

REPORTS

DATE: | 999

633 Seventeenth Street Suite 1550 Denver, Colorado 80202

April 27, 1999

CERTIFIED MAIL

Mr. William C. Olson New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, NM 87505

April 1999 Progress Report

Tatum Pit Closure Project

RECEIVED

MAY 0 6 1999

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Lea County, NM

Dear Mr. Olson:

RE:

Please find enclosed additional results from our monitor wells in the subject project area. These results are from water samples taken on April 1, 1999. These samples represent the seventh quarter of monitoring. We will continue to analyze water samples quarterly.

In our January 1999 progress report, we requested final closure for these projects: Vera (pit and monitor well #5) and State NBN (pit and monitor well #7). In your letter dated March 29, 1999, you requested a water table potentiometric map as well as the magnitude of the hydraulic gradient at these sites to complete your review of our request. Please be advised that we are currently constructing this data and it will be forwarded to you as soon as it is completed.

Additional monitor wells were constructed March 15-16 at the following pit sites: Bell A, State NBF, Sohio 1, Sohio A, and GS State. Complete water analyses from these new monitor wells are included in this report. It appears that an additional monitor well will be necessary for the Sohio 1 and Sohio A pit sites. These will be installed accordingly.

If you have any questions, please call me at (303) 293-9379.

Very truly yours,

Jamy G D

Larry G. Sugano Vice President - Engineering

cc: NMOCD Hobbs Office

Enclosures

Executive Summary

Iva COM

Having completed six consecutive quarters of sampling monitor wells 1 & 2 with no BTEX component exceeding WQCC standards, we began a sampling program from the source well. The results are presented in this report. We do not plan to continue to sample wells 1 & 2.

Mable COM

Monitor well #3 has passed six consecutive quarters with no BTEX component exceeding WQCC standards. We do not plan to continue monitoring the location, but will provide complete analyses (RCRA 8 metals, BTEX, and major cation / anions) at the conclusion of the sampling program for the source well. Monitor well #4 showed a slight increase in BTEX concentrations reflecting a normal seasonal increase in water table levels. The source well shows moderate benzene and xylene concentrations.

Vera

The analytical results of six consecutive quarterly samplings described in our February 16th summary revealed no BTEX component concentration in excess of WQCC standards. Tipperary requests final closure of this pit.

Bell A

Monitor wells 6, 13 & 14 show normal increases in BTEX concentrations due to seasonal changes within the water table. An additional delineation well (#25) was drilled a distance of 150' southeast of the mid-point of wells 13 & 14. The drilling log is included within this report. The analytical results of water samples obtained from this new well reflect no BTEX, RCRA 8 metals or cation / anion concentrations in excess of WQCC standards. (See Environmental Labs of Texas log no. 17265).

NBF

Monitor wells 8, 15 & 16 show normal increases in BTEX concentrations due to seasonal changes within the water table. An additional delineation well (#26) was drilled at a distance of 150' southeast of the mid-point of wells 15 & 16. The drilling log is included within this report. The analytical results of water samples obtained from this new well reflect no BTEX, RCRA 8 metals or cation / anion concentrations in excess of WQCC standards. (See Environmental Labs of Texas log no. 17266).

NBN

The analytical results of six consecutive quarterly samplings described in our February 16th summary revealed no BTEX component concentration in excess of WQCC standards. Tipperary requests final closure of this pit.

Page 2

Sohio State #1

Monitor wells 10, 17 & 18 show normal increases in BTEX concentrations due to seasonal changes within the water table. An additional delineation well (#28) was drilled at a distance of 150' southeast of the mid-point of wells 17 & 18. The drilling log is included within this report. The analytical results of water samples obtained from this new wells reflect acceptable RCRA 8 metals and cation / anion concentrations however the BTEX concentrations are in excess of WQCC standards. (See Environmental Labs of Texas log no. 17268). A fifth monitor well will be drilled, cased, developed and tested.

Sohio State A

Monitor wells 10, 19 & 20 show normal increases in BTEX concentrations due to seasonal changes within the water table. An additional delineation well (#27) was drilled at a distance of 150' southeast of the mid-point of wells 19 & 20. The drilling log is included within this report. The analytical results of water samples obtained from this new well reflect acceptable RCRA 8 metals and cation / anion concentrations however the BTEX concentrations are in excess of WQCC standards. (See Environmental Labs of Texas log no. 17267). A fifth monitor well will be drilled, cased, developed and tested.

G.S. State

Monitor wells 21 & 22 show normal increases in BTEX concentrations due to seasonal changes within the water table. An additional delineation well (#29) was drilled at a distance of 150' southeast of the mid-point of wells 21 & 22. The drilling log is included within this report. The analytical results of water samples obtained from this new well reflect no BTEX, RCRA 8 metals or cation / anion concentrations in excess of WQCC standards. (See Environmental Labs of Texas log no. 17269).

Satellite #4

BTEX concentrations within monitor wells 9 & 23 remain essentially unchanged from the January, 1999 sampling round.

TIPPERARY ATTN: MR. VICTOR A. VICE P.O. BOX 857 TATUM, NM 88267 FAX: 505-398-6510 FAX: 281-646-8996

Receiving Date: 04/02/99 Sample Type: Water Project : None Given Project Location: None Given Analysis Date: 4/05 & 4/06/99 Sampling Date: 04/01/99 Sample Condition: Intact/loed

		BENZENE	TOLUENE	ETHYLBENZENE	m.p-XYLENE	o-XYLENE	
<u> </u>		(ingh)	(ingy)		(11971)		
17428	Iva Com Source Well	2.05	4.15	0.902	5.50	3.80	
17429	Mable Com Source Well	0.486	0.432	0.066	1.00	0.713	
17430	Mable Com #4	0.012	0.008	0.002	0.010	0.006	
17431	Bell A #6	0.139	0.013	0.006	0.011	0.006	
17432	Bell A #13	0.021	0.018	0.003	0.009	0.006	
17433	Bell A #14	0.108	0.015	0.004	0.009	0.005	
17434	NBF #8	0.032	0.002	0.004	0.003	0.001	
17435	NBF #15	3.11	1.98	0.214	0.767	0.435	
17436	NBF #16	3.15	0.164	0.078	0.219	0.098	
17437	Sohio St. #1- #10	2.34	0.067	0.168	0.203	0.100	
17438	Sohio St. #1- #17	1.35	0.092	0.079	0.248	0.138	
17439	Sohio St. #1- #18	3.35	0.331	0.114	0. 469	0.280	
17440	Sohio St. #1- #28	0.446	0.065	0.011	0.041	0.058	
17441	Sohio St. A - #11	0.048	0.008	0.004	0.014	0.010	
17442	Sohio St. A - #19	0.026	0.010	0.006	0.016	0.010	
17443	Sohio St. A - #20	0.547	0.011	0.005	0.030	0.009	
17444	Sohio St. A - #27	0.056	0.007	0.006	0.007	0.013	
17445	G.S. State #21	0.124	0.008	0.042	0.012	0.007	
17446	G.S. State #22	0.059	0.010	0.036	0.022	0.014	
17447	G.S. State #29	0.004	<0.001	<0.001	0.035	<0.001	
17448	Satellite #4 - #9	0.027	0.005	0.004	0.004	0.002	
17449	Satellite #4 - #23	0.004	0.004	0.001	0.003	0.002	
	% IA	102	99	97	97	99	
	% EA	100	97	97	91	95	
	BLANK	<0.001	<0.001	<0.001	<0.001	<0.001	

METHODS: SW 846-8020,5030

Raland K.

4-7-99 Date

Environment	al Lab of Texa	ls, In	ij	12600	West 915) 5	L-20 I		Ddess 7AX (a, Tezu (915) 56	57767 1 3-1713	Ĕ	Ĕ	FCU	stop	Y REC	and Bio	YQY	SKTYN	US RE	ວດເຊ		
TIPPECAN DI	< अ ि भ ड		6	2 2	4 ×	505	11	12.	6509					VNV	TASE	ıdau :	LES L					1
Computy Name & Address: .			-	1 Kc	eri																}	
Project 4:				2	N Pa	:: 2						Pb Ho Se	S BH 4									
Project Lacador:			{	2	pler St		}					13 03 66	SCA CIF									
		נעצ וען		LATRE			ESERV	OD	240	ULLINC	0005/		8 34 G	s: colileo				 			.	
LAB# FIEL	LD CODE	* CONTAIN	NATER		anne Bouns	ווכר	ICE		JTAG		01EX 8020	TCLP Melais	Total Melal	TCLP Semi v	SOT	101						
17426 TVA	COM Source 15		IZ				X		1-17		X			[·[
17429 Mable Com	1 Solitze well & 2		 				<u> </u> ~		1-2		7		 	·[_	ļ
17430 MADE COM	# 4 3		×				$ $ \times		1-1		×										┣──	
117431 /Bell A # 6	#13 #/4 3	3	$\overline{\prec}$		••••		*		41		X											
NH34 165#81	±15 ±16 2	- <u> E</u> A	$\overline{\mathbf{x}}$				×		1-7		$\overline{\mathbf{x}}$							• <u>-</u>				
THYS Solue ST	2 BC*3/2 () # 0/# - 12	63	7				<u>×</u>		1-12		×											
15 OINOR NEWI	A HIL # GE BOALD 2	T	স				2		1-4		$\overline{\prec}$					_						
VIU 39 55 STAR #	31 #22 #29 2	T W	$\overline{\mathbf{x}}$	~			$\overline{\mathbf{x}}$		44		$\overline{\mathbf{X}}$											
H 34/201 PULLE HILL	5- M WEIL # 93			_							$\overline{\times}$	-						 	_			
							\neg									_						
2410-0-15			_		_											_			-			
). A. Jere	Date 4-2-99	Ë,	10%	0		Read		A.	De	REMAN	3											
lellequided by:	Dute	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Lend 1	1 T		J	-						~						
telkny utsked by:	Date					Reat	41	Lode	معاد													
]	Į						ł										

(th)

Env o	nmental]	Lab of Texas,	Inc. 12600 West (915) 5	-2. st Odessa 63-1800 FAX (9	, Texas 79763 115) 563-1713	CHAI	4-OF-C	USTOD	Y RECO	RD AND AN	I SISATVI	reques		· · ·
Project Manager:			Phone #: FAX #:					AN	LYSIS R	EQUEST				1
Company Name &	Address:						9 95							
Project #:			Project Na	me :		 T	9 0 Hg S 9 0 Hg S 9 0 Hg S						<u></u>	
Project Location:			Sampler Si	gnature:			Ba Cd Cr							
		รย	MATRIX	PRESERVATIVE METHOD	SAMPLING	0005	гА <u>р</u> А] гА рА	Selitelo						
LAB # LAB USE	FIELD C	н соитане	volume/amuloV ABTAW JIOS AIR AIR AIR AILTO	01нев иоие ICE ниоз нисг	37A() 	отек 80200 1.814 нат	TCLP Metals	TCLP Volatile	มี 102					······································
17431	BELA # 6										·	-		
25 HL	# [3													
174 33											 			1
N 34 N	8⊨ ≠ 8				-						·			
SE HLJ	= ± 15													
(74 B6	ol # 1													
174 37 Sc	hio St#1	<i>‡</i> 10												
174 36		<u> </u>											-	
(TH 39		# 18										<u> </u>		
of tr		# 28												
N IT 4 I	NioSt. #A	#1)		 										
Relinquished by:		Date: OU-02-99	Time: 1010	Received by:	REM	ARKS						-	4	
Relinquished by:		Date	18 19 19	Received by:										
Relinquished by.		Date	Time:	Received by Laborz	tory:									
										ŀ				٦

Env	onmental	Lab of Texas	, In	5	(West 915) !	I-2(63-11	100 H	Odes	sa, Texe (915) 5	15 79763 63-1713	Ĕ	FNIA	DF-CI	JST C	л УО	ECOR	QNY Q	ANALY	sis ri	EQUE	<u>ب</u>	、
Project Manag	Ľ,				Pho	ne H:									Ā	141 V	ad sts						
					FA	<pre>< #:</pre>									2								
Company Nam	e & Address:								•					0			·			•			
Project#:					24	ject Na	 9							S 6H da									
Project Locati	ïë				Sta	npler S	enatur	U				1		n) b) eð									(
		58	Ju	~	1ATRI	×	4	ESER MET	TATI	ي دي	AMPLING	0005/		SA BA	S	elitelo				. <u> </u>			
LAB # /LAB USE)	FIELD	С Ш Ш И И И И И И И И И И И И И И И И И	nomA\smu	83T/	<u>}</u>		ר	<u>د</u> 0	ЭИС	нев	чE	0708 X3.	1.814 H	eleteM ist	Plinelov 91	LP Semi V						*	
1 ONLY /	Stricst #A	0" 0 +	10A	<u></u>		15	рн	NH H		<u>10</u>	1 	18	<u></u>	<u>01</u>	<u></u>	<u>01</u>	วย						
					.			- -					-			- -		-				+-	
1442		20		- -		-				-													
エーゼ	-+	× 71					_	—															
SH HL	G.S.State	# 21									<u> </u>												
174 4C	F	#22																		<u> </u>			
174 M		62 #																	<u> </u>				
174 4B	Satellite # 4	# d														—							
5th HLI	-	# 23																					
																							[
Relinquished b	ĸ	Date:	Time	ï			Rec	eived t	Б.		REM	ARKS											
Relinquished b	5	Date: Oli -UZ-99	Time	1 10 11	0		Rec	ived b	ĸ								7						
Relinquished b	5	Date:		ü			Rec	tived b	y Labo	relation													
																		ŀ					7

TIPPERARY OIL & GAS 633 17TH DENVER, COLORADO 80202 FAX: 281-646-8996 (Mike Griffin)

Receiving Date: 03/17/99 Sample Type: Water Project : Tatum Dileneation Project Location: Tatum, New Mexico Analysis Date: 03/17/99 Sampling Date: 03/17/99 Sample Condition: Intact/loed

ELT#	FIELD CODE	BENZENE (mg/l)	TOLUENE (mg/l)	ETHYLBENZENE (mg/l)	m,p-XYLENE (mg/l)	o-XYLENE (mg/l)	
17265	#25 Bell	0.006	0.004	0.004	0.005	0.004	
17266	#26 NBF	0.002	0.003	0.001	0.002	0.001	
17267	#27 Sohio A	0.118	0.019	0.005	0.004	0.008	
17268	#28 Sohio #1	0.156	0.008	0.003	0.010	0.005	
17269	#29 G.S. State	0.012	0.012	0.004	0.021	0.041	

% IA	104	100	99	98	99
% EA	108	104	101	102	103
BLANK	<0.001	<0.001	<0.001	<0.001	<0.001

METHODS: SW 846-8020,5030

Raland

<u>3-26-99</u> Date

TIPPERARY OIL & GAS 633 17TH DENVER, COLORADO 80202 FAX: 281-646-8996(Mike Griffin)

Receiving Date: 03/17/99 Sample Type: Water Project : Tatum Dileneation Project Location: Tatum, N.M.

Analysis Date: See below Sampling Date: 3/17/99 Sample Condition: Intact/Iced

		Ca	Mg	Na	K	Chloride	Sulfate	CO3	HCO3
ELT#	Field Code	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
17265	#25 Ball	180	46	281	87	851	300	0	150
17266	#26 NBF	31.4	16	65	6.4	53	175	0	159
17267	#27 Sohio A	144	78	377	16.2	1028	195	0	329
17268	#28 Sohio #1	715	140	4660	20.8	8685	195	0	329
1 7269	#29 G.S. State	1 78	44	102	8.1	487	150	0	281
	ANALYSIS DATE	3/24/99	3/24/99	3/24/99	3/24/99	3/18/99	3/1 8/9 9	3/18/99	3/18/99
	QUALITY CONTROL	53.9	5.1	55.9	5.2	5140	48	•	*
	TRUE VALUE	50.0	5.0	50.0	5.0	5000	50	*	*
	% PRECISION	108	102	111	104	103	96	*	*

METHODS: EPA 4.1.1, 215.1,242.1, 273.1, 258.1,325.3, 375.4, 310.2.

K Juail

Raland K. Tuttle

3-26-99 Date

TIPPERARY OIL & GAS 633 17TH DENVER, COLORADO 80202 FAX: 281-646-8996(Mike Griffin)

Receiving Date: 03/17/99 Sample Type: Water Project : Tatum Dileneation Project Location: Tatum, N.M. Analysis Date: Hg 3/23/99 Analysis Date: 3/25/99 Sampling Date: 3/17/99 Sample Condition: Intact/Iced

TOTAL METALS (mg/L)

ELT#	Field Code	Ag	As	Ba	Cd	Cr	Hg	Pb	Se	_
17265	#25 Bell	ND	ND	0.250	ND	0.0110	ND	ND	ND	
17266	#26 NBF	ND	ND	0.201	ND	0.0060	ND	ND	ND	
17267	#27 Sohio A	ND	ND	0.276	ND	0.0110	ND	ND	ND	
17268	#28 Sohio #1	ND	0.028	0.709	ND	0.0220	ND	0.0090	ND	
17269	#29 G.S. State	ND	ND	0. 369	ND	0.0080	ND	ND	ND	
	REPORTING LIMIT	0.0050	0.005	0.010	0.0010	0.0050	0.00020	0.0030	0.0050	
	ND = Not detected at the reporting	limit.								
	% INSTRUMENT ACCURACY	100	106	95	100	94	103	98	112	
	% EXTRACTION ACCURACY	96	104	97	100	96	96	99	102	

METHODS: EPA 200.7, 245.2

Raland K

<u>3-26-99</u> Date

G Request for Analysis					5+10	9- :++C 5/E		, 7 19 5 2 4 19		2 000000000000000000000000000000000000	رید الم الم الم الم الم الم الم الم الم الم															QC Package: (check one)		Vallow Crou Batsingd In Cliant Date: Date: Date: D
GULF STATES JALYTICAL	6310 Rothway, Houston, Texas 77040 (713) 690-4444, Fax (713) 690-5646	Address: Denven,Co Tele #:	6 (33,17th Fax#:	P O #: Project #:		Project Location:	in Tet. um	Vinterio C	# of	S	Other Oil Iudge Soil Water Date	7265) 3-17 94 5			A12(.00 3-17 4. 05 0		1 5 1 1 1 Carl 1 1- Ch mush									Requested Turnaround Special Detection Limits	M. N. Lts, GSAI Group:	White Crvu In Acconnent Sender In Leb
Relince Relince	quished	i sód t Sompany:	Sign (Sign	The sent To:	in in the Earth	Project Name:	Jatum Dileneatio	C C C Sampler(s) Name: (Signature)	the	Courier:	Time:	1. # 25 9,11 (1-	Rece Rece	wedt vived t		igna bora	ture tory	. (S	'Z ignat	có , ure)	ő	Date 3-1 Date	Ë 7-99	Z Time /: Time	5: 5: 13: 13:	Remarks: `		EBALITY/YORDEN INC - 77131 780-0000

.

ŝ,

•••

.

.

Monitor Well # 10 Sohio State # 1 Sampling Results

1000	12483	13186	14066	14665	15597	16604	17437
Ite	9/5/97	12/3/97	2/23/98	6/25/98	10/1/98	1/6/99	4/1/99
	2.559	2.148	1.301	1.313	2.541	1.000	2.340
	1.148	0.062	0.113	0.113	0.108	0.067	0.067
ne	0.243	0.173	0.209	0.206	0.182	0.156	0.168
e	1.257	0.930	0.490	0.611	0.167	0.214	0.203
	0.081	0.313	0.179	0.180	0.098	0.095	0.100
Je	1.338	1.243	0.669	0.791	0.265	0.309	0.303
×	6.626	3.626	2.292	2.423	3.096	1.532	2.878

Monitor Well # 17 Sohio State # 1 Sampling Results

Lab.#	12723	13187	14051	14671	15601	16587	17438
nple Date	10/2/97	12/3/97	3/23/98	6/25/98	10/1/98	1/6/99	4/1/99
senzene	0.799	1.409	1.101	1.111	0.872	0.876	1.35
Foluene	0.128	0.053	0.108	0.138	0.105	0.193	0.092
ylbenzene	0.141	0.116	0.130	0.118	0.071	0.094	0.079
p Xylene	0.628	0.535	0.376	0.379	0.242	0.339	0.248
Xylene	0.292	0.192	0.148	0.174	0.129	0.163	0.138
tal Xylene	0.920	0.727	0.524	0.553	0.371	0.502	0.386
tal BTEX	2.908	2.305	1.863	1.920	1.419	1.665	1.907

Monitor Well # 18 Sohio State # 1 Sampling Results

Lab.#	12724	13188	14052	14672	15609	16588	17439
Sample Date	10/2/97	12/3/97	3/23/98	6/25/98	10/1/98	1/6/99	4/1/99
Benzene	1.276	2.063	1.396	1.357	0.542	1.1	3.350
Toluene	0.614	0.178	0.269	0.272	0.072	0.247	0.331
Ethylbenzene	0.206	0.118	0.159	0.131	0.025	0.107	0.114
m,p Xylene	0.553	0.001	0.823	0.589	0.093	0.415	0.469
o Xylene	0.648	0.001	0.366	0.252	0.054	0.203	0.280
Total Xylene	1.201	0.002	1.189	0.841	0.147	0.618	0.749
Total BTEX	4.498	2.361	3.013	2.601	0.786	2.072	4.544

Monitor Well # 28 Sohio State # 1 Sampling Results

Lab.#	17267	17440
Sample Date	3/19/98	4/1/99
Benzene	0.118	0.446
Toluene	0.019	0.065
Ethylbenzene	0.005	0.011
m,p Xylene	0.004	0.041
o Xylene	0.008	0.058
Total Xylene	0.012	0.099
Total BTEX	0.154	0.621

TIPPERARY OIL & GAS 633 17TH DENVER, COLORADO 80202 FAX: 281-646-8996 (Mike Griffin)

Receiving Date: 03/17/99 Sample Type: Water Project : Tatum Dileneation Project Location: Tatum, New Mexico Analysis Date: 03/17/99 Sampling Date: 03/17/99 Sample Condition: Intact/loed

ELT#	FIELD CODE	BENZENE (mg/l)	TOLUENE (mg/l)	ETHYLBENZENE (mg/l)	m.p-XYLENE (mg/l)	o-XYLENE (mg/l)	
17265	#25 Bell	0.006	0.004	0.004	0.005	0.004	
17266	#26 NBF	0.002	0.003	0.001	0.002	0.001	
17267	#27 Sohio A	0.118	0.019	0.005	0.004	0.008	
17268	#28 Sohio #1	0.156	0.008	0.003	0.010	0.005	
17269	#29 G.S. State	0.012	0.012	0.004	0.021	0.041	

% IA	104	100	99	98	99
% EA	108	104	101	102	103
BLANK	<0.001	<0.001	<0.001	<0.001	<0.001

METHODS: SW 846-8020,5030

Kaladk Justo

Raland K. Tuttle

3-26-99 Date

TIPPERARY OIL & GAS 633 17TH DENVER. COLORADO 80202 FAX: 281-646-8996(Mike Griffin)

Receiving Date: 03/17/99 Sample Type: Water Project : Tatum Dileneation Project Location: Tatum, N.M.

Analysis Date: See below Sampling Date: 3/17/99 Sample Condition: Intact/Iced

	Ca	Mg	Na	ĸ	Chloride	Sulfate	CO3	HCO3
Field Code	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
#25 Bell	189	46	281	8.7	851	300	0	159
#26 NBF	31.4	16	65	6.4	53	175	0	159
#27 Sohio A	144	78	377	16.2	1028	195	0	329
#28 Sohio #1	715	140	4660	20.8	8685	195	0	329
#29 G.S. State	178	44	102	8.1	487	150	0	281
ANALYSIS DATE	3/24/99	3/24/99	3/24/99	3/24/99	3/18/99	3/18/99	3/18/99	3/18/99
QUALITY CONTROL TRUE VALUE % PRECISION	53.9 50.0 108	5.1 5.0 102	55.9 50.0 111	5.2 5.0 104	5140 5000 103	48 50 96	*	*
	Field Code #25 Bell #26 NBF #27 Sohio A #28 Sohio #1 #29 G.S. State ANALYSIS DATE QUALITY CONTROL TRUE VALUE % PRECISION	Field Code (mg/L) #25 Bell 189 #26 NBF 31.4 #27 Sohio A 144 #28 Sohio #1 715 #29 G.S. State 178 ANALYSIS DATE 3/24/99 QUALITY CONTROL 53.9 TRUE VALUE 50.0 % PRECISION 108	Field Code (mg/L) (mg/L) #25 Bell 189 46 #26 NBF 31.4 16 #27 Sohio A 144 78 #28 Sohio #1 715 140 #29 G.S. State 178 44 ANALYSIS DATE 3/24/99 3/24/99 QUALITY CONTROL 53.9 5.1 TRUE VALUE 50.0 5.0 % PRECISION 108 102	Field Code Mg Na #25 Bell 189 46 281 #26 NBF 31.4 16 65 #27 Sohio A 144 78 377 #28 Sohio #1 715 140 4660 #29 G.S. State 178 44 102 ANALYSIS DATE 3/24/99 3/24/99 3/24/99 QUALITY CONTROL 53.9 5.1 55.9 TRUE VALUE 50.0 5.0 50.0 % PRECISION 108 102 111	Ca Mg Na K Field Code (mg/L) (mg/L) (mg/L) (mg/L) #25 Bell 189 46 281 8.7 #26 NBF 31.4 16 65 6.4 #27 Sohio A 144 78 377 16.2 #28 Sohio #1 715 140 4660 20.8 #29 G.S. State 178 44 102 8.1 ANALYSIS DATE 3/24/99 3/24/99 3/24/99 3/24/99 3/24/99 QUALITY CONTROL 53.9 5.1 55.9 5.2 50.0 50.0 50.0 50.0 % PRECISION 108 102 111 104	Ca Mg Na K Childride Field Code (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) #25 Bell 189 46 281 8.7 851 #26 NBF 31.4 16 65 6.4 53 #27 Sohio A 144 78 377 16.2 1028 #28 Sohio #1 715 140 4660 20.8 8685 #29 G.S. State 178 44 102 8.1 487 ANALYSIS DATE 3/24/99 3/24/99 3/24/99 3/24/99 3/24/99 3/18/99 QUALITY CONTROL 53.9 5.1 55.9 5.2 5140 TRUE VALUE 50.0 5.0 50.0 5.0 5000 % PRECISION 108 102 111 104 103	Ca Mg Na K Chloride Suirate Field Code (mg/L) (mg/L) <t< td=""><td>Ca Mg Na K Chloride Surrate CO3 Field Code (mg/L) (</td></t<>	Ca Mg Na K Chloride Surrate CO3 Field Code (mg/L) (

METHODS: EPA 4.1.1, 215.1,242.1, 273.1, 258.1,325.3, 375.4, 310.2.

world

3-26-99 Date

TIPPERARY OIL & GAS 633 17TH DENVER, COLORADO 80202 FAX: 281-646-8996(Mike Griffin)

Receiving Date: 03/17/99 Sample Type: Water Project : Tatum Dileneation Project Location: Tatum, N.M. Analysis Date: Hg 3/23/99 Analysis Date: 3/25/99 Sampling Date: 3/17/99 Sample Condition: Intact/load

TOTAL METALS (mg/L)

ELT#	Field Code	Ag	As	Ba	Cd	Cr	Hg	РЬ	Se
17265	#25 Bell	ND	ND	0.250	ND	0.0110	ND	ND	ND
17266	#26 NBF	ND	ND	0.201	ND	0.0060	ND	ND	ND
17267	#27 Sohio A	ND	ND	0.276	ND	0.0110	ND	ND	ND
17268	#28 Sohio #1	ND	0.028	0.709	ND	0.0220	ND	0.0090	ND
17269	#29 G.S. State	ND	ND	0.369	ND	0.0080	ND	ND	ND
	REPORTING LIMIT	0.0050	0.005	0.010	0.0010	0.0050	0.00020	0.0030	0.0050
	ND = Not detected at the reporting I	imit.							
	% INSTRUMENT ACCURACY	100	106	95	100	94	103	98	112
	% EXTRACTION ACCURACY	96	104	97	100	96	96	99	102

METHODS: EPA 200.7, 245.2

dK7

Raland K. Tuttle

3-26-99 Date

Atkins Eng Assoc

Atkins Eng Assoc

308

633 Seventeenth Street Suite 1550 Denver, Colorado 80202

FFB 2 2 1999

February 16, 1999

CERTIFIED MAIL

Mr. William C. Olson New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, NM 87505

RE: January 1999 Progress Report Tatum Pit Closure Project Lea County, NM

Dear Mr. Olson:

Please find enclosed additional results from our monitor wells in the subject project area. These results are from water samples taken on January 8, 1999. These samples represent the sixth quarter of monitoring. The total BTEX concentrations continue to decline. We will continue to analyze water samples quarterly from the subject project.

Because the following wells have had at least four consecutive quarters of acceptable BTEX concentrations, we formally request final closure for these projects: Vera (pit and monitor well #5), State NBN (pit and monitor well #7), Iva Com (monitor wells #1 & #2), Mable Com (monitor well #3). Please advise if this request is acceptable.

In response to your January 15, 1999 correspondence, please be advised that we are scheduling the installation of additional monitor wells in accordance with the conditions set forth in your letter. Additionally, we respectfully request an extension until May 1, 1999 to submit our next progress report rather than the April 1 deadline specified in your letter. This will allow us to stay on our current quarterly monitoring schedule. Please advise if this is not acceptable.

If you have any questions, please call me at (303) 293-9379.

Very truly yours,

Lang G D

Larry G. Sugano Vice President - Engineering

cc: NMOCD Hobbs Office

Enclosures

Executive Summary

Iva COM

Monitor Wells # 1, 2

No sample from either Iva COM well has ever revealed a BTEX component concentration in excess of standards. Tipperary may request closure of monitor wells nos. 1 and 2. The source well is still producing free product on occasion and has not been tested for BTEX.

Mable COM

Monitor Wells # 3, 4

Monitor well # 3 has recorded four consecutive quarters of acceptable BTEX concentrations. Tipperary may request closure of this well. Well # 4 has shown two consecutive quarters of acceptable BTEX concentrations. The source well has not been tested for BTEX.

Vera

Monitor Well # 5

Monitor well # 5 has shown six consecutive quarters of acceptable concentrations. Tipperary may request closure of the pit and monitor well.

Bell

Monitor Wells # 6, 13, 14

Monitor well # 13 has gone two quarters with acceptable concentrations. Wells # 6 & 14 continue to show benzene concentrations in excess of standards. Such concentrations are consistently trending lower. A delineation well is required for this site.

NBN

Monitor Well #7

Monitor well # 7 has shown four consecutive quarters of acceptable concentrations. Tipperary may request closure of the pit and monitor well.

NBF

Monitor Wells # 8, 15, 16

All well BTEX concentrations exceed standards. A delineation well is required for this site.

Sohio State #1

Monitor Wells # 10

Though trending steadily downward, all well sample concentrations exceed standard. A delineation well is required for this site.

Sohio State "A"

Monitor Well # 11, 19, 20

The benzene concentrations in all three wells are trending sharply downward. At the present rate of decline, wells 19 & 20 will become delineation wells through natural attenuation within six months.

GS State #1

Monitor Wells # 12, 21, 22

Monitor well # 12 continues to contain free product. BTEX concentrations in wells 21 & 22 are trending downward though not as sharply as similar sites. Well # 12 should be evaluated for potential as a source well. A delineation well is required for this site.

Satellite # 4

Monitor Wells # 9, 23, 24

Well # 24 has shown four quarters of acceptable concentrations. The reported benzene concentrations from Well # 23 have been quite erratic but appear to be generally trending downward. Well # 23 presently shows acceptable concentrations. Well # 9 is steadily trending lower in benzene and should fall within acceptable limits within the next few sampling rounds.

Tipperary Corporation Tatum Pit Closure Project Quarterly Sampling Comparison

Weil #	9/5/97	12/3/97	3/23/98	6/25/98	10/1/98	1/6/99
1	0.012	0.025	0.022	0.030	0.023	0.011
2	0.005	0.013	0.011	0.010	0.010	0.010
3	0.200	1.387	0.054	0.071	0.093	0.073
4	0.031	1.501	0.047	0.049	0.013	0.019
5	0.019	0.025	0.011	0.037	0.015	0.011
6	0.790	0.068	0.281	0.249	0.141	0.137
7	0.005	0.023	0.017	0.048	0.023	0.008
8	1.377	0.023	0.146	0.058	0.018	0.036
9	0.285	0.123	0.007	0.081	0.050	0.049
10	6.626	3.626	2.292	2.423	3.096	1.532
11	0.122	0.124	0.184	0.141	0.108	0.105
13	1.346	0.010	0.037	0.056	0.017	0.007
14	0.005	1.183	0.918	0.764	0.184	0.161
15	6.432	5.499	4.588	4.189	6.086	4.380
16	1.662	0.256	1.419	1.446	1.287	1.845
17	2.908	2.305	1.863	1.920	1.419	1.665
18	4.498	2.361	3.013	2.601	0.786	2.072
19	0.011	0.875	0.184	0.079	0.082	0.094
20	0.454	0.345	0.658	0.604	0.539	0.390
21	0.287	0.953	0.554	0.198	0.238	0.259
22	0.152	0.200	0.195	0.344	0.144	0.134
23	0.009	0.122	0.106	0.008	0.078	0.014
24	0.009	0.064	0.007	0.017	0.007	0.011
	107.873	80.628	59.517	42.903	27.480	13.023

Tipperary Quarterly Sampling Comparison

Series 1

хэта лтт

ENVIRONMENTAL LAB OF , INC.

TIPPERARY ATTN: MR. VICTOR A. VICE P.O. BOX 857 TATUM, NM 88267 FAX: 505-398-6510 FAX: 281-848-8996

Receiving Date: 01/08/99 Sample Type: Water Project : None Given Project Location: Tatum, New Mexico 88237 Analysis Date: 01/08/99 Sampling Date: 01/06 & 01/07/99 Sample Condition: Intact/iced/HCl

E) T H		BENZENE	TOLUENE	ETHYLBENZENE	m.p.XYLENE	o-XYLENE	
ELIN	new cove	(IIBPIU	ALLIGHT	(mort)	((1)(//)	(mg/t)	
16587	8ohio St. #1 - #17	0.875	0.138	0.094	0.339	0.163	
16588	Sohio Si. #1 - #18	1.10	0.247	0.107	0.415	0.203	
16589	Schio Sta. MW #19	0.040	0 014	0.006	0.021	0.013	
18590	Sohio Sat. M/W #20	0.341	0.010	0.005	0.026	0.008	
16591	GS State WW #21	0.133	0.010	0.054	0.056	0.006	
16592	G9 State M/W #22	0.039	0.010	0.020	0.048	0.017	
16593	Sat. #4 M/W #23	0.004	0.003	0.001	0.004	0.002	
16594	Sal. #4 14/W #24	0.004	0.003	<0.001	0.002	<0.001	
16595	Ma Com. MW #1	0.003	0.001	<0.001	0.002	0.004	
16596	Na Com. M/W #2	0.004	0.001	<0.001	0.003	0.001	
18597	Mebie Com. M/W #3	<0.001	0.002	0.012	0.042	0.016	
16598	Mable Com. M/W #4	0.007	0.002	0.002	0.006	0.002	
16599	Vera M/W #5	0.002	0.002	0.001	0.004	0.002	
16600	Bell A M/W MB	0.127	0.001	0.003	0.005	0.001	
16601	NBN M/W #7	0.003	<0.001	<0.001	0.002	< 0.001	
16602	NBF MW #9	0.028	0.001	0.003	0.003	<0.001	
16603	Sat. 4 M/W NO	0.034	0.003	0.006	0.005	0.001	
16604	80hia St. #1 M/W #10	1.00	0.067	0.156	0.214	0.095	
16605	Sohio Sta. M/W #11	0.061	0.011	0.005	0.016	0.012	
16606	Bell A M/W #13	0.001	<0.001	<0.001	0.003	0.001	
16607	Bell A 14/W #14	0.154	<0.001	0.002	0.003	0.001	
16608	NBF MAN #15	1.83	1.49	0.182	0.728	0.350	
16609	NBF MW #16	1.47	0.122	0.047	0.144	200.0	
	% IA	86	85	87	85	87	
	% EA	90	90	89	88	90	
	BLANK	<0.001	<0.001	<0.001	<0.001	<0.001	

METHODS: SW 846-8020,5030

nd K his

Raland K. Tuttle

1-11-99

Environmental L	ab of Texas,	(DC. 12609 Wet 1-1 (915) 563	20 East Odesca, I 1800 FAX (915	eras 79763) 563-1713	CELAL	K-OF-L	usro	DY R	ECORD	NA GNA	SISXTV	REQUI	5	
V. H. VICC	A BAS	FACTY PLONE N: 1 FAXME SC	- 800-854-4	1358			2	ALLY.	ST RE	XUEST				
Sampary Name & Address	me., #58	167				\$\$								
		Project Name	••			하 마 막 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이								
m/m			ahure			10 9								
Project Lecadou:			1.			20 65	00.0							
TATUM, N.M.	cK	1. 2. /			30	3 ¢A	0.61	50)(
	52	MATRIX	METHOD	SAMPLING	1 05/1	6¥ 6	(63 108 1	JeloV				~		
LAB # HELD CO	₿ СОИТАНИЕ	жоталетия 3374/ JIO3 ЛО3 ЛО3 ЛО3 ЛО3 ЛО3 ЛО3 ЛО3 ЛО3 ЛО3 ЛО	NTHER NONE CE INO3 HCL	этес 	10208 X318	ICLP Melais		TOS TCLP Semi	IDF					
ONEY /	* 5	2 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		16199	E		-	<u>.</u>						
10596 TVA Com.				head			ļ							
MADIE (2011				Kenga										
	6 1 4			K199										
	6 5 4 5			V6/99										
HALON NEW PHA	5			Yulad							_	\neg		
1/1. NB COTIL ITO 4	- Matt 2			4.199	-+							-+		
Idiou Colure Tal	m/10+10 2			1-169								\dashv		
ILLING CALLOST Q	Minet I 2			41/90							_	-+		_
There dell a m/	13 13 4/4 2			Vulga										
THE NAC MIL	# 15-16 2			Xe/9a	=		_							
Reliantished br.	Date:	, Times:	Received by:	REM	SND									
The second se	01-08.99	0855	9 mcmu	to										• • • • • • •
איוואמקויים אי ב	Date:	Thats:	Received by:											
Relinguisted by:	Date:	Tiné:	Received by Laborato	۴										,
•				2										

:

	ronmental Lab of Texas, Inc. 12600 Wed 1-20 East Odena, Texas 75763 0. 1/1 C - Whale Corth	m: 11 205 - 398 - 6509 010 Phone 1-800 - 854-4358 ANALYSIS REQUEST	Addination of the contract of	Samiler Signature			Colicera wix #10-20 2	CC 9777 #/1 #11-12 22 11 11 1/1/49	Care/meau Mu233*34 - 11 1 1 1 1 1/4								AT Date: Times: Received by: REMARIS	202 01-08-99 0855 Proming	Dale: These Restrict by	Ny: Date: Three: Received by Latoratory:
--	---	--	---	-------------------	--	--	-----------------------	------------------------------------	-------------------------------------	--	--	--	--	--	--	--	--------------------------------------	---------------------------	-------------------------	--

F.02

Monitor Well # 10 Sohio State # 1 Sampling Results

Lab.#	12483	13186	14066	14665	15597	16604
Sample Date	9/5/97	12/3/97	2/23/98	6/25/98	10/1/98	1/6/99
Benzene	2.559	2.148	1.301	1.313	2.541	1.000
Toluene	1.148	0.062	0.113	0.113	0.108	0.067
Ethylbenzene	0.243	0.173	0.209	0.206	0.182	0.156
m,p Xylene	1.257	0.930	0.490	0.611	0.167	0.214
o Xylene	0.081	0.313	0.179	0.180	0.098	0.095
Total Xylene	1.338	1.243	0.669	0.791	0.265	0.309
Total BTEX	6.626	3.626	2.292	2.423	3.096	1.532

9/5/97
9/5/97
12/3/97
2/23/98
6/25/98
10/1/98
1/6/99

Monitor Well # 17 Sohio State # 1 Sampling Results

Lab.#	12723	13187	14051	14671	15601	16587
Sample Date	10/2/97	12/3/97	3/23/98	6/25/98	10/1/98	1/6/99
Benzene	0.799	1.409	1.101	1.111	0.872	0.876
Toluene	0.128	0.053	0.108	0.138	0.105	0.193
Ethylbenzene	0.141	0.116	0.130	0.118	0.071	0.094
m,p Xylene	0.628	0.535	0.376	0.379	0.242	0.339
o Xylene	0.292	0.192	0.148	0.174	0.129	0.163
Total Xylene	0.920	0.727	0.524	0.553	0.371	0.502
Total BTEX	2.908	2.305	1.863	1.920	1.419	1.665

Monitor Well # 17

Monitor Well # 18 Sohio State # 1 Sampling Results

Lab.#	12724	13188	14052	14672	15609	16588
Sample Date	10/2/97	12/3/97	3/23/98	6/25/98	10/1/98	1/6/99
Benzene	1.276	2.063	1.396	1.357	0.542	1.1
Toluene	0.614	0.178	0.269	0.272	0.072	0.247
Ethylbenzene	0.206	0.118	0.159	0.131	0.025	0.107
m,p Xylene	0.553	0.001	0.823	0.589	0.093	0.415
o Xylene	0.648	0.001	0.366	0.252	0.054	0.203
Total Xylene	1.201	0.002	1.189	0.841	0.147	0.618
Total BTEX	4.498	2.361	3.013	2.601	0.786	2.072

