

REPORTS

DATE: 0CT 1995

2R-6

Remediation Systems Operations 1995 Third Quarterly Report

Amoco Pipeline Station Artesia, New Mexico

Prepared For: AMOCO CORPORATION One Mid America Plaza Suite 300 Oakbrook Terrace, Illinois 60181

RECEIVED

MAY 01 1996

Environmental Bureau Oil Conservation Division

Prepared By: CLAYTON MITTELHAUSER 1240 Iroquois Drive, Suite 206 Naperville, Illinois 60563 708-369-0201

Project 2775.00-02

October 26, 1995

Clayton *M*ittelhauser

TABLE OF CONTENTS

Sectio	<u>on</u>		-	Page
1.0	INTRODUCTION		• • • • • • •	1-1
2.0	LABORATORY RESULTS 2.1 Monthly BETX Results for	or the Influent and		2-1
	2.2 Effluent to the Air Strippe 2.2 Ouarterly BETX Results f	or Monitoring Wells with No	Free	2-1
	Product		 . <i>.</i>	2-2 2-2
3.0	PRODUCT THICKNESS		• • • • • • •	3-1
4.0	FLUIDS PUMPED			4-1
5.0	SOIL REMEDIATION	• • • • • • • • • • • • • • • • • • • •		5-1

FIGURES

1	Free	Product	Thickness	Map,	October	2,	1995
---	------	---------	-----------	------	---------	----	------

- 2 Free Product Thickness Map, June 16, 1995
- 3 Free Product Thickness Map, February 9, 1995

TABLES

- 1 Monthly BETX Results for the Influent to and Effluent from the Air Stripper
- 2 Quarterly BETX Results for Monitoring Wells with No Free Product
- 3 Monitoring Well Water / Product Levels

APPENDICES

Appendix A: Laboratory Results:

- Air Stripper System (BETX)
- Monitoring Wells (BETX)
- Influent Water Quality (Chemical Analyses)

Appendix B: Laboratory Results

Soils Remediation Area

Remediation Systems 1995 Third Quarterly Report Amoco Pipeline Station - Artesia, New Mexico 2775RD03.KDL (10-26-95/SLK)

ii

1.0 INTRODUCTION

This report summarizes the results of the remediation system operations for the period of July 1995 through September 1995, plus additional results received in October 1995.

The primary objectives of the remediation system continue to have been met since the system installation, namely:

- Approximately 101 gallons of product have been recovered.
- No benzene, ethylbenzene, toluene, and xylene (BETX) or free product has been observed in the downgradient wells.
- The air stripper is operating at greater than 99% efficiency.

Installation of a prefilter and sequestering agent during the first half of April reduced the maintenance requirements of the system; however, fouling of the air stripper unit with calcium carbonate continues to create operational difficulties. Maintenance of the air stripper system discharge pump, caused by buildup of the calcium carbonate, resulted in system shutdowns on three occasions during third quarter operations. Discharge pump maintenance issues included a failed pump shaft seal, a failed pump head seal, and a seized pump head which resulted in a burned out pump motor.

Groundwater quality samples were taken in September from the west sump of the interception trench. Data from the water quality sampling is currently being used to specify a sequestering agent for the groundwater treatment system. While the installation of the ScaltecTM has reduced the amount of calcium carbonate precipitation, additional measures are under consideration to improve system performance and reduce maintenance requirements.

Remediation Systems 1995 Third Quarterly Report Amoco Pipeline Station - Artesia, New Mexico 2775RD03.KDL (10-26-95/SLK) Impacted soils in the treatment system berm area from the July product recovery tank release (discussed in the Remediations Systems Operations 1995 Second Quarterly Report) were placed in the landfarm area for treatment. Clean backfill was placed in the excavated areas. A high level shut-off switch was installed in the product recovery tank to eliminate the possibility of future releases. The high level shut off switch is designed to shut down the recovery pumps in the interception trench upon activation.

Damage to the interception trench diversion berm and recovery sump areas was repaired during the third quarter. Another flood event in Scoggin Draw overtopped the diversion berm in early September, necessitating additional repairs to the diversion berm.

System maintenance was taken over by Sweatt Construction Company (Sweatt) in late August, upon receipt of the proper OSHA training and certifications. Sweatt assisted Mittelhauser Corporation (Mittelhauser) in the installation of the remediation system and is intimately familiar with the operation of the system. Utilization of Sweatt for routine maintenance should significantly reduce the number of problems encountered during future operation.

2.0 LABORATORY RESULTS

2.1 MONTHLY BETX RESULTS FOR THE INFLUENT AND EFFLUENT TO THE AIR STRIPPER

BETX results for the influent to the air stripper and the effluent from the air stripper are presented in Table 1. All Figures and Tables are presented at the end of the text before the Appendices. Analytical results for the July sampling event were included in the Remediation Systems Operations 1995 Second Quarterly Report. Analytical results for the samples taken on October 12, 1995 are included in Appendix A of this report. Note that all effluent results meet the regulatory requirements and demonstrate that the system is performing as designed.

Sampling results from the August sampling event are not reported since unexpected high levels of calcium carbonate produced unrepresentative results. We are now using inspection sheets, that will be filled out twice per week by Sweatt, to alert us in advance of potential operational problems. In September, the system was shut down due to failure of the discharge pump, as stated in the introduction. Also, as stated earlier, we are investigating new systems to reduce or eliminate the calcium carbonate problem.

Based on the results shown in Table 1 the average removal efficiencies of the air stripper have been:

Benzene	99.9%
Ethylbenzene	99.6%
Toluene	99.7%
Xylene	99.7%

Remediation Systems 1995 Third Quarterly Report Amoco Pipeline Station - Artesia, New Mexico 2775RD03.KDL (10-26-95/SLK)

2.2 QUARTERLY BETX RESULTS FOR MONITORING WELLS WITH NO FREE PRODUCT

The quarterly BETX results for monitoring wells which did not contain free product are presented in Table 2. The analytical results are presented in Appendix A for the samples taken on October 12, 1995. Results for samples taken on November 25 and December 28 1994 were provided in the Interception Trench System Installation Report. Results for samples taken on February 16, 1995 were provided in the Remediation Systems Operations Quarterly Report, dated May 1995. Results for samples taken on June 16, 1995 were provided in the Remediation Systems Operations 1995 Second Quarterly Report, dated August 1995.

The two monitoring wells south of the interception trench (monitoring wells 11 and 14) continue to show no indication of free product or BETX.

2.3 OTHER LABORATORY RESULTS

Due to the fouling problems encountered, additional water quality analyses were performed on the influent (from the west sump) to the air stripper. These results are included in Appendix A. The results are being used to evaluate alternate systems to reduce the calcium carbonate problem.

3.0 PRODUCT THICKNESS

Product thickness measurements were taken in the monitoring wells during the October sampling event. Table 3 contains product thickness information. The free product thickness map is shown in Figure 1. The product thickness map from the June sampling event is included as Figure 2, and the map from February is included as Figure 3 for comparison. Monitoring well MW-10 is showing a downward trend in product thickness levels from the June sampling event. Monitoring well MW-2 is showing a marked increase in product level thickness. A total product thickness of 4.17 feet was observed during the October sampling event, compared with 0.82 feet total product thickness measurement during the June sampling event. A product bail down/recovery test is scheduled for November. Once initial water and product levels have been recorded for each monitoring well, product will removed from the monitoring wells. Product/water levels in each well will be taken periodically over the next quarter.

Remediation Systems 1995 Third Quarterly Report Amoco Pipeline Station - Artesia, New Mexico 2775RD03.KDL (10-26-95/SLK)

3-1

4.0 FLUIDS PUMPED

During the Third quarter of operation, it is estimated that the separation and treatment system recovered, treated, and discharged approximately 17,000 gallons of water. Scale buildup in the flowmeter vane due to the excessively high alkalinity and TDS values of the groundwater continues to create operational problems. We are currently investigating additional methods over and above installation of the Scaltec[™] System to reduce this problem. As a result, exact discharge values for the third quarter are unavailable.

Free product recovery by the separation and treatment system is estimated at 1 gallon for the third quarter. The amount recovered is based on product level measurements taken in the product recovery tank. Product recovery enhancements will be pursued based on the results of the product bail down tests.

Remediation Systems 1995 Third Quarterly Report Amoco Pipeline Station - Artesia, New Mexico 2775RD03.KDL (10-26-95/SLK)

4-1

5.0 SOIL REMEDIATION

The soils were disked on the 5th of July. All samples were taken approximately half way through the depth of the disked area. Samples of soils were taken on July 28, 1995. The results are contained in Appendix B and summarized below:

	TPH (Modified Method 8015)					
Designation	As Gas (mg/kg)	As Diesel (mg/kg)	As Oil (mg/kg)			
SS #1	< 100	3,410	80,200			
SS #2	< 10	< 10	6,460			
SS #3	< 10	< 10	15,700			
Average	< 100	1,149	34,130			

NOTE: Cleanup objective is 5,000 mg/kg TPH.

The analytical results from the samples taken after the disking in October will be included in the next quarterly report. Three diskings occurred between the results presented above and the October 1995 sampling (in August, September, and October).

The cleanup objective has been met for TPH as gas and diesel, but not as oil. The average TPH value as oil, however, has decreased from 44,333 (sample taken May 3, 1995) to 34,130 (sample taken July 28, 1995). This 23 percent reduction in average TPH values was achieved after only two diskings (May and July).

Remediation Systems 1995 Third Quarterly Report Amoco Pipeline Station - Artesia, New Mexico 2775RD03.KDL (10-26-95/SLK)

5-1

j

1.1.1

1.11

11

FIGURES

Remediation Systems 1995 Third Quarterly Report Amoco Pipeline Station - Artesia, New Mexico 2775RD03.KDL (10-26-95/SLK)

3 i

Clayton \mathcal{M} ittelhauser

l i

TABLES

Remediation Systems 1995 Third Quarterly Report Amoco Pipeline Station - Artesia, New Mexico 2775RD03.KDL (10-26-95/SLK) TABLE 1

Monthly BETX Results for the Influent To and Effluent From the Air Stripper

Amoco Pipeline Company Artesia, New Mexico

			INFLUENT			
Sample Date:	11/25/94	12/21/94	02/28/95	04/12/95	07/12/95	10/12/95
Benzene	2,970	3,070	3,060	3,300	2,700	1,900
Ethylbenzene	364	338	442	476	380	250
Toluene	808	1,220	1,350	1,130	420	190
Xylene	1,770	2,130	2,750	2,500	1,900	1,100
			EFFLUENT			
Sample Date:	11/25/94	12/21/94	02/28/95	04/12/95	07/12/95	10/12/95
Benzene	1.8	6.6	3.3	3.6	4.6	<1.0
Ethylbenzene	<1.0	<1.0	1.4	2.8	1.5	<1.0
Toluene	<1.0	5.1	2.2	2.8	1.1	<1.0
Xylene	<1.0	5.7	6.6	14.5	6.5	<1.0

NOTES: 1. All results are in ug/L.

2. Permit effluent limits are benzene (10 ug/L), ethylbenzene (750 ug/L), xylene (620 ug/L), and toluene (750 ug/L).

 $Clayton \, \mathcal{M} \text{ittelhauser}$

Clayton ENVIRONMENTAL CONSULTANTS

2775TL04.WK1/P64661/HMM/BDP (10-19-95/BJR)

TABLE 2

Quarterly BETX Results for Monitoring Wells With No Free Product

		WELL 4	r		
Sample Date:	11/25/94	12/22/94	02/16/95	06/16/95	10/02/95
Benzene	<1	<1	<1	54.4	9.8
Ethylbenzene	<1	<1	<1	2.5	<1
Toluene	<1	<1	<1	<1	<1
Xylene	<1	<1	<1	6.7	<1
		WELL 6			
Sample Date:	11/25/94	12/21/94	02/16/95	06/16/95	10/02/95
Benzene	FREE	FREE	2.2	FREE	3.1
Ethylbenzene	PRODUCT	PRODUCT	<1	PRODUCT	<1
Toluene	PRESENT	PRESENT	<1	PRESENT	<1
Xylene			<1		2.5
		WELL 7			
Sample Date:	11/25/94	12/22/94	02/16/95	06/16/95	10/02/95
Benzene	<1	1590	846	3100	880
Ethylbenzene	<1	39	20.9	58.7	17
Toluene	<1	<10	<10	3.6	<10
Xylene	<u><1</u>	86.5	52.7	140	35
		 Contraction of the second se Second second se			
		WELL 1	1		
Sample Date:	11/17/94	WELL 1 12/22/94	102/16/95	06/14/95	10/02/95
Sample Date: Benzene	<u>11/17/94</u> <1	WELL 1 12/22/94 <1	1 02/16/95 <1	06/14/95	10/02/95 <1
Sample Date: Benzene Ethylbenzene	11/17/94 <1 <1	WELL 1 12/22/94 <1 <1	1 02/16/95 <1 <1	06/14/95 <1 <1	10/02/95 <1 <1
Sample Date: Benzene Ethylbenzene Toluene	11/17/94 <1 <1 <1 <1	WELL 1 12/22/94 <1 <1 <1 <1	1 02/16/95 <1 <1 <1 <1	06/14/95 <1 <1 <1 <1	10/02/95 <1 <1 <1 <1
Sample Date: Benzene Ethylbenzene Toluene Xylene	11/17/94 <1 <1 <1 <1 <1	WELL 1 12/22/94 <1 <1 <1 <1 <1 <1	1 02/16/95 <1 <1 <1 <1 <1 <1	06/14/95 <1 <1 <1 <1 <1 <1	10/02/95 <1 <1 <1 <1 <1 <1
Sample Date: Benzene Ethylbenzene Toluene Xylene	11/17/94 <1 <1 <1 <1 <1	WELL 1 12/22/94 <1 <1 <1 <1 <1 WELL 12	1 02/16/95 <1 <1 <1 <1 <1	06/14/95 <1 <1 <1 <1 <1	10/02/95 <1 <1 <1 <1 <1 <1
Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date:	11/17/94 <1 <1 <1 <1 <1 11/17/94	WELL 1 12/22/94 <1 <1 <1 <1 <1 WELL 12 12/22/94	1 02/16/95 <1 <1 <1 <1 : : 02/16/95	06/14/95 <1 <1 <1 <1 <1 06/16/95	10/02/95 <1 <1 <1 <1 <1 10/02/95
Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date: Benzene	<u>11/17/94</u> <1 <1 <1 <1 <1 <u>11/17/94</u> 75	WELL 1 12/22/94 <1 <1 <1 <1 <1 WELL 12 12/22/94 5.6	1 02/16/95 <1 <1 <1 <1 1 02/16/95 <1	06/14/95 <1 <1 <1 <1 <1 06/16/95 <1	10/02/95 <1 <1 <1 <1 <1 <1 10/02/95 <1
Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date: Benzene Ethylbenzene	<u>11/17/94</u> <1 <1 <1 <1 11/17/94 <u>75</u> 1	WELL 1 12/22/94 <1 <1 <1 <1 <1 UELL 12 12/22/94 5.6 <1	1 02/16/95 <1 <1 <1 <1 <1 2 02/16/95 <1 <1 <1	06/14/95 <1 <1 <1 <1 <1 06/16/95 <1 <1	10/02/95 <1 <1 <1 <1 <1 <1 10/02/95 <1 <1 <1
Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date: Benzene Ethylbenzene Toluene	<u>11/17/94</u> <1 <1 <1 <1 <u>11/17/94</u> 75 <u>1</u> 1.1	WELL 1 12/22/94 <1 <1 <1 <1 UELL 12 12/22/94 5.6 <1 <1 <1	1 02/16/95 <1 <1 <1 <1 : : : : : : : : : : : : : :	06/14/95 <1 <1 <1 <1 <1 06/16/95 <1 <1 <1 <1	10/02/95 <1 <1 <1 <1 <1 <1 10/02/95 <1 <1 <1 <1
Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date: Benzene Ethylbenzene Toluene Xylene	<u>11/17/94</u> <1 <1 <1 <1 <u>11/17/94</u> 75 <u>1</u> 1.1 1.1	WELL 1 12/22/94 <1 <1 <1 <1 WELL 12 12/22/94 5.6 <1 <1 <1 <1 <1	1 02/16/95 <1 <1 <1 <1 2 02/16/95 <1 <1 <1 <1 <1 <1 <1	06/14/95 <1 <1 <1 <1 <1 06/16/95 <1 <1 <1 <1 <1 <1 <1	10/02/95 <1 <1 <1 <1 <1 10/02/95 <1 <1 <1 <1 <1 <1
Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date: Benzene Ethylbenzene Toluene Xylene	11/17/94 <1 <1 <1 <1 11/17/94 75 1 1.1 1.1 1	WELL 1 12/22/94 <1 <1 <1 <1 WELL 12 12/22/94 5.6 <1 <1 <1 <1 WELL 14	1 02/16/95 <1 <1 <1 <1 : 02/16/95 <1 <1 <1 <1 <1 <1	06/14/95 <1 <1 <1 <1 <1 06/16/95 <1 <1 <1 <1 <1 <1	10/02/95 <1 <1 <1 <1 <1 10/02/95 <1 <1 <1 <1 <1 <1 <1
Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date:	11/17/94 <1 <1 <1 <1 11/17/94 75 1 1.1 1.1 1.1 1 11/17/94	WELL 1 12/22/94 <1 <1 <1 <1 WELL 12 12/22/94 5.6 <1 <1 <1 <1 <1 WELL 14 12/22/94	1 02/16/95 <1 <1 <1 <1 2 02/16/95 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	06/14/95 <1 <1 <1 <1 <1 06/16/95 <1 <1 <1 <1 <1 <1 <1 <1 <1 06/16/95	10/02/95 <1 <1 <1 <1 <1 10/02/95 <1 <1 <1 <1 <1 <1 <1 10/02/95
Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date: Benzene	<u>11/17/94</u> <1 <1 <1 <1 11/17/94 <u>11/17/94</u> <u>11/17/94</u> <1	WELL 1 12/22/94 <1 <1 <1 <1 UELL 12 12/22/94 5.6 <1 <1 <1 UELL 14 12/22/94 <1	1 02/16/95 <1 <1 <1 <1 2 02/16/95 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	06/14/95 <1 <1 <1 <1 06/16/95 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	10/02/95 <1 <1 <1 <1 <1 10/02/95 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date: Benzene Ethylbenzene	11/17/94 <1 <1 <1 <1 11/17/94 75 1 1.1 1 11/17/94 <1 <1 <1 <1 <1 <1 <1 <1	WELL 1 12/22/94 <1 <1 <1 <1 WELL 12 12/22/94 5.6 <1 <1 <1 WELL 14 12/22/94 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1 02/16/95 <1 <1 <1 <1 2 02/16/95 <1 <1 <1 <1 02/16/95 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	06/14/95 <1 <1 <1 <1 <1 06/16/95 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	10/02/95 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date: Benzene Ethylbenzene Toluene Xylene Sample Date: Benzene Ethylbenzene Ethylbenzene Toluene	11/17/94 <1 <1 <1 <1 11/17/94 75 1 1.1 1 11/17/94 <1 <1 <1 <1 <1 <1 <1 <1	WELL 1 12/22/94 <1 <1 <1 <1 WELL 12 12/22/94 5.6 <1 <1 <1 <1 WELL 14 12/22/94 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1 02/16/95 <1 <1 <1 <1 2 02/16/95 <1 <1 <1 <1 02/16/95 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	06/14/95 <1 <1 <1 <1 <1 06/16/95 <1 <1 <1 06/16/95 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	10/02/95 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

Amoco Pipeline Company Artesia, New Mexico

NOTE: All results are in ug/l.

TABLE 3

Monitoring Well Water / Product Levels

Amoco Pipeline Company – Artesia, New Mexico

WELL IDENTIFICATION	DATE	DEPTH TO PRODUCT (feet)	DEPTH TO WATER (feet)	PRODUCT LEVEL THICKNESS (feet)
MW-1	05/21/93 11/17/94 02/09/95 06/16/95 10/02/95	17.54 18.02 19.15 SKIM	20.73 17.56 18.05 19.21 16.48	0.21 0.02 0.03 0.06 SKIM
MW-2	05/21/93 11/17/94 02/09/95 06/16/95 10/02/95	23.28 23.98 25.63 22.01	27.56 26.67 26.50 26.45 26.18	1.75 3.39 2.52 0.82 4.17
MW-3	05/21/93 11/17/94 02/09/95 06/16/95 10/02/95	13.07 13.75 15.20 10.69	17.81 13.65 14.32 15.84 11.43	1.36 0.58 0.57 0.64 0.74
MW-4	11/17/94	NONE	28.28	NONE
	02/09/95	NONE	28.51	NONE
	06/16/95	NONE	29.58	NONE
	10/02/95	NONE	24.42	NONE
MW-5	11/17/94	16.22	24.19	7.97
	02/09/95	16.84	24.85	8.01
	06/16/95	19.44	21.14	1.70
	10/02/95	16.19	17.85	1.66
MW-6	11/17/94	TRACE	14.53	TRACE
	02/09/95	NONE	15.02	NONE
	06/16/95	16.24	16.27	0.03
	10/02/95	NONE	13.55	NONE
MW-7	11/17/94	NONE	34.33	NONE
	02/09/95	NONE	34.67	NONE
	06/16/95	NONE	35.61	NONE
	10/02/95	NONE	33.79	NONE
MW-8	11/17/94	13.69	14.95	1.26
	02/09/95	14.46	15.02	0.56
	06/16/95	15.50	16.41	0.91
	10/02/95	13.03	13.45	0.42
MW-9	11/17/94	23.07	23.10	0.03
	02/09/95	TRACE	23.41	TRACE
	06/16/95	TRACE	24.65	TRACE
	10/02/95	SKIM	20.73	SKIM

2775TL06.WK1/HMM (10-20-95/SLK) - Page 1 of 2

11

11

TABLE 3

Monitoring Well Water / Product Levels

Amoco Pipeline Company – Artesia, New Mexico

WELL IDENTIFICATION	DATE	DEPTH TO PRODUCT (feet)	DEPTH TO WATER (feet)	PRODUCT LEVEL THICKNESS (feet)
MW-10	11/17/94	19.02	21.24	2.22
	02/09/95	19.74	22.36	2.62
	06/16/95	20.97	23.30	2.33
	10/02/95	18.49	19.55	1.06
MW-11	11/17/94	NONE	19.34	NONE
	02/09/95	NONE	19.61	NONE
	06/16/95	NONE	20.08	NONE
	10/02/95	NONE	19.74	NONE
MW-12	11/17/94	NONE	16.47	NONE
	02/09/95	NONE	16.78	NONE
	06/16/95	NONE	17.28	NONE
	10/02/95	NONE	16.03	NONE
MW-13	11/17/94	20.41	20.49	0.08
	02/09/95	20.84	20.87	0.03
	06/16/95	21.35	21.40	0.05
	10/02/95	19.35	19.44	0.09
MW-14	11/17/94	NONE	18.11	NONE
	02/09/95	NONE	18.45	NONE
	06/16/95	NONE	18.93	NONE
	10/02/95	NONE	18.63	NONE

Clayton \mathcal{M} ittelhauser

APPENDIX A

Laboratory Results

- BETX Results for the Influent to and Effluent from the Air Stripper Samples Taken 10/12/95.
- BETX Results for Monitoring Wells 4, 6, 7, 11, 12, and 14 -Samples Taken 10/02/95.
- Chemical analyses on the influent to the treatment system. Sample taken 09/26/97

Remediation Systems 1995 Third Quarterly Report Amoco Pipeline Station - Artesia, New Mexico 2775RD03.KDL (10-26-95/SLK)

Mr. Hank Mittelhauser CLAYTON/MITTELHAUSER 1240 Iroquois Drive Suite 206 Naperville, IL 60563

10/19/1995

NET Job Number: 95.08101

IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130 A2LA Cert. No.: 0453-01

Enclosed is the Analytical and Quality Control reports for the following samples submitted to Bartlett Division of NET, Inc. for analysis.

Project Description: Amoco Pipeline Co-Artesia Station 10195

Sample Number	Sample Description	Date Taken	Date Received
325983	Influent; Grab	10/12/1995	10/13/1995
325984	Effluent; Grab	10/12/1995	10/13/1995
325985	Trip Blank	10/12/1995	10/13/1995

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. These results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Procedures used follow NET Standard Operating Procedures which reference the methods listed on your report. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

This Quality Control report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

Approved by:

Mary Pearson Project Manager

ANALYTICAL REPORT

10/19/1995

Sample No. : 325983

NET Job No.: 95.08101

Sample Description:

Mr. Hank Mittelhauser

CLAYTON/MITTELHAUSER 1240 Iroquois Drive

Naperville, IL 60563

Suite 206

Influent; Grab Amoco Pipeline Co-Artesia Station 10195

Date Taken: 10/12/1995 Time Taken: 08:38 IEPA Cert. No. 100221 Date Received: 10/13/1995 Time Received: 10:10 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Nethod PQL	Analyst	Batch No. Prep/Run	Analytical Method
JST VOLATILES 8240 - AQUEOUS	\$						
Benzene	1,900	ug/L	10/18/1995	1.0	out	1212	8240 (1)
Ethyl Benzene	250	ug/L	10/18/1995	1.0	out	1212	8240 (1)
Toluene	190	ug/L	10/18/1995	1.0	out	1212	8240 (1)
Xvlenes, Total	1,100	ug/L	10/18/1995	1.0	out	1212	8240 (1)
Surr: Toluene-d8	101.0	x	10/18/1995	88-110	out	1212	8240 (1)
Surr: Bromofiuarobenzene	111.0	x	10/18/1995	86-115	out	1212	8240 (1)
Surr: 1.2-Dichloroethane-d4	80.0	x	10/18/1995	76-114	out	1212	8240 (1)

S : VOC analysis was sub-contracted to the NET Rockford Division.

Page 2

ANALYTICAL REPORT

Mr. Hank Mittelhauser CLAYTON/MITTELHAUSER 1240 Iroquois Drive Suite 206 Naperville, IL 60563 10/19/1995

Sample No. : 325984

NET Job No.: 95.08101

Sample Description: Effluent; Grab Amoco Pipeline Co-Artesia Station 10195

Date Taken: 10/12/1995 Time Taken: 08:38 IEPA Cert. No. 100221 Date Received: 10/13/1995 Time Received: 10:10 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Satch No. Prep/Run	Analytical Method
UST VOLATILES 8240 - AQUEOUS	s						
Benzene	<1.0	ug/L	10/18/1995	1.0	out	1212	8240 (1)
Ethyl Benzene	<1.0	ug/L	10/18/1995	1.0	out	1212	8240 (1)
foluene	<1.0	ug/L	10/18/1995	1.0	out	1212	8240 (1)
Xylenes, Total	<1.0	սց/Լ	10/18/1995	1.0	out	1212	8240 (1)
Surr: Toluene-d8	98.0	x	10/18/1995	88-110	out	1212	8240 (1)
Surr: Bromofluorobenzene	111.0	x	10/18/1995	86-115	out	1212	8240 (1)
Surr: 1,2-Dichloroethane-d4	84.0	x	10/18/1995	76-114	out	1212	8240 (1)

S : VOC analysis was sub-contracted to the NET Rockford Division.

Page 3

ANALYTICAL REPORT

Mr. Hank Mittelhauser CLAYTON/MITTELHAUSER 1240 Iroquois Drive Suite 206 Naperville, IL 60563 10/19/1995

Sample No. : 325985

NET Job No.: 95.08101

Sample Description:

Trip Blank Amoco Pipeline Co-Artesia Station 10195

Date Taken: 10/12/1995 Time Taken: 08:38 IEPA Cert. No. 100221 Date Received: 10/13/1995 Time Received: 10:10 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	: Batch No. Prep/Run	Analytical Method
UST VOLATILES 8240 - AQUEOUS	s						
Benzene	<1.0	ug/L	10/18/1995	1.0	out	1212	8240 (1)
Ethyl Benzene	<1.0	ug/L	10/18/1995	1.0	out	1212	8240 (1)
Toluene	<1.0	ug/L	10/18/1995	1.0	out	1212	8240 (1)
Xylenes, Total	<1.0	ug/L	10/18/1995	1.0	out	1212	8240 (1)
Surr: Toluene-d8	100.0	*	10/18/1995	88-110	out	1212	8240 (1)
Surr: Bromofluorobenzene	114.0	X	10/18/1995	86-115	out	1212	8240 (1)
Surr: 1.2-Dichloroethane-d4	80.0	X	10/18/1995	76-114	out	1212	8240 (1)

S : VOC analysis was sub-contracted to the NET Rockford Division.

Page 4

).

QUALITY CONTROL REPORT

CONTINUING CALIBRATION VERIFICATION

10/19/1995

NET Job Number: 95.08101

CLAYTON/MITTELHAUSER 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser

	Run				
	Batch	True	Conc.	Percent	
Analyte	Number	Conc.	Found	Recovery	
UST VOLATILES 8240 - AQUEOUS					
Ethyl Benzene	1212	50.0	47.0	94.0	
Toluene	1212	50.0	46.0	92.0	

CCV - Continuing Calibration Verification

1 Li

. 1 1 . 11

QUALITY CONTROL REPORT

BLANK ANALYSIS

10/19/1995

CLAYTON/MITTELHAUSER 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser

NET Job Number: 95.08101

	Prep Batch	Run Batch	Blank Analvsis		Reporting	Analytical
Analyte	Number	Number	Results	Units	Limit	Method
UST VOLATILES 8240 - AQUEOUS						8240 (1)
Benzene		1212	<1.0	ug/L	1.0	8240 (1)
Ethyl Benzene		1212	<1.0	ug/L	1.0	8240 (1)
Toluene		1212	<1.0	ug/L	1.0	8240 (1)
Xylenes, Total		1212	<1.0	ug/L	1.0	8240 (1)
Surr: 1,2-Dichloroethane-d4		1212	82.0	x	76-114	8240 (1)
Surr: Toluene-d8		1212	98.0	x	88-110	8240 (1)
Surr: Bromofluorobenzene		1212	114.0	×	86-115	8240 (1)

Advisory Control Limits for Blanks:

All compounds should be less than the Reporting Limit, except for phthalate esters, toluene, methylene chloride, acetone and chloroform should be less than 5 times the Reporting Limit.

QUALITY CONTROL REPORT

LABORATORY CONTROL STANDARD

10/19/1995

NET Job Number: 95.08101

CLAYTON/MITTELHAUSER 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser

	Prep	Run					
	Batch	Batch	True	Conc.		LCS	
Analyte	Number	Number	Conc.	Found		% Recovery	
UST VOLATILES 8240 - AQUEOUS							
Benzene		1212	20.0	19.0	5	95.0	
Ethyl Benzene		1212	20.0	18.0	S	90.0	
Toluene		1212	20.0	17.0	s	85.0	
Xylenes, Total		1212	60.0	57.0	5	95.0	

1111

10

QUALITY CONTROL REPORT

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

10/19/1995

CLAYTON/MITTELHAUSER 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser

NET Job Number: 95.08101

Analyte	Prep Batch Number	Run Batch Number	Matrix Spike Result	Sample Result	Spike Amount	Units	Percent Recovery	MSD Result	MSD Spike Amount	Units	Percent Recovery	MS/MSD RPD
UST VOLATILES 8240 - AQUEOUS Benzene Toluene		1212 1212	48.0 44.0	<1.0 <1.0	50.0 50.0	ug/L ug/L	96.0 88.0	47.0 45.0	50.0 50.0	ug/L ug/L	94.0 90.0	2.1 2.2

NOTE: Matrix Spike Samples may not be samples from this job.

Advisory Control Limits for MS/MSDs:

For Inorganic Parameters and GC Volatiles, the spike recovery should be 75 - 125% if the spike added value was greater than or equal to one fourth of the sample result value. If not, the control limits are not established. The RPD for the MS/MSD pair should be less than 20.

MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference

11

1 11 1

11 10

8

D

۲

NET Midwest, Bartlett Division

KEY TO ABBREVIATIONS and METHOD REFERENCES

- Less than; When appearing in the results column indicates the analyte was not detected at or above the reported value.
- mg/L : Concentration in units of milligrams of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per million (ppm).
- ug/g : Concentration in units of micrograms of analyte per gram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per million (ppm) or mg/Kg.
- ug/L : Concentration in units of micrograms of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per billion (ppb).
- ug/Kg : Concentration in units of micrograms of analyte per kilogram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per billion (ppb).
 - : Sample result flag indicating that the analyte was also found in the method blank analysis. The value after the B indicates the concentration found in the blank analysis.
 - : Sample result flag indicating that the reported concentration is from an analysis performed at a dilution. The value following the D indicates the dilution factor of the analysis.
- J : Sample result flag indicating that the reported concentration is below the routine reporting limit but greater than the Method Detection Limit. The value should be considered estimated.
- TCLP : These initials appearing in front of an analyte name indicate that the Toxicity Characteristic Leaching Procedure (TCLP) was performed for this test.
 - : Percent; To convert ppm to %, divide the result by 10,000. To convert % to ppm, multiply the result by 10,000.
- Dry Weight : When indicated, the results are reported on a dry weight basis. The contribution of the (dw) moisture content in the sample is subtracted when calculating the concentration of the analyte.
- ICP : Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy.
- AA : Indicates analysis was performed using Atomic Absorption Spectroscopy.
- GFAA : Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy.
- PQL : Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Method References
- (1) <u>Methods 1000 through 9999:</u> see "Test Methods for Evaluating Solid Waste", USEPA SW-846, 3rd Edition, 1986.
- (2) ASTM "American Society for Testing Materials
- (3) <u>Methods 100 through 499:</u> see "Methods for Chemical Analysis of Water and Wastes", USEPA, 600/4-79-020, Rev. 1983.
- (4) See "Standard Methods for the Examination of Water and Wastewater", 17th Ed, APHA, 1989.
- (5) <u>Methods 600 through 625:</u> see "Guidelines Establishing Test Procedures for the Analysis of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984.
- (6) <u>Methods 500 through 599:</u> see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988.

10/19/95	10:16	3 708 289	5445	NET BARTLETT	DIV →→→ MITTELHAUSER	010/010
K. M'FTel hausen REPORT TO: D. Carney Bo-75/3 INVOICE TO: Anoco PINelline Co.	NET QUOTE NO. To assist us in selecting the proper method Is this work being conducted for regulatory	is this work being conducted for regulatory tes No Yes No Yes No Which regulations apply: RCRA NPDES Wastewater UST Druking Water Other Other None	COMMENTS	-	TEMPERATURE UPON RECENT: A I O Bottles supplied by NET (ES.	DATE OBIO: 10 RECEIVED FORMER #1 Mr: 16 / Gausen #2775
10. 21- 60					te	1 K.
DY RECORD 7 - LO 1513 Chan 1 - L 108 7513 Chan 1	Upugles Earre	ж <i>юв Х.ЭЦ</i> 11 взни			RESENT AND INTACT YES NO	NDERS RELINQUISHED BY: COT REJOU T
OF CUSTO MILE CUSTO MILE CUSTO MILE CUSTON MILE MILE MILE CATION	MAGER MIX.	100 100 100 100 100 100 100 100			TO CLIENT VIA	FALL SAMPLE REMAIN
	PROJECT MA		2 Land Had			LET TO DISPOSE O
TONAL VIRONMENTAL STING, INC.	5 8 21441 le	SII SAMPLE ID/DESCAIPTION	Wines Inthe Wines Etthe		BOTTLES INTACTON FIELD FILTERED? YE	I REQUEST N DATE TIME
LEN ENV TES	F SEXVICE	E)	8:36 2 40111 8:36 2 4011		ION OF SAMPLE:	D OF SHIPMENT
· Z	MB.	PRINT NAM DATE	Strip 1		CONDIT	RECINONI

1 11

111

1.5

(see a

ł

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 10/13/1995

NET Job Number: 95.07782

IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130 A2LA Cert. No.: 0453-01

Enclosed is the Analytical and Quality Control reports for the following samples submitted to Bartlett Division of NET, Inc. for analysis.

Project Description: Amoco Pipeline Artesia Station

Sample Number	Sample	Description	Date Taken	Date Received
324446 324447 324448 324449 324450 324451	Monitor Monitor Monitor Monitor Monitor Monitor	Well #4; Grab Well #12; Grab Well #11; Grab Well #6; Grab Well #7; Grab Well #14; Grab	10/02/1995 10/02/1995 10/02/1995 10/02/1995 10/02/1995 10/02/1995	10/04/1995 10/04/1995 10/04/1995 10/04/1995 10/04/1995 10/04/1995
324452	Trip Bla	ank	10/03/1995	10/04/1995

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. These results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Procedures used follow NET Standard Operating Procedures which reference the methods listed on your report. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

This Quality Control report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

in which your sample(s) were analyzed.

Approved by: Mary Kearson Mary Pearson Project Manager

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 10/13/1995

Sample No. : 324446 NET Job No.: 95.07782

_

Sample Description: Monitor Well #4; Grab Amoco Pipeline Artesia Station

Date Taken: 10/02/1995 Time Taken: 18:05 IEPA Cert. No. 100221 Date Received: 10/04/1995 Time Received: WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Nethod PQL	Analyst	: Batch No. Prep/Run	Analytical Method
UST VOLATILES 8240 - AQUEDUS							
Benzene	9.8	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Ethyl Benzene	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Toluene	<1.0	ug/L	10/12/1995	1_0	jap	1203	8240 (1)
Xylenes, Total	<1.0	սց/Լ	10/12/1995	1.0	jap	1203	8240 (1)
Surr: Toluene-d8	90.6	%	10/12/1995	88-110	јар	1203	8240 (1)
Surr: Bromofluorobenzene	89.8	*	10/12/1995	86-115	Jap	1203	8240 (1)
Surr: 1,2-Dichloroethane-d4	90.4	×	10/12/1995	76-114	јар	1203	8240 (1)

ANALYTICAL REPORT

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 10/13/1995

Sample No. : 324447 NET Job No.: 95.07782

Sample Description: M

Monitor Well #12; Grab Amoco Pipeline Artesia Station

Date Taken: 10/02/1995 Time Taken: 15:25 IEPA Cert. No. 100221 Date Received: 10/04/1995 Time Received: WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
UST VOLATILES 8240 - AQUEOUS							
Bonzene	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Ethyl Benzene	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Toluene	<1_0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Xvienes, Toral	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Surr: Toluene-d8	91_0	*	10/12/1995	88-110	jep	1203	8240 (1)
Surr: Bromofluorobenzene	92.0	x	10/12/1995	86-115	jap	1203	8240 (1)
Surr: 1,2-Dichloroethane-d4	82.8	7	10/12/1995	76-114	jap	1203	8240 (1)

1.11101

ANALYTICAL REPORT

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 10/13/1995

Sample No. : 324448 NET Job No.: 95.07782

Sample Description: Monitor Well #11; Grab Amoco Pipeline Artesia Station

Date Taken: 10/02/1995 Time Taken: 13:55 IEPA Cert. No. 100221 Date Received: 10/04/1995 Time Received: WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Pr cp /Run	Analytical Method
UST VOLATILES 8240 - AQUEOUS							
Benzene	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Ethyl Benzene	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Toluene	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Xvienes, Total	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Surr: Toluene-d8	90.6	x	10/12/1995	88-110	jap	1203	8240 (1)
Surr: Bromofluorobenzene	89.6	x	10/12/1995	86 -115	jap	1203	8240 (1)
Surr: 1.2-Dichlaroethane-d4	88.4	*	10/12/1995	76-114	jap	1203	8240 (1)

10/13/95 09:55 2708

2708 289 5445

NET BARTLETT DIV

004/013

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 10/13/1995

Sample No. : 324449

NET Job No.: 95.07782

Sample Description: Monitor Well #6; Grab Amoco Pipeline Artesia Station

Date Taken: 10/02/1995 Time Taken: 16:05 IEPA Cert. No. 100221

1111111

111

1

it i it i

Date Received: 10/04/1995 Time Received: WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
UST VOLATILES 8240 - AQUEOUS							
Benzene	3.1	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Ethyl Benzene	<1.0	ug/l	10/12/1995	1.0	jap	1203	8240 (1)
Toluene	<1.0	ug/L	10/12/1995	1_0	јвр	1203	8240 (1)
Xylanes, Total	2.5	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Surr: Toluenc-d8	90.8	×	10/12/1995	88-110	jep	1203	8240 (1)
Surr: Bromofluorobenzene	88.6	×	10/12/1995	86-115	jap	1203	8240 (1)
Surr: 1,2-Dichloroethane-d4	88.6	*	10/12/1995	76-114	jap	1203	8240 (1)

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563

10/13/1995

Sample No. : 324450 NET Job No.: 95.07782

Sample Description:

Monitor Well #7; Grab Amoco Pipeline Artesia Station

Date Taken: 10/02/1995 Time Taken: 17:20 IEPA Cert. No. 100221 Date Received: 10/04/1995 Time Received: WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
UST VOLATILES 8240 - AQUEOUS							
Benzene	880	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Ethyl Benzene	17	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Toluene	<10.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Xylenes, Total	35	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Surr: Toluene-d8	90.0	x	10/12/1995	88-110	jap	1203	8240 (1)
Surr: Bromofluorobenzene	90.0	z	10/12/1995	86-115	jap	1203	8240 (1)
Surr: 1,2-Dichloroethane-d4	82.0	x	10/12/1995	76-114	jap	1203	8240 (1)

VOA ANALYZED AT A 10X DILUTION

Page 6

1

ANALYTICAL REPORT

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563

10/13/1995

Sample No. : 324451 NET Job No.: 95.07782

Monitor Well #14; Grab Amoco Pipeline Artesia Station Sample Description:

Date Taken: 10/02/1995 Time Taken: 15:00 10/04/1995 Date Received: Time Received: WDNR Cert. No. 999447130 IEPA Cert. No. 100221

Parameter	Results	Units	Date of Analysis	Method P a L	Analyst	Batch No. Prep/Run	Analytical Method
UST VOLATILES 8240 - AQUEOUS							
Benzene	<1.0	ug/l,	10/12/1995	1.0	jap	1203	8240 (1)
Ethyl Benzene	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Toluene	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Xvlenes, Total	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Surr: Toluene-d8	92.0	*	10/12/1995	88-110	јар	1203	8240 (1)
Surr: Bromofluorobenzene	90.0	x	10/12/1995	86-115	jap	1203	8240 (1)
Surr: 1,2-Dichloroethane-d4	86.0	*	10/12/1995	76-114	jap	1203	8240 (1)

1 111

ANALYTICAL REPORT

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563

10/13/1995

Sample No. : 324452 NET Job No.: 95.07782

Sample Description:

Trip Blank Amoco Pipeline Artesia Station

10/03/1995 07:00 Date Taken: Time Taken: IEPA Cert. No. 100221

Date Received: 10/04/1995 Time Received: WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
UST VOLATILES 8240 - AQUEOUS							
Bonzene	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Ethyl Benzene	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Toluene	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Xylenes, Total	<1.0	ug/L	10/12/1995	1.0	jap	1203	8240 (1)
Surr: Taluene-d8	90.0	×	10/12/1995	88-110	jap	1203	8240 (1)
Surr: Bromofluorobenzene	90.0	7	10/12/1995	86-115	jap	1203	8240 (1)
Surr: 1.2-Dichlorgethane-d4	88.0	x	10/12/1995	76-114	jap	1203	8240 (1)

QUALITY CONTROL REPORT

CONTINUING CALIBRATION VERIFICATION

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser

	Run	CCV		
	Batch	True	Conc.	Percent
Analyte	Number	Conc.	Found	Recovery
UST VOLATILES 8240 - AQUEQUS				
Benzene	1203	50.0	45.7	91.4
Ethyl Benzene	1203	50,0	46.7	93.4
Toluene	1203	50.0	46.8	93.6
Xvlenes, Total	1203	150	140	93.3
Surr: 1.2-Dichloroethane-d4	1203	50	46.2	92.4
Surr: Taluene-d8	1203	50	45.3	90.6
Surr: Bromafluarobenzene	1203	50	45.7	91.4

CEV - Continuing Calibration Verification

Ha

10/13/1995

NET Job Number: 95.07782

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL, 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

QUALITY CONTROL REPORT

BLANK ANALYSIS

10/13/1995

NET Job Number: 95.07782

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser

	Prep Batch	Run Batch	Blank Analysis		Penneting	Analytical
Analyte	Number	Number	Results	Units	Linit	Method
UST VOLATILES 8240 - AQUEOUS						8240 (1)
Benzene		1203	<1.0	ug/L	1.0	8240 (1)
Ethyl Benzene		1203	<1.0	ug/L	1.0	8240 (1)
Toluene		1203	<1.0	ug/L	1.0	8240 (1)
Xylenes, Total		1203	<1.0	ug/L	1.0	8240 (1)
Surr: 1,2-Dichloroethane-d4		1203	84.4	X	76-114	8240 (1)
Surr: Toluene-d8		1203	90.8	*	88-110	8240 (1)
Surr: Bromofluorobenzene		1203	88.8	x	86-115	8240 (1)

Advisory Control Limits for Blanks:

All compounds should be less than the Reporting Limit, except for phthalate esters, toluene, methylene chloride, acetone and chloroform should be less than 5 times the Reporting Limit.

· Contraction

QUALITY CONTROL REPORT

LABORATORY CONTROL STANDARD

20.0

60.0

50.0

50.0

50.0

51.9

46.3

45.0

44.7

10/13/1995

86.5

92.6

90.0

89.4

NET Job Number: 95.07782

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser

Toluene

Xylenes, Total

surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: Bromofluorobenzene

Ргер Run LCS Batch Batch True Conc. % Recovery Found Number Number Conc. Analyte UST VOLATILES 8240 - AQUEOUS 86.5 17.3 1203 20.0 Benzene 89.0 20.0 17.8 1203 Ethyl Benzene 87.0 17.4

1203

1203

1203

1203

1203

ΕĒ

8

n

¥

09:59

NET Midwest, Bartlett Division

KEY TO ABBREVIATIONS and METHOD REFERENCES

- Second second
- mg/L : Concentration in units of milligrams of analyte per liter of sample. Heasurement used for aqueous samples. Can also be expressed as parts per million (ppm).
- Ug/g : Concentration in units of micrograms of analyte per gram of sample. Neasurement used for non-aqueous samples. Can also be expressed as parts per million (ppm) or mg/Kg.
- ug/L : Concentration in units of micrograms of analyte per liter of sample. Measurement used for Aqueous samples. Can also be expressed as parts per billion (ppb).
- ug/Kg : Concentration in units of micrograms of analyte per kilogram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per billion (ppb).
 - : Sample result flag indicating that the enalyte was also found in the method blank analysis. The value after the B indicates the concentration found in the blank analysis.
 - 2 Sample result flag indicating that the reported concentration is from an analysis performed at a dilution. The value following the D indicates the dilution factor of the analysis.
 - : Sample result flag indicating that the reported concentration is below the routine reporting limit but greater than the Method Detection Limit. The value should be considered estimated.
- TCLP : These initials appearing in front of an analyte name indicate that the Toxicity Characteristic Leaching Procedure (TCLP) was performed for this test.
 - : Percent; To convert ppm to %, divide the result by 10,000. To convert % to ppm, multiply the result by 10,000.
- Dry Weight : When indicated, the results are reported on a dry weight basis. The contribution of the (dw) moisture content in the sample is subtracted when calculating the concentration of the analyte.
- ICP : Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy.
- AA : Indicates analysis was performed using Atomic Absorption Spectroscopy.
- GFAA : Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy.
- PQL : Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

Method References

(1)	<u>Methods 1000 through 9999:</u> see "Test Methods for Evaluating Solid Waste", USEPA SW-846, 3rd Edition, 1986.
(2)	ASTM "American Society for Testing Materials
(3)	<u>Methods 100 through 499:</u> see "Methods for Chemical Analysis of Water and Wastes", USEPA, 600/4-79-020, Rev. 1983.
(4)	See "Standard Methods for the Examination of Water and Wastewater", 17th Ed. APHA, 1989.

.

(5)

Methods 600 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984.

(6)

<u>Methods 500 through 599:</u> see "Nethods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988.

10/13/95	10:00	8 70	8 289 5	445		NE.	F BARTLE	ETT DIV		01	3/013	
M. D. Barny - M. D. Earny - REPORT TO: MUNOICE TO: HAVE Profine 6	NET QUOTE NO. To assist us in selecting the proper method	It this work being conducted for regulatory Ves Vo compliance monitoing? Ves Vo Vo Is this work being our ducted for regulatory Ves No	Witch regulations apply: RCRA NPDES Wastowater UST Drinking Waster Other Nane COMMEN IS	BUYS OK Ford Nichary	h-a CAC				EMPERATURE UPON RECEIPT. Y. J.	TIME RECEIVED FOR NET BY:	a # 2775 -	
2232 15 194 101 5										DATE	Index 5	۸ - PINK
AIN OF CUSTODY RECORD PANY HING PUE LUE 6. RESS MILL LOVE PUE LO 7515 CHELPE LECL RESS MILL LOVE PUE LUE 63 2515 CHELPE LECL NE 3/2 - 856 - 725 / 543 7515 CHELPE LECL NE 3/2 - 856 - 725 / 543 7515 CHELPE LECL NECT NUMBER AIT CESLIE FUNDERING STATION. FACILITY	EGT MANAGER MIKE LOUGE IN EANALYSES	ANC2 # 2nd Type of	XIRTRIX GRAGE HCD HCD HCD HCD HCD HCD HCD HCD HCD HCD	KoX X KoX X KoX X					COC SEALS PRESENT AND INTACT? YES (NO NI A VOLATILES FREE OF HEADSPACE? YES (NO NI A STOP OF A CLIENT VIA	ED 8Y: RELINCUSHED BY:	ers: it End by it heart to the Mittel	PT 1 - CRIGINAL - WHITE PT 2 - NET PROJECT MANAGER - YEELOW PT 1 - CUSTOMER COP
MUNICAL COM TESTING, INC. COM MUNICA HALLAND PHOT PH	erevices PRO.	SIGNATURE	SMAPLE ID:DESCRIPTION	Movitar (vell # 1)	Moulton liell # 1/	Monta Well # 7 Monta Well # 1	TRIP BLANK		SAMPLE: BOTTLES INTACT? (ES) NO FIELD FILTERED? VESTNON INDER DISPOSAL: RETURN SAMPLE REM	1 Pallell VO/3/85 7:11/AM	HIPMENT REMA	
	MBF	IT HANE) IT NAME)	JE THZE	\$13:25 W	1411:55 -	1 - 2 10 m	144 2 . IF		MPLE REM	Madighe Day	THOD OF 5	
ن السال	SAN	(PAIN)	å	5.0	0.0	100	1/91		SA CC	E C		je j

i

į i

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 10/02/1995

NET Job Number: 95.07540

IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130 A2LA Cert. No.: 0453-01

Enclosed is the Analytical and Quality Control reports for the following samples submitted to Bartlett Division of NET, Inc. for analysis.

Project Description: Artesia Pumping Facility 10195

Sample	Sample Description	Date	Date
Number		Taken	Received
323499	Ground Water; Grab	09/26/1995	09/27/1995

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. These results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Procedures used follow NET Standard Operating Procedures which reference the methods listed on your report. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

This Quality Control report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

Approved by:

Mary Pearson Project Manager

11

ANALYTICAL REPORT

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563

10/03/1995

Sample No. : 323499 NET Job No.: 95.07540

Sample Description:

Ground Water; Grab Artesia Pumping Facility 10195

Date Taken: 09/26/1995 Time Taken: 14:00 IEPA Cert. No. 100221

Date Received: 09/27/1995 Time Received: 10:34 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No Prep/Rum	ס. A ק	nalytical Method
Alkalinity, bicarb (CaCO3)	1,020	mg/L	09/29/1995	5	sdf	304	43	10.1(3)
Alkalinity, carbonate (CaCO3)	<5	mg/L	09/29/1995	5	sdf	304	43	10.1(3)
Chloride	1,030	mg/L	09/29/1995	5	tdu	43	53	25.3(3)
Hardness, Total	2,760	mg/L	09/29/1995	5	jjc	159	91	30.2(3)
Hq	6.86	units	09/27/1995	0.10	kaf	10	19 1	50.1(3)
Solids, Total Dissolved	4,670	mg∕L	09/28/1995	25	out	658	5 1	60.1(3)
Solids, Total Suspended	12	mg/L	09/28/1995	5	sdf	78	31	60.2(3)
Sulfate	1,620	mg/L	09/27/1995	10	kaf	38	23	75.4(3)
Calcium, AA	740	mg/L	10/03/1995	1.0	jmt	890 232	Z 7	140 (1)
Iron, ICP	0.100	mg/L	10/02/1995	0.050	jmt	890 228	83 6	010 (1)
Magnesium, AA	150	mg/L	10/03/1995	1.0	jmt	890 223	37	450 (1)
Manganese, ICP	0.497	mg/L	10/02/1995	0.010	jmt	890 12	74 6	010 (1)

QUALITY CONTROL REPORT

CONTINUING CALIBRATION VERIFICATION

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser 10/03/1995

NET Job Number: 95.07540

Run	CCV		
Batch	True	Conc.	Percent
Number	Conc.	Found	Recovery
304	100	102	102.0
159	80	82	102.5
1019	7.02	7.04	100.3
1019	7.02	7.02	100.0
382	20.0	20.2	101.0
232	0.50	0.532	106.4
2283	2,00	2.11	105.5
223	0.500	0.502	100.4
1274	1.00	1.03	103.0
	Run Batch Number 304 159 1019 1019 382 232 232 2283 223 223 1274	Run CCV Batch True Number Conc. 304 100 159 80 1019 7.02 1019 7.02 382 20.0 232 0.50 2283 2.00 223 0.500 1274 1.00	Run CCV Batch True Conc. Number Conc. Found 304 100 102 159 80 82 1019 7.02 7.04 1019 7.02 7.02 382 20.0 20.2 232 0.50 0.532 2283 2.00 2.11 223 0.500 0.502 1274 1.00 1.03

CCV - Continuing Calibration Verification

11

NATIONAL ENVIRONMENTAL ® TESTING, INC. Bartlet: Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

QUALITY CONTROL REPORT

BLANK ANALYSIS

10/03/1995

NET Job Number: 95.07540

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser

	Prep Run		Blank				
	Batch	Batch	Analysia		Reporting	Analytical	
Analyte	Number	Number	Results	Units	Limit	Method	
Alkalinity, bicarb (CaCO3)		304	<5	mg∕L	5	310.1(3)	
Chloride		435	<5	mg∕L	5	325.3(3)	
Hardness. Total		159	<5	mg/L	5	130.2(3)	
Solids, Total Dissolved		658	<25	mg/L	25	160.1(3)	
Solids, Total Suspended		783	< 5	mg/L	5	160.2(3)	
Sulfate		382	<10	mg/L	10	375.4(3)	
Calcium. AA	890	232	<1.0	mg/L	1.0	7140 (1)	
Iron, ICP	890	2286	<0.050	mg/L	0.050	6010 (1)	
Magnesium, AA	870	223	<1.0	mg/L	1.0	7450 (1)	
Mangariese, ICP	890	1276	<0.010	mg/L	0.010	6010 (1)	

Advisory Control Limits for Blanks:

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

QUALITY CONTROL REPORT

LABORATORY CONTROL STANDARD

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser

.

10/03/1995

NET Job Number: 95.07540

	Ргер	Run			
	Batch	Batch	True	Conc.	LCS
Analyte	Number	Number	Conc.	Found	% Recovery
Chloride		435	100	108	108.0
Chloride		435	100	100	100.0
Chloride		435	100	100	100.0
Chloride		435	100	100	100.0
Solids, Total Dissolved		658	2000	2027	101.4
Solids, Total Suspended		783	100.0	95	95.0
Calcium, AA	890	232	1.00	0.931	93.1
Iron, ICP	890	2286	1.00	1.03	103.0
Magnesium, AA	890	223	0.50	0.480	96.0
Manganese, ICP	890	1276	0.500	0.498	99.6

 $\left| \cdot \right|$

1.01

11

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

QUALITY CONTROL REPORT

LABORATORY CONTROL STANDARD

10/03/1995

NET Job Number: 95.07540

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser

Analyte	Prep Batch Number	Run Batch Number	LCS Amount	Units	LCS Result	Percent Recovery	LCSD Result	Percent Recovery	Relative Percent Difference
Chloride		435	100	mg/L	108	108.0			
Chloride		435	100	mg∕L	100	100.0			•
Chloride		435	100	mg/L	100	100.0			
Chloride		435	100	mg/L	100	100.0			
Solids, Total Dissolved		658	2000	mg/L	2027	101.4			
Solids, Total Suspended		783	100.0	mg/L	95	95.0			
Calcium, AA	890	232	1.00	mg/L	0.931	93.1			
Iron, ICP	890	2286	1.00	mg/L	1.03	103.0			
Magnesium, AA	890	223	0.50	mg/L	0.480	96.0			
Manganese, ICP	890	1276	0.500	mg/L	0.498	99.6			

: . . .

1,111

ŀ

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

QUALITY CONTROL REPORT

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

10/03/1995

NET Job Number: 95.07540

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser

Analyte	Prep Batch Number	Run Batch Number	Matrix Spike Result	Sample Result	Spike Amount	Units	Percent Recovery	MSD Result	MSD Spike Amount	Units	Percent Recovery	MS/MSD RPD
Alkalinity, bicarb (CaCO3)		304	845	350	500	mg∕i.	99.0	860	500	mg/L	102.0	2.9
Chloride		435	400	300	100	mg/L	100.0	400	100	mg/L	100.0	0.0
Chloride		435	3500	3400	100	mg/L	100.0	3500	100	mg/L	100.0	0.0
Hardness, Total		159	3,060	2,760	400	mg/L	75.0	3,080	400	mg/L	80.0	6.5
Sulfate		382	42	21	20.0	mg/L	105.0	40	20.0	mg/L	95.0	9.9

NOTE: Matrix Spike Samples may not be samples from this job.

Advisory Control Limits for MS/MSDs:

For Inorganic Parameters and GC Volatiles, the spike recovery should be 75 - 125% if the spike added value was greater than or equal to one fourth of the sample result value. If not, the control limits are not established. The RPD for the MS/MSD pair should be less than 20.

MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference

11

1

1111

i

i

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

QUALITY CONTROL REPORT

DUPLICATES

10/03/1995

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser

Prep Run Batch Original Duplicate Batch Analysis Analysis Units RPD Number Number Analyte 0.4 8.34 1019 8.31 units pН 1019 7.42 7.44 units 0.3 рH 1019 6.86 6.88 units 0.3 рH 0.1 pН 1019 7.60 7.61 units 4.3 783 24 23 mg/L Solids, Total Suspended mg∕L 783 **Z**4 23 4.3 Solids, Total Suspended 382 41 37 mg/L 10.3 Sulfate

NOTE: Spikes and Duplicates may not be samples from this job.

RPD - Relative Percent Difference

Advisory Control Limits for Duplicates - RPD should be less than 20.

NET Job Number: 95.07540

D

1

10:29

NET Midwest, Bartlett Division

KEY TO ABBREVIATIONS and METHOD REFERENCES

:	:	Less then; When appearing in the results column indicates the analyte was not detected at or	,
		above the reported value.	

- mg/L : Concentration in units of milligrams of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per million (ppm).
- ug/g : Concentration in units of micrograms of analyte per gram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per million (ppm) or mg/Kg.
- ug/L : Concentration in units of micrograms of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per billion (ppb).
- ug/Kg : Concentration in units of micrograms of analyte per kilogram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per billion (ppb).
 - : Sample result flag indicating that the analyte was also found in the method blank analysis. The value after the B indicates the concentration found in the blank analysis.
 - : Sample result flag indicating that the reported concentration is from an analysis performed at a dilution. The value following the D indicates the dilution factor of the analysis.
 - : Sample result flag indicating that the reported concentration is below the routine reporting limit but greater than the Method Detection Limit. The value should be considered estimated.
- TCLP : These initials appearing in front of an analyte name indicate that the Toxicity Characteristic Leaching Procedure (TCLP) was performed for this test.
- % : Percent; To convert ppm to %, divide the result by 10,000. To convert % to ppm, multiply the result by 10,000.
- Dry Weight : When indicated, the results are reported on a dry weight basis. The contribution of the (dw) moisture content in the sample is subtracted when calculating the concentration of the analyte.
- ICP : Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy.
- AA : Indicates analysis was performed using Atomic Absorption Spectroscopy.
- GFAA : Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy.
- PQL : Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Method References
- (1) <u>Methods 1000 through 9999:</u> see "Test Methods for Evaluating Solid Waste", USEPA SW-846, 3rd Edition, 1986.
 (2) ASTM "American Society for Testing Materials
 (3) <u>Methods 100 through 499:</u> see "Methods for Chemical Analysis of Water and Wastes", USEPA, 600/4-79-020, Rev. 1983.
 (4) See "Standard Methods for the Examination of Water and Wastewater", 17th Ed, APHA, 1989.

- (5) <u>Methods 600 through 625:</u> see "Guidelines Establishing Test Procedurcs for the Analysis of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984.
- (6) <u>Methods 500 through 599:</u> see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988.

Clayton \mathcal{M} ittelhauser

APPENDIX B

Laboratory Results

• TPH Results for the Soils Remediation Area - Samples Taken 07/28/95.

Remediation Systems 1995 Third Quarterly Report Amoco Pipeline Station - Artesia, New Mexico 2775RD03.KDL (10-26-95/SLK)

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563

08/07/1995

NET Job Number: 95.05666

IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130 A2LA Cert. No.: 0453-01

Enclosed is the Analytical and Quality Control reports for the following samples submitted to Bartlett Division of NET, Inc. for analysis.

NATIONAL ENVIRONMENTAL ® TESTING, INC.

Project Description: Amoco Pipeline Co.-Artesia; 2775.00-02

Sample	Sample Description	Date	Date
Number		Taken	Received
315548	SS #1; Grab	07/28/1995	08/01/1995
315549	SS #2; Grab	07/28/1995	08/01/1995
315550	SS #3: Grab	07/28/1995	08/01/1995

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. These results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Procedures used follow NET Standard Operating Procedures which reference the methods listed on your report. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

This Quality Control report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

Approved by:

Jean-Pierre C. Rouanet Operations Manager

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 08/07/1995

Sample No. : 315548

NET Job No.: 95.05666

Sample Description: SS #1; Grab Amoco Pipeline Co.-Artesia; 2775.00-02

Date Taken: 07/28/1995 Time Taken: 08:20 IEPA Cert. No. 100221 Date Received: 08/01/1995 Time Received: 12:10 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total	84.8	×	08/04/1995	0.1	seh	1312	2540 (4)
Prep, TPH Method 8015m	extracted		08/02/1995		tis	117	8015m(1)

Bartlett Division 850 W. Bartlett Rd. Bartlett, 3L 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 08/07/1995

Sample No. : 315548

NET Job No.: 95.05666

Sample Description: SS #1; Grab Amoco Pipeline Co.-Artesia; 2775.00-02

Date Taken: 07/28/1995 Time Taken: 08:20 IEPA Cert. No. 100221

TP TP TP Date Received: 08/01/1995 Time Received: 12:10 WDNR Cert. No. 999447130

	Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
н	as Gas	<100	D	mg/Kg	08/03/1995	10	seh	117 195	8015m (1)
H	as Diesel	<100	D	mg/Kg	08/03/1995	10	seh	117 195	8015m (1)
H	as Oil	80,200	DX	mg/Kg	08/03/1995	10	seh	117 195	8015m (1)

D : Parameter analyzed at a dilution due to matrix interference.

DX : Parameter exceeds calibration range, analysis performed on a dilution

Page 3

NATIONAL ENVIRONMENTAL TESTING, INC.

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 08/07/1995

Sample No. : 315549

NET Job No.: 95.05666

Sample Description: SS #2; Grab Amoco Pipeline Co.-Artesia; 2775.00-02

Date Taken: 07/28/1995 Time Taken: 08:21 IEPA Cert. No. 100221 Date Received: 08/01/1995 Time Received: 12:10 WDNR Cert. No. 999447130

Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
91.8 extracted	x	08/04/1995	0.1	seh	1312	2540 (4)
	Results 91.8 extracted	Results Units 91.8 % extracted	Results Units Date of Analysis 91.8 % 08/04/1995 extracted 08/02/1995	Results Units Date of Method Analysis PQL 91.8 % 08/04/1995 0.1 extracted 08/02/1995	Results Units Date of Method Analyst Analysis POL 91.8 % 08/04/1995 0.1 seh extracted 08/02/1995 tls	ResultsUnitsDate ofMethodAnalyst Batch No.AnalysisPQLPrep/Run91.8%08/04/19950.1seh1312extracted08/02/1995tls117

ANALYTICAL REPORT

NATIONAL ENVIRONMENTAL TESTING, INC.

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 08/07/1995

Sample No. : 315549

NET Job No.: 95.05666

Sample Description:

SS #2; Grab Amoco Pipeline Co.-Artesia; 2775.00-02

Date Taken:07/28/1995Date Received:08/01/1995Time Taken:08:21Time Received:12:10IEPA Cert.No.100221WDNR Cert.No.

	Parameter	Results		Units	Date of Analysis	Method PQL	Analyst	Batch Prep/	No. Run	Analytica Method	ι
TPH as TPH as TPH as	Gas Diesel Oil	<10 <10 6,460	DX	mg/Kg mg/Kg mg/Kg	08/03/1995 08/03/1995 08/03/1995	10 10 10	seh seh seh	117 117 117	195 195 195	8015m (1) 8015m (1) 8015m (1)	

DX : Parameter exceeds calibration range, analysis performed on a dilution

850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

Bartlett Division

NATIONAL ENVIRONMENTAL B TESTING, INC.

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 08/07/1995

Sample No. : 315550

NET Job No.: 95.05666

Sample Description: SS #3; Grab Amoco Pipeline Co.-Artesia; 2775.00-02

Date Taken: 07/28/1995 Time Taken: 08:23 IEPA Cert. No. 100221 Date Received: 08/01/1995 Time Received: 12:10 WDNR Cert. No. 999447130

Parameter	Results	Units	Date of Analysis	Method PQL	Analyst	Batch No. Prep/Run	Analytical Method
Solids, Total Prep, TPH Method 8015	88.5 extracted	x	08/04/1995 08/02/1995	0.1	seh tis	1312 117	2540 (4) 8015m(1)

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Mr. Hank Mittelhauser MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 08/07/1995

Sample No. : 315550

NET Job No.: 95.05666

Sample Description: SS #3; Grab Amoco Pipeline Co.-Artesia; 2775.00-02

 Date Taken:
 07/28/1995
 Date Received:
 08/01/1995

 Time Taken:
 08:23
 Time Received:
 12:10

 IEPA Cert.
 No.
 100221
 WDNR Cert.
 No.
 999447130

	Parameter	Results		Units	Date of Analysis	Method PGL	Analyst	Batch Prep,	n No. /Run	Analytical Method
TPH as TPH as	Gas Diesel	<10 <10		mg/Kg mg/Kg	08/03/1995 08/03/1995	10 10	seh seh	117 117	195 195	8015m (1) 8015m (1)
TPH as	Oil	15,700	DX	mg/Kg	08/03/1995	10	seh	117	195	8015m (1)

DX : Parameter exceeds calibration range, analysis performed on a dilution

Page 7

QUALITY CONTROL REPORT

CONTINUING CALIBRATION VERIFICATION

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser 08/07/1995

NET Job Number: 95.05666

	Run	CCV	CCV		
	Batch	True	Conc.	Percent	
Analyte	Number	Conc.	Found	Recovery	
TPH as Gas	195	300	287	95.7	
TPH as Diesel	195	300	286	95.3	
TPH as Oil	195	300	286	95.3	

CCV - Continuing Calibration Verification

111

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

QUALITY CONTROL REPORT

BLANK ANALYSIS

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser 08/07/1995

NET Job Number: 95.05666

Prep Batch Number	Run Batch Number	Blank Analysis Results	Units	Reporting Limit	Analytical Method
117	194	<10	mg/Kg	10	8015m (1)
117	194	<10	mg/Kg	10	8015m (1)
117	194	<10	mg/Kg	10	8015m (1)
	Prep Batch Number 117 117 117	Prep Run Batch Batch Number Number 117 194 117 194 117 194	Prep Run Blank Batch Batch Analysis Number Number Results 117 194 <10 117 194 <10 117 194 <10	Prep Run Blank Batch Batch Analysis Number Number Results Units 117 194 <10 mg/Kg 117 194 <10 mg/Kg 117 194 <10 mg/Kg	Prep Run Blank Batch Batch Analysis Reporting Number Number Results Units Limit 117 194 <10 mg/Kg 10 117 194 <10 mg/Kg 10 117 194 <10 mg/Kg 10

Advisory Control Limits for Blanks:

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

QUALITY CONTROL REPORT

BLANK ANALYSIS

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser

08/07/1995

NET Job Number: 95.05666

Analyte	Prep Satch Number	Run Batch Number	Blank Analysis Results	Units	Reporting Limit	Analytical Method	
TPH as Gas	117	195	<10	mg/Kg	10	8015m (1)	
TPH as Diesel	117	195	<10	mg/Kg	10	8015m (1)	
TPH as Oil	117	195	<10	mg/Kg	10	8015m (1)	

Advisory Control Limits for Blanks:

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

QUALITY CONTROL REPORT

BLANK ANALYSIS

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser 08/07/1995

NET Job Number: 95.05666

Analyte	Prep Batch Number	Run Batch Number	Blank Analysis Results	Units	Reporting Limit	Analytical Method	
TPH as Gas	117	195	<10	mg/Kg	10	8015m (1)	
TPH as Diesel	117	195	<10	mg/Kg	10	8015m (1)	
TPH as Oil	117	195	<10	mg/Kg	10	8015m (1)	

Advisory Control Limits for Blanks:

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

QUALITY CONTROL REPORT

LABORATORY CONTROL STANDARD

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser 08/07/1995

NET Job Number: 95.05666

	Prep	Run			
	Batch	Batch	True	Conc.	LCS
Analyte	Number	Number	Conc.	Found	% Recovery
TPH as Gas	117	194	50	46	92.0
TPH as Diesel	117	194	50	40	80.0
TPH as Oil	117	194	50	35	70.0

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

QUALITY CONTROL REPORT

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser 08/07/1995

NET Job Number: 95.05666

Analyte	Prep Batch Number	Run Batch Number	Matrix Spike Result	Sample Result	Spike Amount	Units	Percent Recovery	MSD Result	MSD Spike Amount	Units	Percent Recovery	MS/MSD RPD
TPH as Gas	117	194	47	<10	50	mg/Kg	94.0	69	50	mg/Kg	138.0	37.8
TPH as Diesel TPH as Oil	117	194 194	33 41	<10 <10	50	mg/Kg mg/Kg	82.0	41 48	50	mg/Kg mg/Kg	82.0 96.0	15.7

NOTE: Matrix Spike Samples may not be samples from this job.

Advisory Control Limits for MS/MSDs:

For Inorganic Parameters and GC Volatiles, the spike recovery should be 75 - 125% if the spike added value was greater than or equal to one fourth of the sample result value. If not, the control limits are not established. The RPD for the MS/MSD pair should be less than 20.

MS = Matrix Spike MSD = Matrix Spike Duplicate RPD = Relative Percent Difference

Bartlett Division 850 W. Bartlett Rd. Bartlett, IL 60103 Tel: (708) 289-3100 Fax: (708) 289-5445

QUALITY CONTROL REPORT

DUPLICATES

MITTELHAUSER CORPORATION 1240 Iroquois Drive Suite 206 Naperville, IL 60563 Mr. Hank Mittelhauser 08/07/1995

NET Job Number: 95.05666

	Prep	Run				
Analyta	Batch	Batch	Original	Duplicate	Unito	880
Anatyte	NGIDEI'	NUMBER	Anatysis	Analysis	Units	RPU
Solids, Total		1312	1.59	1.69	x	6.1
Solids, Total		1312	83.1	83.0	x	0.1
Solids, Total		1312	83.2	83.1	x	0.1
Solids, Total		1312	90.6	89.4	x	1.3
Solids, Total		1312	98.8	99.1	*	0.3

NOTE: Spikes and Duplicates may not be samples from this job.

RPD - Relative Percent Difference

Advisory Control Limits for Duplicates - RPD should be less than 20.

NET Midwest, Bartlett Division

KEY TO ABBREVIATIONS and METHOD REFERENCES

<	:	Less than; When appearing in the results column indicates the analyte was not detected at or above the reported value.
mg/L	:	Concentration in units of milligrams of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per million (ppm).
nd\d	:	Concentration in units of micrograms of analyte per gram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per million (ppm) or mg/Kg.
ug/L	:	Concentration in units of micrograms of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per billion (ppb).
ug/Kg	:	Concentration in units of micrograms of analyte per kilogram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per billion (ppb).
B	:	Sample result flag indicating that the analyte was also found in the method blank analysis. The value after the B indicates the concentration found in the blank analysis.
D	:	Sample result flag indicating that the reported concentration is from an analysis performed at a dilution. The value following the D indicates the dilution factor of the analysis.
Ĺ	:	Sample result flag indicating that the reported concentration is below the routine reporting limit but greater than the Method Detection Limit. The value should be considered estimated.
TCLP	:	These initials appearing in front of an analyte name indicate that the Toxicity Characteristic Leaching Procedure (TCLP) was performed for this test.
x	:	Percent; To convert ppm to %, divide the result by 10,000. To convert % to ppm, multiply the result by 10,000.
Dry Weight (dw)	:	When indicated, the results are reported on a dry weight basis. The contribution of the moisture content in the sample is subtracted when calculating the concentration of the analyte.
ICP	:	Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy.
AA	:	Indicates analysis was performed using Atomic Absorption Spectroscopy.
GFAA	:	Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy.
PQL	:	Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Method Refere	ences	
(1)	<u>Mer</u> 3rc	<u>thods 1000 through 9999:</u> see "Test Methods for Evaluating Solid Waste", USEPA SW-846, d Edition, 1986.
(2)	AST	IM "American Society for Testing Materials
(3)	<u>Met</u> 600	<u>thods 100 through 499:</u> see "Methods for Chemical Analysis of Water and Wastes", USEPA, D/4-79-020, Rev. 1983.

(4) See "Standard Methods for the Examination of Water and Wastewater", 17th Ed, APHA, 1989.

. .

115

- (-
<u>Methods 600 through 625:</u> see "Guidelines Establishing Test Procedures for the Analysis of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984.

(6)

(5)

Methods 500 through 599: see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988.

1 61