

REPORTS

CURA, INC. 731 West Wadley Building L, Suite 200 Midland, Texas 79705 (915) 570-8408 FAX (915) 570-8409

SHELL PIPE LINE CORPORATION TWO SHELL PLAZA P.O. BOX 2099 HOUSTON, TEXAS 77252-2099

RECEIVED

NOV 1 7 1995

March 2, 1994

OIL CONSERVATION DIV. SANTA FE

7. Wesley Root F. Wesley Root Prepared By: **Environmental Geologist** Gilbert J. Van Deventer, R.E.M. Hydrogeologist **Reviewed By:** Greg C. Walterscheid, R.E.M., C.P.G Branch Manager - Midland Herbert E. Fry, C.P.G. Director of Geology/Hydrogeology

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY

2.0 INTRODUCTION

- 2.1 SCOPE OF SERVICES
- 2.2 BACKGROUND INFORMATION

3.0 SUBSURFACE CONDITIONS

- 3.1 SITE GEOLOGY
- 3.2 SITE HYDROLOGY
- 3.3 SOIL ANALYTICAL RESULTS
- 3.4 GROUNDWATER ANALYTICAL RESULTS

4.0 SOIL VENTING EVALUATION

- 4.1 SOIL VAPOR EXTRACTION TEST
- 4.2 PILOT TEST DATA REDUCTION
- 4.3 AIR EMISSIONS

5.0 **BIOTREATABILITY CHARACTERISTICS**

- 6.0 GROUNDWATER EXTRACTION EVALUATION
- 7.0 CONCLUSIONS
- 8.0 APPENDICES

APPENDIX A:	FIGURES
APPENDIX B:	AQUIFER CHARACTERIZATION
	B.1 WELL DEVELOPMENT TEST
	B.2 SLUG TESTS
APPENDIX C:	SOIL VAPOR EXTRACTION TEST RESULTS

9.0 **REFERENCES**

15936773.RP1

1

1.0

1.0 EXECUTIVE SUMMARY

CURA conducted additional site characterization and feasibility testing at the site, Lea Station, Lea County, New Mexico for the purpose of assessing site geologic and hydrogeologic conditions to determine potential remediation requirements. Previous activities had identified hydrocarbon impacted soils and groundwater on-site. This investigation included slug testing and soil vapor extraction (SVE) feasibility testing.

The soils penetrated by the existing monitor wells consist of fine-grained silty sands and calcareous sands, containing indurated caliche stringers. Depth to the water table ranges from 24 to 31 feet below ground surface. A hydraulic gradient of 0.01 was calculated for the site with groundwater movement toward the southeast.

A SVE feasibility test conducted on-site indicated that the effective radius of influence for vapor extraction well MW-8 is approximately 110 feet with an air flow rate of 13 standard cubic feet per minute (SCFM) per foot of available well screen. Analytical results of the air effluent indicate vapor phase hydrocarbons are present within the vadose zone. The effective radius of influence and flow rate indicate the air conductivity of the impacted soils is sufficient for vapor extraction.

Well development and slug test recovery data indicate the monitor wells have little or no sustainable well yield (estimated range from 0.1 to 0.5 gpm). Therefore CURA was not able to conduct a pumping test on site as originally intended.

Slug tests conducted on the on-site monitor wells recorded an average hydraulic conductivity of 8.5×10^{-4} centimeters per second (cm/s), typical of a silty fine-grained sand.

The existing monitor wells penetrate 10 feet of the saturated zone. Greater vertical penetration into the saturated interval is needed to evaluate well yields and delineate

Page 1-1 +
 March 2, 1994

the vertical extent of the dissolved hydrocarbon plume. On-site water well data indicates that the installation of a downgradient monitor well to a depth of 60 feet should be sufficient to complete vertical delineation.

Characterization and feasibility test information obtained indicate that the impacted soils and groundwater near MW-8 in the western portion of the site and the area extending from MW-11 to MW-3 located in the northeastern portion of the site can be treated by a combination of active air venting/sparging with groundwater pumping to control plume migration. In addition, shallow hydrocarbon impacted soils identified in the eastern half of the site can be treated by in situ or ex-situ methods, namely bio-venting or landfarming.

2.0 INTRODUCTION

CURA was contracted by Shell Pipe Line Corporation to conduct site assessment activities for the purpose of assessing site hydrogeologic conditions at the Lea Station in Lea County, New Mexico. The investigation included performing five slug tests and a soil vapor extraction feasibility test on the hydrocarbon impacted zone.

Located in the Monument-Jal Oil Field, the site, Lea Station is utilized as a crude oil pipeline pumping station. Formerly operated by Shell Pipe Line Corporation, the site is presently operated by Enron (Appendix A, Figure 1).

2.1 SCOPE OF SERVICES

The following scope of services was conducted for the Site Characterization Study:

- Performed slug tests on five existing monitor wells to determine the hydraulic conductivity of the penetrated portion of the aquifer. The original scope of service called for a pumping test, however due to the insufficient well yields indicated during development testing, a pumping test was not feasible.
- Performed a SVE feasibility test to determine potential remediation options.
- Evaluated potential remedial methods based on characterization results.

199

• Summarized findings in the Site Characterization and Feasibility Testing Report.

2.2 BACKGROUND INFORMATION

Eleven monitor wells and 16 borings were installed by CURA during previous investigations from December 1992 to September 1993 to establish a baseline condition of the subsurface and to further delineate soil and groundwater hydrocarbon impact. Three primary issues were identified during the previous investigations, residual hydrocarbons in unsaturated soils above the water table, phase separated hydrocarbons (PSH) floating on top of the water table, and dissolved hydrocarbon constituents in the groundwater.

The previous investigations identified hydrocarbon-impacted soils in excess of New Mexico Oil Conservation Division (OCD) guidelines (>100 ppm TPH) in four separate areas of the site.

- A1) Area south of Tank 1843 in the western portion of the site.
- A2) Area centered on MW-11 in the northcentral portion of the site.
- A3) Area extending from B-5 to MW-4 in the eastern portion of the site.
- A4) Area extending from MW-2 to B-15 in the southeastern portion of the site.

The area containing the greatest hydrocarbon-impact is area A1. Hydrocarbon-impacted soils extend from the ground surface to a depth of 27 feet (depth to groundwater) and appear to be limited to an area approximately 250 by 400 feet with the greatest hydrocarbon concentration located southeast of Tank 1843. Approximately 2.84 feet of PSH was observed in MW-8. The PSH and dissolved hydrocarbon plume appear limited to the area between Tank 1843 and monitor wells MW-6 and MW-7.

Hydrocarbon-impacted soils and groundwater were identified in area A2 located south of an off-site tank battery. The hydrocarbon impacted soils were identified in MW-11 and extend from the ground surface to a depth of 31 feet (depth to groundwater). The horizontal extent of impacted soils and groundwater in area A2 has not been delineated.

Area A3 contains hydrocarbon-impacted soils in a two-foot thick interval above groundwater. The impacted soils extend from MW-2 approximately 200 feet to the southeast (B-15). The impact appears to be the result of PSH migration on the water table, however no PSH has been observed in the area monitor wells (MW-1, MW-2, or MW-10).

The depth of impact appears limited to soils above the water table in area A4. Results indicate the hydrocarbon-impacted soils are the result of a near surface crude oil release and/or releases where the hydrocarbon constituents were absorbed by the soils before downward migration reached groundwater. Depth of impact in area A4 appears limited to 3 feet in a majority of the borings and extends to 12 feet near MW-4.

The previous investigations identified two dissolved hydrocarbon plumes containing detectable benzene concentrations. Results indicate a plume containing PSH extends southeast approximately 300 feet from Tank 1843 in the western portion of the site. The plume identified in MW-1, MW-11, MW-2, and MW-3, extends southeastward downgradient from MW-3 and MW-11 to MW-1 in the northern and eastern portions of the site.

Based on the previous findings, slug tests were performed on five monitor wells (MW-2, MW-3, MW-6, MW-9, and MW-11) to assess aquifer characteristics. In addition a SVE feasibility test was performed to evaluate site characteristics in the hydrocarbon-affected soils above the water table.

il van een

3.0 SUBSURFACE CONDITIONS

Previous subsurface investigations included soil and groundwater sampling during boring and monitor well operations performed by CURA. This investigation included monitor well slug tests and a SVE feasibility test.

3.1 <u>SITE GEOLOGY</u>

The site is located in Lea County, New Mexico, along the southwestern edge of the High Plains Region of New Mexico and Texas. The general trend of the local topography and surface drainage of the site area is to the southeast toward Monument Draw. The site surface sand and calcareous sands consist of Quaternary eolian and alluvial deposits overlying the tertiary-age Ogallala Formation.

The geology within the upper 40 feet beneath the site consists of 1 to 5 feet of brown to gray silty sand (SM) underlain by multi-colored slightly to strongly calcareous sand (caliche). Indurated calcareous zones (caliche) of varying thickness were encountered at depths ranging from 2.5 feet to 40 feet below ground surface across the entire site. The degree of induration of the caliche and the amount of calcite cement within the sands varied between borings and appears to be the primary influence on the permeability of the subsurface soils.

3.2 <u>SITE HYDROLOGY</u>

The saturated zone consists of fine-grained slightly to strongly calcareous sands containing indurated caliche stringers. Undifferentiated sands within the Quaternary deposits, and the Pliocene age Ogallala Formation form the major water bearing unit beneath the site area.

Page 3-1 +
 March 2, 1994

Drilling information from the abandoned on-site water well indicates a three foot thick water-bearing sand at a depth of 57 feet below ground surface is present beneath the site area. Gulf Refining Company drilled the water well (#L-2402) to a total depth of 60 feet below ground surface in January 1954 and produced water from the Ogallala/Quaternary Alluvium aquifer at 57 to 60 feet. Original depth-to-water was 40 feet upon completion. Depth-towater measured 26 feet below ground surface in December 1992. The well is currently abandoned and open to a depth of 54 feet. During development prior to sampling in December 1992, a pumping rate of approximately 6 gpm for approximately 18 minutes created less than 1 foot of drawdown in the well, indicating that the 57 to 60 foot sand is significantly more permeable than the overlying portion of the aquifer. Analytical results indicate the sand contains little or no dissolved BTEX concentrations.

Depth to groundwater in the site area ranges from 24 to 31 feet below ground surface. PSH was observed in MW-8 during gauging operations, with the thickness increasing from 0.004 inches on September 28, 1993 to 2.84 feet on January 4, 1994. A hydraulic gradient of 0.01 was calculated for the site based on the groundwater gradient map (Appendix A, Figure 3). Groundwater data including well elevation, depth to water, and groundwater elevation based upon an arbitrary survey point datum of 100.00 feet are presented in Table 1.

Page 3-2
 March 2, 1994

15936773.RP1

Shell Pipe Line Corporation

(County)

TABLE 1 SUMMARY OF RELATIVE GROUNDWATER LEVEL ELEVATIONS AND PHASE-SEPARATED HYDROCARBON THICKNESSES									
Monitor Well	Date Sampled	Relative Ground Surface Elevation (feet)	Relative Top of Casing Elevation (feet)*	Depth to Water Below Top of Casing (feet)	Corrected Relative Groundwater Elevation (feet)**	Phase- Separated Hydrocarbon Thickness (feet)			
MW-1	12/21/92	98.88	100.73	28.32	72.41	0.00			
	02/16/93	98,88	100.73	28.48	72.25	0.00			
	09/28/93	98.88	100.73	29.18	71.55	0.00			
MW-2	02/16/92	100.78	102.37	29.33	73.04	0.00			
	09/28/93	100.78	102.37	30.23	72.14	0.00			
MW-3	02/16/93	101.79	103.61	29.23	73.38	0.00			
	09/28/93	101.79	103.61	30.04	73.57	0.00			
MW-4	02/16/93	93.80	× 96.08	25.44	70.64	0.00			
	09/28/93	93.80	96.08	26.12	69.96	0.00			
MW-5	02/16/93	107.08	109.21	29.86	78.35	0.00			
	09/28/93	107.08	109.21	30.42	79.35	0.00			
MW-6	02/16/93	103.66	106.26	28.60	77.66	0.00			
;	09/28/93	103.66	106.26	29.96	76.30	0.00			
MW-7	02/16/93	104.34	106.27	29.24	77.03	0.00			
	09/28/93	104.34	106.27	30.65	75.62	0.00			
MW-8	09/28/93	105.52	107.44	32.81	76.63	0.04			
MW-9	09/28/93	93.76	97.21	28.60	68.61	0.00			
MW-10	09/28/93	99.63	102.51	34.11	68.40	0.00			
MW-11	09/28/93	104.48	105.62	31.38	74.24	0.00			

* Measured from a relative datum (benchmark = 100.00 feet). The monitor well casings were marked to provide consistent reference points for future gauging operations.

** Correction Equation for Phase-Separated Hydrocarbons: Corrected Groundwater Elevation =

Top of Casing Elevation - (Depth to Water Below Top of Casing - [SG] [PSH Thickness])

Specific Gravity (SG) = 0.9 for crude oil.

, n

1

15936773.RP1

Page 3-3 +
 March 2, 1994

ļ

3.3 SOIL ANALYTICAL RESULTS

A review of the analytical results from previous subsurface investigations, conducted in December 1992, March 1993, and October 1993, indicated hydrocarbon-affected soils in excess of the OCD guidelines (>100 ppm TPH) were limited to four general areas of the site.

- A1) Area south of Tank 1843 in the western portion of the site.
- A2) Area centered on MW-11 in the northcentral portion of the site.
- A3) Area extending from B-5 to MW-4 in the eastern portion of the site.
- A4) Area extending from MW-2 to B-15 in the southeastern portion of the site.

Hydrocarbon-impacted soils in the western portion of the site (area A1) ranged in depth from approximately 3 feet in boring B-3 to 27 feet (depth to groundwater) in B-8, B-11, and MW-5. Based on the data obtained, the extent of hydrocarbon-impacted soils in the western portion of the site is limited to an area approximately 250 feet by 400 feet with the greatest hydrocarbon concentration adjacent to boring B-11, MW-5, and MW-8.

Monitor well MW-11 identified hydrocarbon-impacted soils in the northcentral portion of the site (area A2) from a depth of approximately 10 feet to top of groundwater at 31 feet. However, no phase separated hydrocarbons (PSH) was observed in MW-11 during drilling operations.

Hydrocarbon-impacted soils in the eastern portion of the site (area A3) ranged from a depth of 3 feet in a majority of the borings to 12 feet in monitor well MW-4. The extent of hydrocarbon-impacted soils identified in the eastern portion of the site consists of a 3 foot deep area extending

approximately 400 feet by 200 feet. However, hydrocarbon-impacted soils extend to a depth of 12 feet near boring MW-4.

An area containing hydrocarbon-impacted soils in the two foot interval above groundwater was identified in borings B-15 and MW-2. The area (area A4) is approximately 50 feet wide and extends approximately 200 feet downgradient (southeast) of the sump and pumps in the eastern portion of the site.

3.4 GROUNDWATER ANALYTICAL RESULTS

Hydrocarbon-impacted groundwater was previously identified in two areas of the site. A dissolved hydrocarbon plume identified in MW-1, MW-2, and MW-3, located in the northeast portion of the site and a plume containing PSH located in the western portion of the site.

The monitor wells were gauged on September 28, 1993 to determine the presence of PSH, groundwater elevation and gradient. Depth to groundwater on site ranged from 24 feet to 31 feet below ground surface with the apparent groundwater gradient toward the southeast. No PSH was observed in the monitor wells with the exception of 0.04 inches recorded in MW-8. Monitor well MW-8 is located approximately 200 feet downgradient (southeast) from Tank No. 1843. Approximately 2.84 feet of PSH was measured in MW-8 during slug test operations on January 12, 1994 subsequent to SVE testing. The western and southern extent of the PSH identified in MW-8 is limited to a radius of less than 300 feet from Tank No. 1843 based on field observations and analytical data from borings B-14, MW-6, and MW-7.

On September 30, 1993, groundwater samples obtained from monitor wells MW-9, MW-10, and MW-11 recorded benzene and total dissolved BTEX

levels ranging from less than the method detection limit of 0.001 ppm in MW-9 to 0.24 and 0.63 ppm, respectively, in MW-11. Monitor well MW-8 was not sampled due to the presence of PSH. Based on the southeasterly groundwater gradient and water analytical results, off-site impact is not probable.

Possible source areas for the PSH in MW-8 include Tank 1843 and the associated piping. Possible source areas for the elevated hydrocarbon levels in MW-11 and MW-3 include subsurface crude pipelines and the off-site tank batteries north of the site.

A dissolved hydrocarbon concentration map is presented in Appendix A (Figure 2) and depicts the distribution of groundwater BTEX and TPH concentrations. The water analytical results are summarized in Table 2.

TABLE 2 WATER SAMPLE ANALYTICAL RESULTS										
Monitor Well	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	Total BTEX	TPH	TDS		
MW-1	12/21/92	0.440	0.005	0.120	0.063	0.628	3	2,380		
	02/16/93	0.350	0.010	0.095	0.070	0.525	5			
MW-2	02/16/93	0.370	0.040	0.210	-0.510	1.130	1			
MW-3	02/16/93	2.500	0.010	0.370	0.640	3.520	2			
MW-4	02/16/93	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<1			
MW-5	02/16/93	< 0.001	< 0.001	0.002	0.004	0.006	<1			
MW-6	02/16/93	0.002	0.001	< 0.001	0.091	0.094	<1	2,500		
MW- 7	02/16/93	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<1			
MW-8	09/30/93	PSH	PSH	PSH	PSH	PSH	PSH	PSH		
MW-9	09/30/93	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<1	2,130		
MW-10	09/30/93	< 0.001	< 0.001	0.009	0.001	0.010	7			
MW-11	09/30/93	0.24	0.14	0.11	0.14	0.63	3			
WW-1	12/08/92	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	5	1,800		

BTEX results listed in m/l (parts per million; ppm) with a method detection limit of 0.001 ppm. TPH and DO results listed in mg/l (parts per million; ppm) with a method detection limit of 1 ppm. Analyses were conducted using EPA Method 8020 (BTEX), EPA Method 418.1 (TPH), and EPA Method 160.1 (TDS) by SPL Environmental Laboratories and CEL Laboratories.

i f

Shell Pipe Line Corporation

No.

4.0 SOIL VENTING EVALUATION

CURA performed SVE testing to determine the feasibility of using venting technology to enhance the rate of volatilization and bio-degradation of the hydrocarbon-affected soils in the vadose zone.

4.1 SOIL VAPOR EXTRACTION TEST

On December 21 and 22, 1993, CURA performed a SVE feasibility test on site to determine the representative air flow rates and effective radius of influence for the site. Area A1 was selected for feasibility testing due to the extent of hydrocarbon impact.

Monitor well MW-8 was used as the SVE extraction well and is screened from the bottom of the well at 38 feet to 23 feet below ground surface. The static water level ranged from 27.7 to 31.7 feet below ground surface in the extraction well and monitoring points. Monitor wells MW-6 and MW-7, located 180 feet south and 195 feet southeast of MW-8, respectively, were used as monitor points during the test.

The installation of three additional monitor points was attempted to provide a more effective site characterization. Aluminum vacuum probes were chosen for the additional monitoring points based on the low cost of installation. The vacuum points were to be set at 10 feet, 20 feet, and 30 feet from the extraction well and 15 feet below surface grade. The installation of three additional monitor points was attempted to provide a more effective site characterization. During installation operations indurated caliche was encountered at depths ranging from 2.5 to 4 feet below ground surface. The monitor points could not be driven through the caliche layer. Monitor point

MP-1, located 32 feet northwest of MW-8 at a depth of 4 feet; MP-2, located 30 feet east of MW-8 at a depth of 2.5 feet; and MP-3, located 46 feet northwest of MW-8 at a depth of 3 feet were used as monitor points.

One 5 hp Rotron regenerative blower was connected to the designated extraction well (MW-8) using 2-inch flex piping and a 4-inch locking well seal. A Dwyer magnahelic vacuum gauge was connected to the inlet of the blower to measure the vacuum. In addition, magnahelic gauges were connected to the surrounding monitor points. The magnahelic gauges determined the vacuum induced at each monitor point. The manufactures performance specification chart was used to calculate the extraction flow rates.

When the blower was initially started, ambient air was bled into the system to produce the desired vacuum pressure and flow rate. Once the desired flow had been achieved in the extraction well, the feasibility test was initiated, and periodic readings from magnahelic gauges were obtained. The blower was allowed to run until the periodic measurements from each magnahelic gauge indicated that the system had reached equilibrium (16 hours).

A vacuum pressure of 73 inches of water was developed at the MW-8. Pressure changes were observed at monitor points MW-6, MW-7, and MP-2. No response was observed in monitor points MP-1, and MP-3. A summary of this data is presented in Table 3.

Page 4-2
 March 2, 1994

TABLE 3SOIL VAPOR EXTRACTION FEASIBILITY TESTFIELD DATASoil Vapor Extraction Feasibility Test Conducted December 21 and 22, 1993								
Monitor Point	Screened Interval of Monitor Point (feet)	Distance From Extraction Well MW-8 (feet)	Equilibrium Pressure (inches of water) Vacuum @ MW-3: 72 inches of water					
MW-6	20 - 30	180	0.15					
MW-7	20 - 31	195	0.03					
MW-8	23 - 33	0	73					
MP-1	4	32	0.00					
MP-2	2.5	30	0.20					
MP-3	3	46	0.00					

4.2 PILOT TEST DATA REDUCTION

The data recorded during the test were used to determine an effective radius of influence (area within the radius of vacuum influence that promotes sufficient air flow through the soils to effectively remediate the soils in a reasonable period of time). The effective radius was calculated by plotting the normalized vacuum pressure versus the radial distance on semi-log graph paper and plotting a best fit straight line using a linear regression technique. The effective radius was then interpolated using 1% of the operating vacuum pressure. The plots are included in Appendix C.

The volume of air flow through the soils was determined at equilibrium vacuum pressure conditions. The air flow was calculated in SCFM using the blower performance curve.

The effective radius of influence for the soil vapor extraction trial was 110 feet. The air flow rate through the soils during the test was approximately 130 SCFM for MW-8. The flow rate and radius of influence indicate the air conductivity of the impacted soils is sufficient to promote an efficient recovery of vapor phase hydrocarbons in the unsaturated zone.

4.3 AIR EMISSIONS

During the SVE test, an air sample was obtained to assess the composition and concentration of the vapor phase hydrocarbon constituents. The laboratory analyses is presented in Table 4.

Due to deflation of the two sample containers during overnite-air shipment, analysis of BTEX concentrations could not be performed. The TPH concentration indicates volatile hydrocarbon vapors were being recovered during the SVE test.

TABLE 4 SUMMARY OF AIR SAMPLE ANALYTICAL RESULTS									
Sample ID	Date	Benzene	Toluene	Ethyl- benzene	Xylenes	Total BTEX	TPH		
SVE-EFF	06-03-93			·			1,780		

Page 4-4 +
 March 2, 1994

Shell Pipe Line Corporation

AIR SAMPLE (mol %) in PPM (mg/l) TPH - 1,780 ppm

$$\left[\frac{28.3137 \ \ell}{cu.ft}\right] x \left[\frac{**78 \ gram}{mole}\right] x \left[\frac{1x10^{-3} \ mg}{gram}\right] = 92.74x10^{-3} \frac{mg}{cu.ft}$$
$$TPH \ 1,780 \ (ppm) \ x \left[\frac{92.74x10^{-3} \ mg}{cu.ft.}\right] x \left[\frac{2.204x10^{-3} \ lb}{gram}\right] x$$
$$\left[\frac{1x10^{-3} \ gram}{mg}\right] x \left[\frac{130 \ cu.ft.}{min.}\right] x \left[\frac{60 \ min.}{hr.}\right] = 2.63 \ \frac{lb.}{hr.}$$

*@ 60°F
** AVE Molecular Weight of TPH
*** Actual Air Flow Rate

• Page 4-5 • March 2, 1994

15936773.RP1

5.0 **BIOTREATABILITY CHARACTERISTICS**

In order to evaluate the potential of in-situ bioremediation as a treatment alternative, primarily in area A1 and area A2, the collection of soil samples to be utilized in biotreatability evaluation was attempted. Due to the shallow indurated caliche zone present at a depth ranging from 2 to 4.5 feet below ground surface, no biotreatability samples were obtained. Biotreatability screening is used to determine the presence of absence of constituents in the soils necessary for successful bioremediation.

The analytical results from the previously sampled intervals of the borings indicate that the hydrocarbon impacted soils in the vadose zone contain moderate TPH concentrations ranging from 2,700 ppm to 14,000 ppm.

Results of biotreatability analysis on sites containing similar soils and hydrocarbon concentrations indicate that the indigenous bacteria population, oxygen, nutrients, and moisture content are generally below optimum concentrations for hydrocarbon degradation. Research indicates that these conditions are typical for soils containing elevated TPH concentrations and the microbial biodegradation levels can be significantly increased through the addition of oxygen. The addition of oxygen by injection of air into the subsurface should enhance the remediation efforts, however the addition of nutrients, and moisture may be required to enhance hydrocarbon degradation by indigenous bacteria.

Page 5-1 +
 March 2, 1994

6.0 GROUNDWATER EXTRACTION EVALUATION

Five on-site monitor wells (MW-2, MW-3, MW-6, MW-9, and MW-11) were selected for slug testing to determine aquifer characteristics (permeability). Test procedures, data, and analyses are described in Appendix C. The calcareous sands in the upper portion of the aquifer were found to have a variable hydraulic conductivity, typically averaging 18 gpd/ft² (8.5 X 10^{-4}).

The impacted soils in areas A1 and A2 and possibly the off-site tank batteries north of MW-11 appear to be the source of dissolved hydrocarbon impact. The degree of groundwater impact is primarily controlled by the ability of water to leach soluble hydrocarbon constituents from the soils through percolation and groundwater flow in the upper portion of the aquifer. In order to estimate aquifer characteristics in the upper portion of the aquifer, the total amount of groundwater flow in the upper 10 feet of the aquifer (interval screened in site monitor wells) was estimated using Darcy's Law:

Q = kiA

Where:

Q = Aquifer flow (gpd)

k - Hydraulic conductivity (gpd/ft^2)

i = Hydraulic gradient on water table

A = Crossectional area of flow (w x b)
b = Thickness of flow zone
w = Width of flow zone (feet)

Using the measured hydraulic gradient of 0.01, the average saturated thickness penetrated by the monitor wells of 10 feet, and an estimated maximum hydrocarbon-affected plume width of 800 feet (northeast portion of the site), the total hydrocarbon-affected groundwater flow identified by MW-11 and MW-3 is estimated

+ Page 6-1 + March 2, 1994

to be 1,440 gpd for January 1994. Using an estimated maximum plume width of 260 feet (area A1) the total hydrocarbon-affected groundwater flow in the western portion of the site is estimated to be 470 gpd.

Based on well development and slug test recovery data the estimated long term well yield from the monitor wells on site is estimated to be below 1 gpm. Assuming a long term yield ranging from 0.1 gpm to 0.5 gpm, the wells would each have a capture zone width between 80 to 400 feet.

The low well yields and moderate hydraulic conductivity values of the monitor wells appear to be the result of two factors:

- 1) Heterogeneous nature of the aquifer; primarily caused by calcareous cementation.
- 2) Significantly higher horizontal versus vertical permeability.

15936773.RP1

7.0 CONCLUSIONS

- Data obtained during SVE testing from area A1 in the western portion of the site indicates that the calculated radius of influence and air flow rate from vapor extraction well MW-8 are feasible for consideration of soil venting to recover volatile hydrocarbons. In addition, soil bio-venting (air injection) is feasible to increase microbial degradation of the residual hydrocarbons upon confirmation of microbial presence in the soils at depth.
- Soil vapor extraction testing data indicated that the hydrocarbon impacted soils in area A1 and adjacent to MW-11 in the northern portion of the site (area A2) could be treated using a combination of vapor extraction and bioventing. Due to the shallow depth of impact identified in the eastern half of the site (area A4) ex-situ bioremediation may be applicable as an alternative to an in-situ system.
- Information obtained indicates greater additional saturated zone thickness is needed to obtain sufficient well yields for groundwater recovery and migration control. This would require the installation of monitor well(s) to depths approaching sixty feet (depth of highly permeable sand in WW-1).
- The heterogeneous nature and low well yield exhibited in the upper portion of the aquifer indicate groundwater remediation alternatives are limited. Hydraulic conductivity values form the slug tests indicate air sparging into the saturated zone is one feasible method for treatment of volatile hydrocarbons in the groundwater.

♦ Page 7-1 ♦
 March 2, 1994

8.0 APPENDICES

a statute

-

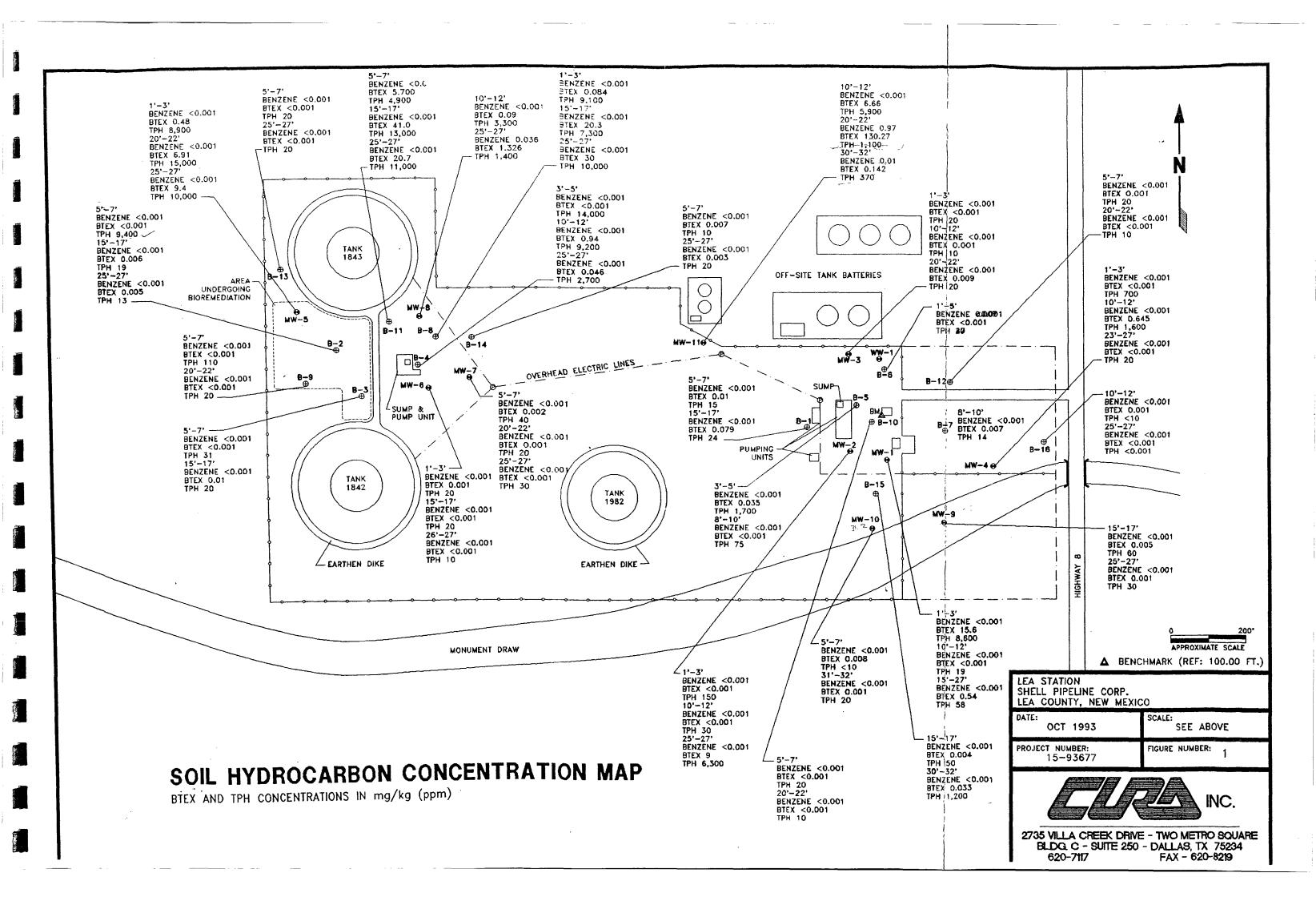
WALLER AND

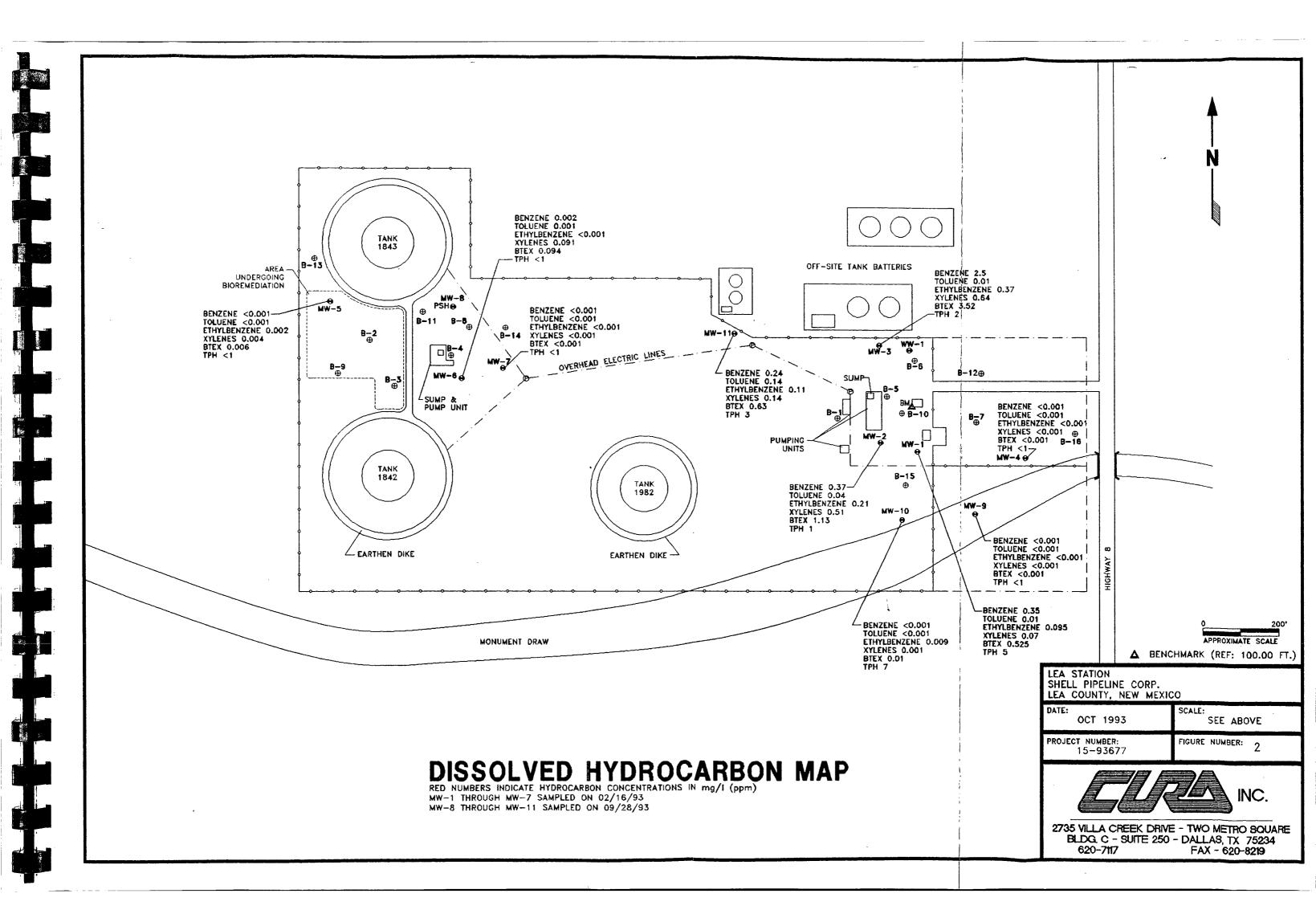
1.1

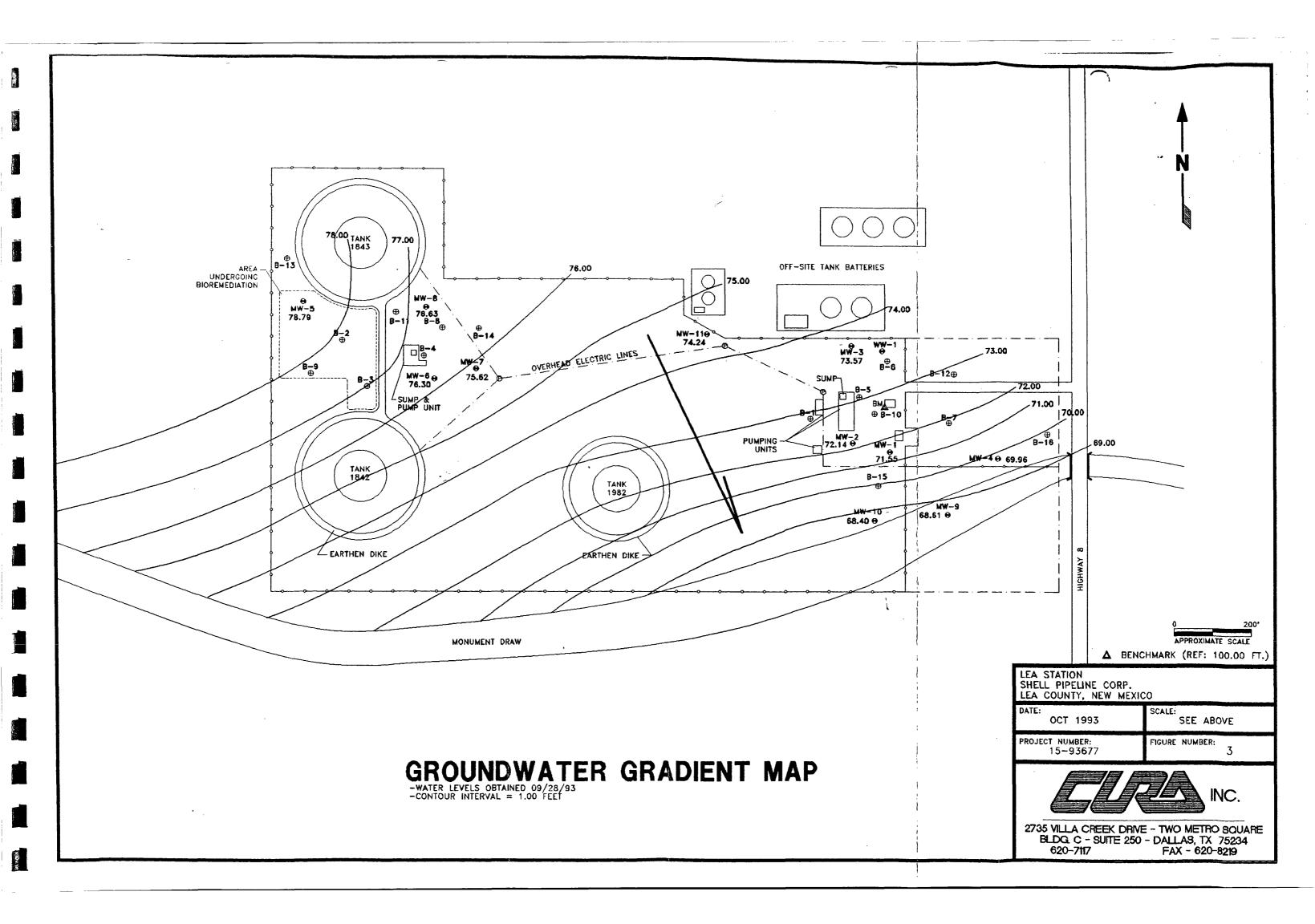
ALC: NO.

APPENDIX A FIGURES

-1.5%


100


the second s


ŧ

- -

APPENDIX B AQUIFER CHARACTERIZATION

AN.

\$

Sec. 2

B. AQUIFER CHARACTERIZATION

CURA performed aquifer testing on-site to determine permeability (hydraulic conductivity), transmissivity, well yield, and aquifer flow and drawdown. This information is needed to characterize the hydrogeologic conditions of the site and to develop an appropriate remedial action plan.

B.1 <u>WELL DEVELOPMENT TEST</u>

Well development information obtained during gauging and sampling operations on September 28, 1993, demonstrated that a pump test utilizing the existing monitor wells was not feasible since a bailing rate greater than 1 gallon per minute (gpm) could not be sustained without bailing the wellbore dry. During the well development operations, a bailing rate of approximately 1 gpm bailed the monitor wells dry after approximately 20 minutes. Calculated drawdown during the development operations was approximately 5 to 12 feet.

B.2 <u>SLUG TESTS</u>

Because of the expected lower permeability and yield of the upper 15 feet of the aquifer (calcareous silty fine-grained sands), a pumping test utilizing the shallow wells was not feasible. Therefore, slug tests were conducted on January 12, 1994, using MW-2, MW-3, MW-6, MW-9, and MW-11, to determine the hydraulic conductivity of the zone.

The tests involved removing a slug (3.5-inch diameter by 3 feet long) from the monitor wells and recording the water level recovery rates utilizing a pressure transducer and data logger. The data was analyzed using the Bouwer and Rice method.

Based on the results of the slug test analysis, the hydraulic conductivities ranged from 10 gallons per day per square-foot (gpd/ft^2) in MW-9 to 29 gpd/ft^2 in MW-2 with an average hydraulic conductivity of 18 gpd/ft^2 .

The calculated hydraulic conductivities are typical of a silty fine-grained sand. A summary of the slug test results is presented in Table B1. A listing of slug test data and the plotted relationships are included in Appendix B. Based on the hydrologic parameters determined for the site the existing monitor wells are not capable of capturing the dissolved hydrocarbon plume for potential groundwater remediation operations.

TABLE B1SUMMARY OF SLUG TEST RESULTSBased On Slug Test Conducted on January 12, 1994								
Hydraulic Conductivity (gpd/ft ²)	Hydraulic Conductivity (cm/sec)	Saturated Thickness (feet)*						
29	1.4 x 10 ⁻³	9.1						
12	5.7 x 10 ⁻⁴	11						
24	1.1 x 10 ⁻³	12						
10	4.7 x 10 ⁻⁴	11						
14	6.6 x 10 ⁻⁴	8.5						
18	8.5 x 10 ⁻⁴	10						
	n Slug Test Cond Hydraulic Conductivity (gpd/ft ²) 29 12 24 10 14	Hydraulic Conductivity (gpd/ft²)Hydraulic Conductivity (cm/sec)291.4 x 10-3125.7 x 10-4241.1 x 10-3104.7 x 10-4146.6 x 10-4						

SLUG TEST RESULTS

COJECT NAME:LEA STATIONCOJECT NUMBER:15-9367700B.3TE:JANUARY 12, 1994

	SLUG	TEST	DATA (RISING	HEAD - SLU	ς ουτ)
TIME minute	MW-2 s)	MW- 3	MW- 6	MM-9	9 MW-11	
0	2.04	2.97	2.26	2.27	7 2.46	
	1.94	1.86	1.82	1.8	3 1.94	
3 5 7	1.85	1.62	1.62	1.6	5 1.84	
7	1.77	1.41	1.46	1.47	7 1.74	
10	1.67	1.15	1.31	1.35	5 1.65	
15	1.5	0.95	1.21	1.28	3 1.58	
20	1.38	0.9	1.15	1.23	3 1.53	
25	1.31	0.87	1.1	1.21	L 1.49	
30	1.27	0.85	1.07	1.18	3 1.47	
35	1.23	0.84	1.03	1.15	5 1.44	

LEA STATION

L/RW RATIO :

C COEFFICIENT:

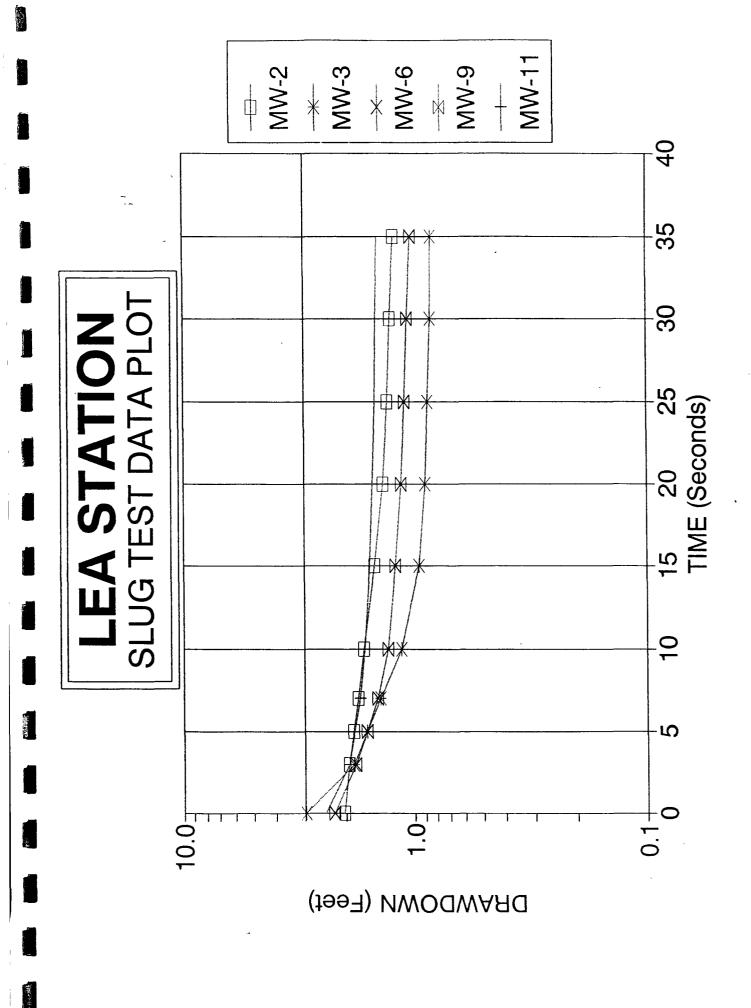
35.4

2.1

-

Rising Head (Slug out) Results

				MW-2	DI	N MILLOPPA	
WELL CONSTRUCTION DATA						IN NUMBER: 1	
WELL LABEL: MW-2				GRE	ATEST PULS	SE: 1.48	
STATIC WATER_LEVEL DEPTH FROM GRO TOTAL DEPTH OF WELL OR SAND PACK		30.91	40	TIME PULSE (SECONDS)		f GPD/FT j (FEET)	K GPD/FT2
LENGTH OF SCREEN OR SAND PACK (FE				15.00	1.21	301.99	33.22
WELL/BOREHOLE DIAMETER (INCHES):	, 8			20.00	1.16	273.94	30.14
SLUG DIAMETER (INCHES):	3			25.00	1.11		28.47
LENGTH OF SLUG (FEET):	3			30.00	1.07	243.17	26.75
CASING DIAMETER (INCHES):	4			35.00	1.02	239.18	26.31
DEPTH TO LOWER IMPERMEABLE LAYER		ET): 40					
L/RW RATIO :	27.3	,				Aug. =	29
C COEFFICIENT:	1.8		~`			AUS.	<u> </u>
WELL CONSTRUCTION DATA				M₩-3	RU	N NUMBER: 1	
				GREA	ATEST PULS	E: 1.01	•
WELL LABEL: MW-3		20.54					
STATIC WATER LEVEL DEPTH FROM GRO						•	GPD/FT2
TOTAL DEPTH OF WELL OR SAND PACK		ET):	42	(SECONDS)	,	FEET)	
LENGTH OF SCREEN OR SAND PACK (F				20.00	0.90	139.78	12.41
WELL/BOREHOLE DIAMETER (INCHES):				25.00	0.88	133.62	11.87
SLUG DIAMETER (INCHES):	3			30.00	0.85	139.38	12.38
LENGTH OF SLUG (FEET):	3						
CASING DIAMETER (INCHES):	4 UDON COOMID CUDELOE (PR	10m), 10				Aug =	17.
DEPTH TO LOWER INPERMEABLE LAYER	•	61): 42				Aug =	
L/RW RATIO : C COEFFICIENT:	33.3 2.1						
WELL CONSTRUCTION DATA				MW-(6	RUN NUMBER:	1
				(GREATEST F	PULSE: 1.48	
WELL LABEL: MW-6		~~ ~ ·		mitum			
STATIC WATER LEVEL DEPTH FROM GE		30.24			LSE LEVEL	T GPD/FT	K GPD/I
TOTAL DEPTH OF WELL OR SAND PACK		BET):	42	(SECONDS)	1	(FEET)	77
LENGTH OF SCREEN OR SAND PACK (I				15.00	1.21	326.40	27
WELL/BOREHOLE DIAMETER (INCHES):				20.00	1.16	296.09	25
SLUG DIAMETER (INCHES):	3			25.00	1.11		23
LENGTH OF SLUG (FEET):	3			30.00	1.07		22
CASING DIAMETER (INCHES):		(), ()		35.00	1.02	258.52	21
DEPTH TO LOWER INPERMEABLE LAYER	R FROM GROUND SURFACE (F	eet): 42					- 1


Avg = 24

LEA STATION Rising Head (Slug out) Results

100

WELL CONSTRUCTION DATA			М	₩-9	RUN NUMBER:	1
				GREATEST PU	JLSE: 1.36	
WELL LABEL: HW-9 STATIC WATER LEVEL DEPTH FROM GROUND SURFACE TOTAL DEPTH OF WELL OR SAND PACK FROM GROUND	• •	28.85 40	TIME (SECONDS	PULSE LEVEL)	T GPD/FT (FEET)	K GPD/FT2
LENGTH OF SCREEN OR SAND PACK (FEET):	11.2		20.00	1.23	119.42	10.71
WELL/BOREHOLE DIAMETER (INCHES):	8		25.00	1.21	111.13	9.97
SLUG DIAMETER (INCHES): 3		_	30.00	1.18	112.50	10.09
LENGTH OF SLUG (FEET): 3		-	35.00	1.15	113.92	10.22
CASING DIAMETER (INCHES): 4						
DEPTH TO LOWER IMPERMEABLE LAYER FROM GROUND	SURFACE (FEET):	40			Aug	= 10
L/RW RATIO : 33.6					0	
C COEFFICIENT: 2.1						

WELL CONSTRUCTION DATA			MW-11		RUN NUMBER:	1
			GF	EATEST PU	JLSE: 1.7	
WELL LABEL: HW-11						
STATIC WATER LEVEL DEPTH FROM GROUND SUR	FACE (FEET):	31.53	TIME PULS	E LEVEL	T GPD/FT	K GPD/FT2
TOTAL DEPTH OF WELL OR SAND PACK FROM GR	OUND SURFACE (FEET):	40	(SECONDS)		(FEET)	
LENGTH OF SCREEN OR SAND PACK (FEET):	8.5		15.00	1.57	115.53	13.64
WELL/BOREHOLE DIAMETER (INCHES):	8		20.00	1.52	121.90	14.39
SLUG DIAMETER (INCHES): 3			25.00	1.50	109.06	12.88
LENGTH OF SLUG (FEET): 3			30.00	1.44	120.52	14.23
CASING DIAMETER (INCHES): 4						
DEPTH TO LOWER IMPERMEABLE LAYER FROM GR	OUND SURFACE (FEET):	40				
L/RW RATIO : 25.5					٨	= 14
C COEFFICIENT: 1.8					Flug	• (

LEA STATION SLUG-OUT PLOTS (MW-2, MW-3, & MW-6) MW-2 SLOPE HI MW-2 SLOPE#2 1.67 NW-2 01100 30 SLOPE #1 MW-3NW-3 SLOPE #2 1.01 , i ji Posta MW-P ::<u>-</u> SL OPE #1 MW-6 SEOPE#2 -----1.48 Mw-6 - - - - . ile des <u>ba da</u>-. . .. , Ĉ

LEA STATION SLUG-OUT PLOTS MW-92 MW-11) 200000000000000 MW-9 - SLOPE # 1 -SLOPE #2 W-9 -1.36 Mw-11 M_2-1/ SLOAE#1 -SLOPE #2 1.70 MW-11 - _____ _____ ····· · · · · · · · · - -· · • -----00 ··· · ·· · بالاستشار والمتعاورة je u Nuede

Rising Head (Slug out)

PROJECT NAME: PROJECT NUMBER: DATE: CURA EMPLOYEE:

i

LEA STATION SLUG TEST DATA 15-9367700B.3 JANUARY 12, 1994 GJV

MW-2	2	MW-3	}	Nw-6	5	MW-9	9	MW-11			
		SE1000 Environmenta 01/12 20									
Unit# 01523	Test 10	Unit # 01523	Test 14	Unit# 01523	Test 13	Unit# 01523	Test 11	Unit# 01523	Test 12		
Setups:	INPUT 1	Setups:		Setups:	INPUT 1	Setups:	INPUT 1	Setups:	INPUT 1		
Type Mode I.D.	Level (F) TOC 00009	Type Mode I.D.		Type Mode	TOC	Type Mode I.D.	Level (F) TOC 00011	Type Mode I.D.	Level (F) TOC 00011		
Linearity Scale factor Offset Delay mSEC Step 1 01/12	-0.010 9.990 0.010 50.000 11:10:10	Linearity Scale factor Offset Delay mSEC Step 1 01/12	-0.010 9.990 0.010 50.000 14:11:43	Linearity Scale factor Offset Delay mSEC Step 1 01/12	-0.010 9.990 0.010 50.000 13:27:09	Reference Linearity Scale factor Offset Delay mSEC Step 1 01/12	-0.010 9.990 0.010 50.000 11:50:38	Linearity Scale factor Offset Delay mSEC Step 1 01/12	-0.010 9.990 0.010 50.000 12:44:17		
Elapsed Time	INPUT 1	Elapsed Time	INPUT 1	Elapsed Time	INPUT 1	Elapsed Time	INPUT 1	Elapsed Time	INPUT 1		
0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200	11.367 11.314 11.389 11.433 13.020 13.244 12.525	0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200	10.490 10.486 10.477 10.332 10.654 11.281 12.684		9.471 9.487 9.749 11.675 10.997	0.0033 0.0066 0.0100 0.0133 0.0166	5.238 5.207 7.074 6.547		7.813 7.806 7.787 7.759 7.828 7.828 7.945		
$\begin{array}{c} 0.0233\\ 0.0266\\ 0.0300\\ 0.0333\\ 0.0366\\ 0.0400\\ 0.0433\\ 0.0466\\ 0.0500\\ 0.0533\\ \hline Z_{1,4}\\ 0.0566\\ 0.0600\\ 0.0633\\ 0.0666\\ 0.0700\\ \end{array}$		0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0666 0.0700		0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 (C) 0.0433 1 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0666 0.0700	11.158 11.284 10.449 10.792 11.369 11.726 11.638 11.612 11.578 11.565 11.524 11.496 11.480 11.458 11.442	0.0433 0.0466 0.0500 0.0533 2 0.0566 0.0600 0.0633 0.0666	6.790 5.964 5.882 6.342 5.901 6.238 6.657 6.910 7.231 7.481 7.358 7.291 7.253 7.260 7.206	0.0533 0.0566 0.0600 0.0633 0.0666	9.730 9.588 9.551 9.541 9.396 9.068 9.491 9.096 8.809 9.242 9.579 9.910 10.065 10.008 9.614		

0.0733	13.364		12.420	0.0733	11.420	0.0733	7.171	0.0733	9.958
0.0766	13.357		12.401	0.0766	11.395	0.0766	7.149	0.0766	10.090
0.0800	13.348		12.369	0.0800	11.3 73	0.0800	7.131	0.0800	9.961
0.0833	13.360		12.347)	0.0833	11.360	0.0833	7.099	0.0833_0	(10.270)
0.0866	13.342		12.322	0.0866	11.344	0.0866	7.074	0.0866 2,4	b10.014
0.0900	13.332		12.293	0.0900	11.325	0.0900	7.058	0.0900	9.923
0.0933	13.335	0.0933	12.278	0.0933	11.306	0.0933	7.033	0.0933	9.891
0.0966 _	13.323	0.0966	12.262	0.0966	11.291	0.0966	7.011	0.0966	9.882
0.1000 3	(13.310)	0.1000	12.240	0.1000 3	11.278	0.1000 3	(7.020)	0.1000	9.863
0.1033 1.9	¥ 13.288	0.1033	12.211	0.10331.82	11.259	0.1033 1,80	6.979	0.1033	9.847
0.1066	13.285	0.1066	12.189	0.1066	11.240	0.1066	6.954	0.1066	9.857
0.1100	13.272	0.1100	12.158	0.1100	11.218	0.1100	6.929	0.1100	9.835
0.1133	13.263	0.1133	12.126	0.1133	11.190	0.1133	6.922	0.1133	9.825
0.1166	13.260	0,1166 -	12.107	0.1166	11.174	0.1166	6.888	0.1166	9.794
0.1200	13.250	0.1200 1.62	12.085	0.1200	11.149	0.1200	6.872	0.1200	9.790
0.1233	13.247	0.1233	12.060	0.1233	11.136	0.1233	6.888	0.1233	9.784
0.1266	13.247	0.1266	12.044	0.1266	11.108	0.1266	6.853	0.1266	9.775
0.1300	1 <u>3.2</u> 28		12.035	سر 0.1300	11.089	0.1300	6.828	0.1300	9,762
0.1333 5	(13.219)		12.013	0.1333 5	(11.079)	0.1333 5	6.812	0.1333 -	3 (9.749)
0.1366 1.8			11.997	0.1366 1.6 2	11.051	0.13661,60	6.796	0.1366).9	
0.1400	13.200		11.981	0.1400	11.076	0.1400	6.777	0.1400	9.724
0.1433	13.190		11.940	0.1433	11.029	0.1433	6.765	0.1433	9.712
0.1466	13.181		11.912	0.1466	11.013	0.1466	6.749	0.1466	9.715
0.1500	13.171		11.893	0.1500	10.985	0.1500	6.736	0.1500	9.696
0.1533	13.171		11.864	0.1533	10.994	0.1533	6.720	0.1533	9.689
0.1566	13.165		11.849	0.1566	10.969	0.1566	6.708	0.1566	9.696
0.1600	13.159		11.833	0.1600	10.950	0.1600	6.698	0.1600	9.677
0.1633	13,137		11.817	0.1633	10.937	0.1633	6.702	0.1633	9,664
0.1666	13.137		11.798	0.1666 7	(10.925)	0.1666 7	(6.689)	0.1666 5	(9.655)
0.1700 1.7			11.779	0 1700	10 000	0.1700 / 47			9.645
0.1733	13.118		11.764	0.1700 /.YE	10.893	0.1733	6.654	0.1733	9.633
0.1766	13.114		11.742	0.1766	10.884	0.1766	6.657	0.1766	9.626
0.1800	13.105		11.726	0.1800	10.868	0.1800	6.670	0.1800	9.611
0.1833	13.102		11.710	0.1833	10.859	0.1833	6.635	0.1833	9.598
0.1866	13.092	0.1866	11.691	0.1866	10.846	0.1866	6.632	0.1866	9.595
0.1900	13.089	0.1900	11.682	0.1900	10.843	0.1900	6.629	0.1900	9.592
0.1933	13.080	0.1933	11.666	0.1933	10.827	0.1933	6.623	0.1933	9.576
0.1966	13.073		11.650	0.1966	10.815	0.1966	6.601	0.1966	9.570
0.2000	13.067	Q.2000 10		0.2000	10.792	0.2000	6.591	0.2000	7 9.557
0.2033	13.061			0.2033	10.796	0.2033	6.594	0.2033 1.7	
0.2055	13.051	0.2033 0.2066 1.15	11.606	0.2055	10.789	0.2055	6.585	0.2055 [.*]	9.541
0.2100	13.031	0.2100	11.596	0.2100	10.777	0.2100	6.579	0.2100	9.535
0.2100	13.045		11.590	0.2133	10.774	0.2133	6.575	0.2100	9.532
0 2166 10	(13.032)		11.590	0.2155	and the second se	0.2155		0.2155	9.519
0.2200 + -	7 13.023		11.574	0 2200	10 755	0.2200 1.35		0.2200	9.510
0.2200 1.6	1 13.025	0.2200	11.3/7	1.31	100000	0.200 1.25	0.375	0.2200	2.210

0.2233	13.017	0.2233	11.559	0.2233	10.751	0.2233	6.563	0.2233	9.519
0.2266	13.010	0.2266	11.549	0.2266	10.748	0.2266	6.553	0.2266	9.494
0.2300	13.001	0.2300	11.536	0.2300	10.745	0.2300	6.553	0.2300	9.494
0.2333	12.995	0.2333	11.527	0.2333	10.739	0.2333	6.553	0.2333	9.491
0.2366	12.988	0.2366	11.518	0.2366	10.733	0.2366	6.550	0.2366	9.481
0.2400	12.982	0.2400	11.505	0.2400	10.733	0.2400	6.547	0.2400	9.491
0.2433	12.976	0.2433	11.499	0.2433	10.720	0.2433	6.538	0.2433	9.465
0.2466	12.963	0.2466	11.495	0.2466	10.720	0.2466	6.541	0.2466	9.465
0.2500	12.960	0.2500	11.499	0.2500	10.707	0.2500	6.544	0.2500 O	9.462
								<u> </u>	

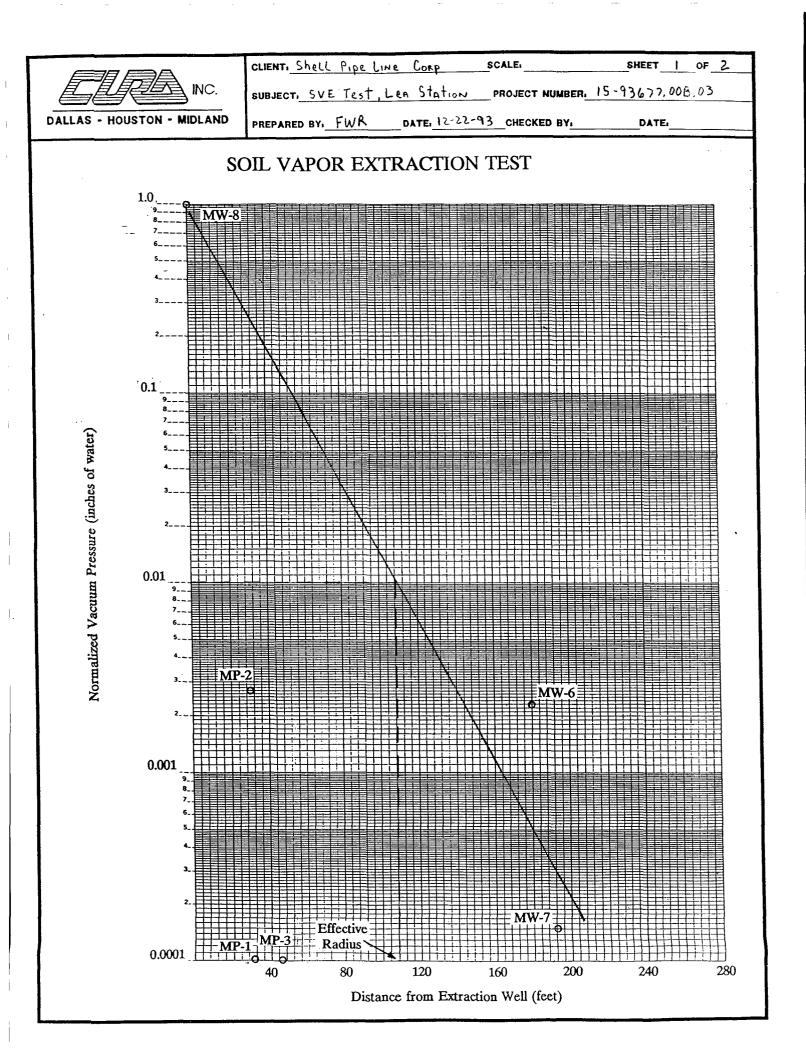
0.2533	12.957	0.2533	11.495	0.2533	10.704	0.2533	6.534	0.2533	9.456
0.2566	12.947	0.2566	11.470	0.2566	10.704	0.2566	6.528	0.2566	9.443
0.2600	12.941	0.2600	11.464	0.2600	10.707	0.2600	6.525	0.2600	9.447
						0.2633	6.509	0.2633	
0.2633	12.935	0.2633	11.480	0.2633	10.701				9.447
0.2666	12.928	0.2666	11.499	0.2666	10.701	0.2666	6.519	0.2666	9.443
0.2700	12.922	0.2700	11.483	0.2700	10.695	0.2700	6.500	0.2700	9.437
0.2733	12.916	0.2733	11.467	0.2733	10.692	0.2733	6.506	0.2733	9.434
0.2766	12,909	0.2766	11.464	0.2766	10.688	0.2766	6.506	0.2766	9.431
	12.903	0.2800	11.451	0.2800	10.685	0.2800	6.519	0.2800	9.428
0.2800									
	12.897	0.2833 15	(11.439)	0.2833	10.682	0.2833	6.512	0.2833	9.431
0.2866	12.891	0.2866 .95		0.2866	10.679	0.2866	6.509	0.2866	9.421
0.2900	12.884	0.2900	11.439	0.2900	10.676	0.2900	6.506	0.2900	9.418
0.2933	12.878	0.2933	11.432	0.2933	10.669	0.2933	6.516	0.2933	9.415
0.2966	12.875	0.2966	11.432	0.2966	10,685	0.2966	6,506	0.2966	9.412
0.3000 15		0.3000	11.426	0.3000 / 5		0.3000 15	6.493	0.3000	9.409
				0.3033 1.2		0.30331.28		0.3033	9.409
0.3033 1.5		0.3033	11.423						
0.3066	12.856	0.3066	11.420	0.3066	10.660	0.3066	6.497	0.3066	9.406
0.3100	12.850	0.3100	11.410	0.3100	10.657	0.3100	6.500	0.3100	9.399
0.3133	12.843	0.3133	11.410	0.3133	10.657	0.3133	6.490	0.3133	9.399
0.3166	12.840	0.3166	11.404	0.3166	10.654	0.3166	6.493	0.3166	9.399
0.3200	12.834	0.3200	11.407	0.3200	10.651	0.3200	6.493	0.3200	9.396
					10.647	0.3233	6.516	0.3233	9.396
0.3233	12.831	0.3233	11.410	0.3233					
0.3266	12.824	0.3266	11.407	0.3266	10.644	0.3266	6.497	0.3266	9.390
0.3300	12.818	0.3300	11.401	0.3300	10.641	0.3300	6.487	0.3300 15	
0.3333	12.815	0.3333	11.401	0.3333	10.641	0.3333	6.484	0.3333 1.5	3 9.393
0.3500	12.786	0.3500	11.388	0.3500	10.632	0.3500	6.475	0.3500	9.374
0.3666	12.768	0.3666 20		0.3666	10.619	0.3666	6.465	0.3666	9.368
0.3833 2		0.000	1.1.000	0.3833 20	and the second se	0.3833 20		0.3833	9.355
								0.4000	9.339
0.4000 1.3		0.4000	11.369	0.4000 1.1	S 10.600	0.4000 1.23		0.4000	0 (9.339
0.4166	12.714	0.4166	11.363	0.4166	10.591	0.4166	6.446		
0.4333	12.698	0.4333	11.357	0.4333	10.581	0.4333	6.449	0.4333 1,5	
0.4500	12.686	0.4500 25	(11.354)	0.4500	10.572	0.4500	6.452	0.4500	9.330
0.4666 2	5 (12.676)	0.4666 .87		0.4666 2) 10.565	0.4666 25	6.424	0.4666	9.317
	31 12.667	0.4833	11.344	0.4833 1.1	the second se	0.4833 1.21	6.427	0.4833	9.311
0.5000	12.657	0.5000	11.341	0.5000	10.550	0.5000	6.415	0.5000 2	
		0.5166		0.5166			6.408	010000	1000
0.5166	12.648		11.335		10.540	0.5166		0.5166 . 4	
0.5333	12.641	0.5333 30	11.335	0.5333	10.534	0.5333	6.405	0.5333	9.305
<u>ک</u> 0 <u>.</u> 5500	0 (12.632)	0.5500 ,85	11.328		0 10.528	0.5500 30	(6.393)	0.5500	9.289
0.5666 1.7	7 12.626	0.5666	11.328	0.5666 1.0	7 10.518	0.5666 1.18	6.389	0.5666	9,283
0.5833	12.619	0.5833	11.325	0.5833	10.512	0.5833	6.386	0.5833 36	9.279
0.6000	12.610	0.6000	11.322	0.6000	10.505	0.6000		0.6000 1.1	
0.6166		0.6166	11.322	0.6166	10.499	0.6166	6.374	0.6166	9.267
0.0100 2	5 <u>12.607</u>			0.0700	5 (10.493)	0.6333 35		0.6333	9.264
		0.6333	11.319						
	12.594	0.6500	11.316		03 10.493	0.6500 1.1	5 6.3/0	0.6500	9.257
0.6666	12.588	0.6666	11.316	0.6666	10.487	0.6666	6.358	Q.6666 3	
0.6833	12.581	0.6833	11.306	0.6833	10.480	0.6833	6.352	0.6833 1.	44 9 . 254
0.7000	12.578	0.7000	11.309	0.7000	10.474	0.7000	6.352	0.7000	9.245
0.7166	12.572	0.7166	11.306	0.7166	10.461	0.7166	6.345	0.7166	9.238
0.7333	12.569	0.7333	11.303	0.7333	10.461	0.7333	6.342	0.7333	9.245
				0.7500	10.458	0.7500	6.336	0.7500	9.232
0.7500	12.563	0.7500	11.303						
0.7666	12.559	0.7666	11.300	0.7666	10.452	0.7666	6.333	0.7666	9.226
								х.	
0.7833	12.553	0.7833	11.300	0.7833	10.446	0.7833	6.326	0.7833	9.223
0.8000	12.550	0.8000	11.297	0.8000	10.442	0.8000	6.323	0.8000	9.229
0.8000	12.544	0.8166	11.294	0.8166	10.436	0.8166	6.320	0.8166	9.213
0.0100	12. 344	0.0100	11.674	A*0100	TO:400	A*0100	0.320	0.0100	, . <u></u>

0.8333	12.540	0.8333	11.294	0.8333	10.430	0.8333	6.314	0.8333	9.210
0.8500	12.537	0.8500	11.294	0.8500	10.427	0.8500	6.307	0.8500	9.207
0.8666	12.534	0.8666	11.291	0.8666	10.420	0.8666	6.304	0.8666	9.204
0.8833	12.528	0.8833	11.291	0.8833	10.417	0.8833	6.301	0.8833	9.200
0.9000	12.525	0.9000	11.287	0.9000	10.411	0.9000	6.295	0.9000	9.197
0.9166	12.522	0.9166	11.284	0.9166	10.408	0.9166	6.292	0.9166	9.191
0.9333	12.518	0.9333	11.284	0.9333	10.401	0.9333	6.288	0.9333	9.188
0.9500	12.515	0.9500	11.281	0.9500	10.398	0.9500	6.285	0.9500	9.185
0.9666	12.512	0.9666	11.281	0.9666	10.392	0.9666	6.279	0.9666	9.185
0.9833	12.506	0.9833	11.281	0.9833	10.389	0.9833	6.276	0.9833	9.178
1.0000	12.506	1.0000	11.278	1.0000	10.383	1.0000	6.270	1.0000	9.175
1.2000	12.458	1.2000	11.262	1.2000	10.323	1.2000	6.219	1.2000	9.122
1.4000	12.424	1.4000	11.246	1.4000	10.278	. 1.4000	6.178	1.4000	9.084
1.6000	12.395	1.6000	11.234	1.6000	10.237	1.6000	6.140	1.6000	9.046
1.8000	12.367	1.8000	11.221	1.8000	10.200	1.8000	6.109	1.8000	9.008
2.0000	12.342	2.0000	11.209	2.0000	10.165	2.0000	6.074	2.0000	8.973
2.2000	12.317	2.2000	11.199	2.2000	10.137	2.2000	6.046	2.2000	8.942
2.4000	12.294	2.4000	11.186	2.4000	10.105	2.4000	6.011	2.4000	8.907
2.6000	12.276	2.6000	11.177	2.6000	10.077	2.6000	5.983	2.6000	8.879
2.8000	12.253	2.8000	11.161	2.8000	10.051	2.8000	5.954	2.8000	8.850
3.0000	12.235	3.0000	11.155	3.0000	10.029	3.0000	5.926	3.0000	8.825
3.2000	12.212	3.2000	11.145	3.2000	10.004		-	3.2000	8.800
		3.4000	11.136	3.4000	9.982			3.4000	8.771
		3.6000	11.130	3.6000	11.130			3.6000	8.746
								3.8000	8.724
								4.0000	8.699

ł

1.2

.


		CLIENT:				s	CALE.		SHEETOF	
		SUBJECT.					PROJEC	T NUME	BER.	
1	DALLAS - HOUSTON - MIDLAND	PREPARED B	Yı	DA	TE:		CHEC	KED BY	DATE	
	, 		Ayeraze	11-11	MW-9	D-MW	E-MW	Mu-Z	Mounter Well	
			11,8	14. r	15,1	//,0	9,6	X A	Hydraulic Conductivic (5pd/ftz (Falling Wad-8)	
			- 17,9	13,8	10,2	24.22	12.2	. 29.0	dravlic doctivity had ff	ED CTA.
			3	5,8	1.2	1,0		9	Asy for Asy for (feet)	ATIN
		-	120	120	170	(30	110	08	fallis that stug in () pd/ft)	
			120	(20	011	290	140	260) (gpd/ft)	
	, ,	ŀ			-	<u>I</u>	<u> </u>	L	<u> </u>	

CLIENTI SPLC SCALE SHEET OF I III INC. SUBJECT. Lea Station PROJECT NUMBER. PREPARED BY. 651 DATE. 1/20/94 CHECKED BY. DALLAS - HOUSTON - MIDLAND DATE Capture Zone Wilth Calculation Total hydroianbon - inpartal flow (QA) -QA = Tiw = (180 gpd/Ft)(0.01)(1,800 feet)=324.0 gpd Theoretical capture zoney for Appical monitor well on site with an approximate well yield of 0.3 gpm (432 gpd) = $W_{C2} = \frac{Q}{T_{c}} = \frac{4329pd}{(1009pd/ft)(0,0)} = 240ff$ Ground water Flow Velocity Calculation: $V = \frac{ki}{C} = \frac{(18 \text{ gpd}/\text{ft}^2)(0,01)}{252} = 0.72 \text{ ft/day}$

<i>M</i> A	CLIENTI SPLC	SCALE	SHEET OF
INC.	SUBJECT. LEA STATION	PROJECT NUMBER,	5-93677.00B.3
DALLAS - HOUSTON - MIDLAND	PREPARED BY, FWR DATE.	CHECKED BY	DATE:
No.	etheast Portion of Site	(MW-3, MW-11)	
GROUNdw	ater Capture Width Ci	alculation	
	ong term Pumping Rate Total Groundwater Flow	x Plume Widt	6
W = _(0.5 gpm) (1440 Min/day) 1,440 gpd	x 800 ft = 400	t+
w = _(0.1 9PM) (1440 ^{MIN} /day) 1,440 3Pd	x 800 ff = 80.1	fŧ
GROUND WA	N Portion of Site (ter Capture Width C	ALCULATION	,
w = (0.5))(1440) x 260 = 170	400 ft	
) (1440) x 260 =	80 F+	

APPENDIX C SOIL VAPOR EXTRACTION RESULTS

	CURA	ENVIRONMENTAL ENVIRONMENTAL	DALLAS, 1	(214) 620-7	AVALYSIS PARAMETERS G D Other		SPECIAL REQUIREMENTS/TAT	NORMAC	Only TPH tested	obr GVD ame				Request CEL to dispose of	all sample remainders"	BAG WAS EMPTY	1 BAG GOUN	CEC#114 DUEDATE	r to disposal and billed to client. PF92013D.FRM (rev. 10/14/92)
CHAIN OF CUSTODY				P.O. NUMBER	eneniedi enc	er of cor	_	2-18									DATE/TIME	DRATORY BY: DATE/TIME	\$20.00 per sample will be assessed pric
		, Midland, Texas 79705		FAX (915) 570-8409	I∑ `	LE4 Station, Now Mexico	STATION LOCATION/IDENTIFICATION	SUE- FEST - EFF	{					Return via	charges may	000	DATE/TIME RECEIVED BY: (Signature)	DATE/TIME RECEIVED FOR CEL LABORATORY BY (Signature)	hazardous a minimum additional charge of
	cuent CURA. Inc	CLIENT ADDRESS 731 W. Wadley, Suite L200, Midland, Texas 79705	BILLING ADDRESS	m-	PROJECT NUMBER BRACK PRO PROJECT NUMBER BRACK PRO 11 C-PG 12 16 17 17 10 10 18 013	fact		/	· · · · · · · · · · · · · · · · · · ·					SAMPLE REMAINDER DISPOSAL]			REUNQUISHED BY: (Signature) DAT	• If sample remainder is determined to be hazardous a minimum additional charge of \$20.00 per sample will be assessed prior to disposal and billed to client.

2209 Wisconsin Street, Suite 200 • Dallas, Texas 75229 • 214/241-3745 • FAX 620-7963

Project No: 15-93-677B.3 Sample Type: Air Analyst: YQL Method: EPA 8020 Date Reported: 01/05/94 Date Received: 12/23/93 Date Analyzed: 12/23/93

AIR SAMPLE-TPH

REPORT	SAMPLE	TPH
NUMBER	ID	ppm
93-1114-01	SVE-EFF	1,780

Chuck Ables

Laboratory Manager

Sri L. Yanqi Li

Analytical Chemist

9.0 **REFERENCES**

Code of Federal Regulations, Title 40 §§ 280 and 281.

- CURA, Inc., January 1993. <u>Preliminary Site Assessment, Lea Station, Lea County,</u> <u>New Mexico</u>. Midland, Texas.
- CURA, Inc., March 1993. <u>Phase II Environmental Site Assessment, Lea Station</u>, <u>Lea County, New Mexico</u>. Midland, Texas.
- CURA, Inc., October 28, 1993. <u>Phase III Subsurface Investigation, Lea Station,</u> <u>Lea County, New Mexico</u>. Midland, Texas.
- Nicholson, Alexander, Jr., 1961. <u>Geology and Ground-Water Conditions in Southern</u> <u>Lea County, New Mexico</u>. United States Geological Survey, Ground-Water Report 6. New Mexico Bureau of Mines and Mineral Resources, Campus Station, Socorro, New Mexico.
- Groat, C. G., 1976. <u>Geologic Atlas of Texas (Hobbs Sheet</u>). Bureau of Economic Geology, The University of Texas at Austin. Austin, Texas.
- Johnson, P.C., M.W. Kemblowski, and J.D. Colthart, "Quantitative Analysis for the Clean-up of Hydrocarbon-Contaminated Soils By In-Situ Soil Venting", <u>Ground Water</u>, Volume 28, Number 3, May-June, 1990.
- Johnson, P.C., C.C. Stanley, M.W. Kemblowski, D.L. Byers, and J.D. Colthart, "A Practical Approach to the Design, Operation and Monitoring of In Situ Soil Venting Systems", <u>Ground Water Monitoring Review</u>, Spring, 1990.

Page 9-1
 March 2, 1994

Oil Conservation Division, Environmental Regulations, Revised 1993. Energy, Minerals and Resources Department, Santa Fe, New Mexico.

USGS Topographic Survey Map. Eunice, New Mexico, Quadrangle. 1969. - Photorevised 1979.

USGS Topographic Survey Map. Oil Center, New Mexico, Quadrangle. 1984.

♦ Page 9-2 ♦ March 2, 1994

