1R-254

REPORTS

DATE:

3/07/2007

Matthew P. Hudson Remediation Project Manager

Unit Chevron Environmental Management Company 11111 S Wilcrest Dr Room N2104A Houston, TX 77009 Tel 281 561 3466 Fax 281 561 3841 mhkw@chevron.com

Abandonment Business

RECEIVED

March 6, 2007

Mr. Wayne Price New Mexico Oil Conservation Division 1220 So. St. Francis Drive Santa Fe, New Mexico 87505

MAR 07 2007

Oil Conservation Division Environmental Bureau

2006 Annual Groundwater Monitoring Report

G.L. Erwin "A & B" Federal NCT-2 Tank Battery, Lea County, New Mexico

OGRID No. 4323

Dear Mr. Price:

Please find enclosed one copy of the above-referenced report. This report provides information and details on the groundwater monitoring activities completed by Conestoga-Rovers and Associates (CRA) during 2006.

Should you have any questions concerning this report or the on-going work, please call myself at (281) 561-3466 or James Ornelas with CRA at (432) 686-0086.

Sincerely,

Matthew P. Hudson

Enclosure

cc: Patricia Caperton, NMOCD (electronic copy) James Ornelas, CRA (cover letter only)

RECEIVED

MAR 07 2007

Oil Conservation Division 2006 ANNUAL GROUNDWATER MEONITION STREET REPORT

G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY OGRID NO. 4323 SW/4, SE/4, SECTION 35, T-24-S, R-37-E LATITUDE: N 32° 10′ 11.9″ LONGITUDE: W 103° 07′ 46.9″ LEA COUNTY, NEW MEXICO

2006 ANNUAL GROUNDWATER MONITORING REPORT

G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY OGRID NO. 4323 SW/4, SE/4, SECTION 35, T-24-S, R-37-E LATITUDE: N 32° 10′ 11.9″ LONGITUDE: W 103° 07′ 46.9″ LEA COUNTY, NEW MEXICO

Prepared For:

Mr. Matt Hudson CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY Abandonment Business Unit 11111 S. Wilcrest Drive Houston, Texas 77099

> Prepared by: Conestoga-Rovers & Associates

2135 S Loop 250 West Midland, Texas 79703

Office: 432-686-0086 Fax: 432-686-0186

MARCH 2, 2007 Ref. NO. 039124 (3)

TABLE OF CONTENTS

	<u>PAGE</u>
1.0	INTRODUCTION
2.0	REGULATORY FRAMEWORK
3.0	2006 GROUNDWATER MONITORING43.1 POTENTIOMETRIC SURFACE AND GRADIENT43.2 ANALYTICAL RESULTS4
4.0	CORRECTIVE ACTION
5.0	SUMMARY7
6.0	PLANNED ACTIVITIES8
	<u>LIST OF FIGURES</u>
FIGU	RE 1 SITE LOCATION MAP
FIGU	RE 2 SITE DETAILS MAP
FIGU	RE 3 GROUNDWATER GRADIENT MAP – FEBRUARY 2006
FIGU	RE 4 GROUNDWATER GRADIENT MAP – AUGUST 2006
FIGU	RE 5 CHLORIDE CONCENTRATION MAP – FEBRUARY AND AUGUST 2006
FIGU	RE 6 CHLORIDE ISOCONCENTRATION MAP – FEBRUARY 2006
FIGU	RE 7 CHLORIDE ISOCONCENTRATION MAP – AUGUST 2006
	<u>LIST OF TABLES</u>
TABL	E I GROUNDWATER GAUGING SUMMARY
TABL	E II GROUNDWATER ANALYTICAL SUMMARY

LIST OF APPENDICIES

APPENDIX A

NMOCD CORRESPONDENCE DATED FEBRUARY 2, 1999

APPENDIX B

CERTIFIED LABORATORY REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

APPENDIX C

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER APPLICATION FOR PERMIT (#CP 00886)

1.0 INTRODUCTION

This Annual Groundwater Monitoring Report presents groundwater data collected during the 2006 reporting period at the G.L. Erwin "A & B" Federal NCT-2 Tank Battery (hereafter referred to as the "Site"). On February 21-23 and August 24 and 25, 2006, Conestoga-Rovers & Associates (CRA) conducted the semi-annual groundwater monitoring events on behalf of Chevron North America Exploration and Production Company (Chevron), as successor to Texaco Exploration and Production, Inc. (Texaco).

The Site is located on Lea County Road J4, approximately 3 miles northeast of Jal, New Mexico in the southwest quarter (SW/4) of the southeast quarter (SE/4), Section 35, Township 24 South, Range 37 East, Lea County, New Mexico. The Site's coordinates are latitude N 32° 10′ 11.9″ and longitude W 103° 07′ 46.9″. The Site is relatively flat and improved with bermed above ground storage tanks (ASTs), caliche roadways, and oil and gas production equipment. The production equipment includes pipelines, ASTs of various capacities and active production wells. Land use in the vicinity of the Site includes rangeland with indigenous grass, livestock ranching, and oil and gas production. The topography slopes gently southeast toward Monument Draw located approximately 1.5 miles east of the Site.

Site assessment activities were initiated in 1993. In September 1993, Environmental Spill Control, Inc. (ESCI) of Hobbs, New Mexico performed a subsurface investigation in and around an unlined earthen emergency produced water overflow pit that was located adjacent to the west edge of the Site. During the investigation, 16 boreholes ranging from 30 to 100 feet below ground surface (bgs) were installed to evaluate soil and groundwater at the Site. Analytical results indicated hydrocarbon impacts to the soil and chloride impacts to the groundwater. In September 1994, ESCI excavated the former pit to approximately 62-feet bgs and removed approximately 40,000-cubic yards of hydrocarbon-affected soil. The excavation was lined from 62.5-feet up to 55-feet with a mixture of clean sand and clay and was backfilled with clean soil to the surface. ESCI submitted the closure report to Texaco in October 1994.

In February 1995, Texaco submitted a work plan to the New Mexico Oil Conservation Division (NMOCD) to assess affected groundwater at the Site. On March 28, 1995, the work plan was conditionally approved by the NMOCD. Two monitor wells (WMW and SWMW) were installed and sampled in 1997. Analytical results demonstrated groundwater chloride concentrations were at or above the New Mexico Water Quality Control Commission (NMWQCC) Human Health Standard. In January 1998, Highlander Environmental Corp. (Highlander) performed an electromagnetic (EM-34) terrain conductivity survey. Additionally, Highlander installed eight monitoring wells (MW-1 thru MW-8) from February 1998 to January 1999 in order to further evaluate the extent of affected groundwater.

Texaco submitted a corrective action proposal to the New Mexico Office of the State Engineer (NMOSE) to recover groundwater from recovery well (RW-1). From September 2001 to October 2003, nine additional monitor wells were installed under the direction of Larson and Associates, Inc. (LA). On September 9, 2004, the New Mexico State Engineer Office issued Permit CP 00886 to Divert Underground Waters from recovery well RW-1. A copy of the permit and associated documentation is provided in APPENDIX B. Monitor wells (MW-18 thru MW-20) were installed under the direction of LA in November 2004. A groundwater recovery system was installed at RW-1 under CRA's direct supervision in September 2006. Currently, the Site is monitored semi-annually by CRA.

2.0 REGULATORY FRAMEWORK

The NMOCD guidelines require groundwater to be analyzed for constituents of concern (COC) as defined by the NMWQCC regulations. The NMWQCC regulations provide Human Health Standards for Groundwater. The COC in affected groundwater at the Site is chloride. In this report, groundwater analytical results for chloride and four additional analytes are compared to the NMWQCC standards shown in the following table:

Analyte	NMWQCC Standard for Groundwater (mg/L)
Chloride	250
Fluoride	1.6
Nitrate (NO ₃ as N)	10
Sulfate (SO ₄)	600
Total Dissolved Solids (TDS)	1,000

3.0 2006 GROUNDWATER MONITORING

Groundwater at the Site is monitored semi-annually with a network of 24 monitor wells according to the *Work Plan for Plume Delineation and Modification to Proposed Groundwater Monitoring Schedule* submitted by LA to the NMOCD Santa Fe office on November 18, 1998. The workplan was approved on February 2, 1999. A copy of the NMOCD approval letter is provided in APPENDIX A.

Prior to purging the monitor wells, static fluid levels were measured with an electric interface probe to the nearest hundredth of a foot. After recording fluid levels, the wells were handbailed and purged of three casing volumes of groundwater. Water quality parameters pH, temperature and conductivity were recorded during purging. All non-disposable groundwater sampling equipment was decontaminated with a soap (Liquinox®) and potable water wash, a potable water rinse and a final de-ionized water rinse. Subsequent to the purging, groundwater samples were collected with new disposable PVC bailers. Laboratory-supplied sample containers were filled directly from the bailers.

The groundwater samples were placed on ice in insulated coolers and chilled to a temperature of approximately 4°C (40°F). The coolers were sealed for shipment and proper chain-of-custody documentation accompanied the samples to Pace Analytical Services, Inc. (Pace) for analysis of major cations, anions and TDS by Environmental Protection Agency (EPA) Methods 300.0 and 6010, SM 2320B, and 2540C. The fluids recovered during the sampling events were containerized and subsequently disposed at an OCD-permitted salt water disposal (SWD) facility by Nabors.

3.1 POTENTIOMETRIC SURFACE AND GRADIENT

Groundwater elevation data are presented in TABLE I and generally fall within historical ranges. Groundwater gradient maps for February and August 2006 are presented in FIGURES 3 and 4, respectively. Depth to groundwater ranged from 59.22-feet to 86.54-feet below top of casing on February 22, 2006 and from 59.39-feet to 86.34-feet below top of casing on August 24, 2006. Groundwater flow at the Site is to the southeast at a gradient of 0.015-ft/ft.

3.2 ANALYTICAL RESULTS

The 2006 analytical results generally fall within historical ranges, and are summarized in TABLE II. All wells sampled in 2006 had at least one COC (Chloride, Fluoride, Nitrate-N, Sulfate or Total Dissolved Solids) that exceeded NMWQCC standards and are shown on FIGURE 5. Isopleth maps approximating chloride concentrations for both February and August 2006 events are shown on FIGURES 6 and 7, respectively.

Groundwater COCs detected above the NMWQCC standards are highlighted in TABLE II and are listed below:

- Chloride was detected at concentrations above the NMWQCC standard (250 mg/L) in 18 wells sampled in both February and August 2006;
- Fluoride was detected at concentrations above the NMWQCC standard (1.60 mg/L) in six wells in February and in four wells in August 2006;
- Nitrate was detected at concentrations above the NMWQCC standard (10 mg/L) in two wells during the February event;
- Sulfate was detected at concentrations above the NMWQCC standard (600 mg/L) in one well during both the February and August events; and
- Total Dissolved Solids were detected at concentrations above the NMWQCC standard (1,000mg/L) in 19 wells during the February event and in 17 wells during the August event.

Two duplicate samples were collected from MW-1 and MW-14 during the February 2006 event and two duplicate samples were collected from RW-1 and MW-17 during the August 2006, respectively. Duplicate constituents were detected without any significant deviations. Copies of the certified analytical reports and chain-of-custody documentation are attached in APPENDIX B.

4.0 CORRECTIVE ACTION

In November 1999, Texaco submitted a correction action proposal to the NMOSE to recover groundwater from recovery well (RW-1). On September 9, 2004, the NMOSE issued Permit CP 00886 to Divert Underground Waters from recovery well RW-1.

In September 2006, a groundwater recovery system which included an electrical submersible pump, a totalizing meter, a 300-barrel (bbl) fiberglass storage tank, and a transfer pump was installed at RW-1. The groundwater recovery rate in RW-1 is approximately 1 gallon per minute. Recovered groundwater is pumped to the 300-barrel storage tank then to the produced water tank at the adjacent G.L. Erwin "A & B" Federal NCT-2 Tank Battery. Initial meter readings were collected on September 26, 2006. On September 29, 2006, a meter installation and inspection form and a proof of well completion for RW-1 were submitted to the NMOSE Roswell district office. A copy of the correspondence is provided in APPENDIX C.

5.0 SUMMARY

Based on historical data review and groundwater monitoring activities performed at the Site, CRA presents the following summary:

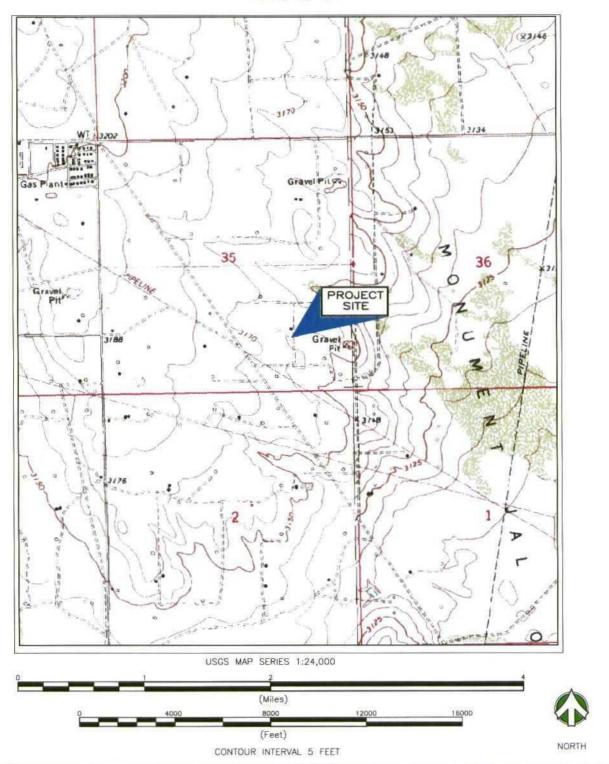
- Groundwater at the Site is monitored semi-annually with a network of 24 monitor wells;
- Depth to groundwater ranged from 59.22-feet to 86.54-feet below top of casing on February 22, 2006 and from 59.39-feet to 86.34-feet below top of casing on August 24, 2006. Groundwater flow at the Site is to the southeast at a gradient of 0.015-ft/ft;
- The analytical results generally fall within historical ranges. All wells sampled in 2006 had at least one COC (Chloride, Fluoride, Nitrate-N, Sulfate or Total Dissolved Solids) that exceeded NMOCD standards; and
- In September 2006, a groundwater recovery system which included an electrical submersible pump, a totalizing meter, a 300-barrel (bbl) fiberglass storage tank, and a transfer pump was installed at RW-1. A meter installation and inspection form and a proof of well completion for RW-1 were submitted to the NMOSE Roswell district office in advance of the September 30, 2006 permit rights expiration deadline.

6.0 PLANNED ACTIVITIES

Planned activities at the G.L. Erwin "A & B" Federal NCT-2 Tank Battery include:

- Continue to perform semi-annual groundwater monitoring and sampling events;
- Continue to recover groundwater from RW-1; and
- Propose installation of one monitor well upgradient of MW-9 and one monitor well downgradient of MW-19.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES


James Ornelas Project Manager Thomas C. Larson Operations Manager

Thoms Clark

JAL NW QUADRANGLE NEW MEXICO

LAT= 32' 10' 11.9" N LONG= 103' 07' 46.9" W

PHOTOREVISED 1977

SITE LOCATION MAP

CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY
G.L. ERWIN "A&B" FEDERAL NCT-2 TANK BATTERY
SW/4, SE/4, SECTION 35, T-24-S, R-37-E LEA COUNTY, NM

JOB No. 039124

> FIGURE 1

SITE DETAILS MAP

CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY
G.L. ERWIN "A&B" FEDERAL NCT-2 TANK BATTERY
SW/4, SE/4, SECTION 35, T-24-S, R-37-E LEA COUNTY, NEW MEXICO

CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A&B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, T-24-S, R-37-E LEA COUNTY,

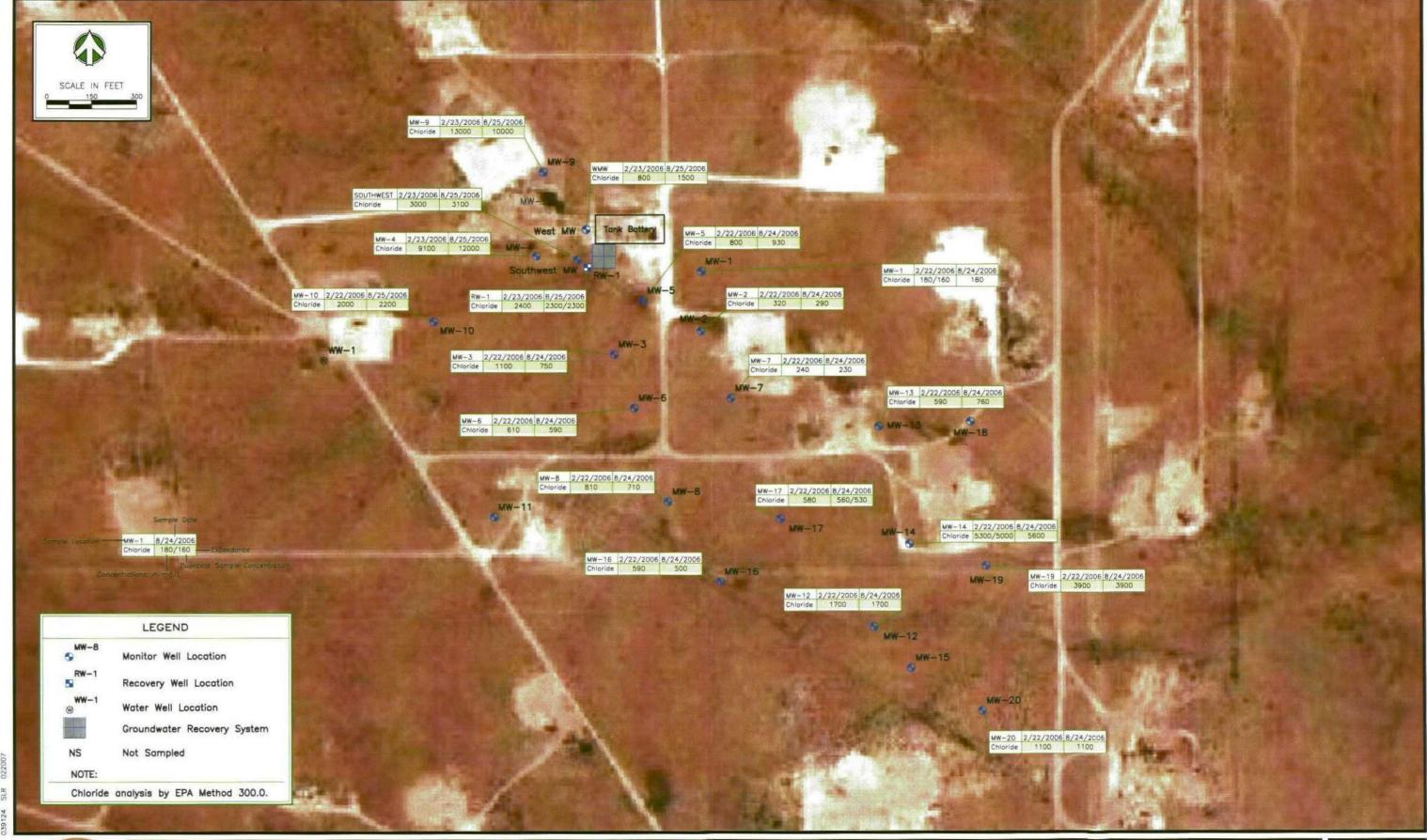

LEA COUNTY, NEW MEXICO

FIGURE 3

GROUNDWATER GRADIENT MAP - AUGUST 2006

CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A&B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, T-24-S, R-37-E LEA COUNTY, LEA COUNTY, NEW MEXICO

CHLORIDE CONCENTRATION MAP - FEBRUARY AND AUGUST 2006

CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY
G.L. ERWIN "A&B" FEDERAL NCT-2 TANK BATTERY
SW/4, SE/4, SECTION 35, T-24-S, R-37-E LEA COUNTY, NEW MEXICO

CHLORIDE ISOCONCENTRATION MAP - FEBRUARY 2006

CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY
G.L. ERWIN "A&B" FEDERAL NCT-2 TANK BATTERY
SW/4, SE/4, SECTION 35, T-24-S, R-37-E LEA COUNTY, NEW MEXICO

JOB No. 039124

FIGURE 6

CHLORIDE ISOCONCENTRATION MAP - AUGUST 2006 CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY

LEA COUNTY, NEW MEXICO

G.L. ERWIN "A&B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, T-24-S, R-37-E LEA COUNTY,

JOB No. 039124

FIGURE

MW-01 3,161.69		(inches)	(ft below TOC)	Water (ft below TOC)	Depth to LNAPL (ft below TOC)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL ²)	Screen interval (bgs ³
	2/4/1998	2	87.70	64.15			3097.54	
	2/7/2001	4	07.70	61.40		747	3100.29	
-,	4/30/2002			61.43			3100.26	
	10/11/2002			61.43			3100.26	
	12/26/2002			61.43		1	3100.26	
							3100.27	
	2/17/2003			61.42			3100.27	
	5/29/2003			61.58 61.37			3100.32	
	8/22/2003 11/5/2003			61.35			3100.32	
							3100.34	55'-85'
	2/3/2004			61.34				
	5/5/2004			61.13			3100.56	
	8/2/2004			61.08			3100.61	ļ
	11/23/2004			60.61			3101.08	
	2/9/2005			60.46			3101.23	
	8/4/2005			60.62			3101.07	
	2/22/2006		84.60	60.30			3101.39	
	8/24/2006		84.6	60.46			3101.54	
MW-02	2/4/1998	2	72.94	61.33			3098.56	
3,159.89	2/7/2001			61.45			3098.44	
	4/30/2002			61.47			3098.42	
	10/11/2002			61.46			3098.43	
	12/26/2002			61.52			3098.37	
	2/17/2003			61.53			3098.36	
	5/29/2003			61.48			3098.41	
	8/22/2003			61.41			3098.48	
	11/5/2003			61.38			3098.51	50'-70'
	2/3/2004			61.35			3098.54	
	5/5/2004		ŀ	61.20			3098.69	
	8/2/2004			61.11			3098.78	
	11/23/2004			60.52			3099.37	
	2/9/2005			60.45			3099.44	
	8/4/2005			66.60			3093.29	
	2/22/2006		72.81	60.26			3099.63	
	8/24/2006		72.81	60.42			3099.58	
MW-03	2/4/1998	2	73.26	65.18			3098.90	
3,164.08	2/7/2001			65.22			3098.86	
	4/30/2002			65.11			3098.97	
	10/11/2002			65.14			3098.94	
	12/26/2002			65.15			3098.93	
	2/17/2003			65.15			3098.93	
	5/29/2003	1		65.19			3098.89	
	8/22/2003		J	65.09			3098.99]
	11/5/2003			65.09			3098.99	50'-70'
	2/3/2004			65.06			3099.02	55,75
	5/5/2004			64.97			3099.11	
	8/2/2004			64.54			3099.54	
	11/23/2004			64.47			3099.61	
	2/9/2005			64.18			3099.90	
	8/4/2005			64.30			3099.78	
	2/22/2006		73.14	63.93			3100.15	
	8/24/2006		73.14	64.09			3099.91	

WELL TOC elev ¹	DATE	Well Diameter (inches)	Total Depth (ft below TOC)	Depth to Water (ft below TOC)	Depth to LNAPL (ft below TOC)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL ²)	Screen interval (bgs³)
						i ·		
MW-04	2/4/1998	2	73.31	63.94			3101.71	
3,165.65	10/19/2000			63.80			3101.85	
	2/7/2001			63.78			3101.87	
	4/30/2002			63.72			3101.93	
	10/11/2002			63.74			3101.91	
	12/26/2002			63.74			3101.91	
	2/17/2003			63.74			3101.91	
	5/29/2003			63.83			3101.82	
	8/22/2003			63.71			3101.94	
	11/5/2003			63.68			3101.97	50'-70'
	2/3/2004			63.64			3102.01	
	5/5/2004			63.55			3102.10	
	8/2/2004			63.45			3102.20	
	11/23/2004			62.91			3102.74	
	2/9/2005			62.83			3102.82	
	8/4/2005			63.12			3102.53	
	2/23/2006		73.11	62.80			3102.85	
	8/25/2006		73.11	62.97			3103.03	
MW-05	2/4/1998	2	73.10	60.33			3100.42	
3,160.75	10/19/2000			60.25			3100.50	
	2/7/2001			60.58			3100.17	
	4/30/2002			62.27			3098.48	
1	10/11/2002			60.29			3100.46	
	12/26/2002	i		60.29			3100.46	
	2/17/2003			60.30			3100.45	
	5/29/2003			60.33			3100.42	
	8/22/2003			60.24			3100.51	
	11/5/2003			60.24			3100.51	50'-70'
	2/3/2004			60.20			3100.55	
	5/5/2004			60.04			3100.71	
	8/2/2004			59.97			3100.78	
	11/23/2004			59.51			3101.24	
	2/9/2005			59.32			3101.43	
	8/4/2005			59.55			3101.20	
	2/22/2006		72.95	59.22	***		3101.53	
	8/24/2006		72.95	59.39			3101.61	
MW-06	2/7/2001	2	77.24	68.00			3096,18	<u> </u>
3,164.18	4/30/2002	_	77.24	68.10			3096.08	
5,101.10	10/11/2002			68.04			3096.14	
	12/26/2002			68.03			3096.15	
	2/17/2003			68.03			3096.15	
	5/29/2003			68.38			3095.80	
	8/22/2003			67.99			3096.19	
	11/5/2003			67.99			3096.19	1
	2/3/2004			67.92			3096.26	59'-74'
	5/5/2004			67.88			3096.20	3,74
	8/2/2004			67.78			3096.40	
1	11/23/2004			67.31			3096.87	
	2/9/2005			67.17			3097.01	
	8/4/2005		1	63.13			3101.05	
	2/22/2006		77.00	66.72			3097.46	
	8/24/2006		77,00	66.93			3097.46	
	0/24/2000		"	00.93			3077.07	
		I.		1 .	F	1	<u> </u>	1

WELL TOC elev ¹	DATE	Well Diameter (inches)	Total Depth (ft below TOC)	Depth to Water (ft below TOC)	Depth to LNAPL (ft below TOC)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL ²)	Screen interval (bgs ³
MW-07	2/7/2001	2	73.45	67.25			3094.81	
3,162.06	4/30/2002	4	75.45	67.50			3094.56	
5,102.00	10/11/2002			67.53			3094.53	
	12/26/2002			67.53			3094.53	
	2/17/2003			67.53			3094.53	
	5/29/2003			67.61			3094.45	
	8/22/2003			67.49			3094.57	
	11/5/2003			67.47			3094.59	
	2/3/2004			67.46			3094.60	55'-70'
	5/5/2004			67.44			3094.62	
	8/2/2004			67.34			3094.72	
	11/23/2004			67.02			3095.04	
	2/9/2005			67.74			3094.32	
	8/4/2005			66.62			3095.44	
	2/22/2006		72.56	66.31			3095.75	
	8/24/2006		72.56	66.37			3095.63	
MW-08	2/3/1999	2	70.66	68.21			3091.45	
3,159.66	2/7/2001			68.30			3091.36	
	4/30/2002			68.42			3091.24	
	10/11/2002			68.30			3091.36	
	12/26/2002			68.30			3091.36	
	2/17/2003			68.30			3091.36	
	5/29/2003			68.36			3091.30	
	8/22/2003			68.26			3091.40	
	11/5/2003			68.26			3091.40	50'-70'
	2/3/2004			68.24			3091.42	30-70
	5/5/2004			68.24			3091.42	
	8/2/2004			68.17			3091.49	
	11/23/2004			67.72			3091.94	
	2/9/2005			67.41			3092.25	
	8/4/2005			67.39			3092.27	
	2/22/2006		73.40	67.04			3092.62	
	8/24/2006		73.4	67.29			3092.71	
MW-09	4/30/2002	2	70.39	63.65			3103.42	
3,167.07	10/11/2002			63.59	_		3103.48	
	12/26/2002			63.59			3103.48	
	2/17/2003			63.60			3103.47	
	5/29/2003			63.73			3103.34	
	8/22/2003			63.56			3103.51	
	11/5/2003			63.55			3103.52	
	2/3/2004			63.47			3103.60	55'-70'
	5/5/2004			63.27			3103.80	
	8/2/2004			63.24			3103.83	
	11/23/2004	1		62.40			3104.67	
	2/9/2005			62.50			3104.57	
	8/4/2005			62.89			3104.18	
	2/23/2006		69.60	62.48			3104.59	
	8/25/2006	I	69.6	62.68			3104.32	1

WELL TOC elev ¹	DATE	Well Diameter (inches)	Total Depth (ft below TOC)	Depth to Water (ft below TOC)	Depth to LNAPL (ft below TOC)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL ²)	Screen interval (bgs ³
MW-10	4/30/2002	2	69.16	70.35			3100.64	
3,170.99	10/11/2002			70.49			3100.50	
	12/26/2002			70.50			3100.49	
	2/17/2003			70.50			3100.49	
	5/29/2003			70.37			3100.62	
	8/22/2003			70.47			3100.52	
	11/5/2003			70.49			3100.50	
	2/3/2004			70.43		[3100.56	1
	5/5/2004			70.38			3100.61	54'-69'
	8/2/2004			70.26			3100.73	
	11/23/2004			69.78			3101.21	
	2/9/2005			NG				
	8/4/2005			69.89			3101.10	
	2/22/2006		71.95	69.59			3101.40	
	8/25/2006		71.95	69.65			3101.35	
MW-11	4/30/2002	2	72.78	DRY			DRY	
3,168.24	10/11/2002			DRY			DRY	
	12/26/2002			DRY			DRY	
	2/17/2003			DRY			DRY	
	5/29/2003			DRY			DRY	
	8/22/2003			DRY			DRY	
	11/5/2003			DRY			DRY	
	2/3/2004			DRY			DRY	58'-73'
	5/5/2004			DRY			DRY	36-73
	8/2/2004			DRY			DRY	
	11/23/2004			DRY			DRY	
	2/9/2005			DRY			DRY	
	8/4/2005			61.91			3106.33	
	2/22/2006		75.45	74.71			3093.53	
	8/24/2006		75,45	74.71			3093.29	
MW-12	4/30/2002	2	74.37	72.80			3079.68	
3,152.48	10/11/2002			72.81			3079.67	
	12/26/2002			72.82			3079.66	
	2/17/2003			72.82			3079.66	
	5/29/2003			72.77			3079.71	
	8/22/2003			72.81			3079.67	
	11/5/2003		1	72.81			3079.67	
	2/3/2004			72.83			3079.65	59'-74'
	5/5/2004		1	72.78			3079.70	
	8/2/2004			72.81			3079.67	
	11/23/2004			72.69			3079.79	
	2/9/2005			72.83			3079.65	
	8/4/2005			72.48			3080.00	
	2/22/2006		77.60	72.15			3080.33	
	8/24/2006	1	77.6	71.91			3080.09	1

WELL TOC elev ¹	DATE	Well Diameter (inches)	Total Depth (ft below TOC)	Depth to Water (ft below TOC)	Depth to LNAPL (ft below TOC)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL ²)	Screen interval (bgs³)
MW-13	4/30/2002	2	67.90	66.97			3087.95	
3,154.92	10/11/2002			66.38			3088.54	
	12/26/2002			66.37			3088.55	
(2/17/2003		!	66.37			3088.55	
	5/29/2003			66.68		'	3088.24	
	8/22/2003			67.06			3087.86	
	11/5/2003			67.36			3087.56	
	2/3/2004			67.11			3087.81	53'-68'
	5/5/2004			67.05			3087.87	33-08
ļ	8/2/2004			67.21			3087.71	
	11/23/2004		i	66.82			3088.10	
	2/9/2005			66.50			3088.42	
	8/4/2005			66.11			3088.81	
	2/22/2006		70.54	65.73			3089.19	
	8/24/2006		70.54	65.45			3089.55	
MW-14	11/5/2003	2	92.43	71.60			3080.31	
3,151.91	2/3/2004			71.62			3080.29	
	5/5/2004			71.67			3080.24	
	8/2/2004			71.69			3080.22	
	11/23/2004			71.60			3080.31	50 EL 00 EL
	2/9/2005			71.30			3080.61	79.5'-89.5'
	8/4/2005			70.90			3081.01	
	2/22/2006		92.30	70.49			3081.42	
	8/24/2006		92.3	70.24			3081.76	
MW-15	11/5/2003	2	87.45	DRY			DRY	
3,152.48	2/3/2004			DRY			DRY	
	5/5/2004			DRY			DRY	
	8/2/2004			DRY			DRY	
	11/23/2004			DRY			DRY	64.5'-84.5'
	2/9/2005			DRY			DRY	04.5 -04.5
	8/4/2005			86.91			3065.57	
	2/22/2006		87.40	86.54			3065.94	
	8/24/2006		87.4	86.34			3065.66	
MW-16	11/5/2003	2	77,22	65.68			3091.57	
3,157.25	2/3/2004	2	11.22	68.67			3088.58	
3,137.23	5/5/2004			68.69			3088.56	
	8/2/2004			68.65			3088.60	
	11/23/2004			68.10	,		3089.15	
	L							59.5'-74.5'
	2/9/2005			67.53			3089.72	
	8/4/2005		7.1.10	67.77			3089.48	
	2/22/2006		74.42	67.24			3090.01	
	8/24/2006		74.42	67.66			3089.34	
MW-17	11/5/2003	2	79.37	69.51			3088.86	
3,158.37	2/3/2004	*	19.37	69.53			3088.84	
0,100.07	5/5/2004			69.52			3088.85	
	8/2/2004			70.12			3088.25	
	11/23/2004			1				
				69.31			3089.06	57'-77'
	2/9/2005			69.04			3089.33	
	8/4/2005		80.10	68.90 68.72			3089.47 3089.65	
					1		1089.65	
	2/22/2006 8/24/2006		80.10	68.78			3089.22	

WELL TOC elev ¹	DATE	Well Diameter (inches)	Total Depth (ft below TOC)	Depth to Water (ft below TOC)	Depth to LNAPL (ft below TOC)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL ²)	Screen interval (bgs
MW-18	11/23/2004	2	76.98	DRY			DRY	
3,151.08	2/9/2005	_		DRY			DRY	
	8/4/2005			DRY			DRY	5 4 5 1 5 4 5
	2/22/2006		78.43	DRY			DRY	54.5'-74.5
	8/24/2006		78.43	DRY			DRY	ļ
MW-19	11/23/2004	2	104.41	72.63			3075.16	
3,147.79	2/9/2005			72.36			3075.43	
	8/4/2005			72.18			3075.61	82.5'-102.5'
	2/22/2006		105.55	71.83			3075.96	02.0 102.0
	8/24/2006		105.55	71.57			3076.43	
MW-20	11/23/2004	2	94.94	81.81			3069.75	-
3,151.56	2/9/2005			81.85			3069.71	
	8/4/2005			81.81			3069.75	72.5'-92.5'
	2/22/2006		92.23	81.71			3069.85	72.5 72.6
	8/24/2006		92.23	81,66			3070.34	
WW-1	4/30/2002			70.21			3100.00	
3,170.21	10/11/2002			69.71			3100.50	ŀ
	12/26/2002			69.70			3100.51	
	2/17/2003		ļ	69.70			3100.51	
	5/29/2003			67.37			3102.84	
	8/22/2003			70.27			3099.94	
	11/5/2003			70.23			3099.98	
	2/3/2004			70.31			3099,90	
	5/5/2004			70.23			3099.98	
	8/2/2004			69.47			3100.74	
	11/23/2004			69.92			3100.29	
	2/9/2005			69.75			3100.46	
	8/4/2005			69.89			3100.32 3100.70	
	2/22/2006 8/25/2006		192	69.51 69.50			3100.70	
West MW	0 (20 (1007		70.12	(2.50			2101.07	
3,164.44	8/22/1997 2/4/1998	2	70.43	62.58 62.50			3101.86 3101.94	
3,101.11	10/19/2000			62.37			3102.07	
	2/7/2001			62.43			3102.01	
	4/30/2002			62.37			3102.07	
	10/11/2002			62.35			3102.09	
	12/26/2002			62.34			3102.10	
	2/17/2003			62.34			3102.10	
	5/29/2003			62.22			3102.22	
	8/22/2003			62.35			3102.09	
	11/5/2003			62.31			3102.13	
	2/3/2004			62.27			3102.17	
	5/5/2004			62.11			3102.33	
	8/2/2004			62.01	****		3102.43	
	11/23/2004			61.40			3103.04	
	2/9/2005			61.30			3103.14	
	8/4/2005			61.61			3102.83	
	2/23/2006		67.28	61.24			3103.20	
	1	I	67.28	61.43		T.	3102.57	1

GROUNDWATER GAUGING SUMMARY CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, TOWNSHIP 24 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

WELL TOC elev ¹	DATE	Well Diameter (inches)	Total Depth (ft below TOC)	Depth to Water (ft below TOC)	Depth to LNAPL (ft below TOC)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL ²)	Screen interval (bgs ³
			,					
Southwest MW	8/22/1997	2	70.45	63.25			3101.29	
3,164.54	2/4/1998			63.21			3101.33	
	10/19/2000			63.06			3101.48	
	2/7/2001			63.10			3101.44	
	4/30/2002			63.06			3101.48	
	10/11/2002			62.72			3101.82	
	12/26/2002			62.70			3101.84	
	2/17/2003			62.70			3101.84	
	5/29/2003			62.92			3101.62	
	8/22/2003			63.04			3101.50	
	11/5/2003			63.03			3101.51	
	2/3/2004			62.99			3101.55	
	5/5/2004			62.90			3101.64	1
	8/2/2004			62.71			3101.83	
	11/23/2004			62.17			3102.37	
	2/9/2005			62.05			3102.49	
	8/4/2005			62.33			3102.21	
	2/23/2006		70.16	61.98			3102.56	
	8/25/2006		70.16	62.17			3102.83	
RW-1	1/14/1999	4	76.30	50.85			3112.67	
3,163.52	10/19/2000			62.33			3101.19	
	4/30/2002			62.28			3101.24	
	10/11/2002			62.27			3101.25	
	12/26/2002			62.26			3101.26	
	2/17/2003			62.26			3101.26	
	5/29/2003			62.34			3101.18	
	8/22/2003			62.25			3101.27	
	11/5/2003			62.25			3101.27	53'-73'
	2/3/2004			62.20			3101.32	
	5/5/2004			62.12			3101.40	
	8/2/2004			61.96			3101.56	
	11/23/2004			61.46			3102.06	
	2/9/2005			61.30			3102.22	
	8/4/2005			61.51			3102.01	
	2/23/2006		75.45	61.20			3102.32	
	8/25/2006		75.45	61.36			3102.64	

¹TOC - Top of Casing ²MSL - Mean Sea Level ³BGS - Below ground surface

⁴NG - Not Gauged

⁵Professional Survey conducted by Piper Surveying Company in February & July 1998, October 2001, October 2003, & December 2004.

Hydroxide (mg/L)	1		ì	r)		<1.00	<0.10	<0.10	<0.10	<1.00	<1.00	7.00	<1.00	<1.00	<0,10	<0.10	<1.00	<1.00	<10.0	<10.0	<10.0	I	14	()	<1.00	<0.10	<0.10	<0.10	<1.00	<1.00	<1.00	<1.00	<1.00	<0.10	<1.00	Q.1∆0	<10.0	<10,0
Hardness (mg/L)	1		i į	276	Ä	i	ű.	E	81	ĵ	1	ì		1	£	1	ť		1	1	T.	1	124	i,	1	1		1	Į)	ł	E	1	13		4	R		700
TDS (mg/L)	1000	2007	ı	812	1,200	ı	737	728	713	1,320	856	994	940	1,316	431	902	840	856	707	840	099	ű	1,257	1,500	ĬĮ.	1,120	1,110	1,070	1,955	1,240	1,354	1,424	984	811	1,462	1,120	1,150	1610
Sodium (mg/L)			ğ	ě	115	105	125	129	911	118	118	114	113	302	127	436	108	125	104	102	107	i	6	329	315	329	339	331	383	333	327	324	102	472	324	343	259	298
Potassium (mg/L)		1	1	1	11.4	89.8	7.45	5.16	5.06	8.62	7.17	9.03	10.2	8.93	6.41	672	8.18	66.9	5.19	5,23	4.36	3.	ſ.	10.9	8.52	7.49	6.1	6.3	9.94	8.49	10.1	10.7	8.38	11	11.3	10.7	6.15	423
Magnesium (mg/L)		ı		Ŧ	55.8	38.7	24.8	27.4	21.4	47.8	31.3	37.7	43.2	18.3	30.8	45.5	33.5	26.7	18.7	20	19.3	ii	t	40.7	6.18	4.92	5.16	6.02	52.6	10.8	21.1	25.2	38.5	34.7	34.5	10.3	18.6	7.7
Calcium (mg/L)		1	ř.	î	15.7	103	69.3	76.6	59.1	135	92.7	110	117	60.2	64.1	101	6.79	75.5	55.9	57.9	57.4	i i	Ĭ,	124	2.1	18.1	17.8	19.4	176	36.1	68.7	76.1	108	50.8	103	34.5	19.5	26.3
Sulfate (me/L)	0000	9000	É	92	70	72.5	109	109	114	73.3	73.3	78.9	71.3	135	83.2	104	79.2	9.68	83	85	18	30	141	130	148	176	142	178	115	142	145	131	75.3	144	130	154	150	140
Nitrate - N	0000	10.00	Ĕ	ij	2.8	3.06	ß	1	ï	2.99	3.39	3.42	3.25	4.8	ì	I	£3	4.34	3.5	3.5	3.11	1	ı	ın	5.36	E	1		4.43	5.14	5.13	4.97	3.23	1	5.48	5.7	5.1	3.78
Fluoride	0.0	1.60	ı	1	2.10	1.60	1	1	ı	1.77	1.76	1.94	1.92	1.90	9	ľ	2.68	2.08	1.60	1.60	<2.5	6	ı	2.70	2.28	f	1	F	2.05	2,07	2.21	2.06	1.79	1	2.79	2.24	1.70	<2.5
Chloride (me/l)	b	250	T	233	440	428	230	248	213	434	279	330	390	403	222	301	289	245	180	160	180	1	423	570	349	337	319	310	694	374	498	450	341	496	F09	404	320	290
Bicarbonate	1000	Section of the second	4	220	136	141	155	149	147	132	141	162	142	260	155	158	146	156	160	170	300	,	360	234	262	250	238	228	206	242	232	230	150	236	220	228	250	250
Carbonate (me/l)	1-4-1	dard (mg/L)	i	<2.0	<1.0	<1.0	<0.1	1,0	<0,1	<1.0	<1.0	<1.0	<1.0	<1.00	<0.1	<0.1	<1.00	<1.00	<10.0	<10.0	<10.0	1	<2.0	41.0	<1.0	10.0	12.0	<0.1	<1.0	<1.0	Δ 6	<1.0	<1.00	1.0>	<1.00	<1.00	<10.0	<10.0
Sample	L'aire	NMWQCC Standard (mg/L)	08/22/97	02/17/98	02/02/01	05/03/02	10/11/02	12/27/02	02/18/03	06/02/03	08/25/03	11/05/03	02/04/04	05/06/04	08/03/04	08/03/04	02/11/05	08/02/02	02/22/06	02/22/06	08/24/06	08/22/97	02/17/98	02/07/01	05/03/02	10/11/02	12/27/02	02/18/03	06/02/03	08/25/03	11/05/03	02/04/04	05/06/04	08/03/04	02/11/05	08/02/02	02/22/06	8/24/06
Well	1	THE REAL PROPERTY.	MW-I	Kinehitika												Dup				Dup		VIW.2																

(mg/L)	1	1	j.	3	<1.00	<1.00	<0.10	<0.10	<0.10	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<0.10	<1.00	<1.00	<10.0	<10'0	1	9)	1	<1,00	<0.10	<0.10	<0.10	<0.10	<0.10	<1.00	<1,00	<1.00	<1.00	<1.00	<0.10	<1.00	<1.00	<10.0	<10.0
(mg/L)	1	1	232	1	Ţ	1	1	T	1	V)	***	ſ.	1	f	1	3	1	-	Ę.	Q.	9		9	Į.	1	£	1	ì	K	****	H	***	E	-	ţ	1	ì	15	31
(mg/L)	1000	10	2,261	2,100	4	10	1,960	1,950	1,950	2,720	2,320	2,092	1,392	2,275	2,140	1,640	2,240	1,950	3,860	1,990	39	1,268	2,600	1	1,220	1,260	1,450	594	1,610	2,670	2,935	3,035	3,380	4,090	6,810	9,030	13,200	17,900	17,500
(mg/L)	-	1	1	848	42.8	28.2	622	869	280	728	262	222	200	546	528	764	280	630	446	263	9	*	906	441	405	409	194	94.4	474	199	919	629	630	593	832	983	1440	1070	1890
(T/gm)	1	t	1	20.4	24.7	25.5	20.6	19.9	16.4	18.5	16.4	24.9	9.15	27.1	22.2	25.8	19.1	21.1	15.1	9.11	1	į	24	40.7	38.4	37.4	9009	4.94	59	59.8	82.1	83.6	108	2.66	124	156	142	141	136
(Il/Sul)	1	1	1	18.7	8.39	11.5	9.18	7.34	7.84	20	18	11.1	39.5	13.1	11.2	16.7	14.5	14.7	15.3	7.68	ŧ	į	84.7	48.4	2.48	2.38	4.42	23	7.5	29.7	35	61.4	75.9	6'66	191	289	375	326	364
(J/gm)	1	Ė	į	56.7	27.5	37.9	29	72	25.2	6.59	34.9	37.4	120	42.7	38.8	21.5	47	48	46.8	25.3	E	į	248	137	\$'6	8.8	21.2	555	32.2	1113	143	822	277	404	632	1060	1650	1510	1550
(mg/L)	0.009	ŧ	173	200	213	202	222	231	180	203	198	214	98.1	205	197	155	196	217	190	190	1	136	100	163	124	116	114	139	118	9.62	72.9	76.6	29	88.2	125	127	166	220	290
(mg/L)	10.00	t		7.3	7.57	739	9	ı	E	8.06	7.99	7.26	2.92	7.36	7.02	1	9.47	8.17	8.5	6.43	ii.)	4.7	4.72	t	ij	ť	-	ŧ	5.53	5.43	5.48	5.93	5.94	1	5.19	5.34	10	6,13
(mg/L)	1.60	1	ĵ	3,40	2.84	2.90	1	1	f	3.07	3.00	2.92	1.85	2.74	2.57	1	4.61	2,86	1.60	2.6	i	H	1.70	1.00	t	î	1	į	ŧ	<2.00	<2.00	<2.00	<2.00	<3.00	1	<1.00	<1.00	<2.5	10
(mg/L)	250	,	983	068	735	292	753	727	762	802	299	746	521	755	774	798	879	922	1,100	750	12	372	1,200	868	381	3772	305	115	169	1,020	1,170	1,620	1,730	2,150	2,730	4,520	6,580	9,100	12,000
(mg/L)	SERVICE NATURE	1	410	278	298	146	288	288	277	270	282	286	132	296	300	291	292	282	250	260	ï	510	286	250	342	358	288	158	264	236	192	141	170	158	150	136	132	130	140
(mg/L)	dard (mg/L)	1	<2.0	8.0	01>	<1.0	<0.1	-(D.1	<0.1	<1.0	<1.0	<1.0	<1.0	0.12	<1.00	<0.1	<1.00	<1.00	<10.0	01>	ï	20	<1.0	<1.0	<0.1	<0.1	<0.1	40.3	<0.1	<1.0	0,1>	<1.0	<1.0	<1.00	1.05	<1.00	<1.00	<10.0	<10.0
Date	NMWQCC Standard (mg/L)	(18/22/97	02/17/98	02/02/01	05/02/02	05/03/02	10/11/02	12/27/02	02/18/03	06/02/03	08/26/03	11/06/03	11/06/03	02/04/04	05/07/04	08/03/04	02/11/05	08/04/05	02/22/06	08/24/06	08/22/97	02/17/98	02/07/01	05/03/02	10/14/02	10/14/02	12/27/02	12/27/02	02/18/03	05/30/03	08/25/03	11/07/03	40/02/09	05/00/04	08/03/04	02/11/05	08/04/05	02/23/06	08/25/06
Number	1	MW3											Dup								MW-4					Dup		Dup											

(I/gm)	1		1	t	1	<1.00	<0.10	<0.10	<0.10	<0.10	<1.00	<1.00	<1.00	<1,00	<1.00	<0.10	<1.0	<1.00	<1.00	<10.0	<10.0	t	<1.00	<0.10	<0.10	<0.10	<1.00	<1.00	<1.00	<1.00	<1.00	<0.10	<1.00	<1.00	<10.0	<10.0
(mg/L)	1		1	116	ï	į	1	ľ	1	1	T.	1	ľ	I	Ĩ		Ĭ	1	1	1		3	Ü	9	1		Î	1	1		I	E	÷	f	1	ň
(mg/L)	1000	7000	ă	1,219	1,500	1	1,100	1,210	1,110	1,644	1,480	1,430	1,410	1,250	1,168	896	1,598	1,334	1,220	2,670	1,280	3,800	į.	1,670	1,650	1,700	2,040	2,370	1,932	2,210	2,095	1,430	1,774	1,650	1,570	1,880
(Ing/L)			T.	ï	331	287	302	319	231	364	291	282	289	301	292	435	433	354	341	274	295	657	475	356	584	524	614	525	503	517	503	825	531	376	380	448
(J/gm)		1	n	T	20.3	27.3	20.7	20.6	16.5	21.2	23.4	24.8	27.3	25.7	27.4	31.1	30.6	20.3	21.5	14	13.1	18.8	17.4	17.5	13.6	8.11	14.4	12.2	18.1	19.9	16	21.7	19.5	15.3	10.9	9.38
(mg/L)			:	1	40.8	1111	10	8.55	8.48	40.5	29	29.3	31.4	16.3	14.6	31.3	13.3	18.6	14.8	4.69	47.6	108	7.29	5,34	90'9	6.43	23.3	11.6	13.9	15.4	16.1	21.7	9.13	18.8	7.41	35
(mg/L)		1	ī	1	123	37.3	31.8	31.3	27.2	132	95.1	75	95.1	9229	50.7	47.9	46.2	60.5	49.2	222	145	323	24.9	18.6	21.2	22.1	68.7	35.9	9	48.9	21.8	22.7	30.1	56.6	23.9	108
(mg/L)	0 0007	07009	Ē	151	140	162	173	171	176	142	141	152	147	151	152	155	243	201	200	160	140	140	183	206	192	298	181	179	191	189	182	240	192	206	180	170
(T/zm)	0000	10.00	1	ā	4.8	5.36	Ţ	1	Ĭ	4.86	4.85	5.11	5.31	5.98	5,75	ı	8.36	6.82	6.74	9.9	5.09	5.4	7.04	ï	j	1	6.62	6.65	6.89	7.2	6.74	1	7.84	7.83	5.9	3.96
riuotide (me/L)		1.60	1	ā	1.60	96.0	1	t	1	1.23	1.32	1.43	1,38	1.02	1.04	1	2.58	1.83	1.82	1.30	45	3.3	3.68	Ĩ	3	1	3.24	2.95	3.28	3.15	2.92	1	3.76	3.16	2,40	3
(me/l)	or About	250	1	408	570	335	337	337	319	588	447	456	504	381	330	461	408	423	394	800	930	1800	503	620	620	638	TT.	209	649	713	969	718	099	764	019	290
bicarbonate (mo/l)	in dien	The state of the s	ï	360	214	238	232	232	210	196	210	214	206	222	242	229	288	256	242	220	190	200	264	262	218	238	244	246	250	266	266	260	270	268	270	260
(me/L)	en Semi	fard (mg/L)	ī	<2.0	<1.0	<1.0	<0.1	<0.1	<0.1	<1.0	<1.0	0,1>	<1.0	<1.00	<1.00	<0.1	0.1	<1.00	<1.00	<10.0	<10.0	<1.0	<1.0	<0.1	36.00	16.00	<1.0	<1.0	<1.0	<1.0	<1.00	40.1	<1.00	<1.00	<10.0	<10.0
Sample	hank	NMWQCC Standard (mg/L	08/22/97	02/17/98	02/02/01	05/03/02	10/11/02	12/27/02	02/18/03	06/02/03	08/26/03	11/06/03	02/04/04	05/07/04	02/02/04	08/03/04	02/11/05	50/10/80	08/04/05	02/22/06	08/24/06	02/02/01	05/02/02	10/14/02	12/27/02	62/18/03	06/02/03	08/26/03	11/06/03	02/04/04	05/02/04	08/03/04	02/11/05	60/10/80	02/22/06	08/24/06
Well	1	STATE OF THE PARTY OF	MW-5												Dup				DUPL			WW-6														

Hydroxide	cargo ca	1		<1,00	<0.10	<0.10	<0.10	<1.00	<1.00	<1.00	<1,00	<1.00	<1.00	<0.10	<1.00	og:1>0	<1.00	<10.0	<10.0	1	<1.00	<0.10	<0.10	<0.10	<1.00	<1.00	<1.00	<1.00	<1.00	<0.10	<1.00	<1.00	<10.0	<10.0
Hardness	ca Sun	1	**	į	1	i	F	ł	1	1	I	1	E	1	-	1	1	L	12		ļ	33.5	1	1	Į	ı	I	I	Ī		Ī	ľ	1	a)
SGI ((mg/L)	1000	1,300	ł	1,120	1,220	1,440	1,216	1,244	1,186	1,170	1,138	1,172	734	1,128	1,180	1,100	1,120	952	2,100	1	1,920	2,000	1,930	1,968	1,996	1,972	2,038	1,968	1,530	2,080	2,230	1,740	926
Sodium (Trans	(mg/r)	1	326	307	316	353	339	370	308	304	298	298	282	436	296	325	315	227	245	604	527	265	627	489	059	334	32.5	225	201	202	2	574	340	470
Polassium	cm/Sun	I	10.4	8.42	6.7	5.82	5.86	6.16	7.14	7.67	7.63	7.95	6.81	7.55	7.75	8.43	6.51	4.89	2.96	12.7	13	10.8	8.64	7.13	6.47	11.4	12.2	13.2	10.7	11	13.2	11.7	8.05	·g
Magnesium	(mg/L)	1	27.3	17	13.5	19.2	30.9	12.5	12.3	11.4	10.8	78.6	10.3	12.1	66'6	19.2	12.5	86.6	7.82	24.5	29.2	20.4	20	17.6	18.9	17.3	17.9	18.2	16.9	21.5	19	23.3	18	16.5
Calcium	(mg/L)	1	80.3	46.6	39,7	36.2	90%	39.5	39,3	36.6	34.7	30.7	35.2	22.8	31.5	58.2	38.7	30.6	23.3	79.4	94.5	52.4	8.95	S	09	59.4	58.1	55.2	56.2	28.6	58.3	71.5	55.1	51.2
Sulfate	(mg/L)	0.009	100	106	128	109	13	1115	105	117	117	112	112	126	123	144	144	120	110	160	168	194	173	185	173	159	171	191	191	222	167	181	170	170
Nitrate - N	(mg/L)	10.00	4.1	4.18	ł		ŧ	4.33	4.07	4.16	4.19	4.25	7	f	4.65	4.36	4.30	3.3	2.97	9.9	6.68	1	3	1	6.82	6.42	59'9	7.85	7.43	1	8,46	7.66	6.7	5,51
Fluoride	(mg/L)	1.60	3.20	2.94	ţ	t	1	323	2.77	3.08	3.04	3.10	2.90	f	3.76	3.10	3.14	2.60	3.1	3.20	2.65	1	777	1	3.29	2.85	327	3.77	336	00000	428	3.29	2.40	3.2
Chloride	(mg/L)	250	300	466	408	452	603	388	367	343	355	320	339	328	332	430	387	240	230	006	818	842	833	833	777	738	777	764	774	777	818	888	810	710
Bicarbonate	(mg/L)	No. of the last of	238	244	242	232	200	242	232	240	238	262	260	248	238	240	236	290	260	240	236	250	233	213	244	244	248	75	262	246	238	236	230	280
Carbonate	(mg/L)	dard (mg/L)	<1.0	<1.0	<0.1	40.1	<0.1	<1.0	<1.0	<1.0	<1.0	41.0	<1.00	<0.1	<1.00	<1.90	<1.00	<10.0	<10.0	20	<1.0	<0.1	107	<0.1	<1.0	0.1>	<1.0	<1.0	8.00	40.1	OU/1>	<1.00	<10.0	d.01>
Sample	Date	NMWQCC Standard (mg/L	02/02/01	05/02/02	10/11/02	12/22/02	02/17/03	06/02/03	08/25/03	11/05/03	11/05/03	02/04/04	05/06/04	108/03/04	02/11/05	50/90/80	50/50/80	02/22/06	08/24/06	02/02/03	05/02/02	10/14/02	12/27/02	02/18/03	06/02/03	08/25/03	11/02/03	62/0H/0H	HD/90/S0	10/10/80	02/11/05	50/50/80	02/22/06	08/24/06
Well	Number	S PANTON S	Z-MW	0.0000000000000000000000000000000000000							Dup						DUP2			MW-8														

Hydroxide	(L/Su)	i	<1.00	<0.10	<0.10	<0.10	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<0.10	<1.00	00.1>	<10.0	<10.0	<0.10	<0.10	<0.10	<1.00	<1,00	<1.00	<1.00	<1.00	<0.10	<1.00	<1.00	<10.0	<10.0
Hardness	(mg/L)	į	Ī	1	Ĭ	1	-	ĵ	I	į,	Ţ	I	Ţ	1	H	Ţ	-	86	1	I	I	ij	i	ij		ì	ĵ,	į	I.	I	Ü
SQL	(mg/L)	1000	1	1,240	1,080	1,190	1,324	1,428	1,250	1,345	1,325	1,428	1,476	1,530	3,920	27,000	24,300	24,100	593	529	352	624	889	638	674	736	962	2,295	3,420	6,180	7,520
Sodium	(mg/L)	1	188	216	192	200	240	219	200	122	203	212	223	279	388	1,390	1,450	1,920	87.3	92.8	2.06	80.4	72.3	69.3	73.8	78.3	106	157	186	180	233
Potassium	(mg/L)	1	9.93	10.4	6.22	5.62	7.98	9.45	9.18	10.3	10.1	9.63	9.82	10.5	21.5	42.8	47.8	38.3	7.77	5.69	3.04	4.95	6.29	89,	6.29	6.34	7.7	14	11.5	13.8	13.7
Magnesium	(mg/L)	1	35.8	33.1	33.8	34.1	37.9	39.2	39	41.1	43.9	20	46.7	62.9	131	989	438	360	22.8	23.1	22.8	22.4	23.4	23.5	25.7	30.1	49.5	115	139	158	201
Calcium	(mg/L)	1	8.86	88.4	93.8	5.00	113	120	119	125	132	142	144	184	495	2,280	2,050	1,330	42.3	68.4	1729	75.7	9.07	70.2	75.8	92.9	106	357	419	520	099
Sulfate	(mg/L)	0'009	106	119	120	126	102	95.2	2'96'3	226	53.6	16	92.2	115	103	224	430	360	145	149	159	134	125	131	121	111	311	93.1	94.5	86	26
Nitrate - N	(mg/L)	10.00	3.26	, p	1	E	3.01	2.98	2.86	4.18	2,19	2.68	2.72	1	5.36	5.15	19	3.75	9	1	Ę	4.31	17	4.19	4.22	3.8		5.86	4.02	6.5	3.24
Fluoride	(mg/L)	1.60	1.85	E	1	I	1.82	1.58	1.68	2.32	123	1.39	1.43	1	3,63	1.54	<2.5	2	1	Ţ	1	1.60	1.58	1.69	1.68	1.40	1	3.44	1.32	<0.50	572
Chloride	(mg/L)	250	436	443	101	461	514	562	468	019	581	616	299	169	1,960	10,000	13,000	10,000	17	70	9	35.7	36.1	70.9	101	186	328	1,110	1,500	2,000	2,200
Bicarbonate	(mg/L)		142	137	124	105	221	114	132	124	120	122	124	110	86	218	011	260	204	196	281	198	188	200	196	174	144	112	112	68	110
Carbonate	(mg/L)	dard (mg/l)	<1.0	9	<0.1	<0.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.00	<1.00	<0.1	<1.00	<1.00	<10.0	<10.0	<0.1	<0.1	<0.1	<1.0	<1.0	<1.0	<1.0	<1.00	<0.1	<1.0	<1.00	<10.0	<10.0
Sample	Date	NMWQCC Standard (mg/l	05/01/02	10/14/02	12/27/02	02/18/03	05/30/03	08/25/03	11/07/03	02/02/04	02/02/04	05/05/04	05/05/04	08/03/04	02/11/05	08704/05	02/23/06	08/25/06	10/14/02	12/27/02	02/18/03	06/02/03	08/26/03	11/02/03	02/05/04	10/40/50	08/03/04	02/11/05	08/04/02	02/22/06	08/25/06
Well	Number	THE PERSON NAMED IN	6-WW								Dup		Dup	ħ#					MW-10												

Hydroxide	(mg/L)	1	SS	SS	ź	2	SN	52	2	SZ	SN	S	SS	SN	SZ	SZ	<1.00	<0.10	<0.10	<0.10	×1.00	<1.00	<1.00	<1.00	<1.0	<0.10	<1.00	00.12	<10.0	<10.0
un.	(mg/L)	1	NS.	Š	SN	SZ	SN	SN	SN	Z.	SS	SS	SZ	SZ	ź	SS	1	Ĺ	1	İ	1	1	1	1	ľ	1	j.	1	Ĭ	((0))
TDS	(mg/L)	1000	SN	SS	SN.	S	NS	SNS	SN	SN.	2	SZ	52	SZ	SZ	SZ	3	2,860	3,460	3,980	3,250	3,855	3,860	2,910	3,085	4,300	3,080	4,180	4,890	6,190
Sodium	(mg/L)	ı	SN	2	SS	SZ	28	2	Z	SZ	SN	ž	SZ	SN	SZ	SS	123	127	151	136	151	136	159	160	152	211	138	149	129	140
Potassium	(mg/L)	Ł	SN	SZ	SS	SN	S	SS	SN	2	SS	50	SN	SS	S.Z.	S	17.7	15.4	14.1	13,3	15.3	14.8	20.1	21,6	18.5	31.1	17.8	15.2	14.9	12.2
Magnesium	(mg/L)	ł	52	SN	SZ	SZ	SS	SZ	SN	s Z	SN	SZ	SZ	SZ	SZ	SZ	153	191	181	170	157	178	189	181	178	252	176	151	135	157
Calcium	(mg/L)	1	SN	SZ	SZ	SZ	5%	SS	82	92	ź	SS	SZ	SZ	SZ	2	431	438	202	199	491	525	368	325	341	089	503	347	415	163
Sulfate	(mg/L)	0.009	SN	SN	NS	SN	SS	SN	2	22	2	SZ	SS	SZ	SN	SN	45.3	47.5	49.3	52.4	45.8	45.9	50.3	9#	53.6	55.2	47.7	48.6	48	48
Nitrate - N	(mg/L)	10.00	SN	82	2	SN	2	SN	SN	82	SN	SZ	SN	SN	SN	SS	4.09		Ł	J	5.06	4.94	4.81	5.13	5.13	I	90'9	4.69	6.7	3.06
Fluoride	(mg/L)	1.60	SN	2	52	SN	52	82	SN	SNS	SN	SN	SN	SZ	SZ	SZ	1.37		I	1	<2.00	2700	225	2.19	<3.00	ì	2.04	1.66	0.70	0.93
Chloride	(mg/L)	250	2	2	SN	SZ	SN	SZ	SZ	SN	SZ.	SN	SZ	ŠŽ	SZ	ž	1,120	1,370	1,520	1,530	1,380	1,550	1,610	1,680	1,620	1,680	1,770	1,800	1,700	1,700
Bicarbonate	(mg/L)		SN	2	2	2	SZ	SZ	ž	SNS	ž	SZ	SZ	SZ	S.Z.	SZ	88	93	78	89	72	8	98	74	70	8	22	22	23	28
Carbonate	(mg/L)	(ard (mg/L)	NS	2	82	SZ	2	2	2	SN	SZ	ž	SZ	SN	SZ	SN	<1.0	<0.1	40.3	<0.1	<1.0	0.1>	<1.0	012	<1,0	401	<1.00	<1.00	<10.0	<10.0
Sample	Date	NMWQCC Standard (mg/L)	04/30/02	10/11/02	12/26/02	02/17/03	05/29/03	08/22/03	11/05/03	02/03/04	05/05/04	08/02/04	11/23/04	02/08/05	08/04/05	02/22/06	05/05/05	10/11/02	12/27/02	02/17/03	06/02/03	08/26/03	11/06/03	02/02/04	05/02/04	08/03/04	02/11/05	90/50/80	02/22/06	08/24/06
Well	Number		MW-11	1000													MW-12													

Hydroxide (mg/L)	1		<1.00	<0.10	<0.10	<0.10	<1.00	<1.00	<1.00	<1.00	<1.00	<0,10	<1.00	<1.00	<10.0	<10.01	<1.00	<1.0	<1.00	O,10	<1,00	<1.00	<10.0	<10.0	<10.0	SN	Z	SZ.	S.Z.	NS	SZ	SN	S)
Hardness (mg/L)			ľ	î	İ	1	Ĭ	İ	Ī	1	Î	ŧ	Ĭ	ľ	1	8.	-	1	i	t	i	ł.	1	E	ie	2	Š	Š	SZ	SS	s Z	SS	25
TDS (mg/L)	1000	2007	Ė	1,210	1,260	1,370	1,260	1,360	1,434	1,220	1,278	1,410	1,260	1,550	2,090	2,590	7,315	7,720	9,560	11,500	8,860	9,570	12,100	11,600	11,300	SN	52	SZ	SS	SN	S	SN	SN.
Sodium (mg/L)			9.59	98.6	84.5	108	6'06	95.6	91.5	98.3	89.3	1111	92.3	103	8.1.8	107	732	840	836	1,220	1,250	1,440	882	884	1370	SN	SS	ź	SZ	Š	SS	SS	r. Z
Potassium (mg/L)	1		10.2	9.47	12'6	88.8	11	12	14.3	15.4	12.8	15	13.3	12.7	11.5	10.9	45.3	46.1	42.5	60.3	56.8	46,3	34.1	Ħ	27.8	SN	SN	SN	SZ	SN	SZ	NS	2
Magnesium (me/L)			44.3	46.5	55.2	54.9	×	8	68.6	65.6	62.2	77.3	61.7	70.8	61.2	78.7	324	320	350	455	370	400	253	253	266	SN	SN	SZ	SN	S.Z.	SZ	SZ	SS
Calcium (me/L)		ı	125	135	160	152	153	179	193	179	184	225	171	217	177	228	951	996	266	1,350	1,180	1,230	914	916	942	SN	SN	SZ	SZ	SS	SZ	SS	SZ.
Sulfate (me/L)	0 009	DOU.D	131	124	132	#	122	1115	125	120	116	116	117	125	120	120	525	926	594	895	752	882	200	069	069	SN	SN	SN	SN	SS	SS	SZ	SS
Nitrate - N	10.00	10.00	4.38	ı	ı		4.43	423	4.42	4.56	4.14	į	5.36	5.11	4.8	3,58	6.58	6.01	5.54	ı	5.99	5.04	11	<\$0	3.74	SS	SN	SZ	SZ	S	Š	SZ	SZ.
Fluoride	1 40	1.60	2.31	L	1	1	227	2.10	225	230	2.04	****	2.19	2.29	1.70	<2.5	<4.00	<3.00	<4.00	ï	3.50	1.84	<0.50	<0.50	49	SN	SN	SN	SZ	Š	SZ	SZ.	SS
Chloride	250	250	277	337	408	443	121	300	492	543	96‡	532	161	759	590	260	3,500	3,910	3,970	4,430	6,120	6,480	5,300	5,000	2,600	SZ	SZ	SZ	SN	ž	SN	Z.	SZ
Bicarbonate (mc/l)	in Amy	THE PERSON NAMED IN	122	115	104	80	102	25	86	*	96	56	100	96	68	150	100	74	98	78	80	98	81	82	92	2	SZ	2	SN	SS	SZ	57.	S.Z.
Carbonate (mc/l)	Cristian Control	dard (mg/L)	<1.0	<0.1	40.1	1.0>	0.1>	<1.0	<1.0	<1.0	<1.00	<0.1	<1.00	<1.00	<10.0	<10.0	<1.0	<1.0	<1.00	<0.1	<1.00	<1.00	<10.0	<10.0	<10.0	NS	52	2	SZ	SS	SN	SZ	SS
Sample	Date	NMWQCC Standard (mg/l	05/02/02	10/11/02	12/27/02	02/17/03	06/02/03	08/26/03	11/06/03	02/02/04	05/07/04	98/03/04	02/11/05	50/50/80	02/22/06	08/24/06	11/05/03	02/04/04	05/06/04	08/04/04	02/11/05	08/02/05	02/22/09	02/22/06	08/24/06	11/05/03	02/03/04	HD/50/50	08/02/04	11/23/04	02/09/05	08/04/05	02/22/06
Well	1	Section of the section	MW-13														MW-14							Dup		MW-15							

230	(man)		(med) (med)	_	(mon)	(mo/l)	(mo/L)	(me/L)	(mg/L)	(L/Zm)	(mg/L)	(mg/L)	(mg/L)
	+	+	097		10.00	0.009	1	1	1	1	1000	1	-
1.79	-	863 1.79		100	5.65	150	183	9226	14.2	372	2,100	15	<1.00
2.19					629	123	235	76.8	15.2	299	2,200	1	<1,00
<2.00	He	He			5.91	123	240	73.8	12.7	313	2,280	1	01.00
2.40		1,010			7.24	151	198	62.4	10.9	34.	2,260	1)	>1.00
1.99					5.14	146	134	46.9	8.7	249	1,420	1	<1.00
1,30			0		5.2	110	120	39.1	71.7	202	1,770	1	<10.0
V			10	.1816	3.17	86	123	40.6	4.93	202	1,460	•	<10.0
2			2.06		3.85	104	177	58.2	12.5	184	1,556	E	<1.00
2.01	PV.	650 2.4	=	(O.F	3.93	93.1	158	52.5	12.2	205	1,416	E	<1.00
2.08			90	100	4.03	95.7	162	52.6	12.1	204	1,496	1	<1.00
1.77					3.57	91.2	182	57.7	10,9	176	1,416	1	<1.00
1	16	16			1	132	202	81	12.7	1221	1,660	ŧ	<0,10
2.94			-	D.	4.61	101	134	45.9	11	229	1,470	1	<1.00
2.16					4.37	106	169	53.5	9.5	220	1,750	***	<1.00
1,50			-	500	4.0	26	123	40.1	8.04	187	1,810	1	<10.0
<2.5				316.0	3.06	100	140	46.1	5.94	178	1,700		<10.0
2		530			2.94	100	135	16.5	5.76	175	1,700	8	c10.0
82				-	52	SN	SN	SN	SZ	SN	S	Ź	Š
SS					52	SZ	2	SS	SN	SN	52	SS	SS
SN		NS NS			2	ž	SZ	SZ.	SN	SZ	52	SS	Ş
ž					2	SN	2	SN	SN	SN	S2	2	SX
<10.0	8	8	0		17.3	582	2,020	829	52.4	1590	12,900	1	<1.00
77	T.	T.	1.30		5.12	502	1,340	522	613	974	22,000	1	<1.00
T		4,850 1.7	1.76		4.7	450	1,200	422	30.6	793	9,750	ŀ	<1.00
1.87			22		4.83	462	1,270	463	51.0	814	15,800	-	<1.00
<0.50			0		8.9	400	870	271	32.6	199	8,830	1	<10.0
5		3,900 <5		10.00	3,01	390	902	293	28.8	582	10,900	940	<10.0
2.49			1823		2.9	79.7	176	62.6	13.6	104	586	E	<1.00
1.86		745 1.8		Codes	134	73.8	722	77.5	115	117	1,480	1	<1.00
176					4.55	84.5	326	116	14.7	162	2,640	£	<1.00
0.98	e in	u din	90	_	3.5	83	295	103	13.5	145	3,000	-	<10.0
<2.5					1 30	2	288	101	11.2	160	3,590		<10.0

TABLEII

GROUNDWATER ANALYTICAL SUMMARY CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY SW/4, SE/4, SECTION 35, TOWNSHIP 24 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

						_	_	_	_	_	_	_	_	_	_	_	_	_	T								_			_	_					_	_	
(mg/L)	1	10	į	1	<1.00	<0.10	<0.10	<0.10	<1.00	<1.00	<1.00	<1.00	<1.00	<0.10	<1.00	<1.00	<10.0	<10.0	1	ł	1	<1.00	<0.10	<0.10	<0.10	<0.10	<1.00	<1.00	C1,00	<1.00	<1.00	<1,00	<1.00	<0.10	<1.00	<1.00	<10.0	<10.0
(mg/L)	-	1	96	1	1	i	1	1	1	İ	1	1	1	I	ŧ	1	I	Ť	1	712	ı	ĵ	ì	1	1	1	İ	I	ŧ	1	I	i	1	i	ł	£	1	a)
(mg/L)	1000	15	975	1,000	Í	986	166	1,010	1,050	1,066	1,100	1,074	1,040	717	1,128	1,104	2,390	1,840	1	4,719	4,100	ì	3,020	3,040	2,910	3,040	4,070	3,420	3,205	3,270	3,275	2,860	3,180	2,550	5,575	12,000	6,300	2,600
(mg/L)	-	6	ì	264	234	290	263	152	283	265	235	235	241	297	241	280	257	400	1	î	1,078	744	929	086	918	812	935	668	77.4	591	727	716	780	1,660	1,240	1,980	968	1240
(L/gm)	-	10	ì	33.2	40.9	35.6	33.2	23.9	35.1	38.4	38.8	41.4	37.3	49.1	43.9	42.2	47.1	2.79	t	ì	1	46.4	61.5	8.99	9	58.3	49.1	45	49.7	2.6	48.5	52.2	53.2	82,4	4.4	101	77.1	74.9
(mg/L)	1	Ē	ij	12.5	11.9	9.37	12.5	82.6	13.3	13.2	13.8	14.6	14	20.1	21.4	23.6	44.3	87.6	1	ï	59.1	59	32.5	31.9	31.3	32.2	45.7	54.5	33.6	41.8	35.4	33.1	30.8	45.2	574	201	108	711
(mg/L)	1	t	ij	39.7	41.9	39.3	43.1	33.6	48.4	46.4	51.3	51.6	53.6	41.7	75.9	87	149	313	ř	â	197	200	110	107	104	108	191	169	117	159	129	109	158	75.1	323	169	373	415
(J/gm)	600.0	i	134	120	116	127	134	141	116	112	115	112	1115	147	1117	129	110	26	ï	255	350	301	360	319	300	299	282	287	272	75.5	255	238	131	264	230	325	450	009
(J/gm)	10.00	i	ij	4.5	4.36	i	ı	ì	4.16	4.08	3.98	4.09	3.83	4	4.47	4.16	7	2.78	i	Ä	In	4.51	ĭ	1	i	ľ	5.83	5,65	6.1	5.61	5.77	6.17	6.38	į	6.61	11.7	п	5,99
(mg/L)	1.60	1	1	2.00	1.39	Ĩ	-	1	1.54	1.50	1.65	1.66	1,44	1	2,44	1.54	0.76	<2.5	£	ä	2.20	1.38	İ	İ	I	r	2.34	2.12	2.25	<2.00	2.29	2.37	<3.00	1	1.33	1.55	<2.5	<5.0
(mg/L)	250	250	237	340	329	337	337	354	353	351	327	345	339	337	417	526	800	1,500	3,300	2,170	1,900	1,490	1,330	1,280	1,290	1,310	1,420	1,370	1,190	1,260	1,240	1,240	1,310	1,400	2,920	5,290	3,000	3,100
(mg/L)	The section of the	i	370	236	214	210	198	190	202	194	204	196	200	186	186	150	150	150	ř	420	326	222	330	308	289	298	304	290	310	200	300	300	294	276	260	326	300	300
(mg/L)	dard (mg/L)	1	<2.0	0.1>	<1.0	<0.1	<0.1	<0.1	<1.0	0,1>	<1.0	<1.0	<1.00	<0.1	<1.00	<1.00	<10.0	<10.0	ı	<2.0	<1.0	<1.0	40.1	<0.1	<0.1	<0.1	<1.0	o.t.o	<1.0	<1.0	<1.0	0.15	<1.00	<0.1	<1.00	<1.00	<10.0	<10.0
Date	NMWOCC Standard (mg/L.	.08/22/97	02/17/98	02/02/01	05/03/02	10/14/02	12/27/02	02/18/03	05/30/03	08/25/03	11/02/03	02/02/04	102/06/04	08/03/04	02/11/05	08/04/05	02/23/06	08/25/06	08/22/97	02/17/98	02/02/01	05/03/02	10/14/02	12/27/02	02/18/03	02/18/03	06/02/03	06/02/03	08/25/03	08/25/03	11/02/03	02/02/04	92/06/04	08/03/04	02/11/05	50/H0/80	02/23/06	08/25/06
Number		West																	Southwest							Dup	2	Dup	A A	Dup	Œ							

TABLEIL

SW/4, SE/4, SECTION 35, TOWNSHIP 24 SOUTH, RANGE 37 EAST GROUNDWATER ANALYTICAL SUMMARY CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY G.L. ERWIN "A & B" FEDERAL NCT-2 TANK BATTERY LEA COUNTY, NEW MEXICO

Well	Sample	Carbonate	Bicarbonate	Chloride	Fluoride	Nitrate - N	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS	Hardness	Hydroxide
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(Ll/gm)	(mg/L)	(mg/L)
Mary Name	NMWQCC Standard (mg/L	(T/gm) purpu	DESCRIPTION OF THE PERSON	250	1.60	10.00	0.009	1	1	ı	1	1000	1	1
RW-1	10/20/00	<1.0	330	1,500	1.70	5.2	330	102	29.6	30	843	3,200	1	*
	10/14/02	Ā	327	1,150	1	ţ	340	60,3	25.5	64.3	820	2,720	ī	<0.10
	12/27/02	<0.1	294	1,300	ï	1	330	123	403	56.8	933	3,190	1	<0.10
	02/18/03	40.1	300	1,150	Ü	-	316	7.67	25.7	R	721	2,690	1	<0.10
	06/02/03	<1.0	376	1,500	2.05	H. 6	275	194	67.21	40.8	923	4,070	Į.	<1.00
	08/25/03	<1.0	298	1,190	2.01	6.15	278	1117	32.7	46.1	705	2,940	i	<1.00
	11/07/03	<1.0	298	1,300	2.13	5.56	266	166	48.1	51.7	106	3,240	ŧ	<1.00
	02/02/04	<1.0	292	1,270	222	5.92	246	148	44.7	53.8	704	2,780	1	<1.00
	05/06/04	<1.00	310	1,100	<3.00	6.62	235	101	283	53.8	635	2,840	E	<1.00
Dup	05/06/04	<1.00	288	1,040	<3.00	6.64	243	8	24.1	#13	549	2,705	1	<1.00
•)	08/04/04	<0.1	757	1,120	1	9	290	44.8	33	86.9	785	2,250	1	<0.10
Dup	08/04/04	<0.1	288	1,130	1	I	274	45	31.6	Z	1961	2,550	1	<0.16
	02/11/05	<1.00	262	1,730	3.59	8,93	217	172	51.5	25	910	3,995	1	<1.00
Dup	02/11/05	<1.00	268	1,690	2.00	8.59	224	139	46.4	18	813	3,170	t	<1.00
	08/04/05	<1.00	252	2,470	1.26	5.8	188	262	76.1	87.5	1,090	5,120	1	<1,00
	02/23/06	<10.0	290	2,400	<2.5	8,9	350	234	9.79	70.4	762	4,680	F	<10.0
	08/25/06	<10	290	2300	un V	4.41	440	281	17.3	68.5	1040	5610		<10.0
DUP	08/25/06	<10.0	300	2,300	sc.	4.6	450	272	577.3	67.1	1030	5,570	Ĭ.	<10.0
WW-1	05/01/02	Q1>	172	272	1.64	4.05	137	51.4	23.4	8.23	84.9	1	1	<1.00
	10/10/02	<0.1	168	106	1	£	124	52.7	22.2	68'6	106	509	Ţ	<0.10
	12/27/02	40.1	157	LIII	1	1	134	88	22.5	5.3	96	572	į	<0.10
	02/18/03	40.1	152	115	1	1	137	53.8	22.1	6.38	93.5	109	1	<0.10
	06/02/03	<1.0	151	127	1.69	3.77	611	59.5	24.1	7.14	118	623	1	<1.00
	08/25/03	<1.0	148	136	1.70	3.72	1111	63	24	8.43	104	259	E	<1.00
	11/02/03	<1,0	156	149	1.80	3.62	1111	62.3	24.4	8,3	95.5	699	1	<1.00
	02/04/04	0.15	156	185	1.81	3.79	102	68.2	25.5	8.7	92.4	502	1	<1,00
	05/05/04	<1.00	148	204	1.54	3.48	7.66	71.9	26.5	8.25	120	969		<1.00
	40/40/80	<0.1	132	222	3	1	114	92.3	37.9	68'6	139	471	1	<0.10
	08/04/05	S.	SS.	S. Z.	SS	S.Z	SZ	SZ	ž	2	SN	ź	2	SS
	02/23/06	7	SZ	SZ	SZ	SN	SS	SZ	NS	SN	SNS	Z.	250	SZ

- 1. mg/l: Milligrams per liter
- 2. <: Concentration below test method detectin limit
- 3. --: No data available
- 4. RW: Recovery well
- All analyses prior to 10/14/02 conducted by TraceAnalysis, Inc., Luthood, TX
 Analyses from 10/14/02 conducted by Environmental Iah of Toxas, Odesso, TX
- 7. Analyses from 5/30/03 and following conducted by Trace Analysis Inc., Lubbock, TX
- 8. Analyses from 8/24/06 and 8/25/06, conducted by Pace Analytical, St. Rose, LA and Greenbay, WI Laboratories 9. Highlight: Result exceeds NMWOCC standard
 - - 10, WW: Water well
- II. NS: Note sampled

APPENDIX A

NMOCD CORRESPONDENCE DATED FEBRUARY 2, 1999

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

February 2, 1999

CERTIFIED MAIL RETURN RECEIPT NO. Z-274-520-612

Mr. Rodney Bailey Texaco E&P Inc. 205 E. Bender Hobbs, New Mexico 88240

RE: G.L. ERWIN "A&B" FEDERAL NCT-2 TANK BATTERY LEA COUNTY, NEW MEXICO

Dear Mr. Bailey:

The New Mexico Oil Conservation Division (OCD) has reviewed Texaco Exploration & Development's (Texaco) November 18, 1998 "WORK PLAN FOR PLUME DELINEATION AND MODIFICATION TO PROPOSED GROUNDWATER MONITORING SCHEDULE, TEXACO EXPLORATION AND PRODUCTION, INC., G.L. ERWIN "A&B" FEDERAL NCT-2 TANK BATTERY, LEA COUNTY, NEW MEXICO". This document which was submitted on behalf of Texaco by their consultant Highlander Environmental Corp. contains the Texaco's proposed work plan for additional investigation of the extent of ground water contamination related to the G.L. Irwin "A&B" Federal NCT-2 Tank Battery located in Unit O, Section 35, T24S, R37E NMPM, Lea County, New Mexico. The document also contains Texaco's proposed modifications to the site ground water monitoring plan.

The above referenced investigation work plan and proposed ground water monitoring plan modifications are approved with the following conditions:

- 1. Texaco will complete the new monitor wells as follows:
 - a. An appropriately sized gravel pack will be set in the annulus around the well screen from the bottom of the hole to 2-3 feet above the top of the well screen.

- b. A 2-3 foot bentonite plug will be placed above the gravel pack.
- c. The remainder of the hole will be grouted to the surface with cement containing 3-5% bentonite.
- d. A concrete pad and locking well cover will be placed at the surface.
- e. The well will be developed after construction using EPA approved procedures.
- 2. No less than 48 hours after the wells are developed, ground water from all monitor wells at each site will be purged, sampled and analyzed for concentrations of major cations and anions, total dissolved solids (TDS) EPA approved methods and quality assurance/quality control (QA/QC).
- All wastes generated during the investigation will be disposed of at an OCD approved facility.
- 4. Texaco will submit the results of the additional investigations to the OCD in the annual report. The report will include the following investigative information:
 - a. A description of the investigation activities which occurred including conclusions and recommendations.
 - b. A geologic/lithologic log and well completion diagram for each monitor well.
 - c. A water table map showing the location of the pit, monitor wells, recovery wells and any other pertinent site features as well as the direction and magnitude of the hydraulic gradient created using the water table elevation from each monitor well.
 - d. Summary tables of all past and present ground water quality sampling results and copies of all recent laboratory analytical data sheets and associated QA/QC data.
 - e. The disposition of all wastes generated.

Please be advised that OCD approval does not relieve Texaco of liability should the investigation actions fail to adequately define the extent of contamination related to Texaco's activities, or if contamination exists which is outside the scope of the work plan. In addition, OCD approval does not relieve Texaco of responsibility for compliance with any other federal, state or local laws and regulations.

Mr. Rodney G. Bailey February 2, 1999 Page 3

If you have any questions, please contact me at (505) 827-7154.

Sincerely,

William C. Olson

Hydrologist

Environmental Bureau

xc: Chris Williams, OCD Hobbs District Office

Mark J. Larson, Highlander Environmental Corp.

APPENDIX B

CERTIFIED LABORATORY REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F Saint Rose, LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

March 03, 2006

James Ornelas CRA 2135 S. Loop 250 West Midland, TX 79701

RE: Project: 2057796

RE: Project ID: GL. ERWIN TANK BATTERY

Circly alovesa

Dear James Ornelas:

Enclosed are the analytical results for sample(s) received by the laboratory on February 23, 2006. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Cindy Olavesen

This report shall not be reproduced, execpt in full, without the written consent of Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Report of Laboratory Analysis

Project Number: 2057706

Project Number: 2057796

Sample Cross Reference Report

^xace Analytical * Hew Orleans Laboratory Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client: CRA

Project: GL. ERWIN TANK BATTERY

Project No.: <u>2057796</u>

Sample ID	Lab ID	Matrix	Collecti Date/Tir		Receive Date/Tin	
MW-20	20432103	Water	02/22/2006	10:09	02/24/2006	10:1
MW-19	20432104	Water	02/22/2006	11:30	02/24/2006	10:1
MW-17	20432105	Water	02/22/2006	11:59	02/24/2006	10:1
MW-16	20432106	Water	02/22/2006	12:10	02/24/2006	10:1
MW-14	20432107	Water	02/22/2006	11:05	02/24/2006	10:1
MW-13	20432108	Water	02/22/2006	11:41	02/24/2006	10:1
MW-12	20432109	Water	02/22/2006	10:34	02/24/2006	10:1
MW-10	20432110	Water	02/22/2006	12:39	02/24/2006	10:1
MW-8	20432111	Water	02/22/2006	12:24	02/24/2006	10:1
MW-7	20432112	Water	02/22/2006	12:57	02/24/2006	10:1
MW-6	20432113	Water	02/22/2006	13:54	02/24/2006	10:1
MW-5	20432114	Water	02/22/2006	14:25	02/24/2006	10:1
MW-3	20432115	Water	02/22/2006	14:00	02/24/2006	10:1
MW-2	20432116	Water	02/22/2006	13:13	02/24/2006	10:1
MW-1	20432117	Water	02/22/2006	13:38	02/24/2006	10:1
DUP-1	20432118	Water	02/22/2006		02/24/2006	10:1
DUP-2	20432119	Water	02/22/2006		02/24/2006	10:1
MW-9	20432120	Water	02/23/2006	11:05	02/24/2006	10:1
MW-4	20432121	Water	02/23/2006	11:30	02/24/2006	10:1
MW-WEST	20432122	Water	02/23/2006	11:50	02/24/2006	10:1
MW-SW	20432123	Water	02/23/2006	14:33	02/24/2006	10:1
RW-I	20432124	Water	02/23/2006	11:50	02/24/2006	10:1
MW-20	20432156	Water	02/22/2006	10:09	02/23/2006	09:2
MW-19	20432157	Water	02/22/2006	11:30	02/23/2006	09:2
MW-17	20432158	Water	02/22/2006	11:59	02/23/2006	09:2
MW-16	20432159	Water	02/22/2006	12:10	02/23/2006	09:2
MW-14	20432160	Water	02/22/2006	11:05	02/23/2006	09:2
MW-13	20432161	Water	02/22/2006	11:41	02/23/2006	09:2
MW-12	20432162	Water	02/22/2006	10:34	02/23/2006	09:2
MW-10	20432163	Water	02/22/2006	12:39	02/23/2006	09:2
MW-8	20432164	Water	02/22/2006	12:24	02/23/2006	09:2
MW-7	20432165	Water	02/22/2006	12:57	02/23/2006	09:2
MW-6	20432166	Water	02/22/2006	13:54	02/23/2006	09:2
MW-5	20432167	Water	02/22/2006	14:25	02/23/2006	09:2
MW-3	20432168	Water	02/22/2006	14:00	02/23/2006	09:

3/3/2006 07:06:57

Sample Cross Reference Report

ace Analytical* Hew Orleans Laboratory Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087


> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client: CRA

Project: GL. ERWIN TANK BATTERY

Project No.: <u>2057796</u>

Sample ID	Lab ID	Matrix	Collecti Date/Ti		Receive Date/Tin	
MW-2	20432169	Water	02/22/2006	13:13	02/23/2006	09:25
MW-I	20432170	Water	02/22/2006	13:38	02/23/2006	09:25
DUP-I	20432171	Water	02/22/2006		02/23/2006	09:25
DUP-2	20432172	Water	02/22/2006		02/23/2006	09:25
MW-9	20432321	Water	02/23/2006	11:05	02/24/2006	09:15
MW-4	20432322	Water	02/23/2006	11:30	02/24/2006	09:15
MW-WEST	20432323	Water	02/23/2006	11:50	02/24/2006	09:15
MW-SW	20432324	Water	02/23/2006	14:33	02/24/2006	09:15
RW-I	20432325	Water	02/23/2006	11:50	02/24/2006	09:15

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-20

Face Analytical *

Client: CRA

Project: GL. ERWIN TANK BATTERY

Site: None

Lab ID: 20432103

Hew Orleans Laboratory

Project No.: 2057796

Description: None

Matrix: Water

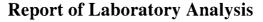
% Moisture: n/a

Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lim
Calcium, Dissolved	EPA 6010	69746	1	295000		ug/L	500.	24-Feb-06	02-Mar-06 11:45	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	103000		ug/L	500.	24-Feb-06	02-Mar-06 11:45	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	13500		ug/L	500.	24-Feb-06	02-Mar-06 11:45	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	145000		ug/L	500.	24-Feb-06	02-Mar-06 11:45	KJR (1)

4 parameter(s) reported


Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:57

St. Rose , LA 70087 Phone: 504.469.0333 Fax: 504.469.0555

LELAP # 02006

Client ID: MW-19

ace Analytical *

Client: CRA

Project: GL. ERWIN TANK BATTERY

New Orleans Laboratory

Site: None

Lab ID: 20432104

Project No.: 2057796

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	69746	1	870000		ug/L	500.	24-Feb-06	02-Mar-06 11:49	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	271000		ug/L	500.	24-Feb-06	02-Mar-06 11:49	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	32600		ug/L	500.	24-Feb-06	02-Mar-06 11:49	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	464000		ug/L	500.	24-Feb-06	02-Mar-06 11:49	KJR (1)

4 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:57

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F

St. Rose , LA 70087

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-17

Client: CRA

ace Analytical

Project: GL. ERWIN TANK BATTERY

Hew Orleans Laboratory

Site: None

Lab ID: 20432105

Description: None

Project No.: 2057796

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	69746	1	123000		ug/L	500.	24-Feb-06	02-Mar-06 11:53	CJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	40100		ug/L	500.	24-Feb-06	02-Mar-06 11:53	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	8040		ug/L	500.	24-Feb-06	02-Mar-06 11:53	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	187000		ug/L	500.	24-Feb-06	02-Mar-06 11:53	ζJR (1)

4 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-16

Client: CRA

ace Analytical

Project: GL. ERWIN TANK BATTERY

New Orleans Laboratory

Site: None

Lab ID: 20432106

Description: None

Project No.: 2057796

Matrix: Water

% Moisture: n/a

Collected: 02/22/06

Received: 02/24/06

							Reporting			Reg
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limi
Calcium, Dissolved	EPA 6010	69746	1	120000		ug/L	500.	24-Feb-06	02-Mar-06 11:57	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	39100		ug/L	500.	24-Feb-06	02-Mar-06 11:57	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	7170		ug/L	500.	24-Feb-06	02-Mar-06 11:57	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	207000		ug/L	500.	24-Feb-06	02-Mar-06 11:57	KJR (1)

4 parameter(s) reported

Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:57

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-14

Project: GL. ERWIN TANK BATTERY

Lab ID: 20432107

Description: None

Client: CRA

Site: None

Project No.: 2057796

Matrix: Water

% Moisture: n/a

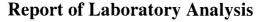
Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limi
Calcium, Dissolved	EPA 6010	69746	1	914000		ug/L	500.	24-Feb-06	02-Mar-06 12:01	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	253000		ug/L	500.	24-Feb-06	02-Mar-06 12:01	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	34100		ug/L	500.	24-Feb-06	02-Mar-06 12:01	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	885000		ug/L	500.	24-Feb-06	02-Mar-06 12:01	KJR (1)

4 parameter(s) reported

Reporting Limit is corrected for sample size, dilution and moisture content if applicable. Qu lists qualifiers. Specific qualifiers are defined at the end of the report.


For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:57

ace Analytical Hew Orleans Laboratory

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F

St. Rose , LA 70087

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-13

Project: GL. ERWIN TANK BATTERY

Client: CRA Site: None

Lab ID: 20432108

Project No.: 2057796

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

							Reporting			Re
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lin
Calcium, Dissolved	EPA 6010	69746	1	177000		ug/L	500.	24-Feb-06	02-Mar-06 12:05	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	ı	61200		ug/L	500.	24-Feb-06	02-Mar-06 12:05	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	11500		ug/L	500.	24-Feb-06	02-Mar-06 12:05	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	91800		ug/L	500.	24-Feb-06	02-Mar-06 12:05	KJR (1)

4 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:57

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-12

Client: CRA

ace Analytical

Project: GL. ERWIN TANK BATTERY

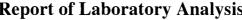
Site: None

Lab ID: 20432109

New Orleans Laboratory

Project No.: 2057796

Description: None


Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	69746	1	415000		ug/L	500.	24-Feb-06	02-Mar-06 12:09	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	135000		ug/L	500.	24-Feb-06	02-Mar-06 12:09	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	14900		ug/L	500.	24-Feb-06	02-Mar-06 12:09	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	129000		ug/L	500.	24-Feb-06	02-Mar-06 12:09	KJR (1)

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-10

Client: CRA

Pace Analytical*

Project: GL. ERWIN TANK BATTERY

New Orleans Laboratory

Site: None

Lab ID: 20432110

Project No.: 2057796

% Moisture: n/a

Description: None

Matrix: Water

Collected: <u>02/22/06</u> **Received:** <u>02/24/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	69746	1	520000		ug/L	500.	24-Feb-06	02-Mar-06 12:14	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	158000		ug/L	500.	24-Feb-06	02-Mar-06 12:14	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	13800		ug/L	500.	24-Feb-06	02-Mar-06 12:14	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	180000		ug/L	500.	24-Feb-06	02-Mar-06 12:14	KJR (1)

4 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:57

St. Rose , LA 70087

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-8

^vace Analytical *

Hew Orleans Laboratory

Project: GL. ERWIN TANK BATTERY

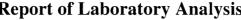
Lab ID: 20432111

Description: None

Client: CRA

Site: None

Project No.: 2057796


Matrix: Water

% Moisture: n/a

Collected: 02/22/06

Received: 02/24/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	69746	1	55100		ug/L	500.	24-Feb-06	02-Mar-06 12:18	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	l	18000		ug/L	500.	24-Feb-06	02-Mar-06 12:18	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	8050		ug/L	500.	24-Feb-06	02-Mar-06 12:18	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	390000		ug/L	500.	24-Feb-06	02-Mar-06 12:18	KJR (1)

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-7

^race Analytical *

New Orleans Laboratory

Project: GL. ERWIN TANK BATTERY

Lab ID: 20432112

Description: None

Client: CRA

Site: None

Project No.: 2057796

Matrix: Water

% Moisture: n/a

Collected: 02/22/06

Received: 02/24/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	69746	1	30600		ug/L	500.	24-Feb-06	02-Mar-06 12:23	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	9980		ug/L	500.	24-Feb-06	02-Mar-06 12:23	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	4890		ug/L	500.	24-Feb-06	02-Mar-06 12:23	KJR (1)
Sodium, Dissolved	EPA 6010	69746	l	227000		ug/L	500.	24-Feb-06	02-Mar-06 12:23	KJR (1)

4 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:57

St. Rose , LA 70087

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-6

Project: GL. ERWIN TANK BATTERY

ace Analytical *

Hew Orleans Laboratory

Site: None

Client: CRA

Lab ID: 20432113 **Description:** None

Project No.: 2057796

Matrix: Water

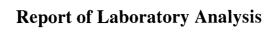
% Moisture: n/a

Collected: 02/22/06

Received: 02/24/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	69746	1	23900		ug/L	500.	24-Feb-06	02-Mar-06 12:36	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	7410		ug/L	500.	24-Feb-06	02-Mar-06 12:36	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	10900		ug/L	500.	24-Feb-06	02-Mar-06 12:36	KJR (1)
Sodium, Dissolved	EPA 6010	69746	l	380000		ug/L	500.	24-Feb-06	02-Mar-06 12:36	KJR (1)

4 parameter(s) reported


Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:57

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-5

Pace Analytical*

Project: GL. ERWIN TANK BATTERY

Hew Orleans Laboratory

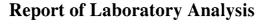
Lab ID: 20432114

Description: None

Client: CRA

Site: None

Project No.: 2057796


Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

							Reporting			Re
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lin
Calcium, Dissolved	EPA 6010	69746	1	222000		ug/L	500.	24-Feb-06	02-Mar-06 12:40	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	l	69400		ug/L	500.	24-Feb-06	02-Mar-06 12:40	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	14000		ug/L	500.	24-Feb-06	02-Mar-06 12:40	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	274000		ug/L	500.	24-Feb-06	02-Mar-06 12:40	KJR (1)

St. Rose , LA 70087 Phone: 504.469.0333

Fax: 504.469.0555 LELAP # 02006

Client ID: MW-3

Client: CRA

ace Analytical

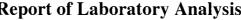
Project: GL. ERWIN TANK BATTERY

Site: None

Lab ID: 20432115

Description: None

Hew Orleans Laboratory


Project No.: 2057796 Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lim
Calcium, Dissolved	EPA 6010	69746	1	46800		ug/L	500.	24-Feb-06	02-Mar-06 12:44	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	15300		ug/L	500.	24-Feb-06	02-Mar-06 12:44	KJR (1)
Potassium, Dissolved	EPA 6010	69746	l	15100		ug/L	500.	24-Feb-06	02-Mar-06 12:44	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	446000		ug/L	500.	24-Feb-06	02-Mar-06 12:44	KJR (1)

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F

St. Rose , LA 70087 Phone: 504.469.0333 Fax: 504.469.0555

LELAP # 02006

Client ID: MW-2

ace Analytical*

Project: GL. ERWIN TANK BATTERY

Lab ID: 20432116

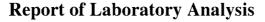
New Orleans Laboratory

Description: None

Client: CRA

Site: None

Project No.: 2057796


Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

							Reporting			Re
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lin
Calcium, Dissolved	EPA 6010	69746	1	19500		ug/L	500.	24-Feb-06	02-Mar-06 12:48	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	i	5840		ug/L	500.	24-Feb-06	02-Mar-06 12:48	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	6150		ug/L	500.	24-Feb-06	02-Mar-06 12:48	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	259000		ug/L	500.	24-Feb-06	02-Mar-06 12:48	KJR (1)

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-1

ace Analytical*

Client: CRA

Project: GL. ERWIN TANK BATTERY

Hew Orleans Laboratory

Site: None

Lab ID: 20432117

Project No.: 2057796

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limi
Calcium, Dissolved	EPA 6010	69746	1	55900		ug/L	500.	24-Feb-06	02-Mar-06 12:52	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	18700		ug/L	500.	24-Feb-06	02-Mar-06 12:52	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	5190		ug/L	500.	24-Feb-06	02-Mar-06 12:52	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	104000		ug/L	500.	24-Feb-06	02-Mar-06 12:52	KJR (1)

4 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:57

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>DUP-1</u>

Client: CRA

ace Analytical

Project: GL. ERWIN TANK BATTERY

New Orleans Laboratory

Site: None

Lab ID: 20432118

Project No.: 2057796

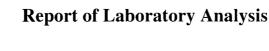
Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06


							Reporting			Re
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lin
Calcium, Dissolved	EPA 6010	69746	1	916000		ug/L	500.	24-Feb-06	02-Mar-06 12:56	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	253000		ug/L	500.	24-Feb-06	02-Mar-06 12:56	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	34000		ug/L	500.	24-Feb-06	02-Mar-06 12:56	KJR (1)
Sodium, Dissolved	EPA 6010	69746	i	884000		ug/L	500.	24-Feb-06	02-Mar-06 12:56	KJR (1)

4 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

St. Rose , LA 70087

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>DUP-2</u>

Client: CRA

ace Analytical

Project: GL. ERWIN TANK BATTERY

Hew Orleans Laboratory

Site: None

Lab ID: 20432119

Project No.: <u>2057796</u>

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

							Reporting			Reg
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limi
Calcium, Dissolved	EPA 6010	69746	i	57900		ug/L	500.	24-Feb-06	02-Mar-06 13:00	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	20000		ug/L	500.	24-Feb-06	02-Mar-06 13:00	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	5230		ug/L	500.	24-Feb-06	02-Mar-06 13:00	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	102000		ug/L	500.	24-Feb-06	02-Mar-06 13:00	KJR (1)

4 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:58

St. Rose , LA 70087 Phone: 504.469.0333 Fax: 504.469.0555

LELAP # 02006

ace Analytical Hew Orleans Laboratory

Client ID: MW-9

Client: CRA

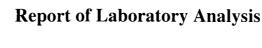
Project: GL. ERWIN TANK BATTERY

Site: None

Lab ID: <u>20432120</u>

Project No.: 2057796

% Moisture: n/a


Description: None

Matrix: Water

Collected: <u>02/23/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lim
Calcium, Dissolved	EPA 6010	69746	1	2050000		ug/L	500.	24-Feb-06	02-Mar-06 13:04	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	438000		ug/L	500.	24-Feb-06	02-Mar-06 13:04	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	47800		ug/L	500.	24-Feb-06	02-Mar-06 13:04	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	1450000		ug/L	500.	24-Feb-06	02-Mar-06 13:04	KJR (1)

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-4

Face Analytical*

Client: CRA

Project: GL. ERWIN TANK BATTERY

Hew Orleans Laboratory

Site: None

Lab ID: 20432121

Description: None

Project No.: 2057796 Matrix: Water

% Moisture: n/a

Collected: <u>02/23/06</u>

Received: <u>02/24/06</u>

							Reporting			Re
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lin
Calcium, Dissolved	EPA 6010	69746	1	1510000		ug/L	500.	24-Feb-06	02-Mar-06 13:08	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	326000		ug/L	500.	24-Feb-06	02-Mar-06 13:08	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	141000		ug/L	500.	24-Feb-06	02-Mar-06 13:08	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	1070000		ug/L	500.	24-Feb-06	02-Mar-06 13:08	KJR (1)

4 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:58

St. Rose , LA 70087

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-WEST

Client: CRA

ace Analytical *

Project: GL. ERWIN TANK BATTERY

Site: None

Lab ID: 20432122

Hew Orleans Laboratory

Project No.: 2057796

Description: None

Matrix: Water

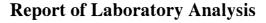
% Moisture: n/a

Collected: <u>02/23/06</u>

Received: 02/24/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	69746	l	149000		ug/L	500.	24-Feb-06	02-Mar-06 11:20	KJR (1)
Magnesium, Dissolved	EPA 6010	69746	1	44300		ug/L	500.	24-Feb-06	02-Mar-06 11:20	KJR (1)
Potassium, Dissolved	EPA 6010	69746	1	47100		ug/L	500.	24-Feb-06	02-Mar-06 11:20	KJR (1)
Sodium, Dissolved	EPA 6010	69746	1	257000		ug/L	500.	24-Feb-06	02-Mar-06 11:20	KJR (1)

4 parameter(s) reported


Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:58

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-SW

Client: CRA

ace Analytical

Project: GL. ERWIN TANK BATTERY

Hew Orleans Laboratory

Site: None

Lab ID: 20432123

Description: None

Project No.: 2057796

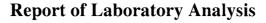
Matrix: Water

% Moisture: n/a

Collected: <u>02/23/06</u>

Received: 02/24/06

	Reporting										
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limi	
Calcium, Dissolved	EPA 6010	69747	1	373000		ug/L	500.	24-Feb-06	02-Mar-06 13:47	KJR (1)	
Magnesium, Dissolved	EPA 6010	69747	1	108000		ug/L	500.	24-Feb-06	02-Mar-06 13:47	KJR (1)	
Potassium, Dissolved	EPA 6010	69747	1	77100		ug/L	500.	24-Feb-06	02-Mar-06 13:47	KJR (1)	
Sodium, Dissolved	EPA 6010	69747	1	896000		ug/L	500.	24-Feb-06	02-Mar-06 13:47	KJR (1)	


4 parameter(s) reported

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:58

St. Rose , LA 70087 Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

New Orleans Laboratory

Client ID: RW-1

Project: GL. ERWIN TANK BATTERY

Lab ID: <u>20432124</u>

Description: None

ace Analytical

Client: CRA

Site: None

Project No.: 2057796

Matrix: Water

% Moisture: n/a

Collected: <u>02/23/06</u>

Received: 02/24/06

ParameterName	Reporting										
	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limi	
Calcium, Dissolved	EPA 6010	69747	1	234000		ug/L	500.	24-Feb-06	02-Mar-06 13:30	KJR (1)	
Magnesium, Dissolved	EPA 6010	69747	1	67600		ug/L	500.	24-Feb-06	02-Mar-06 13:30	KJR (1)	
Potassium, Dissolved	EPA 6010	69747	1	70400		ug/L	500.	24-Feb-06	02-Mar-06 13:30	KJR (1)	
Sodium, Dissolved	EPA 6010	69747	1	762000		ug/L	500.	24-Feb-06	02-Mar-06 13:30	KJR (1)	

4 parameter(s) reported

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:58

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-20

Project: GL. ERWIN TANK BATTERY

Lab ID: 20432103

Description: None

Client: CRA

Site: None

Project No.: 2057796

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

						Reg.				
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	3000		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2 (1)	

1 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:58

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-19

Client: CRA

ace Analytical*

Project: GL. ERWIN TANK BATTERY

New Orleans Laboratory

Site: None

Lab ID: 20432104

Project No.: 2057796

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

				Reporting						Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	8830		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2 (1)	

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-17

Client: CRA

Project: GL. ERWIN TANK BATTERY

Site: None

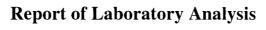
Lab ID: 20432105

^gace Analytical *

Hew Orleans Laboratory

Project No.: 2057796

Description: None


Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

						Reg.				
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	1810		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

St. Rose , LA 70087 Phone: 504.469.0333

Fax: 504.469.0555 LELAP # 02006

Client ID: MW-16

Client: CRA

Pace Analytical

Project: GL. ERWIN TANK BATTERY

New Orleans Laboratory

Site: None

Lab ID: 20432106

Description: None

Project No.: 2057796

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	1770		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

I parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:58

> St. Rose , LA 70087 Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-14

Client: CRA

Project: GL. ERWIN TANK BATTERY

Site: None

Lab ID: 20432107

face Analytical *

New Orleans Laboratory

Project No.: 2057796

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

	Reporting								Reg.	
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	12100		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

1 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:58

St. Rose , LA 70087

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-13

Client: CRA

Face Analytical*

Project: GL. ERWIN TANK BATTERY

New Orleans Laboratory

Site: None

Lab ID: 20432108 **Description:** None

Project No.: 2057796

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	l	2090		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

1 parameter(s) reported

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:58

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-12

Project: GL. ERWIN TANK BATTERY

Lab ID: 20432109

Description: None

Client: CRA

Site: None

Project No.: 2057796

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	4890		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

1 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans. (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:58

ace Analytical* Hew Orleans Laboratory

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-10

Client: CRA

Project: GL. ERWIN TANK BATTERY

Site: None

Lab ID: 20432110

Project No.: 2057796

Description: None

Matrix: Water

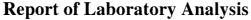
% Moisture: n/a

Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. A	nalysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	6180		mg/L	10.0	24-Feb-06 24-	-Feb-06 13:30 SMS2(1)	

1 parameter(s) reported


Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:58

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-8

ace Analytical*

Client: CRA

Project: GL. ERWIN TANK BATTERY

New Orleans Laboratory

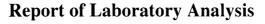
Site: None

Lab ID: 20432111

Description: None

Project No.: 2057796

Matrix: Water


% Moisture: n/a

Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	1740		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

1 parameter(s) reported

Pace Analytical*
New Orleans Laboratory

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-7

Project: GL. ERWIN TANK BATTERY

Lab ID: 20432112

Description: None

Client: CRA

Site: None

Project No.: 2057796

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

			Reporting								
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit		
Total Dissolved Solids	SM 2540C	69740	1	1120		mg/L	10.0	24-Feb-06 24-Feb-06 13:30 SMS2 ((1)		

1 parameter(s) reported

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:58

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-6

Client: CRA

Project: GL. ERWIN TANK BATTERY

Site: None

Lab ID: 20432113

Project No.: 2057796

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	1570		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2 (1)	

1 parameter(s) reported

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:59

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-5

ace Analytical*

Project: GL. ERWIN TANK BATTERY

Site: None

Client: CRA

Description: None

Lab ID: 20432114

Hew Orleans Laboratory

Project No.: 2057796

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	2670		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

1 parameter(s) reported

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-3

Pace Analytical*

New Orleans Laboratory

Project: GL. ERWIN TANK BATTERY

Lab ID: 20432115

Description: None

Client: CRA

Site: None

Project No.: <u>2057796</u>

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

	Reporting									Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	3860		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

1 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:59

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-2

Client: CRA

Project: GL. ERWIN TANK BATTERY

Site: None

Lab ID: 20432116

Description: None

Project No.: 2057796

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

			Reporting							Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	1150		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

1 parameter(s) reported

Reporting Limit is corrected for sample size, dilution and moisture content if applicable. Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:59

St. Rose , LA 70087

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

ace Analytical New Orleans Laboratory

Client ID: MW-1

Project: GL. ERWIN TANK BATTERY

Lab ID: 20432117

Description: None

Client: CRA

Site: None

Project No.: <u>2057796</u>

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Anal	ysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	707.		mg/L	10.0	24-Feb-06 24-Feb	o-06 13:30 SMS2(1)	

1 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:59

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>DUP-1</u>

Client: CRA

Pace Analytical*

Project: GL. ERWIN TANK BATTERY

New Orleans Laboratory

Site: None

Lab ID: 20432118

Project No.: 2057796

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	11600		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

1 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:59

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Pace Analytical* Hew Orleans Laboratory

Client ID: <u>DUP-2</u>

Project: GL. ERWIN TANK BATTERY

Lab ID: 20432119

Description: None

Client: CRA

Site: None

Project No.: 2057796

Matrix: Water

% Moisture: n/a

Collected: <u>02/22/06</u>

Received: 02/24/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	840.		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

1 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:59

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-9

Project: GL. ERWIN TANK BATTERY

Client: CRA

Site: None

Lab ID: 20432120

Project No.: 2057796

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>02/23/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	l	24300		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

1 parameter(s) reported

3/3/2006 07:06:59

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-4

Description: None

Lab ID: 20432121

^vace Analytical *

Project: GL. ERWIN TANK BATTERY

Client: CRA

Site: None

Project No.: 2057796

Matrix: Water

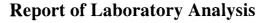
% Moisture: n/a

Collected: <u>02/23/06</u>

Received: 02/24/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	17900		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

I parameter(s) reported


Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:59

^vace Analytical * New Orleans Laboratory

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-WEST

Client: CRA

Project: GL. ERWIN TANK BATTERY

Site: None

Lab ID: 20432122

Project No.: 2057796

% Moisture: n/a

Description: None

Matrix: Water **Collected:** <u>02/23/06</u>

Received: <u>02/24/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69740	1	2390		mg/L	10.0	24-Feb-06	24-Feb-06 13:30 SMS2(1)	

I parameter(s) reported

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-SW

Client: CRA

Pace Analytical*

Project: GL. ERWIN TANK BATTERY

Site: None

Lab ID: 20432123

Hew Orleans Laboratory

Project No.: 2057796

% Moisture: n/a

Description: None

Matrix: Water

Collected: <u>02/23/06</u>

Received: <u>02/24/06</u>

							Reporting		Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit
Total Dissolved Solids	SM 2540C	69774	1	6300		mg/L	10.0	27-Feb-06 27-Feb-06 15:15 LJL(I)

1 parameter(s) reported

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:59

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: RW-1

Client: CRA

Project: GL. ERWIN TANK BATTERY

Site: None

Lab ID: 20432124

Description: None

Project No.: 2057796 Matrix: Water

% Moisture: n/a

Collected: 02/23/06

Received: 02/24/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Total Dissolved Solids	SM 2540C	69774	1	4680		mg/L	10.0	27-Feb-06	27-Feb-06 15:15 LJL(1)	

1 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

3/3/2006 07:06:59

Report of Quality Control

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Project No.: 2057796

Parameter	Batch	Blank	ARL	Units	LCS	LCS	LCSD	LCS	MS	MS N	MSD	(1)MS	DUP	QC	Limits	RPD	Qu
					Spike	% Rec	%Rec	RPD	Spike	% Rec	% Rec	RPD	RPD	LCS	MS/MSD	Max	
Calcium, Diss	69746	ND	500.	ug/L	10000	90			10000	56 *	74 *	1		73 - 115	75 - 125	20	
Magnesium, D	69746	ND	500.	ug/L	10000	91			10000	67 *	56 *	2		73 - 116	75 - 125	20	
Potassium, Dis	69746	ND	500.	ug/L	10000	92			10000	82	89	1		73 - 114	75 - 125	20	
Sodium, Disso	69746	560.	500.	ug/L	10000	91			10000	33 *	55 *	1		64 - 122	75 - 125	20	
Calcium, Diss	69747	ND	500.	ug/L	10000	88			10000	0 *	12 *	3		73 - 115	75 - 125	20	
Magnesium, D	69747	ND	500.	ug/L	10000	89			10000	62 *	42 *	3		73 - 116	75 - 125	20	
Potassium, Dis	69747	ND	500.	ug/L	10000	95			10000	69 *	89	3		73 - 114	75 - 125	20	
Sodium, Disso	69747	2300	500.	ug/L	10000	110			10000	0 *	0 *	2		64 - 122	75 - 125	20	

Report of Quality Control

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Wet Chemi	stry Qua	ality Control 1	Results					Pro	ject No.	.: 2057	<u> 796</u>						
Parameter	Batch	Blank	ARL	Units	LCS	LCS I	LCSD	LCS	MS	MS M	ISD	(1)MS	DUP	QC	Limits	RPD	Qu
					Spike	%Rec	% Rec	RPD	Spike	%Rec	% Rec	RPD	RPD	LCS	MS/MSD	Max	
Total Dissolve	69774	ND	10.0	mg/L	100	102							5	80 - 120) -	20	
Total Dissolve	69740	ND	10.0	mg/L	100	110							0	80 - 120	0 -	20	

1				
1				
•				
- E				
•				
		•		

1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

Analytical Report Number: 869289

Client: PACE ANALYTICAL SERVICES, INC.

Lab Contact: Brian Basten

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Lab Sample Number	Field ID	Matrix	Collection Date
869289-001	MW20 20432156	WATER	02/22/06 10:09
869289-002	MW19 20432157	WATER	02/22/06 11:30
869289-003	MW17 20432158	WATER	02/22/06 11:59
869289-004	MW16 20432159	WATER	02/22/06 12:10
869289-005	MW14 20432160	WATER	02/22/06 11:05
869289-006	MW13 20432161	WATER	02/22/06 11:41
869289-007	MW12 20432162	WATER	02/22/06 10:34
869289-008	MW10 20432163	WATER	02/22/06 12:39
869289-009	MW8 20432164	WATER	02/22/06 12:24
869289-010	MW7 20432165	WATER	02/22/06 12:57
869289-011	MW6 20432166	WATER	02/22/06 13:54
869289-012	MW5 20432167	WATER	02/22/06 14:25
869289-013	MW3 20432168	WATER	02/22/06 14:00
869289-014	MW2 20432169	WATER	02/22/06 13:13
869289-015	MW1 20432170	WATER	02/22/06 13:38
869289-016	DUP1 20432171	WATER	02/22/06
869289-017	DUP2 20432172	WATER	02/22/06

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Apprecial Signature

Date

Analytical Report Number: 869289

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Matrix Type: WATER

Project Name: G.L. ERWIN TANK BATTERY

Collection Date: 02/22/06

Project Number: 2057796

Report Date: 03/03/06

Field ID: MW20 20432156

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		110	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Chloride		1100	100	20	mg/L		02/23/06	EPA 300.0	EPA 300.0
Fluoride		0.98	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		5.5	0.40	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		83	20	5	mg/L		02/23/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Bellevue Street Green Bay, WI 54302

920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Matrix Type: WATER Collection Date: 02/22/06

Project Number: 2057796

Report Date: 03/03/06

Field ID: MW19 20432157

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		75	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Chtoride		3900	500	100	mg/L		02/23/06	EPA 300.0	EPA 300.0
Fluoride	<	0.50	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		8.9	2.0	5	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		400	40	10	ma/L		02/23/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW17 20432158

Matrix Type: WATER

Collection Date: 02/22/06 Report Date: 03/03/06

INO	RGA	NICS
		14100

Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Ani Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		150	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Chloride		580	50	10	mg/L		02/23/06	EPA 300.0	EPA 300.0
Fluoride		1.5	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		4.0	0.40	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		97	20	5	ma/L		02/23/06	EPA 300.0	EPA 300 0

Analytical Report Number: 869289

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Matrix Type: WATER

Collection Date: 02/22/06

Project Number: 2057796

Field ID: MW16 20432159

Project Name: G.L. ERWIN TANK BATTERY

Client: PACE ANALYTICAL SERVICES, INC.

Report Date: 03/03/06 Lab Sample Number: 869289-004

INOF	RGAN	IICS
------	------	------

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Ani Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		180	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Chloride		590	50	10	mg/L		02/23/06	EPA 300.0	EPA 300.0
Fluoride		1.3	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		5.2	0.40	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		110	20	5	mg/L		02/23/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Believue Street Green Bay, WI 54302 920-469-2436

Matrix Type: WATER

Client: PACE ANALYTICAL SERVICES, INC. Project Name: G.L. ERWIN TANK BATTERY

Collection Date: 02/22/06

Project Number: 2057796

Report Date: 03/03/06

Lab Sample Number: 869289-005

Field ID: MW14 20432160

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Ani Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		81	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Chloride		5300	500	100	mg/L		02/23/06	EPA 300.0	EPA 300.0
Fluoride	<	0.50	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		11	2.0	5	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		700	80	20	mg/L		02/23/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW13 20432161

Matrix Type: WATER

Collection Date: 02/22/06

Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		89	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Chloride		590	50	10	mg/L		02/23/06	EPA 300.0	EPA 300.0
Fluoride		1.7	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		4.8	0.40	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		120	20	5	mg/L		02/23/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Believue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW12 20432162

Matrix Type: WATER

Collection Date: 02/22/06

Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Ani Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		73	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Chloride		1700	120	25	mg/L		02/23/06	EPA 300.0	EPA 300.0
Fluoride		0.70	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		6.7	0.40	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		48	4.0	1	mg/L		02/23/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW10 20432163

Matrix Type: WATER

Collection Date: 02/22/06

Report Date: 03/03/06

INORGANICS									
Test		Result	EQL.	Dilution	Units	Code	Anl Date	Prep Method	Ani Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		89	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Chloride		2000	250	50	mg/L		02/23/06	EPA 300.0	EPA 300.0
Fluoride	<	0.50	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		6.5	0.40	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		98	20	5	mg/L		02/23/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW8 20432164

Matrix Type: WATER

Collection Date: 02/22/06 Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Ani Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		230	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Chloride		810	100	20	mg/L		02/23/06	EPA 300.0	EPA 300.0
Fluoride		2.4	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		7.9	0.40	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		170	20	5	mg/L		02/23/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Believue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW7 20432165

Matrix Type: WATER

Collection Date: 02/22/06

Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Anl Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		290	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Chloride		240	25	5	mg/L		02/23/06	EPA 300.0	EPA 300.0
Fluoride		2.6	0.50	1	mg/L	N	02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		3.3	0.40	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		120	20	5	mg/L		02/23/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW6 20432166

Matrix Type: WATER
Collection Date: 02/22/06

Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Ani Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		270	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Chloride		610	50	10	mg/L		02/23/06	EPA 300.0	EPA 300.0
Fluoride		2.4	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		7.9	0.40	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		180	40	10	ma/L		02/23/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW5 20432167

Matrix Type: WATER

Collection Date: 02/22/06

Report Date: 03/03/06

INORGANICS		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Anl Method
Test									
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		220	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Chloride		800	50	10	mg/L		02/23/06	EPA 300.0	EPA 300.0
Fluoride		1.3	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		6.6	0.40	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		160	20	5	mg/L		02/23/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW3 20432168

Matrix Type: WATER

Collection Date: 02/22/06

Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		250	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Chloride		1100	100	20	mg/L		02/24/06	EPA 300.0	EPA 300.0
Fluoride		1.6	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		8.5	2.0	5	mg/L		02/24/06	EPA 300.0	EPA 300.0
Sulfate		190	20	5	mg/L		02/24/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW2 20432169

Matrix Type: WATER Collection Date: 02/22/06

Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Ani Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		250	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Chloride		320	25	5	mg/L		02/24/06	EPA 300.0	EPA 300.0
Fluoride		1.7	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		5.1	0.40	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		150	20	5	mg/L		02/24/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW1 20432170

Matrix Type: WATER

Collection Date: 02/22/06

Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Ani Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		160	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Chloride		180	25	5	mg/L		02/24/06	EPA 300.0	EPA 300.0
Fluoride		1.6	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		3.5	0.40	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfate		83	20	5	mg/L		02/24/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Field ID: DUP1 20432171

Matrix Type: WATER

Collection Date: 02/22/06

Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Ani Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		82	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Chloride		5000	500	100	mg/L		02/24/06	EPA 300.0	EPA 300.0
Fluoride	<	0.50	0.50	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate	<	40	40	100	mg/L		02/24/06	EPA 300.0	EPA 300.0
Sulfate		690	80	20	mg/L		02/24/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869289

1241 Believue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: G.L. ERWIN TANK BATTERY

Project Number: 2057796

Field ID: DUP2 20432172

Matrix Type: WATER

Collection Date: 02/22/06

Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		170	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Chloride		160	25	5	mg/L		02/24/06	EPA 300.0	EPA 300.0
Fluoride		1.6	0.50	1	mg/L	N	02/23/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		3.5	0.40	1	mg/L		02/23/06	EPA 300.0	EPA 300.0
Sulfata		95	20	5	mall		02/24/06	EDA 300 0	EDA 300.0

Qualifier Codes

method blank acceptance may be based on project specific criteria or determined from analyse concentrations in the sample and not are evaluated on a sample by sample basis. 7 All Formation in the method blank. Method blank criteria is evaluated to the labosatory method detection limit. Additionally, method blank acceptance may be based on project specific orderia or determined from analyse concentrations in the sample and are evaluated on a sample by sample basis. 8 All Elevated detection limit. 9 All Analyse value from diluted analysis or surrogate result not applicable due to sample dilution. 9 Elevated detection limit. 1 Analyse value from diluted analysis or surrogate result not applicable due to sample dilution. 9 Elevated detection limit. 1 Inorganic Inorganic Concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IUL for analysis done on the ICPN or 100 times observed. 9 Organic Congenic Analyse concentration exceeds calibration range. 9 Linorganic Due to polential interferences for this analysis by inductively Coupled Plasma techniques (SW-848 Method 6010), this analysis has been confirmed by and reported from an anternate method. 9 Surrogate results outside control criteria. 9 All The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project. 1 All Preservation, extraction or analysis performed past holding time. 1 Inorganic Concentration detected equal to or greater than 10 reports the time of receptor or at the time of sample preparation. 1 Preservation, extraction or analysis performed past holding time. 2 All Elevated detection limit due to low sample volume. 3 All Concentration detected equal to or greater than 12 reports and project or at the time of sample preparation.			Explanation
Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method bank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis. All Elevated detection limit. Analyte value from diluted analysis or surrogate result not applicable due to sample dilution. Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 10 Hb. The sample concentration is greater than 50 limes the IDL for analysis done on the ICP-AIS. The result was flagged with the E qualifier to indicate that a physical interference was observed. Analyte concentration exceeds calibration range. Organic long on the ICP-AIS. The result was flagged with the E qualifier to indicate that a physical interference was observed. Analyte concentration exceeds calibration range. Organic but to potential interferences for this analysis by inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method. Surrogate results is distinated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project. Preservation, extraction or analysis performed past holding time. All Concentration detected equal to or greater than the method detection limit but less than the reporting limit. All Spiked sample recovery not within control limits. Sample project unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation. Detection limit that the lowest calibration was greater than 40%. The relative percent difference between the limit of effective than the resolution criteria as set forth in SW946. All The relative percent difference between the limit of effection	A	Inorganic	method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and
method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis. All Elevated detection limit. Inorganic Estimated concentration due to matrix interferences. During the metals analysis the senial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the 10L for analysis and one on the ICP ANS. The result was flagged with the E qualifier to indicate that a physical interference was observed. Organic Conganic Due to potential interferences for this analysis by inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method. Surrogate results outside control criteria. All The result is estimated because the concentration is less than the (event calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project. Preservation, extraction or analysis performed past holding time. The test is considered a field parameter, and the recommended holding time. All Concentration detected equal to regreater than the method detection limit but less than the reporting limit. Sample recaived unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation. Organic Set of the considered of the parameter, and the recommended holding time. All Concentration detected equal to regreater than the method detection limit but less than the reporting limit. Sample received ourpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation. Detection limit may be elevated due to the presence of an unrequested analyte. Elevated detection limit due to low sample volume. Sample precived overweight. All Spiked sample received overweight. All The analyte has been detected between the two columns for detected or concentrations was greater t	В	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
All Analyte value from diluted analysis or surrogate result not applicable due to sample dilution. Eatimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The semple concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analys	В	Organic	method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and
Inorganic Inorganic Stimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 10 times the Observed. Organic Organic Due to potential interferences for this analysis by inductively Coupled Plasma techniques (SW-846 Method 6010), this analyse has been confirmed by and reported from an alternate method. Organic Surrogate results outside control criteria. All The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project. Inorganic Preservation, extraction or analysis performed past holding time. Inorganic Concentration detected equal to or greater than the renormenated holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time. Inorganic Concentration detected equal to or greater than the method detection limit but less than the reporting limit. Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation. Detection limit may be elevated due to the presence of an unrequested analyte. Elevated detection limit due to low sample volume. Organic Sample received overweight. The relative percent difference between the limit of detected concentrations was greater than 40%. The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Inorganic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. All Sample received with headspace. All	3	All	Elevated detection limit.
control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP or 100 times analysis the IDL for analysis done on the ICP or 100 times analysis the IDL for analysis done on the ICP or 100 times analysis the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis done on the IDL for analysis the IDL for analysis done on the IDL for analysis the IDL for analysis done on the IDL for analysis the IDL for analysis done on the IDL for analysis the IDL for analysis done on the IDL for analysis the IDL for analysis done on the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis the IDL for analysis analysis analysis and IDL for analysis analysis analysis and IDL for analysis and IDL for analysis anal)	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
Inorganic Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte ha been confirmed by and reported from an alternate method. Organic The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project. Preservation, extraction or analysis performed past holding time. All Preservation, extraction or analysis performed past holding time. This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time. Concentration detected equal to or greater than the method detection limit but less than the reporting limit. Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation. Detection limit may be elevated due to the presence of an unrequested analyte. Elevated detection limit due to low sample volume. All Spiked sample recovery not within control limits. Sample received overweight. The relative percent difference between the timit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Organic The relative percent difference between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Organic The relative percent difference between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Organic The relative percent difference between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. All All Associated an	E	Inorganic	control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was
been confirmed by and reported from an alternate method. Organic Surrogate results outside control criteria. The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project. Preservation, extraction or analysis performed past holding time. This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time. Concentration detected equal to or greater than the method detection limit but less than the reporting limit. Concentration detected equal to or greater than the method detection limit but less than the reporting limit. Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation. Detection limit may be elevated due to the presence of an unrequested analyte. Elevated detection limit due to low sample volume. Sample private preserved preserve gibt. Organic Sample preserved overweight. The relative percent difference between the two columns for detected concentrations was greater than 40%. The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. All Sample received with headspace. All Ascond aliquot of sample was analyzed from a container with headspace. All Laboratory Control Spike recovery not within control limits. The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The analyte was not detected anyle greater than total anal	E	Organic	Analyte concentration exceeds calibration range.
All The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project. Preservation, extraction or analysis performed past holding time. This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time. All Concentration detected equal to or greater than the method detection limit but less than the reporting limit. Concentration detected equal to or greater than the method detection limit but less than the reporting limit. Congranic All Elevated detection limit due to low sample volume. Sample received unpreserved. Sample volume. Sample pH was greater than 2 Spiked sample received overweight. The relative percent difference between the two columns for detected concentrations was greater than 40%. The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Corganic All The analyte was not detected at or above the reporting limit. All Sample received with headspace. All All Sample received with headspace. All All Sample received with headspace. All All Sample received with headspace. All All Sample received with headspace. All All Sample received with headspace. All All Sample received with headspace. All Laboratory Control Spike recovery not within control limits. The analyte was not detected at or above the reporting limit. All Precision not within control limits. Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The analyte was not detected at or above the reporting limit. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD possible the deficiency. BOD resul	F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.
calibration. The method detection limit is less than the reporting limit specified for this project. All Preservation, extraction or analysis performed past holding time. This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time. Concentration detected equal to or greater than the method detection limit but less than the reporting limit. Conganic Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation. Organic Detection limit may be elevated due to the presence of an unrequested analyte. All Elevated detection limit due to low sample volume. Sample pH was greater than 2 Spiked sample recovery not within control limits. Organic Sample recovery not within control limits. Organic Sample recovery not within control limits. Organic The relative percent difference between the two columns for detected concentrations was greater than 40%. The relative percent difference between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reporting limit. The analyte was not detected at or above the reporting limit. All Sample received with headspace. All A second aliquot of sample was analyzed from a container with headspace. All A second aliquot of sample was analyzed from a container with headspace. This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. All Laboratory Control Spike recovery not within control limits. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Dissolved analyte or filtered analyte greate	=	Organic	Surrogate results outside control criteria.
Inorganic This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time. Concentration detected equal to or greater than the method detection limit but less than the reporting limit. Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation. Organic Detection limit may be elevated due to the presence of an unrequested analyte. All Spiked sample recovery not within control limits. Organic Sample pH was greater than 2 All Spiked sample recovery not within control limits. Organic Sample received overweight. Organic Sample received overweight. Organic The relative percent difference between the two columns for detected concentrations was greater than 40%. The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. All Sample received with headspace. All Sample received with headspace. All See Sample Narrative. Organics This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. All Laboratory Control Spike recovery not within control limits. The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The sample was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. Biologanic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. Biol Despite precision not within contro	G	Ail	
performed in the laboratory beyond the recommended holding time. Concentration detected equal to or greater than the method detection limit but less than the reporting limit. Conganic Corganic Detection limit may be elevated due to the presence of an unrequested analyte. All Elevated detection limit due to low sample volume. Sample pH was greater than 2 Sample received unpreserved. Sample vas every not within control limits. Corganic Corganic Sample perceived overweight. Corganic Cor	Н	All	Preservation, extraction or analysis performed past holding time.
Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation. Organic Detection limit may be elevated due to the presence of an unrequested analyte. All Elevated detection limit due to low sample volume. Sample pH was greater than 2 All Spiked sample received overweight. Organic Sample per eceived overweight. Organic The relative percent difference between the two columns for detected concentrations was greater than 40%. The analyte has been detected between the limit of detection (LCDQ) and limit of quantitation (LOQQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. The analyte was not detected at or above the reporting limit. All Sample received with headspace. All Ascond aliquot of sample was analyzed from a container with headspace. All Ascond aliquot of sample was analyzed from a container with headspace. All Laboratory Control Spike recovery not within control limits. All Aprecision not within control limits. Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is	HF	Inorganic	
Corganic Detection limit may be elevated due to the presence of an unrequested analyte. All Elevated detection limit due to low sample volume. Sample pH was greater than 2 All Spiked sample recovery not within control limits. Sample received overweight. Organic The relative percent difference between the two columns for detected concentrations was greater than 40%. The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. The analyte was not detected at or above the reporting limit. Sample received with headspace. All Ascond aliquot of sample was analyzed from a container with headspace. All Ascond aliquot of sample was analyzed from a container with headspace. All Laboratory Control Spike recovery not within control limits. Precision not within control limits. Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. ROD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze a	j	All	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.
Elevated detection limit due to low sample volume. All Spiked sample recovery not within control limits. Corganic Sample received overweight. The relative percent difference between the two columns for detected concentrations was greater than 40%. All The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. All Sample received with headspace. All Sample received with headspace. All A second aliquot of sample was analyzed from a container with headspace. Corganics This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. Laboratory Control Spike recovery not within control limits. Inorganic Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD cresult is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. Inorganic RoD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficien	K	Inorganic	Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation.
All Spiked sample pH was greater than 2 All Spiked sample recovery not within control limits. Organic Sample received overweight. Organic The relative percent difference between the two columns for detected concentrations was greater than 40%. All The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. The analyte was not detected at or above the reporting limit. All Sample received with headspace. All See Sample Narrative. Organics This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. All Laboratory Control Spike recovery not within control limits. Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. All The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. Inorganic BoD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD r	(Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
All Spiked sample recovery not within control limits. Organic Sample received overweight. The relative percent difference between the two columns for detected concentrations was greater than 40%. All The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. All The analyte was not detected at or above the reporting limit. Sample received with headspace. All Ascond aliquot of sample was analyzed from a container with headspace. See Sample Narrative. Organics This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. All Laboratory Control Spike recovery not within control limits. Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. All The analyte was not detected at or above the reporting limit. Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. BoD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test,	-	Ali	Elevated detection limit due to low sample volume.
Organic Sample received overweight. Organic The relative percent difference between the two columns for detected concentrations was greater than 40%. The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. All The analyte was not detected at or above the reporting limit. All Sample received with headspace. All Ascond aliquot of sample was analyzed from a container with headspace. All See Sample Narrative. Organics This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. All Laboratory Control Spike recovery not within control limits. Precision not within control limits. Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. All The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time	Λ	Organic	Sample pH was greater than 2
The relative percent difference between the two columns for detected concentrations was greater than 40%. The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. The analyte was not detected at or above the reporting limit. All Sample received with headspace. All Ascond aliquot of sample was analyzed from a container with headspace. See Sample Narrative. This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. All Laboratory Control Spike recovery not within control limits. Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.	1	All	Spiked sample recovery not within control limits.
The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. All Sample received with headspace. All See Sample Narrative. Organics This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. All Laboratory Control Spike recovery not within control limits. Precision not within control limits. The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. All The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.)	Organic	Sample received overweight.
to the uncertainty of analyte concentrations within this range. The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. All Sample received with headspace. All Ascond aliquot of sample was analyzed from a container with headspace. All See Sample Narrative. Organics This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. All Laboratory Control Spike recovery not within control limits. Precision not within control limits. The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The analyte was not detected at or above the reporting limit. Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to	•	Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.
the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. The analyte was not detected at or above the reporting limit. All Sample received with headspace. All A second aliquot of sample was analyzed from a container with headspace. See Sample Narrative. Organics This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. All Laboratory Control Spike recovery not within control limits. All Precision not within control limits. Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. Inorganic BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.	2	Ali	
All Sample received with headspace. All A second aliquot of sample was analyzed from a container with headspace. See Sample Narrative. This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. All Laboratory Control Spike recovery not within control limits. All Precision not within control limits. The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.	S	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
A second aliquot of sample was analyzed from a container with headspace. C All See Sample Narrative. This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. Laboratory Control Spike recovery not within control limits. All Precision not within control limits. The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The analyte was not detected at or above the reporting limit. Inorganic Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.	IJ	All	The analyte was not detected at or above the reporting limit.
See Sample Narrative. Organics This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. All Laboratory Control Spike recovery not within control limits. All Precision not within control limits. The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to and try to correct the deficiency.	V	All	Sample received with headspace.
This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. All Laboratory Control Spike recovery not within control limits. All Precision not within control limits. The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to	Ν	All	A second aliquot of sample was analyzed from a container with headspace.
Laboratory Control Spike recovery not within control limits. Precision not within control limits. The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.	Κ		
Precision not within control limits. The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. All The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.	Z	Organics	This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846.
The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. All The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. Inorganic BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.	<u>&</u>		Laboratory Control Spike recovery not within control limits.
The analyte was not detected at or above the reporting limit. Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to	t	All	
Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to	+	Inorganic	
Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to	<	All	•
Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to	ı	Inorganic	
Horganic BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.	2	Inorganic	
try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to	3		
reanalyze and try to correct the deficiency. BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to	4	Inorganic	try to correct the deficiency.
and try to correct the deficiency. Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to	5	Inorganic	reanalyze and try to correct the deficiency.
7 Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.	6	Inorganic	and try to correct the deficiency.
	7	Inorganic	BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.

Pace A	nalytical	
Service	es, Inc.	

Analysis Summary by Laboratory

1241 Bellevue Street Green Bay, WI 54302

Test Group Name	869289-001	869289-002	869289-003	869289-004	869289-005	869289-006	869289-007	869289-008	869289-009	869289-010	869289-011	869289-012	869289-013	869289-014	869289-015	869289-016	869289-017
ALKALINITY HYDROXIDE	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
ALKALINITY, BICARB/CARB	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
CHLORIDE	В	В	В	В	В	В	В	В	В	В	В	В	В	В	₿	В	В
FLUORIDE	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
NITROGEN, NITRATE	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
SULFATE	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В

Code	Facility	Address	TX Certification
В	Green Bay Lab (Bellevue St)	1241 Bellevue Street, Suite 9 Green Bay, WI 54302	Not Certified

1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

Analytical Report Number: 869328

Client: PACE ANALYTICAL SERVICES, INC.

Lab Contact: Brian Basten

Project Name: GL ERWIN TANK BATTERY

Project Number: 2057796

Lab Sample Number	Field ID	Matrix	Collection Date
869328-001	MW 9 20432321	WATER	02/23/06 11:05
869328-002	MW 4 20432322	WATER	02/23/06 11:30
869328-003	MW WEST 20432323	WATER	02/23/06 11:50
869328-004	MW SW 20432324	WATER	02/23/06 14:33
869328-005	RW 1 20432325	WATER	02/23/06 11:50

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Approval Signature

Date

Analytical Report Number: 869328

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: GL ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW 9 20432321

Matrix Type: WATER
Collection Date: 02/23/06

Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		110	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Chloride		13000	1000	200	mg/L		02/27/06	EPA 300.0	EPA 300.0
Fluoride	<	2.5	2.5	5	mg/L		02/24/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		19	2.0	5	mg/L		02/24/06	EPA 300.0	EPA 300.0
Sulfate		430	40	10	mg/L		02/27/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869328

1241 Believue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: GL ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW 4 20432322

Matrix Type: WATER

Collection Date: 02/23/06

Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Ani Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		130	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Chloride		9100	500	100	mg/L		02/24/06	EPA 300.0	EPA 300.0
Fluoride	<	2.5	2.5	5	mg/L		02/24/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		10	2.0	5	mg/L		02/24/06	EPA 300.0	EPA 300.0
Sulfate		220	20	5	mg/L		02/24/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869328

1241 Believue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: GL ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW WEST 20432323

Matrix Type: WATER

Collection Date: 02/23/06

Report Date: 03/03/06

Lab Sample Number: 869328-003

INORGANICS

Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		150	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Chloride		800	50	10	mg/L		02/24/06	EPA 300.0	EPA 300.0
= uoride		0.76	0.50	1	mg/L		02/24/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		4.0	0.40	1	mg/L		02/24/06	EPA 300.0	EPA 300.0
Sulfate		110	40	10	ma/L		02/24/06	EPA 300 0	FPA 300 0

Analytical Report Number: 869328

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: GL ERWIN TANK BATTERY

Project Number: 2057796

Field ID: MW SW 20432324

Matrix Type: WATER

Collection Date: 02/23/06 Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Anl Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		300	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Chloride		3000	250	50	mg/L		02/24/06	EPA 300.0	EPA 300.0
Fluoride	<	2.5	2.5	5	mg/L		02/24/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		11	2.0	5	mg/L		02/24/06	EPA 300.0	EPA 300.0
Sulfate		450	40	10	mg/L		02/24/06	EPA 300.0	EPA 300.0

Analytical Report Number: 869328

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: GL ERWIN TANK BATTERY

Project Number: 2057796

Field ID: RW 1 20432325

Matrix Type: WATER Collection Date: 02/23/06

Report Date: 03/03/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Anl Method
Alkalinity Hydroxide	<	10	10	1	mg/L		02/27/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		290	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		02/28/06	SM 2320B	SM 2320B
Chloride		2400	250	50	mg/L		02/24/06	EPA 300.0	EPA 300.0
Fluoride	<	2.5	2.5	5	mg/L		02/24/06	EPA 300.0	EPA 300.0
Nitrogen, Nitrate		8.9	2.0	5	mg/L		02/24/06	EPA 300.0	EPA 300.0
Sulfate		350	20	5	mg/L		02/24/06	EPA 300.0	EPA 300.0

Qualifier Codes

		Explanation
Α	Inorganic	Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
В	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
В	Organic	Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
С	All	Elevated detection limit.
D	Ali	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
E	Inorganic	Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.
Ε	Organic	Analyte concentration exceeds calibration range.
F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.
F	Organic	Surrogate results outside control criteria.
G	All	The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.
Н	All	Preservation, extraction or analysis performed past holding time.
HF	Inorganic	This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.
J	All	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.
<	Inorganic	Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation.
(Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
	Alt	Elevated detection limit due to low sample volume.
Л	Organic	Sample pH was greater than 2
4	All	Spiked sample recovery not within control limits.
)	Organic	Sample received overweight.
•	Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.
2	All	The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.
5	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
U	All	The analyte was not detected at or above the reporting limit.
/	Αll	Sample received with headspace.
V	All	A second aliquot of sample was analyzed from a container with headspace.
(All	See Sample Narrative.
_	Organics	This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846.
<u> </u>	All	Laboratory Control Spike recovery not within control limits.
1	All	Precision not within control limits.
+	Inorganic	The sample result is greater than four times the spike level; therefore, the percent recovery is not evaluated.
<	All	The analyte was not detected at or above the reporting limit.
1	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.
2	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.
3	Inorganic	BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.
1	Inorganic	BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
5	Inorganic	BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
6	Inorganic	BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyz and try to correct the deficiency.
7	Inorganic	BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.

Pace	Ana	lytical
Servi	ces,	Inc.

Analysis Summary by Laboratory

1241 Bellevue Street Green Bay, Wi 54302

Test Group Name	869328-001	869328-002	869328-003	869328-004	869328-005	
ALKALINITY HYDROXIDE	В	В	В	В	В	
ALKALINITY, BICARB/CARB	В	В	В	₿	В	
CHLORIDE	В	В	В	В	В	
FLUORIDE	В	В	В	В	В	
NITROGEN, NITRATE	В	В	В	В	В	
SULFATE	В	В	В	В	В	

Code	Facility	Address	TX Certification	
В	Green Bay Lab (Bellevue St)	1241 Bellevue Street, Suite 9 Green Bay, WI 54302	Not Certified	

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F Saint Rose, LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

September 14, 2006

James Ornelas CRA 2135 S. Loop 250 West Midland, TX 79701

RE: Project: 2062234

RE: Project ID: CEMC GL. ERWIN/039124

Circly alovesan

Dear James Ornelas:

Enclosed are the analytical results for sample(s) received by the laboratory on August 26, 2006. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Cindy Olavesen

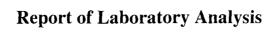
This report shall not be reproduced, execpt in full, without the written consent of Pace Analytical Services, Inc.

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Report of Laboratory Analysis Project Number: 2062234

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006


Pace Analytical*
New Orleans Laboratory

Client: CRA

Project: CEMC GL. ERWIN/039124

Project No.: <u>2062234</u>

Sample ID	Lab ID	Matrix	Collecti Date/Tir		Received Date/Time		
MW-182406	20468454	Water	08/24/2006	15:55	08/26/2006	08:30	
MW-282406	20468455	Water	08/24/2006	16:00	08/26/2006	08:30	
MW-382406	20468456	Water	08/24/2006	16:45	08/26/2006	08:30	
MW-482506	20468457	Water	08/25/2006	11:10	08/26/2006	08:30	
MW-582406	20468458	Water	08/24/2006	16:55	08/26/2006	08:30	
MW-682406	20468459	Water	08/24/2006	14:35	08/26/2006	08:30	
MW-782406	20468460	Water	08/24/2006	15:05	08/26/2006	08:30	
MW-882406	20468461	Water	08/24/2006	14:30	08/26/2006	08:30	
MW-982506	20468462	Water	08/25/2006	10:30	08/26/2006	08:30	
MW-1082507	20468463	Water	08/25/2006	12:45	08/26/2006	08:30	
MW-1282406	20468464	Water	08/24/2006	13:10	08/26/2006	08:30	
MW-1382406	20468465	Water	08/24/2006	15:10	08/26/2006	08:30	
MW-1482406	20468466	Water	08/24/2006	13:20	08/26/2006	08:30	
MW-1682406	20468467	Water	08/24/2006	13:45	08/26/2006	08:30	
MW-1782406	20468468	Water	08/24/2006	13:50	08/26/2006	08:30	
MW-1982406	20468469	Water	08/24/2006	12:20	08/26/2006	08:30	
MW-2082406	20468470	Water	08/24/2006	12:35	08/26/2006	08:30	
WMW82506	20468471	Water	08/25/2006	10:15	08/26/2006	08:30	
SW82506	20468472	Water	08/25/2006	11:15	08/26/2006	08:30	
RW-182506	20468473	Water	08/25/2006	12:30	08/26/2006	08:30	
DUP182406	20468474	Water	08/24/2006		08/26/2006	08:30	
DUP282506	20468476	Water	08/25/2006		08/26/2006	08:30	

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-182406</u>

Client: CRA

ace Analytica

Project: CEMC GL. ERWIN/039124

New Orleans Laboratory

Site: None

Lab ID: 20468454

Description: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: 08/26/06

							Reporting			Reg
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limi
Calcium, Dissolved	EPA 6010	76457	1	57.4		mg/L	0.500	05-Sep-06	07-Sep-06 16:07	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	1	19.3		mg/L	0.500	05-Sep-06	07-Sep-06 16:07	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	4.36		mg/L	0.500	05-Sep-06	07-Sep-06 16:07	KJR (1)
Sodium, Dissolved	EPA 6010	76457	ı	107.		mg/L	0.500	05-Sep-06	07-Sep-06 16:07	KJR (1)

4 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:17

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-282406

Project: CEMC GL. ERWIN/039124

Lab ID: 20468455

Description: None

Client: CRA

Site: None

Project No.: <u>2062234</u>

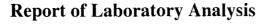
Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: 08/26/06

	Reporting										
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lir	
Calcium, Dissolved	EPA 6010	76457		26.3		mg/L	0.500	05-Sep-06	07-Sep-06 16:25	KJR (1)	
Magnesium, Dissolved	EPA 6010	76457	l	7.70		mg/L	0.500	05-Sep-06	07-Sep-06 16:25	KJR (1)	
Potassium, Dissolved	EPA 6010	76457	1	4.23		mg/L	0.500	05-Sep-06	07-Sep-06 16:25	KJR (1)	
Sodium, Dissolved	EPA 6010	76457	l	298.		mg/L	0.500	05-Sep-06	07-Sep-06 16:25	KJR (1)	


4 parameter(s) reported

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:17

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F

St. Rose , LA 70087

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-382406

Client: CRA

ace Analytical

Project: CEMC GL. ERWIN/039124

Site: None

Lab ID: 20468456

New Orleans Laboratory

Project No.: 2062234

Description: None

Matrix: Water

% Moisture: n/a

Collected: 08/24/06

Received: 08/26/06

	Reporting									
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lim
Calcium, Dissolved	EPA 6010	76457	l	25.3		mg/L	0.500	05-Sep-06	07-Sep-06 16:29	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	l	7.68		mg/L	0.500	05-Sep-06	07-Sep-06 16:29	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	11.9		mg/L	0.500	05-Sep-06	07-Sep-06 16:29	KJR (1)
Sodium, Dissolved	EPA 6010	76457	1	565.		mg/L	0.500	05-Sep-06	07-Sep-06 16:29	KJR (1)

4 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:17

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F

St. Rose , LA 70087

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-482506

Project: CEMC GL. ERWIN/039124

New Orleans Laboratory

Lab ID: 20468457

Description: None

ace Analytical

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: <u>08/25/06</u>

Received: 08/26/06

	Reporting										
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lin	
Calcium, Dissolved	EPA 6010	76457	1	1550		mg/L	0.500	05-Sep-06	07-Sep-06 17:41	KJR (1)	
Magnesium, Dissolved	EPA 6010	76457	1	364.		mg/L	0.500	05-Sep-06	07-Sep-06 17:41	KJR (1)	
Potassium, Dissolved	EPA 6010	76457	1	136.		mg/L	0.500	05-Sep-06	07-Sep-06 17:41	KJR (1)	
Sodium, Dissolved	EPA 6010	76457	1	1890		mg/L	0.500	05-Sep-06	07-Sep-06 17:41	KJR (1)	

4 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:17

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

ace Analytical New Orleans Laboratory

Client ID: <u>MW-582406</u>

Project: CEMC GL. ERWIN/039124

Lab ID: 20468458

Description: None

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: 08/26/06

	Reporting									
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	76457	1	145.		mg/L	0.500	05-Sep-06	07-Sep-06 16:33	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	1	47.6		mg/L	0.500	05-Sep-06	07-Sep-06 16:33	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	13.1		mg/L	0.500	05-Sep-06	07-Sep-06 16:33	KJR (1)
Sodium, Dissolved	EPA 6010	76457	1	295.		mg/L	0.500	05-Sep-06	07-Sep-06 16:33	KJR (1)

4 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-682406</u>

Client: CRA

Project: CEMC GL. ERWIN/039124

Site: None

Lab ID: <u>20468459</u>

Project No.: 2062234

Description: None

Matrix: Water

% Moisture: n/a

Collected: 08/24/06

Received: 08/26/06

							Reporting			Reg
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lim
Calcium, Dissolved	EPA 6010	76457	ì	108.		mg/L	0.500	05-Sep-06	07-Sep-06 16:37	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	1	35.0		mg/L	0.500	05-Sep-06	07-Sep-06 16:37	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	9.38		mg/L	0.500	05-Sep-06	07-Sep-06 16:37	KJR (1)
Sodium, Dissolved	EPA 6010	76457	1	448.		mg/L	0.500	05-Sep-06	07-Sep-06 16:37	KJR (1)

4 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:17

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-782406</u>

Project: CEMC GL. ERWIN/039124

Lab ID: 20468460

Description: None

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: <u>08/26/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	76457	1	23.3		mg/L	0.500	05-Sep-06	07-Sep-06 16:50 K	JR (1)
Magnesium, Dissolved	EPA 6010	76457	!	7.82		mg/L	0.500	05-Sep-06	07-Sep-06 16:50 K	JR (1)
Potassium, Dissolved	EPA 6010	76457	1	2.96		mg/L	0.500	05-Sep-06	07-Sep-06 16:50 K	JR (1)
Sodium, Dissolved	EPA 6010	76457	1	245.		mg/L	0.500	05-Sep-06	07-Sep-06 16:50 K	JR (1)

4 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-882406

Client: CRA

Project: CEMC GL. ERWIN/039124

Site: None

Lab ID: 20468461

Project No.: <u>2062234</u>

Description: None

Matrix: Water

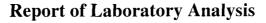
% Moisture: n/a

Collected: <u>08/24/06</u>

Received: 08/26/06

							Reporting			Reg
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limi
Calcium, Dissolved	EPA 6010	76457	1	51.2		mg/L	0.500	05-Sep-06	07-Sep-06 16:54	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	1	16.5		mg/L	0.500	05-Sep-06	07-Sep-06 16:54	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	6.00		mg/L	0.500	05-Sep-06	07-Sep-06 16:54	KJR (1)
Sodium, Dissolved	EPA 6010	76457	1	470.		mg/L	0.500	05-Sep-06	07-Sep-06 16:54	KJR (1)

4 parameter(s) reported


DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-982506

Project: CEMC GL. ERWIN/039124

New Orleans Laboratory

Lab ID: 20468462

Description: None

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: <u>08/25/06</u>

Received: <u>08/26/06</u>

							Reporting			Reg
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lim
Calcium, Dissolved	EPA 6010	76457	1	1330		mg/L	0.500	05-Sep-06	07-Sep-06 17:45	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	1	360.		mg/L	0.500	05-Sep-06	07-Sep-06 17:45	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	38.3		mg/L	0.500	05-Sep-06	07-Sep-06 17:45	KJR (1)
Sodium, Dissolved	EPA 6010	76457	1	1920		mg/L	0.500	05-Sep-06	07-Sep-06 17:45	KJR (1)

4 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:17

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-1082507</u>

Client: CRA

Project: CEMC GL. ERWIN/039124

Site: None

Lab ID: 20468463

Project No.: 2062234

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>08/25/06</u>

Received: 08/26/06

							Reporting			Reg
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limi
Calcium, Dissolved	EPA 6010	76457	1	660.		mg/L	0.500	05-Sep-06	07-Sep-06 17:49	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	1	201.		mg/L	0.500	05-Sep-06	07-Sep-06 17:49	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	13.7		mg/L	0.500	05-Sep-06	07-Sep-06 17:49	KJR (1)
Sodium, Dissolved	EPA 6010	76457	ı	253.		mg/L	0.500	05-Sep-06	07-Sep-06 17:49	KJR (1)

4 parameter(s) reported

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-1282406

Project: CEMC GL. ERWIN/039124

Lab ID: 20468464

Description: None

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: 08/24/06

Received: 08/26/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	76457	1	463.		mg/L	0.500	05-Sep-06	07-Sep-06 16:58	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	1	157.		mg/L	0.500	05-Sep-06	07-Sep-06 16:58	KJR (1)
Potassium, Dissolved	EPA 6010	76457	l	12.2		mg/L	0.500	05-Sep-06	07-Sep-06 16:58	KJR (1)
Sodium, Dissolved	EPA 6010	76457	1	140.		mg/L	0.500	05-Sep-06	07-Sep-06 16:58	KJR (1)

⁴ parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:17

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Hew Orleans Laboratory

Client ID: MW-1382406

Project: CEMC GL. ERWIN/039124

Lab ID: 20468465

Description: None

ace Analytical

Client: CRA

Site: None

Project No.: <u>2</u>0622<u>34</u>

Matrix: Water

% Moisture: n/a

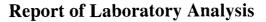
Collected: <u>08/24/06</u>

Received: 08/26/06

							Reporting			R
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Li
Calcium, Dissolved	EPA 6010	76457	1	228.		mg/L	0.500	05-Sep-06	07-Sep-06 17:02	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	ł	78.7		mg/L	0.500	05-Sep-06	07-Sep-06 17:02	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	10.9		mg/L	0.500	05-Sep-06	07-Sep-06 17:02	KJR (1)
Sodium, Dissolved	EPA 6010	76457	1	107.		mg/L	0.500	05-Sep-06	07-Sep-06 17:02	KJR (1)

4 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.


Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-1482406

Project: CEMC GL. ERWIN/039124

New Orleans Laboratory

Lab ID: 20468466

Description: None

face Analytical

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: <u>08/26/06</u>

							Reporting			R	leg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Li	imit
Calcium, Dissolved	EPA 6010	76457	1	942.		mg/L	0.500	05-Sep-06	07-Sep-06 17:06	KJR (1)	
Magnesium, Dissolved	EPA 6010	76457	1	266.		mg/L	0.500	05-Sep-06	07-Sep-06 17:06	KJR (1)	
Potassium, Dissolved	EPA 6010	76457	1	27.8		mg/L	0.500	05-Sep-06	07-Sep-06 17:06	KJR (1)	
Sodium, Dissolved	EPA 6010	76457	1	1370		mg/L	0.500	05-Sep-06	07-Sep-06 17:06	KJR (1)	

4 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-1682406</u>

Project: CEMC GL. ERWIN/039124

New Orleans Laboratory

Lab ID: 20468467

Description: None

ace Analytical

Client: CRA

Site: None

Project No.: <u>2062234</u>

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: <u>08/26/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	76457	1	123.		mg/L	0.500	05-Sep-06	07-Sep-06 17:10	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	1	40.6		mg/L	0.500	05-Sep-06	07-Sep-06 17:10	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	4.93		mg/L	0.500	05-Sep-06	07-Sep-06 17:10	KJR (1)
Sodium, Dissolved	EPA 6010	76457	1	207.		mg/L	0.500	05-Sep-06	07-Sep-06 17:10	KJR (1)

4 parameter(s) reported

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-1782406</u>

Project: CEMC GL. ERWIN/039124

Lab ID: 20468468

Description: None

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: 08/24/06

Received: 08/26/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	76457	1	140.		mg/L	0.500	05-Sep-06	07-Sep-06 17:15	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	1	46.1		mg/L	0.500	05-Sep-06	07-Sep-06 17:15	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	5.94		mg/L	0.500	05-Sep-06	07-Sep-06 17:15	KJR (1)
Sodium, Dissolved	EPA 6010	76457	1	178.		mg/L	0.500	05-Sep-06	07-Sep-06 17:15	KJR (1)

4 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size.

Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(Ia) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

ace Analytical New Orleans Laboratory

Client ID: MW-1982406

Project: CEMC GL. ERWIN/039124

Lab ID: 20468469

Description: None

Client: CRA

Site: None

Project No.: <u>2062234</u>

Matrix: Water

% Moisture: n/a

Collected: 08/24/06

Received: 08/26/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	76457	1	902.		mg/L	0.500	05-Sep-06	07-Sep-06 17:19	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	l	293.		mg/L	0.500	05-Sep-06	07-Sep-06 17:19	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	28.8		mg/L	0.500	05-Sep-06	07-Sep-06 17:19	KJR (1)
Sodium, Dissolved	EPA 6010	76457	l	582.		mg/L	0.500	05-Sep-06	07-Sep-06 17:19	KJR (1)

4 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12,5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-2082406</u>

Client: CRA

ace Analytica

Project: CEMC GL. ERWIN/039124

New Orleans Laboratory

Site: None

Lab ID: 20468470

Project No.: 2062234

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: <u>08/26/06</u>

							Reporting			Re
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lin
Calcium, Dissolved	EPA 6010	76457	1	288.	-	mg/L	0.500	05-Sep-06	07-Sep-06 17:24	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	i	101.		mg/L	0.500	05-Sep-06	07-Sep-06 17:24	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	11.2		mg/L	0.500	05-Sep-06	07-Sep-06 17:24	KJR (1)
Sodium, Dissolved	EPA 6010	76457	1	160.		mg/L	0.500	05-Sep-06	07-Sep-06 17:24	KJR (1)

4 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size.

Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: WMW82506

Client: CRA

Project: CEMC GL. ERWIN/039124

New Orleans Laboratory

Site: None

Lab ID: 20468471

Project No.: 2062234

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>08/25/06</u>

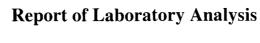
Received: 08/26/06

ParameterName						Reporting				Reg
	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	. Analysis	Limi
Calcium, Dissolved	EPA 6010	76457	1	315.		mg/L	0.500	05-Sep-06	07-Sep-06 17:53	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	1	87.6		mg/L	0.500	05-Sep-06	07-Sep-06 17:53	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	67.7		mg/L	0.500	05-Sep-06	07-Sep-06 17:53	KJR (1)
Sodium, Dissolved	EPA 6010	76457	1	400.		mg/L	0.500	05-Sep-06	07-Sep-06 17:53	KJR (1)

4 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size.

Reporting Limit is corrected for sample size, dilution and moisture content if applicable.


Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: SW82506

Project: CEMC GL. ERWIN/039124

Hew Orleans Laboratory

Lab ID: 20468472

Description: None

ace Analytical

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

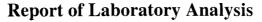
% Moisture: n/a

Collected: <u>08/25/06</u>

Received: 08/26/06

	Reporting									
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limi
Calcium, Dissolved	EPA 6010	76457	1	415.		mg/L	0.500	05-Sep-06	07-Sep-06 17:57	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	1	117.		mg/L	0.500	05-Sep-06	07-Sep-06 17:57	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	74.9		mg/L	0.500	05-Sep-06	07-Sep-06 17:57	KJR (1)
Sodium, Dissolved	EPA 6010	76457	1	1240		mg/L	0.500	05-Sep-06	07-Sep-06 17:57	KJR (1)

4 parameter(s) reported


ND denotes Not Detected at or above the adjusted reporting limit.
DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

ace Analytical Hew Orleans Laboratory

Client ID: <u>RW-182506</u>

Project: CEMC GL. ERWIN/039124

Lab ID: 20468473

Description: None

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: <u>n/a</u>

Collected: <u>08/25/06</u>

Received: <u>08/26/06</u>

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	76458	1	281.		mg/L	0.500	05-Sep-06	07-Sep-06 18:02	KJR (1)
Magnesium, Dissolved	EPA 6010	76458	1	77.3		mg/L	0.500	05-Sep-06	07-Sep-06 18:02	KJR (1)
Potassium, Dissolved	EPA 6010	76458	1	68.5		mg/L	0.500	05-Sep-06	07-Sep-06 18:02	KJR (1)
Sodium, Dissolved	EPA 6010	76458	1	1040		mg/L	0.500	05-Sep-06	07-Sep-06 18:02	KJR (1)

4 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.
DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

ace Analytical New Orleans Laboratory

Client ID: DUP182406

Project: CEMC GL. ERWIN/039124

Lab ID: 20468474

Description: None

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: 08/26/06

	Reporting									Reg
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Lim
Calcium, Dissolved	EPA 6010	76457	1	135.		mg/L	0.500	05-Sep-06	07-Sep-06 17:29	KJR (1)
Magnesium, Dissolved	EPA 6010	76457	1	46.5		mg/L	0.500	05-Sep-06	07-Sep-06 17:29	KJR (1)
Potassium, Dissolved	EPA 6010	76457	1	5.76		mg/L	0.500	05-Sep-06	07-Sep-06 17:29	KJR (1)
Sodium, Dissolved	EPA 6010	76457	1	175.		mg/L	0.500	05-Sep-06	07-Sep-06 17:29	KJR (1)

4 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans. (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Hew Orleans Laboratory

Client ID: DUP282506

Project: CEMC GL. ERWIN/039124

Lab ID: 20468476

Description: None

ace Analytical

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: 08/25/06

Received: 08/26/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Calcium, Dissolved	EPA 6010	76458	1	272.		mg/L	0.500	05-Sep-06	07-Sep-06 18:06	KJR (1)
Magnesium, Dissolved	EPA 6010	76458	1	77.3		mg/L	0.500	05-Sep-06	07-Sep-06 18:06	KJR (1)
Potassium, Dissolved	EPA 6010	76458	ì	67.1		mg/L	0.500	05-Sep-06	07-Sep-06 18:06	KJR (1)
Sodium, Dissolved	EPA 6010	76458	l	1030		mg/L	0.500	05-Sep-06	07-Sep-06 18:06	KJR (1)

4 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size.

Reporting Limit is corrected for sample size, dilution and moisture content if applicable. Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-182406</u>

Project: CEMC GL. ERWIN/039124

Lab ID: 20468454

Description: None

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: 08/26/06

							Reporting				Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis		Limit
Nitrogen, Nitrate	EPA 353.2	76202	5	3.11		mg/L	0.500	29-Aug-06	29-Aug-06 15:09	TAE(1)	
Total Dissolved Solids	SM 2540C	76201	1	660.		mg/L	10.0	28-Aug-06	28-Aug-06 14:45	TAE (1)	

2 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size.

Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-282406</u>

Client: CRA

Project: CEMC GL. ERWIN/039124

Site: None

Lab ID: 20468455

Project No.: <u>2062234</u>

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: 08/26/06

							Reporting				Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis		Limit
Nitrogen, Nitrate	EPA 353.2	76202	5	3.78		mg/L	0.500	29-Aug-06	29-Aug-06 15:13	TAE (1)	
Total Dissolved Solids	SM 2540C	76201	1	1610		mg/L	10.0	28-Aug-06	28-Aug-06 14:45	TAE (1)	

2 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size.

Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-382406</u>

Project: CEMC GL. ERWIN/039124

Lab ID: 20468456

Description: None

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

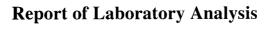
Collected: <u>08/24/06</u>

Received: 08/26/06

							Reporting			Reg	;.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limi	it
Nitrogen, Nitrate	EPA 353.2	76202	5	6.43		mg/L	0.500	29-Aug-06	29-Aug-06 15:14	ΓAE (1)	
Total Dissolved Solids	SM 2540C	76201	1	1990		mg/L	10.0	28-Aug-06	28-Aug-06 14:45	ТАЕ (1)	

2 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.


Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-482506

New Orleans Laboratory

Client: CRA

Project: CEMC GL. ERWIN/039124

Site: None

Project No.: 2062234

Lab ID: 20468457

Description: None

ace Analytical

•

Matrix: Water

% Moisture: n/a

Collected: 08/25/06

Received: 08/26/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Nitrogen, Nitrate	EPA 353.2	76202	5	6.13		mg/L	0.500	29-Aug-06	29-Aug-06 15:32 TAE(1)	
Total Dissolved Solids	SM 2540C	76201	1	17500		mg/L	10.0	30-Aug-06	30-Aug-06 16:30 TAE(1)	

2 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1a) pH less than 2.0 or greater than 12.5 is nazardous for corrosivit (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F

St. Rose , LA 70087 Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-582406</u>

Client: CRA

Project: CEMC GL. ERWIN/039124

New Orleans Laboratory

Site: None

Lab ID: <u>20468458</u>

Project No.: <u>2062234</u>

Description: None

Matrix: Water

% Moisture: n/a

Collected: 08/24/06

Received: 08/26/06

							Reporting		Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit
Nitrogen, Nitrate	EPA 353.2	76202	5	5.09		mg/L	0.500	29-Aug-06 29-Aug-06 15:17 TAE(1)	
Total Dissolved Solids	SM 2540C	76201	1	1280		mg/L	10.0	28-Aug-06 28-Aug-06 14:45 TAE(1)	

2 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-682406

ace Analytical

Client: CRA

Project: CEMC GL. ERWIN/039124

New Orleans Laboratory

Site: None

Lab ID: 20468459

Description: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: <u>08/26/06</u>

							Reporting		Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit
Nitrogen, Nitrate	EPA 353.2	76202	5	5.96		mg/L	0.500	29-Aug-06 29-Aug-06 15:18 TAE(1)	
Total Dissolved Solids	SM 2540C	76201	1	1880		mg/L	10.0	28-Aug-06 28-Aug-06 14:45 TAE(1)	

2 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

ace Analytical New Orleans Laboratory

Client ID: <u>MW-782406</u>

Project: CEMC GL. ERWIN/039124

Lab ID: 20468460

Description: None

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: 08/24/06

Received: 08/26/06

							Reporting		Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit
Nitrogen, Nitrate	EPA 353.2	76202	5	2.97		mg/L	0.500	29-Aug-06 29-Aug-06 15:20 TAE(1)	
Total Dissolved Solids	SM 2540C	76201	1	952.		mg/L	10.0	28-Aug-06 28-Aug-06 14:45 TAE(1)	

2 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-882406</u>

Client: CRA

Project: CEMC GL. ERWIN/039124

Site: None

Lab ID: 20468461

Project No.: 2062234

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: 08/26/06

							Reporting		Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit
Nitrogen, Nitrate	EPA 353.2	76202	5	5.51		mg/L	0.500	29-Aug-06 29-Aug-06 15:21 TAE (1)
Total Dissolved Solids	SM 2540C	76201	1	926.		mg/L	10.0	28-Aug-06 28-Aug-06 14:45 TAE (1)

2 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

New Orleans Laboratory

Client ID: MW-982506

Project: CEMC GL. ERWIN/039124

Lab ID: 20468462

Description: None

ace Analytica

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: <u>08/25/06</u>

Received: 08/26/06

							Reporting			Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit
Nitrogen, Nitrate	EPA 353.2	76202	5	3.75		mg/L	0.500	29-Aug-06	29-Aug-06 15:33 TAE(1)	
Total Dissolved Solids	SM 2540C	76201	1	24100		mg/L	10.0	30-Aug-06	30-Aug-06 16:30 TAE(1)	

2 parameter(s) reported

Reporting Limit is corrected for sample size, dilution and moisture content if applicable. Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.
(1b) Flash point less than 140 degrees F is hazardous for ignitibility.
Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:18

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-1082507

Client: CRA

Project: CEMC GL. ERWIN/039124

Hew Orleans Laboratory

Site: None

Lab ID: 20468463

Project No.: 2062234

Description: None

Matrix: Water

% Moisture: n/a

Collected: 08/25/06

Received: 08/26/06

	Reporting										
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit		
Nitrogen, Nitrate	EPA 353.2	76202	5	3.24		mg/L	0.500	29-Aug-06 29-Aug-06 15:34 TAE(1)			
Total Dissolved Solids	SM 2540C	76201	1	7520		mg/L	10.0	28-Aug-06 28-Aug-06 14:45 TAE(1)			

2 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:19

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

St. Rose , LA 70087

ace Analytical Hew Orleans Laboratory

Client ID: MW-1282406

Client: CRA

Project: CEMC GL. ERWIN/039124

Site: None

Lab ID: 20468464

Project No.: <u>2062234</u>

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: 08/26/06

							Reporting		Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit
Nitrogen, Nitrate	EPA 353.2	76202	5	3.06		mg/L	0.500	29-Aug-06 29-Aug-06 15:22 TAE(1)	
Total Dissolved Solids	SM 2540C	76201	1	6190		mg/L	10.0	28-Aug-06 28-Aug-06 14:45 TAE(1)	

2 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-1382406</u>

Client: CRA

Project: CEMC GL. ERWIN/039124

Site: None

Lab ID: 20468465

Project No.: <u>2062234</u>

Description: None

Matrix: Water

% Moisture: n/a

Collected: 08/24/06

Received: 08/26/06

		Reporting											
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit				
Nitrogen, Nitrate	EPA 353.2	76202	5	3.58		mg/L	0.500	29-Aug-06 29-Aug-06 15:23 TAE(1)					
Total Dissolved Solids	SM 2540C	76201	1	2590		mg/L	10.0	28-Aug-06 28-Aug-06 14:45 TAE(1)					

2 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable. (1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:19

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F

St. Rose . LA 70087

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Hew Orleans Laboratory

Client ID: MW-1482406

Project: CEMC GL. ERWIN/039124

Lab ID: 20468466

Description: None

Client: CRA

Site: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: 08/26/06

		Reporting										
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit			
Nitrogen, Nitrate	EPA 353.2	76202	5	3.74		mg/L	0.500	29-Aug-06 29-Aug-06 15:24 TAE(1)				
Total Dissolved Solids	SM 2540C	76201	1	11300		mg/L	10.0	30-Aug-06 30-Aug-06 16:30 TAE(1)				

2 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:19

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F

St. Rose , LA 70087

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Hew Orleans Laboratory

Client ID: <u>MW-1682406</u>

Client: CRA

Project: CEMC GL. ERWIN/039124

Site: None

Lab ID: 20468467

Project No.: 2062234

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: <u>08/26/06</u>

	Reporting											
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit			
Nitrogen, Nitrate	EPA 353.2	76202	5	3.17		mg/L	0.500	29-Aug-06 29-Aug-06 15:25 TA	ιE (1)			
Total Dissolved Solids	SM 2540C	76201	1	1460		mg/L	10.0	28-Aug-06 28-Aug-06 14:45 TA	Æ(1)			

2 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:19

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose . LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-1782406</u>

Client: CRA

Project: CEMC GL. ERWIN/039124

Hew Orleans Laboratory

Site: None

Lab ID: 20468468

Project No.: 2062234

Description: None

ace Analytica

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: 08/26/06

	Reporting										
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit		
Nitrogen, Nitrate	EPA 353.2	76202	5	3.06		mg/L	0.500	29-Aug-06 29-Aug-06 15:26 TAE(1)			
Total Dissolved Solids	SM 2540C	76201	1	1700		mg/L	10.0	28-Aug-06 28-Aug-06 14:45 TAE(1)			

2 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size.

Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:19

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F

St. Rose , LA 70087 Phone: 504.469.0333

Fax: 504.469.0555 LELAP # 02006

Client ID: <u>MW-1982406</u>

Client: CRA

Project: CEMC GL. ERWIN/039124

Hew Orleans Laboratory

Site: None

Lab ID: 20468469

Project No.: <u>2062234</u>

Description: None

ace Analytical

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: 08/26/06

	Reporting										
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit	
Nitrogen, Nitrate	EPA 353.2	76202	5	3.01		mg/L	0.500	29-Aug-06 2	9-Aug-06 15:27 T.	AE (1)	
Total Dissolved Solids	SM 2540C	76201	1	10900		mg/L	10.0	28-Aug-06 2	8-Aug-06 14:45 T.	AE (1)	

2 parameter(s) reported

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:19

ace Analytical Hew Orleans Laboratory

Report of Laboratory Analysis

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: MW-2082406

Client: CRA

Project: CEMC GL. ERWIN/039124

Site: None

Lab ID: 20468470

Project No.: 2062234

Description: None

Matrix: Water

% Moisture: n/a

Collected: 08/24/06

Received: 08/26/06

							Reporting		Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit
Nitrogen, Nitrate	EPA 353.2	76202	5	3.39		mg/L	0.500	29-Aug-06 29-Aug-06 15:30 TAE (1)
Total Dissolved Solids	SM 2540C	76201	1	3590		mg/L	10.0	28-Aug-06 28-Aug-06 14:45 TAE (1)

2 parameter(s) reported

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:19

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: WMW82506

Client: CRA

Project: CEMC GL. ERWIN/039124

Site: None

Lab ID: 20468471

Hew Orleans Laboratory

Project No.: 2062234

Description: None

Matrix: Water

% Moisture: n/a

Collected: <u>08/25/06</u>

Received: <u>08/26/06</u>

							Reporting		Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit
Nitrogen, Nitrate	EPA 353.2	76202	5	2.78		mg/L	0.500	29-Aug-06 29-Aug-06 15:35 TAE	(1)
Total Dissolved Solids	SM 2540C	76201	1	4840		mg/L	10.0	28-Aug-06 28-Aug-06 14:45 TAE	(1)

2 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and u/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:19

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: SW82506

Client: CRA

Project: CEMC GL. ERWIN/039124

New Orleans Laboratory

Site: None

Lab ID: 20468472

Project No.: 2062234

Description: None

ace Analytical

Matrix: Water

% Moisture: n/a

Collected: <u>08/25/06</u>

Received: 08/26/06

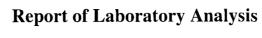
	Reporting										
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep.	Analysis	Limit	
Nitrogen, Nitrate	EPA 353.2	76202	5	5.99		mg/L	0.500	29-Aug-06	29-Aug-06 15:36 TAE (1)		
Total Dissolved Solids	SM 2540C	76230	1	7600		mg/L	10.0	28-Aug-06	28-Aug-06 15:50 TAE(1)		

2 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.


For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:19

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: RW-182506

Client: CRA

Project: CEMC GL. ERWIN/039124

Hew Orleans Laboratory

Site: None

Lab ID: 20468473

Description: None

Project No.: 2062234

Matrix: Water

% Moisture: n/a

Collected: <u>08/25/06</u>

Received: 08/26/06

	Reporting									
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit	
Nitrogen, Nitrate	EPA 353.2	76161	5	4.41	N	mg/L	0.500	29-Aug-06 29-Aug-06 15:05 TAE (1)	
Total Dissolved Solids	SM 2540C	76230	1	5610		mg/L	10.0	28-Aug-06 28-Aug-06 15:50 TAE (1)	

2 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report. For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:19

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: DUP182406

Client: CRA

Project: CEMC GL. ERWIN/039124

New Orleans Laboratory

Site: None

Lab ID: 20468474

Project No.: 2062234

Description: None

ace Analytical

Matrix: Water

% Moisture: n/a

Collected: <u>08/24/06</u>

Received: 08/26/06

							Reporting		Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit
Nitrogen, Nitrate	EPA 353.2	76202	5	2.94		mg/L	0.500	29-Aug-06 29-Aug-06 15:31 TAI	E(1)
Total Dissolved Solids	SM 2540C	76201	l	1700		mg/L	10.0	28-Aug-06 28-Aug-06 14:45 TA	E(1)

2 parameter(s) reported

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity. (1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F

St. Rose , LA 70087

Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Client ID: DUP282506

Client: CRA

Project: CEMC GL. ERWIN/039124

New Orleans Laboratory

Site: None

Lab ID: 20468476

Project No.: <u>2062234</u>

Description: None

Matrix: Water

% Moisture: n/a

Collected: 08/25/06

Received: 08/26/06

							Reporting		Reg.
ParameterName	Method	Batch	DF	Result	Qu	Units	Limit	Prep. Analysis	Limit
Nitrogen, Nitrate	EPA 353.2	76161	5	4.60	N	mg/L	0.500	29-Aug-06 29-Aug-06 15:06 TAE(1)	
Total Dissolved Solids	SM 2540C	76230	1	5570		mg/L	10.0	28-Aug-06 28-Aug-06 15:50 TAE(1)	

2 parameter(s) reported

ND denotes Not Detected at or above the adjusted reporting limit.

DF denotes Dilution Factor of final sample. PF denotes sample Prep Factor which accounts for a non-routine sample size. Reporting Limit is corrected for sample size, dilution and moisture content if applicable.

Qu lists qualifiers. Specific qualifiers are defined at the end of the report.

For moisture results, wet denotes result is not corrected for moisture and n/a denotes not applicable.

(1a) pH less than 2.0 or greater than 12.5 is hazardous for corrosivity.

(1b) Flash point less than 140 degrees F is hazardous for ignitibility.

Analysis performed in (1) New Orleans, (2) Baton Rouge, (3) Bossier City, (4) Houston, or (0) subcontract or field.

9/14/2006 14:24:19

Report of Quality Control

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Project No.: 2062234

Parameter	Batch	Blank	ARL	Units	LCS	LCS	LCSD	LCS	MS	MS I	MSD	(1)MS	DUP	QC	Limits	RPD	Qu
				Spike	% Rec	%Rec	RPD	Spike	% Rec	%Rec	RPD	RPD	LCS	MS/MSD	Max		
Calcium, Diss	76457	ND	0.500	mg/L	10	99			10	84	68 *	2		73 - 115	75 - 125	20	
Magnesium, D	76457	ND	0.500	mg/L	10	99			10	79	84	2		73 - 116	75 - 125	20	
Potassium, Dis	76457	ND	0.500	mg/L	10	100			10	93	92	1		73 - 114	- 75 - 125	20	
Sodium, Disso	76457	ND	0.500	mg/L	10	100			10	70 *	46 *	2		64 - 122	75 - 125	20	Q3
Calcium, Diss	76458	ND	0.500	mg/L	10	96			10	78	86	4		73 - 115	75 - 125	20	
Magnesium, D	76458	ND	0.500	mg/L	10	96			10	82	90	7		73 - 116	75 - 125	20	
Potassium, Dis	76458	ND	0.500	mg/L	10	97			10	73 *	75	1		73 - 114	75 - 125	20	Q١
Sodium, Disso	76458	ND	0.500	mg/L	10	98			10	83	89	6		64 - 122	. 75 - 125	20	

Report of Quality Control

Pace Analytical Services, Inc.

1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Wet Chemis	stry Qua	ality Control F	Results				Pro	ject No	.: 2062	2234						
Parameter	Batch	Blank	ARL	Units	LCS	LCS LCS	D LCS	MS	MS N	MSD	(1)MS	DUP	QC	Limits	RPD	Qu
					Spike	%Rec %F	Rec RPD	Spike	% Rec	%Rec	RPD	RPD	LCS	MS/MSD	Max	
Nitrogen, Nitr	76202	ND	0.100	mg/L	0.5	98		1	60 *	63 *	٠ ا		90 - 110	80 - 120	20	
Nitrogen, Nitr	76161	ND	0.100	mg/L									-	-		
Nitrogen, Nitr	76161			mg/L	0.5	95		1	91	90	1		90 - 110	80 - 120	20	
Total Dissolve	76230	ND	10.0	mg/L	100	116						4	80 - 120	-	20	
Total Dissolve	76201	ND	10.0	mg/L	100	94							80 - 120	-		
Total Dissolve	76201	ND	10.0	mg/L	100	88						5	80 - 120	-	20	

Report Qualifiers

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose , LA 70087

> Phone: 504.469.0333 Fax: 504.469.0555 LELAP # 02006

Project No.: 2062234

ALL Qualifiers
Qualifier Description
See narrative for a detailed explanation.
QC Qualifiers
Qualifier Description
The matrix spike recoveries are poor. Acceptable method performance for this analyte has been demonstrated by the laboratory control sample recovery.
The matrix spike recoveries are poor due to the presence of this analyte in the sample at a concentration greater than 4 times the spiked amount. Acceptable method performance for this analyte has been demonstrated by the laboratory control sample.

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

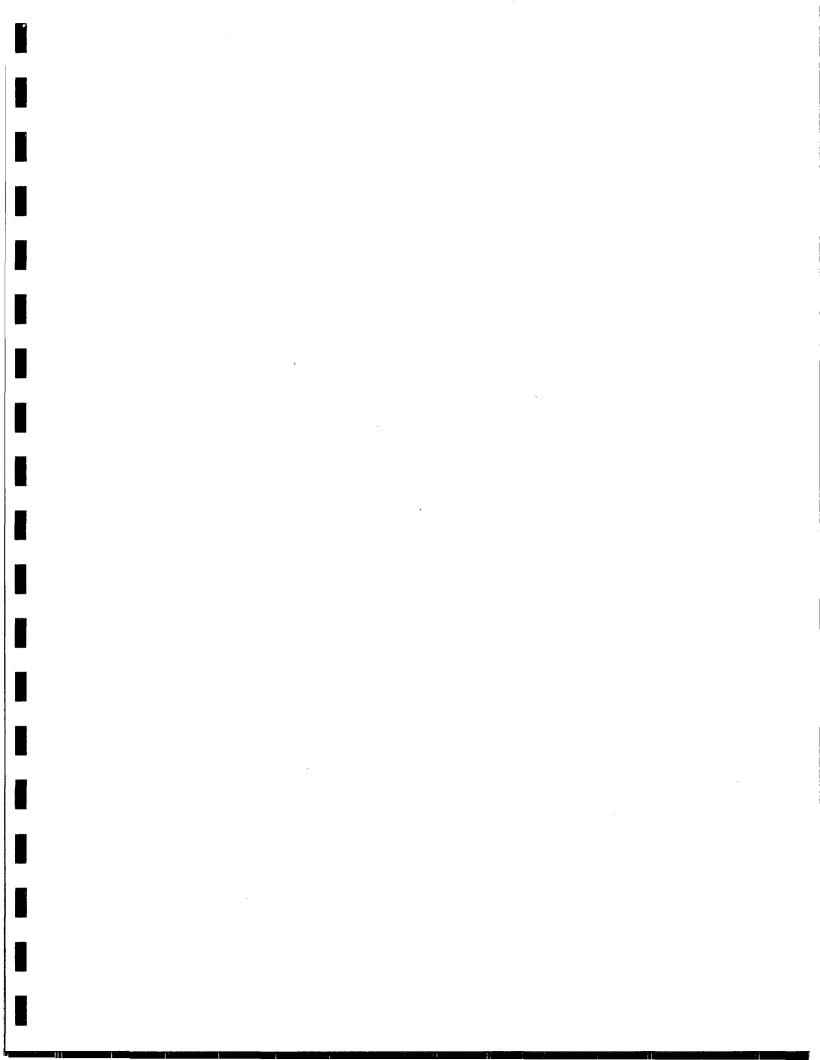
χç Pace Project Number 10 N 135 ンいナ ング N/A ☐ DRINKING WATER 500 (C) (C) (C) Samples of 🕽 SAMPLE CONDITION OMI OMN ONC Sealed Cooler N/A Other_ WA) DULIONA JENDIS DE (T) (D) (D) aoj ud Весемед Page: o⁰ ni qməT GROUND WATER DATE TIME M Z SC RCRA GA Ю Filtered (Y/N) Requested Analysis: ACCEPTED BY (AFFILIATION SITÉ LOCATION ющо □ NPDES Methanol □ UST Preservatives HOBN нсі FONH POSZH CONTAINERS CHAUCSSON 40E 8-24 0830 8 SÂMPLER NAME AND SIGNATURE AT COLLECTION RELINQUISHED BY AFFILIATION DATE TIME SAMPLE TEMP anes Kenned 3 $\frac{1}{\sqrt{3}}$ 7 COMPOSITE END/GRAB 7 1.5% え え Z 2 天 めれら Pace Quote Reference: Pace Project Manager: Invoice Information: Сотрапу Name: 2 PRINT Mame of SAMPLER: 2 / S 100 Section C 7 100 K <u>17</u> 4 7. X Pace Profile #: Q \bar{c} \mathfrak{T} Attention (3) Address: COMPOSITE START DATE Christ ؟ ئىل J SAMPLE TYPE CERS Project Number: 63의 12년 13 Required Project Information MATRIX CODE Project Name: C.L. Report To: Purchase Order No.: Section B Valid Matrix Codes
MATRIX
DRINKING WATER
WASTER
WASTER
PRODUCT
SOIL/SOLID JOINE las la Citimorilà, con ASO West Fax (432) (EL. C.18) Section D Required Client Information د... \bigcirc ور ر.... (A-Z, 0-9 / .-) Samples IDs MUST BE UNIQUE ٩ ت ಾ O \bigcirc SAMPLED Face Analytical One Character per box. 1 N 7 Lock 7 J 7 1 7 ... 2 \prec 7n.{ C رن £~.4 Section A Required Client Information: ೦ 0 Miss - Jan (Ethila ورزك 12 ()o 1 Additional Comments: Requested Due Date/TAT: d ومي e (°) 7 J 名は 4 ş ŝ 1 9 3/2 2 3 3 3 7 2. . 1 3 Email To: » 4 Company 4 1 1/2 7.5°20° مسيح. مثيري Z 2 Address 9 6

DAIE Signed (MM / DD / YY)

SIGNATURE of SAMPLERY

CHAIN-OF-CUSTODY/Anamican Request Document

Pace Project Number E E 500 たくか 1613 N/X M/Y DRINKING WATER N/A N/z Samples *്* SAMPLE CONDITION MI MIN DINC Sealed Cooler ⊡ Other_ (NIX) BUILDING JENDIS The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. T O NK N/A Page: **Ресеі**лед NI REGULATORY AGENCY O^O ni qməT ☐ GROUND WATER ACCEPTED BY AFFILIATION | DATE | TIME F-26-4 4836 × **Z** 7062239 သ ေ RCRA ЮН ₽ □ Filtered (Y/N) Requested Analysis: SITE LOCATION iediC □ NPDES lonsitteN mi, ☐ UST Preservatives HCI _ЕОИН POSZH OF ANS CO. CONTAINERS (n 30 # 826 9830 SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION RELINQUISHED BY AFFILIATION DATE TIME 133 COMPOSITE END/GRAB - S 200 727 130 326 875 55 Pace Quote Reference Pace Project Manager: Section C Invoice Information: 27/3 200 8/24 12 de 15 PRINT Name of SAMPLER: びな E CO Company Name 8/25 7. c/3 h7/3 7 Pace Profile #: DATE **Q** Attention: Address: COMPOSITE START 2730 DATE こと 77 500 SAMPLE TYPE Ú 1-Required Project Information ACOD XINTAM CENC Report To: Charles Purchase Order No.: Project Number: Project Name: Valid Matrix Codes
MATRIX
DRINKING WATER
WATER WASTE WATER PRODUCT SOIL/SOLID Copy To: 1890 - 787 NIFE でなることできる ٠...٩ 42.33 Section D Required Client Information ... 0 0 السا One Character per box. (A-Z, 0-9 / .-) Samples IDs MUST BE UNIQUE **つ** SAMPLED 7 7 23× 5. 50 250 Face Analytical 7 ~ 2) 0 ي کي ا 0.0 5\$ 20 conclass @ ζ, Section A Required Client Information: () T O 0 رن Additional Comments: Requested Due Date/TAT: 1837-183 Chr. Ź, ೦೦ ð 1 2 3 1 2 S - Year 3 7. Phone (Phone 2 £ Company Email To: Ź 4 Address


urser

eor uc

DATE Signed (MM / DD / YY)

Kenned

SIGNATURE of SAMPLER:

1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

Analytical Report Number: 875594

Client: PACE ANALYTICAL SERVICES, INC.

Lab Contact: Brian Basten

Project Name: CHEVRON / CRA

Project Number: 2062234

			_
Lab Sample Number	Field ID	Matrix	Collection Date
875594-001	MW-182406	WATER	08/24/06 15:55
875594-002	MW-282406	WATER	08/24/06 16:00
875594-003	MW-382406	WATER	08/24/06 16:45
875594-004	MW-482506	WATER	08/25/06 11:10
875594-005	MW-582406	WATER	08/24/06 16:55
875594-006	MW-682406	WATER	08/24/06 14:35
875594-007	MW-782406	WATER	08/24/06 15:05
875594-008	MW-882406	WATER	08/24/06 14:30
875594-009	MW-982506	WATER	08/25/06 10:30
875594-010	MW-1082506	WATER	08/25/06 12:45
875594-011	MW-1282406	WATER	08/24/06 13:10
875594-012	MW-1382406	WATER	08/24/06 15:10
875594-013	MW-1482406	WATER	08/24/06 12:30
875594-014	MW-1682406	WATER	08/24/06 13:45
875594-015	MW-1782406	WATER	08/24/06 13:50
875594-016	MW-1982406	WATER	08/24/06 12:20
875594-017	MW-2082406	WATER	08/24/06 12:35
875594-018	WMW82506	WATER	08/25/06 10:15
875594-019	SW82506	WATER	08/25/06 11:15
875594-020	RW-182506	WATER	08/25/06 12:30
875594-021	DUP182406	WATER	08/24/06
875594-022	DUP282506	WATER	08/25/06

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Approval Signature

Date

9-18-06

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-182406

Matrix Type: WATER

Collection Date: 08/24/06

Report Date: 09/18/06

Lab Sample Number: 875594-001

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Ani Method
Hydroxide Alkalinity	<	10	10	1	mg/L	·	09/05/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		300	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Chloride		180	25	5	mg/L		08/31/06	EPA 300.0	EPA 300.0
Fluoride	<	2.5	2.5	5	mg/L	CN	08/31/06	EPA 300.0	EPA 300.0
Sulfate		81	20	5	mg/L		08/31/06	EPA 300.0	EPA 300.0

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-282406

Matrix Type: WATER Collection Date: 08/24/06

Report Date: 09/18/06

Lab Sample Number: 875594-002

INORG	ANICS
-------	-------

MOROAMOO										
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Ani Method	
Hydroxide Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B	•
Bicarbonate Alkalinity		250	10	1	mg/L		09/05/06	SM 2320B	SM 2320B	
Carbonate Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B	
Chloride		290	25	5	mg/L		08/31/06	EPA 300.0	EPA 300.0	
Fluoride	<	2.5	2.5	5	mg/L	С	08/31/06	EPA 300.0	EPA 300.0	
Sulfate		140	20	5	mg/L		08/31/06	EPA 300.0	EPA 300.0	

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-382406

Matrix Type: WATER

Collection Date: 08/24/06

Report Date: 09/18/06

Lab Sample Number: 875594-003

INORGANICS	S
------------	---

INURGANICS									
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Anl Method
Hydroxide Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		260	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Chloride		750	250	50	mg/L		09/01/06	EPA 300.0	EPA 300.0
Fluoride		2.6	2.5	5	mg/L		08/31/06	EPA 300.0	EPA 300.0
Sulfate		190	20	5	ma/L		08/31/06	EPA 300.0	EPA 300.0

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-482506

Matrix Type: WATER

Collection Date: 08/25/06

Report Date: 09/18/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Anl Method
Hydroxide Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		140	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Chloride		12000	2500	500	mg/L		09/01/06	EPA 300.0	EPA 300.0
Fluoride	<	5.0	5.0	10	mg/L	С	08/31/06	EPA 300.0	EPA 300.0
Sulfate		290	40	10	mg/L		08/31/06	EPA 300.0	EPA 300.0

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-582406

Matrix Type: WATER Collection Date: 08/24/06

Report Date: 08/24/06

INUNGANICS									
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Ani Method
Hydroxide Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		190	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Chloride		930	50	10	mg/L		08/31/06	EPA 300.0	EPA 300.0
Fluoride	<	5.0	5.0	10	mg/L	С	08/31/06	EPA 300.0	EPA 300.0
Sulfate		140	40	10	mg/L		08/31/06	EPA 300.0	EPA 300.0

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-682406

Matrix Type: WATER

Collection Date: 08/24/06

Report Date: 09/18/06

Lab Sample Number: 875594-006

INORGANICS

INURGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Hydroxide Alkalinity	. <	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		260	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Chloride		590	50	10	mg/L		09/01/06	EPA 300.0	EPA 300.0
Fluoride		3.0	2.5	5	mg/L		08/31/06	EPA 300.0	EPA 300.0
Sulfate		170	20	5	ma/L		08/31/06	EPA 300.0	EPA 300.0

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-782406

Matrix Type: WATER

Collection Date: 08/24/06

Report Date: 09/18/06

INDIVOZINO									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Hydroxide Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		260	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Chloride		230	25	5	mg/L		08/31/06	EPA 300.0	EPA 300.0
Fluoride		3.1	2.5	5	mg/L		08/31/06	EPA 300.0	EPA 300.0
Sulfate		110	20	5	mg/L		08/31/06	EPA 300.0	EPA 300.0

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-882406

Matrix Type: WATER

Collection Date: 08/24/06

Report Date: 09/18/06

Lab Sample Number: 875594-008

INORGANICS

INCINOAINOS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Ani Method
Hydroxide Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		280	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B
Chloride		710	50	10	mg/L		09/01/06	EPA 300.0	EPA 300.0
Fluoride		3.2	2.5	5	mg/L		08/31/06	EPA 300.0	EPA 300.0
Sulfate		170	20	5	mg/L		08/31/06	EPA 300.0	EPA 300.0

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Field ID: MW-982506

Project Number: 2062234

Matrix Type: WATER Collection Date: 08/25/06

Report Date: 09/18/06

INC	RG	AN	ICS
-----	----	----	-----

INURGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Hydroxide Alkalinity	<	10	10	1	mg/L	41 A-1-1-1	09/07/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		260	10	1	mg/L	N	09/07/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/07/06	SM 2320B	SM 2320B
Chloride		10000	2500	500	mg/L		09/01/06	EPA 300.0	EPA 300.0
Fluoride	<	2.5	2.5	5	mg/L	С	08/31/06	EPA 300.0	EPA 300.0
Sulfate		360	80	20	ma/L		09/01/06	EPA 300.0	EPA 300.0

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-1082506

Matrix Type: WATER Collection Date: 08/25/06

Report Date: 09/18/06

ı		-	_	^	•		ICS
ı	n	16 1	×	1 =	Δ	N	II .×

Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Ani Method
Hydroxide Alkalinity	<	10	10	1	mg/L		09/07/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		110	10	1	mg/L		09/07/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/07/06	SM 2320B	SM 2320B
Chloride		2200	500	100	mg/L		09/01/06	EPA 300.0	EPA 300.0
Fluoride	<	2.5	2.5	5	mg/L	С	08/31/06	EPA 300.0	EPA 300.0
Sulfate		97	20	5	mg/L		08/31/06	EPA 300.0	EPA 300.0

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-1282406

Matrix Type: WATER Collection Date: 08/24/06

Report Date: 09/18/06

Lab Sample Number: 875594-011

INORGANICS

Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method	
Hydroxide Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B	
Bicarbonate Alkalinity		87	10	1	mg/L		09/05/06	SM 2320B	SM 2320B	
Carbonate Alkalinity	<	10	10	1	mg/L		09/05/06	SM 2320B	SM 2320B	
Chloride		1700	500	100	mg/L	N	09/01/06	EPA 300.0	EPA 300.0	
Fluoride		0.93	0.50	1	mg/L	N	09/01/06	EPA 300.0	EPA 300.0	
Sulfate		48	4.0	1	mg/L	N	09/01/06	EPA 300.0	EPA 300.0	

Sulfate

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

EPA 300.0

Client: PACE ANALYTICAL SERVICES, INC.

120

20

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-1382406

Matrix Type: WATER Collection Date: 08/24/06

Report Date: 09/18/06

Lab Sample Number: 875594-012

EPA 300.0

09/01/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Hydroxide Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		150	10	1	mg/L	N	09/06/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Chloride		760	50	10	mg/L		09/01/06	EPA 300.0	EPA 300.0
Fluoride	<	2.5	2.5	5	mg/L	С	09/01/06	EPA 300.0	EPA 300.0

mg/L

5

Fluoride

Sulfate

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

EPA 300.0

EPA 300.0

Client: PACE ANALYTICAL SERVICES, INC.

< 5.0

690

5.0

40

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-1482406

Matrix Type: WATER

Collection Date: 08/24/06

Report Date: 09/18/06

Lab Sample Number: 875594-013

EPA 300.0

EPA 300.0

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Anl Method
Hydroxide Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		85	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Chloride		5600	500	100	mg/L		09/01/06	EPA 300.0	EPA 300.0

mg/L

mg/L

10

10

С

09/01/06

09/01/06

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-1682406

Matrix Type: WATER

Collection Date: 08/24/06 Report Date: 09/18/06

NOR	GANICS
-----	--------

MONGAMO										
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Anl Method	
Hydroxide Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B	_
Bicarbonate Alkalinity		490	10	1	mg/L		09/06/06	SM 2320B	SM 2320B	
Carbonate Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B	
Chloride		500	25	5	mg/L		09/01/06	EPA 300.0	EPA 300.0	
Fluoride	<	2.5	2.5	5	mg/L	С	09/01/06	EPA 300.0	EPA 300.0	
Sulfate		89	20	5	mg/L		09/01/06	EPA 300.0	EPA 300.0	

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-1782406

Matrix Type: WATER

Collection Date: 08/24/06

Report Date: 09/18/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Hydroxide Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		200	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Chloride		560	50	10	mg/L		09/01/06	EPA 300.0	EPA 300.0
Fluoride	<	2.5	2.5	5	mg/L	С	09/01/06	EPA 300.0	EPA 300.0
Sulfate		100	20	5	ma/L		09/01/06	EPA 300.0	EPA 300.0

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-1982406

Matrix Type: WATER Collection Date: 08/24/06

Report Date: 09/18/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Ani Method
Hydroxide Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		250	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Chloride		3900	500	100	mg/L		09/01/06	EPA 300.0	EPA 300.0
Fluoride	<	5.0	5.0	10	mg/L	С	09/01/06	EPA 300.0	EPA 300.0
Sulfate		390	40	10	ma/L		09/01/06	EPA 300.0	EPA 300 0

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: MW-2082406

Matrix Type: WATER

Collection Date: 08/24/06

Report Date: 09/18/06

INORGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Ani Method
Hydroxide Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		1100	10	1 `	mg/L		09/06/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Chloride		1100	500	100	mg/L		09/01/06	EPA 300.0	EPA 300.0
Fluoride	<	2.5	2.5	5	mg/L	С	09/01/06	EPA 300.0	EPA 300.0
Sulfate		84	20	5	mg/L		09/01/06	EPA 300.0	EPA 300.0

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: WMW82506

Matrix Type: WATER

Collection Date: 08/25/06

Report Date: 09/18/06 **Lab Sample Number**: 875594-018

INORGANICS

INURGANICS									
Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method
Hydroxide Alkalinity	<	10	10	1	mg/L		09/07/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		150	10	1	mg/L		09/07/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/07/06	SM 2320B	SM 2320B
Chloride		1500	500	100	mg/L		09/01/06	EPA 300.0	EPA 300.0
Fluoride	<	2.5	2.5	5	mg/L	С	09/01/06	EPA 300.0	EPA 300.0
Sulfate		97	20	5	mg/L		09/01/06	EPA 300.0	EPA 300.0

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: SW82506

Matrix Type: WATER

Collection Date: 08/25/06

Report Date: 09/18/06

INORGANICS

IIIONGAIIIOG										
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Anl Method	
Hydroxide Alkalinity	<	10	10	1	mg/L		09/07/06	SM 2320B	SM 2320B	
Bicarbonate Alkalinity		300	10	1	mg/L		09/07/06	SM 2320B	SM 2320B	
Carbonate Alkalinity	<	10	10	1	mg/L		09/07/06	SM 2320B	SM 2320B	
Chloride		3100	500	100	mg/L		09/01/06	EPA 300.0	EPA 300.0	
Fluoride	<	5.0	5.0	10	mg/L	С	09/01/06	EPA 300.0	EPA 300.0	
Sulfate		600	40	10	mg/L		09/01/06	EPA 300.0	EPA 300.0	

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: RW-182506

Matrix Type: WATER

Collection Date: 08/25/06

Report Date: 09/18/06

Lab Sample Number: 875594-020

INORGANICS

11101100										
Test		Result	EQL	Dilution	Units	Code	Ani Date	Prep Method	Ani Method	
Hydroxide Alkalinity	<	10	10	1	mg/L		09/07/06	SM 2320B	SM 2320B	_
Bicarbonate Alkalinity		290	10	1	mg/L		09/07/06	SM 2320B	SM 2320B	
Carbonate Alkalinity	<	10	10	1	mg/L		09/07/06	SM 2320B	SM 2320B	
Chloride		2300	500	100	mg/L		09/01/06	EPA 300.0	EPA 300.0	
Fluoride	<	5.0	5.0	10	mg/L	С	09/01/06	EPA 300.0	EPA 300.0	
Sulfate		440	40	10	mg/L		09/01/06	EPA 300.0	EPA 300.0	

Fluoride

Sulfate

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

EPA 300.0

EPA 300.0

Client: PACE ANALYTICAL SERVICES, INC.

< 2.5

100

Project Name: CHEVRON / CRA

Project Number: 2062234

Field ID: DUP182406

Matrix Type: WATER

Collection Date: 08/24/06

Report Date: 09/18/06

Lab Sample Number: 875594-021

EPA 300.0

EPA 300.0

INORGANICS									
Test	•	Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Ani Method
Hydroxide Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Bicarbonate Alkalinity		320	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Carbonate Alkalinity	<	10	10	1	mg/L		09/06/06	SM 2320B	SM 2320B
Chloride		530	50	10	ma/L		09/01/06	EPA 300.0	EPA 300.0

mg/L

mg/L

CN

09/01/06

09/01/06

5

5

2.5

20

Analytical Report Number: 875594

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: PACE ANALYTICAL SERVICES, INC.

Project Name: CHEVRON / CRA

Project Number: 2062234 Field ID: DUP282506 Matrix Type: WATER
Collection Date: 08/25/06

Report Date: 09/18/06 **Lab Sample Number**: 875594-022

INORGANICS

Test		Result	EQL	Dilution	Units	Code	Anl Date	Prep Method	Anl Method	
Hydroxide Alkalinity	<	10	10	1	mg/L		09/07/06	SM 2320B	SM 2320B	_
Bicarbonate Alkalinity		300	10	1	mg/L		09/07/06	SM 2320B	SM 2320B	
Carbonate Alkalinity	<	10	10	1	mg/L		09/07/06	SM 2320B	SM 2320B	
Chloride		2300	500	100	mg/L		09/01/06	EPA 300.0	EPA 300.0	
Fluoride	<	5.0	5.0	10	mg/L	С	09/01/06	EPA 300.0	EPA 300.0	
Sulfate		450	40	10	mg/L		09/01/06	EPA 300.0	EPA 300.0	

Qualifier Codes

	alifier Co	odes Explanation
A	Inorganic	Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
В	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
В	Organic	Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
С	All	Elevated detection limit.
D	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
E	Inorganic	Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.
Ε	Organic	Analyte concentration exceeds calibration range.
F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.
F	Organic	Surrogate results outside control criteria.
G	All	The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.
Н	All	Preservation, extraction or analysis performed past holding time.
HF	Inorganic	This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.
J	All	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.
K	Inorganic	Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation.
K	Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
L	All	Elevated detection limit due to low sample volume.
M	Organic	Sample pH was greater than 2
N	All	Spiked sample recovery not within control limits.
0	Organic	Sample received overweight.
Р	Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.
Q	All	The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.
S	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
U	All	The analyte was not detected at or above the reporting limit.
V	All	Sample received with headspace.
W	All	A second aliquot of sample was analyzed from a container with headspace.
Х	All	See Sample Narrative.
Z	Organics	This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846.
&	All	Laboratory Control Spike recovery not within control limits.
*	All	Precision not within control limits.
+	inorganic	The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.
<	All	The analyte was not detected at or above the reporting limit.
1	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.
2	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.
3	Inorganic	BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.
4	Inorganic	BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
5	Inorganic	BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
6	Inorganic	BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
7	Inorganic	BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Lab Number	TestGroupID	Field ID	Comment
875594	W-F-W	All Samples	C - Elevated detection limit due to matrix effect. Samples 001,002,004,005,009,010,012-022 were diluted due to high chloride and sulfate amounts.
875594-012	W-ALK2-W	MW-1382406	N - Spiked sample recovery not within control limits.

Pace Ana	lytical
Services,	Inc.

Analysis Summary by Laboratory

1241 Bellevue Street Green Bay, WI 54302

Test Group Name	875594-001	875594-002	875594-003	875594-004	875594-005	875594-006	875594-007	875594-008	875594-009	875594-010	875594-011	875594-012	875594-013	875594-014	875594-015	875594-016	875594-017	875594-018	875594-019	875594-020	875594-021	875594-022	
ALKALINITY AS HYDROXIDE	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	8	В	
ALKALINITY, BICARB/CARB	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	
CHLORIDE	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	
FLUORIDE	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	
SULFATE	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	

TX Certification	Address	Facility	Code
Not Certified	1241 Bellevue Street, Suite 9 Green Bay, WI 54302	Green Bay Lab (Bellevue St)	В
Not Certified	•	Green Bay Lab (Bellevue St)	В

QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

																								ı
Batch:	87	875594										G	QC Type	Clien	Client Sample ID	e iD		Lab (Lab Sample ID	Ω				
Lab Section:	≶	WETCHEM	>									2	MB	WCG	WCG1918-095MB	35MB		WCG	WCG1918-095MB	5MB				
QC Batch Number: 13975	ier: 13	975										_	CS	WCG	WCG1918-095MBLCS	35MBL	SS	WCG	WCG1918-095MBLCS	5MBL(જ			
Dran Mathod	П	EDA 300 0	_									2	MS	8755	875599-001MS	TS SI		8755	875599-001MS	တ				
rich Medica.		2.000										2	MS	MW.	MW-182406 20468454MS	204684	54MS	8755	875594-001MS	<u>8</u>				
Analytical Method:		EPA 300.0	_									2	MSD	8755	875599-001MSD	ISD		87559	875599-001MSD	SD				
												2	MSD	MW-	MW-182406 20468454MS	204684	54MS	8755	875594-001MSD	SD				
Client Sample (D		Lab Sample ID	Dle ID	MB (D				ច	Client Sample ID	ample	ĕ		Lab Sample ID	nple ID	MB ID	۵								
MW-182406		875594-001	_	MB				≩	MW-282406	90			875594-002	02	MB									
MW-382406		875594-003	က	MB				Ž	MW-482506	90			875594-004	4	MB									
MW-582406		875594-005	9	B :				≨ :	MW-682406	9 5			875594-006	90	₩.									
MW-782406 MW-982506		875594-007 875594-009	⊳ 6	MB MB				≨≩	MVV-882406 MVV-1082506	209			875594-008 875594-010	B 6	M M									
										TCS/rcsp	QS:											MS/MSD	SD	
	Method	SOT			CSD			CSD CSD		Control Limits	imits	Parent	Parent	MS			MSD	_		MSD MSD		Control Limits	Limits	i
Test Name	Result		LCS Recovery	covery % C		LCSD Recovery	ecovery %	품 %	ر د د د	<u>ನ</u> %	. RPD	Sample	Result	Spiked		MS Recovery			MSD Recovery Conc % C		<u>ನ</u> %	" CCL	RPD %	
Chloride	1		18.7	93.4	1	1	-		8	110	92	875594-001	179.6	100.0	270.7	91.1	100.0	270.9	91.3	0.1	8	110	20	
Fluoride	960.0	2.00	1.9	95.5	1	1			8	19	8	875594-001	2.05	10.0	10.7	86.5 N	10.0	F	89.5 N	5.8	8	110	20	
Sulfate <	c 0.77	16.00	15.2	95.3	!	1	-	1	8	₽	8	875594-001	80.80	80.00	153.8	91.2	80.00	154	91.6	0.2	8	#	20	Τ
Chloride	28.0	20.00	18.7	93.4	1	ı	1	ı	8	110	8	875599-001	104.8	100.0	211.8	107.1	100.0	199.3	94.6	6.1	6	110	8	
Fluoride <	0.096	2.0	1.9	95.5	ı	1	1	ı	8	110	20	875599-001	0.26	2.0	2	86.5 N	2:0	2	88.0 N	1.5	06	110	82	
Suifate <	. 0.77	16.0	15.2	95.3		I	1	1	6	110	70	875599-001	23.0	16.0	38.2	87.8	16.0	38.6	97.4	1.1	96	110	20	

Conc = mg/L unless otherwise noted

Report Date: 9/18/2006

QC Batch Number: 13975

C = QC Code, see Qualifer Sheet
Parent Result is reported down to MDL in order to allow Validation of this worksheet

QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

																		I	ı						ı
Batch:	~	875594	₹+		İ			i					ĕ	QC Type	Client	Client Sample ID	e D		Lab	Lab Sample ID	O a		1		
Lab Section:	_	WETCHEM	HEM										MB	m	WCG	WCG1918-096MB	6MB		WCG	WCG1918-096MB	JM96C	m			
OC Batch Number: 13994	ber	13994											SOT	ઇ	WCG	WCG1918-096MBLCS	EMBLC	જ	WCG	WCG1918-096MBLCS	M96C	3LCS			
Drop Mothod:		C 000 700 0	6										MS	۲۵	DUP1	DUP182406 20468474MS	04684	74MS	8755	875594-021MS	MS				
riep ivieu iou.		7 4 1	0.0										MS	m	MW-1;	MW-1282406 20468464M	20468	164M	8755	875594-011MS	MS				
Analytical Method:		EPA 300.0	0.00										M	MSD	DUP1	DUP182406 20468474MS	04684	74MS	8755	875594-021MSD	MSD				
													ME	MSD	MW-1.	MW-1282406 20468464M	20468	464M	8755	875594-011MSD	MSD				
Client Sample ID		Lab	Lab Sample ID		MB ID				Clie	nt San	Client Sample ID		7	Lab Sample ID	ple ID	MB ID	_								
MW-1282406		8755	875594-011	MB	ø				MW-	MW-1382406	ç		60	875594-012	2	MB									
MW-1482406		8755	875594-013	Σ	m r				MW.	MW-1682406	<i>g</i> ,		uD (875594-014	4 (B :									
MW-1782406 MW-2082406		8755 8755(875594-015 875594-017	MB MB	മെ				- AMA	MW-1982406 WMW82506	œ		ω α ο	8/5594-016 875594-018		¥ ¥ ¥ ¥									
SW82506 DUP182406		8755 8755	875594-019 875594-021	MB MB	മെത				PUP.	RW-182506 DUP282506			w 00	875594-020 875594-022	0 8	MB MB									
	Method	- P	Ų			8			lcs/	Cont	LCS/LCSD Control Limits		Darent	tuared	V.			U. A.			~ 2	MS/	MS	MS/MSD Control Limits	
Test Name	Result	<i>o</i> , -		LCS Recovery Conc %	C		LCSD Recovery Conc % C		RPD C	۔ اکا %	UCL RF	RPD Sa		Result	Spiked	MS Recovery Conc % C	overy % C		MSD F	MSD Recovery Conc % C	()	RPD C	n "	UCL RI	RPD %
Chloride	< 0.82	82 20.000	-	19.4 97.1	_	1	1		-	06	110	20 875	875594-011	1686.0	2000.0	3503	90.8	2000.0	3435	87.4	2	2.0	96	110	8
Fluoride	> 0.096	96 2.0		2 98.5	_	1	1	1	1	06	110 2	20 875	875594-011	0.93	2.0	2.5	N 0.67	2.0	2.6	81.0	Z	1.6	90	110	20
Sulfate	< 0.77	77 16.0		15.8 98.8				-	1	8	110 2	20 875	875594-011	48.0	16.0	25	1001	16.0	65.8	111.4	2	2.8	96	19	8
Chloride	< 0.82	92 20.00	 	19.4 97.1		1	1	1		06	110 2	20 875	875594-021	532.9	200.0	732	9.66	200.0	753.2	110.2	2.	2.9	90	110	20
Fluoride	> 0.096	96 2.00	_	2 98.5			1		1	90	110 2	20 875	875594-021	2:00	10.0	10.7	N 0.78	10.0	10.6	86.0	.0 .0	0.9	96	110	20
Sulfate	< 0.77	16.00	-	15.8 98.8		1	1		1	ഒ	110 2	20 875	875594-021	101.1	90.00	175.4	97.8	80.00	175.4	92.9	o	0.0	90	110	8

Conc = mg/L unless otherwise noted

Report Date: 9/18/2006

QC Batch Number: 13994

C = QC Code, see Qualifer Sheet

Parent Result is reported down to MDL in order to allow Validation of this worksheet

QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

WCG1919-024MBLCS WCG1919-024MB

Lab Sample ID

QC Type

875594-001MSD

875594-001MS

MW-182406 20468454MS MW-182406 20468454MS

MSD

WCG1919-024MBLCS WCG1919-024MB Client Sample 1D

> CS SE

WETCHEM 875594 Lab Section:

Batch:

14056 QC Batch Number: SM 2320B Prep Method: **SM 2320B** Analytical Method:

MB MB MB MB Lab Sample ID 875594-002 875594-004 875594-006 875594-008 Client Sample ID MW-482506 MW-682406 MW-882406 MW-282406 MB ID MB MB MB Lab Sample ID 875594-001 875594-003 875594-005 875594-007 875594-001 Client Sample ID MW-582406 MW-782406 MW-1282406 MW-182406 MW-382406

201		11212010																					
	Method	<u>.</u>			9			/SZI		LCS/LCSD Control Limits	SD	Darent	MS/MSD MS/MSD MS/MSD MS/MSD MS/MSD MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/M	y.			G W			MS/	0	MS/MSD Control Limits	SD imits
Test Name	Result	Spiked	rcs	Recovery	Spiked LCS Recovery Spiked LCSD Recovery	CSD	Recovery	scovery RPD LCL UCL RPD	김	l NCL	RPD	Sample	Result	Spiked	MS Re	covery	Spiked	MSD Re	ecovery	RPD	디 디	JON	RPD
!	Conc	Conc	Conc	%	Conc	Conc	%	%	%	%	%	Number	Сопс	Conc	Conc	၁ %	Conc	Conc	°	%	%	%	%
Alkalinity as CaCO3	< 2.5	0	1		1	1	-	-	i	1	1	875594-001 < 3.7	3.7				,	-		-	-	 	
Bicarbonate Alkalinity	< 2.5	12.60	12.60 13.1 103.8	103.8	1		1	ı	8	-	20	120 20 875594-001	303.0 100.0 403.3 100.3	100.0	403.3		100.0 401.1 98.1	401.1		0.5	8	120	20
Carbonate Alkalinity	< 2.5	0	1	1	1		-	1		ı	1	875594-001 < 3.7	3.7	1	1	1	ļ	1	1	1		1	1

Report Date: 9/18/2006

QC Batch Number: 14056

C = QC Code, see Qualifer Sheet

Conc ≈ mg/L unless otherwise noted

Parent Result is reported down to MDL in order to allow Validation of this worksheet

Pace Analytical

QC Summary

Services, Inc.

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

WCG1919-025MBLCS WCG1919-025MB 875594-012MSD Lab Sample ID 875594-012MS MW-1382406 20468465M MW-1382406 20468465M WCG1919-025MBLCS WCG1919-025MB Client Sample ID MB MB MB Lab Sample ID 875594-013 875594-015 875594-017 QC Type MSD CS ₽ Σ Client Sample ID MW-1482406 MB ID MB MB Lab Sample ID WETCHEM 875594-012 SM 2320B SM 2320B 875594 14084 QC Batch Number: Analytical Method: Prep Method: Client Sample ID Lab Section: MW-1382406 Batch:

D nits	RPD	%	1	20	ı
WS/MSI ntrol Lin	CL	%	į	120	ı
- io	ij	%	!	80	1
MS/	RPD CP	ပ %		4.9	ı
	<u>-</u>	ပ	_	z	
	Recove.	%	1	124.3	1
	MSD	Conc	1	272.5	ı
C N	Spiked	C Conc	I	_	1
	ecovery	%	1	111.2	1
	MS Re	Conc		259.4	1
v S	Spiked	Conc	i	100.0	ı
Parant	Result	Conc	3.7	148.2	3.7
			> 2		> 2
Darent		Number	875594-01.		875594-012 <
ίο nits	RPD	%		82	ı
CS/LCS ntrol Lin	걸	%		12	ı
	디디	%	-	8	i
/SO1	RPD F	ر د د	1		1
	ecovery	ა %	-		1
The same	LCSD R	Conc	-	ı	
9	Spiked	Conc	,	}	J
	eıZ	ပ	<u> </u>	8	
	Recove	%	-	103.	1
	ა 	Conc	!	1	
ğ	Spiked	Conc	0	12.60	0
Method	Result	Conc	3.7	3.7	3.7
			×	V	×
	Test Name		Ikalinity as CaCO3	sicarbonate Alkalinity	Sarbonate Alkalinity
	LCS/LCSD LCS/LCSD Control Limits Derent MS	Method LCSD LCSD Control Limits Parent Parent Parent MSD MSD MSD Result Spiked LCS Recovery Spiked LCSD Recovery RPD LCL UCL RPD Sample Result Spiked MS Recovery RPD Recovery RPD	Method LCS LCSD LCSD Recovery LCSD Recovery RPD Conc LC Conc C Conc	Method LCS LCSD Control Limits Parent Parent MS MSD LCS LCSD Control Limits Result Spliked LCS Recovery Spliked Conc Soc Conc Co	

Conc = mg/L unless otherwise noted C = QC Code, see Qualifer Sheet

Report Date: 9/18/2006

QC Batch Number: 14084

Parent Result is reported down to MDL in order to allow Validation of this worksheet

QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Batch:	875594			QC Type	Client Sample ID	Lab Sample ID
Lab Section:	WETCHEM			MB	WCG1919-026MB	WCG1919-026MB
OC Batch Number: 14110	14110			rcs	WCG1919-026MBLCS	WCG1919-026MBLCS
December 1	OUCCU PAO			MS	MW-982506 20468462MS	875594-009MS
Prep Method.	SIVI 2320B			MSD	MW-982506 20468462MS	875594-009MSD
Aliaiyildal Melliod.	SIVI 2320B					
Client Sample ID	Lab Sample ID	MB ID	Client Sample ID	Lab Sample ID	le ID MB ID	
MW-982506	875594-009	MB	MW-1082506	875594-010	MB	
WMW82506	875594-018	MB	SW82506	875594-019	MB	
RW-182506	875594-020	MB	DUP282506	875594-022	MB	

	Method	6			2			rcs/		LCS/LCSD Control Limits	D siits	Darent	Daront	v N			C W			MS/	<u>ن</u>	MS/MSD Control Limits	SD imits	
Test Name	Result	Spiked	LCSR	ecovery	LCS Recovery Spiked LCSD Re	LCSDF	RECOVERY RPD LCL UCL RPD	RPD	걸	걸	RPD			Spiked	MS Re	covery	Spiked	MSD Re	scovery			UCL	LCL UCL RPD	
	Conc	Conc	Conc	%	Conc	Conc	ں %	%	% C % C %	%	%	Number	Conc	Conc	Conc	° C	Conc	Conc	%	%	% C % %	%	%	
Alkalinity as CaCO3	< 3.7		1		-	j	;	1	i	ì	,	875594-009 < 3.7	3.7	1	1	1	-	1	ı	-	1	-		
Bicarbonate Alkalinity	< 3.7	12.60	13.1	103.8	1	J	1	1	8	120	8	80 120 20 875594-009	259.4	100.0	335.7	76.3 N	259.4 100.0 335.7 76.3 N 100.0 327 67.6 N 2.6	327	67.6 N	2.6	80	120	20	_
Carbonate Alkalinity	< 3.7	1	1	1	-	;	1	ı	i	1	1	875594-009 < 3.7	3.7	i	1	1	1	 I	1	1	1	1	I	

Conc = mg/L unless otherwise noted

Report Date: 9/18/2006

QC Batch Number: 14110

C = QC Code, see Qualifer Sheet

Parent Result is reported down to MDL in order to allow Validation of this worksheet

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

Sample Condition Upon Receipt Client Name: Pace -NO Project #875594 Courier: Fed Ex UPS USPS Client Commercial Pace Other Projetition Date. Custody Seal on Cooler/Box Present: yes no Seals intact: yes no Packing Material: Bubble Wrap Bubble Bags None Other Thermometer Used ${\it JB}$ Samples on ice, cooling process has begun Type of ice: (Ver) Blue None Date and Initials of person examining contents: 813006 Biological Tissue is Frozen: Yes No Cooler Temperature Temp should be above freezing to 6°C Comments: ØYes □No □N/A 1. Chain of Custody Present: ✓Yes □No □N/A 2. Chain of Custody Filled Out: ZYes ONO ONA 3 Chain of Custody Relinquished: □Yes □No ☑N/A 4. Sampler Name & Signature on COC: ZYes □No □N/A 5. Samples Arrived within Hold Time: □Yes ☑No □N/A 6. Short Hold Time Analysis (<72hr): ØYes □NO □N/A 7. PUR 9/8/06 Rush Turn Around Time Requested: □N/A 8. ☑Yes □No Sufficient Volume: ØYes □No □N/A 9. Correct Containers Used: □Yes ☑No -Pace Containers Used: ZYes □No □N/A 10. Containers Intact: □Yes □No □N/A 11. Filtered volume received for Dissolved tests ZYes □No □N/A 12. Sample Labels match COC: -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. □Yes □No □N/A 13. All containers needing preservation are found to be in ☐Yes ☐No ØN/A compliance with EPA recommendation. □Yes □No Initial when completed exceptions: VOA, coliform, TOC, O&G, WI-DRO (water) □Yes □No □NA 14. Samples checked for dechlorination: ☐Yes ☐No ØN/A 15. Headspace in VOA Vials (>6mm): Trip Blank Present: ☐Yes ☐No ØN/A 16. Trip Blank Custody Seals Present □Yes □No ØN/A Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Field Data Required? Person Contacted: Date/Time: Comments/ Resolution:

Project Manager Review: Date: X-30-06

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR

Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

ALLC003rev.2, 10June2005

CHAIN-OF-CUSTODY / Analytical Request Document

	1		CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.	STO	DY / A	In The Indiana In The Indiana In Indiana In Indiana In Indiana	cal Reant fields m	quest ust be comp	Doc!	umen urately:	13	شاري
/ Pace Analytical			: • • • • • • • • • • • • • • • • • • •				(· (Page:	_	of 2	4 I
Section A Required Client Information:	Section B Required Project Information:	ion:	Section C Invoice Information:				16.0	200	~	197	565	Τ
	Report To:) Proclas	Attention:					REGULATORY AGENCY	≡NCY			
S. Lnow 250 Wist		1	Company Name:			☐ UST		☐ GROUND WATER ☐ RCRA		Other Other	3 WATER	
1			Address:				□GA			NE C	ည	H
Email To: 106 AC \as 100 (fA WOOL) A COR	Purchase Order No.:		Pace Quote Reference:			SITE LOCATION			,	NOTHER TON M	¥	1
Fax(432) (66-018).	Project Name:	Cimi Cimi	Pace Project Manager:	MANCSSEM	2		(N/X) Postoria	47				I
Due Date/TAT:	16:60 :aqu	五	Pace Profile #:	· .	:		Requested	14/61	1			1
Section D Required Client Information MATRIX	CODE	·			Pre	Preservatives	-	/ V	\ QV	NA.		
SAMPLE ID WASTE WASTE PRODU	WASTE WATER WW COPRODUCT	C=CON	COLLECTED	E TEMP	IINEES OLE		· · · · ·		1	1162758	1165	
One Character per box. One Character per box. ONLSC	공근절		TART COMPOSITE END/GRAB	JAMAS T COLL	o seerved CONTA	S ^O 3	Mos	10 JO	JAT:		7	
Samples IDs MUST BE UNIQUE	R TC ST	=9 S	7	\$ 		Office Meths NgS2 NgOH HCI		イエグ	1592	7400	race Project Number	
108291-WA	180	7	8724 1555	: 1	2 ×	-Sampoly	4	X	700	4660	755/	
70 77 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	200		8 to 16 00	2	X		X	×			ンろん	
30 50 00 5 1. 3 4 8	833	<i>S</i>	8/24 1645	10	3 X		, , ,	X			ノント	-
2506			8/25 1110		3 X		<u> </u>	X			407	
5 m w - 50 2 40 C	000) [16/24 11655		× ×		之 之	×) 	- Т
6 MW - (P 2 4 0 C	300		8/24 H35		~ ~		×	×			シン	1
706 × 81 - MW L	7,80		8051 PG/8	<u>`</u>	X <		<u>/</u>	×	_	,	77.6	
8 M M - 8624 OC	200		8/24 1430		3 X		×	X			125	T T
9 MW-982506	3 ()		0501 52/9		3 X		X	X			275	
10 m W - 11 0 8 2 5 06	0.0		8/25 1245		3 X		/	X			463	ī
11 WW - 1-1-1-20			+						-			
12 M M - 1 2 B 2 4 0 C	011	<i>"</i>			3		X	X			1917	
Additional Comments:	<u>~</u>	RELINQUISHED BY /	BY / AFFILIATION DATE	TIME	ACCEPTE	ACCEPTED BY / AFFILIATION		DATE TIME	SAMPLE	LE CONDITION		г
	<u> </u>	land Will	ly 825	(1000)	(7				+	
	<u> </u>	Bak	15/ 8-2.4	0.832	1	me		1, 00 0 gs	77.77	ny m	NS N	
1 10		MIN	1111 1290	19061	1	D	X			+	+	_
relinguished: fed ex 130/06	18:00		SAMPLER NAME AND SIGNATURE PRINTARQUE SAMPLER.	VATURE					⊃ ^o ni q		led Cooler ples	
SEE REVERSE SIDE FOR INSTRUCTIONS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		9	1 / 1		DATE Sig	DATE Signed (MM/DD/YY)	(44)	məī	Rece of no stanO		

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Face Analytical [®]

Pace Project Number 0/10 intact かくか N/X N/X N/X ☐ DRINKING WATER 171 N/A Samples 1766760 MOTHER NA SAMPLE CONDITION NΑ Other_ Įwų! N/A Page: Oo ni qməT ☐ GROUND WATER M TIME <u>z</u> 506223 DATE ဥ ☐ RCRA □GA OH Filtered (Y/N) Requested Analysis: ACCEPTED BY / AFFILIATION SITE LOCATION Other □ NPDES Methanol □ UST Na₂S₂O₃ Preservatives HOBN HCI EONH Unpreserved OlAVCSEN CONTAINERS 194 /22 50 16:00 SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION 82 1600 TIME 1570 1220 1237 COMPOSITE END/GRAB 1345 1330 Ptsy 1320 RELINQUISHED BY / AFFILIATION DATE pound 8/25/1015 Pace Quote Reference Pace Project Manager: Section C Invoice Information: 127 8/24 6/24 Company Name: h PRINT, Name of SAMPLER p79 73 6/24 Pace Profile #: DATE Ŕ Attention: Address COMPOSITE START SINKE 15 DATE P21950 SAMPLE TYPE G=GRAB C=COMP G Section B
Required Project Information: 3 MATRIX CODE Project Name: (FNC Report To: J (A IN. P.) Purchase Order No.: Project Number: CODE DWW WAT WAP OIL IS Valid Matrix Codes
MATRIX
DRINKING WATER E
WATER WASTE WATER PRODUCT SOIL/SOLID Fax 122 (26, 008) youndas @ comond com د tom. Section D Required Client Information ب O $\overline{\circ}$ $\overline{\circ}$ 0 One Character per box. (A-Z, 0-9 / .-) Samples IDs MUST BE UNIQUE C 0 0 \overline{c} 5. Lung 250 1 SAMPLE 1 Ø 00 0 Ø) N \odot J σ 0 Section A Required Client Information: ∞ ∞ Requested Due Date/TAT: Additional Comments: Phone > ((CL- 008) \mathcal{A} 2 O> 5 1 9 22 1 3 T 3 Z 3 7 3 z 3 uZ Company 纟 Email To: Z 4 ₹ حر 2 9 8

DATE Signed (MM / DD / YY)

SIGNATURE OF SAMPLER:

APPENDIX C

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER APPLICATION FOR PERMIT (#CP 00886)

METER INSTALLATION AND INSPECTION FORM

STATE ENGINEER OFFICE Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

	OFFICE OF THE STATE ENGINEER
Fi:	1) Nbr: 1/2265 le Nbr: CP 00886 11 File Nbr: CP 00886
ADI	ME: Cheyron USA DRESS: [11115.Wilcrist TY/STATE/ZIP: Houston Texas 77099
1.	WATER METER INFORMATION:
2.	Serial Number: Ocol-96290-1-69 Number of Dials: 7 (6 roll type) Number of dials that move on the left side of dial on meter. Unit of Measure: (GALLONS) (CUBIC FEET) (BARRELS) (ACRE-FEET) (Circle appropriate unit of measure. Initial Reading: 99996. Thitial Reading Date: 9-26-06 Comments:
	On Syptember 29, 2006 a meter reading was collected meter reading: 999991
	Inspector: James Dene lar (CRA) agent for Chevron USA

wellcon5

(supplemental well, change location of well) (arresian or shallow)
3. Description of well: Located in the 5W 1/2 SE 1/4 1/4, of Sec. 35 Twp. 245 Rge. 37 E N.M.P.M., or Tract No. of Map No. of the CAP i tan District; total depth, 73 feet; is well cased ; outside diameter of top casing (or hole, if uncased), 6 inches; if artesian, is well equipped with gate valve ; date drilled July 10 19 98; Name of driller Scar borough Drilling .
4. Record of Pumping Test, if made (to be supplied by person or firm making test); Name and address of person making test, Concestogan Rovers: Associates 2135 5. Loop 250 West Midland TX date of test February 23 12 2006; depth to water before test, 61.28 feet 2.5 land surface, (above, below) and pumping level during test, 70.35 feet; length of test, 1.0 hours; average discharge, 0.75 G.P.M.; specific capacity of well, 0.1 gals./min. per foot of drawdown.
5. Permanent Pump Equipment: (a) Description of pump: Make Grund fos ; Type Redi-Flo3 ; size of discharge 174 inches; if turbine type, give size of column, inches; diameter of bowls inches; number of bowls; length of suction pipe feet; total length of column, bowls and suction pipe feet; if centrifugal type, give size of pump 30.4 inches: if other type, describe; rated capacity of pump (if known), 5 G.P.M., at rev. per min., from a depth of 60 feet. (b) Description of power plant: Make; type of drive connection to pump; column to the pump inches; if turbine type, give size of column, inches; diameter of column, inches; diameter of; inches; if centrifugal type, give size of pump; column, bowls and suction pipe feet; if centrifugal type, give size of pump; inches; if other type, describe; rated capacity of pump (if known),; feet. (b) Description of power plant: Make; type of drive connection to pump; (direct, gearhead, or belt) (c) Actual discharge of pump,
Date of test September 19-2006.
6. If reservoir is used, give approximate size: length feet; width; depth 7. If above well replaced an old well to be plugged or abandoned, fill out the following: the well abandoned
is located in the
I, Tomes Ornelas (CRA) affirm that the foregoing statements are true to the best of my knowledge and belief and that I am the <u>agent for Chevron USA</u> owner and holder of said water right. (sole, partial, agent for, etc.,) Permittee
By: Game Clink CRA) agent for Chevron USA
STATEMENT OF STATE ENGINEER'S REPRESENTATIVE
I hereby certify that I have inspected the above well and find it constructed in accordance with the conditions of the permit. Note any exceptions
Well was producing gpm against a head of feet at rpm. (measured) (estimated)
Old well has been (plussed) (conseq) (c

John R. D Antonio, Jr., P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 172265 File Nbr: CP 00886

Sep. 09, 2004

MARK LARSON
TEXACO EXPLORATION & PROD. INC
P.O. BOX 730
HOBBS, NM 88240-0730

Greetings:

Enclosed is your copy of the above numbered permit which has been approved subject to the conditions set forth on the approval page thereof.

Proof of Completion of Well(s) will be filed in this office after completion and installation of equipment, but in no event later than 09/30/2006. Proof of Completion of Well forms shall be mailed upon request.

Your rights under this permit will expire on 09/30/2006, unless Proof of Completion of Well(s) is filed or an Application for Extension of Time is received in this office on or before that date.

Sincerely,

Johnny R. Hernandez

(505)622-6467

Enclosure

cc: Santa Fe Office

nonappew

NEW MEXICO STATE ENGINEER OFFICE APPLICATION TO APPROPRIATE

SPECIFIC CONDITIONS OF APPROVAL

- 1B Depth of the well shall not exceed the thickness of the Ogallala formation.
- A totalizing meter shall be installed before the first branch of the discharge line from the well and the installation shall be acceptable to the State Engineer; the Engineer shall be advised of the make, model, serial number, date of installation, and initial reading of the meter prior to appropriation of water; pumping records shall be submitted to the District Supervisor on or before the 10th of Jan., April, July, and Oct. of each year for the 3 preceeding calendar months.
- 7 The Permittee shall utilize the highest and best technology available to ensure conservation of water to the maximum extent practical.
- C Driller's well record must be filed with the State Engineer within 10 days after the well is drilled or driven. Well record forms will be provided by the State Engineer upon request.
- PCW The Point of Diversion CP 00886 must be completed and the Proof of Completion of Works filed on or before 09/30/2006.

This well shall be located at least 660 feet from all water wells of other ownership.

1. This application is approved as follows:

PERMIT NO: CP-886

SOURCE: Shallow Ground Water

POINT OF DIVERSION:

SW1/4SE1/4 Sec. 35, Twp 24S, Rge 37E, NMPM

PURPOSE OF USE: Environmental Remediation

PLACE OF USE:

SW1/4SE1/4 Sec. 35, Twp 24S, Rge 37E, NMPM

AMOUNT OF WATER:

Up to 6.5 acre-feet per annum for Environmental Remediation purposes.

Trn Desc: CP 886

File Number: CP 00886

Trn Number: 172265

To Appropriate the Underground Waters of the State of New Mexico

Da	tte Received 11-9-99 File No. CP-886	
1.	Name of applicant Texaco Exploration and Production, Inc.	
	Mailing address P. O. Box 730	
	City and State Hobbs, NM 88240-0730.	
2.	Source of water supply Shallow Water Aquiferlocated in Capitan	
٠.	(artesian or shallow water aquifer) (name of underground by	nain)
	- Carlotte and the control of the co	•
3.	The well is to be located in the SW 4 SF 4 4, Section 35 Township 24 Sour	th
	The well is to be located in the SW 1/2 SE 1/4 Section 35 Township 24 Sour Range 37 East N.M.P.M., or Tract No. of Map No. of the Capitan on land owned by Joyce Marie Willis et.ux.	District,
4.	Description of well: name of driller RW-1, Scarborough Drilling, Inc., Lamesa, Te.	xas ;
	Ourside Diameter of casing 6 inches; Approximate depth to be drilled 73	
5.	Quantity of water to be appropriated and beneficially used 6.50	_acre feet,
	(consumptive use, diversion)	
	for Environmental Remediation	
6.	Acreage to be irrigated or place of use	acres.
	Subdivision Section Township Pages Asses Course	
	Subdivision Section Township Range Acres Owner	
		•
	Pursuant to New Mexico Oil Conservation Div	rision
7.	Additional statements or explanations	
	(NMOCD), Environmental Bureau direction and after correspondence be	tween
	applicant and the Bureau, a plan has been approved to initiate corr	ective
	action. The action will include recovering water from said well, e	darbbea
	with pumping equipment, and disposal of produced water in applicant	s Injec-
	tion well.	
		<u> </u>
		-
		* >
		1-1-1
=	Marila Maria and Community and	
Ι,	Mark J. Larson (for applicant), affirm that the foregoing statements are true to the best of m	y knowledge
ar	nd belief and that development shall not commence until approval of the permit has been obtained.	-
	CONTRACTION OF THE PROPERTY OF	SSSS
	ACKIE A INMAN	72

Texaco Exploration and Production Inc., Permittee,

By:

Subscribed and amount to become

26th

Wickie A. INMAN
Notary Public, State of Texas
My Comm. Expires 4-14-2002

anthon and

After notice pursuant to statute and by authority vest	ed in me, this application is approve	d provided it is not exercised
to the detriment of any others having existing rights;	wells be complied with; and fu	
conditions:		
		· · · · · · · · · · · · · · · · · · ·
and attached	conditions of approval	***************************************
See attached	conditions of approval	
Proof of completion of well shall be filed on or before	September 30, 2006	
Proof of application of water to beneficial use shall	be filed on or before	, ,XX .
Witness my hand and seal this	day ofSeptember	, A.D.XXX 2004
John R. D'Antonio, Jr., P.E., St	ate Engineer	
(A) AM	acc Englicer	
Ву:	•	

Art Mason, District II Supervisor

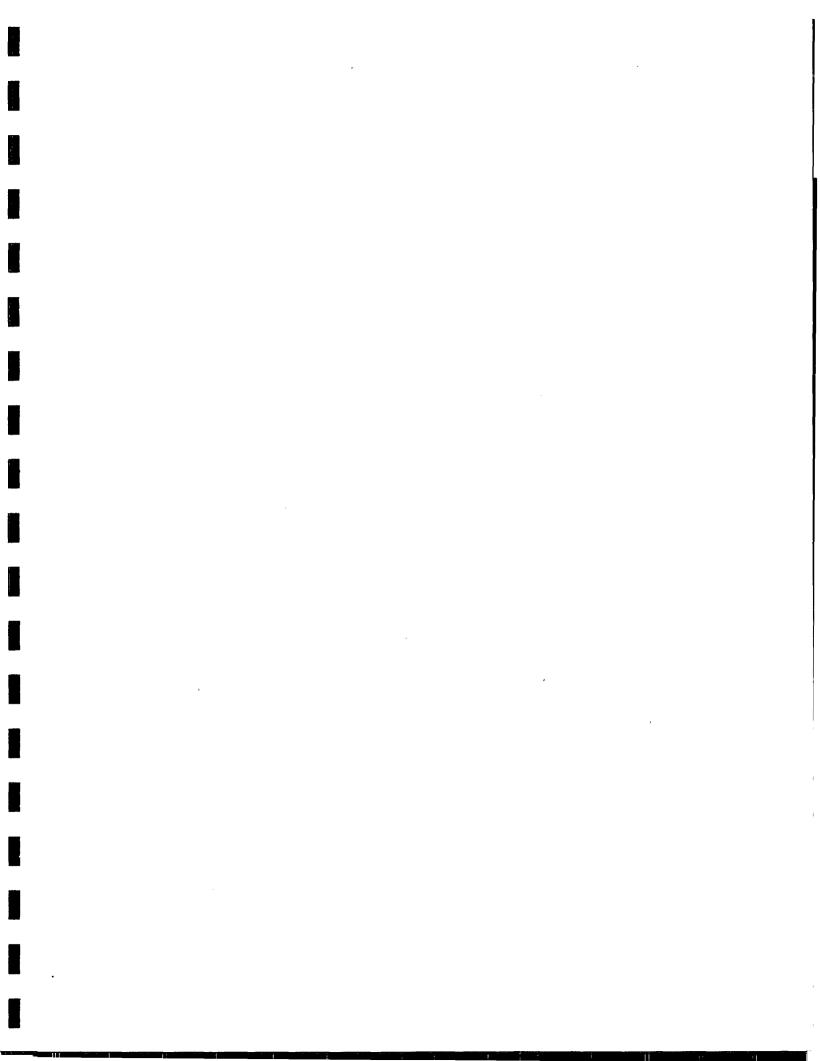
INSTRUCTIONS

This form shall be executed, preferably typewritten, in triplicate and shall be accompanied by a filing fee of \$25.00. Each of triplicate copies must be properly signed and attested.

A separate application for permit must be filed for each well used.

Secs. 1-4-Fill out all blanks fully and accurately.

Sec. 5-Irrigation use shall be stated in acre feet of water per acre per annum to be applied on the land. If for municipal or other purposes, state total quantity in acre feet to be used annually.


Sec. 6—Describe only the lands to be irrigated or where water will be used. If on unsurveyed lands describe by legal subdivision "as projected" from the nearest government survey corners, or describe by metes and bounds and tie survey to some permanent, easily located natural object.

Sec. 7—If lands are irrigated from any other source, explain in this section. Give any other data necessary to fully describe water right sought.

City and		M:	idland, T	X 7970	02					
Well was drille	d under Permit l	No			an	d is loca	ted in the:			
G. L.	Erwin Feder	cal NCT-2	Tank Bat	tery, ction	4.5 mi	NE of ownship	Jal F	lange		N,M,P,M
b. Tract	No	_ of Map No.	-		of the				······································	W
c. Lot N	lo c	of Block No		(of the					
Subdi	vision, recorded	in	<u>Lea</u>		Count	y.				
d. X= the	·	. feet, Y=		fe	et, N.M. C	oordina	te System			Zone ir Grant
(B) Drilling (Contractor	Scarb	orough D	rilling	Inc.		License No.	WD	1188	
Address		122 N	. 24th, I	Lamesa,	TX 7	9331				
Drilling Began	7-10-98	Comr	oleted 7-13	3-98	Tv	ne tools	air rotary	S.	ze of hole	
Elevation of la	nd surface or			8	it well is_		ft. Total dep	th of wel	1 - 73	£ ft.
Completed wel	lis 🖾 sh						ter upon completio	on of we	ji <u>58</u> .	.46ft.
Denth	in Feet	Sect Thickness	tion 2. PRING	CIPAL W.	ATER-BE	ARING	STRATA	·	Estimated	d Viold
From To in Feet Descrip					n of Water	r-Bearing	Formation	(g		minute)
								-	 	
							-		····	
				•						
L			Section	n 3. REC	ORD OF (CASING				
Diameter	Pounds	Threads	Depth	,		Length	>fsvascofs	rsexx		orations
(inches)	per foot	per in.	Тор	Botto	m	(feet)	74,40,72,74		From	То
4	sch 40 pvc		+ 2.5	53			.020 scre	en	53	73
<u></u>				, , , , , , , , , , , , , , , , , , , ,		 • ., .			<u> </u>	
	 		on 4. RECOI				MENTING			
From	Depth in Feet Hole Sacks From To Diameter of Mud				Cubic Feet Method of Placement					
73	51	8	8-1		or Cement		A			
,,	J±		silica s bentoni				poured			
51	46	8	chips				poured; hydrated in place			ce
46	0	8	cemen	t			poured			
			Sectio	n 5. PLU	GGING R	ECORD				
	actor									
	od					No.	Depth Top	n Feet Botte		Cubic Feet of Cement
	ged					- 1	100	2011		
Plugging appro	ved by:					2				

50	52	02	red vfg quartz sandstone, massive, hard
52	61.5	9.5	pink vfg quartz sand
61.5	62.5	01	red vfg quartz sandstone, massive, hard
62.5	67	4.5	gravelly sand, red, vf to cg quartz sand
67	70	3	mudstone, red, silty
70	73	3	mudstone, red, silty, hard
· · · · · · · · · · · · · · · · · · ·			
	;		
• • • • • • • • • • • • • • • • • • •			
			

Section 7. REMARKS AND ADDITIONAL INFORMATION

