Potter______ Mapped only with Mobeetie soils. 1/2-1 0-4 Gravelly fine sandy loam SMA-24 Fragmental platy caliche. *Pyote: PT, PU, PY______ For Maljamar part of PU, see Maljamar series; for Dune land part of PY, see 100 5–30 40–50 >50-30 Fine sand or loamy fine sand SP-SM or SM A-2 or A-3 $\begin{array}{c} 100 \\ 100 \end{array}$ 100 Fine sandy loam_____ 30-60 SM A-4Active dune land. 100 100 *Reeves: RE, RT_____ For Cottonwood part of RT, see Cotton-100 60-75 70-80 (3) 0-12 Loam_____ ML Light clay loam_____ CL Gypsum and chalky loam. A-4 100 12 - 16A-6 wood series. 16-60 100 100 35-50 1 - 2Sandy clay loam SC A-6 Sharvana: Sf, SA, Sh, SD..... 0 - 16Indurated caliche. 16 80-100 75-100 20 - 50*Simona: Sm, SE, Sn, SR. For Upton part of SR, see Upton series. Fine sandy loam SMA-2 or A-4 1-1 0-16 16 Indurated caliche. 100 100 75-95 Heavy clay loam and clay_____ $\mathbf{C}\mathbf{L}$ A-6 Slaughter: So 1 - 20-15 15 Indurated caliche. $\begin{array}{c} 100 \\ 100 \end{array}$ 100 100 Loamy fine sand..... A-2 20 - 30Springer_____ Mapped only with Brownfield soils. >50 - 14SM 40--50 14-60 Fine sandy loam SM A-4 60 Soft caliche. 100 100 70-80 *Stegall: St, Su, SS_____ For Slaughter part of SS, see Slaughter 1½-3 0-28 CL A-6 $\overline{28}$ series.

See footnotes at end of table.

68

A 14

Reaction	Salinity	Shrink-swell potential	Corrosivity of uncoated steel ¹
pH 6.6-8.4	Mmhos./cm. 0-2	Moderate	Moderate.
6. 6–7. 3 6. 6–7. 3	0-1 0-1	Low Moderate	Low. Moderate.
7. 9–8. 4 7. 9–8. 4 7. 9–8. 4	0–2 0–2 0–2	Moderate Moderate Moderate	Moderate. Moderate. Moderate.
7. 4 -8. 4 7. 9 -8. 4	0-2 0-2	Moderate Moderate	Moderate. Moderate.
7. 9-8. 4	0-1	Low	Low.
7. 4-7. 8 8. 5-9. 0	0-1 0-1	Low Low	Low. Low.
6. 6-7. 3 6. 6-7. 8	0-1 0-1	Low Moderate	Low. Moderate.
7. 4-7. 8	0-2	Low	Moderate.
6. 6-7. 3 5. 6-8. 4	0-1 0-1	Low Moderate	Low. Moderate.
7. 4–8. 4 7. 9–8. 4	$_{0-2}^{0-2}$	Moderate Moderate	Moderate. Moderate.
7. 4–7. 8	0-2	Low	Moderate.
6. 6-7. 3 6. 6-7. 3	0-1 0-1	Low	Low. Low.
7. 4–7. 8 7. 9–8. 4	4~8 8-15	Moderate Moderate	High. High.
6. 6–7. 3	0-1	Moderate	Moderate.
7. 9-8. 4	0-1	Low	Low.
6. 6–7. 3	· 0–1	High	High.
6. 6-7. 8 6. 6-7. 8	0-1 0-1	Low Low	Low. Low.
6. 6–7. 8	0-4	High	- High.
1	-	-	•

SOIL SURVEY

Έ.

72

. urnretations-Continued

					TABLE	7.—Engineering	interpretations-	Continued			
			suitability as a source of-		Degree of limi	itation for-				Soil feature	IS 8
	Soil secies and map symbols	Topsoil	Sand	Road fill	Filter fields	Sewage lagoons	Highway location	Dikes and levees		1 ponds	
·····	-								Reservoir area	Embankment	_
-	Cacique	Fair to poor: texture	Unsuitable: mainly fine-grained material.	Good to poor (A-2 and A-6): moderate shrink-swell poten- tial.	Severe: indurated caliche at a depth of 1½ to 3 feet.	Severe: depth to indurated caliche is 1½ to 3 feet.	Indurated caliche at a depth of 1½ to 3 feet.	Moderate shrink- swell potential.	Indurated caliche at a depth of 1½ to 3 feet; mod- erate seepage.	Limited fill material.	M
	Cottonwood Mapped orly with Reeves soils.	Poor: low fertility; reaction.	Unsuitable: fine- grained material.	Fair (A-4): low shear strength; very shallow.	Severe: gypsum within a depth of 1 foot; danger of pollution.	Severe: gypsum within a depth of 1 foot.	Gypsiferous mate- rial within a depth of 1 foot.	Gypsiferous mate- rial.	Soluble gypsum	Soluble gypsum	L
	Drake: Dr	Poor: low fertility; texture.	Poor: sandy clay loam below a depth of 30 inches.	Fair to poor (A-4 and A-6).	Slight to moderate: moderate perme- ability.	Moderate: moderate permeability; slopes mainly 2 to 5 percent.	Severe erosion hazard.	Poor stability; piping hazard.	Moderate seepage; piping hazard.	Severe erosion hazard; piping hazard.	S
	Drake, low rainfall variant Mapped only with Jal soils.	Poor: low fertility; texture.	Unsuitable: mainly fine-grained material.	Fair to poor (A-2 and A-6).	Slight to moderate: moderate perme- ability.	Moderate: moderate permeability.	Severe erosion hazard.	Poor stability; piping hazard.	Moderate seepage; piping hazard.	Severe erosion hazard; piping hazard.	s
	Gomez: GF, Go, GM, Gs	Poor: low fertility; texture.	Poor: fine sandy loam below a depth of 15 inches.	Good to fair (A-2 and A-4) if soil binder is added.	Slight	Severe: moderately rapid permeability.	Soft caliche at a depth of 11/2 to 31/2 feet; severe erosion hazard.	Soft caliche at a depth of 1½ to 3½ leet; severe erosion hazard.	Soft caliche at a depth of 1½ to 3½ feet; high seepage.	High seepage; pip- ing hazard; severe erosion hazard.	F
	•Jal: JA For Drake part of JA, see Drake, low rainfall variant.	Poor: low fertility; high lime content.	Unsuitable: mainly fine-grained material.	Fair (mainly A-4)	Slight to moderate: moderate perme- ability.	Moderate: moderate permeability.	Soft caliche at a depth of 12 inches; severe erosion hazard.	Piping hazard; severe erosion hazard.	Moderate perme- ability; high seepage; high lime content.	Piping hazard; poor compaction.	s
	•Kermit: KD, KE, KM For Palomas part of KD, see Palomas series. For Dune land part of KM, see Active dune land. For Wink part of KE, see Wink series.	Poor: low fertility; texture.	Good	Good (A-2 and A-3) if soil binder is added.	Slight to moderate: in places slopes erceed 5 percent; pollution of ground water possible.	Severe: very rapid permeability; slopes mainly 0 to 12 per- cent.	Loose sand hinders hauling; very severe erosion hazard.	Very severe erosion hazard.	Very rapid perme- ability.	Very severe erosion hazard.	V
	 Kimbrough: Kb, KN, Kc, Kg, KO, Kh, KU, Ks, KX. For Sharvana part of units Ks and KX, see Sharvana series. For Lea part of Kh and KU, see Lea series. 	Poor: gravelly; in- durated caliche at a depth of ½ foot to 1½ feet.	Unsuitable: indurated caliche at a depth of ½ foot to 1½ feet.	Fair (A-4): depth to indurated caliche is 34 foot to 114 feet.	Severe: indurated caliche at a depth of ½ foot to 1½ feet.	Severe: indurated caliche at a depth of 1⁄4 foot to 11⁄2 feet.	Indurated caliche at a depth of ½ foot to 1½ feet.	Indurated caliche at a depth of ½ foot to 1½ feet.	Indurated caliche at a depth of ½ foot to 1½ feet.	Indurated caliche at a depth of ½ foot to 1½ feet.	I
	*Largo: LP For Pajarito part of LP, see Pajarito series.	. Fair: low fertility	Unsuitable: fine- grained material.	Fair to poor (A-4 and A-6): moderate shrink-swell poten- tial.	Severe: moderately slow permeability.	Moderate: subject to flooding.	Periodic flooding; erosion hazard.	Unstable: subject to cracking.	Moderate shrink- swell potential; moderately slow permeability.	Fair stability; piping hazard.	I
	Leo: La, Le	Good: moderate fertility.	Unsuitable: mainly fine-grained material.	Fair (A-4): moderate	Severe: indurated caliche at a depth of 1½ to 3½ feet.	Severe: indurated caliche at a depth of 1½ to 3½ feet.	Indurated-caliche at a depth of 1½ to 3½ feet.	Indurated caliche at a depth of 1½ to 3½ feet.	Indurated caliche at a depth of 1½ to 3½ feet.	Indurated caliche at a depth of 1½ to 3½ feet.	1
	•Maljamar: MF For Palomas part of MF, see Palomas series.	Poor: low fertility; texture.	Poor: sandy clay loam below a depth of 2 feet.	Good to poor (A-2 and A-6).	Slight to moderate: moderate perme- ability.	Moderate: moderate permeability.	Sand hinders haul- ing; severe ero- sion hazard.	Thick fine sand surface layer.	Moderately perme- able below a depth of 2 feet; moderate seepage.	Slight cracking; severe erosion hazard.	5
	Mansker: Ma, MK, Me	Fair: moderate fertility.	Unsuitable: fine- grained material.	Fair to poor (A-4 and A-6).	Slight to moderate: moderate perme- ability.	Moderate: moderate permeability.	Soft caliche at a depth of 10 to 20 inches.	Moderate shrink- swell potential.	Seepage; soft ca- liche at a depth of 10 to 20 Inches.	High seepage potential; ero- sion hazard.	5
	•Mildessa: MM, MN For Wink part of MN, see Wink series.	Fair: moderate fer- tility.	Unsuitable: mainly fine-grained material	Poor (A-6)	Slight to moderate: moderate permea- bility.	Moderate: moderate permeability.	Moderate shrink- swell potential.	Moderate shrink- swell potential.	Soft caliche at a depth of 2 to 3 feet; requires compaction.	Poor stability; piping hazard.	

LEA COUNTY, NEW MEXICO

ankment	Irrigation	Leveling and benching	Foundations for low buildings	Pipelines
l fill ial.	Moderate to severe erosion hazard; indurated caliche at a depth of 11/2 to 3 feet.	Indurated caliche at a depth of 1½ to 3 feet.	Moderate shrink- swell potential.	Indurated caliche at a depth of 1½ to 3 feet.
gypsum	Low water holding capacity.	Gypsum within a depth of 1 foot.	Soluble gypsum	Gypsum; highly corrosive.
erosìon d; piping d.	Severe erosion hazard; low pro- ductivity; 0 to 5 percent slopes.	Severe erosion hazard; cuts limited by high lime content.	Low shear strength; moderate shrink- swell potential below a depth of 30 inches.	Moderately cor- rosive.
erosion d; piping d.	Severe erosion hazard; low productivity.	Severe erosion hazard.	Low shear strength; moderate shrink- swell potential below a depth of 12 inches.	Moderately cor- rosive.
epage; pip- azard; severe on hazard.	Rapid water in- take; severe ero- sion hazard.	Unstable; cuts limited by soft caliche at a depth of 11/2 to 31/2 feet.	Low shear strength; low shrink-swell potential.	Moderate ditch- bank sloughing.
hazard; compaction.	Severe erosion hazard; rooting depth 20 to 30 inches.	Severe erosion hazard.	Low shrink-swell potential.	Moderately corro- sive; soft caliche at a depth of 12 inches.
evere erosion rd.	Very severe erosion hazard.	Very severe erosion hazard.	Low shrink-swell potential.	Ditchbank sloughing.
ted caliche lepth of ½ to 1½ feet.	Indurated caliche at a depth of ½ foot to 1½ feet.	Indurated caliche at a depth of ½ foot to 1½ feet.	Indurated caliche at a depth of 1/2 foot to 1/2 feet.	Indurated caliche at a depth of ½ foot to 1½ feet.
ability; ng hazard.	Low water intake; erosion hazard.	Subject to flooding.	Subject to flooding; moderate shrink- swell potential.	Subject to flooding.
ted calich0 depth of 1½ § feet.	Indurated caliche at a depth of 1½ to 3½ feet.	Cuts limited by indurated caliche at a depth of 1½ to 3½ feet.	Moderate shrink- swell potential.	Indurated caliche at a depth of 1½ to 3½ feet.
eracking; re erosion rd.	Severe erosion hazard	Severe erosion hazard.	Moderate shrink- swell potential below a depth of 2 feet.	Surface sands; slough or cave- in hazard.
eepage ntial; ero- hazard.	Shallow over ca- liche; low water- holding capacity.	Cuts limited by soft caliche at a depth of 10 to 20 inches.	Moderate shrink- swell potential.	High lime content; corrosive.
tability; ng hazard.	Soft caliche at a depth of 2 to 3 feet.	Cuts limited by soft caliche at a depth of 2 to 3 feet.	Moderate shrink- swell potential.	High lime content; corrosive.

.74

······

SOIL SURVEY

TABLE 7.—Engineering interpretations-Continued

		0			LE 7.—Engineerin	interpretations-	Continued			· 1			
Soil series and map symbols		Suitability as a source of		Degree of	limitation for—				Soil featur	es affecting		•	
	Topsoil	Sand	Road fill	Filter fields	Sewage lagoons	Highway location	Dikes and levees	Farm	ponds	Irrigation	Leveling and	Foundations for	Pipelines
Mired alluvial land: MU. Variable; no interpretations.								Reservoir area	Embankment		benching	low buildings	
Mobeetle: MW For Potter part of MW, see Potter series.	tility.	Poor: fine sandy loam material.	Fair (A-4)	- Slight to moderate: slopes are 1 to 10 per- cent.	Severe: moderately rapid permeability; slopes are 1 to 10 per- cent.	Unstable material; slopes are 1 to 10 percent.	Piping hazard; slopes are 1 to 10 percent.	Moderately rapid permeability.	Moderate erosion hazard; perme- ability.	Moderately rapid permeability; slopes are 1 to 10	Moderate erosion hazard; slopes are 1 to 10 percent.	Unstable; low shrink-swell po- tential.	Slopes are 1 to 10 percent.
ajarito Mapped only with Largo soils.	texture.	Fair to poor: loamy fine sand and fine sandy loam material.	Good to fair (A-2 and A-4).	Slight	Severe: moderately rapid permeability.	Loose, drifting sands; erosion hazard.	Unstable; requires soil binders.	Moderately rapid permeability.	Fair stability; moderate perme- ability when	percent. Severe hazard of soil blowing.	Severe hazard of soil blowing.	Low shrink-swell potential.	Ditchbank slough ing.
Palomas Mapped only with Kermit and Maljamar soils.	texture.	Poor: sandy clay loam below a depth of 10 inches.	Good to fair (A-2 and A-4).	Slight to moderate: moderate permea- ability.	Moderate: moderate permeability.	Drifting sand; sand hinders hauling; erosion hazard.	Moderate shrink- swell potential in subsoil.	Moderate seepage	compacted. Slight cracking; erosion hazard.	Severe hazard of soil blowing.	Severe hazard of soil blowing.	Moderate shrink- swell potential below a depth of	Ditchbank slough- ing.
atricia Mapped only with Brownfield soils.	Poor: low fertility; texture.	Poor: sandy clay loam below a depth of 15 inches.	Good (A-2) in upper 16 inches; fair to poor (A-4 or A-6) below a depth of 16 inches; moderate shrink-swell potential.	Slight to moderate: moderate permea- bility.	Moderate: moderate permeability.	Drifting sand; sand hinders hauling; sefere erosion huzard.	Moderate shrink- swell potential in subsoil.	Moderate seepage	Slight cracking; severe erosion hazard.	Severe erosion hazard; rapid water intake.	Severe erosion hazard.	16 inches. Moderate shrink- swell potential below a depth of 16 inches.	Severe erosion hazard; sloughin
layas: Pb. Variable; no interpretations.			Potential										
Portales: Pe, Pf, Ph, PC, PS, PG, Po For Stegall part of PS, see Stegall series. For Gomez part of PG, see Gomez series.	Fair: high lime con- tent.	Unsuitable: mainly fine-grained material.	Poor (A-6): moderate shrink-swell potential.	Slight to moderate: moderate permea- bility.	Moderate: moderate permeability.	Moderate (A-6) shrink-swell po- tential.	Moderate shrink- swell potential.	Chalky loam at a depth of 20 to 36 inches; moderate seepage.	Unstable; difficult to compact.	High water-holding capacity; high lime content.	Cuts limited by moderate depth to chalky loam subsoil.	Moderate shrink- swell potential.	High lime content moderately cor- rosive.
Mapped only with Mobeetle soils.	Poor: low fertility; gravelly.	Unsuitable: limited material.	Good	Severe: fragmented platy caliche at a depth of 6 to 12 inches.	Severe: platy caliche at a depth of 6 to 12 inches.	Platy caliche at a depth of 6 to 12 inches.	Platy caliche at a depth of 6 to 12 inches.	Platy caliche at a depth of 6 to 12 inches; slopes are 5 to 15 percent.	Platy caliche at a depth of 6 to 12 inches.	Platy callche at a depth of 6 to 12 inches; slopes are 5 to 15 percent.	Platy caliche at a depth of 6 to 12 inches; slopes are 5 to 15 percent	Platy caliche at a depth of 6 to 12 inches; low shrink-swell po- tential	Platy caliche at a depth of 6 to 12 inches.
For Maljamar part of PU, see Maljamar series. For Dune land part of PY, see Active dune land.	texture.	Fair to poor: fine sand and fine sandy loam.	Good (A-2) if soil bind- er is added; fair (A-4) below a depth of 30 inches.	Slight	Severe: moderately rapid permeability.	Severe erosion hazard; loose, drifting sands.	Unstable; soil binders needed.	Moderately rapid permeability.	Fair stability; moderate perme- ability when compacted.	Severe hazard of soil blowing; moderately rapid permeability.	Severe hazard of soil blowing.	Low shrink-swell potential.	Severe erosion hazard; ditchba sloughing.
For Cottonwood part of RT, see Cotton- wood series.	Poor: low fertility; saline.	Unsuitable: fine- grained material.	Fair to poor (A-4 and A-6): unstable.	Severe: gypsum at a depth of 1½ to 2½ feet; danger of pollu- tion.	Severe: moderate permeability; gypsum at a depth of 1½ to 2½ feet.	G rpsiferous ma- terials at a depth of 1½ to 2½ feet; moderate shrink- swell potential.	Gypsum at a depth of 1½ to 2½ feet; unstable.	Gypsum at a depth of 1½ to 2½ feet.	Gypsum at a depth of 1½ to 2½ feet.	Low productivity;	Cuts limited by gypsum at a depth of 1½ to 2½ feet.	Moderate shrink- swell potential; gypsum at a depth of 1½ to	Corrosive; gypsur at a depth of 1½ to 2½ feet.
	Poor: 1 to 2 feet to indurated caliche.	Unsuitable: limited material; some fine- grained material.	Fair to poor (A-4 and A-6): moderate shrink-swell potential in subsoil; shallow.	Severe: indurated caliche at a depth of 1 to 2 feet.	Severe: indurated caliche at a depth of 1 to 2 feet.	Indurated callche at a depth of 1 to 2 feet; drifting sand.	Indurated caliche at a depth of 1 to 2 feet.	Indurated caliche at a depth of 1 to 2 feet.	Indurated caliche at a depth of 1 to 2 feet.	Indurated caliche at a depth of 1 to 2 feet; low pro- ductivity; erosion	Cuts limited by indurated caliche at a depth of 1 to 2 feet.	2½ feet. Moderate shrink- swell potential; erosion hazard.	Indurated caliche at a depth of 1 t 2 feet.
mona: Sm, SE, SR, Sn For Upton part of SR, see Upton series.	Poor: fertility is low; shallow over indu- rated caliche.	Poor: limited fine sandy loam material.	Good to fair (A-2 or A-4) to a depth of 20 inches.	Severe: indurated caliche at a depth of 1 to 11/2 feet.	Severe: shallow over Indurated caliche.	Indurated caliche at a depth of 1 to 1½ feet; erosion hazard.	Indurated caliche at a depth of 1 to 1½ feet.	Indurated caliche at a depth of 1 to 1½ feet.	Indurated caliche at a depth of 1 to 1½ feet.	hazard Shallow; low water- holding capacity; erosion hazard.	Cuts limited by indurated caliche	Indurated caliche at a depth of 1 to 1½ feet; erosion hazard.	Shallow over in- durated caliche

LEA COUNTY, NEW MEXICO

APPENDIX B

_

~

· -• •

Test	Procedure	Reference
Standard Soil Test		
Organic Matter	Walkley - Black	6
pH	Saturated Paste	2
Salts	Solution conductivity	2
Phosphorus	Olsen	3 & 7
ESP	SAR Estimation	2
Texture	By Feel	10
Potassium (K)	ICP, 1:5 H20 Extract	
Nitrate - Nitrogen (NO3)	Cadmium Reduction Column	3 & 4
Fertitility Tests		
Phosphorus	Olsen	3 & 7
Nitrate	Cd reduction, 1:5 H2O Extract	4
Potassium	1:5 NH4OAc Extract	3
Nitrogen	Kjeldahl	5
Fe, Zn, Cu, and Mn	DPTA Extract	3
Organic Matter	Walkley - Black	5
Boron	Hot Water Soluble	5
Soil Characterization Tests		
pH	Choice of Procedure	8
E.C. of saturated extract	Solution conductivity	2
% H2O at saturation	Drying at 110 +/- 5 degrees C	12
CaCO3 (equivalent)	Rapid titration	5
Gypsum	Acetone Precipitation	8
Mechanical Analysis	Hydrometer	8
Mechanical Analysis	Pipet	8
Extractable Cations	NH4OAc at pH 7 or 9	8
Exchangeable Cations	NH4OAc extractable minus soluble	8
Cation Exchange Capacity	Na saturated then NH4OAc extracted	5
Extractable Hydrogen	BaCl2 - TEA Extraction	8
Extractable NH4	2N KCl (colorimetric)	5
Soluble ions from saturated pa	ste extract	······································
Saturated Paste	Deionized H2O	2
Soluble cations	ICP-ES	4
Chloride	Colorimetric	4

l

Titration	4
Turbidimetric	4
Colorimetric	4
ICP	4
ICP	4
Stainless Steel Grinders	
NaHCO3 extract	11
Hot Water reflux	5
EPA method 3015	9
	Turbidimetric Colorimetric ICP ICP Stainless Steel Grinders NaHCO3 extract Hot Water reflux

References:

- 1. Chicek, L. J. 1983. Interpreting Soil Analysis. New Mexico State University CES Guide A-126.
- 2. Diagnosis and Improvement of Saline and Alkaline Soils. February 1954. Ed. L.A. Richards. USDA Handbook 60.
- 3. **Guide to Fertilizer Recommendations in Colorado.** 1974. Albert E. Ludwick and John O. Reuss. Department of Agronomy, CSU, Fort Collins, Colorado. (And personal communications with Albert E. Ludwick).
- 4. Methods for Chemical Analysis of Water and Wastes. 1979. EPA 200.7, National Environmental Research Center, Cincinnati, Ohio.
- 5. Methods of Soil Analysis Part 2 Chemical and Micobiological Properties. 1965. Ed., C.A. Black, ASA Monograph 9, Madison Wis.
- 6. Methods of Soil Analysis Part 2 Chemical and Micobiological Properties,2nd Ed. 1982. A.L. Page, ASA Monograph 9, Madison Wis.
- 7. Olsen, Sterling R., C. V. Cole, Frank S. Watanabe, and L. A. Dean. March 1954. Estimation of Available Phosphorus in Soils by Extraction With Sodium Bicarbonate, Circular No. 939, USDA, Washington D. C.
- 8. Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples. 1972. SCS, USDA.
- 9. Test Methods for Evaluating Solid Waste, Vol 1B: Laboratory Manual, Physical/Chemical Methods. September 1986. EPA SW846, 3rd Ed.
- 10. **Thein, S. J.** 1979. A Flow Diagram for Teaching Texture-by-feel Analysis, J. Agron. Education. 8: 54-55.
- Wollson, E. A., J. H. Axley, and P. C. Kearney. 1971. Correlation Between Available Soil Arsenic, Extimated by Six Methods, and Response of Corn (Zea mays L.), SSSA Proc. 35: 101-105.
- 12. Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock, D2216-92. 1996. Annual Book of ASTM Standards 4.08: 185-188.

APPENDIX C

(<u>HOME-TOP</u>)(<u>MODELS-TOP</u>)<u>CFITM</u><u>CFITIM</u><u>CHAIN</u><u>CHAIN</u><u>2D</u><u>CXTFIT</u><u>3DADE</u><u>DISC</u> <u>ESAP-95</u><u>GEOPACK</u><u>HYDRUS</u><u>HYDRUS-1D</u><u>HYDRUS-2D</u><u>N3DADE</u><u>RETC</u><u>ROSETTA</u><u>SALT</u> <u>SOILC02</u><u>SWMS-2D</u><u>SWMS-3D</u><u>TETRANS</u><u>UNSATCHEM-2D</u><u>UNSATCHEM</u><u>UNSODA</u><u>WATSUIT</u>

ටහ

HYDRUS-1D for Windows October 1998 Version: 2.0 The **Demo** Version of the Program; and Examples and Manual, can be Downloaded from our FTP site, using our <u>GEBJSL FTP Access</u> <u>Click Here!</u>

"<u>Tutorial for HYDRUS-1D</u> "

A MS Windows Program for Simulating Water Flow and Solute Transport in One-Dimensional Variably Saturated Media with full-color, high-resolution Graphics User Interface Authors:

J. Simunek, K. Huang, <u>M. Sejna</u>, and <u>M.Th. van Genuchten</u> U.S. Salinity Laboratory, USDA/ARS, Riverside, California

HYDRUS-1D is a Microsoft Windows based modeling environment for analysis of water flow and solute transport in variably saturated porous media.

The software package includes the one-dimensional finite element model HYDRUS (version 7.0) for simulating the movement of water, heat, and multiple solutes in variably saturated media.

The model is supported by an interactive graphics-based interface for datapreprocessing, discretization of the soil profile, and graphic presentation of the results.

 ► HYDRUS 1D STDRAINAG Boject Main Inf. Parameters ■ ■ ※ ※ T 		
Position Manager		×
D:\HYDRUS1	Current position: 1DR	AINAG
Name	Description	Date
1DRAINAG	Drainage in a large caisson	14.11.97
1INFILTR	Infiltration in a large caisson	14.11.97
1SCALING 2HYSTER	Infiltration in a large caisson Transient flow involving hysteresis	14.11.97
2NOHYSTR	Transient flow not involving hysteresis	14.11.97
3LAIJURI	Solute transport with nonlinear cation adsorption - Lai - J	14.11.97
3SELIM	Solute transport with nonlinear cation adsorption - Selim	14.11.97
4HEAT	Heat transport under fluctuating atmospheric condition	14.11.97
5SEASON ANNETTE	Water flow in a field soil profile under grass	14.11.97
CRAIG	Landfill Analysis Column Experiment from van Genuchten and Parker, 198	
CRUST	Infiltration into a crusted soil - SAHEL	14.11.97
EVAPOR	Evaporation Experiment - data from Ole Wendroth	14.11.97
FITHYST	Text Example with Hysteresis Fitting	14.11.97
FITTEST2	Water flow in a field soil profile under grass	14.11.97

	New Delete		aname OK	Cancel	Heip I
<u>991 - 1193 - 1293 - 1294 - 12</u>					nako kalenda anta kalenda anta kalenda
For Help, press l	1	19. J.	a in franciscus and an announce a star an	ann an Chairtean an gann. Tairtean an tairtean an tair	

HYDRUS Model (version 7.0)

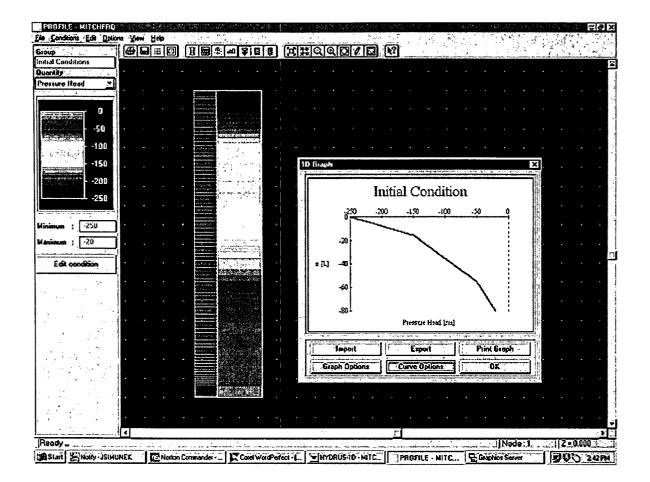
The 'HYDRUS' program is a finite element model for simulating the **one-dimensional** movement of water, heat, and multiple solutes in variably saturated media. The program numerically solves the Richards' equation for saturated-unsaturated water flow and Fickian-based advection dispersion equations for heat and solute transport.

The Flow equation incorporates a sink term to account for water uptake by plant roots.

The Heat transport equation considers conduction as well as convection with flowing water.

The **Solute** transport equations consider advective-dispersive transport in the liquid phase, and diffusion in the gaseous phase.

The transport equations also include provisions for:

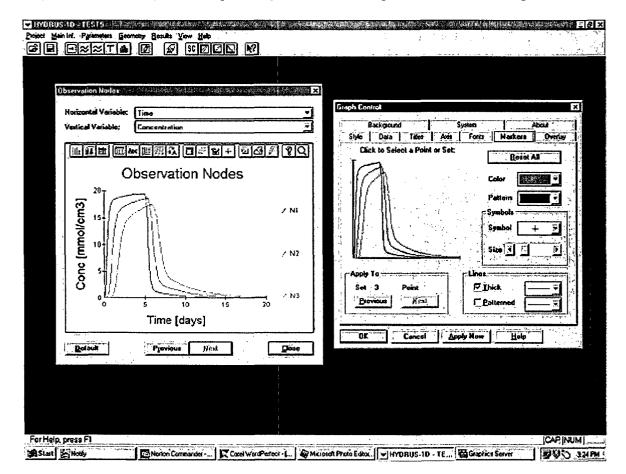

- Nonlinear and/or Nonequilibrium reactions between the solid and liquid phases,
- Linear equilibrium reactions between the liquid and gaseous phases,
- Zero order production, and
- Two First order degradation reactions:
 - One which is independent of other solutes, and
 - One which provides the coupling between solutes involved in sequential firstorder decay reactions.

The program may be used to analyze water and solute movement in unsaturated, partially saturated, or fully saturated porous media.

The flow region itself may be composed of nonuniform soils. Flow and transport can occur in the vertical, horizontal, or a generally inclined direction. The water flow part of the model can deal with (constant or time-varying) prescribed head and flux boundaries, boundaries controlled by atmospheric conditions, as well as free drainage boundary conditions. Soil surface boundary conditions may change during the simulation from prescribed flux to prescribed head type conditions (and viceversa).

For solute transport the code supports both (constant and varying) prescribed concentration (Dirichlet or first-type) and concentration flux (Cauchy or third-type) boundary conditions. The dispersion coefficient includes terms reflecting the effects of molecular diffusion and tortuosity.

HYDRUS-1D for Windows Version 2 November 1998



The Unsaturated Soil Hydraulic Properties are described using van Genuchten [1980], Brooks and Correy [1964] and modified van Genuchten type analytical functions. Modifications were made to improve the description of hydraulic properties near saturation. The HYDRUS code incorporates hysteresis by using the empirical model introduced by Scott et al. [1983] and Kool and Parker [1987]. This model assumes that drying scanning curves are scaled from the main drying curve, and wetting scanning curves from the main wetting curve.

HYDRUS also implements a **scaling** procedure to approximate hydraulic variability in a given soil profile by means of a set of linear scaling transformations which relate the individual soil hydraulic characteristics to those of a reference soil.

Root growth is simulated by means of a logistic growth function. Water and salinity stress response functions can be defined according to functions proposed by Feddes et al. [1978] or van Genuchten [1987].

The governing flow and transport equations are solved **numerically** using Galerkin type linear finite element schemes. Integration in time is achieved using an implicit (backwards) finite difference scheme for both saturated and unsaturated conditions. Additional measures are taken to improve solution efficiency for transient problems, including automatic time step adjustment and adherence to preset ranges of the Courant and Peclet numbers. The water content term is evaluated using the mass conservative method proposed by Celia et al. [1990]. Possible options for minimizing numerical oscillations in the transport solutions include upstream weighing, artificial dispersion, and/or performance indexing. **HYDRUS** implements a Marquardt-Levenberg type parameter estimation technique for inverse estimation of selected soil hydraulic and/or solute transport and reaction parameters from measured transient or steady-state flow and/or transport data. The procedure permits several unknown parameters to be estimated from observed water contents, pressure heads, concentrations, and/or instantaneous or cumulative boundary fluxes (e.g., infiltration or outflow data). Additional retention or hydraulic conductivity data, as well as a penalty function for constraining the optimized parameters to remain in some feasible region (Bayesian estimation), can be optionally included in the parameter estimation procedure.

User Interface

A Microsoft Windows based Graphics User Interface (GUI) manages the input data required to run HYDRUS, as well as for nodal discretization and editing, parameter allocation, problem execution, and visualization of results.

All spatially distributed parameters, such as soil type/layer, root water uptake distribution, and the initial conditions for water, heat and solute movement, are specified in a graphical environment.

The location of discretization nodes can be graphically edited by a user to optimize the thickness of different elements.

Page 5 of 6

The program includes controls to allow a user to build an application specific flow and transport model, and to perform graphical analyses on the fly.

Both input and output can be examined using graphical tools.

The HYDRUS-1D shell program translates all geometric and parameter data into the HYDRUS input format.

File management is handled by a sophisticated project manager.

Post-Processing

Post-processing is also carried out in the shell.

HYDRUS-1D offers graphs of the distribution of the pressure head, water content, water and solute fluxes, root water uptake, temperature and the concentration in the soil profile at preselected times.

Output also includes variable-versus-time plots, such as actual, potential and cumulative fluxes across boundaries or leaving the root zone.

Observation points can be added anywhere in the profile to obtain graphical output for the water content, pressure head, temperature, and/or the concentration.

Peripheral devices supported include most popular types of printers and plotters.

A small catalog of soil hydraulic properties is included in the program.

Extensive context-sensitive, online Help is part of the interface.

Test Examples distributed with the model:

Direct:

- 1. Water Flow and Solute Transport in a field soil profile under grass Seasonal simulation
- 2. Infiltration and Drainage in a large caisson
- 3. Transient Flow involving hysteresis
- 4. Skaggs' Column Infiltration Test
- 5. Solute Transport with nonlinear cation adsorption Data from Lai and Jurinak
- 6. Solute Transport with nonlinear cation adsorption Data from Selim
- 7. Solute Transport with nitrification chain
- 8. Solute Transport with non-equilibrium cation adsorption
- 9. Heat Transport under fluctuating atmospheric condition

Inverse:

HYDRUS-1D for Windows Version 2 November 1998

- 1. One-step outflow experiment Data from Kool et al. (1987)
- 2. Multistep Outflow Experiment Data from Jan Hopmans
- 3. Evaporation Experiment Data from Ole Wendroth
- 4. Upward Infiltration
- 5. Transient Flow involving hysteresis
- 6. Solute Transport with nonlinear cation adsorption Data from Lai and Jurinak
- 7. Solute Transport with nonlinear cation adsorption Data from Selim
- 8. Solute Transport with nitrification chain
- 9. Horizontal infiltration Data from George Vachaud
- 10. Horizontal infiltration and redistribution Data from George Vachaud
- 11. Drainage in a sand column Data from George Vachaud
- 12. Water Flow in a field soil profile under grass Seasonal simulation

SYSTEM REQUIREMENTS

Intel 80386 with math coprocessor, Intel 80486DX, or higher processor, 4 Mb RAM, DOS 5.0 or higher, hard disk with at least 10 Mb free disk space, VGA graphics (SVGA with 256 colors recommended), MS Windows 95, 98, or Windows NT.

Ordering Information

The **HYDRUS-1D** software package is distributed by the International Groundwater Modeling Center. <u>IGWMC</u> also prints the manual and provides help with its installation and use. *Below* is the reference of the manual and the <u>IGWMC</u> contact address where you can get more information, and where you can order the software.

Dr. Eileen Poeter Professor of Groundwater Engineering Department of Groundwater Engineering Co-director of International Ground Water Modeling Center Colorado School of Mines Golden, Colorado, 80401-1887 Phone: (303) 273-3103 Fax.: (303) 384-2037 Email: <u>IGWMC@mines.edu</u> <u>http://magma.Mines.EDU/igwmc/software/igwmcsoft/</u>

Return to <u>GEBJSL (USSL) Models Menu</u> Return to <u>GEBJSL (USSL) Programs</u> Return to <u>GEBJSL (USSL) HomePage</u>

f4mdl_set2000 nod hydrus-2d1 000531a meliath iclia

Get Acrobat* T Reader Reader R

To view "pdf" files *requires* that you have <u>Adobe Acrobat</u> <u>Reader</u>© installed on your PC or Macintosh.

f4mdl set2k 001206 nod ipowerof1 iclia mcliath

APPENDIX D

	APR 17 '01 10:57	TO-RTHICKS	FROM-ASS	AIGAI LAB	C	T-65	54 P. 02	F-075	5
	ANA AAA LAB			(고) lexico 87109 • (5	605) 345-8964				1
	3332 W	/edgewood D	r., Suite N • El Paso, Té	exas 79925 • (915	5) 593-6000 •	FAX (915) 593-782	0	
	127 Eo	stgate Drive, 2	212-C · Los Alamos, N	lew Mexico 87544	• (505) 662-	255 Expla	anation of	fcode	5
					8	analyte	delected in	Method	Biank
			n.		E		result is es		
	RT HICKS CON attn: MICHELLE				H		alyzed out o		
	4865 INDIAN 3				N	tentat	ively identifi		ound
	ALBUQUERQU				1.9	· · · · · · · · · · · · · · · · · · ·	subcontra see foot		
							<u> </u>		<u></u>
				lical Laboratories, Inc of Analys	_				
				-					
lient:	RT HICKS CO	NSULTING, LI	TD		PREL	PRINARY	REPORT		
Client: Project:		NSULTING, LI RICE	то	William P.	PREL		÷		
		•	то	Wißer P.			÷		
			TO	William P. Sample SO Matrix SO	Blava: President of Asi		Laboratorius, In		03/28/0 15:00:0
Project:	0104013 F		TD Analyte	Sample SO	Blava: President of Asi		Laboratorius, In	c. ample cliected	
lient ample ID	0104013 F <i>PIT#1 0-0.2</i> p Run Sequence	S' -		Sample Matrix SO	Blava: President of As IL	saigei Anelytool Dilution	Laboratorius, In Si Ci Detection	c. ample oliected	15:00:(Run
roject: iient ample ID C Grouj 104013-1	0104013 F <i>PIT#1 0-0.2</i> p Run Sequence	CAS #		Sample Matrix SO	Blava: President of As IL	saigei Anelytool Dilution	Laboratorius, In Si Ci Detection	c. ample oliected	15:00:
roject: ient ample ID C Group 104013-0 01115	0104013 F <i>PIT#1 0-0.2</i> P Run Sequence 01A MW.2001.533-3	CAS # EPA 300.0 15887-00-5	Analyte Chloride	Sampie Matrix SO Result	Blava: President of Ass II. Units	Dilution Factor	Leboratories, In Si Co Detection Limit	c. ample oliected	15:00: Run Date
roject: ient ample ID C Group 104013-1 01115	0104013 F <i>PIT#1 0-0.2</i> P Run Sequence 01A MW.2001.533-3	CAS # EPA 300.0	Analyte Chloride	Sample Matrix SO Result 1990	Biava: President of As //L_ Units mg / Kg	Dilution Factor	Leboratorios, In Si C Detection Limit	c. ample oliected	15:00: Run Date 04/12/01
roject: ient ample ID C Group 104013-1 101115 104013-1 01370	0104013 F <i>PIT#1 0-0.2</i> p Run Sequence 01A MW.2001.533-3 01A	CAS # EPA 300.0 [16887-00-6] SW846 3050A/6	Analyte Chloride	Sampie Matrix SO Result	Blava: President of Ass II. Units	Dilution Factor	Leboratories, In Si Co Detection Limit	c. ample oliected	15:00: Run Date
roject: ample ID C Group 104013-1 01115 104013-1 01370 01370	0104013 F <i>PIT#1 0-0.2</i> P Run Sequence 01A MW.2001.533-3 01A MW.2001.512-20	CAS # EPA 300.0 15887-00-6 SW846 3050A/6 7410-70-2	Analyte Chloride 3010A ICP Calcium	Sample Matrix SO Result 1990 2450	Biava: President of Ass //L_ Units 	Dilution Factor	Leboratories, In Si Cr Detection Limit 0.05	c. ample oliected	75:00: Run Date 04/12/01 04/12/01 04/12/01
roject: ample ID C Group 104013-0 101115 104013-0 01370 01370 01370 01370 01370	0104013 F <i>PIT#1 0-0.2</i> P Run Sequence 01A MW.2001.533-3 01A MW.2001.512-20 MW.2001.512-20	CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2 7440-47-3 7439-88-6 7439-85-4	Analyte Chloride 3010A ICP Calcium Chromium	Sample Matrix SO Result 1990 2450 15.9	Bisva: President of Ass IL. Units mg / Kg mg / Kg mg / Kg	Dilution Factor	Leboratories, In Si Cr Detection Limit 0.05	c. ample oliected	15:00: Run Date 04/12/01 04/12/01 04/12/01 04/12/01
liroject: ample ID C Group 104013-0 101115 104013-0 01370 01370 01370 01370 01370 01370 01370 01370	0104013 F PIT#1 0-0.28 P Run Sequence 01A MW.2001.512-20 MW.2001.612-20 MW.2001.612-20 MW.2001.612-20 MW.2001.512-20 MW.2001.512-20	CAS # EPA 300.0 16887-00-6 38W846 3050A/6 7440-70-2 7440-47-3 7439-89-6 7439-95-4 7439-95-4 7440-09-7	Analyte Chloride 3010A ICP Calcium Chromium	Sample Matrix SO Result 1990 2450 15.9 10700	Biava: President of As IL- Units mg / Kg mg / Kg mg / Kg mg / Kg	Dilution Factor	Leboratorids, In Si Cr Detection Limit 0.05	c. ample oliected	15:00: Run Date 04/12/01 04/12/01 04/12/01 04/12/01
roject: ienr imple ID C Group 104013-0 01115 104013-0 01370 01370 01370 01370 01370	0104013 F PIT#1 0-0.28 P Run Sequence 01A MW.2001.533-3 01A MW.2001.512-20 MW.2001.612-20 MW.2001.612-20 MW.2001.512-20	CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2 7440-47-3 7439-88-6 7439-85-4	Analyte Chloride Chloride Chloride Chloride Chromium Iron Magnesium	Sample Matrix SO Result 1990 2450 15.9 10700 2620	Biava: President of As Units mg / Kg mg / Kg mg / Kg mg / Kg	Dilution Factor	Leboratorids, In Si Detection Limit 0.05	c. ample oliected	15:00: Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01
ient ample ID C Group ID4013-1 01115 I04013-1 01370 01370 01370 01370 01370 01370	0104013 F PIT#1 0-0.25 P Run Sequence 01A MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20	CAS # EPA 300.0 15887-00-6 38W846 3050A/6 7440-70-2 7440-47-3 7439-85-4 7439-85-4 7440-09-7 7440-23-6	Analyte Chloride 3010A ICP Catcium Chromium Iron Magnesium Potassium Sodium	Sample Matrix SO Result 1990 2450 15.9 10700 2620 3410	Biava: President of As Units mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg	Dilution Factor	Leboratories, In Si Cr Detection Limit 0.05 15 1 15 10 10	c. ample oliected	15:00: Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01
ient imple ID C Group 04013-1 01115 04013-1 01370 01370 01370 01370 01370 01370	0104013 F PIT#1 0-0.25 P Run Sequence 01A MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20	CAS # EPA 300.0 16887-00-6 38W846 3050A/6 7440-70-2 7440-47-3 7439-85-6 7439-85-4 7439-85-4 7440-09-7 7440-09-7 7440-23-6 SW846 6260A P	Analyte Chloride 3010A ICP Calcium Chromium Iron Magnesium Potassium Sodium	Sample Matrix SO Result 1990 2450 15.9 10700 2520 3410 4240	Biava: President of As Units mg / Kg mg / Kg	Dilution Factor	Leboratorics, In Si Cr Detection Limit 0.05 15 10 10 10 15	c. ample oliected Code	15:00: Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01
roject: ient ample ID C Group 104013-1 01370 01370 01370 01370 01370 01370 01370 01370 01370 01370 01370 01370	0104013 F PIT#1 0-0.25 P Run Sequence 01A MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20	CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2 7440-47-3 7439-89-6 7439-89-6 7439-89-6 7439-89-4 7440-09-7 7440-09-7 7440-23-6 SW846 6280A F 71-43-2	Analyte Chloride 3010A ICP Calcium Chromium Iron Magnesium Potassium Sodium Purgeable VOCe by GC/MS Benzene	Sample Matrix SO Result 1990 2450 15.9 10700 2620 3410 4240 ND	Biava: President of As IL. Units mg / Kg mg / Kg	Dilution Factor	Leboratorids, In Si C Detection Limit 0.05 15 1 10 10 10 13 0.005	c. ample oliected Code	15:00: Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01
roject: ient ample ID C Group 104013-1 01115 104013-1 01370 0137	0104013 F PIT#1 0-0.25 P Run Sequence 01A MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20	CAS # EPA 300.0 16887-00-6 38W846 3050A/6 7440-70-2 7440-47-3 7439-85-6 7439-85-4 7439-85-4 7440-09-7 7440-09-7 7440-23-6 SW846 6260A P	Analyte Chloride Bottok ICP Calcium Chromium Iron Magnesium Potassium Sodium Purgeable VOCe by GC/MS Benzene Ethylbenzene	Sample Matrix SO Result 1990 2450 15.9 10700 2620 3410 4240 ND ND	Biava: President of As Units mg / Kg mg / Kg	Dilution Factor	Leboratorids, In Si C Detection Limit 0.05 15 10 10 10 13 0.005 0.005	c. ample cilected Code	15:00: Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01
roject: ient ample ID C Group 104013-1 01370 01305 0105 0105 0105 0105 0105 0105 0105 0105 0105 0105 0105 0105 0105	0104013 F PIT#1 0-0.25 P Run Sequence 01A MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20 MW.2001.512-20	CAS # EPA 300.0 15887-00-6 SW846 3050A/6 7440-70-2 7440-47-3 7439-89-6 7439-85-4 7439-85-4 7439-85-4 7440-09-7 7440-23-6 SW846 8280A P 71-43-2 100-41-4	Analyte Chloride Bottok ICP Calcium Chromium Iron Magnasium Potassium Sodium Purgeable VOCs by GC/MS Benzene Ethylbenzene Naphthalene	Sample Matrix SO Result 1990 2450 15.9 10700 2620 3410 4240 ND ND ND	Biava: President of As Units II. Units mg / Kg mg / Kg	Dilution Factor	Laboratorids, In Si C Detection Limit 0.05 15 1 10 10 10 10 10 15 0.005 0.005 0.025		15:00: Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01
liroject: hient ample ID C Group 104013-1 01370 01105 0100 01105 0105 0105 0105 0105 0105 0105 0105 0105 0105 0105 0105 0105 0105 0105 0105 0105 0105 0	0104013 F PIT#1 0-0.25 P Run Sequence 01A MW.2001.512-20	CAS # EPA 300.0 15887-00-5 SW846 3050A/6 7440-70-2 7440-47-3 7439-88-6 7439-85-4 7439-85-4 7439-85-4 7440-09-7 7440-23-5 SW846 6280A P 71-43-2 100-41-4 91-20-3 95-47-6 108-38-	Analyte Chloride Bottok ICP Calcium Chromium Iron Magnesium Potassium Sodium Purgeable VOCe by GC/MS Benzene Ethylbenzene	Sample Matrix SO Result 1990 2450 15.9 10700 2620 3410 4240 ND ND	Biava: President of As Units mg / Kg mg / Kg	Dilution Factor	Leboratorids, In Si C Detection Limit 0.05 15 10 10 10 13 0.005 0.005	c. ample cilected Code	15:00: Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01
Project:	0104013 F PIT#1 0-0.25 P Run Sequence 01A MW.2001.512-20 MW.2001.384-8 XG.2001.384-8	CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2 7440-47-3 7439-89-6 7439-89-6 7439-89-4 7440-09-7 7440-23-6 SW846 6260A P 71-43-2 100-41-4 91-20-3 95-47-6	Analyte Chloride Chloride Colourn Chromium Iron Magnasium Potassium Sodium Purgeable VOCs by GC/MS Benzene Ethylbenzene Naphthalene o-Xylene	Sample Matrix SO Result 1990 2450 15.9 10700 2620 3410 4240 ND ND ND ND ND	Biava: President of As Units mg / Kg mg / Kg	Dilution Factor	Leboratorids, In Sc Detection Limit 0.05 15 1 15 10 10 10 10 10 13 0.005 0.005 0.025 0.005	Code	15:00:0 Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/03/01 04/03/01 04/03/01 04/03/01

- ---

Page 1 of 8

1

.(

Client Reports

2.0

Report Date 4/17/2001 11:55:09 AM

Member: American Council of Independent Laboratories, Inc. REPRODUCTION OF THIS REPORT IN LESS THAN FULL REQUIRES THE WRITTEN CONSENT OF AAL. THIS REPORT MAY NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIKD PARTY TO CLAIM PRODUCT ENDORSEMENT BY ANY ACCREDITATION PROGRAM.

.

l

Assaigai Analytical Laboratories, Inc. Certificate of Analysis

Client: RT HICKS CONSULTING, LTD

Project: 0104013

 $\frac{1}{2}$

, e

CE

Clien) Sample ID	PIT#1 0.5-1.	0'		Sample SOI Matrix	L			imple pilected	03/28/ 15:00:
2C Group	Run Sequence	CAS #	Analyte	Result	Units	Dilution Factor	Detection Limit	Code	Run Date
104013-0	2 A	EPA 300.0							
/01115	MW.2001.533-4	16887-00-6	Chioride	1870	mg / Kg	100	0.05		04/12/01
104013-0	74	SW846 3050A/6							
101370	MW.2001.512-21	7440-70-2	Calcium	2510	mg / Kg	1	15	T7	04/12/01
01370	MW.2001.512-21	7440-47-3	Chromium	15.9	mg / Kg	• • •	1 1		04/12/01
01370	MW.2001.512-21	7439-89-6	Iron	10900	mg / Kg	1	15	†i	04/12/01
01370	MW.2001.512-21	7439-95-4	Magnesium	2820	mg / Kg	1	10	+	04/12/0
01370	MW.2001.512-21	7440-09-7	Potassium	3300	mg / Kg	··· •	10		04/12/0
01370	MW.2001.512-21	7440-23-5	Sodium	3530	mg / Kg	1	15	t1	04/12/01
				,	1	L		<u> </u>	
104013-0	2A	SW846 8260A P	urgeable VOCs by GC/MS						
01105	XG.2001.384-7	71-43-2	Benzene	ND	mg / Kg	1	0.005	1	04/03/01
01105	XG.2001.384-7	100-41-4	Ethylbenzene	ND	mg / Kg	1	0.005	1	04/03/0
01105	XG.2001.384-7	91-20-3	Naphthalene	ND	mg / Kg	1	0.025	1	04/03/0
01105	XG.2001.384-7	95-47-8	o-Xylene	ND	mg / Kg	1	0.005	1	04/03/0
									
01105	XG.2001.384-7	108-38-	p/m Xylenes	ND	mg / Kg	1	0.01	1	04/03/0
	XG.2001.384-7 XG.2001.384-7	108-38- 3/108-42 108-88-3	p/m Xylenes Toluene	ND ND	mg / Kg	<u>1</u> <u>1</u>	0.01		
(01105 (01105 Client Gample ID		3/106-42 108-88-3		· · · · · · · · · · · · · · · · · · ·	mg / Kg	r **	0.005	ن <u>ــــــــــــــــــــــــــــــــــــ</u>	
(01105 Client	XG.2001.384-7	3/106-42 108-88-3		Sample SO	mg / Kg	r **	0.005	ample piliected	
01105 Ilient ample ID	XG.2001.384-7 PIT#1 3.5-4.	3/106-42 108-88-3		Sample SO	mg / Kg	1	0.005	ample piliected	04/03/01 03/28 15:00:
lient	XG.2001.384-7 PIT#1 3.5-4. Run Sequence	3/106-42 108-88-3 5'	Toluene	ND Sampia Matrix SO	mg / Kg	1 Dilution	0.005 Sa Ca Detection	1 ample alliected	04/03/01 03/28 15:00: Run
01105 liient emple ID QC Group 104013-0	XG.2001.384-7 PIT#1 3.5-4. Run Sequence	3/106-42 108-88-3 5' CAS #	Toluene	ND Sampia Matrix SO	mg / Kg	1 Dilution	0.005 Sa Ca Detection	1 ample alliected	04/03/01 03/28 15:00: Run
billaS lient ample ID IC Group 104013-0 (01115	XG.2001.384-7 PIT#1 3.5-4. Run Sequence ISA MW.2001.533-5	3/106-42 108-88-3 5' CAS # EPA 300.0 16887-00-6	Toluene Analyte Chloride	Sampia Matrix SO Result	i mg / Kg	Dilution Factor	0.005 Sa Co Detection Limit	1 ample alliected	03/03/01 03/28 15:00 Run Date
01105 liient ample ID DC Group 104013-0 V01115	XG.2001.384-7 PIT#1 3.5-4. Run Sequence 3A MW.2001.533-5	3/106-42 108-88-3 5' CAS # EPA 300.0 16887-00-6 SW846 3050A/6	Toluene Analyte Chloride	Sampla Matrix Result 956	Units	Dilution Factor	0.005	1 ample alliected	04/03/01 03/28 15:00 Run Date 04/12/01
01105 lient ample ID IC Group 104013-0 /01115 104013-0	XG.2001.384-7 PIT#1 3.5-4. Run Sequence 3A MW.2001.533-5 3A MW.2001.512-22	3/106-42 108-88-3 5' CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2	Toluene Analyte Chloride 010A ICP Calcium	ND Sample Matrix SO Result 956	Units mg / Kg	Dilution Factor	0.005	1 ample alliected	04/03/0 03/26 15:00 Run Date 04/12/0
01105 lient ample ID IC Group 104013-C K01115 104013-C K0137D	XG.2001.384-7 PIT#1 3.5-4. Run Sequence 3A MW.2001.533-5 3A MW.2001.512-22 MW.2001.512-22	3/106-42 108-88-3 5' CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2 7440-47-3	Toluene Analyte Chloride 010A ICP Catcium Chromium	ND Sample Matrix SO Result 956 10500 16.9	mg / Kg L mg / Kg mg / Kg mg / Kg	1 Dilution Factor 100	0.005	1 ample alliected	04/03/0 03/26 15:00 Run Date 04/12/0 04/12/0
01105 lient ample ID C Group 104013-C (01115 104013-C (01370 (01370 (01370	XG.2001.384-7 PIT#1 3.5-4. Run Sequence 3A MW.2001.533-5 3A MW.2001.512-22 MW.2001.512-22 MW.2001.512-22	3/106-42 108-88-3 5' CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2 7440-47-3 7439-89-6	Toluene Analyte Chloride 010A ICP Catcium Chromium Iron	ND Sample Matrix SO/ Result 956 10500 16.9 11500 11500	mg / Kg /L mg / Kg mg / Kg mg / Kg mg / Kg	1 Dilution Factor 100	0.005	1 ample alliected	04/03/0 03/26 15:00 Run Date 04/12/0 04/12/0 04/12/0 04/12/0
01105 lient ample ID IC Group 104013-0 /01115 104013-0 /01370 I01370 I01370	XG.2001.384-7 PIT#1 3.5-4. Run Sequence 3A MW.2001.533-5 3A MW.2001.512-22 MW.2001.512-22 MW.2001.512-22 MW.2001.612-22 MW.2001.612-22	3/106-42 108-88-3 5' CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2 7440-70-2 7440-47-3 7439-89-6 7439-85-4	Toluene Analyte Chloride 010A ICP Calcium Chromium Iron Magnesium	ND Sampla Matrix SO/ Result 956 10500 16.9 11500 3960	mg / Kg /L Units mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg	1 Dilution Factor 100	0.005	1 ample alliected	04/03/0 03/28 15:00 Run Date 04/12/0 04/12/0 04/12/0 04/12/0 04/12/0
01105 iient ample ID C Group 104013-C (01115 104013-C (01170 01370 01370 01370 01370	XG.2001.384-7 PIT#1 3.5-4. Run Sequence 3A MW.2001.512-22 MW.2001.512-22 MW.2001.612-22 MW.2001.612-22 MW.2001.612-22 MW.2001.512-22	3/106-42 108-88-3 5' CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2 7440-47-3 7439-89-6 7439-95-4 7440-09-7	Toluene Analyte Chloride	ND Sampla Matrix SO/ Result 956 10500 16.9 11500 3960 3040 3040	IL Units mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg	1 Dilution Factor 100	0.005	1 ample alliected	04/03/0 03/28 15:00 Run Date 04/12/0 04/12/0 04/12/0 04/12/0 04/12/0 04/12/0
01105 iient ample ID C Group 104013-C (01115 104013-C (01170 01370 01370 01370 01370	XG.2001.384-7 PIT#1 3.5-4. Run Sequence 3A MW.2001.533-5 3A MW.2001.512-22 MW.2001.512-22 MW.2001.512-22 MW.2001.612-22 MW.2001.612-22	3/106-42 108-88-3 5' CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2 7440-70-2 7440-47-3 7439-89-6 7439-85-4	Toluene Analyte Chloride 010A ICP Calcium Chromium Iron Magnesium	ND Sampla Matrix SO/ Result 956 10500 16.9 11500 3960	mg / Kg /L Units mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg	1 Dilution Factor 100 1 1 1 1 1	0.005	1 ample alliected	04/03/0 03/28 15:00 Run Date 04/12/0 04/12/0 04/12/0 04/12/0 04/12/0 04/12/0
01105 lient ample ID 2C Group 104013-0 401370 401370 401370 401370 401370	XG.2001.384-7 PIT#1 3.5-4. Run Sequence 3A MW.2001.533-5 3A MW.2001.512-22 MW.2001.512-22 MW.2001.612-22 MW.2001.512-22 MW.2001.512-22 MW.2001.512-22 MW.2001.512-22	3/106-42 108-88-3 5' CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2 7440-47-3 7439-89-6 7439-89-6 7439-89-6 7439-85-4 7440-23-5	Toluene Analyte Chloride Chloride Chloride Chromium Chromium Iron Magnesium Potassium Sodium	ND Sampla Matrix SO/ Result 956 10500 16.9 11500 3960 3040 3040	IL Units mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg	1 Dilution Factor 100	0.005	1 ample alliected	04/03/0 03/28 15:00 Run Date 04/12/0 04/12/0 04/12/0 04/12/0 04/12/0 04/12/0
01105 lient ample ID IC Group 104013-0 /01115 104013-0 /01370 /01370 /01370 /01370 /01370 /01370	XG.2001.384-7 PIT#1 3.5-4. Run Sequence 3A MW.2001.533-5 3A MW.2001.512-22 MW.2001.512-22 MW.2001.612-22 MW.2001.512-22 MW.2001.512-22 MW.2001.512-22 MW.2001.512-22	3/106-42 108-88-3 5' CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2 7440-47-3 7439-89-6 7439-89-6 7439-89-6 7439-85-4 7440-23-5	Toluene Analyte Chloride	ND Sampla Matrix SO/ Result 956 10500 16.9 11500 3960 3040 3040	IL Units mg / Kg mg / Kg	1 Dilution Factor 100	0.005 Sa Cc Detection Limit 0.05 15 10 10 10 15	1 ample alliected	04/03/0 03/26 15:00 Run Date 04/12/0 04/12/0 04/12/0 04/12/0 04/12/0
01105 tient ample ID IC Group 104013-0 /01115 104013-0 /01370 /01370 /01370 /01370 /01370 /01370 /01370 /01370	XG.2001.384-7 PIT#1 3.5-4. Run Sequence 3A MW.2001.533-5 3A MW.2001.512-22 MW.2001.512-22 MW.2001.612-22 MW.2001.512-22 MW.2001.512-22 MW.2001.512-22 MW.2001.512-22	3/106-42 108-88-3 5' CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2 7440-47-3 7439-89-6 7439-89-6 7439-89-6 7439-89-5 7439-85-4 7440-08-7 7440-23-5 SW846 8260A F	Toluene Analyte Chloride Chloride Chloride Chromium Chromium Iron Magnesium Potassium Sodium	ND Sample Matrix SO/ Result 956 10500 16.9 11500 3960 3040 1060 0.013 0.013	IL Units Ing / Kg Ing / Kg	1 Dilution Factor 100 1 1 1 1 1 1 1 1 1 1	0.005	Langle Silected Code	04/03/0 03/28 15:00 Run Date 04/12/0 04/12/0 04/12/0 04/12/0 04/12/0 04/12/0 04/12/0
ioi 105 itient emple ID 2C Group	XG.2001.384-7 PIT#1 3.5-4. Run Sequence Run Sequence XG Run Sequence XG Run Sequence Run Sequence Ru	3/106-42 108-88-3 5' CAS # EPA 300.0 16887-00-6 SW846 3050A/6 7440-70-2 7440-47-3 7439-89-6 7439-89-6 7439-89-6 7439-89-5 7440-09-7 7440-09-7 7440-23-5 SW846 8260A F 71-43-2	Toluene Analyte Chloride 010A ICP Catcium Chromium fron Magnesium Potassium Sodium Purgeable VOCs by GC/MS Benzene	ND Sampla Matrix SO/ Result 956 10500 16.9 11500 3960 3040 1060	IL Units mg / Kg mg / Kg	1 Dilution Factor 100 1 1 1 1 1 1 1 1 1 1	0.005 Sa Cc Detection Limit 0.05 15 10 10 10 15	L 1	03/03/01 03/28 15:00 Run Date

Page 2 of 8

Report Date 4/17/2001 11:55:09 AM

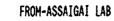
.;

. :

FROM-ASSAIGAI LAB

T-654 P. 04/09 F-075

Assalgei Analytical Laboratories, Inc. Certificate of Analysis


Client	RT HICKS	CONSUL	TING,	LTD
--------	----------	--------	-------	-----

K01105	XG.2001.384-8	108-38-	p/m Xylenes	ND	mg / Kg	1	0.01	1	04/03/01
(01105	XG.2001.384-8	108-88-3	Toluene	ND	mg / Kg	1	0.005	1	04/03/01
Client Sample ID	PIT#2 0-0.25		······	Sample SOI Matrix	L	. <u></u>		imple Nected	03/28/0 15:00:0
QC Group	Run Sequence	CAS #	Analyte	Résult	Units	Dilution Factor	Detection Limit	Code	Run Date
0104013-04	IA .	SW846 3050A/6	D10A ICP						
M01370	MW.2001.512-23	7440-70-2	Calcium	3170	mg / Kg	1 1	15		04/12/01
M01370	MW.2001.512-23	7440-47-3	Chromium	14.0	i mg / Kg	1	1		04/12/01
M01370	MW.2001.512-23	7439-89-8	iron	8920	mg / Kg	1	15		04/12/01
M01370	MW.2001.512-23	7439-95-4	Magnesium	2490	mg / Kg		10		04/12/01
M01370	MW.2001.512-23	7440-08-7	Potassium	2990	mg / Kg	1	10		04/12/01
M01370	MW/2001.512-23	7440-23-5	Sodium	3180	mg / Kg	1	15		04/12/01
		· · · · ·		<u></u>		4	·	ار	
0104013-04			urgeable VOCs by GC/MS	· . <u></u>	· · · · · · · · · · · · · · · · · · ·				
X01105	XG.2001.384-0	71-43-2	Benzana	ND	mg / Kg	1	0.005	1	04/03/01
X01105	XG.2001.384-9	100-41-4	Ethylbenzene	ND	mg / Kg	1	0.005	1	04/03/01
X01105	XG.2001.368-2	91-20-3	Naphthalene	ND	mg / Kg	10	0.025	12	04/04/01
X01105	XG.2001.384-9	95-47-6	o-Xylene	0.006	mg / Kg	1	0.005	1	04/03/01
X01105	XG.2001.384-9	108-38-	p/m Xylenes	ND	mg / Kg	1 1	0.01	1 1	04/03/01
		1 3/106-42	prin Ayionoo		ng/ng		1 0.01		
X01105	XG.2001.384-9	3/106-42 108-68-3	Toluene	ND	mg / Kg	<u>1</u>	0.005	<u>]</u>	04/03/01
X01105 Client		108-88-3		ND Sample SOI	j mg / Kg		0.005 Sa	j 1	
X01105 Client	xG.2001.384-9 PIT#2 0.25-0	108-88-3		ND	j mg / Kg	1	0.005 Sa Co	1 Imple	04/03/01 03/28/01 15:00:00
X01105 Client Semple ID		108-88-3		ND Sample SOI	j mg / Kg		0.005 Sa	1 Imple	04/03/01
	PIT#2 0.25-0 Run Sequence	108-88-3 0.5'	Toluene	ND Sample Matrix SO/	mg 7 Kg	1 Dilution	0.005 Sa Co Detection	1 Imple	04/03/01 03/28/01 15:00:00 Run
X01105 Client Sempic ID QC Group 0104013-02	PIT#2 0.25-0 Run Sequence	108-88-3 0.5' CAS #	Toluene	ND Sample Matrix SO/	mg 7 Kg	1 Dilution	0.005 Sa Co Detection	1 Imple	04/03/01 03/28/01 15:00:00 Run
X01105 Client Sample ID QC Group 0104013-01 W01115	PIT#2 0.25-0 Run Sequence 5A MVV.2001.533-6	108-88-3 0.5' CAS # EPA 300.0 16887-00-6	Toluene Analyte Chloride	Sample SOI. Matrix SOI. Result	j mg / Kg L Units	1 Dilution Factor	Sa Co Detection Limit	1 Imple	04/03/01 03/28/01 15:00:00 Run Date
X01105 Client Semple ID QC Group 0104013-01 W01115 0104013-01	PIT#2 0.25-0 Run Sequence 5A MVV.2001.533-6 5A	108-88-3 0.5' CAS # EPA 300.0 16887-00-6 SW846 3050A/6	Toluene Analyte Chloride	ND Sample SO/ Matrix SO/ Result 1860	 L Units 	1 Dilution Factor	0.005 Sa Ca Detection Limit	1 Imple	04/03/01 03/28/01 15:00:00 Run Date 04/12/01
X01105 Client Bample ID QC Group 0104013-01 W01115 0104013-01 M01370	PIT#2 0.25-0 Run Sequence 5A MW.2001.533-6 5A MW.2001.512-26	108-88-3 CAS # EPA 300.0 16887-00-6 SW846 3050A/60 7440-70-2	Toluene Analyte Chloride D10A ICP Calcium	ND Sample SO/ Matrix SO/ Result 1860	 Units 	1 Dilution Factor	0.005 Sa Co Detection Limit 0.05	1 Imple	04/03/01 03/28/01 15:00:00 Run Date 04/12/01
X01105 Client Bample ID QC Group 0104013-01 W01115 0104013-08 M01370 M01370	PIT#2 0.25-0 Run Sequence 5A MW.2001.533-6 5A MW.2001.512-26 MW.2001.512-26	108-88-3 CAS # EPA 300.0 16887-00-6 SW846 3050A/60 7440-70-2 7440-47-3	Toluene Analyte Chloride D10A ICP Calcium Chromium	ND Sample Matrix SO/ Result 1860 1860 15.9	L Units mg / Kg mg / Kg mg / Kg	1 Dilution Factor 100	0.005 Sa Co Detection Limit 0.05	1 Imple	04/03/01 03/28/01 15:00:00 Run Date 04/12/01 04/12/01 04/12/01
X01105 Client Bampic ID QC Group 0104013-08 W01115 0104013-08 M01370 M01370 M01370	PIT#2 0.25-0 Run Sequence 5A MW.2001.533-6 5A MW.2001.512-26 MW.2001.512-26 MW.2001.512-26	108-88-3 0.5' CAS # EPA 300.0 16887-00-8 SW846 3050A/60 7440-70-2 7440-47-3 7439-89-6	Toluene Analyte Chloride D10A ICP Calcium Chromium Iron	ND Sample Matrix SO/ Result 1860 1860 15.9 10700 10700	mg / Kg Units mg / Kg mg / Kg mg / Kg mg / Kg	1 Dilution Factor	0.005 Sa Co Detection Limit 0.05	1 Imple	04/03/01 03/28/01 15:00:00 Run Date 04/12/01 04/12/01 04/12/01
X01105 Client Bampie ID QC Group 0104013-02 W01115 0104013-02 M01370 M01370 M01370 M01370 M01370	PIT#2 0.25-0 Run Sequence 5A MW.2001.533-6 5A MW.2001.512-26 MW.2001.512-26 MW.2001.512-26	108-88-3 2.5' CAS # EPA 300.0 16887-00-8 SW846 3050A/60 7440-70-2 7440-47-3 7439-89-6 7439-95-4	Toluene Toluene Analyte Chloride D10A ICP Calcium Iron Magnesium	ND Sample Matrix SOI Result 1860 1860 15.9 10700 3260	mg / Kg Units mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg	1 Dilution Factor 100	0.005 Sa Co Detection Limit 0.05 15 1 15 10	1 Imple	04/03/01 03/28/01 15:00:00 Run Date 04/12/01 04/12/01 04/12/01 04/12/01
X01105 Client Bampie ID QC Group 0104013-02 W01115 0104013-02 M01370 M01370 M01370 M01370 M01370 M01370	PIT#2 0.25-0 Run Sequence 5A MW.2001.533-6 5A MW.2001.512-26 MW.2001.512-26 MW.2001.512-26 MW.2001.512-26 MW.2001.512-26	108-88-3 .5' CAS # EPA 300.0 16887-00-8 SW846 3050A/60 7440-70-2 7440-47-3 7439-89-6 7439-89-6 7439-65-4 7440-08-7	Toluene Toluene Analyte Chloride D10A ICP Calcium Chromium Iron Magnesium Potassium	ND Sample Matrix SO/ Result 1860 1860 15.9 10700 3260 3250 3250	mg / Kg Units mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg	1 Dilution Factor 100	0.005 Sa Co Detection Limit 0.05 15 10 10	1 Imple	04/03/01 03/28/01 15:60:00 Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01
X01105 Client Bampie ID QC Group 0104013-02 W01115 0104013-02 M01370 M01370 M01370 M01370 M01370 M01370	PIT#2 0.25-0 Run Sequence 5A MW.2001.533-6 5A MW.2001.512-26 MW.2001.512-26 MW.2001.512-26	108-88-3 2.5' CAS # EPA 300.0 16887-00-8 SW846 3050A/60 7440-70-2 7440-47-3 7439-89-6 7439-95-4	Toluene Toluene Analyte Chloride D10A ICP Calcium Iron Magnesium	ND Sample Matrix SOI Result 1860 1860 15.9 10700 3260	mg / Kg Units mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg	1 Dilution Factor 100	0.005 Sa Co Detection Limit 0.05 15 1 15 10	1 Imple	04/03/01 03/28/01 15:00:00 Run Date 04/12/01 04/12/01 04/12/01 04/12/01
X01105 Client Sample ID QC Group 0104013-01 W01115	PIT#2 0.25-0 Run Sequence 5A MW.2001.533-6 5A MW.2001.512-26 MW.2001.512-26 MW.2001.512-26 MW.2001.512-26 MW.2001.512-26 MW.2001.512-26 MW.2001.612-26	108-88-3 .5' CAS # EPA 300.0 16887-00-8 SW846 3050A/60 7440-70-2 7440-47-3 7439-89-6 7439-89-6 7439-89-6 7440-08-7 7440-23-5	Toluene Toluene Analyte Chloride D10A ICP Calcium Chromium Iron Magnesium Potassium Sodium	ND Sample Matrix SO/ Result 1860 1860 15.9 10700 3260 3250 3250	mg / Kg Units mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg	1 Dilution Factor 100	0.005 Sa Co Detection Limit 0.05 15 10 10	1 Imple	04/03/01 03/28/01 15:60:00 Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01
X01105 Client Semple ID QC Group 0104013-01 W01115 0104013-01 M01370 M01370 M01370 M01370 M01370 M01370 0104013-08	PIT#2 0.25-0 Run Sequence 5A MW.2001.533-6 5A MW.2001.512-26 MW.2001.512-26 MW.2001.512-26 MW.2001.512-26 MW.2001.512-26 MW.2001.512-26 MW.2001.612-26	108-88-3 .5' CAS # EPA 300.0 16887-00-8 SW846 3050A/60 7440-70-2 7440-47-3 7439-89-6 7439-89-6 7439-89-6 7440-08-7 7440-23-5	Toluene Toluene Analyte Chloride D10A ICP Calcium Chromium Iron Magnesium Potassium Sodium	ND Sample Matrix SO/ Result 1860 1860 15.9 10700 3260 3250 3100	mg / Kg Units mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg mg / Kg	1 Dilution Factor 100	0.005 Sa Co Detection Limit 0.05 15 10 10 10 16	Code	04/03/01 03/28/01 15:00:00 Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01
X01105 Client Semple ID QC Group 0104013-08 W01115 0104013-08 M01370 M01370 M01370 M01370 M01370 M01370	PIT#2 0.25-0 Run Sequence MVV.2001.533-6 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26	108-88-3 CAS # EPA 300.0 16887-00-8 SW846 3050A/60 7440-70-2 7440-47-3 7439-89-6 7439-89-6 7439-89-6 7439-89-7 7440-08-7 7440-23-5 SW846 8260A P	Toluene Toluene Analyte Chloride Chloride Chloride Chloride Chromium Iron Magnesium Potassium Sodiurn Urgeable VOCs by GC/MS Benzene	ND Sample Matrix SO/ Result 1860 1860 15.9 10700 3260 3250 3100 0.033 0.033	mg / Kg Units mg / Kg mg / Kg	1 Dilution Factor 100	0.005 Sa Co Detection Limit 0.05 15 10 10 18 0.005	Code	04/03/01 03/28/01 15:00:00 Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01
X01105 Client Sample ID QC Group 0104013-01 W01115 0104013-01 M01370 M01370 M01370 M01370 M01370 M01370 0104013-02 X01105 X01105	PIT#2 0.25-0 Run Sequence 5A MVV.2001.533-6 5A MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 SA XG.2001.384-10 XG.2001.384-10	108-88-3 CAS # EPA 300.0 16887-00-6 SW846 3050A/60 7440-70-2 7440-47-3 7439-89-6 7439-89-6 7439-89-6 7439-95-4 7440-08-7 7440-23-5 SW846 8260A P 71-43-2 100-41-4	Toluene Toluene Analyte Chloride D10A ICP Calcium Chromium Iron Magnesium Potassium Sodium urgeable VOCs by GC/MS Benzene Ethylbenzene	ND Sample Matrix SO/ Result 1860 1860 15.9 10700 3250 3250 3100 0.033 ND	mg / Kg Units mg / Kg mg / Kg	1 Dilution Factor 100	0.005 Sa Co Detection Limit 0.05 15 10 10 10 15 10 10 15 10 10 10 15	Code	04/03/01 03/28/01 15:00:00 Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/03/01 04/03/01
X01105 Client Sample ID QC Group 0104013-01 W01115 0104013-01 M01370 M01370 M01370 M01370 M01370 M01370 0104013-02 X01105	PIT#2 0.25-0 Run Sequence MVV.2001.533-6 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26 MVV.2001.512-26	108-88-3 CAS # EPA 300.0 16887-00-8 SW846 3050A/60 7440-70-2 7440-47-3 7439-89-6 2439-95-4 7440-08-7 7440-08-7 7440-23-5 SW846 8260A P 71-43-2	Toluene Toluene Analyte Chloride Chloride Chloride Chloride Chromium Iron Magnesium Potassium Sodiurn Urgeable VOCs by GC/MS Benzene	ND Sample Matrix SO/ Result 1860 1860 15.9 10700 3260 3250 3100 0.033 0.033	mg / Kg Units mg / Kg mg / Kg	1 Dilution Factor 100	0.005 Sa Co Detection Limit 0.05 15 10 10 18 0.005	Code	04/03/01 03/28/01 15:00:00 Run Date 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01 04/12/01

APR 17 '01 10:58 TO-RTHICKS

÷.

...

Assaigal Analytical Laboratories, Inc. **Certificate of Analysis**

Client:	RT	HICKS	CONSUL	.TING	LTD
---------	----	-------	--------	-------	-----

X01105	XG.2001.384-10	108-38- 3/108-42	p/m Xylenes	0.020	mg / Kg	1	0.01	1	04/03/01
	XG.2001.384-10	108-88-3	Toluene	0.023	mg / Kg	1	0.005	1	04/03/01
Client Sample ID	PIT#2 0.5-1.	0'	<u> </u>	Sample SO Matrix				mple	03/28/0
		a 8 40 40 40 - 40au addadd				Dilution	Detection		15:00:01 Run
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Factor	Limit	Code	Date
0104013-06A		EPA 300.0							
W01115	MW.2001.633-7	16887-00-6	Chloride	1080	mg / Kg	100	0.05		04/12/01
A404040 001									
0104013-06A M01370	MW.2001.512-27	SW846 3050A/60		42400					
M01370	MW.2001.512-27	7440-70-2		13400	mg / Kg	11	15		04/12/01
M01370	MW.2001.512-27	7439-89-6	Chromium	15.4	1 mg / Kg	1	1	ļ	04/12/01
M01370			lron	10400	mg / Kg	1	15		04/12/01
	MW.2001.512-27	7439-95-4	Magnesium	3550	mg / Kg	1	10		04/12/01
MD1370	MW.2001.512-27	7440-09-7	Potassium	2550	mg / Kg	1	10	 .	04/12/01
M01370	MW.2001.512-27	7440-23-5	Sodium	890	mg / Kg	11	15		04/12/01
0104013-064	`	SW846 8260A P	urgeable VOCs by GC/MS						
X01105	XG.2001.384-11	71-43-2	Benzene	0.25	mg / Kg	1	0.005	1	04/03/01
X01105	XG.2001.384-11	100-41-4	Ethylbenzene	0.074	mg / Kg	1	0.005	1	04/03/01
X01105	XG.2001,384-11	91-20-3	Naphthalene	ND	mg / Kg	1	0.025	1	04/03/01
X01105	XG.2001.384-11	95-47-6	o-Xylene	0.059	mg / Kg	1 1	0.005	1	04/03/01
X01105	XG.2001.384-11	108-38-	pim Xylenes	0.21	mg / Kg	1	0.01	1	04/03/01
X01105	XG.2001.384-11	3/108-42 - 108-88-3	Toluene	0.37	mg / Kg	1	0.005	1	04/03/01
Client									
Sample ID	PIT#2 2.5-4.	5'		Sample SO	IL			nple lected	03/28/01 15:00:00
QC Group	Run Sequence	CAS #	Analyte	Result	Unita	Dilution Factor	Detection Limit	Code	Run Date
0104013-07A	L Contraction of the second se	EPA 300.0							
W01115	MW.2001.533-8	16887-00-6	Chloride	486	mg / Kg	100	0.05		04/12/01
		SW846 3050A/60							
0104013-074	MW.2001.512-28	7440-70-2		+5500		· · · ·			04/40104
		7440-47-3	Calclum	15600	mg / Kg	1	15		04/12/01
401370	MM/ 2001 612 24		Chromium	14.3 9680	mg / Kg	1	1		04/12/01
401370 401370	MW.2001.512-28 MW.2001.512-28	· · · · · · · · · · · · · · · · · · ·	1/84		mg / Kg	1	15		04/12/01
M01370 M01370 M01370	MW.2001.512-28	7439-88-6	Iron		A Description of the second seco		····		
M01370 M01370 M01370 M01370	MW.2001.512-28 MW.2001.512-28	7439-89-6 7439-95-4	Magnesium	3600	mg / Kg	1	10		04/12/01
M01370 M01370 M01370 M01370 M01370	MW.2001.512-28	7439-88-6	Magnesium Potassium	3600 2310	mg / Kg mg / Kg	1	10 10		04/12/01 04/12/01
M01370 M01370 M01370 M01370 M01370	MW.2001.512-28 MW.2001.512-28 MW.2001.512-28	7439-89-6 7439-85-4 7440-08-7	Magnesium	3600	mg / Kg	÷	10		04/12/01
0104013-07A M01370 M01370 M01370 M01370 M01370 M01370 0104013-07A X01105	MW.2001.512-28 MW.2001.512-28 MW.2001.512-28 MW.2001.512-28	7439-89-6 7439-95-4 7440-09-7 7440-23-5	Magnesium Potassium	3600 2310	mg / Kg mg / Kg	1	10 10		04/12/01 04/12/01

Report Date 4/17/2001 11:55:09 AM

••

Assalgal Analytical Laboratories, Inc. Certificate of Analysis

Client: RT HICKS CONSULTING, LTD

X01105	XG.2001.384-12	100-41-4	Ethylbenzene	0.005	mg / Kg	1	0.005	1 1	04/03/01
X01105	XG.2001.384-12	91-20-3	Naphthalene	ND	mg / Kg	1	0.025	† 7	04/03/01
X01105	XG.2001.384-12	95-47-6	o-Xylene	0.009	mg / Kg	1	0.005	1	04/03/01
X01105	XG.2001.384-12	108-38- 3/106-42	p/m Xylenes	0.020	mo / Ko	1	0.01	1	04/03/01
X01105	XG.2001.384-12	108-88-3	Toluene	0.020	mg / Kg	1	0.005	1	04/03/01
Client Sample ID	PIT#3 0-0.25	· · <u></u>		Sample SO Malrix	IL.			mple	03/28/0
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Dilution Factor	Detection Limit	Code	Run Date
0104013-0	8 A	EPA 300.0							
W01115	MW.2001.533-9	15887-00-6	Chloride	296	mg / Kg	100	0.05		04/12/01
0104013-0	BA	SW846 3050A/6	010A ICP						
M01370	MW.2001.512-29	7440-70-2	Calcium	2970	mg / Kg	1	15	<u> </u>	04/12/01
M01370	MW.2001.512-29	7440-47-3	Chromium	11.7	mg / Kg	1	1	<u></u>	04/12/01
M01370	MW.2001.512-29	7439-80-6	Iron	8410	mg / Kg	1	15	<u> </u>	04/12/01
M01370	MW.2001.512-29	7439-95-4	Magnesium	2080	mg / Kg	1	10	† — — — — — — — — — — — — — — — — — — —	04/12/01
M01370	MW.2001.512-29	7440-09-7	Potassium	2760	mg / Kg	† 1	10	İ I	04/12/01
M01370	MW.2001.512-29	7440-23-5	Sodium	846	mg / Kg	1	15	<u> </u>	04/12/01
0104013-0	8A	SW846 8260A P	urgeable VOCs by GC/MS						
X01105	XG.2001.384-13	71-43-2	Benzene	ND	mg / Kg	1	0.005	1	04/03/01
X01105	XG.2001.384-13	100-41-4	Ethylbenzene	ND	mg / Kg	1	0.005	1	04/03/01
X01105	XG.2001.388-3	91-20-3	Naphthalene	ND	mg / Kg	10	0.025	12	04/04/01
K01105	XG.2001.384-13	95-47-6	o-Xylene	ND	mg / Kg	1	0.005	1 1	04/03/01
K01105	XG.2001.384-13	108-38- 3/106-42	p/m Xylenes	ND	mg / Kg	1	0.01	1	04/03/01

Client Sample ID	PIT#3 0.25-0).5		Sample SC Matrix	NL			Sample Collected	02/28/01 15:00:00
QC Group	Run Sequence	Cas #	Analyte	Result	Units	Dilution Factor	Detectio Limit	n Code	Run Date
0104013-09	A	EPA 300.0							
W01115	MW.2001.533-10	16887-00-6	Chloride	304	mg / Kg	100	0.05		04/12/01
0104013-09	A	SW846 3050A/	5010A ICP						
M01370	MW.2001.512-30	7440-70-2	Calcium	3820	l mg / Kg	1	15	i	04/12/01
01210									04/12/01
	MW.2001.512-30	7440-47-3	Chromium	14.3	mg / Kg	1	1	·	04/12/01
101370			• • • • • • • • • • • • • • • • • • • •	s		1	1		
A01370 A01370	MW.2001.512-30	7440-47-3	Chromium	14.3	mg / Kg	1	1		04/12/01
A01370 A01370 A01370 A01370 A01370	MW.2001.512-30 MW.2001.512-30	7440-47-3 7439-89-6	Chromium	14.3	mg / Kg mg / Kg	1 1 1 1 1	1 15		04/12/01 04/12/01

Report Date 4/17/2001 11:55:10 AM

Assalgal Analytical Laboratories, inc.

Client: RT HICKS CONSULTING, LTD

Project:	0104013	RICE
		1.11.00.00

Page 6 of 8

;

•

0104013-0	Ae	SW846 8260A 7	Purgeable VOCs by GC/MS				t		
X01105	XG.2001.384-14	71-43-2	Benzene	ND	mg / Kg	1	0.005	1	04/03/01
X01105	XG.2001.384-14	100-41-4	Ethylbenzene	ND	mg / Kg	1	0.005	ţ	04/03/01
X01105	XG.2001.388-4	91-20-3	Naphthalene	ND	mg / Kg	10	0.025	2	04/04/01
X01105	XG.2001.384-14	95-47-6	o-Xyiene	ND	mg / Kg	1	0.005	1	04/03/01
X01105	XG.2001.384-14	108-38-	p/m Xylenes	ND	mg / Kg	1	0.01		04/03/01
X01105	XG.2001.394-14	3/106-42	Toluene	ND	mg / Kg	1	0.005	<u>i</u>	- 04/03/01

Sample ID	PIT#3 0.5-1.	0		Sample SOIL Matrix				nple lected	03/28/0 15:00:0
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Dilution Factor	Detection Limit	Code	Run Date
0104013-10	A	EPA 300.0							
W01115	MW.2001.533-12	16887-00-8	Chloride	502	mg / Kg	100	0.05		04/12/01
0104013-10	A	SW846 3050A/60							
M01370	MW.2001.512-31	7440-70-2	Calcium	4570	mg / Kg	1	15		04/12/01
M01370	MW.2001.512-31	7440-47-3	Chromium	14.8	mg / Kg	1	1		04/12/01
M01370	MW.2001.512-31	7439-89-6	Iron	10600	mg / Kg	1	15		04/12/01
M01370	MW.2001.512-31	7439-95-4	Magnesium	3050	mg / Kg	1	10		04/12/01
M01370	MW.2001.512-31	7440-08-7	Potassium	3210	mg / Kg	1	10		04/12/01
M01370	MW.2001.512-31	7440-23-5	Sodium	210	mg / Kg	1	15	-	04/12/01
0104013-10	A	8W846 89604 P	urgeable VOCs by GC/MS						
X01105	XG.2001.384-15	71-43-2	Benzene	ND	mg / Kg	1 1	0.005	,	04/03/01
X01105	XG.2001.384-15	100-41-4	Ethylbanzona	ND	mg / Kg	1	0.005		04/03/01
X01105	XG.2001.388-5	91-20-3	Naphthalene	ND	mg / Kg	10	0.025	2	04/04/01
X01105	XG.2001.384-15	95-47-6	o-Xylene	ND	mg / Kg		0.005		04/03/01
X01105	XG.2001.384-15	108-38-	p/m Xylenes	ND	mg / Kg	1	0.01		04/03/01
		3/106-42	part xyioned		ing ring	· · ·			
		100 00 0	Toluene	ND	i	1 1	0.005		04/03/01
X01105	XG.2001.384-15	108-88-3		: ND	mg / Kg	L		1 1	
	XG.2001.384-15 PIT#3 2.5-4.	;		Sample SOIL		·····	Sa	mpie	03/28/
X01105 Client Sample 1D		;		Sample CO//		Dilution	Sa Co		03/28/ 15:00:0
Client Sampie 1D		;	Analyte	Sample CO//		Dilution	Sa		03/28/
Client	PIT#3 2.5-4. Run Sequence	5 CAS #	· · · · · · · · ·	Sample SOIL Matrix	· · · · · · · · · · · · · · · · · · ·		Sa Co Detection	liected	03/28/ 15:00:0 Run
Client Sample 1D - QC Group	PIT#3 2.5-4. Run Sequence	5	· · · · · · · · ·	Sample SOIL Matrix	· · · · · · · · · · · · · · · · · · ·		Sa Co Detection	liected	03/28/ 15:00:0 Run
Client Sample 1D QC Group 0104013-11 W01115	PIT#3 2.5-4. Run Sequence A MW.2001.533-13	5 CAS # EPA 300.0 18887-00-6	Analyte	Sample SOIL Matrix SOIL Result	Units	Factor	Sa Co Detection Limit	liected	03/28/ 15:00:0 Run Date
Client Sample 1D QC Group 0104013-11 W01115 0104013-11	PIT#3 2.5-4. Run Sequence MW.2001.533-13 A	5 CAS # EPA 300.0 18887-00-6 SW646 3050A/6	Analyte Chloride	Sample SOIL Matrix SOIL Result 182	Units mg / Kg	Factor	Sa Co Detection Limit	liected	03/28/ 15:00: Run Date 04/12/01
Client Sample 1D - QC Group 0104013-11 W01115 0104013-11 M01370	PIT#3 2.5-4. Run Sequence MWV.2001.533-13 A MWV.2001.512-32	5 CAS # EPA 300.0 18887-00-6	Analyte Chloride D10A ICP Calcium	Sample SOIL Matrix SOIL Result 182 7730	Units mg / Kg mg / Kg	Factor	Sa Co Detaction Limit 0.05	liected	03/28/ 15:00: Run Date 04/12/01
Client Sample 1D QC Group 0104013-11	PIT#3 2.5-4. Run Sequence MW.2001.533-13 A	5 CAS # EPA 300.0 18987-00-8 SW846 3050A/6 7440-70-2	Analyte Chloride	Sample SOIL Matrix SOIL Result 182	Units mg / Kg	Factor	Sa Co Detection Limit	liected	03/28/ 15:00: Run Date

2.0

Client Reports

Assaigal Analytical Laboratories, Inc.

Client: RT HICKS CONSULTING, LTD

Project: 0104013 RICE

M01370	MW.2001.512-32	7440-09-7	Potassium	3100	mg / Kg	1	10	04/12/01
M01370	MW.2001,512-32	7440-23-5	Sodium	176	mg / Kg		15	04/12/01
0104013-1	11A	SW846 8260A P	urgeable VOCs by GC/MS					
X01118	XG.2001.405-2	71-43-2	Benzene	ND	mg/Kg T	1	0.005	04/04/01
X01118	XG.2001.405-2	100-41-4	Ethylbenzene	ND	mg / Kg	1	0.005	04/04/01
X01118	XG.2001.405-2	91-20-3	Naphthalene	ND	mg / Kg	i i "	0.025	04/04/01
X01118	XG.2001.405-2	95-47-6	o-Xylene	ND	mg / Kg	1	0.005	04/04/01
X01118	XG.2001.405-2	108-38- 3/108-42	p/m Xylenes	ND	mg / Kg	1	0.01	04/04/01
X01118	XG.2001.405-2	108-88-3	Toluene	ND	mg / Kg	1	0.005	04/04/01

Client Sample ID	PIT#4 ABOV	E CALICHE		Sample Matrix	SOIL			mple llected	03/28/0 15:00:0
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Dilution Factor	Detection Limit	Code	Run Date
0104013-12	24	EPA 300.0							
W01115	MW.2001.533-14	18887-00-6	Chloride	1450	mg / Kg	100	0.05	<u> </u>	04/12/01
0104013-12	24	8W846 3050A/60	10A ICP						
M01370	MW.2001.512-33	7440-70-2	Calcium	9270	mg / Kg	1	15		04/12/01
M01370	MW.2001.512-33	7440-47-3	Chromlum	15.0	mg / Kg	1	1	+	04/12/01
M01370	MW.2001.512-33	7439-89-6	Iron	10500	mg / Kg	1	15		04/12/01
M01370	MW.2001.512-33	7439-95-4	Magnesium	4150	mg / Kg	1	10		04/12/01
M01370	MW.2001.512-33	7440-09-7	Potassium	2890	mg / Kg	1	10	<u>+</u>	04/12/01
M01370	MVV.2001.512-33	7440-23-5	Sodium	1700	mg / Kg	1	15	i	04/12/01
0104013-12	2A	SW846 8260A Pu	rgeable VOCs by GC/MS	1					
X01118	XG.2001.405-4	71-43-2	Benzene	2.2	mg / Kg	10	0.005	I	04/04/01
X01118	XG.2001.405-4	100-41-4	Ethylbenzene	0.87	mg / Kg	10	0.005	<u> </u>	04/04/01
X01118	XG.2001.405-3	81-20-3	Naphthalene	0.045	mg / Kg	1	0.025		04/04/01
X01118	XG.2001.405-4	85-47-6	o-Xylene	0.67	mg / Kg	10	0.005		04/04/01
X01118	XG.2001.405-4	108-38- 3/106-42	p/m Xylenes	2.7	mg / Kg	10	0.01	··· ·	04/04/01
X01118	XG.2001.405-4	106-68-3	Toluene	5.6	mg / Kg	10	0.005	r · :	04/04/01

2.0

APR 17 01 11:00 TO-RTH]	ICKS FROM-ASSAIGAI LA	IB (-	T-654	P. 09/09	F-075
	Assaigal Analytical Lab Certificate of A				

Client: RT HICKS CONSULTING, LTD

RICE

Project: 0104013

 \bar{a}

*** Sample specific Detection Limit is determined by multiplying the sample Dilution Factor by the listed Reporting Detection Limit. *** *** ND = Not detected: less than the sample specific Detection Limit. Results relate only to the items tested. ***

footnote 1 Sample was received in improper container.

2 Sample was re-analyzed with headspace.

2.0

APPENDIX E

SWAT Laboratory New Mexico State University Agronomy & Horticulture Department Box 30003, Department 3Q Las Cruces, NM 88003-8003 April 19, 2001 Randall Hicks 4665 Indian School Rd. NE #106 Albugerque, NM 87110 266-5004 Dear Randall Hicks: Below are the results of analysis of 10 samples received for examination on April 4, 2001: Client Code: SOILNONE Sample I.D. AB23460 Sample Description: Pit 1 0.5 - 1.0 Sample collector: R HICKSSample collection date: 04/02/01Lab submittal date: 04/04/01Time: 11:35 TEST TEST UNITS DETECTION LIMIT PARAMETER RESULT pH of Soil Saturation Paste 7.16 Elect. Cond. of Soil Paste Extr. mmhos/cm 122.7 1870 0.01 11.4 35.0 meg/L Magnesium (for SAR)-0.1 Calcium (for SAR)-Sodium (for SAR)meg/L meg/L 0.1 233.0 0.1 Sodium Adsorption Ratio (SAR) 48.37 0.01 Calculated Exchangeable Na %-ESP 41.2 0.1 3.3 Organic Matter percent 1.72 0.01 ppm 0.1 NO3-N 1:5 (soil:water) extract Phosphorus (NaHCO3 extracted) 17.6 ppm 0.1 K 1:5 (soil:water) extract 116 1 ppm clay loam 8689 Texture of soil by feel mg/Kg Chloride in soil water extract 250 Cation exchange capacity meq/100gr 24.7 0.01 meq/100gr Extractable Sodium 26.1 0.01 meq/100gr Extractable Potassium 2.73 0.01 meg/100gr Extractable Calcium 14.7 0.01 Extractable Magnesium meq/100gr 4.83 0.01 Saturated paste percent water percent Potassium in sat. paste extract meq/L CaCO3 equivalents in soil- percent 72.70 0.01 3.49 2.01 percent0.600.01percentNot detected0.1 Soil gypsum by acetone precip 0.01

Sample comments:

		-	e Cations	
Mg	Ca	meq/100 Na	gr K	
4.0	12.2	9.2	2.5	

04/19/01 09:10 2505 646 5185	SWAT LABORATORY	···	2 004/011
Page: 2 April 19, 2001			
Sample I.D. AB23461 Sample Description: Pit 1 3.5 Sample collector: R HICKS Lab submittal date: 04/04/01	Client Code: - 4.5 Sample collec Time: 11:35		02/01
TEST PARAMETER	UNITS	TEST RESULT	DETECTION LIMIT
<pre>pH of Soil Saturation Paste Elect. Cond. of Soil Paste Extr. Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)- Sodium Adsorption Ratio (SAR) Calculated Exchangeable Na %-ESP Organic Matter NO3-N 1:5 (soil:water) extract Phosphorus (NaHCO3 extracted) K 1:5 (soil:water) extract Texture of soil by feel Chloride in soil water extract Cation exchange capacity Extractable Sodium Extractable Potassium Extractable Calcium Extractable Magnesium Saturated paste percent water</pre>	mmhos/cm meq/L meq/L meq/L	7.37 12.1 900 25.70 70.70 69.80 10.05 11.9 0.50 2.5 3.3 74 clay loam 4330 30.8 7.37 1.68 37.6 9.25 58.68	0.01 0.05 0.05 0.05 0.01 0.1 0.1 0.1 1 1 100 0.01 0.01
Potassium in sat. paste extract CaCO3 equivalents in soil- Soil gypsum by acetone precip	meq/L percent percent	1.12 2.19 0.23	2.01 0.01 0.1

Sample comments:

Exchangeable Cations						
~		meg/	100 gr			
Mg	Ca	Na	к			
7.7	33.5	3.3	1.6			

Sample I.D. AB23462	Client Code: SOILNONE		
Sample Description: Pit 2 0 - 0	0.25		
Sample collector: R HICKS	Sample collection date: 04/02/01		
Lab submittal date: 04/04/01	Time: 11:35		
TEST	UNITS	TEST	DETECTION
PARAMETER		RESULT	LIMIT
pH of Soil Saturation Paste Elect. Cond. of Soil Paste Extr. Magnesium (for SAR)- Calcium (for SAR)-	mmhos/cm meq/L meq/L	6.59 24.1 15.5 48.8	0.01 0.1 0.1

Page: 3 April 19, 2001 Randall Hicks Sample I.D. AB23462 (continued)

TEST PARAMETER	UNITS	TEST RESULT	DETECTION LIMIT
Sodium (for SAR)- Sodium Adsorption Ratio (SAR) Calculated Exchangeable Na %-ESP Organic Matter NO3-N 1:5 (soil:water) extract Phosphorus (NaHCO3 extracted) K 1:5 (soil:water) extract Texture of soil by feel Chloride in soil water extract Cation exchange capacity Extractable Sodium Extractable Potassium Extractable Calcium Extractable Magnesium Saturated paste percent water Potassium in sat. paste extract CaCO3 equivalents in soil-	meq/L percent ppm ppm ppm mg/Kg meq/100gr meq/100gr meq/100gr meq/100gr meq/100gr percent meq/L percent	255.0 44.97 39.4 3.90 2.2 68.6 222 clay loam 8086 29.2 22.9 3.23 14.2 4.30 59.10 6.40 0.36	0.1 0.01 0.1 0.1 0.1 0.1 1 250 0.01 0.01 0.01 0.01 0.01 0.01 2.01 0.01
Soil gypsum by acetone precip	percent	Not detected	0.1

Sample comments:

Exchangeable Cations								
	meq/100 gr							
Mg	Ca	Na	K					
3.4	11.3	7.8	2.9					

Sample I.D. AB23463 Client Code: SOILNONE Sample Description: Pit 2 0.25 - 0.5 Sample collector: R HICKS Samp Lab submittal date: 04/04/01 Time Sample collection date: 04/02/01 Time: 11:35

TEST	UNITS	TEST	DETECTION
PARAMETER		RESULT	LIMIT
pH of Soil Saturation Paste Elect. Cond. of Soil Paste Extr. Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)- Sodium Adsorption Ratio (SAR) Calculated Exchangeable Na %-ESP Organic Matter	mmhos/cm meg/L meg/L meg/L percent	7.26 27.7 24.5 84.6 263.0 35.61 33.9 1.20	0.01 0.1 0.1 0.1 0.01 0.1 0.01 0.01
NO3-N 1:5 (soil:water) extract	ppm	3.0	0.1
Phosphorus (NaHCO3 extracted)	ppm	3.9	0.1
K 1:5 (soil:water) extract	ppm	116	1

Page: 4 April 19, 2001 Pardall Hicks

Randall Hicks Sample I.D. AB23463 (continued)

TEST PARAMETER	UNITS	TEST RESULT	DETECTION
Texture of soil by feel Chloride in soil water extract Cation exchange capacity Extractable Sodium Extractable Potassium Extractable Calcium Extractable Magnesium Saturated paste percent water Potassium in sat. paste extract CaCO3 equivalents in soil- Soil gypsum by acetone precip	mg/Kg meq/100gr meq/100gr meq/100gr meq/100gr meq/100gr percent meq/L percent percent	clay 11817 30.8 24.8 2.28 23.2 6.54 67.53 3.59 1.60 Not detected	250 0.01 0.01 0.01 0.01 0.01 2.01 0.01 0.0

Sample comments:

Exchangeable Cations							
		meq/	100 gr				
Mg	Ca	Na	K				
4.9	17.5	7.0	2.0				

Client Code: SOILNONE Sample I.D. AB23464 Sample Description: Pit 2 0.5 - 1.0 Sample collector: R HICKSSample collection date: 04/02/01Lab submittal date: 04/04/01Time: 11:35 TEST DETECTION TEST UNITS PARAMETER RESULT LIMIT _____ pH of Soil Saturation Paste 7.33 Elect. Cond. of Soil Paste Extr. mmhos/cm 11.6 0.01 19.00 0.05 Magnesium (for SAR) meg/L 0.05 Calcium (for SAR)meq/L 53.60 (for SAR)-66.00 0.05 Sodium meg/L 10.95 0.01 Sodium Adsorption Ratio (SAR) 1 Calculated Exchangeable Na %-ESP 13.0 0.1 percent 0.01 Organic Matter 1.04 3.3 0.1 NO3-N 1:5 (soil:water) extract ppm 0.1 Phosphorus (NaHCO3 extracted) ppm 3.2 K 1:5 (soil:water) extract 58 1 ppm Texture of soil by feel clay 100 Chloride in soil water extract mg/Kg 4458 0.01 Cation exchange capacity meq/100gr 33.3 0.01 Extractable Sodium meg/100gr 6.91 Extractable Potassium meg/100gr 1.53 0.01 Extractable Calcium meq/100gr 25.8 0.01 meq/100gr 0.01 Extractable Magnesium 8.20

Page: 5

April 19, 2001 Randall Hicks Sample I.D. AB23464 (continued)

TEST	UNITS	TEST	DETECTION
PARAMETER		RESULT	LIMIT
Saturated paste percent water	percent	62.17	0.01
Potassium in sat. paste extract	meq/L	1.24	2.01
CaCO3 equivalents in soil-	percent	3.45	0.01
Soil gypsum by acetone precip	percent	Not detected	0.1

1

Sample comments:

	Ex	changeab)	le Cations
		meg/10	00 gr
Mg	Ca	Na	K
7.0	22.5	2.8	1.5

Sample I.D. AB23465 Client Code: SOILNONE Sample Description: Pit 22.5 - calicheSample collector: R HICKSSample collection date: 04/02/01Lab submittal date: 04/04/01Time: 11:35 _____ ____

TEST PARAMETER	UNITS	TEST RESULT	DETECTION
pH of Soil Saturation Paste Elect. Cond. of Soil Paste Extr.	mmhos/cm	7.48 8.59	0.01
Magnesium (for SAR)-	meg/L	15.70	0.05
Calcium (for SAR)-	meg/L	38.70	0.05
Sodium (for SAR)-	meg/L	49.00	0.05
Sodium Adsorption Ratio (SAR)	-	9.40	0.01
Calculated Exchangeable Na %-ESP		11.2	0.1
Organic Matter	percent	1.06	0.01
NO3-N 1:5 (soil:water) extract	ppm	3.4	0.1
Phosphorus (NaHCO3 extracted)	ppm	7.4	0.1
K 1:5 (soil:water) extract	ppm	37	1
Texture of soil by feel		clay	
Chloride in soil water extract	mg/Kg	3220	100
Cation exchange capacity	meg/100gr	32.8	0.01
Extractable Sodium	meq/100gr	5.48	0.01
Extractable Potassium	meq/100gr	1.27	0.01
Extractable Calcium	meq/100gr	23.4	0.01
Extractable Magnesium	meq/100gr	8.63	0.01
Saturated paste percent water	percent	64.81	0.01
Potassium in sat. paste extract	meq/L	0.79	2.01
CaCO3 equivalents in soil-	percent	3.55	0.01
Soil gypsum by acetone precip	percent	Not detected	0.1

<u>19/01 09:1</u> 2 2 505 646 5185	SWAT LABORATORY		Ø 008/011
Page: 6 April 19, 2001 Randall Hicks Sample I.D.	AB23465 (continued)		
Sample comments:			
Exchangeable Cations			
meq/100 gr Mg Ca Na K			
7.6 20.9 2.3 1.2	:		
Sample I.D. AB23466	Client Code: S	OTLNONE	
Sample Description: Pit 3	0 - 0.25		
Sample collector: R HICKS Lab submittal date: 04/04/0	Sample collect 1 Time: 11:35	ion date: 04/02	/01

TEST	UNITS		
TEST PARAMETER		TEST RESULT	DETECTION LIMIT
		RESULT	
PARAMETER		RESULT	
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste	Extr. mmhos/cm	RESULT 6.57	LIMIT
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)-	Extr. mmhos/cm meq/L	RESULT 6.57 4.39	LIMIT 0.01
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)- Calcium (for SAR)-	Extr. mmhos/cm meq/L meq/L	RESULT 6.57 4.39 3.73	LIMIT 0.01 0.05
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)-	Extr. mmhos/cm meq/L meq/L meq/L	RESULT 6.57 4.39 3.73 13.30	LIMIT 0.01 0.05 0.05
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)- Sodium Adsorption Ratio (SA	Extr. mmhos/cm meq/L meq/L meq/L MR)	RESULT 6.57 4.39 3.73 13.30 32.00	LIMIT 0.01 0.05 0.05 0.05
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)-	Extr. mmhos/cm meq/L meq/L meq/L MR)	RESULT 6.57 4.39 3.73 13.30 32.00 10.97	LIMIT 0.01 0.05 0.05 0.05 0.05 0.01
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)- Sodium Adsorption Ratio (SA Calculated Exchangeable Na	Extr. mmhos/cm meq/L meq/L MR) %-ESP percent	RESULT 6.57 4.39 3.73 13.30 32.00 10.97 13.0	LIMIT 0.01 0.05 0.05 0.05 0.01 0.1
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR) - Calcium (for SAR) - Sodium (for SAR) - Sodium Adsorption Ratio (SA Calculated Exchangeable Na Organic Matter NO3-N 1:5 (soil:water) extr	Extr. mmhos/cm meq/L meq/L meq/L %-ESP percent cact ppm	RESULT 6.57 4.39 3.73 13.30 32.00 10.97 13.0 1.38	LIMIT 0.01 0.05 0.05 0.05 0.01 0.1 0.01
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR) - Calcium (for SAR) - Sodium (for SAR) - Sodium Adsorption Ratio (SA Calculated Exchangeable Na Organic Matter	Extr. mmhos/cm meq/L meq/L meq/L %-ESP %-ESP percent cact ppm ed) ppm	RESULT 6.57 4.39 3.73 13.30 32.00 10.97 13.0 1.38 3.8	LIMIT 0.01 0.05 0.05 0.05 0.01 0.1 0.01 0.1
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR) - Calcium (for SAR) - Sodium (for SAR) - Sodium Adsorption Ratio (SA Calculated Exchangeable Na Organic Matter NO3-N 1:5 (soil:water) extr Phosphorus (NaHCO3 extracted	Extr. mmhos/cm meq/L meq/L meq/L %-ESP %-ESP percent cact ppm ed) ppm	RESULT 6.57 4.39 3.73 13.30 32.00 10.97 13.0 1.38 3.8 38.0 63 clay loam	LIMIT 0.01 0.05 0.05 0.05 0.01 0.1 0.1 0.1 1
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR) - Calcium (for SAR) - Sodium (for SAR) - Sodium Adsorption Ratio (SA Calculated Exchangeable Na Organic Matter NO3-N 1:5 (soil:water) extr Phosphorus (NaHCO3 extracted K 1:5 (soil:water) extr	Extr. mmhos/cm meq/L meq/L meq/L %-ESP percent cact ppm ed) ppm cact ppm	RESULT 6.57 4.39 3.73 13.30 32.00 10.97 13.0 1.38 3.8 38.0 63	LIMIT 0.01 0.05 0.05 0.05 0.01 0.1 0.1 0.1 0.1
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)- Sodium (for SAR)- Sodium Adsorption Ratio (SA Calculated Exchangeable Na Organic Matter NO3-N 1:5 (soil:water) extr Phosphorus (NaHCO3 extracted K 1:5 (soil:water) extr Texture of soil by feel Chloride in soil water extr Cation exchange capacity	Extr. mmhos/cm meq/L meq/L meq/L %-ESP fact ppm ed) ppm fact ppm fact mg/Kg meq/100gr	RESULT 6.57 4.39 3.73 13.30 32.00 10.97 13.0 1.38 3.8 38.0 63 clay loam 1361 30.6	LIMIT 0.01 0.05 0.05 0.05 0.01 0.1 0.1 0.1 1 50 0.01
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)- Sodium (for SAR)- Sodium Adsorption Ratio (SA Calculated Exchangeable Na Organic Matter NO3-N 1:5 (soil:water) extr Phosphorus (NaHCO3 extracted K 1:5 (soil:water) extr Texture of soil by feel Chloride in soil water extr	Extr. mmhos/cm meq/L meq/L meq/L %-ESP eact ppm ed) ppm eact ppm eact mg/Kg meq/100gr meq/100gr	RESULT 6.57 4.39 3.73 13.30 32.00 10.97 13.0 1.38 3.8 38.0 63 clay loam 1361 30.6 5.28	LIMIT 0.01 0.05 0.05 0.05 0.01 0.1 0.1 0.1 1 50 0.01 0.01 0.01
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)- Sodium Adsorption Ratio (SA Calculated Exchangeable Na Organic Matter NO3-N 1:5 (soil:water) extr Phosphorus (NaHCO3 extracted K 1:5 (soil:water) extr Texture of soil by feel Chloride in soil water extr Cation exchange capacity Extractable Sodium Extractable Potassium	Extr. mmhos/cm meq/L meq/L meq/L AR) *-ESP percent cact ppm ed) ppm cact ppm cact mg/Kg meq/100gr meq/100gr meq/100gr	RESULT 6.57 4.39 3.73 13.30 32.00 10.97 13.0 1.38 38.0 63 clay loam 1361 30.6 5.28 2.47	LIMIT 0.01 0.05 0.05 0.05 0.01 0.1 0.1 0.1 1 50 0.01 0.01 0.01 0.01 0.01
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)- Sodium Adsorption Ratio (SA Calculated Exchangeable Na Organic Matter NO3-N 1:5 (soil:water) extr Phosphorus (NaHCO3 extracted K 1:5 (soil:water) extr Texture of soil by feel Chloride in soil water extr Cation exchange capacity Extractable Sodium Extractable Potassium Extractable Calcium	Extr. mmhos/cm meq/L meq/L meq/L %-ESP ercent act ppm act ppm ract mg/Kg meq/100gr meq/100gr meq/100gr meq/100gr	RESULT 6.57 4.39 3.73 13.30 32.00 10.97 13.0 1.38 38.0 63 clay loam 1361 30.6 5.28 2.47 23.6	LIMIT 0.01 0.05 0.05 0.05 0.01 0.1 0.1 0.1 1 50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)- Sodium Adsorption Ratio (SA Calculated Exchangeable Na Organic Matter NO3-N 1:5 (soil:water) extr Phosphorus (NaHCO3 extracted K 1:5 (soil:water) extr Texture of soil by feel Chloride in soil water extr Cation exchange capacity Extractable Sodium Extractable Potassium	Extr. mmhos/cm meq/L meq/L meq/L MR) %-ESP percent cact ppm ed) ppm cact ppm cact mg/Kg meq/100gr meq/100gr meq/100gr meq/100gr	RESULT 6.57 4.39 3.73 13.30 32.00 10.97 13.0 1.38 3.8 38.0 63 clay loam 1361 30.6 5.28 2.47 23.6 5.11	LIMIT 0.01 0.05 0.05 0.05 0.01 0.1 0.1 0.1 1 50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)- Sodium Adsorption Ratio (SA Calculated Exchangeable Na Organic Matter NO3-N 1:5 (soil:water) extr Phosphorus (NaHCO3 extracted K 1:5 (soil:water) extr Texture of soil by feel Chloride in soil water extr Cation exchange capacity Extractable Sodium Extractable Potassium Extractable Calcium	Extr. mmhos/cm meq/L meq/L meq/L MR) %-ESP percent cact ppm ed) ppm cact ppm cact mg/Kg meq/100gr meq/100gr meq/100gr meq/100gr meq/100gr meq/100gr meq/100gr	RESULT 6.57 4.39 3.73 13.30 32.00 10.97 13.0 1.38 3.8 38.0 63 clay loam 1361 30.6 5.28 2.47 23.6 5.11 65.59	LIMIT 0.01 0.05 0.05 0.05 0.01 0.1 0.1 0.1 0.1 1 50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.1 0.1 0.1 0.01 0.1 0.01 0.1 0.
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)- Sodium Adsorption Ratio (SA Calculated Exchangeable Na Organic Matter NO3-N 1:5 (soil:water) extr Phosphorus (NaHCO3 extracted K 1:5 (soil:water) extr Texture of soil by feel Chloride in soil water extr Cation exchange capacity Extractable Sodium Extractable Potassium Extractable Calcium Extractable Magnesium Saturated paste percent wat Potassium in sat. paste extr	Extr. mmhos/cm meq/L meq/L meq/L meq/L AR) %-ESP percent cact ppm ed) ppm cact ppm cact mg/Kg meq/100gr meq/100gr meq/100gr meq/100gr meq/100gr meq/100gr meq/100gr meq/100gr meq/100gr	RESULT 6.57 4.39 3.73 13.30 32.00 10.97 13.0 1.38 3.8 38.0 63 clay loam 1361 30.6 5.28 2.47 23.6 5.11 65.59 1.17	LIMIT 0.01 0.05 0.05 0.05 0.01 0.1 0.1 0.1 0.1 1 50 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.1 0.1 0.1 0.1 0.01 0.1 0.
PARAMETER pH of Soil Saturation Paste Elect. Cond. of Soil Paste Magnesium (for SAR)- Calcium (for SAR)- Sodium (for SAR)- Sodium Adsorption Ratio (SA Calculated Exchangeable Na Organic Matter NO3-N 1:5 (soil:water) extr Phosphorus (NaHCO3 extracted K 1:5 (soil:water) extr Texture of soil by feel Chloride in soil water extr Cation exchange capacity Extractable Sodium Extractable Potassium Extractable Calcium Extractable Magnesium Saturated paste percent wat	Extr. mmhos/cm meq/L meq/L meq/L meq/L AR) %-ESP percent cact ppm ed) ppm cact ppm cact ppm cact mg/Kg meq/100gr meq/100gr meq/100gr meq/100gr ter percent tract meg/L percent	RESULT 6.57 4.39 3.73 13.30 32.00 10.97 13.0 1.38 3.8 38.0 63 clay loam 1361 30.6 5.28 2.47 23.6 5.11 65.59	0.01 0.05 0.05 0.05 0.01 0.1 0.1 0.1 1 50 0.01 0.01

Sample comments:

Exchangeable Cations ------ meg/100 gr ------Mg Ca Na K 4.9 22.7 3.2 2.4

09:12 🕿 505 646 5185 SW	AT LABORATORY		∅ 009/011
7 19, 2001			
e Description: Pit 3 $0.25 - 0$	ample collection		/01
ETER	UNITS	TEST RESULT	DETECTION LIMIT
Soil Saturation Paste		6.53	
. Cond. of Soil Paste Extr.	mmhos/cm	3.05	0.01
	meg/L	0.81	0.01
um (for SAR)-	meq/L	3.01	0.01
m (for SAR)-	meg/L	28.60	0.01
m Adsorption Ratio (SAR)		20.69	0.01
lated Exchangeable Na %-ESP		22.6	0.1
	percent	1.03	0.01
•	ppm	13.7	0.1
	ppm	56.2	0.1
1:5 (soil:water) extract	ppm	114	1
re of soil by feel	• •	clay loam	
ide in soil water extract	mg/Kg	816	50
n exchange capacity	meg/100gr	36.2	0.01
ctable Sodium	meq/100gr	6.22	0.01
ctable Potassium	meq/100gr	2.67	0.01
ctable Calcium	meg/100gr	15.9	0.01
ctable Magnesium	meq/100gr	3.76	0.01
ated paste percent water	percent	57.84	0.01
sium in sat. paste extract	meq/L	1.10	2.01
equivalents in soil-	percent	0.38	0.01
gypsum by acetone precip	percent	Not detected	0.1
	percent	0.38	0.01

meq/100 gr						
Mg	Ca	Na	ĸ			
3.7	15.7	4.6	2.6	ļ		

Sample I.D. AB23468	Client Code: SOILNONE			
Sample Description: Pit 3 0.5 -	1.0			
Sample collector: R HICKS	Sample collection date: 04/02/01			
Lab submittal date: 04/04/01	Time: 11:35			
TEST	UNITS	TEST	DETECTION	
PARAMETER		RESULT	LIMIT	
pH of Soil Saturation Paste Elect. Cond. of Soil Paste Extr. Magnesium (for SAR)- Calcium (for SAR)-	mmhos/cm meq/L meq/L	6.62 4.69 6.49 24.80	0.01 0.05 0.05	

Page: 8 April 19, 2001 Randall Hicks

Sample I.D. AB23468 (continued)

i.

TEST UNITS PARAMETER Sodium (for SAR)- meg/L Sodium Adsorption Ratio (SAR) Calculated Exchangeable Na %-ESP Organic Matter percent	TEST RESULT 20.10 5.08 5.9 1.72	DETECTION LIMIT 0.05 0.01 0.1
Sodium Adsorption Ratio (SAR) Calculated Exchangeable Na %-ESP	5.08 5.9	0.01 0.1
NO3-N 1:5 (soil:water) extractppmPhosphorus (NaHCO3 extracted)ppmK1:5 (soil:water) extractppmTexture of soil by feelmg/KgCation exchange capacitymeq/100grExtractable Sodiummeq/100grExtractable Potassiummeq/100grExtractable Calciummeq/100grExtractable Magnesiummeq/100grSaturated paste percent waterpercentPotassium in sat. paste extractmeq/LSoil gypsum by acetone precippercent	6.8 14.7 81 clay 1567 38.6 3.03 2.54	0.01 0.1 0.1 1 50 0.01 0.01 0.01 0.01 0.

Sample comments:

Exchangeable Cations								
~	meg/100 gr							
Mg	Ca	Na	K					
6.0	26.5	1.6	2.4					
0.0	20.3	T.0	6.4					

Sample I.D. AB23469 Sample Description: Pit 3 2.5 - c Sample collector: R HICKS Lab submittal date: 04/04/01		SOILNONE tion date: 04/0)2/01
TEST	UNITS	TEST	DETECTION
PARAMETER		RESULT	LIMIT
pH of Soil Saturation Paste	:	7.40	
Elect. Cond. of Soil Paste Extr.	mmhos/cm	3.68	0.01
Magnesium (for SAR)-	meq/L	9.87	0.05
Calcium (for SAR)-	meg/L	34.00	0.05
Sodium (for SAR)-	meg/L	9.04	0.05
Sodium Adsorption Ratio (SAR)		1.93	0.01
Calculated Exchangeable Na &-ESP	1	1.6	0.1
Organic Matter	percent	1.48	0.01
NO3-N 1:5 (soil:water) extract	ppm	4.8	0.1
Phosphorus (NaHCO3 extracted)	ppm	2.1	0.1
K 1:5 (soil:water) extract	ppm	76	1
Texture of soil by feel		clay loam	

04/19/01 09:13	C 505	646	5185	SWAT
----------------	--------------	-----	------	------

WAT LABORATORY

011/011

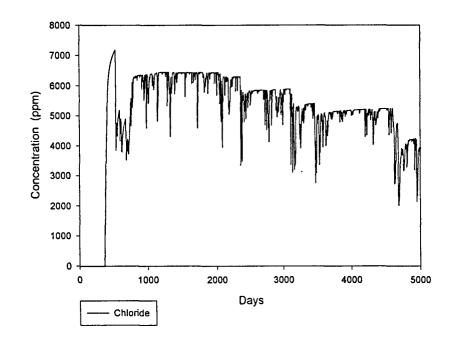
Page: 9 April 19, 2001 Randall Hicks Sample I.D. AB23469 (continued)

TEST Parameter	UNITS	TÉST RESULT	DETECTION LIMIT
Chloride in soil water extract	mg/Kg	692	10
Cation exchange capacity	meg/100gr	35.8	0.01
Extractable Sodium	meg/100gr	1.27	0.01
Extractable Potassium	meg/100gr	2.20	0.01
Extractable Calcium	meg/100gr	29.0	0.01
Extractable Magnesium	meg/100gr	7.89	0.01
Saturated paste percent water	percent	58.37	0.01
Potassium in sat. paste extract	meq/L	1.07	2.01
CaCO3 equivalents in soil-	percent	1.62	0.01
Soil gypsum by acetone precip	percent	Not detected	0.1

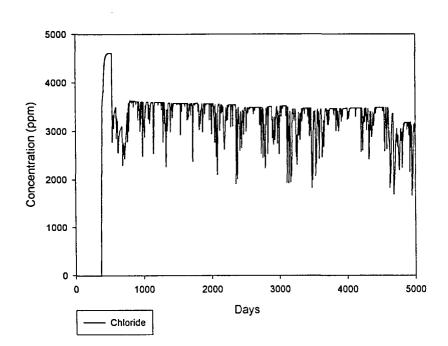
Sample comments:

s

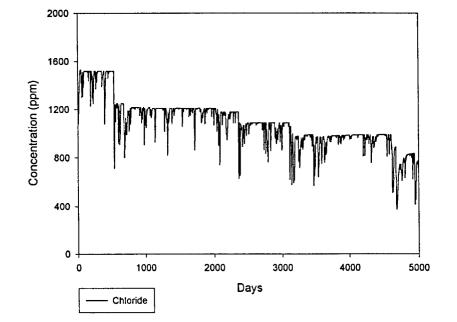
		Cations			
Mg	Ca	Na	ĸ		
7.3	27.0	0.7	2.1)


Please advise should you have questions concerning these data.

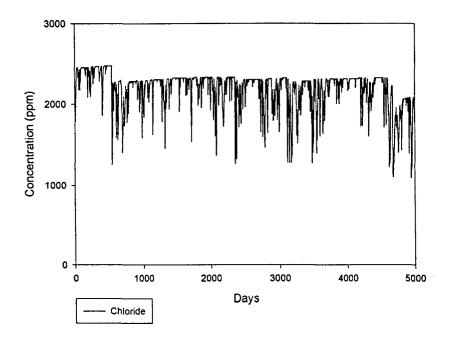
Respectfully submitted,


and www her but for

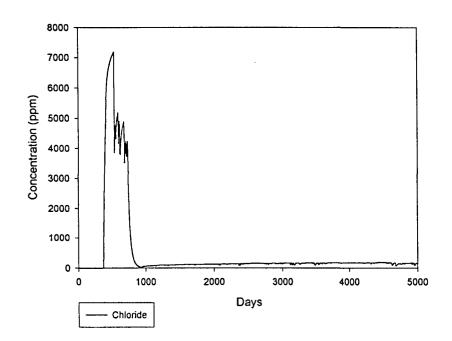
Andrew Lee Bristol Laboratory Manager (505)646-4422

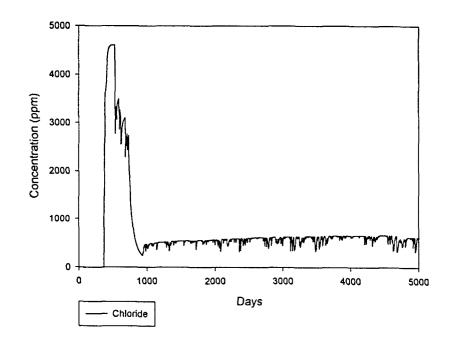

APPENDIX F

Root Zone Concentration D = 20 cm Without Restoration



Root Zone Concentration D = 200 cm Without Restoration


Root Zone oncentration D = 20 cm With Restoration - Mechanical Removal (60 cm soil)


Root Zone Concentration D = 200 cm With Restoration - Mechanical Removal (60 cm soil)

-

Root Zone Concentration D = 20 cm With Restoration - Soil Leaching (100 cm water)

Root Zone Concentration D = 200 cm With Restoration - Soil Leaching (100 cm water)