2R - 34

REPORTS

DATE:
JAN. 17, 2002

10235 West Little York Road, Suite 256 Houston, Texas 77040 (713) 856-7980 office

(713) 856-7980 office (713) 856-7981 fax

January 17, 2002

Mr. William C. Olson Environmental Bureau New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 RECEIVED

JAN 2 9 2002

ENVIRONMENTAL BUREAU
OIL CONSERVATION DIVISION

RE: Report of Ground Water Remediation Activities
Transwestern Pipeline Company - Atoka-1 Compressor Station
Eddy County, New Mexico

Dear Bill,

The attached report is submitted pursuant to the NMOCD's requirements for reporting of ground water remediation activities at the subject facility.

If you have any questions or comments regarding this report, please contact me at (713) 646-7327 or Larry Campbell at (505) 625-8022.

Sincerely,

George C. Robinson, PE

President/Principal Engineer

xc w/attachment:

Larry Campbell

Bryan Arrant

Transwestern Pipeline Company

NMOCD Artesia District Office

ANNUAL REPORT OF GROUNDWATER REMEDIATION ACTIVITIES AT THE ATOKA -1 COMPRESSOR STATION

RECEIVED

JAN 2 9 2002

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Prepared for:
Transwestern Pipeline Company

Prepared by:
Cypress Engineering Services, Inc.
10235 West Little York Road, Suite 256
Houston, TX 77040

January 17, 2002

Report of Groundwater Remediation Activities

Transwestern Pipeline Company Atoka-1 Compressor Station

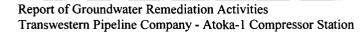
I. Groundwater Monitoring Activities

Groundwater Sampling Events

Four semi-annual sampling events have been completed since the last report of groundwater remediation activities. These events were completed in February 2000, August 2000, February 2001, and August 2001. In addition to the routine groundwater sampling events, selected wells were sampled in April 2000 and June 2000.

Prior to sampling, the depth to water, and the depth to hydrocarbon where phase separated hydrocarbon (PSH) was present, was determined for each monitor well. The measured depths and the corresponding water table elevation for each monitor well are presented in Table 1. The measured depths and the corresponding water table elevation for each soil vapor extraction (SVE) well are presented in Table 2.

Groundwater samples were collected from seven monitor wells in the course of the February 2000 and August 2000 sampling events. Samples were collected from all eight monitor wells in the course of the February 2001 and August 2001 sampling events. Groundwater samples were not collected from monitor well MW-1 in the course of the February 2000 and August 2000 sampling events due to the presence of PSH previously measured in this well. PSH was not present in well MW-1 during the August 2000 sampling event and therefore this well was added to the sampling analysis plan for subsequent sampling events.


Groundwater samples were delivered to a laboratory for analysis by EPA Method 8021B for benzene, toluene, ethylbenzene, and xylenes (BTEX). A summary of the laboratory results and field-measured parameters is presented in Table 3. A copy of the laboratory results for each of the sampling events is included as an attachment to this report.

Results/Conclusions from Groundwater Sampling Events

Occurrence and Direction of Groundwater Flow

A groundwater surface elevation map, based on measurements obtained on August 13, 2001 is included as Figure 2. The elevation of shallow groundwater measured in the monitor wells does not define a consistent groundwater table. This observation is consistent with previous sampling events and is likely because there is very little shallow groundwater present.

The apparent direction of groundwater flow, based on elevations measured in monitor wells MW-3, MW-5, MW-6, and MW-7, is toward to south-southwest. This is consistent with what would be expected based upon ground surface topography.

Lateral Extent of Phase Separated Hydrocarbon

Prior sampling events identified the presence of PSH in wells MW-1, MW-2 and SVE-13; however, PSH has not been detected in these wells in the course of the last three sampling events. Based on the information currently available, the SVE system appears to have been effective in the removal of PSH from above the perched water zone.

Condition of Affected Groundwater

A diagram indicating the relative distribution of BTEX concentrations in groundwater, based on measurements obtained during the August 2001 sampling event, is included as Figure 3. The condition of affected groundwater has improved since the last report of remediation activities. A diagram indicating the trend of benzene concentrations at each monitor well is presented in Figure 4.

II. Planned Changes to the Groundwater Monitoring Program

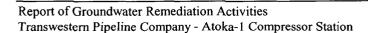
Frequency of Groundwater Monitoring

Groundwater sampling events will continue on a semi-annual basis until site closure is approved. The next sampling event will occur in February 2002.

Routine Reporting of Monitoring Activities

Routine reporting will continue on an annual basis until site closure is approved. The next annual report will be submitted to the OCD by January 2003.

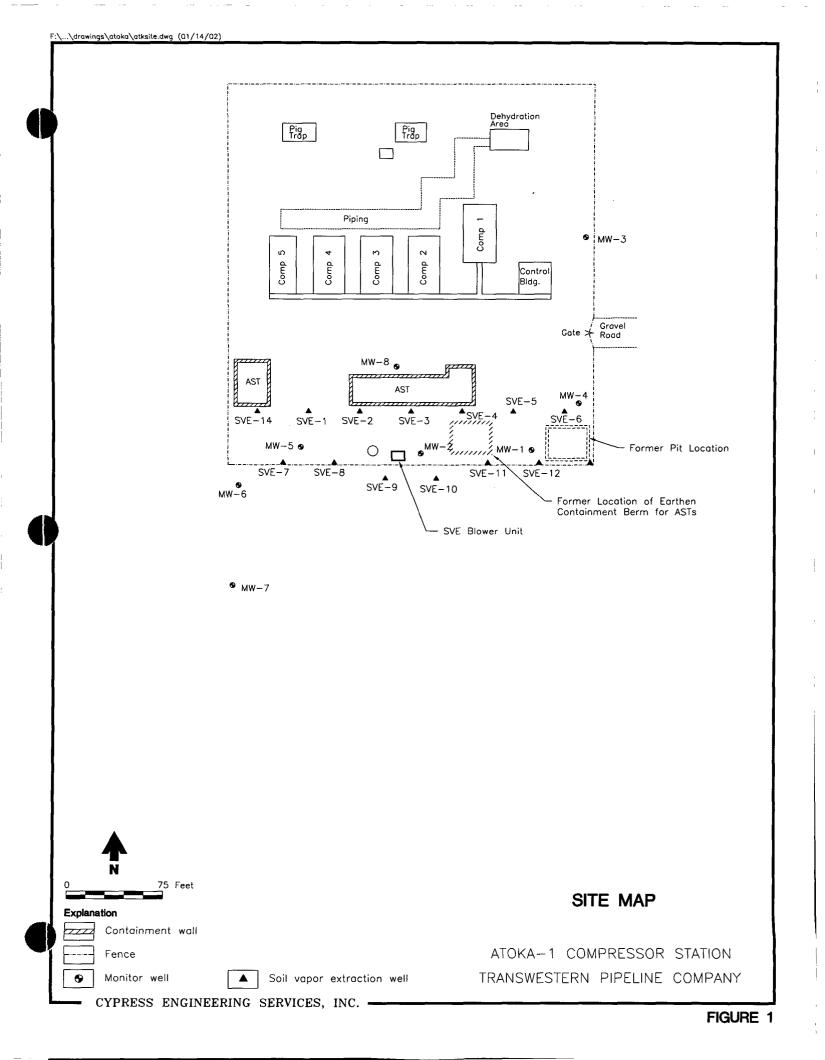
III. Status of Remediation Activities

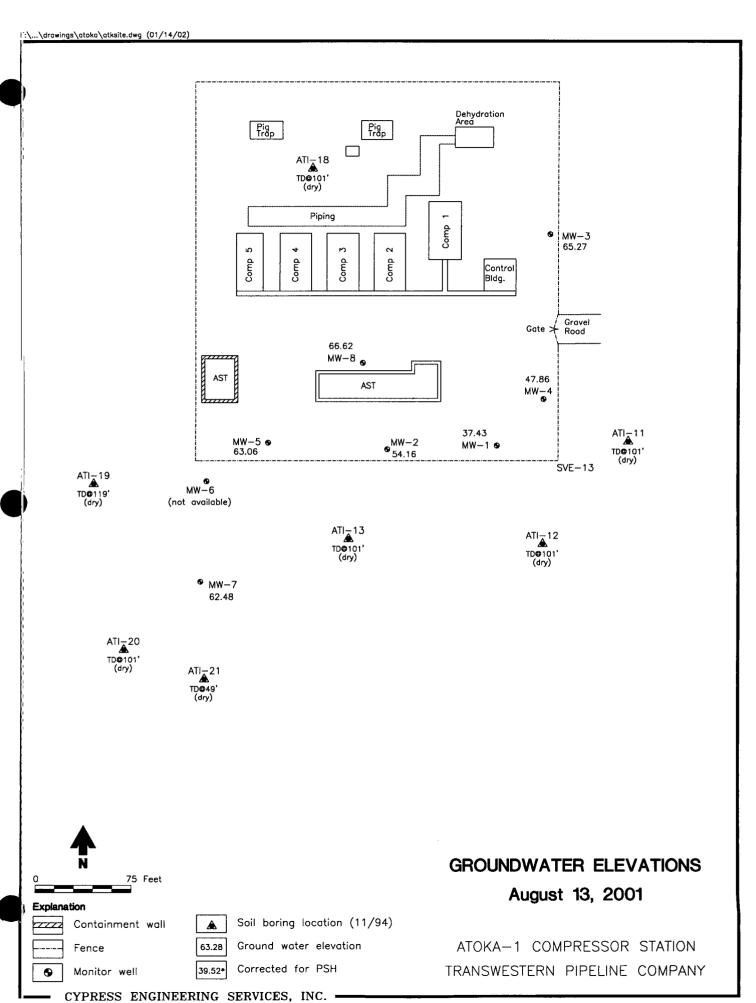

Remediation Activities Completed

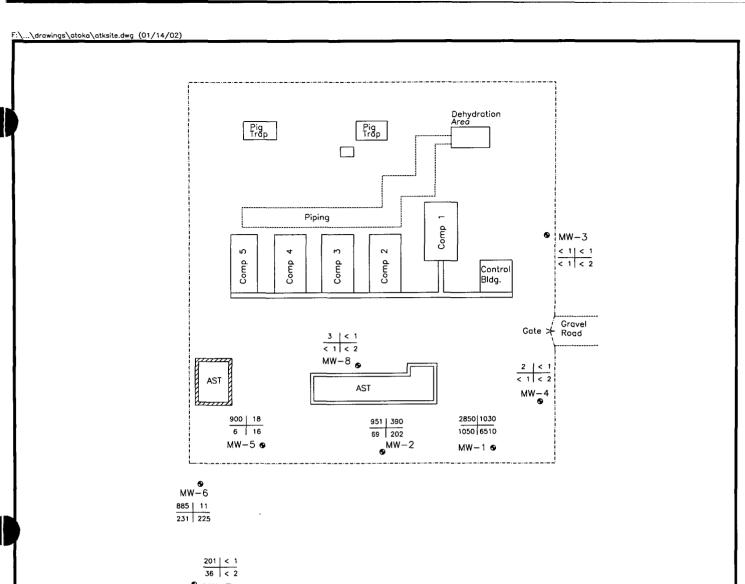
The following remediation activities were completed through December 2001:

- 1) Three vapor samples were collected and analyzed for total VOCs. The concentration of VOCs in soil vapor continue to decline (see Table 4).
- 2) Four groundwater-sampling events were completed.
- 3) Routine O&M of the SVE system continued through October 2001. The system was shut down in October 2001 due to problems associated with operating the system in cold weather conditions.
- 4) A water recovery system operated on a limited basis between December 1999 and October 2001. The purpose was to establish a maximum sustainable recovery rate for the perched water zone and to evaluate the effect that water recovery would have on the dissolved phase plume. The maximum sustainable recovery rate from any of the three wells utilized (MW-5, MW-6, and MW-7) was about 60 gallons per day (gpd). There was no noticeable effect on the dissolved phase plume concentrations. As a result, the recovery of water has been discontinued.

Current Status of Remediation Activities


The SVE system was shut down in October 2001 due to problems associated with operating the system in cold weather conditions.




Remediation Activities Planned

The SVE system will be placed back in service in April 2002. There are no plans at this time to re-activate the water recovery system.

A proposal for site closure will be prepared and submitted to the NMOCD by July 1, 2002. In general, the proposal will present the position that water contained within the shallow perched water zone should be classified as non-protectable groundwater based upon the limited capacity of the water zone to produce water to a well.

● MW-7

75 Feet

Explanation

Containment wall

Fence

•

Monitor well

No Sample

BTEX concentration, ppb

BTEX DISTRIBUTION August 13, 2001

ATOKA-1 COMPRESSOR STATION TRANSWESTERN PIPELINE COMPANY

CYPRESS ENGINEERING SERVICES, INC. .

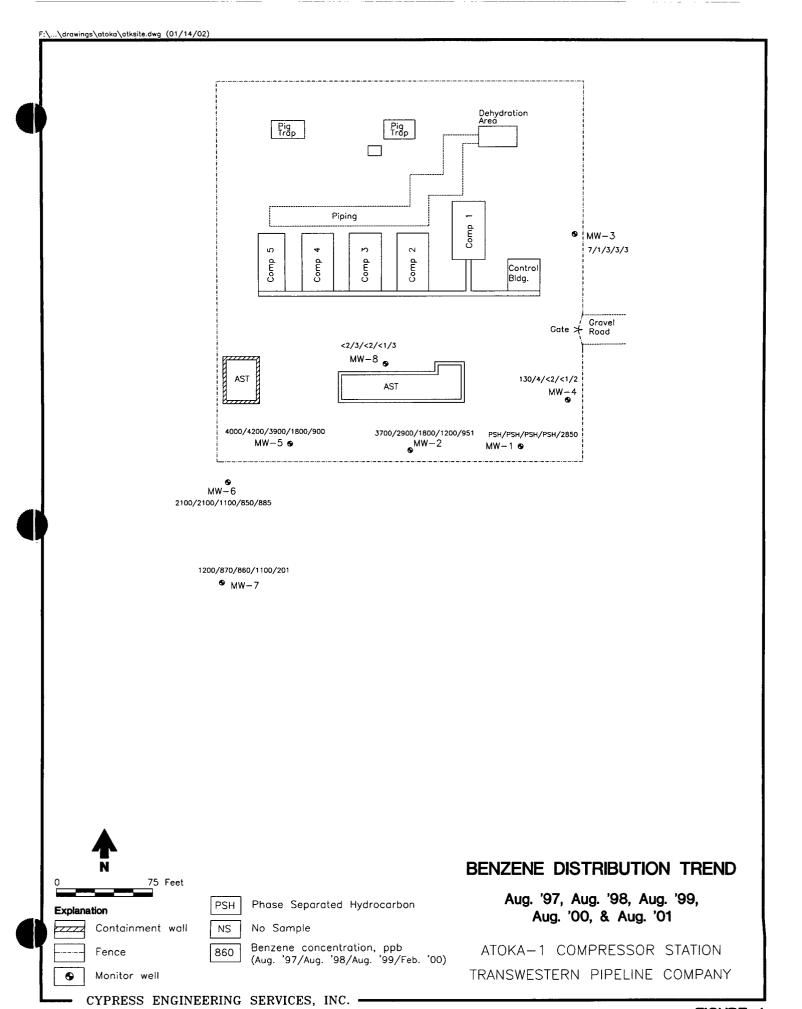


Table 1. Summary of Ground Water Surface Elevations
TW Atoka-1 Compressor Station

Well	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
MW-1	07/21/93	94.65	(b)	(b)	(b)	(b)
	12/02/94		56.12	56.82	0.70	38.36
	10/30/95		(b)	56.83	(b)	(b)
	02/23/96	95.66 (d)	57.52	57.89	0.37	38.05
	05/14/96	, ,	57.50	57.83	0.33	38.08
	08/12/96		57.61	57.98	0.37	37.96
	11/11/96		56.11	56.25	0.14	39.52
	02/03/97		56.67	56.82	0.15	38.95
	08/04/97		57.41	57.75	0.34	38.17
	02/23/98		(a)	54.75	(a)	40.91
	08/05/98		57.08	57.30	0.22	38.53
	02/12/99		59.42	59.74	0.32	36.16
	08/12/99		61.71	61.88	0.17	33.91
	02/13/00		57.74	57.81	0.07	37.90
	08/16/00		(a)	58.05	(a)	37.61
	02/06/01		(a)	58.09	(a)	37.57
	08/13/01		(a)	58.23	(a)	37.43
MW-2	07/21/93	96.45	(a)	42.38	(a)	54.07
	12/02/94		42.31	42.35	0.04	54.13
	10/30/95		(b)	42.54	(b)	(b)
	02/23/96	97.29 (d)	43.34	43.36	0.02	53.95
	05/14/96		43.33	43.34	0.01	53.96
	08/12/96		43.32	43.33	0.01	53.97
	11/11/96		(a)	43.11	(a)	54.18
	02/03/97		(a)	43.12	(a)	54.17
	08/04/97		(a)	43.15	(a)	54.14
	02/23/98		(a)	43.07	Sheen	54.22
	08/05/98		(a)	43.00	(a)	54.29
	02/12/99 08/12/99		(a)	43.07	(a)	54.22
	02/13/00		(a)	42.74	(a)	54.55 54.67
	08/16/00		(a) (a)	42.62 42.77	(a)	54.67 54.52
	02/06/01		(a) (a)	42.77 42.85	(a) (a)	54.52 54.44
	08/13/01		(a)	43.13	(a) (a)	54.16
MW-3	07/21/93	95.00	(a)	36.55	(a)	58.45
	12/02/94		(a)	32.23	(a)	62.77
	10/30/95		(a)	31.80	(a)	63.20
	02/23/96		(a)	31.33	(a)	63.67
	05/14/96		(a)	31.28	(a)	63.72
	08/12/96		(a)	31.28	(a)	63.72
	11/11/96		(a)	30.50	(a)	64.50
	02/03/97		(a)	30.20	(a)	64.80
	08/04/97		(a)	30.41	(a)	64.59
	02/23/98		(a)	29.78	(a)	65.22
	08/05/98		(a)	28.81	(a)	66.19
	02/12/99 08/12/99		(a)	29.91	(a)	65.09
	06/12/99		(a)	29.44	(a)	65.56 65.66
	02/13/00		(a)	29.34	(a)	65.66

Table 1. Summary of Ground Water Surface Elevations TW Atoka-1 Compressor Station

Well	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
	08/16/00		(a)	29.94	(a)	65.06
	02/06/01		(a)	29.38	(a)	65.62
	08/13/01		(a)	29.73	(a)	65.27
			(-/	20.75	(-)	00.2.
MW-4	07/21/93	94.02	(a)	49.92	(a)	44.10
	12/02/94		(a)	46.38	(a)	47.64
	10/30/95		(a)	46.05	(a)	47.97
	02/23/96	95.21 (d)	(a)	47.64	(a)	47.57
	05/14/96		(a)	47.58	(a)	47.63
	08/12/96		(a)	47.05	(a)	48.16
	11/11/96		(a)	46.72	(a)	48.49
	02/03/97		(a)	47.10	(a)	48.11
	08/04/97		(a)	46.85	(a)	48.36
	02/23/98		(a)	46.90	(a)	48.31
	08/05/98		(a)	47.51	(a)	47.70
	02/12/99		(a)	47.35	(a)	47.86
	08/12/99		(a)	46.10	(a)	49.11
	02/13/00		(a)	47.34	(a)	47.87
	08/16/00		(a)	47.20	(a)	48.01
	02/06/01		(a)	47.14	(a)	48.07
	08/13/01		(a)	47.35	(a)	47.86
MW-5	12/02/94	98.22	(a)	34.40	(a)	63.82
IVIV-O	10/30/95	30.22	(a) (a)	34.80	(a)	63.42
	02/23/96		(a) (a)	34.88	(a)	63.34
	05/14/96		(a)	34.88	(a)	63.34
	08/12/96		(a)	34.61	(a)	63.61
	11/11/96		(a)	34.37	(a)	63.85
	02/03/97		(a)	34.25	(a)	63.97
	08/04/97		(a)	34.21	(a)	64.01
	02/23/98		(a)	34.00	(a)	64.22
	08/05/98		(a)	34.05	(a)	64.17
	02/12/99		(a)	34.29	(a)	63.93
	08/12/99		(a)	34.27	(a)	63.95
	02/13/00		(a)	34.42	(a)	63.80
	08/16/00		(a)	35.05	(a)	63.17
	02/06/01		(a)	35.11	(a)	63.11
	08/13/01		(a)	35.16	(a)	63.06
	10100101					
MW-6	12/02/94	99.62	(a)	36.00	(a)	63.62
	10/30/95		(a)	36.34	(a)	63.28
	02/23/96		(a)	36.46	(a)	63.16
	05/14/96		(a)	36.38	(a)	63.24
	08/12/96		(a)	36.22	(a)	63.40
	11/11/96		(a)	36.03	(a)	63.59
	02/03/97		(a)	35.90	(a)	63.72
	08/04/97 02/23/98		(a)	35.86 35.71	(a)	63.76
	08/05/98		(a)	35.71 35.70	(a)	63.91
	02/12/99		(a)	35.70 35.91	(a)	63.92 63.71
	021 (2133		(a)	55.51	(a)	05.71

Table 1. Summary of Ground Water Surface Elevations
TW Atoka-1 Compressor Station

Well	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
	08/12/99 02/13/00		(a) (a)	35.94 36.09	(a) (a)	63.68 63.53
MW-7	02/06/01 12/02/94	99.14	(a) (a)	37.42 45.58	(a) (a)	62.20 53.56
14144-1	10/30/95	33.14	(a) (a)	35.87	(a) (a)	63.27
	02/23/96		(a)	35.86	(a)	63.28
	05/14/96		(a)	35.91	(a)	63.23
	08/12/96		(a)	35.76	(a)	63.38
	11/11/96		(a)	35.59	(a)	63.55
	02/03/97		(a)	35.46	(a)	63.68
	08/04/97		(a)	35.42	(a)	63.72
	02/23/98		(a)	35.28	(a)	63.86
	08/05/98		(a)	35.27	(a)	63.87
	02/12/99		(a)	35.45	(a)	63.69
	08/12/99		(a)	35.47	(a)	63.67
	02/13/00		(a)	35.56	(a)	63.58
	08/16/00		(a)	36.42	(a)	62.72
	02/06/01		(a)	36.35	(a)	62.79
	08/13/01		(a)	36.66	(a)	62.48
MW-8	12/02/94	95.98	(a)	28.70	(a)	67.28
	10/30/95		(a)	29.16	(a)	66.82
	02/23/96		(a)	29.19	(a)	66.79
	05/14/96		(a)	29.30	(a)	66.68
	08/12/96		(a)	29.39	(a)	66.59
	11/11/96		(a)	29.07	(a)	66.91
	02/03/97		(a)	28.73	(a)	67.25
	08/04/97		(a)	28.75	(a)	67.23
	02/23/98		(a)	28.67	(a)	67.31
	08/05/98		(a)	29.62	(a)	66.36
	02/12/99 08/12/99		(a)	29.16 29.40	(a)	66.82
	08/12/99		(a)	29.40 29.11	(a)	66.58 66.87
	08/16/00		(a) (a)	29.65	(a) (a)	66.33
	02/06/01		(a) (a)	29.49	(a) (a)	66.49
	08/13/01		(a) (a)	29.36	(a)	66.62

Notes

- (a) Not applicable since no measurable thickness of hydrocarbon is present
- (b) Information not available
- (c) Corrections to ground water surface elevation for presence of hydrocarbon is calculated assuming a specific gravity of 0.76
- (d) 2/23/96 onward values reflect corrections made to TOC elevations for MW-1 (+1.01'), MW-2 (+0.84') and MW-4 (+1.19')

Table 2. Summary of Ground Water Surface Elevations at SVE Wells and Monitor Wells MW-1 and MW-2

TW Atoka-1 Compressor Station

Well	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
SVE-1	05/14/96	(b)	(a)	dry	(a)	(a)
	02/12/99		(a)	30.87	(a)	(a)
	08/12/99		(a)	30.53	(a)	(a)
	02/13/00		(a)	31.24	(a)	(a)
	08/16/00		(a)	29.30	(a)	(a)
	02/06/01		(a)	31.82	(a)	(a)
	08/13/01		(a)	30.91	(a)	(a)
SVE-2	05/14/96	(b)	(a)	dry	(a)	(a)
	02/12/99		(a)	30.89	(a)	(a)
	08/12/99		(a)	31.25	(a)	(a)
	02/13/00		(a)	32.51	(a)	(a)
	08/16/00		(a)	28.73	(a)	(a)
	02/06/01		(a)	32.89	(a)	(a)
	08/13/01		(a)	32.78	(a)	(a)
SVE-3	05/14/96	(b)	(a)	dry	(a)	(a)
	02/12/99		(a)	29.52	(a)	(a)
	08/12/99		(a)	30.60	(a)	(a)
	02/13/00		(a)	30.85	(a)	(a)
	08/16/00		(a)	29.10	(a)	(a)
	02/06/01		(a)	31.61	(a)	(a)
	08/13/01		(a)	30.88	(a)	(a)
SVE-4	05/14/96	(b)	(a)	42.84	(a)	(a)
	02/12/99		(a)	43.35	(a)	(a)
	08/12/99		(a)	43.18	(a)	(a)
	02/13/00		(a)	43.1	(a)	(a)
	08/16/00		(a)	43.09	(a)	(a)
	02/06/01		(a)	43.28	(a)	(a)
	08/13/01		(a)	43.51	(a)	(a)
SVE-5	05/14/96	(b)	(a)	dry	(a)	(a)
	02/12/99		(a)	44.91	(a)	(a)
	08/12/99		(a)	44.78	(a)	(a)
	02/13/00		(a)	dry	(a)	(a)
	08/16/00		(a)	dry	(a)	(a)
	02/06/01		(a)	dry	(a)	(a)
	08/13/01		(a)	dry	(a)	(a)
SVE-6	05/14/96	(b)	(a)	dry	(a)	(a)
	02/12/99	. ,	(a)	42.26	(a)	(a)
	08/12/99		(a)	39.88	(a)	(a)
	02/13/00		(a)	38.59	(a)	(a)
	08/16/00		(a)	37.74	(a)	(a)
	02/06/01		(a)	40.45	(a)	(a)
	08/13/01		(a)	39.47	(a)	(a)
			• •		• •	. ,

Table 2. Summary of Ground Water Surface Elevations at SVE Wells and Monitor Wells MW-1 and MW-2

TW Atoka-1 Compressor Station

Well	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
SVE-7	05/14/96	(b)	(a)	35.00	(a)	(a)
	02/12/99	` '	(a)	35.22	(a)	(a)
	08/12/99		(a)	35.28	(a)	(a)
	02/13/00		(a)	35.41	(a)	(a)
	08/16/00		(a)	35.90	(a)	(a)
	02/06/01		(a)	36.10	(a)	(a)
	08/13/01		(a)	36.26	(a)	(a)
SVE-8	05/14/96	(p)	(a)	34.50	(a)	(a)
	02/12/99		(a)	33.80	(a)	(a)
	08/12/99		(a)	34.60	(a)	(a)
	02/13/00		(a)	34.82	(a)	(a)
	08/16/00		(a)	33.73	(a)	(a)
	02/06/01		(a)	35.48	(a)	(a)
	08/13/01		(a)	35.60	(a)	(a)
SVE-9	05/14/96	(b)	(a)	35.44	(a)	(a)
	02/12/99		(a)	33.33	(a)	(a)
	08/12/99		(a)	34.07	(a)	(a)
	02/13/00		(a)	35.49	(a)	(a)
	08/16/00		(a)	32.41	(a)	(a)
	02/06/01		(a)	36.33	(a)	(a)
	08/13/01		(a)	36.10	(a)	(a)
SVE-10	05/14/96	(b)	(a)	dry	(a)	(a)
	02/12/99		(a)	dry	(a)	(a)
	08/12/99		(a)	dry	(a)	(a)
	02/13/00		(a)	dry	(a)	(a)
	08/16/00		(a)	dry	(a)	(a)
	02/06/01		(a)	dry	(a)	(a)
	08/13/01		(a)	dry	(a)	(a)
SVE-11	05/14/96	(b)	(a)	dry	(a)	(a)
	02/12/99		(a)	44.02	(a)	(a)
	08/12/99		(a)	44.13	(a)	(a)
	02/13/00		(a)	43.75	(a)	(a)
	08/16/00		(a)	43.72	(a)	(a)
	02/06/01		(a)	dry	(a)	(a)
	08/13/01		(a)	dry	(a)	(a)
SVE-12	05/14/96	(b)	(a)	dry	(a)	(a)
	02/12/99		(a)	42.59	(a)	(a)
	08/12/99		(a)	45.11	(a)	(a)
	02/13/00		(a)	43.52	(a)	(a)
	08/16/00		(a)	41.23	(a)	(a)
	02/06/01		(a)	44.86	(a)	(a)
	08/13/01		(a)	43.27	(a)	(a)

Table 2. Summary of Ground Water Surface Elevations at SVE Wells and Monitor Wells MW-1 and MW-2
TW Atoka-1 Compressor Station

Well	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
SVE-13	05/14/96	(b)	(a)	dry	(a)	(a)
	02/12/99		34.41	35.00	0.59	(a)
	08/12/99		(a)	51.87	(a)	(a)
	08/23/99		(a)	51.95	(a)	(a)
	09/05/99		(a)	52.08	(a)	(a)
	09/20/99		45.15	45.18	0.03	(a)
	10/11/99		(a)	31.65	(a)	(a)
	10/18/99		(a)	30.88	(a)	(a)
	11/02/99		(a)	30.32	(a)	(a)
	11/14/99		(a)	30.00	(a)	(a)
	11/30/99		(a)	29.50	(a)	(a)
	02/13/00		(a)	31.87	(a)	(a)
	08/16/00		(a)	31.47	(a)	(a)
	02/06/01		(a)	34.44	(a)	(a)
	08/13/01		(a)	33.66	(a)	(a)
SVE-14	05/14/96	(b)	(a)	dry	(a)	(a)
	02/12/99		(a)	33.11	(a)	(a)
	08/12/99		(a)	33.11	(a)	(a)
	02/13/00		(a)	33.92	(a)	(a)
	08/16/00		(a)	32.20	(a)	(a)
	02/06/01		(a)	34.32	(a)	(a)
	08/13/01		(a)	33.41	(a)	(a)
MW-1	07/21/93	94.65	(b)	(b)	(b)	(b)
	12/02/94		56.12	56.82	0.70	38.36
	10/30/95		(b)	56.83	(b)	(b)
	02/23/96	95.66	57.52	57.89	0.37	38.05
	05/14/96		57.50	57.83	0.33	38.08
	08/12/96		57.61	57.98	0.37	37.96
	11/11/96		56.11	56.25	0.14	39.52
	02/03/97		56.67	56.82	0.15	38.95
	08/04/97		57.41	57.75	0.34	38.17
	02/23/98		(a)	54.75	(a)	40.91
	08/05/98		57.08	57.30	0.22	38.53
	12/05/98		57.75	57.95	0.20	37.86
	12/06/98		58.45	58.58	0.13	37.18
	01/07/99		57.75	57.80	0.05	37.90
	01/15/99		57.78	57.80	0.02	37.88
	01/27/99		58.18	58.36	0.18	37.44
	02/12/99		59.42	59.74	0.32	36.16
	08/12/99		61.71	61.88	0.17	33.91
	08/23/99		57.35	57.37 50.75	0.02	38.31
	09/05/99		(a)	56.75	(a)	38.91
	09/20/99 10/11/99		(a)	56.62	(a)	39.04
	10/11/99		(a)	56.64 56.69	(a)	39.02
	11/02/99		(a) (a)	56.69 57.00	(a)	38.97 38.66
	11/14/99		(a) (a)	57.20	(a) (a)	38.46
	11/30/99		57.42	57.45	0.03	38.23
			Q1.TL	07.70	5.50	00.20

Table 2. Summary of Ground Water Surface Elevations at SVE Wells and Monitor Wells MW-1 and MW-2 TW Atoka-1 Compressor Station

Well	Sampling Date	Top of Casing (ft)	Depth to PSH (ft)	Depth to Water (ft)	PSH (ft)	Surface Elevation (ft)
	02/13/00		57.74	57.81	0.07	37.90
	08/16/00		(a)	58.05	(a)	37.61
	02/06/01		(a)	58.09	(a)	37.57
	08/13/01		(a)	58.23	(a)	37.43
MW-2	07/21/93	96.45	(a)	42.38	(a)	54.07
	12/02/94		42.31	42.35	0.04	54.13
	10/30/95		(b)	42.54	(p)	(p)
	02/23/96	97.29	43.34	43.36	0.02	53.95
	05/14/96		43.33	43.34	0.01	53.96
	08/12/96		43.32	43.33	0.01	53.97
	11/11/96		(a)	43.11	(a)	54.18
	02/03/97		(a)	43.12	(a)	54.17
	08/04/97		(a)	43.15	(a)	54.14
	02/23/98		(a)	43.07	Sheen	54.22
	08/05/98		(a)	43.00	(a)	54.29
	12/05/98		(a)	43.00	(a)	54.29
	12/06/98		(a)	43.01	(a)	54.28
	01/07/99		(a)	42.98	(a)	54.31
	01/15/99		(a)	42.99	(a)	54.30
	01/27/99		(a)	43.08	(a)	54.21
	02/12/99		(a)	43.07	(a)	54.22
	08/12/99		(a)	42.74	(a)	54.55
	08/23/99		(a)	42.89	(a)	54.40
	09/05/99		(a)	42.83	(a)	54.46
	09/20/99		(a)	42.81	(a)	54.48
	10/11/99		(a)	42.80	(a)	54.49
	10/18/99		(a)	42.80	(a)	54.49
	11/02/99		(a)	42.80	(a)	54.49
	11/14/99		(a)	42.75	(a)	54.54
	11/30/99		(a)	42.72	(a)	54.57
	02/13/00		(a)	42.62	(a)	54.67
	08/16/00		(a)	42.77	(a)	54.52
	02/06/01		(a)	42.85	(a)	54.44
	08/13/01		(a)	43.13	(a)	54.16

Notes:

- (a) Not Applicable
- (b) No elevation data available

Table 3. Summary of Ground Water Analyses TW Atoka-1 Compressor Station

		Field Measured Parameters				ВТ	EX Concen	tration - (ug	/L)
Well	Sampling Date	DO (mg/l)	pH (Units)	Temp. (C)	Conductivity (µs/cm)	Benzene	Toluene	Ethylbenzene	Total Xylenes
NMWQCC Standar	d	none	6-9	none	none	10	750	750	620
MW-1	02/20/01	0.0	6.7	21.9	5940	2,960	1,090	1,040	7,230
	08/13/01	1.3	6.88	22.1	6240	2,850	1,030	1,050	6,510
MW-2	07/21/93	-	-	-	-	3,600	9,800	400	3,170
	08/04/97	0.0	6.95	22.2	3760	3,700	4,900	620	1,600
	08/06/98	-	-	-	-	2,900	3,600	550	1,300
	02/12/99	1.0	7.18	18.4	3790	2,000	2,300	330	750
	08/12/99	-	-	-	-	1,800	2,500	350	890
	02/13/00	-	-	-	-	1,200	1,200	270	460
	04/23/00	-	-	-	-	1,100	970	250	430
	06/20/00	-	-	-	-	1,200	1,000	220	350
	08/16/00	2.6	7.19	21.3	3300	1,200	1,900	280	650
	02/20/01	-	7.22	21.0	3340	1,240	745	138	451
	08/13/01	1.3	7.38	21.0	3570	951	390	69.1	201.5
MW-3	07/21/93	-	_	-	-	7	<2	6	<2
	12/02/94	-	-	-	-	14	<2	<2	<4
	10/30/95	_	_	-	_	8.8	<0.5	<0.5	<0.5
	02/23/96	-	7.58	19.9	4800	6	3	<2	<2
	05/14/96	_	7.27	25.7	5380	6	<2	<2	<2
	08/12/96	_	7.25	27.1	5070	8	<2	<2	<2
	11/11/96	_	7.17	18.8	-	<2	<2	<2	<2
	02/03/97	_	-	-	_	<2	<2	<2	<2
	08/04/97	_	7.22	23.2	6130	7.4	<2	<2	<2
	02/23/98	3.5	7.32	19.6	5770	6.93	< 5.00	< 5.00	< 5.00
		3.5 3.7	7.32 7.21	20.1	6160	1.4	< 1.0	< 1.0	< 1.0
	08/05/98			18	6130	2	< 1.0	< 1.0	< 1.0
	02/12/99	3.4/3.4	7.36		6020	3	<2	<2	<2
	08/12/99	6.7	7.35	20.5	6270	7.2	<1	<1	<1
	02/13/00	3.9	7.21	20		3	<2	<2	<4
	08/16/00	5.1	7.33	21.5	5560		<0.500	<0.500	<0.10
	02/20/01	4.8	7.30	19.4	5500	3.16 <1	<1	<1	<2
	08/13/01	4.4	7.51	20.3	5930	<u> </u>	\ 1	\ 1	\ 2
MW-4	07/21/93	-	-	-	-	61	4	20	68
	12/02/94	-	-	-	-	230	<2	60	130
	10/30/95	-	-	-	-	240	2.1	<0.5	92
	02/23/96	-	6.61	20.2	3500	83	5	<2	36
	05/14/96	-	6.75	27.4	4140	171	17	<2	54
	08/12/96	-	6.6	26.9	3790	170	11	7	43 -
	11/11/96	-	6.66	19.1	-	180	10	<2	120
	02/03/97	-	-	-	-	170	<2	<2	<2
	08/04/97	-	6.68	24.0	4470	130	3.3	<2	4.7
	02/23/98	2.0	6.74	20.8	3930	13. 9	< 5.00	< 5.00	< 5.00
	08/06/98	2.5	6.74	19.8	4400	3.7	< 1.0	< 1.0	< 1.0
	02/12/99	3.7	6.87	18.7	4250	< 1.0	< 1.0	< 1.0	< 1.0

Table 3. Summary of Ground Water Analyses TW Atoka-1 Compressor Station

		Fie	Field Measured Parameters BTEX Concentration - (up]/L)
Well	Sampling Date	DO (mg/l)	pH (Units)	Temp. (C)	Conductivity (µs/cm)		Benzene	Toluene	Ethylbenzene	Total Xylenes
NMWQCC Standa	ard	none	6-9	none	none		10	750	750	620
	08/12/99 02/13/00 08/16/00 02/20/01 08/13/01	5.25/5.0 6.3 6.5 5.6 7.4	6.92 6.95 6.99 7.03 7.27	21.0 20.3 22.6 21.5 21.1	3820 3960 3560 3390 3790		<2 <1 <1 <0.500 1.54	<2 <1 <2 <0.500 <1	<2 <1 <2 <0.500 <1	<2 <1 <4 <0.10 <2
MW-5	12/02/94 11/02/95 02/23/96 05/14/96 08/12/96 11/11/96 02/03/97 08/04/97 02/23/98 08/06/98 02/12/99 08/12/99 02/13/00 04/23/00 06/20/00 08/16/00 02/20/01 08/13/01	- - - - 3.5 1.6 1.6 4.9/3.2 2.0 2.6 - - 2.7 - 1.2	- 6.92 7.02 7.04 7.12 - 7.05 7.12 7.04 7.18 7.1 6.86 - - 6.92 7.04 7.30	21.8 26.6 25.3 19.6 - 23.5 19.8 21.3 18.5 20.7 20.3 - 21.7 21.7 21.6	- 4110 5380 3630 - 4580 5110 5530 5150 5310 4480 - - 4170 4490 4360		6,200 6,800 4,490 4,630 4,000 6,100 3,200 4,000 3,980 4,200 4,500 3,900 2,000 3,100 2,100 1,800 3,650 900	13,000 4,500 1,820 573 <82 <200 <100 1,100 52.5 130 280 68 750 60 130 240 349 17.7	1,100 930 388 775 500 430 590 420 373 390 240 220 72 110 72 100 145 5.86	7,400 3,500 1,235 1,600 99 <200 550 250 15.0 60 46 31 760 45 690 91 93.5 15.68
MW-6	12/02/94 10/30/95 02/23/96 05/14/96 08/12/96 11/11/96 02/03/97 08/04/97 02/23/98 08/06/98 02/12/99 08/12/99 02/13/00 04/23/00 06/20/00 08/16/00 02/20/01 08/13/01	1.2 - - - - 3.9 3.1 4.9 2.3 4.5 3.2 - - - 3.8 5.8	7.34 7.01 6.67 7.38 - 6.99 7.2 7.14 7.29 7.32 7.16 - - - 7.22 7.22	21.1 25.2 26.4 18.9 - 24.2 20.2 20.7 19.1 20.8 20.1 - - 27.1 27.1	- 3330 2660 4650 - 2720 2980 3250 4330 3460 3850 - - - 2570 2780		360 4,600 1,000 3,700 2,300 3,700 2,900 2,100 2,080 2,100 1,700 1,100 1,800 2,300 1,300 850 1,440 885	<10 <5.0 9 56 8 <10 <100 <5.00 <5.00 <5.0 <2 <25 20 18 3 <25.0 10.5	50 190 222 234 250 220 250 390 320 370 280 310 460 410 280 180 282 231	<pre><20 <5.0 9 88 <15 <10 230 <100 5.71 <5.0 2 77 100 96 75 433 225</pre>

Table 3. Summary of Ground Water Analyses TW Atoka-1 Compressor Station

		Fie	Field Measured Parameters					BTEX Concentration - (ug/L)					
Well	Sampling Date	DO (mg/l)	pH (Units)	Temp. (C)	Conductivity (µs/cm)		Benzene	Toluene	Ethylbenzene	Total Xylenes			
NMWQCC Standa	ırd	none	6-9	none	none	i	10	750	750	620			
MW-7	12/02/94	-	_	-	-		620	170	1,100	1,100			
	10/30/95	-	-	-	-		2,200	440	460	270			
	02/23/96	-	_	-	-		832	463	318	422			
	05/14/96	-	6.76	25.8	2890		1,610	2,880	649	3,030			
	08/12/96	-	6.83	27.6	3150		850	850	360	720			
	11/11/96	-	7.07	19.6	-		720	970	170	390			
	02/03/97	_	-	-	-		620	870	300	1,000			
	08/04/97	8.0	6.81	24.1	2830		1,200	710	330	490			
	02/23/98	0.9	6.91	21.2	2510		860	770	312	748			
	08/06/98	1.1	6.90	20.3	2610		870	900	440	1,000			
	02/12/99	1.7	6.99	18.7	2550		970	820	380	730			
	08/12/99	1.8	7.02	20.9	2410		860	850	420	830			
	02/13/00	3.5	7.04	20.5	2520		650	670	350	740			
	04/23/00	-	-	-	-		1,200	93	240	690			
	06/20/00	-	-	-	-		1,100	340	320	340			
	08/16/00	5	7.09	22.1	4250		1,100	20	310	28			
	02/20/01	-	7.15	21.7	4440		1,650	<25.0	404	<50.0			
	08/13/01	1.7	7.10	21.4	4660		201	<1	36.2	<2			
MW-8	01/01/95	-	-	-	-		<2	<2	<2	<4			
	10/30/95	-	-	-	-		110	1.3	<0.5	130			
	02/23/96	-	7.15	20.9	4810		6	<2	<2	<2			
	05/14/96	-	6.96	23.3	5260		2	<2	<2	3			
	08/12/96	-	7.17	26.7	5370		<2	<2	<2	<3			
	11/11/96	-	6.93	18.8	-		11	<2	<2	19			
	02/03/97	-	-	-	-		6	<2	<2	<2			
	08/04/97	-	7.14	25.6	5920		<2	<2	<2	<2			
	02/23/98	3.8	7.14	20.5	5960		9.25	< 5.00	< 5.00	< 5.00			
	08/05/98	3.8	7.14	21.3	6120		2.7	< 1.0	< 1.0	< 1.0			
	02/12/99	3.5	7.16	19.3	6150		2	< 1.0	< 1.0	< 1.0			
	08/12/99	5.3/5.0	7.14	21.3	6050		<2	<2	<2	<2			
	02/13/00	4.9/4.4	6.99	20.3	6140		<1	<1	<1	<1			
	08/16/00	4.9	7.09	21.8	5580		<1	<2	<2	<4			
	02/20/01	2.7	6.99	21.2	5420		<0.500	< 0.500	< 0.500	<0.10			
	08/13/01	2.5	7.29	21.3	5920		2.81	<1	<1	<2			

Table 4. Summary of VOC Concentrations at Individual Extraction Points TW Atoka-1 Compressor Station

SVE Well	Date	PID Reading		oline VOCs	< C5	C5-C6	C6-C7	C7-C8	C8-C9	C9-C10	C10-C11	C11-C12	C12-C14	C14+
		(ppmv)	(ug/L)	(ppmv) (a)					("	%)				
SVE-1	08/12/98		36,000	8,942	0.0	1.4	12.3	49.1	26.1	7.9	2.6	0.4	0.2	0.0
SVE-2	08/12/98		120	30	0.1	0.5	4.9	22.3	29.3	23.1	12.6	5.2	2.0	0.0
SVE-3	08/12/98		460	114	0.0	0.0	0.3	1.4	4.0	28.9	36.7	21.5	7.0	0.2
SVE-4	11/08/97		81,000	20,120	0.0	2.4	20.3	48.8	21.9	5.9	0.5	0.1	0.1	0.0
	08/12/98		16,000	3,974	0.0	0.3	6.0	37.3	33.6	18.8	3.1	0.8	0.1	0.0
SVE-5	11/08/97		720	179	0.0	0.9	4.5	27.1	33.2	26.2	6.0	1.9	0.2	0.0
	08/12/98		110	27	0.0	0.4	1.7	16.5	33.0	24.7	15.1	5.5	2.7	0.4
SVE-6	08/12/98		6,400	1,590	0.0	0.0	3.0	28.8	33.5	21.3	6.3	5.0	1.9	0.2
SVE-7	08/12/98		3,800	944	0.0	0.6	9.3	47.4	29.4	8.0	4.8	0.5	0.0	0.0
SVE-8	08/12/98		1,600	397	0.1	13.7	18.9	39.6	16.9	7.6	2.5	0.6	0.1	0.0
SVE-9	08/12/98		2,200	546	0.0	12.5	28.0	45.1	11.0	2.7	0.5	0.2	0.0	0.0
SVE-10	11/08/97		2,900	720	0.0	2.5	11.8	41.8	27.9	13.3	2.0	0.7	0.0	0.0
	08/12/98		640	159	0.0	2.5	10.0	43.5	26.6	13.6	3.3	0.5	0.0	0.0
SVE-11	11/08/97		22,000	5,465	0.0	1.1	13.4	50.7	25.7	8.0	0.9	0.2	0.0	0.0
	08/12/98		9,700	2,409	0.0	0.5	7.2	38.9	32.2	17.8	2.6	0.7	0.1	0.0
SVE-12	08/12/98		23,000	5,713	0.0	0.7	12.8	40.4	28.7	13.8	2.9	0.4	0.2	0.1
SVE-13	08/12/98		25,000	6,210	0.0	0.6	20.5	51.1	21.0	5.7	1.0	0.1	0.0	0.0
SVE-14	08/12/98		18,000	4,471	0.0	1.0	12.1	53.3	22.3	8.8	2.1	0.4	0.0	0.0
Total	11/08/97		17.000	4.223	0.0	1.9	15.8	48.9	24.3	7.9	0.9	0.2	0.0	0.1
(dup)	11/08/97		17,000	4,223	0.0	1.9	15.9	47.8	24.2	8.1	1.1	0.5	0.2	0.3
	08/12/98		5,700	1,416	0.0	1.9	13.7	41.0	27.8	12.1	2.7	0.5	0.3	0.0
(dup)	08/12/98		5,400	1,341	0.0	1.9	14.1	40.4	27.8	12.5	2.6	0.7	0.0	0.0
	04/19/99		3,600	894	0.2	1.5	14.0	38.0	27.3	14.0	4.0	0.8	0.2	0.0
	05/26/00		2,700	671	0.1	1.6	11.7	46.9	27.5	8.3	2.6	0.5	0.2	0.6
	08/16/00		2,400	596	0.0	1.4	6.5	40.0	30.7	16.2	3.7	1.0	0.1	0.4
	06/03/01		1,420	353	0.0	1.3	5.1	36.8	31.9	14.8	7.4	1.9	0.7	0.1

All air samples analyzed by Hall Laboratory of Albuquerque, NM PID = Photoionization detector

(a) Conversion Factor:

 $P = 0.88 \ atm, \ MW = 110 \ g/mole, \ R = 0.08205 \ L^*atm/(K^*mole), \ T = 293°K \ C \ ppmv = C \ ug/L * ((R * T)/(MW*P)) \ C \ ppmv = C \ ug/L * 0.2484$

Well	Source ^a	Date of Completion	Measuring Point Elevation (ft) ^b	North (ft)	West (ft)	Total Depth of Boring (ft bgs)	Measured Depth of Well (ft from TOC)	Surface Completion Type	Casing Diameter (in.)	Screen Interval (ft bgs)	Top of Sand Pack (ft bgs)
MW-1	Layne Enviro/B&R	06/26/93	95.66	11.91	48.25	63.9	64.20	Flush Mount	2	53.5-63.5	51.5
MW-2	Layne Enviro/B&R	06/28/93	97.29	9.08	134.61	49.6	50.34	Flush Mount	2	39-49	37.0
MW-3	Layne Enviro/B&R	07/18/93	95.00	177.53	6.45	55.0	55.11	Flush Mount	2	45-55	42.5
MW-4	Layne Enviro/B&R	07/20/93	95.21	48.27	11.49	57.0	56.18	Flush Mount	2	45-55	43.0
MW-5	GeoProjects/B&C	11/20/94	98.22	14.15	228.64	79.0	53.88	Flush Mount	2	29-54	27.0
MW-6	GeoProjects/B&C	11/30/94	99.62	-15.91	277.03	46.5	46.60	Flush Mount	2	31-46	29.0
MW-7	GeoProjects/B&C	11/30/94	99.14	-94.61	281.61	46.0	45.62	Flush Mount	2	31-46	29.0
MW-8	GeoProjects/B&C	11/29/94	95.98	76.73	153.96	59.0	53.90	Flush Mount	2	24-54	22.0
SVE-1	Eades/DBS	10/30/95	na	41.80	222.60	36.5	35.65	Flush Mount	2	15-35	13.0
SVE-2	Eades/DBS	10/31/95	na	41.80	182.60	43.0	43.33	Flush Mount	2	18-43	16.0
SVE-3	Eades/DBS	10/31/95	na	41.80	142.60	45.0	45.56	Flush Mount	2	25-45	23.0
SVE-4	Eades/DBS	10/31/95	na	41.80	102.60	53.0	53.32	Flush Mount	2	28-53	25.0
SVE-5	Eades/DBS	11/01/95	na	41.80	62.60	46.0	44.92	Flush Mount	2	26-46	22.5
SVE-6	Eades/DBS	11/01/95	na	41.80	22.60	43.0	43.86	Flush Mount		23-43	21.5
SVE-7	Eades/DBS	10/31/95	na	1.80	242.60	39.5	40.28	Flush Mount	2	19.5-39.5	17.5
SVE-8	Eades/DBS	10/31/95	na	1.80	202.60	41.0	41.15	Flush Mount	2	21-41	19.0
SVE-9	Eades/DBS	10/31/95	na	-10.65	162.60	45.0	43.95	Flush Mount	2	24-44	21.0
SVE-10	Eades/DBS	10/31/95	na	-10.65	122.60	58.0	54.88	Flush Mount	2	28-58	26.0
SVE-11	Eades/DBS	10/30/95	na	1.80	82.60	45.0	44.33	Flush Mount	2	24-44	22.0
SVE-12	Eades/DBS	11/01/95	na	1.80	42.60	45.0	45.93	Flush Mount	2	24-45	23.0
SVE-13	Eades/DBS	11/01/95	na	1.80	2.60	58.0	59.31	Flush Mount	2	28-58	24.0
SVE-14	Eades/DBS	11/02/95	na	41.80	262.60	40.0	40.20	Flush Mount	2	15-40	14.0

NOTES:

⁽a) Driller/Consultant

⁽b) The measuring point elevation is relative to an on-site datum assigned an elevation of 100 ft and was provided by Brown & Caldwell

na - Information not available

Table 6. Monitor Well Sampling Locations, Frequency, and Sample Analysis Plan **TW Atoka-1 Compressor Station**

	Analytical R	equirements		
	1st Semiannual	2nd Semiannual	Benzene (ppb)	
Well ID	Event	Event	Latest Result	Comments
MW-1	BTEX	BTEX	2850	previously contained PSH
MW-2	BTEX	BTEX	951	previously contained PSH
MW-3	BTEX	BTEX	<1	
MW-4	BTEX	BTEX	2	
MW-5	BTEX	BTEX	900	
MW-6	BTEX	BTEX	885	
MW-7	BTEX	BTEX	201	
MW-8	BTEX	BTEX	3	

Notes:

- 1) na not available
- 2) BTEX BTEX Compounds by EPA Method 8021B
 3) "Comments" are provided for wells that will not be sampled during one or more events

June 9, 2000

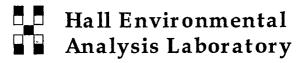
Hall Environmental Analysis Laboratory 4901 Hawkins NE, Ste. A Albuquerque, NM 87109

Cypress Engineering 10235 W Little York, Ste. 256 Houston, TX 77040

Dear Mr. Robinson:

Enclosed are the results for the analyses that were requested. These were analyzed according to EPA procedures or equivalent.

Detection limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.


Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Nancy McDuffie

Assistant Laboratory Manager

Project: 0005144/SVE Sampling CES/ATOKA-1 Station

Client:

Cypress Engineering

George Robinson

Project:

SVE Sampling CES/ATOKA-1 Station

Project Manager: Project Number:

Enron/TWP Atoka-1 Station

Date Collected:

5/26/00

Date Received: Sample Matrix:

5/30/00 Air

Extraction Date: NA

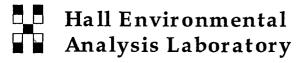
EPA Method - 8015B Modified GRO

Units: ug/L

Client ID:

SVE ATOKA-1

HEAL#:


0005144-1

Analysis Date:

5/30/00

Compoun	d I	MRL	Result
Gasoline)	5.0	2,700
Range Orga	nics		
Hydrocarb	on		. • •
Ranges 9		_	
<c5< td=""><td></td><td>-</td><td>0.1</td></c5<>		-	0.1
C5-C6		_	1.6
C6-C7		-	11.7
C7-C8		_	46.9
C8-C9		-	27.5
C9-C10		-	8.3
C10-C1		-	2.6
C-11-C1	2	-	0.5
C12-C14	1	-	0.2
C14+		-	0.6
Dilution			10
BFB %			**

^{**}Surrogate not recoverable due to matrix interference.

Client:

Cypress Engineering

Project:

SVE Sampling CES/ATOKA-1 Station

Project Manager:

George Robinson

Project Number: Enron/TWP Atoka-1 Station

Date Collected:

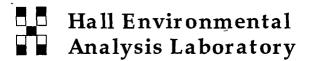
Date Received: NA

NA

Sample Matrix: Aqueous

Extraction Date: NA

EPA Method - 8015B Modified GRO


HEAL ID	Client ID	Dilution	Gasoline Range (mg/L)	% BFB	Analysis Date
Reag. Blk.	-	1	ND	112	5/30/00

MRL	0.05

QA/QC:

Sample ID:	Sample Amt.	Spike	Rec.	%%	Dup.	<u>%</u>	RPD
Blank Spike 6/5	<0.05	0.50	0.48	96	0.47	94	2

			DY RECORD					· •					4	901	Hav	rkins	NE,	, Sui	te A		·	s LAI	BORAT	ORY
Client:	MR. 6	ROLLE	ROBINSON, PE	Project Name:	50,	ES	Am	divo									3975 ronn			5.345 om	5.410	17		
\overline{C}	V PRE	SS E	NGINE ERING	CES	/#	TOP	A-	STATION																
Address	1023	5 WE.	ST LITTLE YOUR	Project #: Z	nro	7/	Tuy	0																
Su	TE	256		ATOLA	-/	57	TAT	TON		Only)	sel)								4)					
Ho	25 TON	, Tev	AC 77040-3229	Project Manager: GEONGE ROBINSON, PE Sampler: CMB BRNHILL, PG			(8021)		TPH Method 80158 MOD (Gas/Diesel)								2, PO4, SO4)	\$ (8082)				space (Y or N)		
Phone #	(7/2	3)85	neosoft.com- 6-7980	Sampler:	mE	3 AL	NHI	u, PG	+ TMB's	PH (6)	M MS	<u></u>	(8021	[.	23)	£		a, Mg	3, NO	/ PCB				Headsp
Fax #:	713)	856	- 798/	Samples Cold?:		☐ Ye	S	□ No	展+1	+ 3	68 B	od 418	List	d 50	08 po	or PA	stals	a, K, C	S, 18	cides /		i-V0A		5
Date	Time	Matrix	Sample I.D. No.	Number/Volume	Pre	serva HCI	tive	HEAL No.	BTEX + MTBE	BTEX + MTBE + TPH (Gasoline	TPH Metho	TPH (Method 418.1)	Volatiles Full List (8021)	EDB (Method 504.1)	EDC (Method 8021)	8310 (PNA or PAH)	RCRA 8 Metals	Cations (Na, K, Ca, Mg)	Anions (F, CI, NO3, NO2, PO4,	8081 Pesticides / PCB's (8082)	8260 (VOA)	8270 (Semi-VOA)		Air Bubbles
5/24/00	10:15	Air	Enron/Twp SUE ATOKA-1	2/TEXAL				0005 144-			X													
					ļ		<u> </u>		_	╁	-		_		_		<u> </u>	_	-	-				+
	 			<u> </u>	-		-		-	├	-	_		_	-		-	-	-	-				+
		<u> </u>		 					-	╁	-	-	-		-	-	-	-	├					+
									-	 	 		_				-		-	-				+
					-				\vdash	\vdash	-			<u> </u>		-	\vdash				-		\sqcap	
					-				┢		╁─		 	-	-	 	-		 	 	 			+
			<u> </u>	 	-				\vdash	-	-		\vdash	\vdash	-	 		\vdash						+
	 			 	 	ļ	 		一	\vdash	 -	\vdash		 	 	<u> </u>	-	 		 	\vdash			\dagger
	 				 	-	 		十	-	1		 	 	-	-	\vdash			\vdash	\vdash			+
				1		\vdash	 		-	十		\vdash	+	\vdash		t^-	T			 	 	 		\dagger
Daje: 5/24/a Date:	Time: 14:16		bel By (Gignature)	Receive	d By: (S	Signati	re) -	in 5/30/00	Rer	nark	S: ,	4	y Uzri	45	ک کر ک	 : 	 	P	H		201		801	_ <u></u>
Daté:	Time:	Relinquis	bed By: (Signature)	Receive	d By: (Signati	re)				6	eo.	199	20	est Ko	7 o.	45	Son	rk I	eas De	e. - -	7-	801	•

August 25, 2000

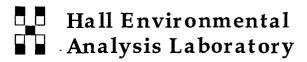
Hall Environmental Analysis Laboratory 4901 Hawkins NE, Ste. A Albuquerque, NM 87109

Cypress Engineering 10235 W Little York, Ste. 256 Houston, TX 77040

Dear Mr. Robinson:

Enclosed are the results for the analyses that were requested. These were analyzed according to EPA procedures or equivalent.

Detection limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.


Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Senior Project Manager

Project: 0008102/Atoka-1 Station SVE Sampling Air

Cypress Engineering

Atoka-1 Station SVE Sampling Air Project:

Project Number:

Project Manager: George C. Robinson

TWP Atoka-1 Station

Date Collected: 8/16/00 8/18/00

Date Received: Sample Matrix: Air Extraction Date: NA

EPA Method - 8015B Modified GRO

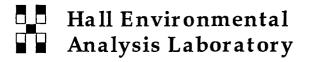
Units: ug/L

Client ID:

SVE Total Air Sample

HEAL#:

0008102-1


Analysis Date:

8/18/00

Compound	MRL	Result
Gasoline	5.0	2,400
Range Organics		
Hydrocarbon		. * .
Ranges %	-	
<c5< td=""><td>-</td><td>0.00</td></c5<>	-	0.00
C5-C6	-	1.4
C6-C7	-	6.5
C7-C8	•	40.0
C8-C9	-	30.7
C9-C10	-	16.2
C10-C11	•	3.7
C-11-C12	-	1.0
C12-C14	-	0.1
C14+	-	0.4
Dilution		50
Bi-B %		*121%

^{*}Surrogate recovery high due to matrix interference.

Client:

Cypress Engineering

Project:

Atoka-1 Station SVE Sampling Air

Project Manager: **Project Number:**

George C. Robinson

TWP Atoka-1 Station

Date Collected:

NA **Date Received:** NA

Sample Matrix:

Aqueous

Extraction Date: NA

EPA Method - 8015B Modified GRO

HEAL ID	Client ID	Dilution	Gasoline Range (mg/L)	% BFB	Analysis Date
Reag. Blk.	-	1	ND	102	8/18/00

MRL	0.05

QA/QC:

Sample ID: RPD Sample Amt. Spike Rec. Dup. Blank Spike 8/18 <0.05 0.47 0.50 0.47 94 0

			DY RECORD	ν.			(•				F	4: A	901 lbuq	Haw	kins ue, i	NE, New	Sulf Mex	e A	8710	9		BOR#	ATORY
Client: C	YPRA	555 E	NEINEEPING.	Project Name:	5V2	$\dot{\Xi}$	ב ? ? ?	pling AIR											505 al.co		.410	17		
ATT	W: M	18. G	COLLE REBINSON	1 10%	A	-/ ‹) //	9TION.			_	_					_							
Address:	1023	5 We	est Little Valle	Project #: 72	app.	ر ۾ (مُنين	TCK	(A-1		ĭ				A	NAL	YS	SR	વા	JES	I				
Su	ITE	256	·	.1				<u> </u>		Only))iesel)								S0 ₄)		İ			(Z
			(AS- 77040	Project Manager: MR, GERREE C. ROBINSON Sampler: CIM BARNAICE				+ TMB's (8021)	BTEX + MTBE + TPH (Gasoline	TPH Method 8015B MOD (Gas/Diesel)		1)					(6	P04,	(8082			5	Air Bubbles or Headspace (Y or N)	
Phone #:	7/3	-64	6-7327	Sampler:	(In	2 K	DAK.	NAICC-	TMB	HE (15B N	8.1)	t (802	4.1)	121)	AH)		Ca, M)3, N	/ PCE		₹	801	leads
Fax #:	713	-64	6-7867-	Samples Cold?:		☐ Yes	3	DINO ON E		13年	.08 po	TPH (Method 418.1)	Volatiles Full List (8021)	EDB (Method 504.1)	EDC (Method 8021)	8310 (PNA or PAH)	letais	Cations (Na, K, Ca, Mg)	Anions (F, Cl, NO3, NO2,	8081 Pesticides / PCB's	₽	8270 (Semi-VOA)		ss or h
Date	Time	Matrix	Sample I.D. No.	Number/Volume	Pre	servat	ive	HEAL No.	BTEX + MTBE	¥ + X	Meth	(Met	tiles F	(Metf	(Met	/Nd) C	RCRA 8 Metals	Suc	ns (F,	1 Pes	8260 (VOA)	o (Ser	Hd	3npplk
				Wite	HgCl ₂	HCI			BIE	BTE	표	TPH	Vola	803	3	831	5	Cati	Anic	88	826	827	1	<u>Air</u>
8/16/00		AIR	SUE TOTAL ALL Jample.	2 TEDIA				0008162-															X	
								•																
																						,		
****														_										
								· · · · · · · · · · · · · · · · · · ·		_														
																						<u> </u>		
																				_	_	L		
			·						_	_	<u> </u>	_					_	<u> </u>	_	ļ	<u> </u>	igspace		
									_					_	<u> </u>		_	_	_	<u> </u>		igsplace		ļļ
			/		<u> </u>			<u> </u>				<u></u>	<u> </u>	<u> </u>						<u> </u>	<u> </u>	$oldsymbol{ol}}}}}}}}}}}}}}$		
Date: Date:	Time: 16',42 Time:	Relinguis Relinguis	hed By: (Signature) Myn, Mys Market Med By: (Signature)	Receive	d By: (1/2) d By: (Signatu	116) 457/77 1(6)	8/18/00	Rei	mark: 41.4	s: 7	13	1	her 6	e 46	ar -	Ca,	11 3 =	7	Q 1 =c	es: 50	t10.	TS Res	with