3R - <u>77</u>

REPORTS

DATE: June 1988

DAMES & MOORE JOB NO. 14819-005-31

SALT LAKE CITY, UTAH

JUNE 1988

ę.....

PHASE II SUBSURFACE SOIL AND SOLID WASTE CONTAMINANT EVALUATION MAVERIK REFINERY AND TANK FARM KIRTLAND, NEW MEXICO FOR MAVERIK COUNTRY STORES, INC.

1997 - 19

TABLE OF CONTENTS

EXECUTIVE SUMMARY
INTRODUCTION
PURPOSE AND SCOPE
TASK I - BOREHOLE DRILLING, FIELD TESTING, LOGGING AND SAMPLING
TASK II - LABORATORY INVESTIGATIONS
TASK III - DATA EVALUATION
BACKGROUND
HYDROGEOLOGY
LOCAL
SUBSURFACE SOIL AND SOLID WASTE CONTAMINATION
BACKGROUND SOIL CHEMISTRY
METALS
ORGANIC COMPOUNDS
ON-SITE
Volatile Organics
Total Chromatographable Organics
Semivolatiles
ORGANIC COMPOUNDS
OFF-SITE
Volatile Organics
CONCLUSIONS
REFERENCES

APPENDIX A - BOREHOLE LOGS AND GEOLOGIC CROSS-SECTIONS

APPENDIX B - SUBSURFACE SOIL CONTAMINANT ISOCON MAPS

APPENDIX C - LABORATORY SOILS AND SOLID WASTE ANALYTICAL DATA

APPENDIX D - CHROMATOGRAMS

Page

LIST OF TABLES

Table 1 - Laboratory Soil and Solid Waste Parameters

- Table 2 Laboratory Results for Detected Organic Constituents in Subsurface Soils and Solid Waste for Maverik Country Stores, Refinery Tank Farm, Kirtland, New Mexico
- Table 3 Laboratory Results for Detected Metals in Subsurface Soils and Solid Waste for Maverik Country Stores, Refinery Tank Farm, Kirtland, New Mexico
- Table 4 Characteristics of Organic Compounds Detected
- Table 5 Project Milestone Chart

LIST OF PLATES

- Plate 1 Vicinity Map
- Plate 2 Borehole Location Map
- Plate 3 Generalized Isopach Map of Soils With Dectable Levels of Organics

EXECUTIVE SUMMARY

This report presents the results of the Phase II Subsurface Soil and Solid Waste Contaminant Evaluation at the Maverik Refinery and Tank Farm, Kirtland, New Mexico. This study follows the 1987–1988 Phase I Hydrogeologic Study, and was conducted to define the extent of and potential for soil contamination to act as a continued source of ground water contamination.

The Phase II investigation consisted of the following work elements: aquifer drilling and sampling of solid waste samples and core samples from 43 boreholes; field testing for organic vapor contamination in 101 drill core samples and surface solid waste samples; laboratory analysis of 37 selected soil samples for organics and metals and percent oil, water and solids; analysis of the data obtained during this investigation and review of all of the data obtained from previous investigations.

With the exception of 1,2-Dichloroethane (1,2-DCA), all of the typical refinery related volatile organics benzene, toluene, xylene and ethylbenzene which were found in the shallow ground water on-site, and off-site in the West Side Irrigation Ditch, were found at very high levels in the upper shallow (7 to 12 feet deep) subsurface soil and at the surface and solid waste sludge area on-site. Volatiles were detected at a maximum depth of 15 to 20 feet and detected but at much lower levels off-site, southwest of the tank farm.

Five refinery semivolatiles (bis(2 ethylhexyl)phthalate, 1-methylnaphthalene, naphthalene, phenanthrene and/or chrysene) were detected at 3 of the 4 on-site boreholes that were tested for specific refinery semivolatiles.

Six on-site subsurface soil and three surface and solid waste sludge samples tested for "Total Chromatographable Organics" (TCO), verified the presence of hydrocarbons (diesel fuel, gasoline and other light and heavy end refinery products) and semivolatiles within the upper 20 feet of the subsurface, in the northwest, west central southern and eastern parts of the tank farm.

The principal potential contaminant source areas at the tank farm include the solid waste sludges in the northwest corner; the eastern sludge pit; the subsurface soils in the southwest corner contaminated from the leaded gasoline spill; the west central part of the tank farm near the No. 5 Fuel Oil tank, the Crude Oil Tank and the No-Lead gas tanks and the sludge disposal area south of the Crude Oil tank.

The Phase II subsurface soil and solid waste contamination study results verify the results of the Phase I Hydrogeologic Study, that significant concentrations of tank farm related contaminants are confined to the upper zone of the shallow water table aquifer on-site with much lower levels of contaminants detected in the soils off-site.

Although there are significantly high levels of organic compounds in the shallow subsurface soils and ground water and solid wastes on-site, contaminant releases from the tank farm via ground water transport have not been significant. The West Side Irrigation Ditch is believed to have served as a major contaminant control mechanism to off-site contamination.

-1-

PHASE II SUBSURFACE SOIL AND SOLID WASTE CONTAMINANT EVALUATION MAVERIK REFINERY AND TANK FARM KIRTLAND, NEW MEXICO FOR MAVERIK COUNTRY STORES, INC.

INTRODUCTION

This report presents the results of the Phase II subsurface soil and solid waste evaluation at the Maverik Refinery and Tank Farm in Kirtland, New Mexico. Subsurface soil and solid waste conditions were evaluated on-site and off-site about 150 feet west and downgradient from the southwestern edge of the tank farm boundary and about 350 feet west of the northwestern corner of the tank farm. The general site location map and detailed plot plan showing the boreholes and pertinent monitor wells are included on Plates 1 and 2, respectively.

PURPOSE AND SCOPE

The purpose of this study was, as specified by the New Mexico Environmental Improvement Division (NMEID) in a letter dated December 18, 1987 to Maverik, to perform a subsurface soils and solid waste contaminant evaluation to "define the areal and vertical extent of soil contamination at the refinery and the potential for such soil contamination to act as a continued source of ground water contamination."

The scope of the Phase II work conducted by Dames & Moore and as outlined in the March 25, 1988 work plan to the EID, was verbally approved by the New Mexico EID on April 4, 1988, with the only modification being that metals analyses be conducted at two known solid waste disposal sites. The project scope accomplishes the objectives of:

- 1. Defining the vertical and lateral extent of subsurface soil and solid waste contamination.
- 2. Identifying and quantifying the contaminants present.

-2-

- 3. Identifying contaminant sources known or suspected.
- 4. Determining the potential for such soil and solid waste contamination to serve as a continued contaminant source to the ground water.

Specifically the following tasks were performed during the Phase II work:

TASK I - FIELD INVESTIGATIONS

- o A detailed ground survey for surficial refinery solid waste product.
- o Augering 43 shallow boreholes (24 on-site and 19 off-site) to depths of 0.8 feet to 22 feet.
- Testing 101 augered samples in the field with an organic vapor analyzer (OVA).
- o Sampling 37 subsurface soil and solid waste materials for laboratory analysis.

TASK II - LABORATORY INVESTIGATIONS

- o Rocky Mountain Analytical Laboratory (RMAL) analyzed the soil and solid waste samples for halogenated and aromatic volatile organics, total organic lead and 12 metals, total chromatographable organics (TCO) and initial and final boiling points, refinery hazardous volatile constituents, refinery hazardous semi-volatile constituents and percent oil, water and solids (Table 1). Their comprehensive report with analytical results is included in Appendix C.
- As per the NMEID's request that metals analyses be completed for at least two solid waste sludge samples, an EP toxicity test for metals was run on the sludge near the crude oil tank at borehole 3 (BH-3) and total metals were analyzed for the solids from the sludge pit to the east (BH-26). In addition, 8 to 12 refinery related metals were analyzed at four other sample sites for total metals concentrations.
- Laboratory analysis of refinery-related semi-volatile organics for 4 samples were analyzed by EPA Method 8270. For evaluating petroleum hydrocarbons and semi-volatiles, 10 samples were analyzed for TCO levels.
- o Total organic lead was analyzed at 4 sample sites located near the 2.4 million gallon leaded gasoline storage tank.

TASK III - DATA EVALUATION

- o OVA readings from drill cuttings were evaluated in the field to define the contaminated subsurface soil zones to be sampled for further testing in the laboratory and to determine if additional drilling was required to define the extent of contamination.
- o Lithologic profiles and depths to the saturated zones were recorded during drilling. The data were used to construct detailed crosssections on-site and off-site to the west.
- o The Phase II lithologic, field OVA and laboratory analytical data as well as the Phase I hydrogeologic data were evaluated to define the source areas and vertical and lateral extent of subsurface soil and subsequent ground water contamination, both on-site and off-site.
- o The significance of the subsurface soil and solid waste contamination was evaluated based on the toxicity of the contaminants detected, their potential for transport via ground water and surface water pathways and their potential impact on private water well users.
- o This summary Phase II Report was prepared.

BACKGROUND

A detailed description of the facility is presented in our Phase I report (February 1988). The study site, owned by Maverik Country Stores, Inc., consisted of a small crude topping refinery and tank farm near Kirtland, New Mexico. Operations were conducted from 1963 until April 1982 at which time the facility was shut down.

As a result of the NMEID sampling and subsequent detection of ground and surface water contamination from the study site in December 1985, Maverik contracted to Dames & Moore to complete ground water, surface water and soil contamination studies. The Phase I hydrogeologic evaluation begain in March 1987. It was completed in February 1988 and included two formal Phase I written reports by Dames & Moore (February 1988 and June 1988). The results of the hydrogeologic study are summarized in the Dames & Moore Phase I Addendum Report. In summary, although high levels of organic contaminants were found

-4-

on-site in the shallow ground waters in the southwest part of the tank farm, only trace levels of volatile organics were present off-site. Only one organic parameter (1,2-DCA), was detected at levels slightly above NMEID drinking water standards off-site in the private wells.

As a result of the Phase I Round 1 water quality data and discussions with the New Mexico EID, additional modifications to the original scope of work and completion schedules were agreed to in early January 1988 by Maverik and the EID. These included, as agreed to in the January 8, 1988 letter to the EID and as summarized in Table 5, a Phase II scope of work to include contaminant source and remedial action investigations and this Phase II completion report; and future reduced selective water quality sampling (Round 3) with a subsequent Round 3 water quality data report.

The Phase II scope of work originally included auger drilling of only 14 boreholes with 28 samples for laboratory analyses. In order to accurately define the vertical and lateral extent of contamination, 15 additional boreholes were drilled, 37 samples taken for laboratory analyses and 101 samples field tested with the OVA meter. The additional boreholes were required to define the contaminant boundaries, both vertically and laterally, from the original borehole site, as contamination was detected.

HYDROGEOLOGY

LOCAL

Detailed descriptions of the local as well as regional hydrogeology at the study site are included in the Phase I Dames & Moore report (February 1988). A summary of the key hydrogeologic characteristics pertinent to subsurface soil and solid waste contaminant impacts to the ground water are presented herein.

-5-

The study site, located approximately 0.4 mile north-northeast from the existing banks of the San Juan River is within the existing floodplain and is part of the regional ground water discharge system to the San Juan River. The underlying formation and aquifer is primarily Quaternary Valley fill alluvium (QAL) and Quaternary terrace gravel of silt, sand and gravel on river terrace surfaces. Bedrock at the site is dry and consists of the lower shale member of the Cretaceous Kirtland Shale Formation. The aquifer is a shallow, thin (less than 35 feet thick), alluvial-gravel aquifer that overlies the shale.

Flows in the alluvial gravel aquifer are from the north-northeast to the south-southwest discharging toward the San Juan River. The hydraulic gradient is approximately 0.01 ft/ft at a velocity of about 3 ft/day along the top of the underlying unsaturated Kirtland Shale Formation. Flows in the shallow siltier saturated zones near the irrigation ditches are significantly impacted by the irrigation ditch waters as well as by the topographic gradient toward the San Juan River which, as would be expected, is the same as the hydraulic gradient of the water table, about 0.01 ft/ft. There is no significant vertical hydraulic gradient in the shallow alluvial aquifer from the upper silty-clayey sand zone to the deeper sand and gravel zone.

Private water wells in the area are typically completed at depths between 15 and 40 feet and receive their waters from the permeable gravels and sands in the lower part of the water table aquifer.

The water table depth near the study site ranges from about 0.3 to 8 feet when the nearby irrigation ditches are flowing and recharging the ground waters, and from about 0.6 to 14 feet when there are no irrigation flows. Onsite in the southern part of the tank farm and off-site to the southwest, the upper 20 feet of the water table aquifer is generally silty-clayey sand. In the southwestern part of the tank it is this lower permeable upper zone that has been impacted by the tank farm.

-6-

Coarser-grained sands and gravels are found at shallow depths in the northern part of the refinery. The cross-sections A-A' and B-B' in Appendix A illustrate this gradation. Contamination in the northern part of the refinery is within this upper gravel zone and grades into the silty-clayey sands to the south.

As discussed in detail in the Dames & Moore Phase I Addendum Report, the West Side Irrigation Ditch has directly impacted the amount of contaminated ground water which flowed off-site to the southwest. Maverik's construction of the interceptor trench (Plate 2) in March 1988, and subsequent capture of significant amounts of the on-site tank farm contaminants should further reduce subsurface contaminant migration off-site.

On the basis of this Phase II study (which shows significantly high levels of organic contaminants in the soils on-site and to a lesser extent off-site), and the low levels of organic contaminants previously detected in the ground waters off-site, it appears that the West Side Irrigation Ditch has served as an effective contaminant control mechanism. The ditch has intercepted significant amounts of organic contaminants in the ground water that otherwise would have migrated further south and southwest resulting in much higher levels of organic compounds than those detected in the downgradient monitor wells and private wells.

SUBSURFACE SOIL AND SOLID WASTE CONTAMINATION

BACKGROUND SOIL CHEMISTRY

Borehole 11, upgradient and in the northeast corner of the tank farm near background monitor well 1 (MW-1), was drilled and a sample from 10-12 feet analyzed for volatile organics. None were detected. The percentage oil, water and solids in this sample at 10 to 12 feet was 1.9 percent, 75.6 percent and 22.5 percent. The isopach map which shows the sample sites with nondetectable or very low concentrations of volatile organics as well as those with detectable levels is presented on Plate 3.

-7-

In addition, background (near 0) OVA levels were measured at BH-12, BH-14, BH-16, BH-19, BH-31, BH-35, BH-37, BH-38, BH-39 and BH-42 off-site to the west and at BH-7, BH-18, BH-25, and BH-28 on-site in the southern part of the tank farm. The boreholes off-site to the southwest where background OVA levels were measured were outside of the narrow plume which extends off-site from the southwest corner of the tank farm. The on-site boreholes that did not intercept contaminated soils were east and generally outside of the berms that surround the tanks.

No volatile organics were detected with the OVA meter at the following depths in the following boreholes: BH-2 (15-17 feet), BH-3 (15-17 feet), BH-4 (15-17 feet), BH-5 (10-12 feet; 15-17 feet), BH-6 (15-17 feet), BH-7 (5-7 feet; 10-12 feet; 15-17 feet), BH-12 (10-12 feet) and BH-14 (6-7 feet). With the exception of BH-12 and BH-14 located west of the tank farm, the other boreholes are located in the southwest part of the tank farm within the bermed areas surrounding the tanks.

Volatile contaminants were encountered in all of these on-site boreholes in the upper zone to a depth of about 12 feet. The fact that the deeper zones did not supports the ground water quality data and other soil chemistry data that show that it is primarily the upper subsurface zone that is significantly contaminated.

OVA readings from cores at BH-2 (15-17 feet) and BH-3 (15-17 feet) measured between 50 and 400 ppm and 300 to 700 ppm, respectively, but no volatile organics were detected in the laboratory above the given detection limits in these deeper zones (see Table 2). As with the aforementioned boreholes, volatile organics were detected in the shallow core samples above these zones, however. Borehole 2 is located southwest of an unleaded fuel tank and BH-3 is located in a sludge pit just south of the crude oil tank.

-8-

METALS

Metals analyses were conducted on samples from six boreholes on-site, two of which were from known sludge pits (Table 3). Total metals analyses were conducted on five of the samples and one EP toxicity test was conducted on a sludge sample from BH-3. The 8 to 12 metals analyzed for total concentrations are metals of concern at refineries ("Skinner List") and include the eight RCRA metals required for EP toxicity testing.

The metals concentrations measured in the EP toxicity test leachate at BH-3 were below detection levels for all metals except barium; the concentration of this metal was 2.7 mg/l compared with the regulatory threshold limit of 100 mg/l. The field OVA readings (>1,000 ppm) and gray to black sand encountered in the sample from BH-3 at 11 feet verify that this zone is contaminated.

Subsurface soil samples from the southwestern part of the tank farm at BH-1 (10 to 11.5 feet) and BH-2 (7 feet) exhibited low total metals concentrations.

The samples from BH-21 (1.25 feet) and BH-22 (3.5 feet) in the northwest part of the tank farm were from surface sludge samples. Metals concentrations were low, with barium, lead and vanadium detected at BH-21 near the No. 5 Fuel Oil Tank. Only barium, also at a low level, was detected at BH-22. BH-22 is located near the No. 1 Diesel Fuel tanks and north of BH-21.

The sludge sample from BH-26 to the east contained somewhat higher metals concentrations of arsenic, chromium, barium and lead.

As shown on Table 3 (Footnote 2), the concentrations of the metals from all of these samples are low and fall within the range for common soils.

-9-

Total organic lead (TOL) was detected at greater than 1 mg/kg (detection limit) only at BH-4 and at BH-5. The levels were 4 mg/kg and 2 mg/kg, respectively, at less than 7 feet deep. These boreholes are near the gasoline blending and leaded gasoline tanks. TOL was not detected (less than 1 mg/kg) at BH-1 and BH-7 also near the leaded gasoline tank but in the southwest (downgradient) corner of the tank farm.

ORGANIC COMPOUNDS

ON-SITE

Volatile Organics

Of the 14 boreholes (a total of 31 subsurface soil samples and 3 solid waste surface sludge samples) analyzed for volatile organics on-site, very high levels of volatile organic compounds were present in 16 of the samples and detectable levels of volatile organics in 6 samples on-site. Volatiles were analyzed for only one sample (BH-13) off-site.

The volatiles detected were benzene, o & p and m xylenes, toluene and ethylbenzene. The concentrations of these compounds are best summarized in Table 2 and the vertical and lateral extent shown on Plates A-15 through A-19 (cross-sections) and Plates B-1 through B-5 (isoconcentration maps), respectively.

The concentrations of the compounds were reported by RMAL in ug/kg which is in parts per billion. Consequently, although the numbers are high, the units magnify the actual concentrations. For example, if the concentrations had been reported in mg/kg (parts per million), all of the levels would have been decreased by three orders of magnitude.

-10-

The volatile organic compound 1,2-DCA has been detected in the ground waters on-site at very high levels (2,400 ug/l at MW-l2) and off-site about 1,000 feet to the southwest at trace levels (7.7 ug/l to 16 ug/l). This compound is the only organic parameter found in the ground water off-site at this distance from the tank farm. It was not, however, detected in any soil or solid waste sludge samples.

Based on the 1,2-DCA levels in the on-site and off-site ground waters and the fact that 1,2-DCA is highly mobile, significant amounts of this compound have gone into solution and moved off-site via ground water flow and transport. The water solubility of 1,2-DCA is 8,520 mg/l as compared to the solubilities of the other volatile compounds detected which ranged from 0.3 mg/l to 1,750 mg/l (Table 4).

As shown on Plates B-1 through B-5, three distinct contaminant areas are depicted by isoconcentration contours. The northern contours depict surficial concentrations of the volatiles in the sludges and surface soils. The central contour shows the contamination between the No. 5 Fuel Oil Tank and the Crude Oil Tank at 10 to 12 feet in the zone sampled with the highest (>1,000 ppm) OVA readings. The highest concentrations of volatile contaminants on-site are found in the upper 5 to 7 feet in the southwest corner of the tank farm between the Crude Oil and Gasoline Tanks to the north and the 2.4 million gallon Leaded Gasoline Tank to the south (BH-1 through BH-6). This is the area of the leaded gasoline spill and a solid waste sludge disposal area (BH-3).

The isoconcentration contours for the volatile organic compounds for this southwestern area are drawn for the upper 5 to 7 feet, the zone of maximum contamination in this part of the tank farm. Concentrations in the 10 to 12 foot zone were not contoured in this area since the contamination was significantly less, and at 15 to 17 feet, very low or not detectable. The lateral extent of the high contaminant levels in this area is well defined based on the low levels of the volatile compounds at BH-8 and BH-9 to the east, at BH-7 to the south and at BH-13 and BH-15 to the west. The northern boundary is not well defined due to contaminant impacts from the Crude Oil Tank to the north.

-11-

To summarize the data presented in Table 2, the values of the isoconcentration contours reflect the general range of the contaminant level for each compound in the upper 5 to 7 feet in the southwestern corner of the tank farm. The isoconcentration contours ranged as follows: 20,000 ug/kg to 200,000 ug/kg for m-xylene (Plate B-1), 1,000 ug/kg to 100,000 ug/kg for o & p xylene (Plate B-2), 3,000 ug/kg to 40,000 ug/kg for ethylbenzene (Plate B-3), 1,000 ug/kg to 200,000 ug/kg for toluene (Plate B-4) and 200 to 20,000 ug/kg for benzene.

Based on the Phase I work and water quality data for shallow MW-12 located in this southwestern area, benzene, toluene, total zylene and ethylbenzene were also found at very high levels in the ground water (24,000 ug/1, 20,000 ug/1, 10,000 ug/1, and 1,500 ug/1, respectively).

Concentrations of m-xylene, o & p xylene and ethylbenzene, were very high in the 10 to 12 foot zone in BH-10 and BH-23 in the central part of the tank farm between the No. 5 Fuel Oil Tank and the Crude Oil Tank. Toluene was at a very high level at BH-23 (19,000 ug/kg) and although benzene was present at BH-23 at 670 ug/kg and at 410 ug/kg at BH-10, it was at much lower levels than in the samples from the southwest or northwest of the tank farm. The isoconcentration contours for the central area range as follows: 70,000 ug/kg for mxylene, 10,000 ug/kg to 30,000 ug/kg for o & p xylene, 10,000 ug/kg for ethylbenzene, 1,000 ug/kg to 19,000 ug/kg for toluene, and 500 ug/kg for benzene.

Concentrations of the volatile contaminants in the surficial soils and sludge (BH-21 and BH-22) in the northwest part of the tank farm are lower than in the southwest and central parts of the tank farm with the exception, as mentioned, of benzene. The isoconcentration contours range as follows: 10,000 ug/kg for m-xylene, 5,000 ug/kg for o & p xylene, 1,000 ug/kg for ethylbenzene, 10,000 ug/kg for toluene, 1,000 ug/kg to 2,000 ug/kg for benzene.

-12-

Total Chromatographable Organics

TCO analyses are used to detect concentrations of hydrocarbons including aliphatics and semivolatiles. Concentrations were detected at 9 of 10 of the sample sites (Table 2). As shown on Plate B-6, Appendix B, the highest TCO levels (54,000,000 ug/kg to 130,000,000 ug/kg) were detected in the northwest corner of the tank farm and to the east in the sludge pit (BH-26). Fuel and stove oil, gas and diesel fuel are the likely contaminants at BH-22, BH-21 and BH-20. These boreholes are located near the No. 5 Fuel Oil and Stove Oil Tanks. Heavy end products (oils) and some lighter end products (i.e., diesel) are present in the sludge pit (BH-26).

High TCO levels were detected at BH-23 (2,900,000 ug/kg from gasoline and oil) and (at a lower level of 250,000 ug/kg) at BH-24 to the south (from gasoline and diesel). These boreholes are located near the No. 5 Fuel Oil tank and Crude Oil tank, respectively.

High TCO levels (2,800,000 ug/kg) detected at BH-4 near the leaded gasoline and gasoline blending tanks were primarily from gasoline (from the leaded gasoline spill) and possibly diesel fuel.

No hydrocarbons were detected at BH-7 which is located just southwest of the leaded gasoline tank and lower TCO levels were detected at BH-8 (2,100 ug/kg) from gasoline. Lower TCO levels were also detected at BH-10 (40,000 ug/kg, from fuel oil and gasoline). BH-10 is located near the No. 5 Fuel Oil Tank.

With the exception of the samples from BH-20, BH-22 and BH-26, the subsurface soil and solid waste samples consisted of at least 70 percent solids, less than 6 percent oil and 10 to 25 percent water. In contrast, the soil and sludge samples from BH-20, BH-22 and BH-26 contained 10.3 percent, 93.7 percent and 51.3 percent oil, 78.8 percent, 4.3 percent and 39.7 percent solids, and 10.9 percent, 2 percent and 9 percent water, respectively. The high per-

-13-

centages of oil from BH-20, BH-22 and BH-26 reflect the fact that these samples consist of solid waste (sludge) material from the tank farm.

Samples with only slightly elevated percentages of oil (i.e., from 2.6 to 5.6 percent) were present at BH-4, BH-6 and BH-7 in the southwest corner of the tank farm near the gasoline blending and leaded gasoline tanks and at BH-21 to the north, near the No. 5 Fuel Oil Tank. The higher percentage of oil in these samples was likely due to the proximity of these sample sites to the tanks and past tank spills and leakage.

Detailed discussion of the TCO results including boiling points, RMAL's "type" chromatograms for gasoline, diesel fuel, oil, kerosene and a C10-C36 sample, and the chromatograms are included in Appendix D. The chromatograms indicate very high levels of primarily oil, gasoline and some diesel in the northwest corner of the tank farm; high levels of primarily diesel fuel and gasoline in the southwest corner; high levels of fuel oil and gasoline or diesel fuel in the west-central area; and primarily oil in the eastern sludge pit (BH-26), as discussed in Appendix D.

Semivolatiles

In addition to the 10 values for TCO, (which indicate the maximum possible concentration of semivolatiles present) specific refinery semivolatiles were analyzed for 4 samples on-site (BH-1, BH-2, BH-21 and BH-22). The semivolatiles detected were bis(2-ethylhexyl)phthalate, 1-methylnaphthalene, naphthalene, phenanthrene and chrysene. Chrysene was detected only at BH-22 at 28,000 ug/kg.

These compounds, except for chrysene, were detected at the highest levels in BH-2 to the south near the no-lead tank, at 7 feet at concentrations of 4,400 ug/kg, 6,500 ug/kg, 5,800 ug/kg, 1,200 ug/kg and <990 (detection level), for the aforementioned compounds as listed, respectively. Semivolatiles were not detected in BH-1 at 10 to 11.5 feet however. BH-1 is located southwest of BH-2 about 70 feet, and just south of a Gasoline Blending Tank.

-14-

The two surface solid waste samples from the northwest corner of the tank farm (BH-21 and BH-22) contained semivolatiles, although the sample from BH-22 contained only phenanthrene and chrysene at 30,000 ug/kg and 28,000 ug/kg, respectively. The sample from BH-21 contained high levels of bis(2-ethylhexyl)phthalate (1,200 ug/kg) and phenanthrene (1,400 ug/kg).

Characteristics of these semivolatile compounds are presented in Table 4. As indicated on Table 4, these compounds have a density close to water, relatively low vapor pressures, are not very soluble in water and tend to be adsorbed by soil and sediment and organic material in the soil. Consequently, the concentrations of semivolatile organics in the ground water are expected to be quite low.

The organic compound bis(2-ethylhexyl phthalate) is a phthalate ester which is a liquid used to make plastics more flexible and it is also used in electrical capacitors as a hydraulic and dielectric fluid. It is not a common semivolatile organic used in oil refinery processes although it frequently is detected at refinery sites.

The polycyclic aromatic hydrocarbons (PAH) are however typical refineryrelated organic compounds and except for l-methylnaphthalene, are priortiy pollutants.

Since these semivolatile organic compounds were detected in the subsurface soils and sludges, analyses for them in the ground water will be conducted at selected sites as part of the Round III water quality sampling program (Table 5). As mentioned previously, the characteristics of these compounds do not lend themselves to dissolution into the ground water and hence if detected at all, should be at low levels.

As previously discussed, TCO analysis gives an indication of the maximum concentration of semivolatiles. The TCO results show the highest levels of semivolatiles in the northwest corner, in the central area by the No. 5 Fuel

-15-

Oil and Crude Oil Tanks, to the south near the Gasoline Tanks and to the east in the sludge pit (BH-26).

ORGANIC COMPOUNDS

OFF-SITE

Volatile Organics

Three shallow borehole samples off-site and within 50 feet of the western edge of the southwest corner of the tank farm were tested for volatile organics. The off-site sample sites include BH-12 (10 to 12 feet), BH-13 (6 to 7 feet) and BH-14 (6 to 7 feet). These sites were selected due to their proximity to the tanks, the on-site surface sludge locations and ground water and surface water contamination observed east of these boreholes on-site. No volatile organics were detected at BH-12 and BH-14.

Volatile organic parameter concentrations at BH-13 at 6 to 7 feet, were 1,400 ug/kg m-xylene, 580 ug/kg o & p xylene, <100 ug/kg 1,2 DCA (i.e., not detected), 67 ug/kg ethylbenzene, 800 ug/kg toluene and 250 ug/kg benzene. In comparison to the contaminant levels on-site to the east (BH-1, BH-5 and BH-6), the levels in BH-13 are significantly lower. In addition, the extent of vertical contamination of volatile organics in BH-13 dropped significantly at 15 feet, from >1,000 ppm to 10 ppm. The OVA readings at BH-12 and BH-14, to depths of 17 feet, were all <1 ppm, verifying that there is no subsurface soil contamination of volatile organics at these two sites and very limited shallow off-site subsurface soil contamination in this area.

No laboratory analyses were conducted on samples from off-site BH-15, BH-32, BH-33, BH-34 and BH-36 (where OVA readings >1,000 ppm were detected). OVA readings >1,000 ppm were recorded to depths of 10.5 feet in BH-15 and to only 3 feet in BH-32 and to 6 feet in BH-33, BH-34 and BH-36. BH-15 is located about 60 feet west of BH-13 and BH-32, BH-33, BH-34 and BH-36 closely parallel (within about 10 feet) the Westside Irrigation Ditch. Although there

-16-

were no laboratory tests for specific volatiles conducted on these five borehole samples, if there were detectable volatile organic contaminants, the levels would be expected to be at lower concentrations than detected at BH-13, since BH-13 is closer to the contaminant source area.

"Worst-case" off-site and on-site subsurface soil contamination from volatile organics based on the field OVA readings, laboratory analyses and field inspection, is presented on Plate 3. This map shows the areal and vertical extent of subsurface soils potentially impacted by historic tank farm operations. This map shows that the off-site subsurface soil contamination is limited to a small (about 100-foot wide, 10-feet deep and 100-foot long) zone that extends off-site to the southwest. This area corresponds with the ground water plume of 1,2-dichloroethane (DCA), as presented in Appendix B (Plate B-6) of the previous Dames & Moore report (June 1988). Boreholes (BH-15, BH-32, BH-34 and BH-36) that had elevated field OVA readings at shallow depths were key to defining this off-site plume.

The four boreholes drilled about 350 feet from the northwest corner of the tank farm and just south of the refinery (BH-40 through BH-43) intercepted gray to black silty sand and coarse sand and gravel (Plate A-14). Field OVA readings were fairly low (4 ppm to 300 ppm). No laboratory analyses for organics or metals were conducted on these samples.

CONCLUSIONS

The conclusions from this Phase II subsurface soil and solid waste contaminant evaluation are based on the work presented in the Dames & Moore reports (February 1988 and June 1988) and the data and evaluation presented herein of both on-site and off-site surface and subsurface conditions at the Maverik Refinery and Tank Farm near Kirtland, New Mexico. This work has reconfirmed the conclusions presented in the Phase I Hydrogeologic Evaluation -Addendum Report (June 1988) and has confirmed the following major findings:

-17-

- 1. The most significant concentrations of typical refinery-related volatile organics benzene, toluene, ethylbenzene, xylene and other hydrocarbons have been found primarily in the upper 7 to 12 feet of the silty-clayey sand zone at the refinery tank farm in the south-west corner where a leaded gasoline spill occurred, where the Crude Oil Tank sludge was placed and near the Gasoline and Gasoline Blend-ing Tanks. High levels of these volatile organics have also been detected in the northwest corner of the refinery tank farm but in the shallow sands and gravels which grade into silty-clayey sands to the south. No 1,2-DCA was detected in the soils or sludge due to its high solubility and transport by ground and surface waters.
- 2. High concentrations of the semivolatile organics (including bis(2ethylhexyl)phthalate, 1-methyl-naphthalene, naphthalene, phenanthrene and chrysene) have been detected on-site primarily in the northwest corner, in the central part, in the eastern sludge pit and in the upper 7 feet in the southwest corner of the tank farm.
- 3. Elevated concentrations of hydrocarbons, primarily oil, gasoline and diesel fuel, have been detected throughout the western part of the tank farm, in the solid wastes (sludges) found on-site in the northwest corner and in the eastern sludge pit, within the tank farm boundaries. High levels of hydrocarbons, primarily gasoline and diesel fuel were found in shallow subsurface soils in the central part of the tank farm and some were detected in the far southwest corner.
- 4. The concentrations of the eight RCRA metals tested using the EP toxicity test indicated that these metals concentrations in the subsurface soils are very low and not at levels considered toxic. The total metals concentrations in the subsurface soils in the southwest part of the tank farm as well as in the surface solid waste (sludge) samples in the east and northwest corner are low and typical of metals concentrations in soils.
- 5. Off-site contamination of the subsurface soils appears to be limited to two areas: a small 100-foot long, 10-foot deep and 100-foot wide zone immediately west of the southwest corner of the tank farm in the silty clayey sand, and a small 80-foot diameter area just south of the refinery and about 300 feet west of the northwest corner of the tank farm. The concentrations of the volatile organics in the subsurface soils off-site to the southwest are either below detection levels and/or are much lower than on-site, with xylene, ethylbenzene, toluene and benzene being the only volatile organics detected. Low field OVA readings in the northwest (4-300 ppm) were recorded in the 80-foot diameter zone off-site.

- 6. The subsurface soil laboratory data analysis for 37 samples and the field OVA data for 101 samples verified that the major contamination to the underlying soils from the tank farm operations is within the upper 7 to 12 feet and is not detected beyond a depth of about 15 to 20 feet. In the southwest part of the tank farm and downgradient to the south and west and off-site, the contaminated zone is principally a silty-clayey (low permeable) fine sand zone that overlies the coarser sand and gravel zone from which the downgradient private wells receive their water.
- 7. The contaminant source areas defined from the Phase II study include: the solid waste sludges in the northwest corner of the tank farm; the eastern sludge pit; the subsurface soils in the southwest corner contaminated from the leaded gasoline spill; the west-central part of the tank farm near the No. 5 Fuel Oil Tank; the Crude Oil Tank and the No-Lead Gas Tanks; the sludge disposal area south of the Crude Oil Tank.
- 8. The significantly high concentrations of the volatile and semivolatile organic compounds at the tank farm in both the sludges and subsurface soils, and the low concentrations of these same constituents in the ground water off-site can be accounted for by the Westside Irrigation Ditch effects. When dry, this ditch has served as an effective collection sump for contaminated ground waters that move off-site to the southwest. This ditch has prevented widespread movement of contaminated ground water off-site. When flowing, the ditch has served as a ground water boundary and recharge (dilution) mechanism to ground water movement off-site. The interceptor trench built in March 1988 has been even more effective than the ditch, (due to its location and depth), in collecting contaminants before they can migrate off-site.
- 9. As presented in our Phase I reports, only low concentrations of organic contaminants at trace levels or slightly above NMEID drinking water standards, have been detected off-site in the ground water. This along with the fact that the downgradient wells are not used for drinking water purposes confirm that the releases from the tank farm have not posed and do not pose an immediate threat to human health and the environment. Identification of the contaminants in the ground water, in the solid waste sludges and in the subsurface soils, and delineation of the contaminant source areas will be included in developing the remediation proposal.

REFERENCES

- Arizona Department of Health Services, March 13, 1987. Draft Policy for Establishing Drinking Water Action Levels and Soil Cleanup Levels.
- Dames & Moore, February 1988. Phase I Hydrogeologic Evaluation, Maverik Refinery and Tank Farm, Kirtland, New Mexico.
- Dames & Moore, June 1988. Addendum to Phase I Hydrogeologic Evaluation, Maverik Refinery and Tank Farm, Kirtland, New Mexico.
- EPA, April 1983. Hazardous Waste Land Treatment, SW-874, p. 273.
- EPA, October 1986. Superfund Public Health Evaluation Manual, EPA 540/1-86/060.

LABORATORY SOIL AND SOLID WASTE PARAMETERS

HALOGENATED VOLATILE ORGANICS EPA METHOD 8010

Bromoform Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane Bromodichloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-dichloropropene Bromoethane Chloromethane Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene trans-1,2-Dichloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl chloride 1,1,2-Trichloro-1,2,2-trifluoroethane 1,2-Dibromoethane (EDB)

AROMATIC VOLATILE ORGANICS EPA METHOD 8020

Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethylbenzene Toluene m-Xylene o & p-Xylene(s)

TOTAL CHROMATOGRAPHABLE ORGANICS GC/FID METHOD

Total Chromatographable Organics Initial Boiling Point Final Boiling Point

REFINERY HAZARDOUS CONSTITUENT VOLATILES EPA METHOD 8240

Benzene Carbon disulfide Chlorobenzene Chloroform 1,2-Dibromoethane 1,2-Dichloroethane 1,4-Dioxane Methyl ethyl ketone Styrene Ethylbenzene Toluene m-Xylene o & p-Xylene(s)

REFINERY HAZARDOUS CONSTITUENT SEMIVOLATILES EPA METHOD 8270

Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene bis(2-Ethylhexyl)phthalate Butylbenzyl phthalate Chrysene Dibenz(a,h)anthracene Di-n-butyl phthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Diethyl phthalate 7,12-Dimethylbenzanthracene Dimethyl phthalate Di-n-octyl phthalate Fluoranthene Indene 1-Methylnaphthalene Naphthalene Phenanthrene Pyrene Pyridine Quinoline Benzenethiol o-Cresol p & m-Cresol 2,4-Dimethylphenol 2,4-Dinitrophenol 4-Nitrophenol Phenol

TABLE 1 (Continued)

EP TOXICITY TEST, METALS EPA 1310 EXTRACTION METHOD	EPA ICP,GF METHODS	INORGANIC PARAMETERS FREON EXTRACTION GRAVIMETRIC
Arsenic	7060	Oil
Barium	6010	Water
Cadmium	7131	Solids
Chromium	6010	
Lead	7421	
Mercury	7471	
Selenium	7740	
Silver	7761	
METALS PARAMETERS		
TOTAL METALS		
SW-846 METHOD	EPA METHOD	
Antimony	6010	
Arsenic	7060	
Barium	6010	
Beryllium	6010	
Cadmium	6010	
Chromium	6010	
Cobalt	6010	
Lead	6010	
Mercury	7470	
Nickel	6010	
Selenium	7740	
Vanadium	6010	
Total Organic Lead	ENSECO Special	

Note: For detail of methodology see ENSECU'S (RMAL) attached report (Appendix C).

ł

Ju ii i

LABORATORY RESULTS FOR DETECTED ORCANIC CONSTITUENTS IN SUB-SURFACE SOILS And solid waste for maverix country stores, refinery tank farm, kiritand, new mexico April 1988

Solide I		86.4 83.1 83.8	85.1	85.1	80.8 84.2	84.5	81.5 82	;	79.4	9	E-18	78.9	71.7 80.7	83.8 75.7		6.10	78.2	83.5 -	75.6	78.8	91.4	4.3	88.5	89.2	7.96		19.4	81.8	78.2
110		0.4 0 0.2 1.1	0.1	1.0	9.0		0.1	-	5.2	6		4.0	5.6 0.8	2.7		··1	0.8	0.7	1.9	10.3	2.6	1.19	0.1	0.2	0 51.3		0.3	1.4	1.0
Avo (aug)		>1,000 1,000 - 600 70 - 1	000.14	>1,000	800 - 50	×1,000	>1,000 700 - 300	000	15 - 1 15 - 1	000	50 - 40	>1,000	>1,000 - 10 1	o <u>1</u>		1 4 - 1 4	1,000	000'1<	1	>1,000	1,000	300 - 200	>1,000	000'1<	1,000 - 200		-	1,000	I
Chrysene (ug/kg)		<330 -		0	F 1		1 1							• • •		•	•	• •	ı	1	066>	28,000	•	1	ı		,	,	,
Maphthalene Phenanthrane (ug/kg) (ug/kg)		- <330 -	ı	1,200	11	• •			. , ,	,	. ,	,				1	ı	11	•	ı	1,400	000 [°] 00	,	ı	•		ı	ı	ı
Maphthalene (ug/kg)		- 066> -	,	5,800		. ,	, ,			,		,	, ,			•	•		I	•	066>	<10,000	ı	ı	١		,	,	ı
l-Methyl- naphthalene (ug/kg)		- - -	ı	6,500	1 1		1 1			ı		,				•	•	11	*	,	066>	<10,000	,	ı	r		r	ı	,
bis (2-Ethylheryl) phthalste (Ug/kg)		-	ı	44.00	1 1					1	1.1					•	•		ŧ	4	1,200	<10,000	·	I	ı		ı	ł	,
Total Chromatographable Organics (ug/kg)			,	ı			1 F	000 000 1		1	, ,	,	* 1	- <1,700	- 100 1	7,100	•	40,000	,	54,000,000	60,000,000	130,000,000	2,900,000	250,000	130,000,000		ŀ	ł	,
Total Organic Lead (mg/kg)		-(2) <1 -	,	•	, ,		1)					ı		'⊽'		•	,		,	ı	,	ı	ı	ı	۱		۱	•	,
Benzene ⁽¹⁾ (<u>ug/kg)</u>		3,900 1,800 380	21.000	<5,000	2,500 <50	- 200	140 <50	000.76	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000 6	; 999	19,000	88	223	; =		57	410	<50	15	110	2,000	670	001>	ı		<50	250	<50
Toluene (ug/kg)		84,000 4,600 <50	170.000	65,000	27,000 <50	13,000	:9 55	000 011	68 68	16 000	3 8 8 8 8 8	140,000	961 95	883	, u	00*	240	870	<50	120	<100	11,000	19,000	2,100	,		<50	800	<50
Ethylbenzene (ug/kg)		22,000 710 <50	10 000	15,000	7,000	 26,000	240 <50	000 00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000 7	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	37.000	2 8	8 8 8	3 5	ĥ	180	000 [°] 01	<50	76	<100	1,800	12,000	2,400	ı		<50	67	<30
<u>Volatiles</u> m-zylene oбp-zylene(s) (ug/kg) (ug/kg)		98,000 3,500 140	120 000	000 69	21,000 <50	000'06	730 <50	000 01 1	<pre></pre>	000 35	<20 <20 <20	150.000	340 <50	22	; ;	005	660	13,000	\$0	150	1,700	6,100	35,000	10,000	•		<50	580	<50
Vola m-xylene (ug/kg)		1.30,000 6,300 79	210 000	000'66	39,000 (50	17,000	170 <50	000 011	276	000 11	85 85 85	170.000	390 <50	88		0.05	630	63,000 -	<50	130	3,400	10,000	72,000	17,000	ł		<50	1,400	650
1-2 DCA (ug/kg)		<1,000 ⁽¹⁾ <200 <100	(2 000	<5,000	<670 <100	<1,000	4100 4100				0015	<2.000	<100 <100	001> 001>		0015	<100	- -	001>	¢100	001> (<200	000'1>	<200	,		001>	<100	4100
Sample Site Designation And Depth Sampled (in feet)	Boreholes	 BH-1 (5-6.5) BH-1 (10-11.5) BH-1 (15.5-17)			BH-2 (10-12) BH-2 (15-12)	BH-3 (5-7) BH-3 (11)	BH-3 (10-12) BH-3 (15-17)		BH-4 (3-7) BH-4 (10-12) AH-6 (15-17)		BK-5 (10-12) BK-5 (10-12) BH-5 (15-17)		BH-6 (10-12) BH-6 (15-17)	BH-7 (5-7) BH-7 (10-12)		84-8 (10-12)	BH-9 (5-7)	BH-10 (12) BH-10 (17)	BH-11 (10-12)	BH-20 (5-7)(sludge)	BH-21 (0-1.25)(surface)	BH-22 (0-0.5)(eludge)	BH-23 (10-12)	8H-24 (S-11.5)	8H~26 (0-1)(sludge)	Off-Site	BH-12 (10-12)	8H-13 (0-1)	BH-14 (6-7)

 (1) < Indicates below the detection (reporting) limit.
 (2) - Indicates Not Analyzed Footnotes:

-

LABORATORY RESULTS FOR DETECTED METALS IN SUB-SURFACE SOILS AND SOLID WASTE FOR MAVERIK COUNTRY STORES, REFINERY TANK FARM KIRTLAND, NEW MEXICO

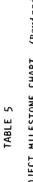
Des: And De	n-Site Sample ignation pth Sampled feet)	Sb	As	<u>Total</u> Ba	Metal	s Conce Cd	ntratic Cr	ons (mg/ Co	(1,2 kg) Pb	2) Hg	Ni	Se	Vn	Ag
	1661)	50	no	58	De	0u	01	00	ID	цg	141	56	• 11	-
BH-1	(10-11.5)	<5(3)	1.8	140	0.3	<0.5	3	3	9	<0.05	5	<0.2	11	_(3)
BH-2	(7)	<5	1.0	110	0.2	<0.5	3	2	13	<0.05	<4	<0.4	10	-
BH-21 (surfa	(0-1.25) ce)	<5	1.2	110	0.2	<0.5	2	2	8	<0.05	<4	<0.2	12	-
BH-22 (sludg	(0-0.5) e)	<5	<0.3	9.4	<0.1	<0.5	<1	<1	<5	<0.05	<4	<0.2	<1	-
BH-26 (sludge	(0-1) e)	-	9	63	-	<0.5	12	-	98	<0.05	-	<0.2	-	<0.5

		Le	ached Me	tals Co	ncentra	ations	(mg/1)	
	As	Ba	Cd	Cr	Рb	Hg	Se	Ag
BH-3 (EP Tox	 <0.1	2.7	<0.005	<0.01	<0.05	<0.001	<0.02	<0.005

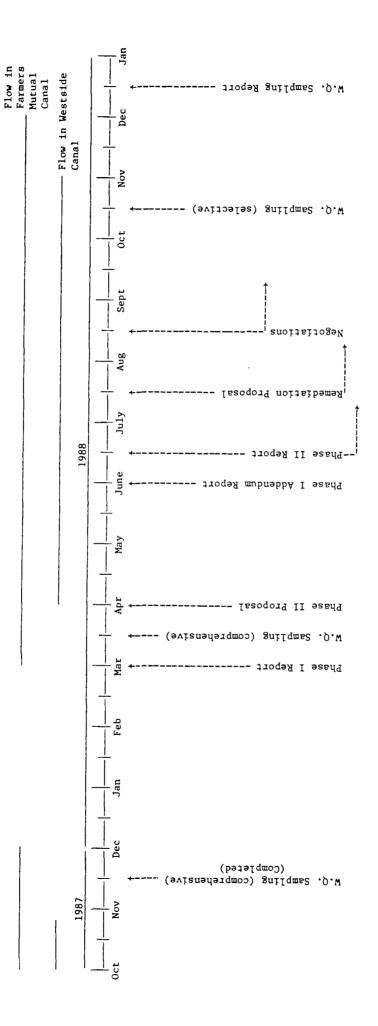
Footnote:

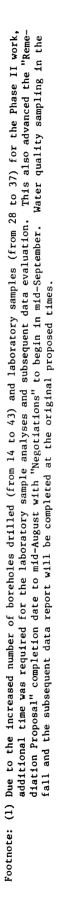
(1)	The	parameters	abbreviated	are	as	follows:
	Sb	Antimony				
	As	Arsenic				
	Ba	Barium				
	Cd	Cadmium				
	Cr	Chromium				
	Co	Cobalt				
	Рb	Lead				
	Hg	Mercury				
	Ni	Nickel				
	Se	Selenium				
	Ag	Silver				
	٧n	Vanadium				
(2)						ste Land Treatment, SW-874 (revised), ations in soils are as follows:
						: Be $0.1-40 \text{ mg/kg}$: Cd $0.01-0.7 \text{ mg/kg}$:

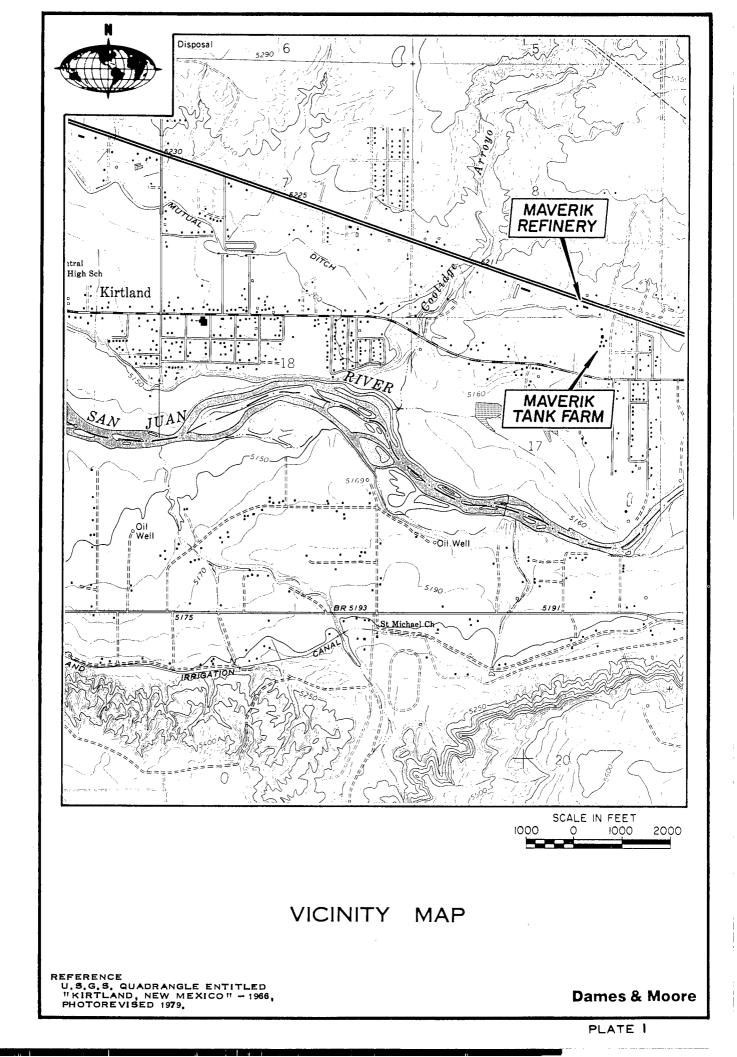
As 1-50 mg/kg; Ba 100-3,000 mg/kg; Be 0.1-40 mg/kg; Cd 0.01-0.7 mg/kg; Cr 1-1,000 mg/kg; Co 1-40 mg/kg; Hg 0.01-0.3 mg/kg; Ag 0.01-5 mg/kg.


(3) < Indicates below detection limit.

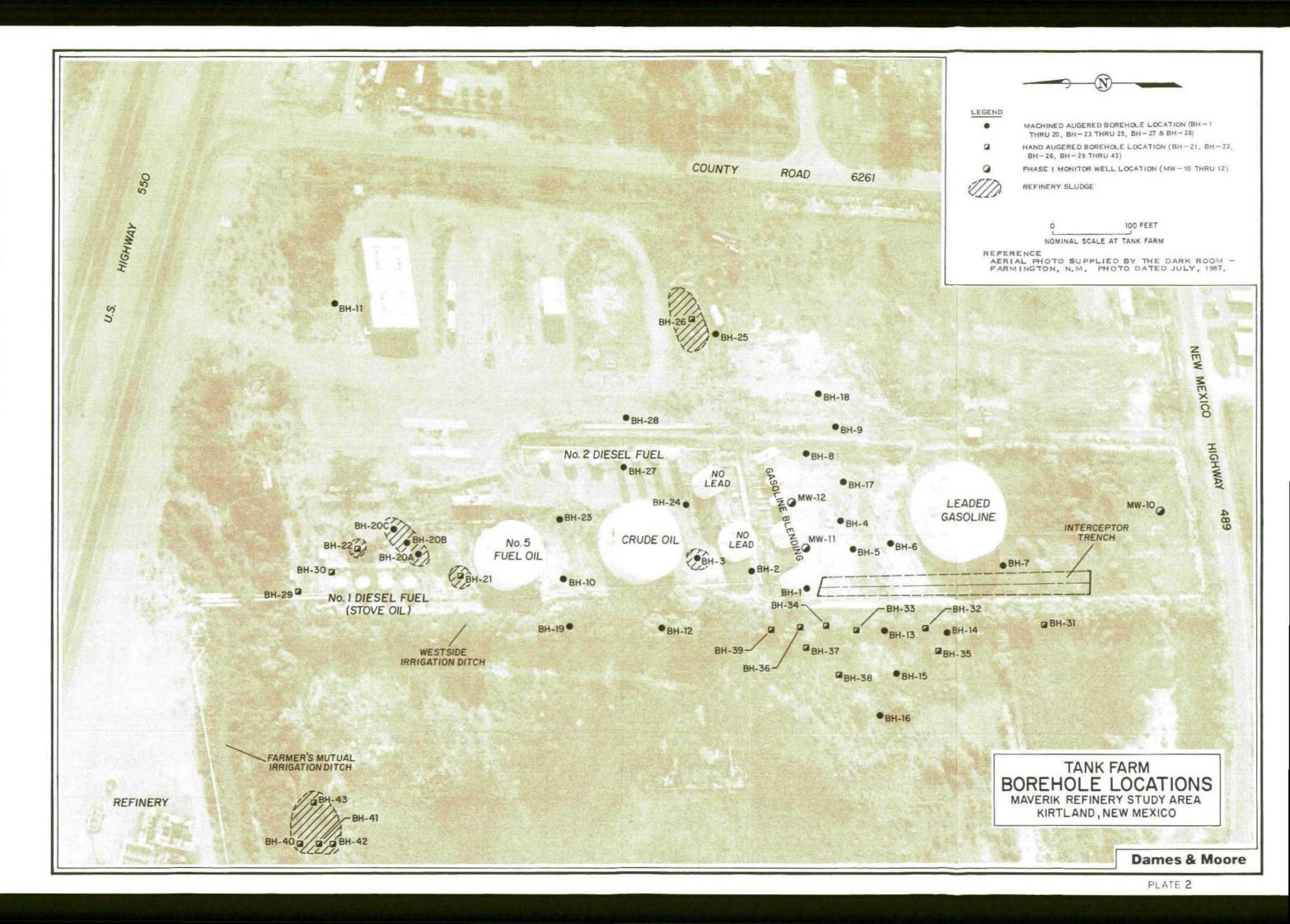
(4) - Indicates Not Analyzed

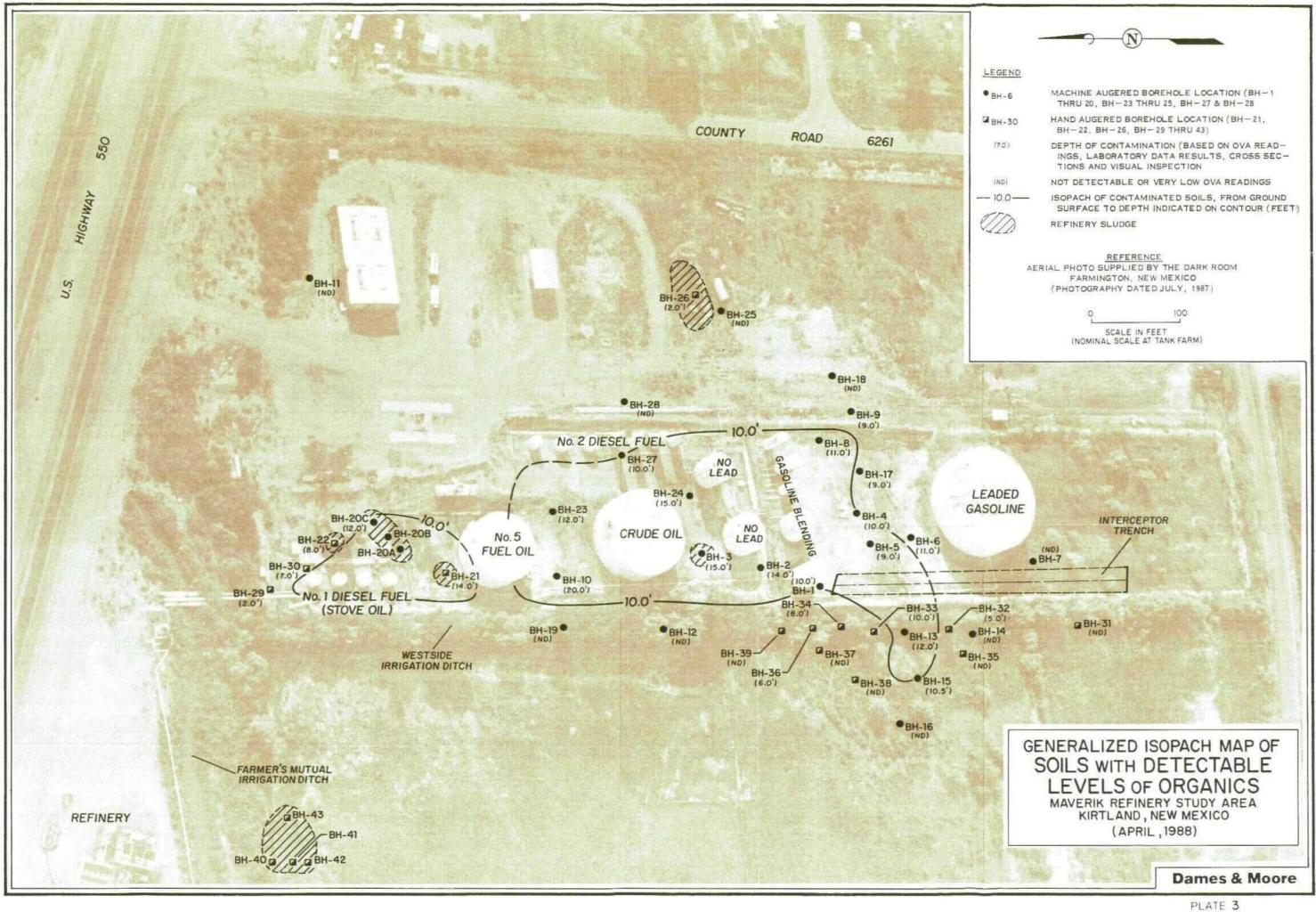

CHARACTERISTICS OF ORGANIC COMPOUNDS DETECTED


	Molecular Weight	Density (gm/cm ³)	Water Solubility (mg/l)	Vapor Pressure (mm Hg)	K _{oc} (1) (m1/g)	K _{ou} (2)
Volatile Organic Para	neters					
Benzene	78	0.88	1,750	95	83	132
Ethylbenzene	106	0.87	152	7	1,100	1,412
Toluene	92	0.87	535	28	300	537
Xylene, m	106	0.86	130	10	871	1,820
Xylene, p	106	0.86	192	10	676	1,412
Xylene, o	106	0.88	175	10	426	891
l,2-Dichloroethane	99	1.26	8,520	64	14	30
Tetraethyl lead	323	1.65	0.3-0.8	0.1	4,900	-
Semivolatile Organic H	Parameters					
Phthlate Esters						
Bis(2-ethylhexyl phthalate	391	0.99	0.28	3×10 ⁻⁷	-	75,850
Polycyclic Aromatic	Hydrocarbo	ns (PAH)				
l-Methyl naphthalene	e 142	1.02	12	←	-	-
Naphthalene	128	1.02	32	0.05	1,300	2,340
Phenanthrene	178	1.06	1	0.00068	14,000	28,840
Chrysene	228	1.27	0.001	6×10^{-9}	200,000	410,000


- (1) Organic carbon partition coefficient, a measure of the tendency for organics to be adsorbed by soil and sediment.
- (2) Octanol-water partition coefficient, a measure of the tendency of a chemical at equilibrium to distribute between an organic phase (octanol) and water.
- Source: Superfund Public Health Evaluation Manual, EPA 540/1-86/060, October 1986; Land Treatment of Appendix VIII Constituents in Petroleum Industry Wastes, American Petroleum Institute Publication 4379, May 1984.

PROJECT MILESTONE CHART (Revised 6/88)⁽¹⁾ MAVERIK KIRTLAND, N.M. REFINERY INVESTIGATIONS




CHEC

DATE /2-7-37

0.3

FILE

FILE

DATE

LEGEND	
• BH-6	MACHINE AUGERED BOREHOLE LOCATION (BH-1 THRU 20, BH-23 THRU 25, BH-27 & BH-28
■ BH-30	HAND AUGERED BOREHOLE LOCATION (BH-21, BH-22, BH-26, BH-29 THRU 43)
(7.0')	DEPTH OF CONTAMINATION (BASED ON OVA READ- INGS, LABORATORY DATA RESULTS, CROSS SEC- TIONS AND VISUAL INSPECTION
(ND)	NOT DETECTABLE OR VERY LOW OVA READINGS
10.0	ISOPACH OF CONTAMINATED SOILS, FROM GROUND SURFACE TO DEPTH INDICATED ON CONTOUR (FEET)
	REFINERY SLUDGE

APPENDIX A

1111

- He - 11 - 11 - 1

BOREHOLE LOGS AND CROSS SECTIONS

APPENDIX A

BOREHOLE LOGS AND CROSS SECTIONS

BOREHOLE COMPLETIONS

The Phase II surface and subsurface soil evaluation included machine hollow-stem auger drilling 25 (6.25-inch diameter) boreholes to depths from 7 feet to 22 feet (averaging 17 feet), and hand augering 18 shallow boreholes to depths of 0.8 feet to 10 feet.

Detailed geologic logs are included which show borehole depths, subsurface lithology, approximate depth to the saturated zone and field measurements of organic vapor concentrations at specific soil intervals. The logs are presented on Plates A-1 through A-14. Table A-1 summarizes the borehole depths and vertical profile of the volatile organics in the soils based on the organic vapor analyzer (OVA) readings. With the exception of the shallow boreholes that were hand augered and could not be drilled deeper due to auger refusal, the boreholes were drilled to depths where there was no soil contamination where the OVA readings were at or approaching background (\leq 1 ppm). This was done in order to define the vertical extent of contamination.

On-site and off-site geologic cross-sections were prepared. Locations of the cross-sections are shown on Plate A-15 and the cross-section themselves are presented on Plates A-16 through A-19. The geologic logs are based on the Unified Soil Classification System as presented on Plate A-20. These crosssections, which include the OVA readings, show that elevated OVA levels were detected generally in the upper 17 to 20 feet in coarse gravels and sands in the northwest and downgradient to the southwest both on and off-site in the clayey silty sandy zone. Downgradient and off-site, the upper 17 to 20 foot zone lies above the highly permeable deeper gravel deposits (which were encountered at depth during the Phase I monitor well drilling). Geologic logs from the Phase I monitor wells MW-11, MW-12 and MW-10 were included on two of the Phase II borehole cross-sections (AA' and EE') to show the vertical separation of this deeper gravel zone from the upper low permeable contaminated zone.

A-1

Ground elevations at the borehole sites were not available but were estimated for the cross-sections based on the measured ground elevations for the Phase I monitor wells and the U.S.G.S. topographic quadrangle map of Kirtland, New Mexico. The contaminated soil zones were based on both the laboratory analytical data as well as the field OVA readings.

Because the Phase II borehole depths were shallow, the deeper lithologic correlations were inferred based on the Phase I monitor well logs. These correlations are indicated by dashed lines and question marks.

DRILLING AND SAMPLING METHODS

MACHINE AUGERED BOREHOLES

The machine augered boreholes were drilled with a CME Model 55 rotary hollow-stem auger owned by Mountain States Drilling Company from West Valley City, Utah. The auger flights were 3.75-inch inside diameter and 5-feet long. Composite samples were collected from 24-inch long split-spoon samplers.

To prevent potential cross-contamination between samples and drill holes, the split-spoon samplers were washed with high pressure high temperature (190°F) water between samples as were the auger flights after drilling each borehole. The generator and high pressure-temperature washer were on-site for easy accessibility during all of the Phase II drilling.

A Century Model 128 GC OVA meter was used on-site to continuously monitor the drill cuttings and the core samples from the split-spoon samples. OVA measurements were recorded after placing the samples in a plastic bag, to eliminate external interference. OVA readings were used to define the contaminated zones of which select samples were then collected for further comprehensive laboratory testing. A Dames & Moore hydrogeologist was in the field at all times for the drilling, OVA monitoring, sampling and borehole plugging.

A-2

The contaminated soil samples for laboratory analyses were taken as composite samples from the contaminated soils in the split-spoon sampler. They were then placed in the appropriate containers supplied by RMAL.

Boreholes were plugged to ground surface with a graded (to 0.75 inch) montmorillonite clay, "Holeplug," a product of NL Baroid, Houston, Texas. Borehole plugging was in compliance with the New Mexico State Engineer Office, Water Rights Division.

HAND AUGERED BOREHOLES

Hand augered boreholes were drilled with a 3-inch diameter stainless steel "Arts Machine Shop" (AMS) auger from Boise, Idaho by Dames & Moore's field hydrogeologist. Hand augered boreholes were required at 18 sites due to inaccessibility and drilling refusal with the machine auger drill rig. The hand augered drill cuttings were also field OVA-tested and collected in plastic bags as they came up during drilling.

Three soil samples were taken from three hand-augered boreholes for laboratory testing. They were all shallow samples (< 1.25 feet deep) but were located at critical locations to the north and east, on-site where surface soil contamination was visible.

Boreholes that were hand augered were shallow and backfilled with the original cuttings.

BOREHOLE LOCATIONS AND NUMBERS

A total of 14 boreholes were originally proposed and located based on the Phase I soil-gas survey data, ground and surface water quality data and visual observation of surface contaminants. This original plan was presented in the "Phase II Work Plan" by Dames & Moore (March 25, 1988). An additional 29 boreholes were added to this program for a total of 43 boreholes. Of these 43 boreholes, 19 were located off-site to the west, south and north of the tank farm. Twenty-four boreholes were located on-site. Additional subsurface contamination discovered in the northern part of the tank farm and to the west, off-site, during the Phase II work, required that additional boreholes be drilled to define the lateral and vertical extent of the contamination. Where feasible, drilling and sampling were conducted until OVA readings reached or approached background.

Page l of 4

TABLE A-1

BOREHOLE DEPTHS AND VERTICAL PROFILE OF FIELD OVA Readings (4/88)

Borehole Designation(1)	Depth Drilled (ft)	Zones Tested(2) (īt)	Field OVA Readings ⁽³⁾ (ppm) Vertical Profile
<u>On-Site</u>			
BH-1	17	5 - 6.5 10 - 11.5 15.5 - 16 16 - 17	>1000 1000 - 600 70 - 50 1
BH-2	17	5 - 7 7 10 - 12 15 - 16 16 - 17	>1000 >1000 800 400 - 200 200 - 50
ВН-3	22	5 - 7 $10 - 12$ $15 - 17$ $20 - 21.5$ $21.5 - 22$	>1000 >1000 700 - 300 400 - 200 1
BH-4	17	5 - 6.5 10 - 10.5 10.5 - 12 15 - 17	>1000 15 - 1 1 1
BH-5	17	5 - 7 10.5 11 15 - 17	>1000 50 - 40 1 1
BH-6	17	5 - 7 10 - 11.5 11.5 - 12 15 - 17	>1000 >1000 15 - 10 1
BH-7	17	5 - 7 10 - 17	10 1
BH-8	17	5 - 7 10 - 12 15 - 17	200 - 150 90 - 40 1
BH-9	17	5 - 7 10 - 17	>1000 1

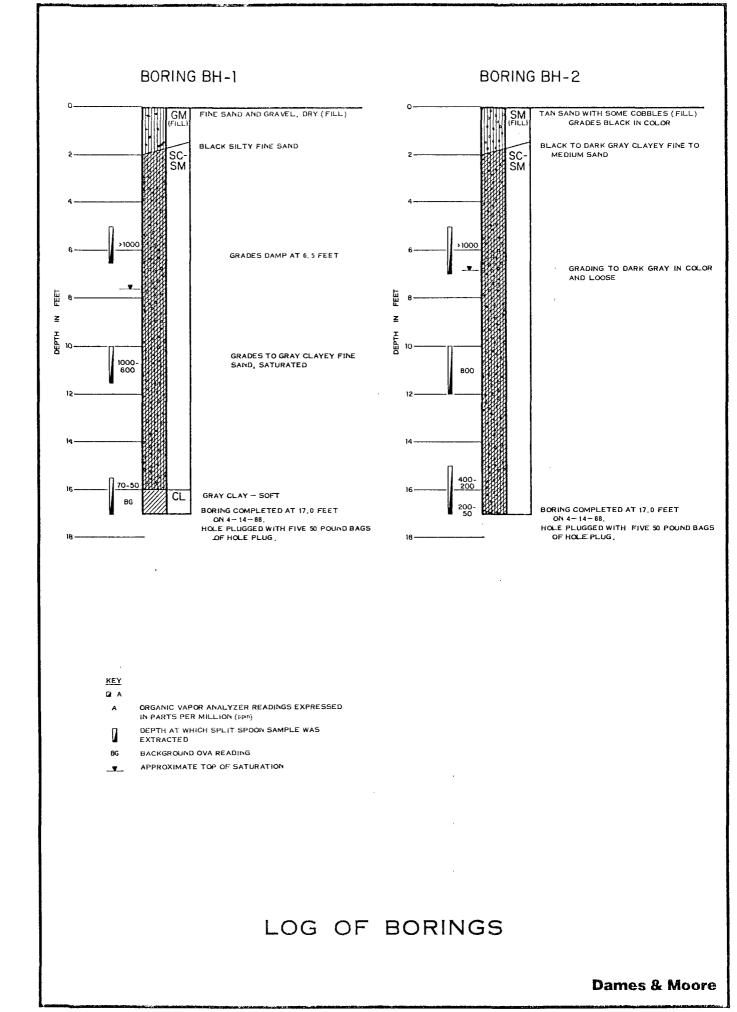
TABLE A-1 (Continued)

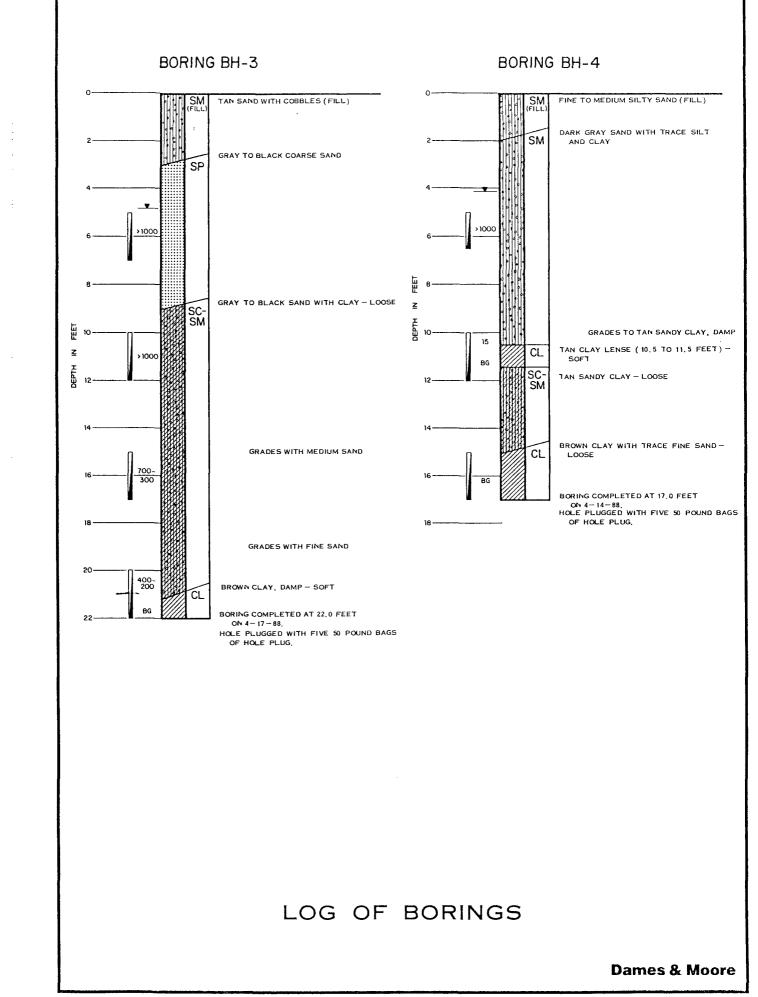
Borehole Designation(1)	Depth Drilled (ft)	Zones Tested(2) (ft)	Field OVA Readings ⁽³⁾ (ppm) Vertical Profile
BH-10	21	5 - 7 10 - 12 15 - 17 20 - 21	>1000 >1000 >1000 120 - 30
BH-11	17	5 - 7 10 - 12 15 - 17	1 1 1
BH-17	17 No 1	ab sample, 5 - 7 10 - 12 15 - 17	>1000 1 1
BH-18	12	5 - 7 10 - 12	1 1
BH-20 (sludge)	7	5 - 7	>1000
BH-21 (surface) 1.25	0 - 1.25	>1000
BH-22 (sludge)	3.5	0 - 3.5	300 - 200
BH-23	17	5 - 7 10 - 12 15 - 17	200 - 350 >1000 1
BH-24	17	5 - 7 $10 - 11.5$ $11.5 - 12$ $15 - 15.5$ $15.5 - 17$	>1000 >1000 200 20 - 10 1
BH-25	17	5 - 7 10 - 12 15 - 17	1 1 1
BH-26 (sludge)	2	0 - 2	1000 - 200
BH-27	17	5 - 7 10 - 11 11 - 12 15 - 17	450 - 300 30 - 20 1 1

TABLE A-1 (Continued)

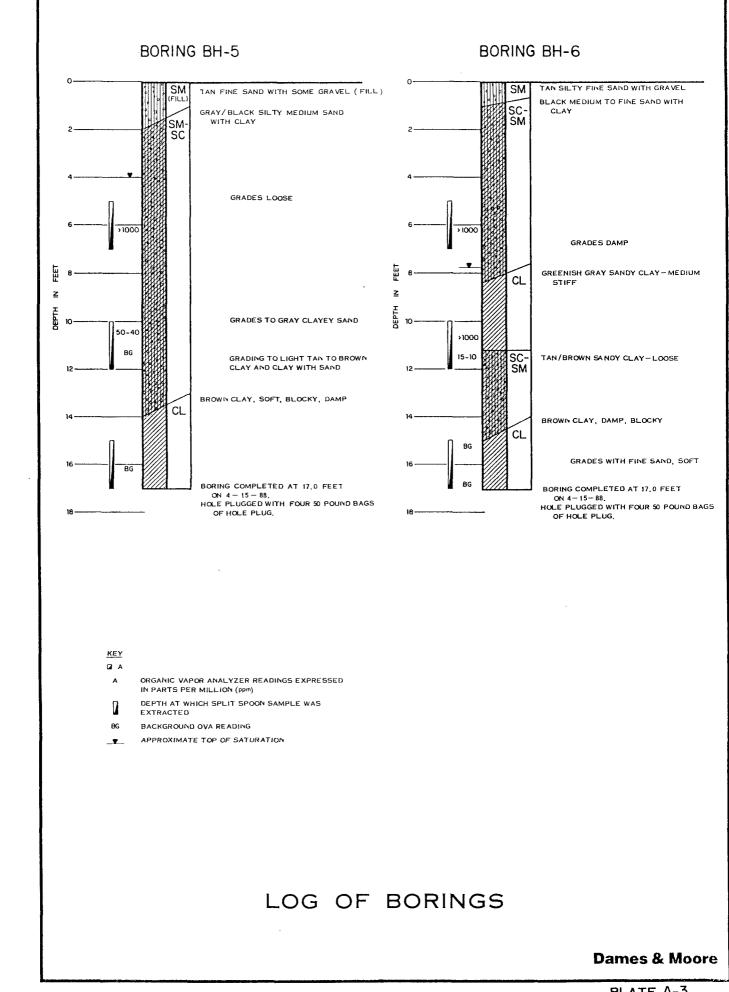
.

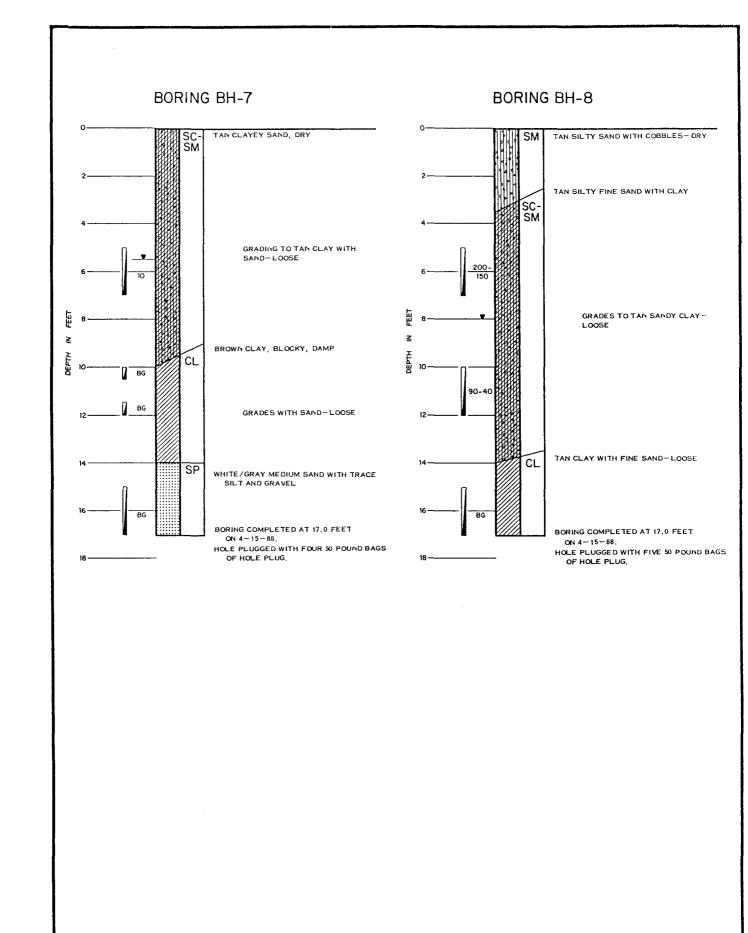
Borehole Designation(1)	Depth Drilled (ft)	Zones Tested(2) (ft)	Field OVA Readings(3)(ppm) Vertical Profile
BH-28	17	5 - 7 10 - 12 15 - 17	1 1 1
BH-29 (surfac	e) 1.8	0.8 - 1.7	300 - 100
BH-30 (surfac	e) 0.8	0.7	>1000
Off-Site			
BH-12	17	5 - 7 10 - 12 15 - 17	1 1 1
BH-13	17	5 - 7 10 - 12 15 - 17	>1000 >1000 10
BH-14	17	5 - 17	1
BH-15	12	5 - 7 10 - 10.5 11 - 12	>1000 >1000 1
BH-16	12	5 - 7 10 - 12	1 1
BH-19	17	6 - 8 10 - 12 15 - 7	8 – 5 1 1
BH-31	6	0 - 1.5 1.5 - 4.5 4.5 - 6	1 1 1
BH-32	6	2.5 - 3	>1000
		3 - 6	1000 - 400
BH-33	6	0 - 3 3 - 6	1 >1000


TABLE A-1 (Continued)

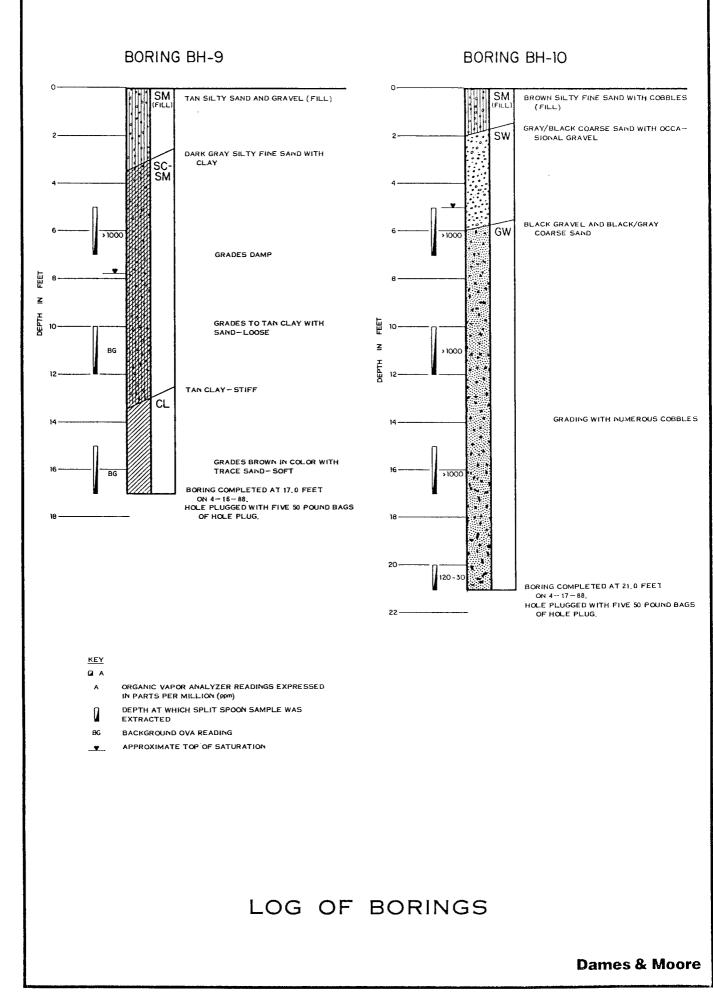

Borehole Designation(1)	Depth Drilled _(ft)	Zones Tested(2) (ft)	Field OVA Readings(3) _(ppm) Vertical Profile	
BH-34	6	3 - 6	>1000	
BH-35	6	3 - 6	1	
BH-36	6	6	>1000	
BH-37	6	3 - 6	1	
ВН-38	6	3 - 6	1	
BH-39	6	4 - 6	1	
BH-40 (surface) 2	2	20 - 10	
BH-41	8	8	200 - 100	
BH-42	10	10	6 - 4	
ВН-43	7	6 - 7	300 - 100	

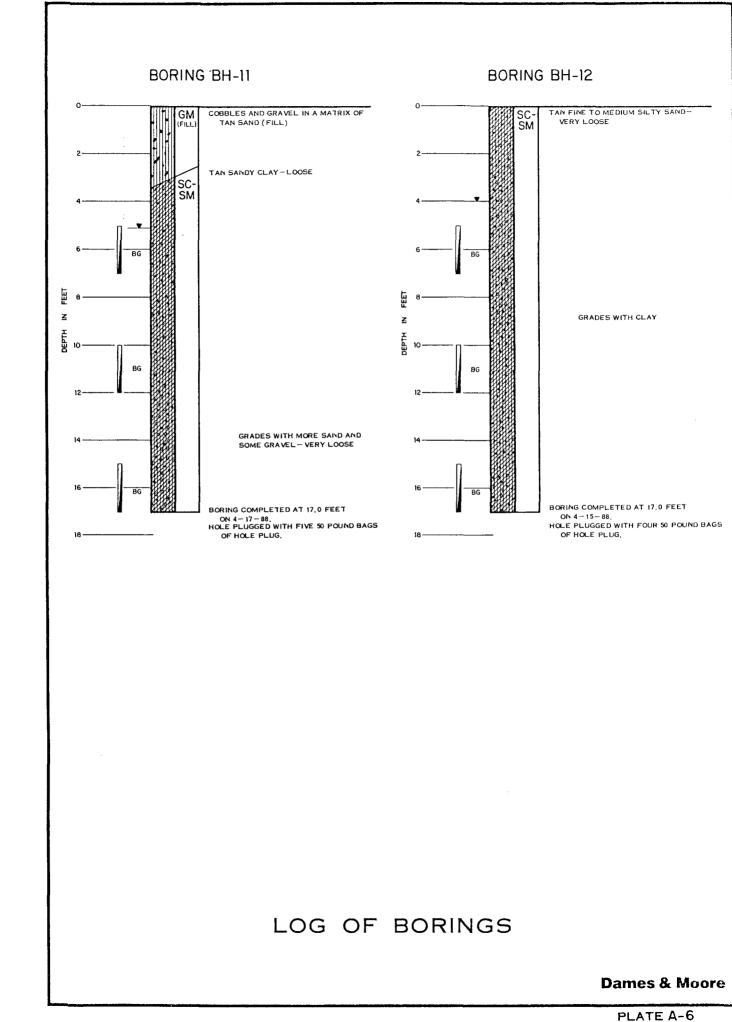
Footnotes:

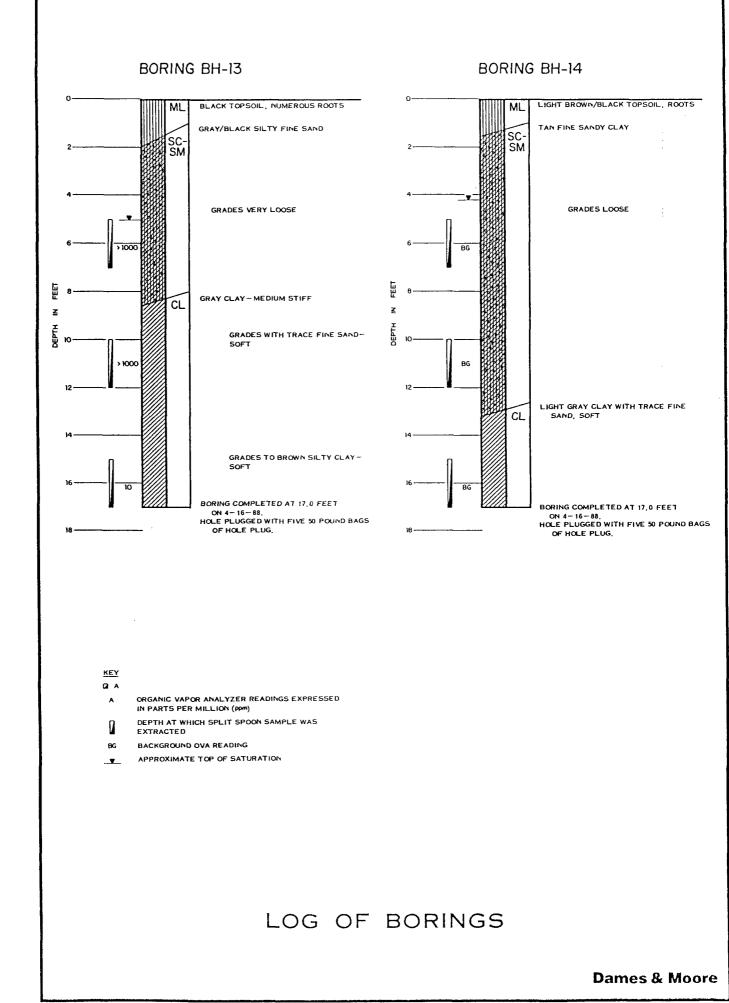

(1)	Boreholes BH-1 through BH-20, BH-23 through BH25, BH-27 and BH-28
	were machine augered.
	Boreholes BH-21, BH-22, BH-26 and BH-29-43 were hand augered.
	Sites BH-26 and BH-22 were composite sludge pit waste samples.

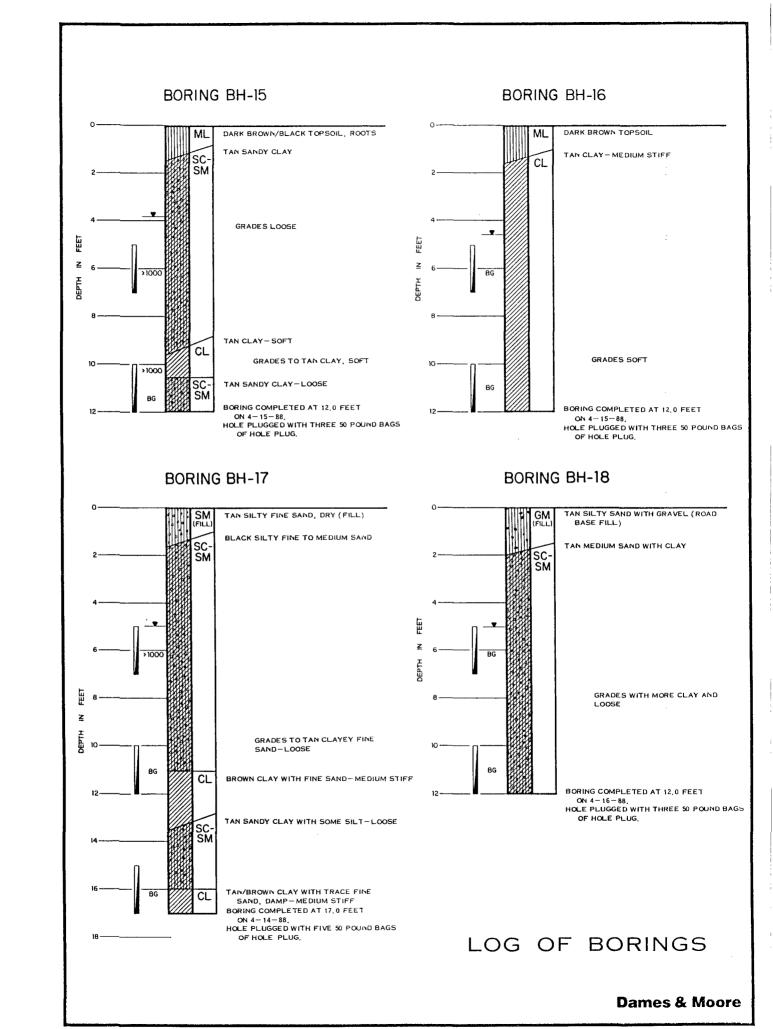

- (2) These zones were field tested for volatile organics using the OVA meter, and not necessarily those zones tested by the laboratory.
- (3) An OVA reading of 1 reflects background "uncontaminated conditions."

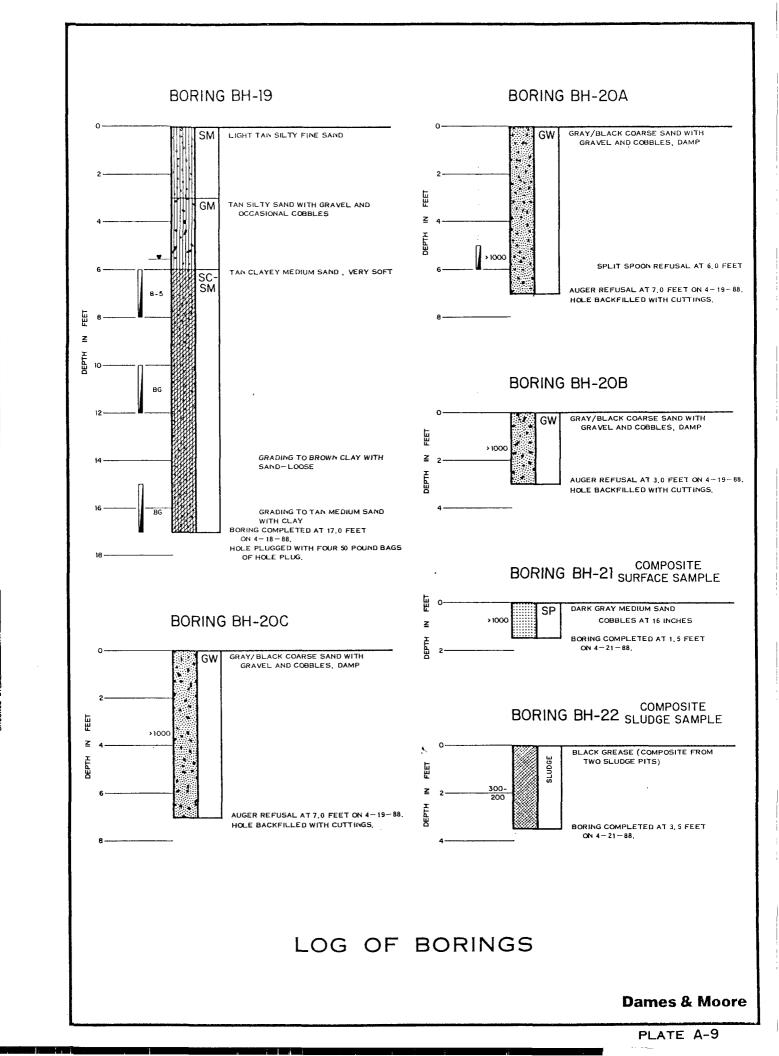
. т. н. н. /

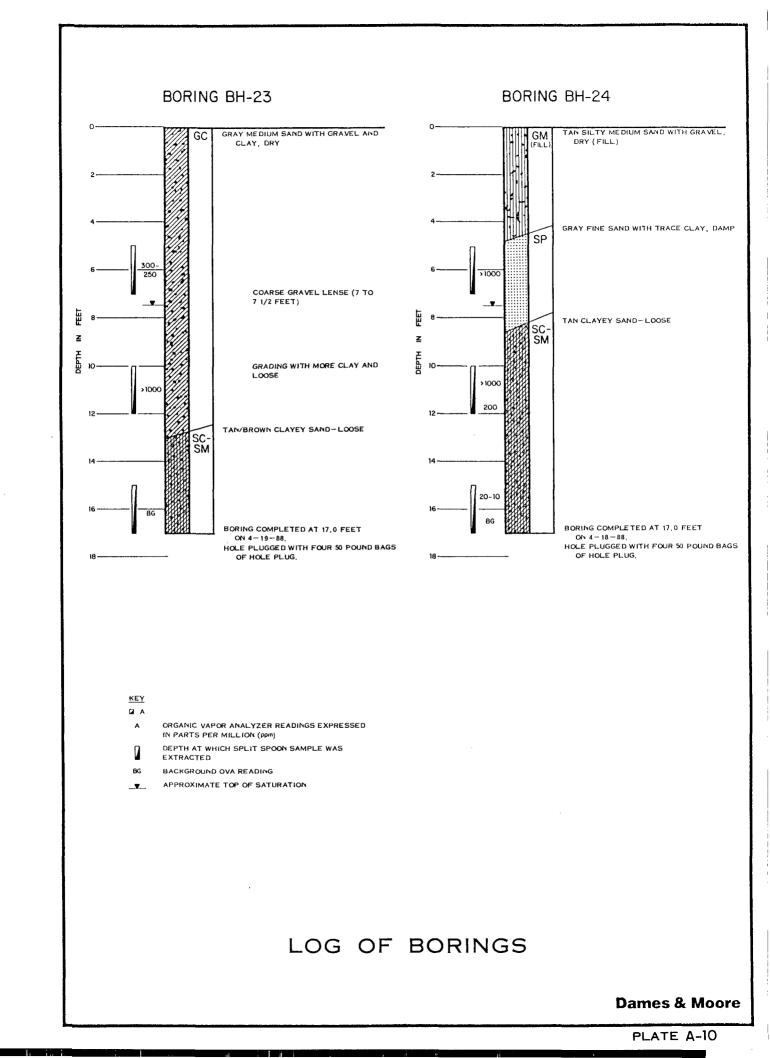


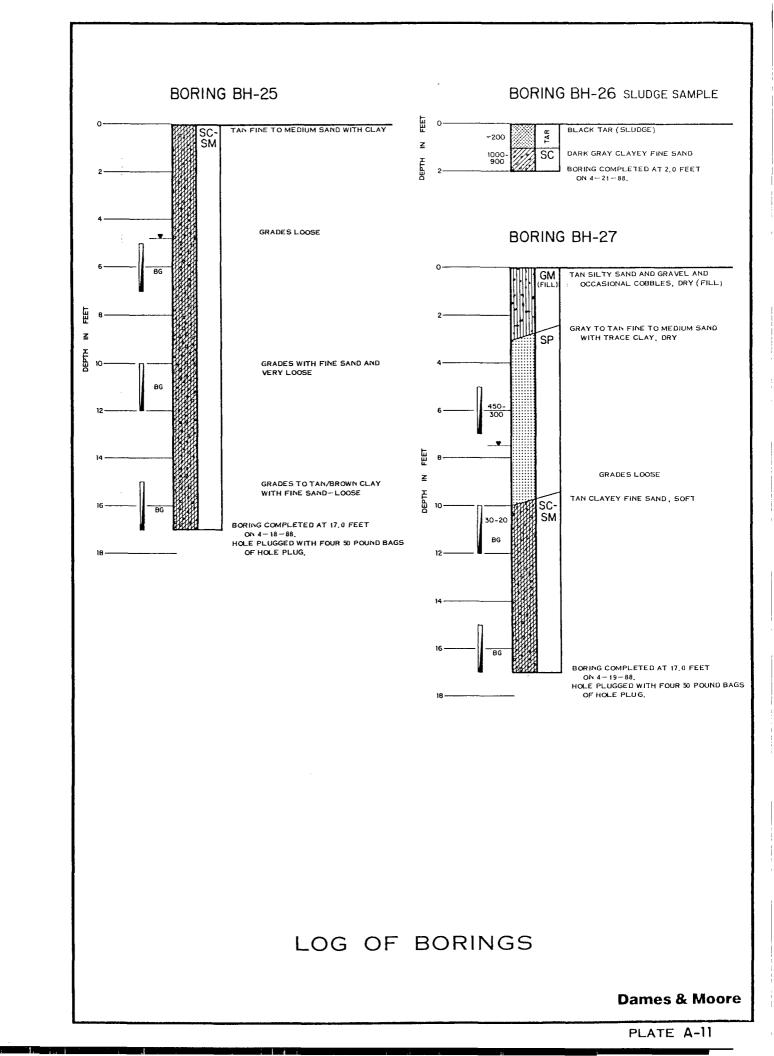


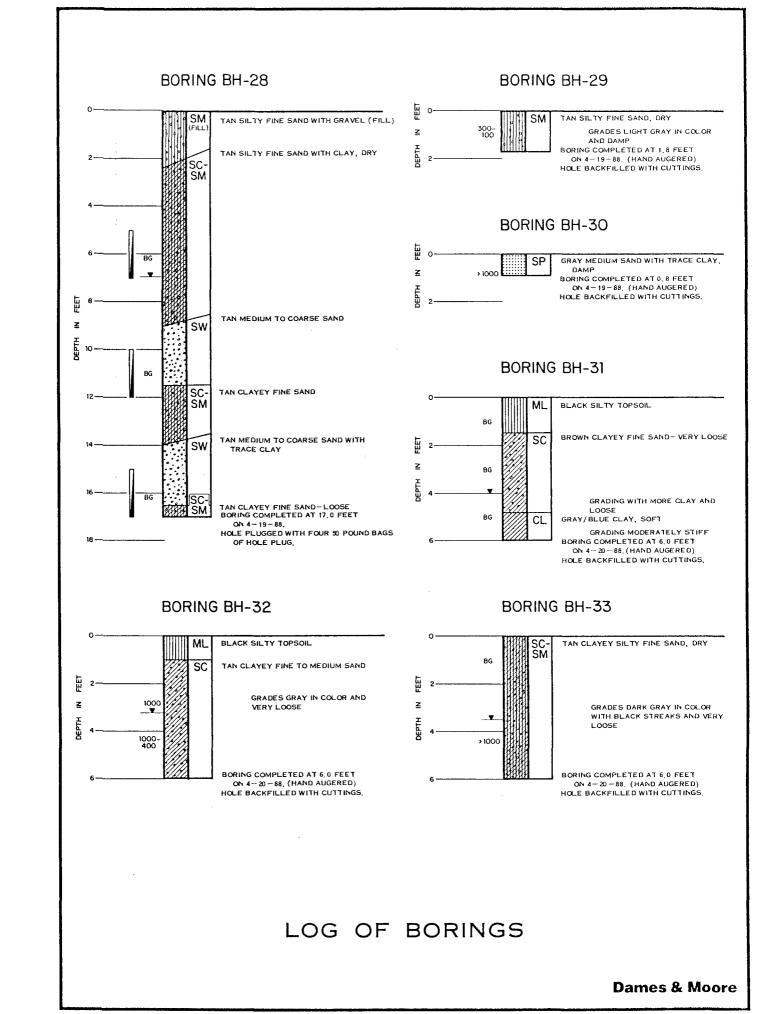

LOG OF BORINGS

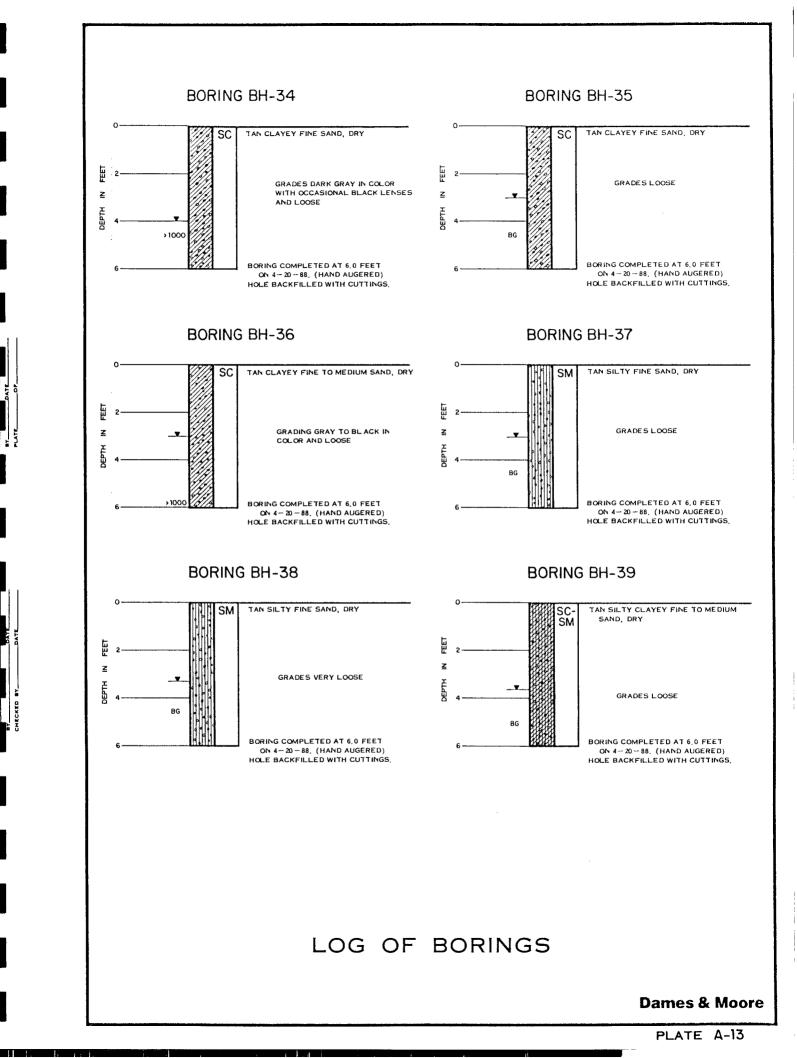

Dames & Moore

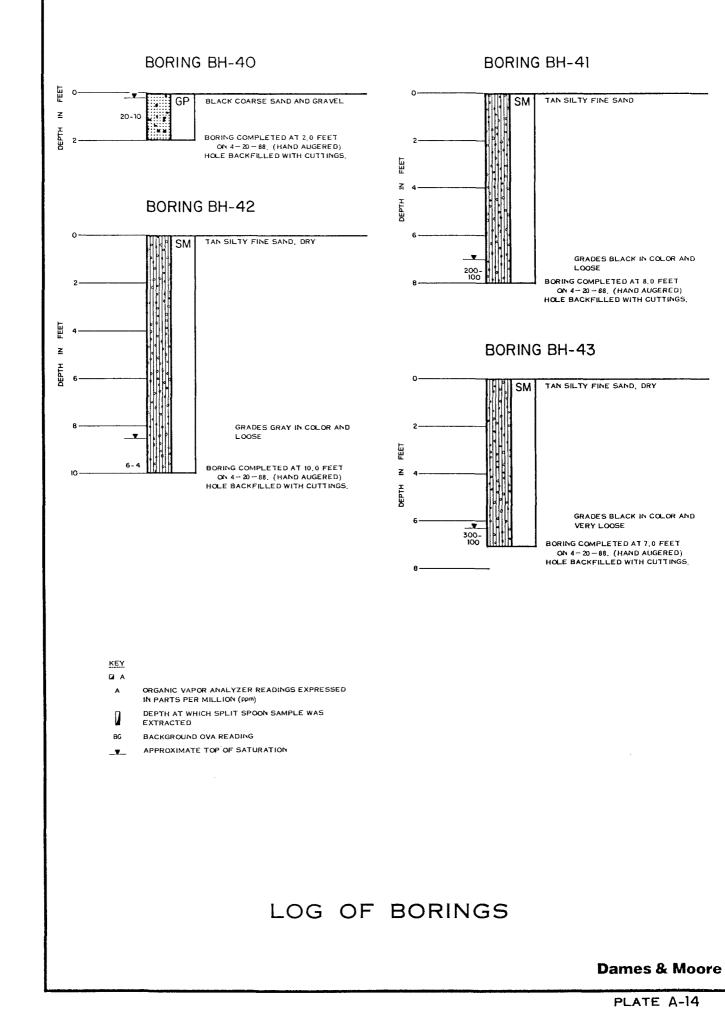


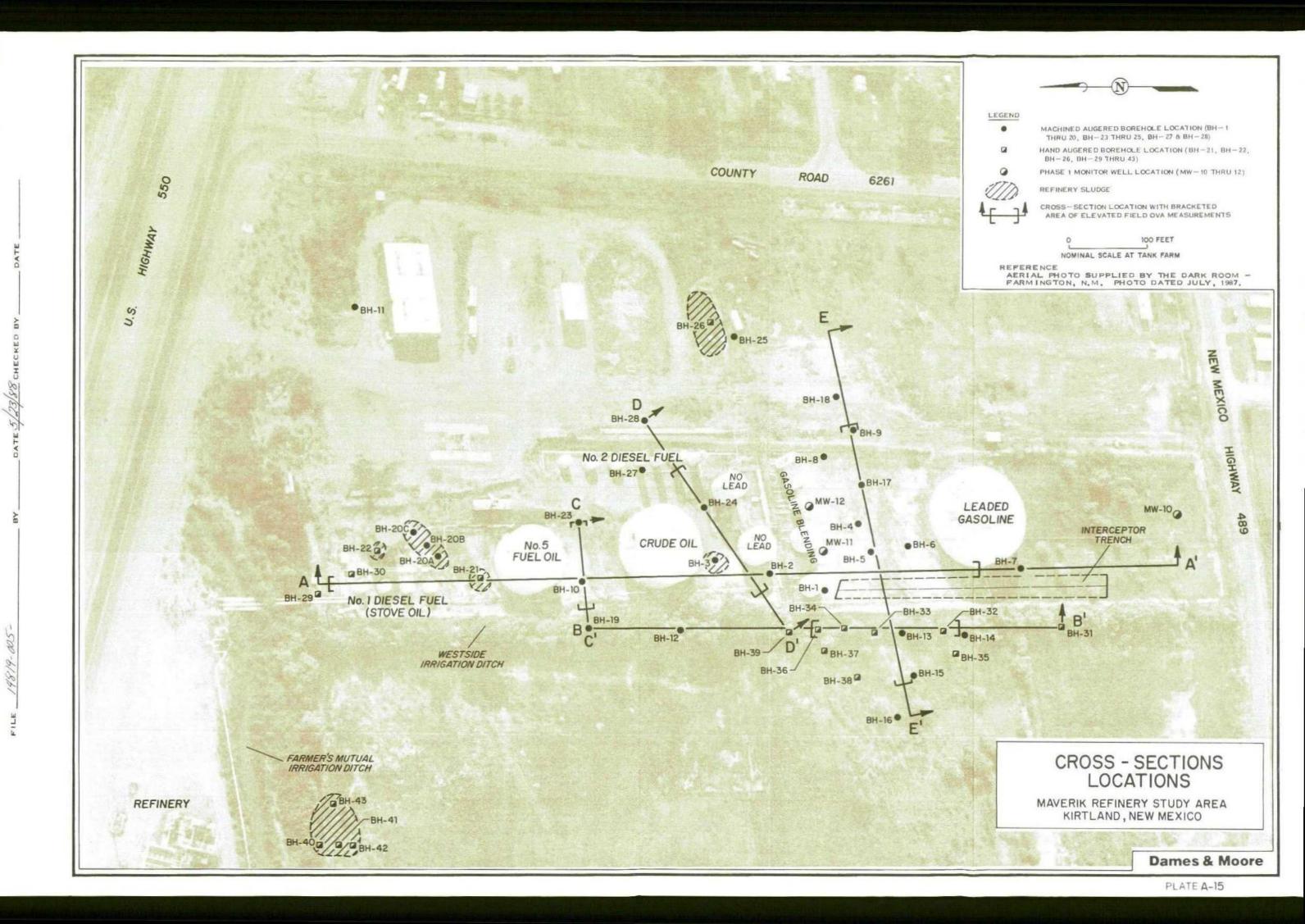


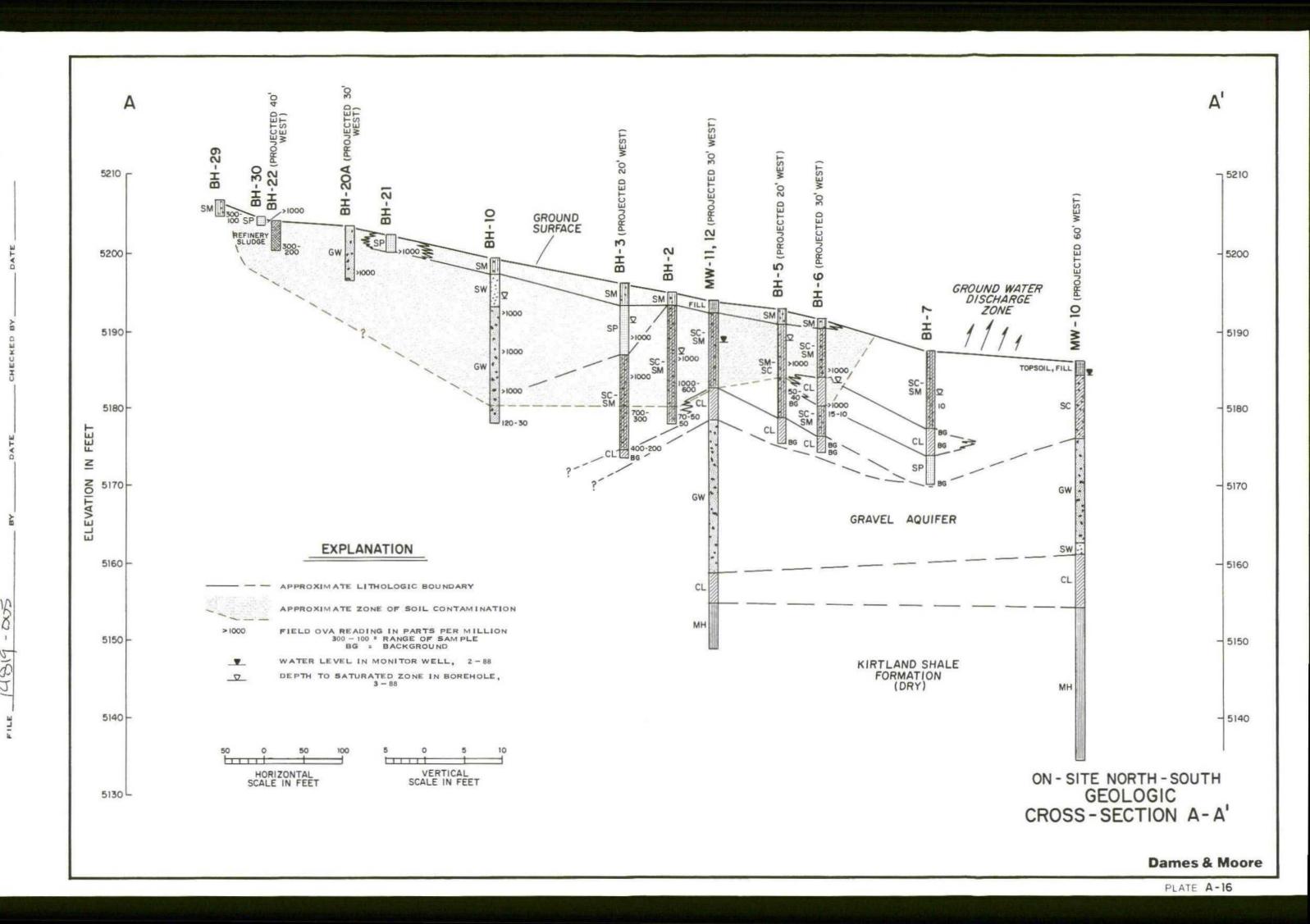


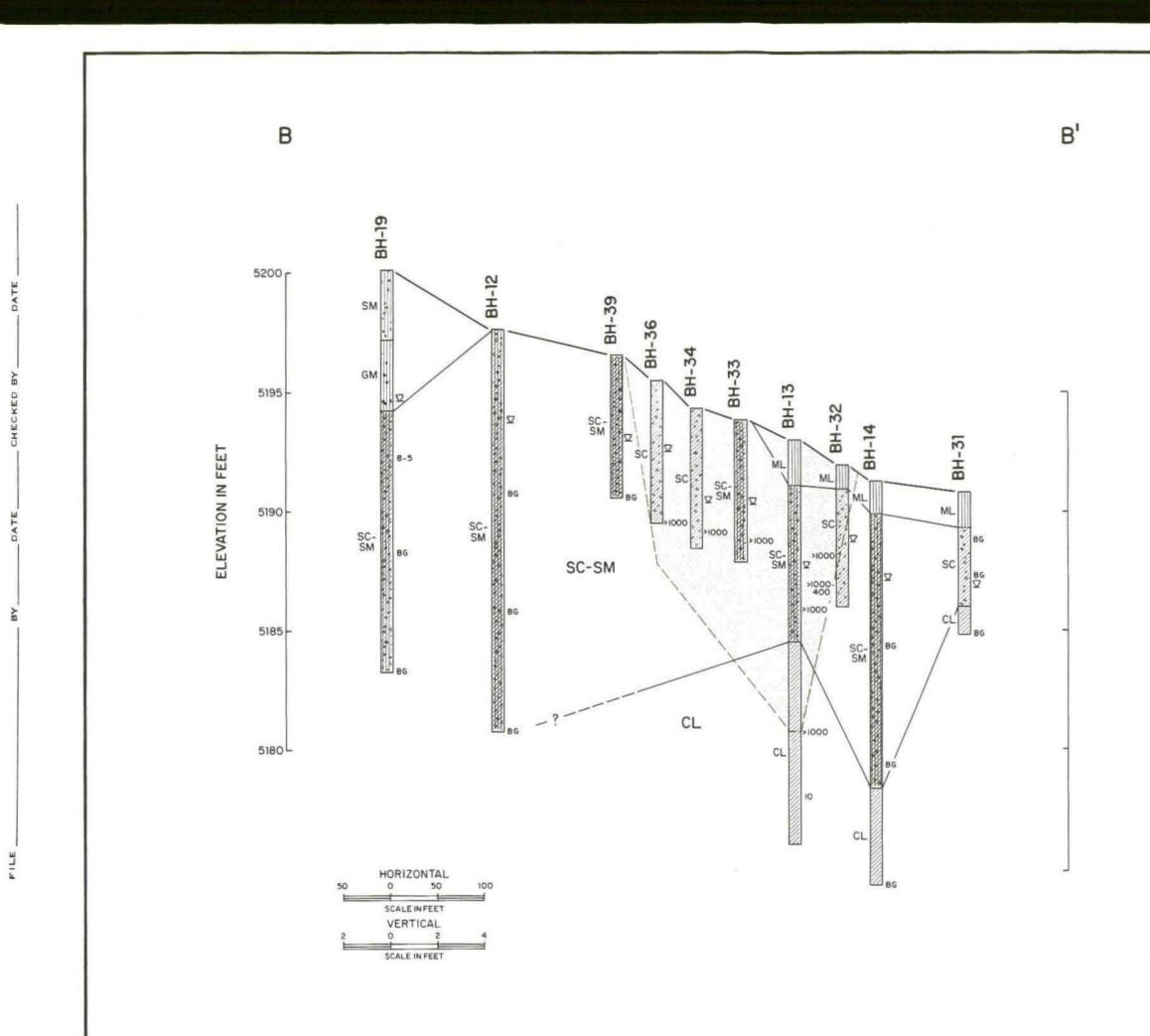


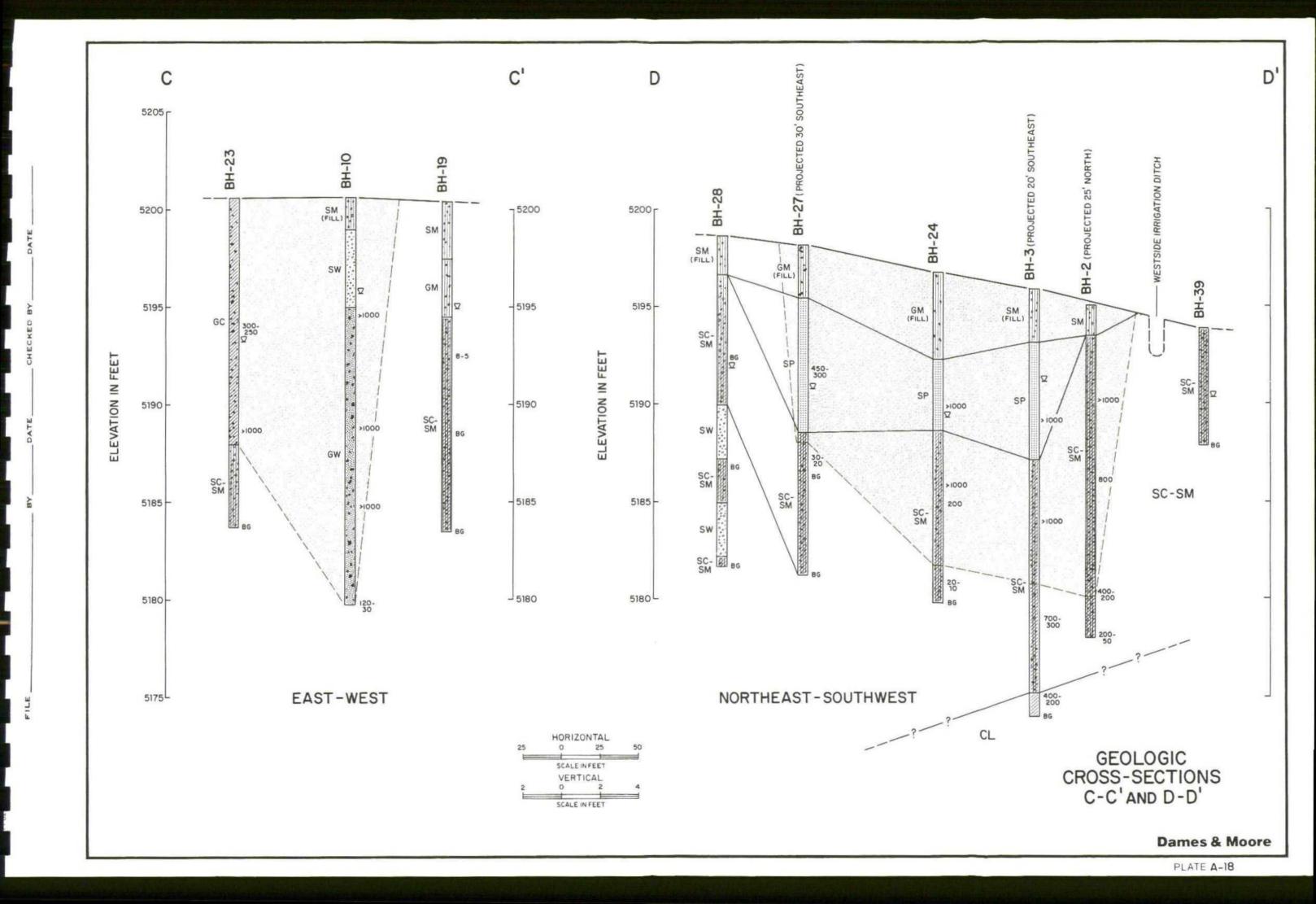


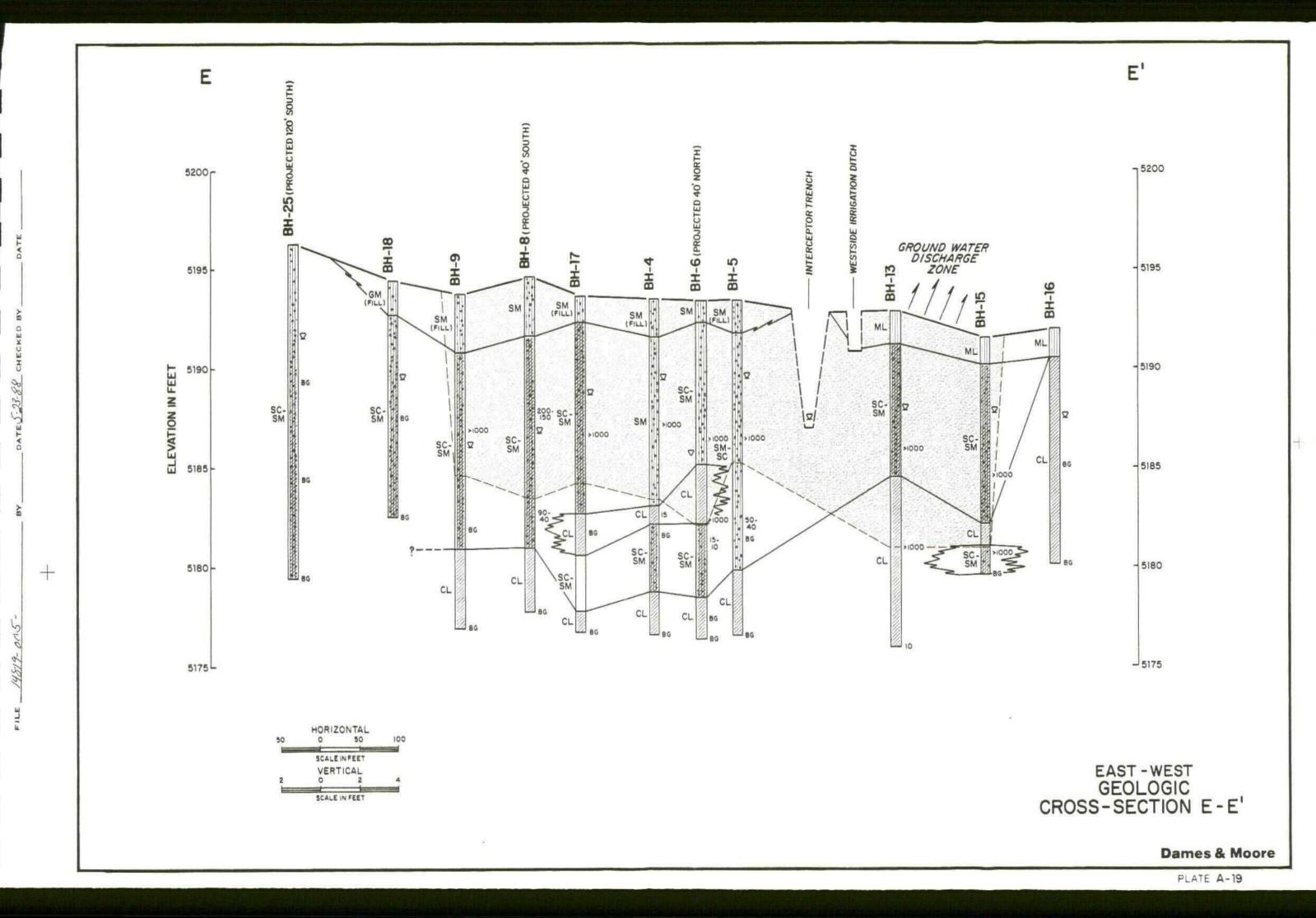









CHECKED NO.


1000-19819

Dames & Moore

OFF-SITE NORTH-SOUTH GEOLOGIC CROSS-SECTION B-B'

M	MAJOR DIVISIONS			LETTER SYMBOL	TYPICAL DESCRIPTIONS
	GRAVEL AND GRAVELLY SOILS	CLEAN GRAVELS (LITTLE OR NO FINES)		GW	WELL-GRADED GRAVELS, GRAVEL- SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED				GP	POURLY-GRADED GRAVELS,GRAVEL- Sand Mixtures, little or No fines
SOILS	MORE THAN 50% OF COARSE FRAC-	GRAVELS WITH FINES		GМ	SILTY GRAVELS, GRAVEL-SAND- SILT MIXTURES
	TION <u>RETAINED</u> ON NO.4 SIEVE	OF FINES)		GC	CLAYEY GRAVELS, GRAVEL-SAND- CLAY MIXTURES
	SAND AND	CLEAN SAND (LITTLE OR NO FINES)		sw	WELL-GRADED SANDS, GRAVELLY Sands, Little or no fines
MORE THAN 50% OF MATERIAL IS	SANDY SOILS			SP	POORLY-GRADED SANDS, GRAVELLY Sands, Little of no fines
<u>Larger</u> than no. 200 sieve size	MORE THAN 50% OF COARSE FRAC- TION <u>PASSING</u> NO. 4 SIEVE	SANDS WITH FINES (APPRECIABLE AMOUNT OF FINES)		5М	SILTY SANDS, SAND-SILT MIXTURES
				sc	CLAYEY SANDS, SAND-CLAY MIXTURES
		LIQUID LIMIT LESS THAN 50		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYLY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS			CL	INORGANIC CLAYS OF LOW TO MEDIUM Plasticity, gravelly clays, Sandy clays, Silty clays, Lean Clays
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
		LIQUID LIMIT <u>GREATER</u> THAN 50		мн	INGREANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOLLS
MORE THAN 50% OF MATERIAL IS <u>SMALLER</u> THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS			сн	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
				он	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIGHLY ORGANIC SOILS				РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

CHEC

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SUIL CLASSIFICATIONS.

SOIL CLASSIFICATION CHART

UNIFIED SOIL CLASSIFICATION SYSTEM

APPENDIX B

7

SUBSURFACE SOIL CONTAMINANT ISOCON MAPS

1

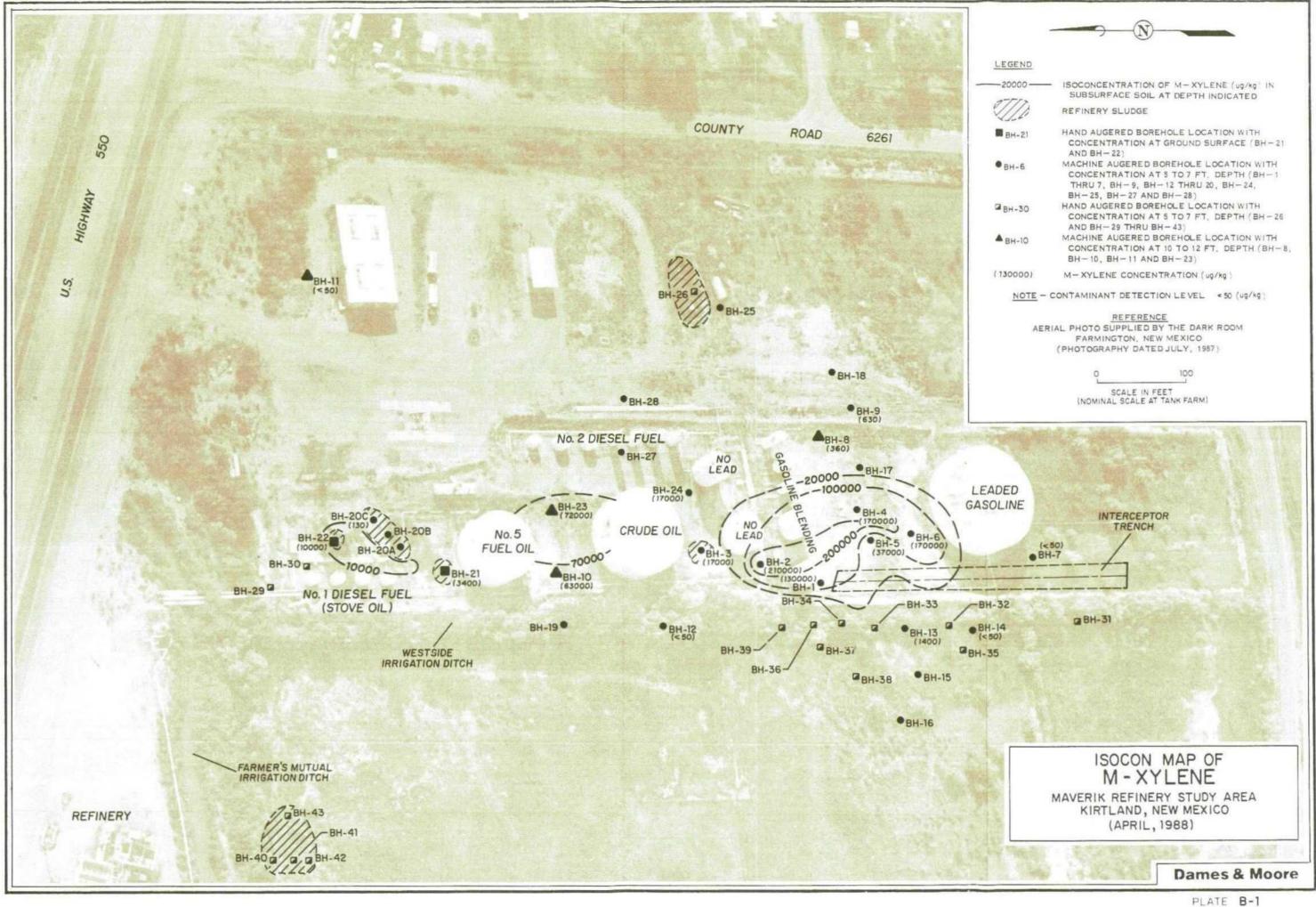
ì

11

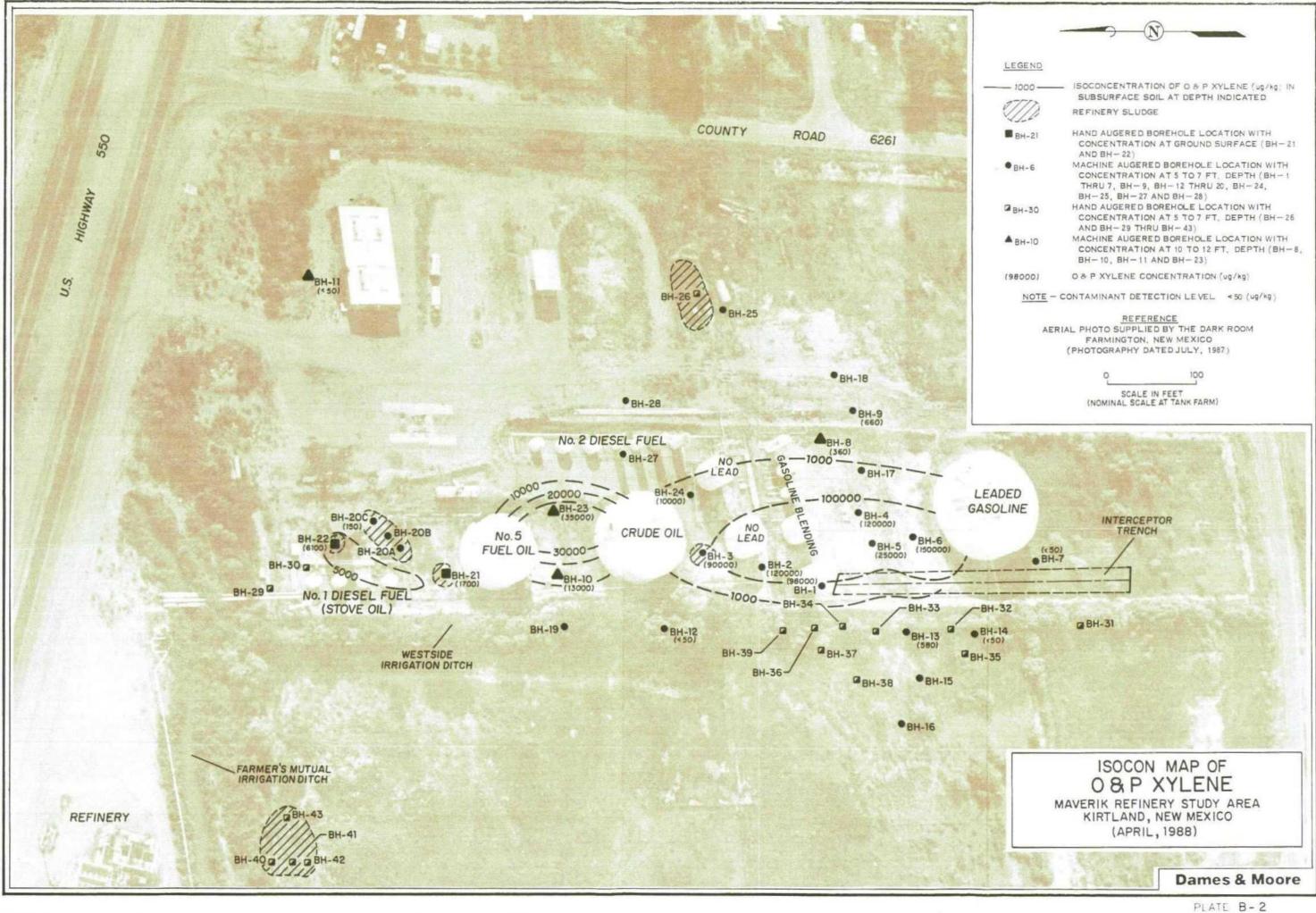
1 - L

ł.

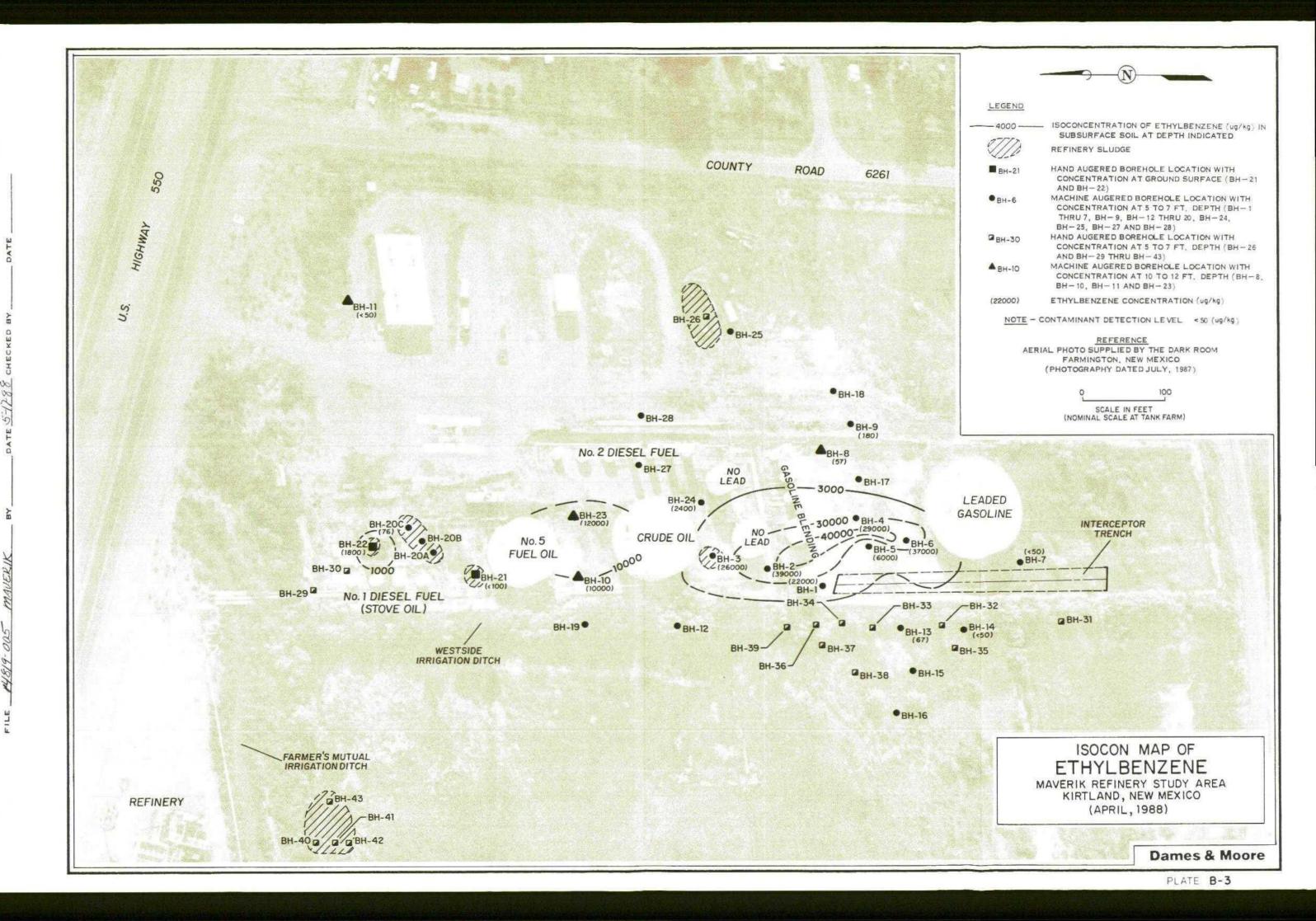
il

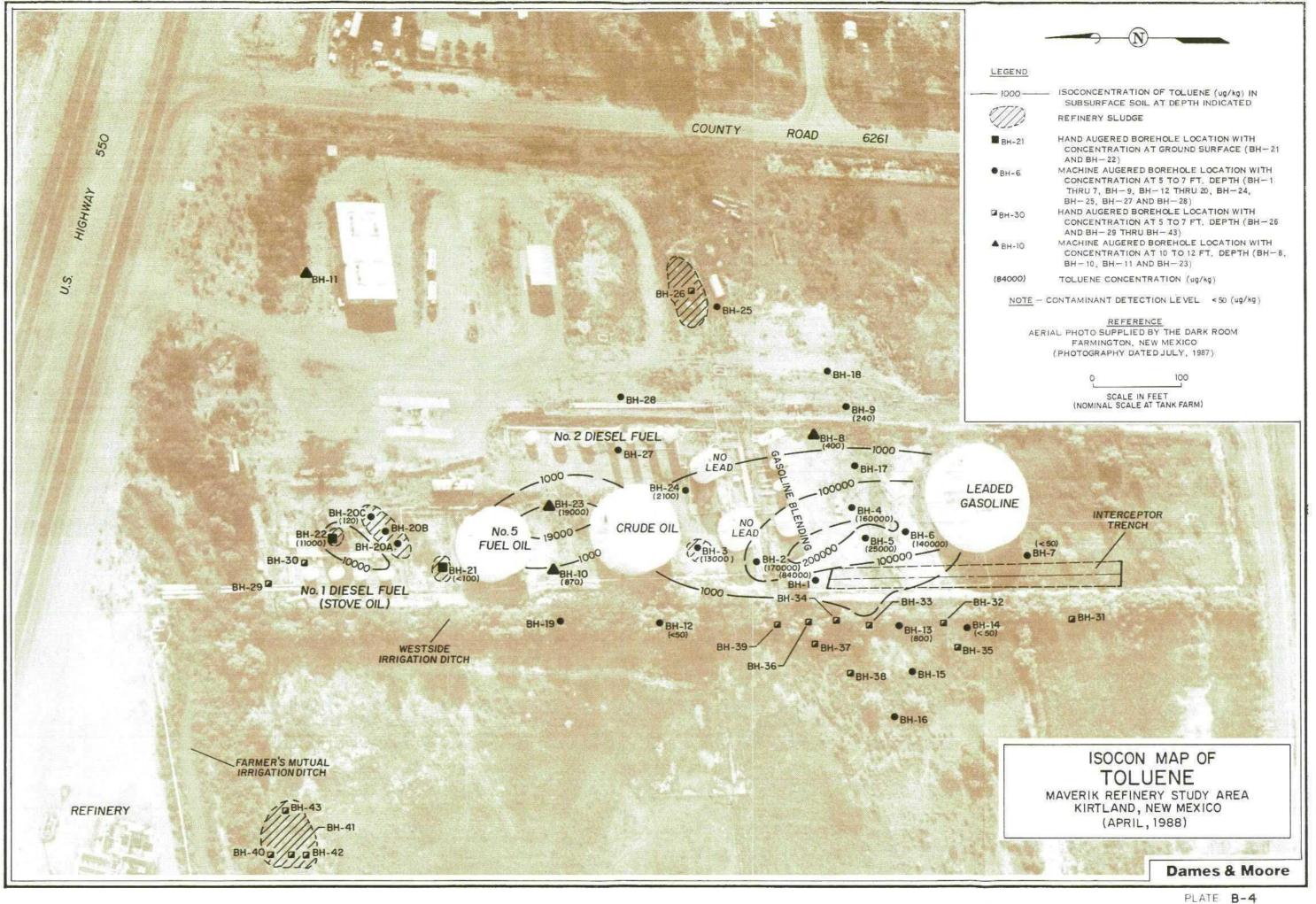

APPENDIX B

SUBSURFACE SOIL CONTAMINANT ISOCON MAPS

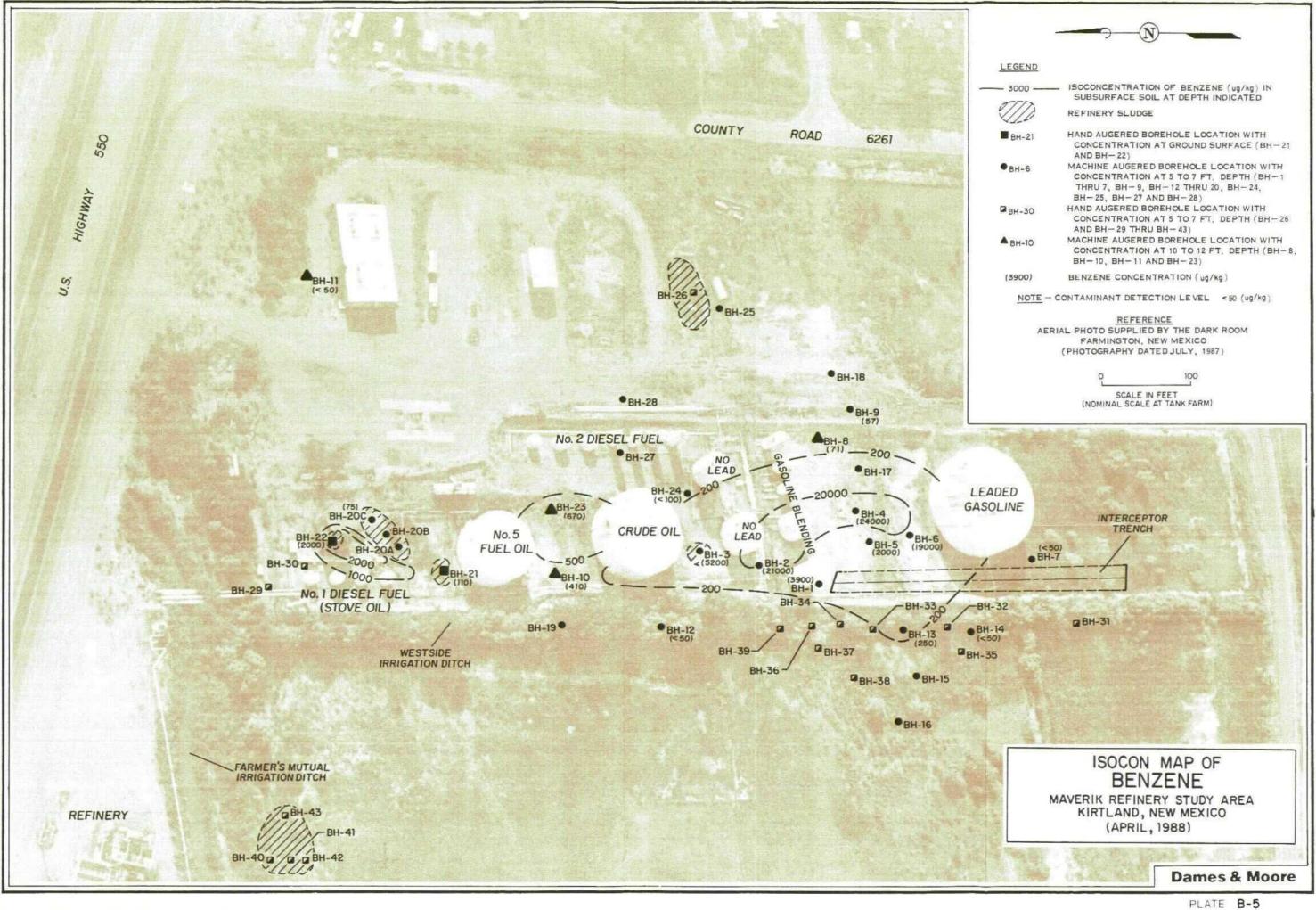

Included herein are five isocon maps (Plates B-1 through B-5) based on the highest levels for the volatile organic compounds found, in the subsurface soils in three distinct areas at 5 to 7 feet in the southwest, 10 to 12 feet in the north-central part of the tank farm and near ground surface in the northwest corner of the tank farm. Included also is an isocon map of TCO for these same zones (Plate B-6).

These maps summarize the lateral and vertical extent of the significant subsurface soil contamination from Maverik's tank farm in Kirtland, New Mexico. The isocon maps include the concentrations of the major organic volatile contaminants present benzene, ethylbenzene, m-xylene, o & p xylene(s) and toluene and TCO concentrations.

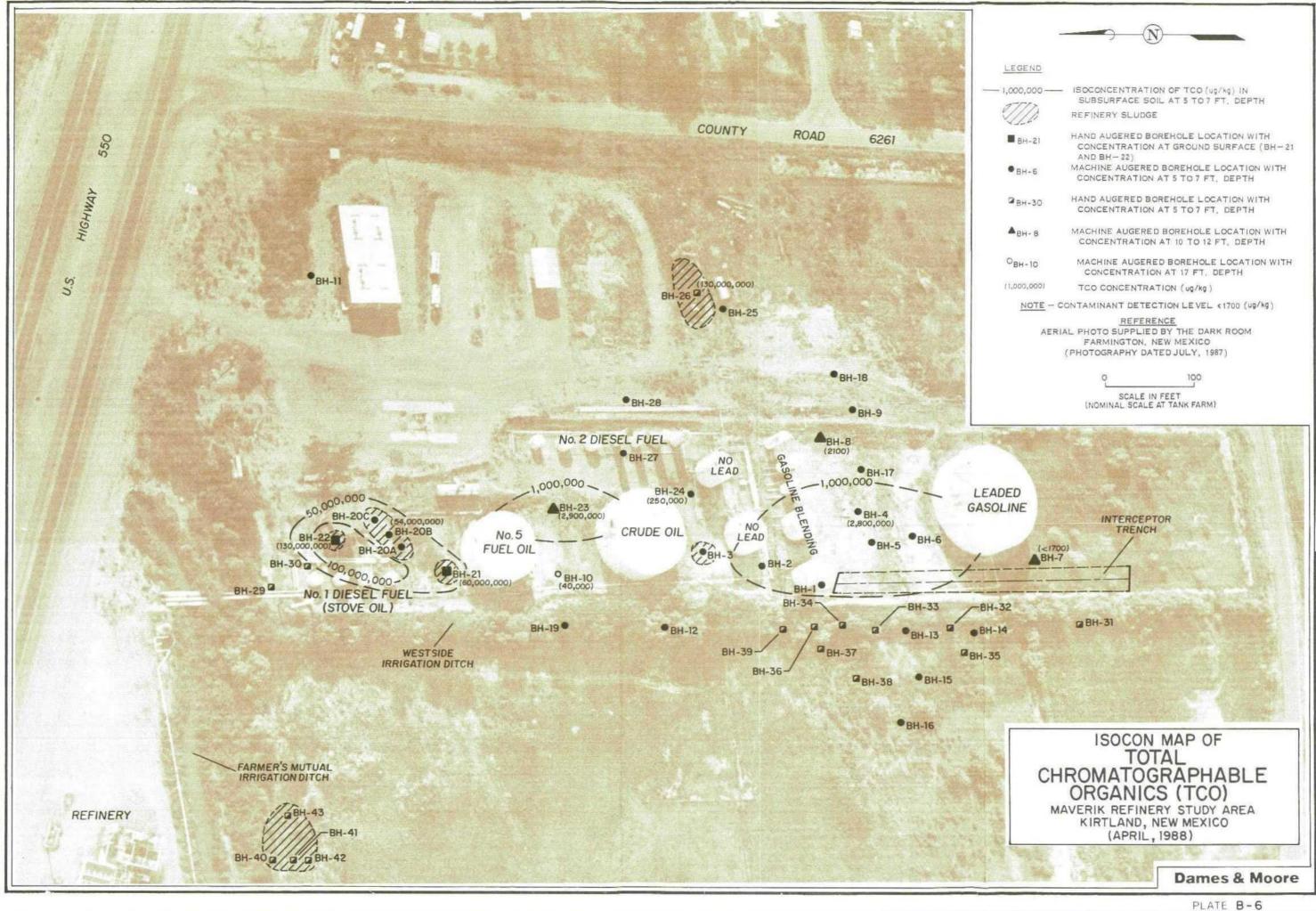

The laboratory data used to prepare the isocon maps are summarized in Tables 2 and 3 and Appendix C.



	N
LEGEND	
-20000	 ISOCONCENTRATION OF M-XYLENE (ug/kg' IN SUBSURFACE SOIL AT DEPTH INDICATED
V/D	REFINERY SLUDGE
BH-21	HAND AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT GROUND SURFACE (BH-21 AND BH-22)
• BH-6	MACHINE AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 5 TO 7 FT. DEPTH (BH-1 THRU 7, BH-9, BH-12 THRU 20, BH-24, BH-25, BH-27, AND 20, DH-24,
BH-30	BH-25, BH-27 AND BH-28) HAND AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 5 TO 7 FT, DEPTH (BH-26 AND BH-29 THRU BH-43)
A BH-10	MACHINE AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 10 TO 12 FT. DEPTH (BH-8, BH-10, BH-11 AND BH-23)
(130000)	M-XYLENE CONCENTRATION (ug/kg)
NOTE -	CONTAMINANT DETECTION LEVEL < 50 (ug/kg)
AEF	REFERENCE RIAL PHOTO SUPPLIED BY THE DARK ROOM FARMINGTON, NEW MEXICO (PHOTOGRAPHY DATED JULY, 1987)
	0 100
	COM E IN FEET


	N N
LEGEND	
	SUBSURFACE SOIL AT DEPTH INDICATED
1/2	REFINERY SLUDGE
■ BH-21	HAND AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT GROUND SURFACE (BH-21 AND BH-22)
● BH-6	MACHINE AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 5 TO 7 FT. DEPTH (BH-1 THRU 7, BH-9, BH-12 THRU 20, BH-24, BH-25, BH-27 AND BH-28)
■ BH-30	HAND AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 5 TO 7 FT, DEPTH (BH-26 AND BH-29 THRU BH-43)
▲ BH-10	MACHINE AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 10 TO 12 FT. DEPTH (BH-8, BH-10, BH-11 AND BH-23)
(98000)	O & P XYLENE CONCENTRATION (ug/kg)
NOTE -	CONTAMINANT DETECTION LEVEL <50 (ug/kg)
AE	REFERENCE RIAL PHOTO SUPPLIED BY THE DARK ROOM FARMINGTON, NEW MEXICO

DATE


- 1000	 ISOCONCENTRATION OF TOLUENE (ug/kg) IN SUBSURFACE SOIL AT DEPTH INDICATED
1/2	REFINERY SLUDGE
📕 вн-21	HAND AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT GROUND SURFACE (BH-21 AND BH-22)
• BH-6	MACHINE AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 5 TO 7 FT. DEPTH (BH-1 THRU 7, BH-9, BH-12 THRU 20, BH-24, BH-25, BH-27 AND BH-28)
■ BH-30	HAND AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 5 TO 7 FT. DEPTH (BH-26 AND BH-29 THRU BH-43)
A BH-10	MACHINE AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 10 TO 12 FT. DEPTH (BH-8, BH-10, BH-11 AND BH-23)
(84000)	TOLUENE CONCENTRATION (ug/kg)
NOTE -	CONTAMINANT DETECTION LEVEL < 50 (ug/kg)
	REFERENCE

C

13	F	G	F	N	n	
-	-	~	-	1.1	~	

_ 3000	 ISOCONCENTRATION OF BENZENE (ug/kg) IN SUBSURFACE SOIL AT DEPTH INDICATED
	REFINERY SLUDGE
BH-21	HAND AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT GROUND SURFACE (BH-21 AND BH-22)
●вн-6	MACHINE AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 5 TO 7 FT, DEPTH (BH-1 THRU 7, BH-9, BH-12 THRU 20, BH-24, BH-25, BH-27 AND BH-28)
BH-30	HAND AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 5 TO 7 FT. DEPTH (BH-26 AND BH-29 THRU BH-43)
▲ BH-10	MACHINE AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 10 TO 12 FT, DEPTH (BH-8, BH-10, BH-11 AND BH-23)
(3900)	BENZENE CONCENTRATION (ug/kg)
NOTE -	CONTAMINANT DETECTION LEVEL <50 (ug/kg)
	REFERENCE
AE	RIAL PHOTO SUPPLIED BY THE DARK ROOM
	CARMINGTON NEW MEXICO

LEGEND	
	 ISOCONCENTRATION OF TCO (ug/kg) IN SUBSURFACE SOIL AT 5 TO 7 FT. DEPTH
1/2	REFINERY SLUDGE
BH-21	HAND AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT GROUND SURFACE (BH-21 AND BH-22)
• BH-6	MACHINE AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 5 TO 7 FT, DEPTH
₽BH-30	HAND AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 5 TO 7 FT, DEPTH
▲BH-8	MACHINE AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 10 TO 12 FT, DEPTH
O _{BH-10}	MACHINE AUGERED BOREHOLE LOCATION WITH CONCENTRATION AT 17 FT. DEPTH
(1,000,000)	TCO CONCENTRATION (ug/kg)
NOTE -	CONTAMINANT DETECTION LEVEL <1700 (ug/kg)
AER	REFERENCE IAL PHOTO SUPPLIED BY THE DARK ROOM FARMINGTON, NEW MEXICO (PHOTOGRAPHY DATED JULY, 1987)
	o 100

APPENDIX C

ľ

1

LABORATORY SOILS AND SOLID WASTE ANALYTICAL DATA

APPENDIX C

LABORATORY SOILS AND SOLID WASTE ANALYTICAL DATA

SOILS AND SOLID WASTE SAMPLING

The zones for the soils and solid waste samples from inside of the cores from the split-spoon sampler, the hand-augered drill cuttings and the nearsurface samples that were composite samples, were representative of contaminated zones and were detected by field OVA readings and visual inspection of the soils. Nitrile gloves were worn during sample collection. Sample bottles were shipped directly to the site by RMAL. Samples were iced after collection and shipped to RMAL the following day, via overnight courier. Appropriate holding times were observed and chain-of-custody documentation was maintained and included herein.

LABORATORY ANALYSIS

RMAL conducted the analysis on the soil and solid waste samples collected for Phase II (Table C-1). The concentrations of the major organic and metals parameters detected in the soils and solid wastes are included in Table C-2. The comprehensive report from RMAL for all of the analyses is also included in this Appendix.

SOIL AND SOLID WASTE ANALYSES

The soil and solid waste analyses included the same organic parameters analyzed for the Phase I water quality analyses but included additional refinery related hazardous constituents. The detailed list of the laboratory parameters and EPA analytical methods used are presented in Table 1. The analytical tests conducted for each sample from each borehole are listed in Table C-1. RMAL conducted analyses for 26 halogenated volatile organics, 9 aromatic volatile organics and percent oil, water and solids at the 26 borehole sites that were sampled, with a total of 37 samples taken at various depths. In addition, at 14 representative highly contaminated sites, all or some of the following constituents were also analyzed: total chromatographable organics, 13 refinery hazardous volatile organics, 32 refinery hazardous semivolatile organics, the 8 RCRA metals for EP toxicity testing, 8 to 12 total refinery metals and total organic lead.

C-1

The concentrations of the contaminants as directly reported by RMAL reflect the in-situ concentration of the solid, liquid and oil. The soil and sludge samples consisted of at least 70 percent solids, less than 6 percent oil and 10 to 25 percent water. Therefore, the laboratory results as reported could be compared directly. Only the sludge samples from BH-20, BH-22 and BH-26 had high percentages of oil and low percentages of solids and therefore should be evaluated separately from the other results.

Where specific test methods have been approved and recommended, RMAL performs the analytical tests according to approved EPA methods and other regulatory agencies. Metals analyses are conducted by acid digestion followed by ICP analyses and graphite furnace AA. The EP-toxicity tests for metals included sample extraction with acetic acid followed by ICP analyses and graphite furnace AA.

Volatile organics were analyzed by purge and trap GC/MS or purge and trap GC with a selective detector. Semivolatile organics were analyzed by solvent extraction followed by capillary column GC/MS. Oil and grease were analyzed by gravimetric freon extraction.

ROCKY MOUNTAIN ANALYTICAL LABORATORY QA/QC PROGRAM

All analyses were conducted within approved holding times. Details of RMAL's QA/QC program and results are included in their report, Section V.

Accuracy and precision of Laboratory Control Samples and Surrogate Control Samples were within acceptance limits for those constituents present in the samples.

BOREHOLE SAMPLE ZONES AND ANALYTICAL LABORATORY TESTS CONDUCTED

Borehole Designation	RMAL Laboratory ID	Zones Sampled	Analytical Tests(1)
On-Site			
BH-1	67123-001 67123-002 67123-003	5 - 6.5 10 - 11.5 15.5 - 17	VOA, VOX, OWS VOA, VOX, OWS, Skinner List VOA, VOX, OWS
BH-2	67161-007 67161-008 67161-009 67161-010	5 - 7 7 10 - 12 15 - 17	VOA, VOX, OWS Skinner List VOA, VOX, OWS VOA, VOX, OWS
BH-3	67161-011 67161-012 67161-013 67161-014	5 - 7 11 10 - 12 15 - 17	VOA, VOX, OWS EPTOX, RCRA Metals VOA, VOX, OWS VOA, VOX, OWS
BH-4	67123-004 67123-005 67123-006	5 - 7 10 - 12 15 - 17	VOA, VOX, OWS, TOL, TCO VOA, VOX, OWS VOA, VOX, OWS
BH-5	67123-007 67123-008 67123-009	5 - 7 10 - 12 15 - 17	VOA, VOX, OWS, TOL VOA, VOX, OWS VOA, VOX, OWS
BH-6	67123-010 67123-011 67123-012	5 - 7 10 - 12 15 - 17	VOA, VOX, OWS VOA, VOX, OWS VOA, VOX, OWS
BH-7	67161-001 67161-002 67161-003	5 - 7 10 - 12 15 - 17	VOA, VOX, OWS VOA, VOX, OWS, TOL, TCO VOA, VOX, OWS
BH - 8	67123-014	10 - 12	VOA, VOX, OWS, TCO
BH-9	67123-018	5 - 7	VOA, VOX, OWS
BH-10	67161-004 67161-005 67161-006	12 15 17	VOA, VOX OWS TCO
BH-11	67123-015	10 - 12	VOA, VOX, OWS
BH-20 (sludge)	67196-001	5 - 7	VOA, VOX, OWS, TCO
BH-21 (surface)	67196-002	0 - 1.25	Skinner List, VOA, VOX DWS, TCO
BH-22 (sludge)	67196-003	0 - 0.5	Skinner List, VOA, VOX OWS, TCO
BH-23	67196-004	10 - 12	VOA, VOX, OWS, TCO
BH-24	67196-005	5 - 11.5	VOA, VOX, OWS, TCO
BH-26 (sludge)	67196-006	0 - 1	RCRA Metals, OWS, TCO
Off-Site			
BH-12	67123-013	10 - 12	VOA, VOX, OWS
BH-13	67123-017	6 - 7	VOA, VOX, OWS
BH-14	67123-016	6 - 7	VOA, VOX, OWS

Footnotes:

.

111

 (1) Abbreviations For analytical Tests Conducted
 VOA = Aromatic Volatile Organics
 VOX = Halogenated Volatile Organics
 OWS = Percent Oil/Water/Soils
 Skinner List = Refinery Hazardous Volatile, Semi-volatile, Total Metals
 TCO = Total Chromatographable Organics
 EPTOX = EP Toxicity Tests, Metals Only
 RCRA Metals = 8 Metals, Total

11 1

1 1 3

TABLE C-2

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION DATE SAMPLED	BH-1 5-6.5'
DATE SAMPLED	4-15-88

VOLATILE ORGANICS DETECTED	(ug/Kg)
Benzene	3 900.
Ethylbenzene	22000.
Toluene	84000.
m-Xylene	130000.
o,p-Xylene	98000.
1,2 Dichloroethane	< 1000.
COMPOSITION (PERCENT)	
OIL	.4
WATER	13.2
SOLIDS	86.4

<: Less than given detection limits.

÷

.

;

TABLE C-2 (Cont.-2) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-1 10-11.5
DATE SAMPLED	4-14-88
VOLATILE ORGANICS DETECTED	(ug/Kg)
Benzene	1800.
Ethylbenzene	710.

Toluene		4600.
m-Xyle ne		6300.
o,p-Xylene		3500.
1,2 Dichloroethane	<	200.

TOTAL ORGANIC LEAD (mg/Kg)		
Total Organic Lead	<	1.0

METALS PARAMETERS (TOTAL, mg/Kg)

Antimony	<	5.0
Arsenic		1.8
Barium		140.0
Beryllium		.30
Cadmium	<	. 5
Chromium		3.0
Cobalt		3.0
Lead		9.0
Mercury	<	.05
Nickel		5.00
Selenium	<	. 2
Vanadium		11.0

COMPOSITION (PERCENT)

ŧ1

i.

1.

1

OIL	. 2
WATER	16.7
SOLIDS	83.1

TABLE C-2 (Cont.-3)

MAVERIK-KIRTLAND SOIL CHEMISTRY

-

.I fii

1. 1

ł

1.

VOLATILE ORGANICS DETECTED Benzene Ethylbenzene	(ug/Kg) <	380. 50.
Toluene	<	50.
m-Xylene		79.
o,p-Xylene		140.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		1.1
WATER		15.1
SOLIDS		83.8

<: Less than given detection limits.

•••••

TABLE C-2 (Cont.-4)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-2 5-7'
DATE SAMPLED	4-18-88

.....

VOLATILE ORGANICS DETECTED	(ug/Kg)
Benzene	21000.
Ethylbenzene	39000.
Toluene	170000.
m-Xylene	210000.
o,p-Xylene	120000.
1,2 Dichloroethane	< 2000.
COMPOSITION (PERCENT)	
OIL	1.0
WATER	13.9
SOLIDS	85.1

<: Less than given detection limits.

i k

k l

TABLE C-2 (Cont.-5)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-2 7'
DATE SAMPLED	4-18-88

VOLATILE ORGANICS DETECTED (ug/Kg)

		-		
Ben	zene		<	5000.
Eth	ylbenzene			15000.
Tol	uene			6 5000.
m-X	ylene			99000.
о,р	-Xylene			69000.
1,2	Dichloroethane		<	5000.

SEMIVOLATILE ORGANICS DETECTED	(ug/	′Kg)
<pre>bis(2-Ethylhexyl)phthalate</pre>		4400.
1-Methylnaphthalene		6500.
Naphthalene		5800.
Phenanthrene		1200.
Chrysene	<	99 0.

METALS PARAMETERS	(TOTAL,	mg/Kg)	
Antimony		<	5.0
Arsenic			1.0
Barium			110.0
Beryllium			.20
Cadmium		<	. 5
Chromium			3.0
Cobalt			2.0
Lead			13.0
Mercury		<	.05
Nickel		<	4.0
Selenium		<	.4
Vanadium			10.0

COMPOSITION (PERCENT)

OIL	1.0
WATER	13.9
SOILDS	85.1

TABLE C-2 (Cont.-6) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-2 10-12'
DATE SAMPLED	4-18-88

VOLATILE ORGANICS DETECTED	(ug/Kg)								
Benzene		2500.							
Ethylbenzene		7000.							
Toluene		27000.							
m-Xylene		39000.							
o,p-Xylene		21000.							
1,2 Dichloroethane									
COMPOSITION (PERCENT)									
OIL		. 8							
WATER		18.4							
SOLIDS		80.8							

<: Less than given detection limits.

:

TABLE C-2 (Cont.-7) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-2 15-17'
DATE SAMPLED	4-18-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT) OIL		. 9
WATER SOLIDS		14.9
SOLIDS		84.2

<: Less than given detection limits.

-

1 11

i i

i i

i i

TABLE C-2 (Cont.-8)

MAVERIK-KIRTLAND SOIL CHEMISTRY

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	٠	-		-	

SAMPLE IDENTIFICATION	BH-3 5-7'
DATE SAMPLED	4-17-88

VOLATILE ORGANICS DETECTED (ug/	(g)	
Benzene	-	520 0.
Ethylbenzene		260 00.
Toluene		13000.
m-Xylene		17000.
o,p-Xylene		90000.
1,2 Dichloroethane	<	1000.
CONDOCITION (BED CENT)		

COMPOSITION (PERCENT)

OIL	1.5
WATER	14.0
SOLIDS	84.5

1 1 1

TABLE C-2 (Cont.-9) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-3 10-12'
DATE SAMPLED	4-17-88

VOLATILE ORGANICS DETECTED (ug/h	(g)	
Benzene		140.
Ethylbenzene		240.
Toluene		83.
m-Xylene		170.
o,p-Xylene		730.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		.1
WATER		18.4
SOLIDS		81.5

<: Less than given detection limits.

-

TABLE C-2 (Cont.-10)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-3 11'
DATE SAMPLED	4-17-88

EPI TOXICITY METALS, (mg/Kg)

Arsenic	<	.1
Barium		2.7
Cadmium	<	. 0 05
Chromium	<	.01
Lead	<	.05
Mercury	<	1.0
Selenium	<	.02
Silver	<	.005

TABLE C-2 (Cont.-11) MAVERIK-KIRTLAND SOIL CHEMISTRY

ł

		MAVERIN-RIKILAND SOLE ONEMISIKI	
FICATION	BH-3 15-17'		
	4-17-88		

SAMPLE IDENTIFICATION	BH-3 15-17'
DATE SAMPLED	4-17-88

NOT ATTLE ODGANIES DETECTED		
VOLATILE ORGANICS DETECTED	(ug/kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xyle ne	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		1.6
WATER		16.4
SOLIDS		82.0

<: Less than given detection limits.

.

TABLE C-2 (Cont.-12)

ł

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-4 5-7'
DATE SAMPLED	4-14-88
VOLATILE ORGANICS DETECTED	(ug/Kg)

	(~6/ ··6/
Benzene	24000.
Ethylbenzene	29000.
Toluene	160000.
m-Xylene	170000.
o,p-Xylene	120000.
1,2 Dichloroethane	< 2000.
TOTAL ORGANIC LEAD (mg/Kg)	
Total Organic Lead	4.0
TOTAL CHROMATOGRAPHABLE OR TCO	GANICS (mg/Kg) 2800.
BOILING POINT (CENTIGRADE) INITIAL FINIAL	100. 340.
COMPOSITION (PERCENT) OIL WATER SOILDS	1.3 23.7 75.0

<: Less than given detection limits.

TABLE C-2 (Cont.-13)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-4 10-12'
DATE SAMPLED	4-14-88

VOLATILE ORGANICS DETECTED Benzene Ethylbenzene	(ug/Kg) < <	50. 50.
Toluene		57.
m-Xylene	_	230.
o,p-Xylene 1,2 Dichloroethane	< <	50. 100.
COMPOSITION (PERCENT)		
OIL		5.2
WATER SOLIDS		15.4 79.4

<: Less than given detection limits.

1

4

TABLE C-2 (Cont.-14)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-4 15-17'
DATE SAMPLED	4-14-88

VOLATILE ORGANICS DETECTED (ug/Kg)

Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
ANDOSITION (DEDCENT)		

COMPOSITION (PERCENT)

OIL	1.0
WATER	22.1
SOLIDS	76.9

. .

i i i

TABLE C-2 (Cont.-15)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-5 5-7'
DATE SAMPLED	4-14-88

.

VOLATILE ORGANICS DETECTED Benzene Ethylbenzene Toluene m-Xylene o,p-Xylene 1,2 Dichloroethane	(ug/Kg) <	2000. 6000. 25000. 37000. 25000. 1000.
TOTAL ORGANIC LEAD (mg/Kg) Total Organic Lead COMPOSITION (PERCENT) OIL		2.0
WATER SOILDS		.8 21.1 78.1

- <: Less than given detection limits.</p>

1

1

il

TABLE C-2 (Cont.-16)

MAVERIK-KIRTLAND SOIL CHEMISTRY

......

SAMPLE IDENTIFICATION	BH-5 10-12'
DATE SAMPLED	4-14-88

VOLATILE ORGANICS	DETECTED	(ug/Kg)
Benzene		<

Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		.4
WATER		18 3

WATER 18.3 SOLIDS 81.3

<: Less than given detection limits.

1 11

11

11

1

- Ê - Â

TABLE C-2 (Cont.-17)

SAMPLE IDENTIFICATION DATE SAMPLED	BH-5] 4-]	L5-17' L4-88
VOLATILE ORGANICS DETECTED Benzene Ethylbenzene Toluene m-Xylene o,p-Xylene 1,2 Dichloroethane	(ug/Kg) < < < < < < <	50. 50. 50. 50. 50. 100.
COMPOSITION (PERCENT) OIL WATER SOLIDS		1.3 21.0 77.7

<: Less than given detection limits.

i

MAVERIK-KIRTLAND SOIL CHEMISTRY

TABLE C-2 (Cont.-18)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-6 5-7'
DATE SAMPLED	4-16-88

VOLATILE ORGANICS DETECTED	(ug/Kg)
Benzene	19000.
Ethylbenzene	37000.
Toluene	140000.
m-Xyle ne	170000.
o,p-Xylene	150000.
1,2 Dichloroethane	< 2000.
COMPOSITION (PERCENT)	
OIL	.4
WATER	20.7
SOLIDS	78.9

<: Less than given detection limits.

1.1

TABLE C-2 (Cont.-19)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-6 10-12'
DATE SAMPLED	4-16-88

ŀ

1

÷]

1

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene	<	50.
Ethylbenzene		53.
Toluene		190.
m-Xyle ne		390.
o,p-Xylene		340.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		5.6
WATER		22.7
SOLIDS		71.7

<: Less than given detection limits.

TABLE C-2 (Cont.-20) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-6 15-17'
DATE SAMPLED	4-16-88

VOLATILE ORGANICS DETECTED	(1) (K)	
Benzene	(ug/ng) <	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		.8
WATER		18.5
SOLIDS		80.7

<: Less than given detection limits.

1 1

TABLE C-2 (Cont.-21) MAVERIK-KIRTLAND SOIL CHEMISTRY

ł

SAMPLE IDENTIFICATION	BH-7 5-7'
DATE SAMPLED	4-17-88
	• • • • • • • • • • • • •

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xyle ne	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		2.3
WATER		13.9

WATER13.9SOLIDS83.8<: Less than given detection limits.</td>

· [

111

•

TABLE C-2 (Cont.-22)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-7 1	.0-12'
DATE SAMPLED	4-1	7-88
VOLATILE ORGANICS DETECTED Benzene Ethylbenzene Toluene	(ug/Kg) < < <	50. 50. 50.

	-	
m-Xyle ne	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
TOTAL ORGANIC LEAD (mg/Kg)		
Total Organic Lead	<	1.0
TOTAL CHROMATOGRAPHABLE ORGANIC TOC	cs <	(mg/Kg) 1.7

BOILING POINT (CENTIGRADE) Not applicable

11

1 4

COMPOSITION (PERCENT)

OIL	2.7
WATER	21.6
SOILDS	75.7

TABLE C-2 (Cont.-23) MAVERIK-KIRTLAND SOIL CHEMISTRY

.....

ł

i

SAMPLE IDENTIFICATION	BH-7 15-17'
DATE SAMPLED	4-17-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xyle ne	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		

OIL	1.5
WATER	17.8
SOLIDS	80.7

<: Less than given detection limits.

, I

1

1 1

TABLE C-2 (Cont.-24)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-8 10-12'
DATE SAMPLED	4-15-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene		71.
Ethylbenzene		57.
Toluene		400.
m-Xyle ne		360.
o,p-Xylene		39 0.
1,2 Dichloroethane	<	100.
TOTAL CUDONATOCDADUARIE OD	NITCS (mg	(V ~)

TOTAL CHROMATOGRAPH	ABLE ORGANICS	(mg/Kg)
TCO		2.1

j,

1

1

11.

(CENTIGRADE)	
	100
	170
	(CENTIGRADE)

1.3 16.8 81.9

COMPOSITION	(PERCENT)	
OIL		
WATER		
SOILDS		

TABLE C-2 (Cont.-25) MAVERIK-KIRTLAND SOIL CHEMISTRY

MAVERIN-KIKILAND SOIL CHEMISIKI

SAMPLE IDENTIFICATION	BH-9 5-7'
DATE SAMPLED	4-16-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene		57.
Ethylbenzene		180.
Toluene		240.
m-Xylene		630.
o,p-Xylene		660.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		. 8
WATER		21.0

<: Less than given detection limits.

78.2

SOLIDS

11

1

f

TABLE C-2 (Cont.-26) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-10 12'
DATE SAMPLED	4-17-88

	/ m= 1	
VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene		410.
Ethylbenzene		10000.
Toluene		870.
m-Xylene		63000.
o,p-Xylene		13000.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		.7
WATER		15.8
SOLIDS		83.5

<: Less than given detection limits.

ĩ

:

.

TABLE C-2 (Cont.-27) MAVERIK-KIRTLAND SOIL CHEMISTRY

}

l

...........

SAMPLE IDENTIFICATION	BH-10 17'
DATE SAMPLED	4-21-88

TOTAL CHROMATOGRAPHABLE ORGANICS (mg/Kg) TCO 40.

BOILING POINT	(CENTIGRADE)	
INITIAL		100.
FINIAL		330.

<: Less than given detection limits.

-

TABLE C-2 (Cont.-28)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-11 10-12'
DATE SAMPLED	4-16-88

VOLATILE	ORGANICS	DETECTED	$(11\sigma/K\sigma)$
			<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>

Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.

COMPOSITION (PERCENT)

OIL	1.9
WATER	22.5
SOLIDS	75.6

TABLE C-2 (Cont.-29) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-12 10-12'
DATE SAMPLED	4-15-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		. 3
WATER		20.3
SOLIDS		79.4

<: Less than given detection limits.

TABLE C-2 (Cont.-30)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-13 6-7'
DATE SAMPLED	4-15-88

VOLATILE ORGANICS DETECTED Benzene Ethylbenzene Toluene m-Xylene o,p-Xylene 1,2 Dichloroethane	(ug/Kg) <	250. 67. 800. 1400. 580. 100.
COMPOSITION (PERCENT) OIL WATER		1.4 16.8

<: Less than given detection limits.

81.8

SOLIDS

TABLE C-2 (Cont.-31)

ł

ļ

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-14 6-7'
DATE SAMPLED	4-15-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (DED CENT)		

COMPOSITION (PERCENT)

OIL	1.0
WATER	20.8
SOLIDS	78.2

TABLE C-2 (Cont.-32)

1

Ì

i i

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-20 5-7'
DATE SAMPLED	4-21-88

VOLATILE ORGANICS DETECT Benzene Ethylbenzene Toluene m-Xylene o,p-Xylene		75. 76. 120. 130. 150.
1,2 Dichloroethane	<	100.
TOTAL CHROMATOGRAPHABLE TCO		mg/Kg) 54000.0

BOILING POINT	(CENTIGRADE)	
INITIAL		250.
FINIAL		450.
COMPOSITION (I	PEDCENT)	
CONTROBILION (1	CRUCHI J	

OIL	10.3
WATER	10.9
SOILDS	78.8

TABLE C-2 (Cont.-33)

i

i.

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-21 0-1.25
DATE SAMPLED	4-21-88

VOLATILE ORGANICS DETECTED (ug/	′Kg)	
Benzene	_	110.
Ethylbenzene	<	100.
Toluene	<	100.
m-Xylene		3400.
o,p-Xylene		1700.
1,2 Dichloroethane	<	100.
SEMIVOLATILE ORGANICS DETECTED		′Kg)
bis (2-Ethylhexyl)phthalate	2	1200.
l-Methylnaphthale ne	<	99 0.
Naphthalene	<	99 0.
Phenanthrene		1400.
Chrysene	<	9 90.
TOTAL CHROMATOGRAPHABLE ORGANIC	CS (r	ng/Kg)
TCO		60000.
BOILING POINT (CENTIGRADE)		000
INITIAL		29 0.
FINIAL		500.
METALS PARAMETERS (TOTAL, mg/Kg	•)	
Antimony		5.0
Arsenic		1.20
Barium		110.0
Beryllium		.20
Cadmium	<	.5
Chromium		2.00
Cobalt		2.00
Lead		8.00
Mercury	<	.05
Nickel	<	4.00
Selenium	<	.2
Vanadium		12.00
COMPOSITION (PERCENT)		
OIL		2.6
WATER		6.0
SOLIDS		91.4

<: Less than given detection limits.

TABLE C-2 (Cont.-34)

L

1

ţ.

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-22 0-0.5'
DATE SAMPLED	4-21-88

VOLATILE ORGANICS DETECTED (ug/K Benzene Ethylbenzene Toluene m-Xylene 0,p-Xylene 1,2 Dichloroethane SEMIVOLATILE ORGANICS DETECTED (bis (2-Ethylhexyl)phthalate 1-Methylnaphthalene Naphthalene Phenanthrene Chrysene	<	2000. 1800. 11000. 10000. 6100. 200. (Kg) 10000. 10000. 10000. 30000. 28000.		
TOTAL CHROMATOGRAPHABLE ORGANICS (mg/Kg) TCO 130000.				
BOILING POINT (CENTIGRADE) INITIAL FINIAL		100. 500.		
METALS PARAMETERS (TOTAL, mg/Kg) Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Lead Mercury Nickel Selenium Vanadium	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	5.0 .30 9.4 .10 .5 1.00 1.00 5.00 .05 4.00 .2 1.00		
COMPOSITION (PERCENT) OIL WATER SOLIDS		93.7 2.0 4.3		

TABLE C-2 (Cont.-35)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-23 10-12'
DATE SAMPLED	4-21-88

VOLATILE ORGANICS DETECTED (ug/Kg)	
Benzene	670.
Ethylbenzene	12000.
Toluene	19000.
m- Xylene	72000.
o,p-Xylene	35000.
1,2 Dichloroethane <	1000.
	mg/Kg)
TCO	2900.0
BOILING POINT (CENTIGRADE)	
INITIAL	100.
FINIAL	470.
COMPOSITION (PERCENT)	
OIL	.1
WATER	11.4
SOILDS	88.5

<: Less than given detection limits.

TABLE C-2 (Cont.-36)

TRY

SAMPLE IDENTIFICATION	BH-24 5-11.5
DATE SAMPLED	4-21-88

VOLATILE ORGANICS DETECTED (ug/Kg)	
Benzene <	100.
Ethylbenzene	2400.
Toluene	2100.
m-Xyle ne	17000.
o,p-Xylene	10000.
1,2 Dichloroethane <	200.
TOTAL CHROMATOGRAPHABLE ORGANICS (TCO	mg/Kg) 250.0
BOILING POINT (CENTIGRADE)	
INITIAL	100.
FINIAL	400.
COMPOSITION (PERCENT) OIL	. 2
WATER	10.6
SOILDS	89.2

<: Less than given detection limits.

·

М	A	V	E	R	I	K	-	K	1	R	T	L	A	N	D		S	0	Ι	L		С	H	E	M	I	S	T	R	Y	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	•	

TABLE C-2 (Cont.-37) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION DATE SAMPLED	BH-26 C 4-21	
TOTAL CHROMATOGRAPHABLE ORGA TCO		g/Kg) 00000.
BOILING POINT (CENTIGRADE) INITIAL FINIAL		170. 500.
METALS PARAMETERS (TOTAL, mg, Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	/Kg) < < < <	9.0 63.0 .5 12.0 98.0 .05 .2 .5
COMPOSITION (PERCENT) OIL WATER SOILDS		51.3 9.0 39.7

<: Less than given detection limits.

BOREHOLE SAMPLE ZONES AND ANALYTICAL LABORATORY TESTS CONDUCTED

ł

L

Borehole Designation	RMAL Laboratory ID	Zones Sampled	Analytical Tests(1)
<u>On-Site</u>			
BH-1	67123-001 67123-002 67123-003	5 - 6.5 10 - 11.5 15.5 - 17	VOA, VOX, OWS VOA, VOX, OWS, Skinner List VOA, VOX, OWS
BH-2	67161-007 67161-008 67161-009 67161-010	5 - 7 7 10 - 12 15 - 17	VOA, VOX, OWS Skinner List VOA, VOX, OWS VOA, VOX, OWS
BH-3	67161-011 67161-012 67161-013 67161-014	5 - 7 11 10 - 12 15 - 17	VOA, VOX, OWS EPTOX, RCRA Metals VOA, VOX, OWS VOA, VOX, OWS
BH-4	67123-004 67123-005 67123-006	5 - 7 10 - 12 15 - 17	VOA, VOX, OWS, TOL, TCO VOA, VOX, OWS VOA, VOX, OWS
B H-5	67123-007 67123-008 67123-009	5 - 7 10 - 12 15 - 17	VOA, VOX, OWS, TOL VOA, VOX, OWS VOA, VOX, OWS
BH - 6	67123-010 67123-011 67123-012	5 - 7 10 - 12 15 - 17	VOA, VOX, OWS VOA, VOX, OWS VOA, VOX, OWS
BH-7	67161-001 67161-002 67161-003	5 - 7 10 - 12 15 - 17	VOA, VOX, OWS VOA, VOX, OWS, TOL, TCO VOA, VOX, OWS
BH-8	67123-014	10 - 12	VOA, VOX, OWS, TCO
BH-9	67123-018	5 ~ 7	VOA, VOX, OWS
BH-10	67161-004 67161-005 67161-006	12 15 17	VOA, VOX OWS TCO
BH-11	67123-015	10 - 12	VOA, VOX, OWS
BH-20 (sludge)	67196-001	5 - 7	VCA, VOX, OWS, TCO
BH-21 (surface)	67196-002	0 - 1.25	Skinner List, VOA, VOX OWS, TCO
BH-22 (sludge)	67196-003	0 - 0.5	Skinner List, VOA, VOX OWS, TCO
BH-23	67196-004	10 - 12	VOA, VOX, OWS, TCO
BH-24	67196-005	5 - 11.5	VOA, VOX, OWS, TCO
BH-26 (sludge)	67196-006	0 - 1	RCRA Metals, OWS, TCO
Off-Site			
BH-12	67123-013	10 - 12	VOA, VOX, OWS
BH-13	67123-017	6 - 7	VOA, VOX, OWS
BH-14	67123-016	6 - 7	VOA, VOX, OWS

Footnotes:

· E 111 -

 (1) Abbreviations For analytical Tests Conducted VOA = Aromatic Volatile Organics VOX = Halogenated Volatile Organics OWS = Percent Oil/Water/Soils Skinner List = Refinery Hazardous Volatile, Semi-volatile, Total Metals
 TCO = Total Chromatographable Organics EPTOX = EP Toxicity Tests, Metals Only RCRA Metals = 8 Metals, Total

TABLE C-2 MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-1 5-6.5'
DATE SAMPLED	4-15-88

VOLATILE ORGANICS DETECTED	(ug/Kg)
Benzene	3900.
Ethylbenzene	22000.
Toluene	84000.
m-Xylene	130000.
o,p-Xylene	98000.
1,2 Dichloroethane	< 1000.
COMPOSITION (PERCENT)	
OIL	.4
WATER	13.2
SOLIDS	86.4

<: Less than given detection limits.

TABLE C-2 (Cont.-2)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-1 10-11.5
DATE SAMPLED	4-14-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene		1800.
Ethylbenzene		710.
Toluene		4600.
m-Xylene		6300.
o,p-Xylene		3500.
1,2 Dichloroethane	<	200.

TOTAL ORGANIC LEAD (mg/Kg)		
Total Organic Lead	<	1.0

METALS PARAMETERS (TOTAL, mg/Kg)

	(IOIGG,	mg/ Kg/	
Antimony		<	5.0
Arsenic			1.8
Barium			140.0
Beryllium			.30
Cadmium		<	.5
Chromium			3.0
Cobalt			3.0
Lead			9.0
Mercury		<	.05
Nickel			5.00
Selenium		<	.2
Vanadium			11.0
COMPOSITION (PERCE	NT)		

OIL	. 2
WATER	16.7
SOLIDS	83.1

TABLE C-2 (Cont.-3)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-1 15.5-17
DATE SAMPLED	4-14-88

VOLATILE ORGANICS DETECTED Benzene Ethylbenzene Toluene m-Xylene o,p-Xylene 1,2 Dichloroethane	(ug/Kg) < <	380. 50. 50. 79. 140. 100.
COMPOSITION (PERCENT) OIL WATER SOLIDS		1.1 15.1 83.8

<: Less than given detection limits.

TABLE C-2 (Cont.-4) MAVERIK-KIRTLAND SOIL CHEMISTRY

I

SAMPLE IDENTIFICATION	BH-2 5-7'
DATE SAMPLED	4-18-88

VOLATILE ORGANICS DETECTED	(110/Kg)
Benzene	21000.
Ethylbenzene	39000.
Toluene	170000.
m-Xylene	210000.
o,p-Xylene	120000.
1,2 Dichloroethane	< 2000.
COMPOSITION (PERCENT)	
OIL	1.0
WATER	13.9
SOLIDS	85.1

TABLE C-2 (Cont.-5)

ì

MAVERIK-KIRTLAND SOIL CHEMISTRY

-

SAMPLE IDENTIFICATION	BH-2 7'
DATE SAMPLED	4-18-88

VOLATILE ORGANICS DETECTED (ug/Kg)

Benzene	<	5000.
Ethylbenzene		15000.
Toluene		65000.
m-Xylene		99000.
o,p-Xylene		69000.
1,2 Dichloroethane	<	5000.

SEMIVOLATILE ORGANICS DETECTED	(ug/	ΎKg)
<pre>bis(2-Ethylhexyl)phthalate</pre>		4400.
1-Methylnaphthalene		6500.
Naphthalene		5800.
Phenanthrene		1200.
Chrysene	<	990.

METALS PARAMETERS (TOTAL,	mg/Kg)	
Antimony	<	5.0
Arsenic		1.0
Barium		110.0
Beryllium		.20
Cadmium	<	. 5
Chromium		3.0
Cobalt		2.0
Lead		13.0
Mercury	<	.05
Nickel	<	4.0
Selenium	<	.4
Vanadium		10.0
COMPOSITION (PERCENT)		
OIL		1.0
WATER		13.9
SOILDS		85.1

TABLE C-2 (Cont.-6) ` MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-2 10-12'
DATE SAMPLED	4-18-88

VOLATILE ORGANICS DETECTED Benzene Ethylbenzene Toluene m-Xylene o,p-Xylene 1,2 Dichloroethane	(ug/Kg) <	2500. 7000. 27000. 39000. 21000. 670.
COMPOSITION (PERCENT) OIL WATER SOLIDS		.8 18.4 80.8

<: Less than given detection limits.

·

......

TABLE C-2 (Cont.-7) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-2 15-17'
DATE SAMPLED	4-18-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		.9
WATER		14.9
SOLIDS		84.2

<: Less than given detection limits.

·

TABLE C-2 (Cont.-8)

1

ł

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-3 5-7′
DATE SAMPLED	4-17-88

VOLATILE ORGANICS DETECTED (ug/Kg) Benzene Ethylbenzene Toluene	5200. 26000. 13000.
<pre>m-Xylene o,p-Xylene 1,2 Dichloroethane < COMPOSITION (PERCENT)</pre>	17000. 90000. 1000.

OIL	1.5
WATER	14.0
SOLIDS	84.5

TABLE C-2 (Cont.-9) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-3 10-12'
DATE SAMPLED	4-17-88

VOLATILE ORGANICS DETECTED (ug/Kg) Benzene Ethylbenzene Toluene m-Xylene o,p-Xylene	140. 240. 83. 170. 730.
1,2 Dichloroethane < COMPOSITION (PERCENT) OIL WATER SOLIDS	100. .1 18.4 81.5

TABLE C-2 (Cont.-10)

ł

1

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-3 11'
DATE SAMPLED	4-17-88

EPI TOXICITY METALS, (mg/Kg)

Arsenic	<	.1
Barium		2.7
Cadmium	<	.005
Chromium	<	.01
Lead	<	.05
Mercury	<	1.0
Selenium	<	.02
Silver	<	.005

TABLE C-2 (Cont.-11)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-3 15-17'
DATE SAMPLED	4-17-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		1.6
WATER		16.4
SOLIDS		82.0

TABLE C-2 (Cont.-12)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-4 5-7'
DATE SAMPLED	4-14-88

VOLATILE ORGANICS DETECTED	(ug/Kg)
Benzene	24000.
Ethylbenzene	29000.
Toluene	160000.
m-Xylene	170000.
o,p-Xylene	120000.
1,2 Dichloroethane	< 2000.
TOTAL ORGANIC LEAD (mg/Kg)	
Total Organic Lead	4.0

Total Organic	Lead		4.0
TOTAL CHROMATOGRA	PHABLE	ORGANICS	(mg/Kg)

TCO			2800.
BOILING	POINT	(CENTIGRADE)	

	(00001200000)	
INITIAL		100.
FINIAL		340.

COMPOSITION (PERCENT)

OIL	1.3
WATER	23.7
SOILDS	75.0

TABLE C-2 (Cont.-13)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-4 10-12'
DATE SAMPLED	4-14-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene		57.
m-Xylene		230.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
0.11		۲ 0

OIL	5.2
WATER	15.4
SOLIDS	79.4

1.1

<: Less than given detection limits.

TABLE C-2 (Cont.-14)

i

i

Ì

1

!

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-4 15-17'
DATE SAMPLED	4-14-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		1.0
WATER		22.1
SOLIDS		76.9

<: Less than given detection limits.

TT

TABLE C-2 (Cont.-15)

i

i.

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-5 5-7'
DATE SAMPLED	4-14-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene		2000.
Ethylbenzene		6000.
Toluene		25000.
m-Xylene		37000.
o,p-Xylene		25000.
1,2 Dichloroethane	<	1000.
TOTAL ORGANIC LEAD (mg/Kg)		
Total Organic Lead		2.0
COMPOSITION (PERCENT)		
OIL		. 8
WATER		21.1

WATER	21.1
SOILDS	78.1

l

i.

ł i

i

İ

Ì.

i

1

÷

T

ł

TABLE C-2 (Cont.-16) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-5 10-12'
DATE SAMPLED	4-14-88

VOLATILE ORGANICS DETECTED Benzene Ethylbenzene Toluene m-Xylene	(ug/Kg) < < < <	50. 50. 50. 50.
o,p-Xylene 1,2 Dichloroethane	< <	50. 100.
COMPOSITION (PERCENT) OIL WATER SOLIDS		.4 18.3 81.3

<: Less than given detection limits.

TABLE C-2 (Cont.-17)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-5 15-17'
DATE SAMPLED	4-14-88

VOLATILE ORGANICS DETECTED Benzene	(ug/Kg) <	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT) OIL WATER SOLIDS		1.3 21.0 77.7

<: Less than given detection limits.

1

TABLE C-2 (Cont.-18)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-6 5-7'
DATE SAMPLED	4-16-88

VOLATILE ORGANICS DETECTED	(ug/Kg)
Benzene	19000.
Ethylbenzene	37000.
Toluene	140000.
m-Xylene	170000.
o,p-Xylene	150000.
1,2 Dichloroethane	< 2000.
COMPOSITION (PERCENT) OIL WATER SOLIDS	.4 20.7 78.9

<: Less than given detection limits.

1 1

TABLE C-2 (Cont.-19)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-6 10-12'
DATE SAMPLED	4-16-88

NOLATILE OBCANICS DETECTED	$(u \in V \in)$	
VOLATILE ORGANICS DETECTED	(ug/kg)	
Benzene	<	50.
Ethylbenzene		53.
Toluene		190.
m-Xylene		390.
o,p-Xylene		340.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		5.6
WATER		22.7
SOLIDS		71.7

<: Less than given detection limits.

1

_

TABLE C-2 (Cont.-20) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-6 15-17'
DATE SAMPLED	4-16-88

VOLATILE ORGANICS DETECTED Benzene Ethylbenzene Toluene m-Xylene o,p-Xylene	(ug/Kg) < < < < <	50. 50. 50. 50. 50.
1,2 Dichloroethane COMPOSITION (PERCENT)	<	100.
OIL WATER SOLIDS		.8 18.5 80.7

<: Less than given detection limits.

1 1

TABLE C-2 (Cont.-21)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-7 5-7'
DATE SAMPLED	4-17-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		2.3
WATER		13.9
SOLIDS		83.8

<: Less than given detection limits.

1

1

1

ł

TABLE C-2 (Cont.-22)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-7 10-12'
DATE SAMPLED	4-17-88

VOLATILE ORGANICS DETECTED (ug/Kg)	1
Benzene <	50.
Ethylbenzene <	50.
Toluene <	50.
m-Xylene <	50.
o,p-Xylene <	50.
1,2 Dichloroethane <	100.
TOTAL ORGANIC LEAD (mg/Kg)	
Total Organic Lead <	1.0
TOTAL CHROMATOGRAPHABLE ORGANICS	(mg/Kg)
TOC <	1.7
BOILING POINT (CENTIGRADE)	
Not applicable	
COMPOSITION (PERCENT)	
OIL	2.7
WATER	21.6

<: Less than given detection limits.

75.7

SOILDS

11

.......

TABLE C-2 (Cont.-23)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-7 15-17'
DATE SAMPLED	4-17-88

	/ / \	
VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		1.5
WATER		17.8
SOLIDS		80.7

<: Less than given detection limits.

TABLE C-2(Cont.-24)MAVERIK-KIRTLAND SOIL CHEMISTRY

i.

MAVERIK-KIRILAND SOIL CHEMISIRY

SAMPLE IDENTIFICATION	BH-8 10-12'
DATE SAMPLED	4-15-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene		71.
Ethylbenzene		57.
Toluene		400.
m-Xylene		360.
o,p-Xylene		390.
1,2 Dichloroethane	<	100.
TOTAL CHROMATOGRAPHABLE ORG TCO	GANICS (mg	/Kg) 2.1

BOILING	POINT	(CENTIGRADE)	
INI	TIAL		100.
FIN	ÍAL		170

COMPOSITION (PERCENT) OIL WATER

SOILDS

<: Less than given detection limits.

1.3

16.8

81.9

TABLE C-2 (Cont.-25) MAVERIK-KIRTLAND SOIL CHEMISTRY

I

..........

SAMPLE IDENTIFICATION	BH-9 5-7'
DATE SAMPLED	4-16-88

VOLATILE ORGANICS DETECTED (ug/K Benzene Ethylbenzene Toluene m-Xylene o,p-Xylene 1,2 Dichloroethane	(g)	57. 180. 240. 630. 660. 100.
COMPOSITION (PERCENT) OIL WATER SOLIDS		.8 21.0 78.2

<: Less than given detection limits.

TABLE C-2 (Cont.-26) MAVERIK-KIRTLAND SOIL CHEMISTRY

I

SAMPLE IDENTIFICATION	BH-10 12'
DATE SAMPLED	4-17-88

VOLATILE ORGANICS DETECTED Benzene Ethylbenzene Toluene m-Xylene o,p-Xylene	(ug/Kg)	410. 10000. 870. 63000. 13000.
1,2 Dichloroethane COMPOSITION (PERCENT) OIL WATER SOLIDS	<	100. .7 15.8 83.5

<: Less than given detection limits.

TABLE C-2 (Cont.-27) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-10 17'
DATE SAMPLED	4-21-88

TOTAL CHROMATOGRAPHABLE	ORGANICS	(mg/Kg)
TCO		40.

BOILING	POINT	(CENTIGRADE)	
INI	ΓIAL		100.
FINI	IAL		330.

<: Less than given detection limits.

. h

TABLE C-2 (Cont.-28)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-11 10-12'
DATE SAMPLED	4-16-88

VOLATILE ORGANICS DETECTED	(110/Kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT) OIL WATER SOLIDS		1.9 22.5 75.6
SOLIDS		75.6

<: Less than given detection limits.

1

1 1

TABLE C-2 (Cont.-29) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-12 10-12'	
DATE SAMPLED	4-15-88	

	/ /TT \	
VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		. 3
WATER		20.3
SOLIDS		79.4
DOLIDO		12.4

TABLE C-2 (Cont.-30)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-13 6-7'
DATE SAMPLED	4-15-88

VOLATILE ORGANICS DETECTED (ug/Kg)	050
Benzene	250.
Ethylbenzene	67.
Toluene	800.
m-Xylene	1400.
o,p-Xylene	580.
1,2 Dichloroethane <	100.
COMPOSITION (PERCENT)	
OIL	1.4
WATER	16.8
SOLIDS	81.8

TABLE C-2 (Cont.-31)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-14 6-7'
DATE SAMPLED	4-15-88

UNIATILE OPCANICS DETECTED	$(v \in V \in V)$	
VOLATILE ORGANICS DETECTED	(ug/kg)	
Benzene	<	50.
Ethylbenzene	<	50.
Toluene	<	50.
m-Xylene	<	50.
o,p-Xylene	<	50.
1,2 Dichloroethane	<	100.
COMPOSITION (PERCENT)		
OIL		1.0
WATER		20.8
SOLIDS		78.2
DODIDD		70.2

<: Less than given detection limits.

TABLE C-2 (Cont.-32)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-20 5-7'
DATE SAMPLED	4-21-88

VOLATILE ORGANICS DETECTED	(ug/Kg)	
Benzene		75.
Ethylbenzene		76.
Toluene		120.
m-Xylene		130.
o,p-Xylene		150.
1,2 Dichloroethane	<	100.

TOTAL CHROMATOGRAPHABLE	ORGANICS	(mg/Kg)
TCO		54000.0

BOILING POINT (CENTIGRADE)	
INITIAL	250.
FINIAL	450.
COMPOSITION (PERCENT)	
OIL	10.3
WATER	10.9

<: Less than given detection limits.

78.8

SOILDS

TABLE C-2 (Cont.-33) MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-21 0-1.25
DATE SAMPLED	4-21-88

ļ.

VOLATILE ORGANICS DETECTED (ug/		
VOLATILE ORGANICS DETECTED (UE/	Kg)	
Benzene		110.
Ethylbenzene	<	100.
Toluene	<	100.
m-Xylene		3400.
o,p-Xylene		1700.
1,2 Dichloroethane	<	100.
SEMIVOLATILE ORGANICS DETECTED	(ug/	
<pre>bis (2-Ethylhexyl)phthalate</pre>		1200.
1-Methylnaphthalene	<	9 90.
Naphthalene	<	990.
Phenanthrene		1400.
Chrysene	<	990.
	•	
TOTAL CHROMATOGRAPHABLE ORGANIC	c /~	$\alpha (V \alpha)$
TCO	5 (II	ug/Kg)
100		60000.
DOLLING DOLNE (CONTLODADE)		
BOILING POINT (CENTIGRADE)		• • • •
INITIAL		290.
FINIAL		500.
METALS PARAMETERS (TOTAL, mg/Kg	;)	
Antimony	<	5.0
Arsenic		1.20
Barium		110.0
Beryllium		.20
Cadmium	<	. 5
Chromium		2.00
Cobalt		2 00
Cobalt Lead		2.00
Lead	_	8.00
Lead Mercury	<	8.00 .05
Lead Mercury Nickel	<	8.00 .05 4.00
Lead Mercury Nickel Selenium	< < <	8.00 .05 4.00 .2
Lead Mercury Nickel	<	8.00 .05 4.00
Lead Mercury Nickel Selenium Vanadium	<	8.00 .05 4.00 .2
Lead Mercury Nickel Selenium Vanadium COMPOSITION (PERCENT)	<	8.00 .05 4.00 .2 12.00
Lead Mercury Nickel Selenium Vanadium COMPOSITION (PERCENT) OIL	<	8.00 .05 4.00 .2 12.00 2.6
Lead Mercury Nickel Selenium Vanadium COMPOSITION (PERCENT) OIL WATER	<	8.00 .05 4.00 .2 12.00 2.6 6.0
Lead Mercury Nickel Selenium Vanadium COMPOSITION (PERCENT) OIL	<	8.00 .05 4.00 .2 12.00 2.6

<: Less than given detection limits.

V

Зł

TABLE C-2 (Cont.-34)

ł

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-22 0-0.5′
DATE SAMPLED	4-21-88

VOLATILE ORGANICS DETECTED (ug/	K~)	
Benzene	rg)	2000.
		1800.
Ethylbenzene	1	
Toluene	-	1000.
m-Xylene	1	L0000.
o,p-Xylene		6100.
1,2 Dichloroethane	<	200.
SEMIVOLATILE ORGANICS DETECTED	(mg/ł	
<pre>bis (2-Ethylhexyl)phthalate</pre>	< 1	L0000.
l-Methylnaphthalene	< .	L0000.
Naphthalene	< 1	LOOOO.
Phenanthrene		30000.
Chrysene	2	28000.
TOTAL CHROMATOGRAPHABLE ORGANIC	S (mg	g/Kg)
TCO		30000.
BOILING POINT (CENTIGRADE)		
INITIAL		100.
FINIAL		500.
METALS PARAMETERS (TOTAL, mg/Kg	N	
		5.0
Antimony Arsenic	< <	.30
	<	.30 9.4
Barium		9.4 .10
Beryllium	<	
Cadmium	<	.5
Chromium	<	1.00
Cobalt	<	1.00
Lead	<	5.00
Mercury	<	.05
Nickel	<	4.00
Selenium	<	.2
Vanadium	<	1.00
COMPOSITION (PERCENT)		
OIL		93.7
WATER		2.0
SOLIDS		4.3

TABLE C-2 (Cont.-35)

I

ĥ

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-23 10-12'
DATE SAMPLED	4-21-88

VOLATILE ORGANICS DETECTED (ug/Kg)
Benzene	670.
Ethylbenzene	12000.
Toluene	19000.
m-Xylene	72000.
o,p-Xylene	35000.
1,2 Dichloroethane <	1000.
TOTAL CHROMATOGRAPHABLE ORGANICS TCO	(mg/Kg)
100	2900.0
BOILING POINT (CENTIGRADE)	
INITIAL	100.
FINIAL	470.
COMPOSITION (PERCENT)	
OIL	.1
WATER	11.4
SOILDS	88.5

TABLE C-2 (Cont.-36)

MAVERIK-KIRTLAND SOIL CHEMISTRY

SAMPLE IDENTIFICATION	BH-24 5-11.5
DATE SAMPLED	4-21-88

VOLATILE	ORGANICS	DETECTED	(ug/Kg)
----------	----------	----------	---------

Benzene	<	100.
Ethylbenzene		2400.
Toluene		2100.
m-Xylene		17000.
o,p-Xylene		10000.
1,2 Dichloroethane	<	200.

TOTAL CHROMATOGRAPHABLE ORGANICS (mg/Kg) TCO 250.0

BOILING	POINT	(CENTIGRADE)	
INIT	IAL		100.
FINI	AL		400.

COMPOSITION (PERCENT) OIL

OIL	. 2
WATER	10.6
SOILDS	89.2

TABLE C-2 (Cont.-37) MAVERIK-KIRTLAND SOIL CHEMISTRY

MAN DIGIN-KINI LAND							SOLT					OILMISINI																				
	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

SAMPLE IDENTIFICATION DATE SAMPLED	BH-26 C 4-21	_
TOTAL CHROMATOGRAPHABLE ORGAN TCO		5/Kg) 0000.
BOILING POINT (CENTIGRADE) INITIAL		170.
FINIAL		500.
METALS PARAMETERS (TOTAL, mg/	Kg)	
Arsenic		9.0
Barium		63.0
Cadmium	<	.5
Chromium		12.0
Lead		98.0
Mercury	<	.05
Selenium	<	.2
Silver	<	.5
COMPOSITION (PERCENT)		
OIL		51.3
WATER		9.0
SOILDS		39.7

1 1 !

Ì

ı i

i

:

T

Ì

I

1

}

İ

1

|

Rocky Mountain Analytical Laboratory

ANALYTICAL RESULTS FOR DAMES AND MOORE

MAY 11, 1988

Reviewed by:

t Jeanne B. Howbert Michael P. Phillips, Ph.D.n

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

🖫 Enseco

I. OVERVIEW

On April 15 and 18, 1988, Enseco-Rocky Mountain Analytical Laboratory received 18 samples from Dames and Moore. A complete listing of tests requested, by sample, is given in Section III.

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- I. Overview
- II. Sample Description Information
- III. Analytical Tests Assigned (not included)
- IV. Analytical Results
- V. Quality Control Report
- VI. Description of Analytical Methodology

Standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. All laboratory QC samples analyzed in conjunction with the samples in this project were within established control limits.

Enseco

II. SAMPLE DESCRIPTION INFORMATION

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique five digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the five digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

ł

ì

SAMPLE DESCRIPTION INFORMATION

for

DAMES AND MOORE

RMAL Sample No.	Sample Description	Sample Type	Date <u>Sampled</u>	Date <u>Received</u>
67123-001-00	BH-1 5-6 1\2'	Soil	04/14/88	04/15/88
67123-002-00	BH-1 10-11 1\2'	Soil	04/14/88	04/15/88
67123-003-00	BH-1 15 1\2-17'	Soil	04/14/88	04/15/88
67123-004-00	BH-4 5-7'	Soil	04/14/88	04/15/88
67123-005-00	BH-4 10-12'	Soil	04/14/88	04/15/88
67123-006-00	BH-4 15-17'	Soil	04/14/88	04/15/88
67123-007-00	BH-5 5-7'	Soil	04/14/88	04/15/88
67123-008-00	BH-5 10-12'	Soil	04/14/88	04/15/88
67123-009-00	BH-5 15-17'	Soil	04/14/88	04/15/88
67123-010-00	BH-6 5-7'	Soil	04/16/88	04/18/88
67123-011-00	BH-6 10-12'	Soil	04/16/88	04/18/88
67123-012-00	BH-6 15-17'	Soil	04/16/88	04/18/88
67123-013-00	BH-12 10-12'	Soil	04/15/88	04/18/88
67123-014-00	BH-8 10-12'	Soil	04/15/88	04/18/88
67123-015-00	BH-11 10-12'	Soil	04/16/88	04/18/88
67123-016-00	BH-14 6-7'	Soil	04/15/88	04/18/88
67123-017-00	BH-13 6-7'	Soil	04/15/88	04/18/88
67123-018-00	BH-9 5-7'	Soil	04/16/88	04/18/88

Į.

ļ.

🔁 Enseco

IV. ANALYTICAL RESULTS

The analytical results for this project are presented in the following data tables. The results are presented by sample, by test, with tests reported in the following order: GC/MS, Chromatography, Metals and Inorganics.

Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed. The authorization data is the date when the project was defined by the client such that laboratory work could begin.

Data sheets contain a listing of the parameters measured in each test, the analytical results and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content. All data is "blank corrected", i.e. the level of contamination, if any, found in the laboratory blank is subtracted from the analytical result before it is reported.

In addition, surrogate recovery data is presented for all GC/MS analyses. The surrogate recovery is an indication of the affect of the sample matrix on the performance of the method. The results from the Standard Enseco QA/QC Program, which generates data which are independent of matrix effects, is given in Section V.

The analytical data reported are subject to the following limitations of the analytical methodology:

GC/MS

Volatile Organics

 a) The cis- and trans-isomers of dichloroethylene cannot be distinguished using EPA Method 624. All dichloroethylene present is reported as trans-dichloroethylene. Semivolatile Organics

- a) Benzo(b) and benzo(k) fluoranthene cannot be differentiated based on their mass spectra; retention times are almost identical. The isomer which is the closest in retention time to the sample is reported.
- b) 1,2-diphenylhydrazine is measured as azobenzene.
- c) N-Nitrosodiphenylamine decomposes in the gas chromatographic inlet to diphenylamine.

Chromatography

Methods 601 and 8010

- a) Dichlorodifluoromethane (Freon 12) and vinyl chloride coelute under the specified analytical conditions. All data are reported as a combined value for the two compounds.
- b) Dibromochloromethane, cis-1,3-dichloropropene and
 1,1,2-trichloroethane are unresolved. The three compounds are reported as a single combined value.
- c) Tetrachloroethene and 1,1,2,2-tetrachloroethane coelute and are reported as a combined result.

Method 602 and 8020

a) The ortho and para isomers of xylene coelute and are reported as a single concentration value.

TOTAL CHROMATOGRAPHABLE ORGANICS

Total Chromatographable Organics (TCO) were determined from a methylene chloride extraction and subsequent analysis by capillary column gas chromatography with a flame ionization detector (GC/FID). The TCO result was based on the entire area under the chromatogram as compared to the response to eicosane. The detection limit is based on the response of diesel.

The pattern of the FID chromatogram (fingerprint) was compared to fingerprints of various petroleum products. If, on the judgement of the analyst, the fingerprint of the sample matched the fingerprint of a petroleum product, the concentration of the product was also reported. If components of a particular product were present, but the complexity of the overall chromatogram was such that it could not be reliably determined if the product was or was not present, then, the result for that product contains the following statement: "Primary components of this product were detected in the sample. Due to the overall complexity of the chromatogram, reliable identification of this product cannot be achieved."

In addition to reporting a TCO value, the results contain boiling point information. This boiling point range represents the range of 80 to 90 percent of the compounds detected in the sample.

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND	MOORE			
Client ID: BH-1 5-6 1\2'				
Laboratory ID: 67123-001	Enseco ID: 67	123-001		
Matrix: Soil	Sampled: 04/14/88	Received: 04	/15/88	
Authorized: 04/15/88		Analyzed: 04	/28/88	
Parameter	Resu	<u>lt</u>	Units (as received)	Reporting <u>Limit</u>
Bromoform	N.I) .	ug/kg	5000
Carbon tetrachloride	N.I) .	ug/kg	50 0
Chlorobenzene	N.I) ,	ug/kg	2000
Chloroethane	N.I).	ug/kg	50 00
Chloroform	N.I) .	ug/kg	500
Dibromochloromethane	N.I) .	ug/kg	1000
Bromodichloromethane	N.I) .	ug/kg	1000
1,1-Dichloroethane	N.I).	ug/kg	500
1,2-Dichloroethane	N.I).	ug/kg	1000
1,1-Dichloroethene	N.I).	ug/kg	500
1,2-Dichloropropane	N.I		ug/kg	1000
cis-1,3-Dichloropropene	N.I).	ug/kg	2000
trans-1,3-Dichloropropene	N.I) .	ug/kg	500
Bromomethane	N.I		ug/kg	5000
Chloromethane	N.I) .	ug/kg	5000
Methylene chloride	N.I) .	ug/kg	5000
1,1,2,2-Tetrachloroethane	N.I) ,	ug/kg	1000
Tetrachloroethene	N.I		ug/kg	500
trans-1,2-Dichloroethene	N.I) .	ug/kg	500
1,1,1-Trichloroethane	N.I) .	ug/kg	500
1,1,2-Trichloroethane	N.I) .	ug/kg	1000
Trichloroethene	N.I).	ug/kg	1000
Vinyl chloride	N.I) .	ug/kg	1000
1,1,2-Trichloro-				1000
1,2,2-trifluoroethane	N.I		ug/kg	1000
1,2-Dibromoethane (EDB)	N.I).	ug/kg	2000

N.D. = Not detected

Reported by: Stanley L. Dunlavy

1

Approved by: Susan Brillante

- 💱 Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND	MOORE			
Client ID: BH-1 5-6 1\2'				
Laboratory ID: 67123-001	Enseco ID: 67	123-001		
Matrix: Soil	Sampled: 04/14/88 Received: 04/15/88			
Authorized: 04/15/88	Analyzed: 04/28/88			
<u>Parameter</u>	Resu	<u>lt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	3900)	ug/kg	5 00
Chlorobenzene	N.I) ,	ug/kg	50 0
1,2-Dichlorobenzene	N.I) .	ug/kg	500
1,3-Dichlorobenzene	N.1) .	ug/kg	50 0
1,4-Díchlorobenzene	N.I) .	ug/kg	500
Ethylbenzene	22000		ug/kg	500
Toluene	84000		ug/kg	500
m-Xylene	130000		ug/kg	500
o & p-Xylene(s)	98000		ug/kg	500

N.D. = Not detected

Reported by: Stanley L. Dunlavy

1

1

Approved by: Susan Brillante

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE Client ID: BH-1 5-6 1\2' Laboratory ID: 67123-001 Enseco ID: 67123-001 Matrix: Soil Sampled: 04/14/88 Received: 04/15/88 Authorized: 04/15/88 Reporting Analytical Parameter Method <u>Result</u> <u>Units</u> <u>Limit</u> <u>Analyzed</u> Oil 0.4 % 0.1 04/21/88 Water 13.2 % 0.1 04/21/88 Solids 86.4 % 0.1 04/21/88

N.D. = Not detected

Approved by: Lindsay Breyer

Sample: 67123-001

🐺 Enseco

REFINERY HAZARDOUS CONSTITUENT VOLATILES

EPA METHOD 8240

Client Name: DAMES AND MOORE Client ID: BH-1 10-11 1\2'

Laboratory ID: 67123-002

Enseco ID: 67123-002

 Matrix: Soil
 Sampled: 04/14/88
 Received: 04/15/88

 Authorized: 04/15/88
 Analyzed: 04/28/88
 Analyzed: 04/28/88

Parameter	Result	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	1700	ug/kg	1000
Carbon disulfide	N.D.	ug/kg	1000
Chlorobenzene	N.D.	ug/kg	1000
Chloroform	N.D.	ug/kg	1000
1,2-Dibromoethane	N.D.	ug/kg	1000
1,2-Dichloroethane	N.D.	ug/kg	1000
1,4-Dioxane	N .D.	ug/kg	20000
Methyl ethyl ketone	N.D.	ug/kg	5000
Styrene	N .D.	ug/kg	1000
Ethylbenzene	N.D.	ug/kg	1000
Toluene	N.D.	ug/kg	1000
m-Xylene	1300	ug/kg	1000
o & p-Xylene(s)	1000	ug/kg	1000
Surrogate			
Toluene-D8	97	%	-
Bromofluorobenzene(BFB)	102	%	-
1,2-Dichloroethane-D4	104	%	-

N.D. = Not detected

Reported by: Stephen Siegal

Approved by: Jeffrey Lowry

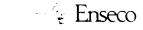
Sample: 67123-002

Enseco

REFINERY HAZARDOUS CONSTITUENT SEMIVOLATILES

Client Name: DAMES AND MOORE

Client ID: BH-1 10-11 1\2'


Laboratory ID: 67123-002

Enseco ID: 67123-002

Laboratory ID: 67123-002	Enseco ID: 67123-002			
Matrix: Soil	Sampled: 04/14/88	Received: 0	4/15/88	
Authorized: 04/15/88	Prepared: 04/19/88	Analyzed: 0	5/06/88	
Parameter	Res	<u>ilt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Anthracene	N.	D.	ug/kg	330
Benzo(a)anthracene	N.	D.	ug/kg	330
Benzo(b)fluoranthene	N.	D.	ug/kg	330
Benzo(k)fluoranthene	N.	D.	ug/kg	330
Benzo(a)pyrene	N.	D.	ug/kg	330
bis(2-Ethylhexyl)phthalate	N.	D.	ug/kg	330
Butylbenzyl phthalate	N.	D	ug/kg	330
Chrysene	N.	D.	ug/kg	330
Dibenz(a,h)anthracene	N.	D.	ug/kg	330
Di-n-butyl phthalate	N.	D.	ug/kg	330
1,2-Dichlorobenzene	N.	D.	ug/kg	330
1,3-Dicholrobenzene	N.	D.	ug/kg	330
1,4-Dichlorobenzene	N.	D.	ug/kg	330
Diethyl phthalate		D.	ug/kg	330
7,12-Dimethylbenzanthracene	N.	D.	ug/kg	330
Dimethyl phthalate	N	D.	ug/kg	330
Di-n-octyl phthalate	N.	D.	ug/kg	330
Fluoranthene	N.	D.	ug/kg	330
Indene	N.	D.	ug/kg	330
1-Methylnaphthalene	N.	D.	ug/kg	330
Naphthalene	N.	D.	ug/kg	330
Phenanthrene	N	D.	ug/kg	330
Pyrene	N	D.	ug/kg	330
Pyridine	N	D.	ug/kg	-
Quinoline	N.	D.	ug/kg	330
Benzenethiol	N	.D.	ug/kg	-
o-Cresol		D.	ug/kg	330
p & m-Cresol		D.	ug/kg	330
2,4-Dimethylphenol	N	D.	ug/kg	330
2,4-Dinitrophenol	N.	D.	ug/kg	1600
4-Nitrophenol	N	.D.	ug/kg	1600

N.D. = Not detected

1

REFINERY HAZARDOUS CONSTITUENT SEMIVOLATILES (CONT.)

Client Name: DAMES AND	Client Name: DAMES AND MOORE							
Client ID: BH-1 10-11 1\2'								
Laboratory ID: 67123-002 Enseco ID: 67123-002								
Matrix: Soil	Sampled: 04/14/88 Received: 04/15/88							
Authorized: 04/15/88	Prepared: 04/19/88	Analyzed: 05	/06/88					
Parameter	Resu	lt	Units (as <u>received)</u>	Reporting <u>Limit</u>				
Phenol	N.I).	ug/kg	330				
<u>Surrogate</u>								
Nitrobenzene-D5	71		%	-				
2-Fluorobiphenyl	76		%	-				
Terphenyl-D14	87		%	-				
Phenol-D5	40)	%	-				
2-Fluorophenol	50)	%	-				
2,4,6-Tribromophenol	60	h in the second s	%	-				

N.D. = Not detected Reported by: Timothy Miller

4

i i a

all the h

et Historia

Approved by: Jeffrey Lowry

i

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-1 10-11 1\2'

Laboratory ID: 67123-002

Enseco ID: 67123-002

Laboratory ID: 6/123-002	Enseco ID: 6	123-002		
Matrix: Soil	Sampled: 04/14/88	Received: 0	04/15/88	
Authorized: 04/15/88	Analyzed: 04/28/88			
<u>Parameter</u>	Rest	<u>llt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N	D.	ug/kg	1000
Carbon tetrachloride	N.:	D.	ug/kg	100
Chlorobenzene	N.	D.	ug/kg	400
Chloroethane	N	D.	ug/kg	1000
Chloroform	N	D.	ug/kg	100
Dibromochloromethane	N	D.	ug/kg	200
Bromodichloromethane	N	D.	ug/kg	200
1,1-Dichloroethane	N	D.	ug/kg	100
1,2-Dichloroethane	N.:	D.	ug/kg	200
1,1-Dichloroethene	N.:	D.	ug/kg	100
1,2-Dichloropropane	N.	D.	ug/kg	200
cis-1,3-Dichloropropene	N.:	D.	ug/kg	400
trans-1,3-Dichloropropene	N.	D.	ug/kg	100
Bromomethane	N.	D.	ug/kg	1000
Chloromethane	N.	D.	ug/kg	1000
Methylene chloride	N.	D.	ug/kg	1000
1,1,2,2-Tetrachloroethane	N.	D.	ug/kg	200
Tetrachloroethene	N.	D.	ug/kg	100
trans-1,2-Dichloroethene	N.	D.	ug/kg	100
1,1,1-Trichloroethane	N.	D.	ug/kg	100
1,1,2-Trichloroethane	N.	D.	ug/kg	200
Trichloroethene	N.	D.	ug/kg	200
Vinyl chloride	N.	D.	ug/kg	200
1,1,2-Trichloro-		_	<i>(</i>)	•••
1,2,2-trifluoroethane	N.		ug/kg	200
1,2-Dibromoethane (EDB)	N.	D.	ug/kg	400

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-1 10-11 1\2'

Laboratory ID: 67123-002

Enseco ID: 67123-002

Matrix: Soil	Sampled: 04/14/88		Received: 04	/15/88	
Authorized: 04/15/88			Analyzed: 04	/28/88	
Parameter	R	<u>Result</u>		Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	1	1800		ug/kg	100
Chlorobenzene		N.D.		ug/kg	100
1,2-Dichlorobenzene		N.D.		ug/kg	100
1,3-Dichlorobenzene		N.D.		ug/kg	100
1,4-Dichlorobenzene		N.D.		ug/kg	100
Ethylbenzene		710		ug/kg	100
Toluene	4	46 00		ug/kg	100
m-Xylene	e e e e e e e e e e e e e e e e e e e	530 0		ug/kg	100
o & p-Xylene(s)		3500		ug/kg	100

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

METALS PARAMETERS TOTAL METALS

Client Name: DAMES AND MOORE

Client ID: BH-1 10-11 1\2'

Laboratory ID: 67123-002

Enseco ID: 67123-002 Sampled: 04/14/88 Re

Received: 04/15/88

Authorized: 04/15/88

Matrix: Soil

Para meter	Result	Units (as <u>received)</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Antimony	N.D.	mg/kg	5	6010	04/25/88
Arsenic	1.8	mg/kg	0.3	7060	04/29/88
Barium	140	mg/kg	0.5	6010	04/25/88
Beryllium	0.3	mg/kg	0.1	6010	04/25/88
Cadmium	N .D.	mg/kg	0.5	6 010	04/25/88
Chromium	3	mg/kg	1	6 010	04/25/88
Cobalt	3	mg/kg	1	6 010	04/25/88
Lead	9	mg/kg	5	6010	04/25/88
Mercury	N.D.	ug/kg	50	7471	04/29/88
Nickel	5	mg/kg	4	6 010	04/25/88
Selenium	N.D.	mg/kg	0.2	7740	04/29/88
Vanadium	11	mg/kg	1	6010	04/25/88

N.D. = Not detected

Approved by: Will Pratt

METALS PARAMETERS

Client Name: DAMES AND MOORE Client ID: BH-1 10-11 1\2' Laboratory ID: 67123-002 Enseco ID: 67123-002 Sampled: 04/14/88 Received: 04/15/88 Matrix: Soil Authorized: 04/15/88 Units (as Reporting Analytical Parameter <u>Result</u> received) <u>Limit</u> <u>Method</u> <u>Analyzed</u> Total Organic Lead 1 05/03/88 N.D. mg/kg Enseco

N.D. = Not detected

Approved by: Will Pratt

04/21/88

04/21/88

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE Client ID: BH-1 10-11 1\2' Laboratory ID: 67123-002 Enseco ID: 67123-002 Matrix: Soil Sampled: 04/14/88 Received: 04/15/88 Authorized: 04/15/88 Reporting Analytical **Parameter** <u>Result</u> <u>Units</u> Limit Method <u>Analyzed</u> Oil 0.2 % 0.1 04/21/88

%

%

0.1

0.1

16.7

83.1

N.D. = Not detected

. . .

Water

Solids

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-1 15 1\2-17'

Authorized: 04/15/88

Laboratory ID: 67123-003

Enseco ID: 67123-003

Matrix: Soil Sampled: 04/14/88

Received: 04/15/88 Analyzed: 04/27/88

Parameter	Result	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/kg	500
Carbon tetrachloride	N.D.	ug/kg	50
Chlorobenzene	N.D.	ug/kg	200
Chloroethane	N.D.	ug/kg	500
Chloroform	N.D.	ug/kg	50
Dibromochloromethane	N.D.	ug/kg	100
Bromodichloromethane	N.D.	ug/kg	100
1,1-Dichloroethane	N.D.	ug/kg	50
1,2-Dichloroethane	N.D.	ug/kg	100
1,1-Dichloroethene	N.D.	ug/kg	50
1,2-Dichloropropane	N.D.	ug/kg	100
cis-1,3-Dichloropropene	N.D.	ug/kg	200
trans-1,3-Dichloropropene	N.D.	ug/kg	50
Bromomethane	N.D.	ug/kg	500
Chloromethane	N.D.	ug/kg	500
Methylene chloride	N.D.	ug/kg	500
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	100
Tetrachloroethene	N.D.	ug/kg	50
trans-1,2-Dichloroethene	N.D.	ug/kg	50
1,1,1-Trichloroethane	N.D.	ug/kg	50
1,1,2-Trichloroethane	N.D.	ug/kg	100
Trichloroethene	N.D.	ug/kg	100
Vinyl chloride	N.D.	ug/kg	100
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/kg	100
1,2-Dibromoethane (EDB)	N.D.	ug/kg	200

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

Reporting

Units (as

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE Client ID: BH-1 15 1\2-17' Laboratory ID: 67123-003 Enseco ID: 67123-003 Matrix: Soil Sampled: 04/14/88 Received: 04/15/88 Authorized: 04/15/88 Analyzed: 04/27/88 Decomotor Decult

Parameter	<u>Result</u>	received)	<u>Limit</u>
Benzene	380	ug/kg	50
Chlorobenzene	N.D.	ug/kg	50
1,2-Dichlorobenzene	N.D.	ug/kg	50
1,3-Dichlorobenzene	N.D.	ug/kg	50
1,4-Dichlorobenzene	N.D.	ug/kg	50
Ethylbenzene	N.D.	ug/kg	50
Toluene	N.D.	ug/kg	50
m-Xylene	79	ug/kg	50
o & p-Xylene(s)	140	ug/kg	50

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-1 15 1\2-17'

Laboratory ID: 67123-003

.....

Enseco ID: 67123-003

Matrix: Soil Authorized: 04/15/88	Sampled: 04/14/88		Received: 04/15/88			
Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed	
Oil	1.1	%	0.1		04/21/88	
Water Solids	15.1 83.8	% %	0.1 0.1		04/21/88 04/21/88	

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND 1	MOORE					
Client ID: BH-4 5-7'						
Laboratory ID: 67123-004	Laboratory ID: 67123-004 Enseco ID: 67123-004					
Matrix: Soil	Sampled: 04/14/88	Received: 0	4/15/88			
Authorized: 04/15/88	Analyzed: 04/28/88					
Parameter	Resu	<u>lt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>		
Bromoform	N.I) .	ug/kg	10000		
Carbon tetrachloride	N.I) .	ug/kg	1000		
Chlorobenzene	N.I) .	ug/kg	4 000		
Chloroethane	N.I) .	ug/kg	10000		
Chloroform	N.I) .	ug/kg	1000		
Dibromochloromethane	N.I) .	ug/kg	2000		
Bromodichloromethane	N.I)	ug/kg	2000		
1,1-Dichloroethane	N.I) .	ug/kg	1000		
1,2-Dichloroethane	N.I) .	ug/kg	20 00		
1,1-Dichloroethene	N.I).	ug/kg	1000		
1,2-Dichloropropane	N.I) .	ug/kg	2000		
cis-1,3-Dichloropropene	N.I) .	ug/kg	4000		
trans-1,3-Dichloropropene	N.I).	ug/kg	1000		
Bromomethane	N.I).	ug/kg	10000		
Chloromethane	N.I) .	ug/kg	10000		
Methylene chloride	N.I) .	ug/kg	10000		
1,1,2,2-Tetrachloroethane	N.I) .	ug/kg	2000		
Tetrachloroethene	N.I) .	ug/kg	1000		
trans-1,2-Dichloroethene	N.I) .	ug/kg	1000		
1,1,1-Trichloroethane	N.I) .	ug/kg	1000		
1,1,2-Trichloroethane	N.I) .	ug/kg	2000		
Trichloroethene	N.I) .	ug/kg	2000		
Vinyl chloride	N.I) .	ug/kg	2000		
1,1,2-Trichloro-						
1,2,2-trifluoroethane	N.I) .	ug/kg	2000		
1,2-Dibromoethane (EDB)	N.I) .	ug/kg	4000		

N.D. = Not detected

Reported by: Stanley L. Dunlavy

11

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-4 5-7'

Laboratory ID: 67123-004

Enseco 1D: 67123-004

Matrix: Soil	Sampled: 04/14/88	Rece	ived: 04/15/88	
Authorized: 04/15/88	Analyzed: 04/28/88			
<u>Parameter</u>	Resu	<u>lt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	24000	I	ug/kg	1000
Chlorobenzene	N.1) .	ug/kg	1000
1,2-Dichlorobenzene	N.1) .	ug/kg	1000
1,3-Dichlorobenzene	N.1) .	ug/kg	1000
1,4-Dichlorobenzene	N.1) .	ug/kg	1000
Ethylbenzene	29 000	I	ug/kg	1000
Toluene	160000		ug/kg	1000
m-Xylene	170000		ug/kg	1000
o & p-Xylene(s)	120000	I	ug/kg	1000

N.D. = Not detected Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

Enseco

ANALYTICAL RESULTS FOR TOTAL CHROMATOGRAPHABLE ORGANICS

Client Name: DAMES AND MOORE Client ID: BH-4 5-7' Laboratory ID: 67123-004 Matrix: Soil Sampled: Authorized: 04/15/88	Enseco ID: 04/14/88	67123-004 Received: Analyzed:	
	Value	Units	Detection Limit
Total Chromatographable Organics Initial Boiling Point* Final Boiling Point* Gasoline Stoddard Solvent Jet Fuel Kerosene Diesel Motor Oil	2800000 100° 340° ND ND ND ND ND ND	ug/kg oc ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	1,700 - 17000 17000 17000 17000 17000 330000

* The initial and final boiling points define the range of compounds detected. The method is capable of detecting compounds between 100°C and 500°C.

05/03/88

METALS PARAMETERS

Client Name: DAMES AND MOORE Client ID: BH-4 5-7' Laboratory ID: 67123-004 Enseco ID: 67123-004 Sampled: 04/14/88 Received: 04/15/88 Matrix: Soil Authorized: 04/15/88Reporting Analytical Units (as Parameter <u>Result</u> <u>received)</u> <u>Limit</u> Method <u>Analyzed</u>

mg/kg

1

Enseco

4

N.D. = Not detected

Total Organic Lead

Approved by: Will Pratt

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

.

Client ID: BH-4 5-7'

Laboratory ID: 67123-004

Enseco ID: 67123-004

Matrix: Soil Authorized: 04/15/88	Sampleo	1: 04/14/88	Received: 04/15/88		
Parameter	<u>Result</u>	<u>Units</u>	Reporting Limit	Analytical <u>Method</u>	<u>Analyzed</u>
Oil Water Solids	1.3 23.7 75.0	% % %	0.1 0.1 0.1		04/21/88 04/21/88 04/21/88

N.D. = Not detected

1 0

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-4 10-12'

Authorized: 04/15/88

Laboratory ID: 67123-005

Enseco ID: 67123-005

Received: 04/15/88 Analyzed: 04/27/88

Parameter	<u>Result</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/kg	500
Carbon tetrachloride	N.D.	ug/kg	50
Chlorobenzene	N.D.	ug/kg	200
Chloroethane	N.D.	ug/kg	50 0
Chloroform	N.D.	ug/kg	50
Dibromochloromethane	N.D.	ug/kg	100
Bromodichloromethane	N.D.	ug/kg	100
1,1-Dichloroethane	N.D.	ug/kg	50
1,2-Dichloroethane	N.D.	ug/kg	100
1,1-Dichloroethene	N.D.	ug/kg	50
1,2-Dichloropropane	N.D.	ug/kg	100
cis-1,3-Dichloropropene	N.D.	ug/kg	200
trans-1,3-Dichloropropene	N.D.	ug/kg	50
Bromomethane	N.D.	ug/kg	500
Chloromethane	N.D.	ug/kg	500
Methylene chloride	N.D.	ug/kg	500
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	100
Tetrachloroethene	N.D.	ug/kg	50
trans-1,2-Dichloroethene	N.D.	ug/kg	50
1,1,1-Trichloroethane	N.D.	ug/kg	50
1,1,2-Trichloroethane	N.D.	ug/kg	100
Trichloroethene	N.D.	ug/kg	100
Vinyl chloride	N.D.	ug/kg	100
1,1,2-Trichloro-		0)-0	
1,2,2-trifluoroethane	N.D.	ug/kg	100
1,2-Dibromoethane (EDB)	N.D.	ug/kg	200

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-4 10-12'

Laboratory ID: 67123-005

Enseco ID: 67123-005

Matrix: Soil	Sampled: 04/14/88	Rece	ived: 04/15/88			
Authorized: 04/15/88		Analyzed: 04/28/88				
<u>Parameter</u>	Resi	<u>llt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>		
Benzene	N.	D.	ug/kg	50		
Chlorobenzene	N.	D.	ug/kg	50		
1,2-Dichlorobenzene	N.	D.	ug/kg	50		
1,3-Dichlorobenzene	N.	D.	ug/kg	50		
1,4-Dichlorobenzene	N.	D.	ug/kg	50		
Ethylbenzene	N.	D.	ug/kg	50		
Toluene	5	7	ug/kg	50		
m-Xylene	23	С	ug/kg	50		
o & p-Xylene(s)	N.	D.	ug/kg	50		

N.D. = Not detected Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE Client ID: BH-4 10-12' Laboratory ID: 67123-005 Enseco ID: 67123-005 Matrix: Soil Sampled: 04/14/88 Received: 04/15/88 Authorized: 04/15/88 Reporting Analytical **Parameter** <u>Result</u> <u>Units</u> <u>Limit</u> <u>Method</u> <u>Analyzed</u> Oil 5.2 % 0.1 04/21/88 Water 15.4 % 0.1 04/21/88 **So**lids 79.4 % 0.1 04/21/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND	MOORE					
Client ID: BH-4 15-17'						
Laboratory ID: 67123-006	Laboratory ID: 67123-006 Enseco ID: 67123-006					
Matrix: Soil	Sampled: 04/14/88	Received: 0	4/15/88			
Authorized: 04/15/88	Analyzed: 04/27/88					
<u>Parameter</u>	Resu	<u>lt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>		
Bromoform	N.I	D.	ug/kg	500		
Carbon tetrachloride	N.I) .	ug/kg	50		
Chlorobenzene	N.I).	ug/kg	200		
Chloroethane	N.I) .	ug/kg	50 0		
Chloroform	N.I) .	ug/kg	50		
Dibromochloromethane	N.I).	ug/kg	100		
Bromodichloromethane	N.I) .	ug/kg	100		
1,1-Dichloroethane	N.I) . '	ug/kg	50		
1,2-Dichloroethane	N.I).	ug/kg	100		
1,1-Dichloroethene	N.I).	ug/kg	50		
1,2-Dichloropropane	N.I) .	ug/kg	100		
cis-1,3-Dichloropropene	N.I) .	ug/kg	2 00		
trans-1,3-Dichloropropene	N.I).	ug/kg	50		
Bromomethane	N.I) .	ug/kg	500		
Chloromethane	N.I) .	ug/kg	500		
Methylene chloride	N.I) .	ug/kg	500		
1,1,2,2-Tetrachloroethane	N.I) .	ug/kg	100		
Tetrachloroethene	N.I) .	ug/kg	50		
trans-1,2-Dichloroethene	N .I) .	ug/kg	50		
1,1,1-Trichloroethane	N.I) .	ug/kg	50		
1,1,2-Trichloroethane	N.I).	ug/kg	100		
Trichloroethene	N .I) .	ug/kg	100		
Vinyl chloride	N.I) .	ug/kg	100		
1,1,2-Trichloro-						
1,2,2-trifluoroethane	N.I) .	ug/kg	100		
1,2-Dibromoethane (EDB)	N.I) .	ug/kg	200		

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

EPA METHOD 8020

Client Name: DAMES AND MOORE						
Client ID: BH-4 15-17'						
Laboratory ID: 67123-006	Enseco ID: 67	123-006				
Matrix: Soil	Sampled: 04/14/88	Received: 04/	15/88			
Authorized: 04/15/88		Analyzed: 04/	27/88			
<u>Parameter</u>	<u>Resu</u>		Units (as received)	Reporting <u>Limit</u>		
Benzene	N.E	. 1	ug/kg	50		
Chlorobenzene	N.E	i. 1	ug/kg	50		
1,2-Dichlorobenzene	N.E	i, 1	ug/kg	50		
1,3-Dichlorobenzene	N.D	i. 1	ug/kg	50		
1,4-Dichlorobenzene	N.E	. I	ug/kg	50		
Ethylbenzene	N.D	1. 1	ug/kg	50		
Toluene	N.D	۰. <mark>ا</mark>	ug/kg	50		
m-Xylene	N.L	ı. 1	ug/kg	50		
o & p-Xylene(s)	N.E	i. 1	ug/kg	50		

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-4 15-17'

Laboratory ID: 67123-006

Enseco ID: 67123-006

Sampled: 04/14/88 Received: 04/15/88 Matrix: Soil Authorized: 04/15/88Analytical Reporting **Parameter** <u>Result</u> <u>Units</u> <u>Limit</u> <u>Method</u> **Analyzed** Oil 1.0 % 0.1 04/21/88 Water 22.1 % 0.1 04/21/88 Solids 76.9 % 0.1 04/21/88

N.D. = Not detected

Approved by: Lindsay Breyer

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-5 5-7'

Laboratory ID: 67123-007

Enseco ID: 67123-007

Received: 04/15/88

Matrix: Soil Sampled: 04/14/88

Authorized: 04/15/88	Ana	lyzed: 04/28/88	
<u>Parameter</u>	Result	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/kg	5 000
Carbon tetrachloride	N.D.	ug/kg	500
Chlorobenzene	N.D.	ug/kg	2000
Chloroethane	N.D.	ug/kg	5000
Chloroform	N.D.	ug/kg	500
Dibromochloromethane	N.D.	ug/kg	1000
Bromodichloromethane	N.D.	ug/kg	1000
1,1-Dichloroethane	N.D.	ug/kg	500
1,2-Dichloroethane	N.D.	ug/kg	1000
1,1-Dichloroethene	N.D.	ug/kg	500
1,2-Dichloropropane	N.D.	ug/kg	1000
cis-1,3-Dichloropropene	N.D.	ug/kg	2000
trans-1,3-Dichloropropene	N.D.	ug/kg	500
Bromomethane	N.D.	ug/kg	5000
Chloromethane	N.D.	ug/kg	50 00
Methylene chloride	N.D.	ug/kg	5000
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	1000
Tetrachloroethene	N.D.	ug/kg	500
trans-1,2-Dichloroethene	N.D.	ug/kg	500
1,1,1-Trichloroethane	N.D.	ug/kg	500
1,1,2-Trichloroethane	N.D.	ug/kg	1000
Trichloroethene	N.D.	ug/kg	1000
Vinyl chloride 1,1,2-Trichloro-	N.D.	ug/kg	1000
1,2,2-trifluoroethane	N.D.	ug/kg	1000
1,2-Dibromoethane (EDB)	N.D.	ug/kg	2000

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

; Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-5 5-7'

Laboratory ID: 67123-007

Enseco ID: 67123-007

Matrix: Soil	Sampled: 04/14/88	Received: 04/15/88		
Authorized: 04/15/88		Analyzed: 04/28/88		
Parameter	Resu	Units (a lt received		
Benzene	2000	ug/kg	500	
Chlorobenzene	N.I	ug/kg	500	
1,2-Dichlorobenzene	N.I	d. ug/kg	500	
1,3-Dichlorobenzene	N.I	ug/kg	500	
1,4-Dichlorobenzene	N.I	o. ug/kg	500	
Ethylbenzene	6000	ug/kg	500	
Toluene	25000	ug/kg	5 00	
m-Xylene	37000	ug/kg	500	
o & p-Xylene(s)	25000	ug/kg	500	

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

- 🗧 Enseco

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-5 5-7'

.

Laboratory ID: 67123-007

Enseco ID: 67123-007

Matrix: Soil	Sampled: 04/14/88		Received:		
Authorized: 04/15/88					
Parameter	<u>Result</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Total Organic Lead	2	mg/kg	1	Enseco	05/03/88

N.D. = Not detected

Approved by: Will Pratt

<u>Analyzed</u>

04/22/88

04/22/88 04/22/88

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE Client ID: BH-5 5-7'

Laboratory ID: 67123-007

Oil

Water

Solids

Enseco ID: 67123-007

0.1

Sampled: 04/14/88 Matrix: Soil Received: 04/15/88 Authorized: 04/15/88 Reporting Analytical **Parameter** <u>Result</u> <u>Units</u> <u>Limit</u> <u>Method</u> % 0.8 0.1 21.1 % 0.1

%

78.1

N.D. = Not detected

Approved by: Lindsay Breyer

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-5 10-12'

Authorized: 04/15/88

Laboratory ID: 67123-008

Enseco ID: 67123-008

Matrix: Soil Sampled: 04/14/88

Received: 04/15/88 Analyzed: 04/27/88

Parameter	Result	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/kg	500
Carbon tetrachloride	N.D.	ug/kg	50
Chlorobenzene	N.D.	ug/kg	200
Chloroethane	N.D.	ug/kg	500
Chloroform	N.D.	ug/kg	50
Dibromochloromethane	N.D.	ug/kg	100
Bromodichloromethane	N.D.	ug/kg	100
1,1-Dichloroethane	N.D.	ug/kg	50
1,2-Dichloroethane	N.D.	ug/kg	100
1,1-Dichloroethene	N.D.	ug/kg	50
1,2-Dichloropropane	N.D.	ug/kg	100
cis-1,3-Dichloropropene	N.D.	ug/kg	200
trans-1,3-Dichloropropene	N.D.	ug/kg	50
Bromomethane	N.D.	ug/kg	5 00
Chloromethane	N.D.	ug/kg	500
Methylene chloride	N.D.	ug/kg	50 0
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	10 0
Tetrachloroethene	N.D.	ug/kg	50
trans-1,2-Dichloroethene	N.D.	ug/kg	50
1,1,1-Trichloroethane	N.D.	ug/kg	50
1,1,2-Trichloroethane	N.D.	ug/kg	100
Trichloroethene	N.D.	ug/kg	100
Vinyl chloride	N.D.	ug/kg	100
1,1,2-Trichloro-		0. 0	
1,2,2-trifluoroethane	N .D.	ug/kg	100
1,2-Dibromoethane (EDB)	N.D.	ug/kg	200

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-5 10-12'

Laboratory ID: 67123-008

Enseco ID: 67123-008

Matrix: Soil Authorized: 04/15/88	Sampled: 04/14/88		Received: 04/15/88 Analyzed: 04/27/88	
Parameter	Re	<u>sult</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	1	N.D.	ug/kg	50
Chlorobenzene	1	N.D.	ug/kg	50
1,2-Dichlorobenzene	1	N.D.	ug/kg	50
1,3-Dichlorobenzene	1	N.D.	ug/kg	50
1,4-Dichlorobenzene	1	N.D.	ug/kg	50
Ethylbenzene	1	N.D.	ug/kg	50
Toluene	1	N.D.	ug/kg	50
m-Xylene	1	N.D.	ug/kg	50
o & p-Xylene(s)	I	N.D.	ug/kg	50

N.D. = Not detected

Reported by: Stanley L. Dunlavy

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-5 10-12'

Laboratory ID: 67123-008

Enseco ID: 67123-008

Matrix: Soil Authorized: 04/15/88	Sample	d: 04/14/88	Received: 04/15/88		
Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Oil	0.4	%	0.1		04/22/88
Water	18.3	%	0.1		04/22/88
Solids	81.3	%	0.1		04/22/88

N.D. = Not detected

Approved by: Lindsay Breyer

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-5 15-17'

Authorized: 04/15/88

Laboratory ID: 67123-009

Enseco ID: 67123-009

Matrix: Soil Sampled: 04/14/88

Received: 04/15/88 Analyzed: 04/27/88

<u>Parameter</u>	<u>Result</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/kg	500
Carbon tetrachloride	N.D.	ug/kg	50
Chlorobenzene	N.D.	ug/kg	200
Chloroethane	N.D.	ug/kg	500
Chloroform	N .D.	ug/kg	50
Dibromochloromethane	N.D.	ug/kg	100
Bromodichloromethane	N.D.	ug/kg	100
1,1-Dichloroethane	N.D.	ug/kg	50
1,2-Dichloroethane	N.D.	ug/kg	100
1,1-Dichloroethene	N.D.	ug/kg	50
1,2-Dichloropropane	N.D.	ug/kg	100
cis-1,3-Dichloropropene	N.D.	ug/kg	200
trans-1,3-Dichloropropene	N.D.	ug/kg	50
Bromomethane	N.D.	ug/kg	500
Chloromethane	N.D.	ug/kg	500
Methylene chloride	N.D.	ug/kg	500
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	100
Tetrachloroethene	N.D.	ug/kg	50
trans-1,2-Dichloroethene	N.D.	ug/kg	50
1,1,1-Trichloroethane	N.D.	ug/kg	50
1,1,2-Trichloroethane	N.D.	ug/kg	100
Trichloroethene	N.D.	ug/kg	100
Vinyl chloride	N.D.	ug/kg	100
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/kg	100
1,2-Dibromoethane (EDB)	N.D.	ug/kg	200

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-5 15-17'

Laboratory ID: 67123-009

Enseco ID: 67123-009

Matrix: Soil Authorized: 04/15/88	Sampled: 04/14/88		Received: 04/15/88 Analyzed: 04/27/88	
Parameter	Re	esult	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	1	N.D.	ug/kg	50
Chlorobenzene	1	N.D.	ug/kg	50
1,2-Dichlorobenzene	1	N.D.	ug/kg	50
1,3-Dichlorobenzene	1	N.D.	ug/kg	50
1,4-Dichlorobenzene	1	N.D.	ug/kg	50
Ethylbenzene	1	N.D.	ug/kg	50
Toluene	1	N.D.	ug/kg	50
m-Xylene	1	N.D.	ug/kg	50
o & p-Xylene(s)	I	N.D.	ug/kg	50

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-5 15-17'

Laboratory ID: 67123-009

Enseco ID: 67123-009

Matrix: Soil Authorized: 04/15/88	Sampleo	1: 04/14/88	Received: 04/15/88		
Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Oil	1.3	%	0.1		04/22/88
Water Solids	21.0 77.7	% %	0.1 0.1		04/22/88 04/22/88

N.D. = Not detected

Approved by: Lindsay Breyer

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-6 5-7'

Laboratory ID: 67123-010

Enseco ID: 67123-010

Laboratory ID: 67123-010	Enseco ID: 67123-010				
Matrix: Soil	Sampled: 04/16/88	Received: 04/18/88			
Authorized: 04/15/88		Analyzed: 04/28/88			
Parameter	Resul	Units (as <u>received)</u>	Reporting <u>Limit</u>		
Bromoform	N.D.	ug/kg	10000		
Carbon tetrachloride	N.D.	ug/kg	1000		
Chlorobenzene	N.D.	ug/kg	4000		
Chloroethane	N.D.	ug/kg	10000		
Chloroform	N.D.	ug/kg	1000		
Dibromochloromethane	N.D.	ug/kg	2000		
Bromodichloromethane	N.D.	ug/kg	2000		
1,1-Dichloroethane	N.D.	ug/kg	1000		
1,2-Dichloroethane	N.D.	ug/kg	2000		
1,1-Dichloroethene	N.D.	ug/kg	1000		
1,2-Dichloropropane	N.D.	ug/kg	2000		
cis-1,3-Dichloropropene	N.D.	ug/kg	4000		
trans-1,3-Dichloropropene	N.D.	ug/kg	1000		
Bromomethane	N.D.	ug/kg	10000		
Chloromethane	N.D.	ug/kg	10000		
Methylene chloride	N.D.	ug/kg	10000		
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	2000		

N.D. = Not detected

Tetrachloroethene

Trichloroethene

1,1,2-Trichloro-

Vinyl chloride

trans-1,2-Dichloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,2-trifluoroethane

1,2-Dibromoethane (EDB)

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

Sample: 67123-010

1000

1000

1000

2000

2000

2000

2000

4000

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-6 5-7'

Laboratory ID: 67123-010

Enseco ID: 67123-010

Matrix: Soil	Sampled: 04/16/88	Received: 04/18/88	
Authorized: 04/15/88		Analyzed: 04/28/88	
Parameter	<u>Resul</u>	Units (as t received)	Reporting <u>Limit</u>
Benzene	19000	ug/kg	1000
Chlorobenzene	N.D	. ug/kg	1000
1,2-Dichlorobenzene	N.D	. ug/kg	1000
1,3-Dichlorobenzene	N.D	. ug/kg	1000
1,4-Dichlorobenzene	N.D	. ug/kg	1000
Ethylbenzene	37000	ug/kg	1000
Toluene	140000	ug/kg	1000
m-Xylene	170000	ug/kg	1000
o & p-Xylene(s)	150000	ug/kg	1000

N.D. = Not detected

Reported by: Stanley L. Dunlavy

1

Approved by: Susan Brillante

Client Name: DAMES AND MOORE

Client ID: BH-6 5-7'

Laboratory ID: 67123-010

Enseco ID: 67123-010

Matrix: Soil Sampled: 04/16/88 Received: 04/18/88 Authorized: 04/15/88 Reporting Analytical **Parameter** <u>Result</u> <u>Units</u> <u>Limit</u> <u>Method</u> <u>Analyzed</u> Oil 0.4 % 0.1 04/22/88 Water 20.7 % 0.1 04/22/88 04/22/88 **So**lids 78.9 % 0.1

N.D. = Not detected

Approved by: Lindsay Breyer

Sample: 67123-010

Enseco

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-6 10-12'

Laboratory ID: 67123-011	Enseco ID: 67	123-011	
Matrix: Soil	Sampled: 04/16/88	Received: 04/18/88	
Authorized: 04/15/88	۱ 	Analyzed: 04/27/88	
<u>Parameter</u>	Resu	Units (as <u>lt</u> <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.I	D. ug/kg	500
Carbon tetrachloride	N.I	D. ug/kg	50
Chlorobenzene	N.I	D. ug/kg	200
Chloroethane	N.I	D. ug/kg	500
Chloroform	N.I	D. ug/kg	50
Dibromochloromethane	N.I	D. ug/kg	100
Bromodichloromethane	N.I	D. ug/kg	100
1,1-Dichloroethane	N.I	D. ug/kg	50
1,2-Dichloroethane	N.I	ug/kg	100
1,1-Dichloroethene	N.I	D. ug/kg	50
1,2-Dichloropropane	N.I	D. ug/kg	100
cis-1,3-Dichloropropene	N.I	D. ug/kg	200
trans-1,3-Dichloropropene	N.I	D. ug/kg	50
Bromomethane	N.I	D. ug/kg	500
Chloromethane	N.I	D. ug/kg	500
Methylene chloride	N.I	D. ug/kg	500
1,1,2,2-Tetrachloroethane	N.I	D. ug/kg	100
Tetrachloroethene	N.I	ug/kg	50
trans-1,2-Dichloroethene	N.I	$\mathbf{u}\mathbf{g}/\mathbf{k}\mathbf{g}$	50

N.D. = Not detected

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,2-trifluoroethane

1,2-Dibromoethane (EDB)

Trichloroethene

1,1,2-Trichloro-

Vinyl chloride

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

Sample: 67123-011

50

100

100

100

100

200

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-6 10-12'

Laboratory ID: 67123-011

Enseco ID: 67123-011

Matrix: Soil	Sampled: 04/16/88	Re	ceived: 04/18/88	
Authorized: 04/15/88		An	alyzed: 04/27/88	
<u>Parameter</u>	Rest	<u>ilt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	N	D.	ug/kg	50
Chlorobenzene	N.	D.	ug/kg	50
1,2-Dichlorobenzene	N	D.	ug/kg	50
1,3-Dichlorobenzene	N.	D.	ug/kg	50
1,4-Dichlorobenzene	N.	D.	ug/kg	50
Ethylbenzene	5	3	ug/kg	50
Toluene	19	0	ug/kg	50
m-Xylene	39	0	ug/kg	50
o & p-Xylene(s)	34	D	ug/kg	50

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

04/22/88

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-6 10-12'

Solids

Laboratory ID: 67123-011

Enseco ID: 67123-011

0.1

Sampled: 04/16/88 Matrix: Soil Received: 04/18/88 Authorized: 04/15/88 Analytical Reporting **Parameter** <u>Result</u> <u>Units</u> <u>Limit</u> <u>Method</u> <u>Analyzed</u> Oil 5.6 % 0.1 04/22/88 Water 22.7 % 0.1 04/22/88

%

71.7

N.D. = Not detected

Approved by: Lindsay Breyer

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-6 15-17'

Laboratory ID: 67123-012

Enseco ID: 67123-012

Datorialory 12: 0/120 012			
Matrix: Soil	Sampled: 04/16/88	Received: 04/18/88	
Authorized: 04/15/88		Analyzed: 04/27/88	
<u>Parameter</u>	Result	Units (a <u>received</u>	
Bromoform	N.D.	ug/kg	500
Carbon tetrachloride	N .D.	ug/kg	50
Chlorobenzene	N .D.	ug/kg	200
Chloroethane	N.D.	ug/kg	500
Chloroform	N.D.	ug/kg	50
Dibromochloromethane	N.D.	ug/kg	100
Bromodichloromethane	N.D.	ug/kg	100
1,1-Dichloroethane	N.D.	ug/kg	50
1,2-Dichloroethane	N.D.	ug/kg	100
1,1-Dichloroethene	N.D.	ug/kg	50
1,2-Dichloropropane	N.D.	ug/kg	100
cis-1,3-Dichloropropene	N.D.	ug/kg	200
trans-1,3-Dichloropropene	N.D.	ug/kg	50
Bromomethane	N.D.	ug/kg	500
Chloromethane	N.D.	ug/kg	500
Methylene chloride	N .D.	ug/kg	500
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	100
Tetrachloroethene	N.D.	ug/kg	50
trans-1,2-Dichloroethene	N.D.	ug/kg	50
1,1,1-Trichloroethane	N.D.	ug/kg	50
1,1,2-Trichloroethane	N.D.	ug/kg	100
Trichloroethene	N.D.	ug/kg	100
Vinyl chloride	N.D.	ug/kg	100
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/kg	100
1,2-Dibromoethane (EDB)	N.D.	ug/kg	200

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-6 15-17'

Laboratory ID: 67123-012

Enseco ID: 67123-012

Matrix: Soil	Sampled: 04/16/88	Received	l: 04/18/88	
Authorized: 04/15/88		Analyzed	1: 04/27/88	
Parameter	Resu	<u>lt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	N.I) .	ug/kg	50
Chlorobenzene	N.I	D.	ug/kg	50
1,2-Dichlorobenzene	N.I	D.	ug/kg	50
1,3-Dichlorobenzene	N.I) .	ug/kg	50
1,4-Dichlorobenzene	N.I) .	ug/kg	50
Ethylbenzene	N.I) .	ug/kg	50
Toluene	N.I) .	ug/kg	50
m-Xylene	N.I) .	ug/kg	50
o & p-Xylene(s)	N.I).	ug/kg	50

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-6 15-17'

Laboratory ID: 67123-012

Enseco ID: 67123-012

Matrix: Soil Authorized: 04/15/88	Sample	d: 04/16/88	Received: 04/18/88			
Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed	
Oil	0.8	0/0	0.1		04/22/88	
Water	18.5	%	0.1		04/22/88	
Solids	80.7	%	0.1		04/22/88	

N.D. = Not detected

i i

Approved by: Lindsay Breyer

_

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND M	IOORE			
Client ID: BH-12 10-12'				
Laboratory ID: 67123-013	Enseco ID: 67	123-013		
Matrix: Soil	Sampled: 04/15/88	Received: 0	4/18/88	
Authorized: 04/15/88		Analyzed: 0	4/27/88	
Parameter	Resu	<u>it</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.E).	ug/kg	500
Carbon tetrachloride	N.E).	ug/kg	50
Chlorobenzene	N.E).	ug/kg	200
Chloroethane	N.D).	ug/kg	500
Chloroform	N.C) .	ug/kg	50
Dibromochloromethane	N.E).	ug/kg	100
Bromodichloromethane	N.E),	ug/kg	100
1,1-Dichloroethane	N.E).	ug/kg	50
1,2-Dichloroethane	N.E),	ug/kg	100
1,1-Dichloroethene	N.E).	ug/kg	50
1,2-Dichloropropane	N.E).	ug/kg	100
cis-1,3-Dichloropropene	N.E).	ug/kg	200
trans-1,3-Dichloropropene	N.E).	ug/kg	50
Bromomethane	N.E).	ug/kg	500
Chloromethane	N.E).	ug/kg	500
Methylene chloride	N.E).	ug/kg	500
1,1,2,2-Tetrachloroethane	N.E).	ug/kg	100
Tetrachloroethene	N.E).	ug/kg	50
trans-1,2-Dichloroethene	N.E).	ug/kg	50
1,1,1-Trichloroethane	N.E).	ug/kg	50
1,1,2-Trichloroethane	N.E).	ug/kg	100
Trichloroethene	N.D).	ug/kg	100
Vinyl chloride	N.D).	ug/kg	100
1,1,2-Trichloro-				
1,2,2-trifluoroethane	N.E).	ug/kg	100
1,2-Dibromoethane (EDB)	N.E).	ug/kg	200

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-12 10-12'

Laboratory ID: 67123-013

Enseco ID: 67123-013

Matrix: Soil	Sampled: 04/15/88	Rec	eived: 04/18/88	
Authorized: 04/15/88		Апа	lyzed: 04/27/88	
Parameter	Res	<u>ult</u>	Units (as received)	Reporting <u>Limit</u>
Benzene	N	.D.	ug/kg	50
Chlorobenzene	N	.D.	ug/kg	50
1,2-Dichlorobenzene	N	.D.	ug/kg	50
1,3-Dichlorobenzene	N	.D.	ug/kg	50
1,4-Dichlorobenzene	N	.D.	ug/kg	50
Ethylbenzene	N	.D.	ug/kg	50
Toluene	N	.D.	ug/kg	50
m-Xylene	N	.D.	ug/kg	50
o & p-Xylene(s)	N	.D.	ug/kg	50

N.D. = Not detected

Reported by: Stanley L. Dunlavy

1.

Approved by: Susan Brillante

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-12 10-12'

Laboratory ID: 67123-013

Enseco ID: 67123-013

Matrix: Soil Sampled: 04/15/88 Received: 04/18/88 Authorized: 04/15/88 Reporting Analytical **Parameter** <u>Result</u> <u>Units</u> <u>Limit</u> <u>Method</u> <u>Analyzed</u> Oil 0.3 % 0.1 04/22/88 Water 20.3 % 0.1 04/22/88 Solids 0.1 04/22/88 79.4 %

N.D. = Not detected

Approved by: Lindsay Breyer

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-8 10-12'

Laboratory ID: 67123-014

Enseco ID: 67123-014

Received: 04/18/88

Analyzed: 04/28/88

Matrix: Soil Sampled: 04/15/88

Authorized: 04/15/88

Parameter	<u>Result</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/kg	500
Carbon tetrachloride	N.D.	ug/kg	50
Chlorobenzene	N.D.	ug/kg	200
Chloroethane	N.D.	ug/kg	500
Chloroform	N.D.	ug/kg	50
Dibromochloromethane	N.D.	ug/kg	100
Bromodichloromethane	N.D.	ug/kg	100
1,1-Dichloroethane	N.D.	ug/kg	50
1,2-Dichloroethane	N.D.	ug/kg	100
1,1-Dichloroethene	N.D.	ug/kg	50
1,2-Dichloropropane	N.D.	ug/kg	100
cis-1,3-Dichloropropene	N .D.	ug/kg	200
trans-1,3-Dichloropropene	N.D.	ug/kg	50
Bromomethane	N.D.	ug/kg	500
Chloromethane	N.D.	ug/kg	500
Methylene chloride	N.D.	ug/kg	500
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	100
Tetrachloroethene	N.D.	ug/kg	50
trans-1,2-Dichloroethene	N.D.	ug/kg	50
1,1,1-Trichloroethane	N.D.	ug/kg	50
1,1,2-Trichloroethane	N.D.	ug/kg	100
Trichloroethene	N.D.	ug/kg	100
Vinyl chloride	N.D.	ug/kg	100
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/kg	100
1,2-Dibromoethane (EDB)	N .D.	ug/kg	200

N.D. = Not detected

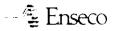
Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-8 10-12'


Laboratory ID: 67123-014

Enseco ID: 67123-014

Matrix: Soil	Sampled: 04/15/88		Received: 04	/18/88	
Authorized: 04/15/88		Analyzed: 04/28/88			
<u>Parameter</u>]	<u>Result</u>		Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene		71		ug/kg	50
Chlorobenzene		N.D.		ug/kg	50
1,2-Dichlorobenzene		N.D.		ug/kg	50
1,3-Dichlorobenzene		N.D.		ug/kg	50
1,4-Dichlorobenzene		N.D.		ug/kg	50
Ethylbenzene		57		ug/kg	50
Toluene		400		ug/kg	50
m-Xylene		360		ug/kg	50
o & p-Xylene(s)		39 0		ug/kg	50

N.D. = Not detected Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

i.

ANALYTICAL RESULTS FOR TOTAL CHROMATOGRAPHABLE ORGANICS

Client Name: DAMES AND MOORE Client ID: BH-8 10-12' Laboratory ID: 67123-014 Matrix: Soil Sampled: Authorized: 04/15/88	Enseco ID: 04/15/88	67123-014 Received: Analyzed:	
	Value	Units	Detection Limit
Total Chromatographable Organics Initial Boiling Point* Final Boiling Point* Gasoline Stoddard Solvent Jet Fuel Kerosene Diesel Motor Oil	2100 100° 170° ND ND ND ND ND ND	ug/kg oc ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	1,700 - 17000 17000 17000 17000 17000 330000

* The initial and final boiling points define the range of compounds detected. The method is capable of detecting compounds between 100°C and 500°C.

🛓 Enseco

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-8 10-12'

Laboratory ID: 67123-014

Enseco ID: 67123-014

Matrix: Soil Authorized: 04/15/88	Sampleo	1: 04/15/88	Received: 04/18/88			
Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed	
Oil	1.3	%	0.1		04/22/88	
Water	16.8	%	0.1		04/22/88	
Solids	81.9	%	0.1		04/22/88	

N.D. = Not detected

Approved by: Lindsay Breyer

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-11 10-12'

Laboratory ID: 67123-015

Enseco ID: 67123-015

Euroratory 10. 07125 015	Disecto ID: 07			
Matrix: Soil	Sampled: 04/16/88	Receiv	ved: 04/18/88	
Authorized: 04/15/88	Analyzed: 04/29/88			
Parameter	Resu	<u>t</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.E).	ug/kg	500
Carbon tetrachloride	N.D).	ug/kg	50
Chlorobenzene	N.C).	ug/kg	200
Chloroethane	N.C).	ug/kg	500
Chloroform	N.E).	ug/kg	50
Dibromochloromethane	N.C).	ug/kg	100
Bromodichloromethane	N.C).	ug/kg	100
1,1-Dichloroethane	N.C).	ug/kg	50
1,2-Dichloroethane	N.E).	ug/kg	100
1,1-Dichloroethene	N.E).	ug/kg	50
1,2-Dichloropropane	N.C).	ug/kg	100
cis-1,3-Dichloropropene	N.E).	ug/kg	200
trans-1,3-Dichloropropene	N.I) .	ug/kg	50
Bromomethane	N.I) .	ug/kg	500
Chloromethane	N.E) .	ug/kg	500
Methylene chloride	N.I) .	ug/kg	500
1,1,2,2-Tetrachloroethane	N.E).	ug/kg	100
Tetrachloroethene	N.E).	ug/kg	50
trans-1,2-Dichloroethene	N.E).	ug/kg	50
1,1,1-Trichloroethane	N.E) .	ug/kg	50
1,1,2-Trichloroethane	N.I).	ug/kg	100
Trichloroethene	N.E).	ug/kg	100
Vinyl chloride 1,1,2-Trichloro-	N.I) .	ug/kg	100
1,2,2-trifluoroethane	N.I).	ug/kg	100
1,2-Dibromoethane (EDB)	N.I		ug/kg	200

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Susan Brillante

EPA METHOD 8020

Client Name: DAMES AND	MOORE			
Client ID: BH-11 10-12'				
Laboratory ID: 67123-015	Enseco ID: 6'	7123-015		
Matrix: Soil	Sampled: 04/16/88	Received: 04	4/18/88	
Authorized: 04/15/88	Analyzed: 04/29/88			
Parameter	Res	<u>llt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	N.	D.	ug/kg	50
Chlorobenzene	N.	D.	ug/kg	50
1,2-Dichlorobenzene	N.	D.	ug/kg	50
1,3-Dichlorobenzene	N.	D.	ug/kg	50
1,4-Dichlorobenzene	N.	D.	ug/kg	50
Ethylbenzene	N.	D.	ug/kg	50
Toluene	N.	D.	ug/kg	50
m-Xylene	N.	D.	ug/kg	50
o & p-Xylene(s)	N.	D.	ug/kg	50

N.D. = Not detected Reported by: Helmer Morse

÷i.

İ

Approved by: Susan Brillante

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-11 10-12'

Laboratory ID: 67123-015

Enseco ID: 67123-015

Sampleo	Sampled: 04/16/88		Received: 04/18/88	
<u>Result</u>	<u>Units</u>	Reporting Limit	Analytical <u>Method</u>	<u>Analyzed</u>
1.9 22.5 75.6	% %	0.1		04/22/88 04/22/88 04/22/88
	<u>Result</u> 1.9	<u>Result</u> 1.9 % 22.5 %	Reporting Result Units Limit 1.9 % 0.1 22.5 % 0.1	ReportingAnalyticalResultUnitsLimit1.9%0.122.5%0.1

N.D. = Not detected

Approved by: Lindsay Breyer

EPA METHOD 8010

Client Name: DAMES AND N	IOORE	
Client ID: BH-14 6-7'		
Laboratory ID: 67123-016	Enseco ID: 6	57123-016
Matrix: Soil	Sampled: 04/15/88	Received: 04/18/88
Authorized: 04/15/88	- 14 1 14 - 14 1 14 1 14 14 14 14 14 14 14 14 14 14	Analyzed: 04/27/88

n .		Units (as	Reporting
Parameter	<u>Result</u>	<u>received)</u>	<u>Limit</u>
Bromoform	N.D.	ug/kg	500
Carbon tetrachloride	N.D.	ug/kg	50
Chlorobenzene	N.D.	ug/kg	200
Chloroethane	N.D.	ug/kg	500
Chloroform	N.D.	ug/kg	50
Dibromochloromethane	N.D.	ug/kg	100
Bromodichloromethane	N.D.	ug/kg	100
1,1-Dichloroethane	N.D.	ug/kg	50
1,2-Dichloroethane	N.D.	ug/kg	100
1,1-Dichloroethene	N.D.	ug/kg	50
1,2-Dichloropropane	N.D.	ug/kg	100
cis-1,3-Dichloropropene	N.D.	ug/kg	200
trans-1,3-Dichloropropene	N.D.	ug/kg	50
Bromomethane	N.D.	ug/kg	500
Chloromethane	N.D.	ug/kg	500
Methylene chloride	N.D.	ug/kg	500
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	100
Tetrachloroethene	N.D.	ug/kg	50
trans-1,2-Dichloroethene	N.D.	ug/kg	50
1,1,1-Trichloroethane	N.D.	ug/kg	50
1,1,2-Trichloroethane	N.D.	ug/kg	100
Trichloroethene	N.D.	ug/kg	100
Vinyl chloride	N.D.	ug/kg	100
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/kg	100
1,2-Dibromoethane (EDB)	N.D.	ug/kg	200

N.D. = Not detected

1

Ì

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-14 6-7'

Laboratory ID: 67123-016

Enseco ID: 67123-016

Matrix: Soil	Sampled: 04/15/88		Received: 04/18/88			
Authorized: 04/15/88		Analyzed: 04/28/88				
Parameter	Re	<u>esult</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>		
Benzene		N.D.	ug/kg	50		
Chlorobenzene		N.D.	ug/kg	50		
1,2-Dichlorobenzene		N.D.	ug/kg	50		
1,3-Dichlorobenzene		N.D.	ug/kg	5 0		
1,4-Dichlorobenzene		N.D.	ug/kg	50		
Ethylbenzene		N.D.	ug/kg	50		
Toluene		N.D.	ug/kg	50		
m-Xylene		N.D.	ug/kg	50		
o & p-Xylene(s)		N.D.	ug/kg	50		

N.D. = Not detected

Reported by: Stanley L. Dunlavy

Approved by: Susan Brillante

----.

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-14 6-7'

Laboratory ID: 67123-016

Enseco ID: 67123-016

Matrix: Soil Authorized: 04/15/88	Sampled: 04/15/88		Received: 04/18/88			
Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed	
Oil	1.0	%	0.1		04/22/88	
Water Solids	20.8 78.2	% %	0.1 0.1		04/22/88 04/22/88	

N.D. = Not detected

Approved by: Lindsay Breyer

EPA METHOD 8010

Client Name: DAMES AND	MOORF			
Client ID: BH-13 6-7'				
		100.017		
Laboratory ID: 67123-017	Enseco ID: 67	123-017		
Matrix: Soil	Sampled: 04/15/88	Received: 04	/18/88	
Authorized: 04/15/88		Analyzed: 04	/29/88	
Parameter	Resu	<u>t</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.D	L	ug/kg	500
Carbon tetrachloride	N.D		ug/kg	50
Chlorobenzene	N.D		ug/kg	200
Chloroethane	N.D		ug/kg	500
Chloroform	N.D	,	ug/kg	50
Dibromochloromethane	N.D		ug/kg	100
Bromodichloromethane	N.D	•	ug/kg	100
1,1-Dichloroethane	N.D		ug/kg	50
1,2-Dichloroethane	N.D		ug/kg	100
1,1-Dichloroethene	N.E		ug/kg	50
1,2-Dichloropropane	N.C		ug/kg	100
cis-1,3-Dichloropropene	N.E		ug/kg	200
trans-1,3-Dichloropropene	N.C	ι.	ug/kg	50
Bromomethane	N.C		ug/kg	500
Chloromethane	N.L		ug/kg	500
Methylene chloride	N.C		ug/kg	500
1,1,2,2-Tetrachloroethane	N.E		ug/kg	100
Tetrachloroethene	N.E	ι.	ug/kg	50
trans-1,2-Dichloroethene	N.E	Ι,	ug/kg	50
1,1,1-Trichloroethane	N.E).	ug/kg	50
1,1,2-Trichloroethane	N.D		ug/kg	100
Trichloroethene	N.E	ι.	ug/kg	100
Vinyl chloride	N.D).	ug/kg	100
1,1,2-Trichloro-				
1,2,2-trifluoroethane	N.E		ug/kg	100
1,2-Dibromoethane (EDB)	N.E).	ug/kg	200

N.D. = Not detected

i.

ł

Reported by: Helmer Morse

Approved by: Susan Brillante

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-13 6-7'

Laboratory ID: 67123-017

Enseco ID: 67123-017

Matrix: Soil	Sampled: 04/15/88	Rece	eived: 04/18/88		
Authorized: 04/15/88	Analyzed: 04/29/88				
Parameter	Res	ult	Units (as <u>received)</u>	Reporting <u>Limit</u>	
Benzene	25	0	ug/kg	50	
Chlorobenzene	N	D.	ug/kg	50	
1,2-Dichlorobenzene	N	D.	ug/kg	50	
1,3-Dichlorobenzene	N	D.	ug/kg	50	
1,4-Dichlorobenzene	N	D.	ug/kg	50	
Ethylbenzene	6	7	ug/kg	50	
Toluene	80	0	ug/kg	50	
m-Xylene	140	0	ug/kg	50	
o & p-Xylene(s)	58	0	ug/kg	50	

N.D. = Not detected

1

Reported by: Helmer Morse

Approved by: Susan Brillante

- 🛬 Enseco

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE Client ID: BH-13 6-7' Laboratory ID: 67123-017 Enseco ID: 67123-017 Sampled: 04/15/88 Received: 04/18/88 Matrix: Soil Authorized: 04/15/88Reporting Analytical <u>Units</u> <u>Limit</u> <u>Method</u> <u>Analyzed</u> **Parameter** <u>Result</u> % 0.1 04/22/88 Oil 1.4 04/22/88 Water 16.8 % 0.1 % 0.1 04/22/88 Solids 81.8

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND	MOORE				
Client ID: BH-9 5-7'					
Laboratory ID: 67123-018	Enseco ID: 67123-018				
Matrix: Soil	Sampled: 04/16/88	Received: 04/18/88			
Authorized: 04/15/88		Analyzed: 04/29/88			

Parameter	<u>Result</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N. D.	ug/kg	500
Carbon tetrachloride	N.D.	ug/kg	50
Chlorobenzene	N .D.	ug/kg	200
Chloroethane	N.D.	ug/kg	500
Chloroform	N.D.	ug/kg	50
Dibromochloromethane	N.D.	ug/kg	100
Bromodichloromethane	N.D.	ug/kg	100
1,1-Dichloroethane	N.D.	ug/kg	50
1,2-Dichloroethane	N.D.	ug/kg	100
1,1-Dichloroethene	N.D.	ug/kg	50
1,2-Dichloropropane	N.D.	ug/kg	100
cis-1,3-Dichloropropene	N.D.	ug/kg	200
trans-1,3-Dichloropropene	N.D.	ug/kg	50
Bromomethane	N.D.	ug/kg	500
Chloromethane	N.D.	ug/kg	500
Methylene chloride	N.D.	ug/kg	500
1,1,2,2-Tetrachloroethane	N .D.	ug/kg	100
Tetrachloroethene	N.D.	ug/kg	50
trans-1,2-Dichloroethene	N.D.	ug/kg	50
1,1,1-Trichloroethane	N .D.	ug/kg	50
1,1,2-Trichloroethane	N.D.	ug/kg	100
Trichloroethene	N.D.	ug/kg	100
Vinyl chloride	N.D.	ug/kg	100
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/kg	100
1,2-Dibromoethane (EDB)	N.D.	ug/kg	200

N.D. = Not detected

.

Reported by: Helmer Morse

Approved by: Susan Brillante

Sample: 67123-018

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-9 5-7'

Laboratory ID: 67123-018

Enseco ID: 67123-018

Matrix: Soil	Sampled: 04/16/88	88 Received: 04/18/88						
Authorized: 04/15/88		Analyzed: 04/29/88						
Parameter	l	<u>Result</u>		nits (as <u>ceived)</u>	Reporting <u>Limit</u>			
Benzene		57	បន្ទ	g/kg	50			
Chlorobenzene		N.D.	ug	g/kg	50			
1,2-Dichlorobenzene		N.D.	υg	g/kg	50			
1,3-Dichlorobenzene		N.D.	ug	y/kg	50			
1,4-Dichlorobenzene		N.D.	uç	g/kg	50			
Ethylbenzene		180	uμ	g/kg	50			
Toluene		240	υç	g/kg	50			
m-Xylene		63 0	ບຼ	g/kg	50			
o & p-Xylene(s)		660	ug	g/kg	50			

N.D. = Not detected Reported by: Helmer Morse

Approved by: Susan Brillante

INORGANIC PARAMETERS

Sampled: 04/16/88

Client Name: DAMES AND MOORE

Client ID: BH-9 5-7'

Laboratory ID: 67123-018

Enseco ID: 67123-018

Received: 04/18/88

Matrix:	Soil
---------	------

Authorized: 04/15/88Reporting Analytical <u>Result</u> <u>Units</u> <u>Limit</u> Method Parameter <u>Analyzed</u> Oil 0.8 % 0.1 04/22/88 04/22/88 Water 21.0 % 0.1 Solids 78.2 % 0.1 04/22/88

N.D. = Not detected

Approved by: Lindsay Breyer

Sample: 67123-018

🗄 Enseco

V. QUALITY CONTROL REPORT

The Enseco laboratories operate under a vigorous QA/QC program designed to ensure the generation of scientifically valid, legally defensible data by monitoring every aspect of laboratory operations. Routine QA/QC procedures include the use of approved methodologies, independent verification of analytical standards, use of duplicate Laboratory Control Samples to assess the precision and accuracy of the methodology on a routine basis, and a rigorous system of data review.

In addition, the Enseco laboratories maintain a comprehensive set of certifications from both state and federal governmental agencies which require frequent analyses of blind audit samples. Enseco - Rocky Mountain Analytical Laboratory is certified by the EPA under the EPA/CLP program for both Organic and Inorganic analyses, under the USATHAMA (U.S. Army) program, by the Army Corps of Engineers, and the states of Colorado, New Jersey, New York, Utah, and Florida, among others.

The standard laboratory QC package is designed to:

- 1) establish a strong, cost-effective QC program that ensures the generation of scientifically valid, legally defensible data
- assess the laboratory's performance of the analytical method using control limits generated with a well-defined matrix
- 3) establish clear-cut guidelines for acceptability of analytical data so that QC decisions can be made immediately at the bench, and
- provide a standard set of reportables which assures the client of the quality of his data.

The Enseco QC program is based upon monitoring the precision and accuracy of an analytical method by analyzing a set of duplicate Laboratory Control Samples (LCS) at frequent, well-defined intervals. An LCS is a wellcharacterized matrix which is spiked with target compounds at 5-100 times the reporting limit, depending upon the methodology being monitored. The purpose of the LCS is not to duplicate the sample matrix, but rather to provide an interference-free, homogeneous matrix from which to gather data to establish control limits. These limits are used to determine whether data generated by the laboratory on any given day is in control.

🖆 Enseco

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/- 3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate LCS results) to the average, historical relative percent difference + 3 standard deviation units. These control limits are fairly narrow based on the consistency of the matrix being monitored and are updated on a quarterly basis.

For Organic analyses an additional control measure is taken in the form of a Surrogate Control Sample (SCS). The SCS is a control sample spiked with surrogate standards which is analyzed with every analytical lot. The recovery of the SCS is charted in exactly the same manner as described for the LCS, and provides a daily check on the performance of the method.

Accuracy for LCS and SCS is measured by Percent Recovery.

			Measured Concentration		
%	Recovery	=		Х	100
	•		Actual Concentration		

Precision for LCS is measured by Relative Percent Difference (RPD).

RPD = ______(Measured Concentration LCS1 + Measured Concentration LCS2)/2

All samples analyzed concurrently by the same test are assigned the same QC lot number. Projects which contain numerous samples, analyzed over several days, may have multiple QC lot numbers associated with each test. The QC information which follows includes a listing of the QC lot numbers associated with each of the samples reported, LCS and SCS (where applicable) recoveries from the QC lots associated with the samples, and control limits for these lots. The QC data is reported by test code, in the order that the tests are reported in the analytical results section of this report. The test codes assigned are defined in Section VI., Analytical Methodology.

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

1

i -

i.

Laboratory			QC Lot N	lumber
Sample Number	<u>QC Matrix</u>	<u>Test</u>	LCS	<u>SCS</u>
67123-002-00	Standard Soil	BNA	BNA 097AA	B NA 097BA
67123-002-00	Standard Soil	VOA	VOA 029AK	VOA 029DK

Enseco

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Analyte	Con <u>Spikin</u> g	centratio Mea <u>LCS1</u>	on asured <u>LCS2</u>		uracy <u>LCS2</u>	(%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: BNA on Standard Soil QC Lot: BNA 097AA <u>Concentration Units: (ug/kg)</u>								
Pentachlorophenol	667 0	6100	598 0	91	90	17-109	2.0	47
Phenol	667 0	4620	4480	69	67	26-90	3.1	35
2-Chlorophenol	667 0	5720	5410	86	81	25-102	5.6	50
4-Chloro-3-methylphenol	667 0	6370	59 50	96	89	26-103	6.8	33
4-Nitrophenol	667 0	4740	4510	71	68	11-114	5.0	50
1,2,4-Trichlorobenzene	3330	2760	264 0	83	79	38-107	4.4	23
Acenaphthene	3330	3020	2920	91	88	31-137	3.4	19
2,4-Dinitrotoluene	3330	3180	2910	95#	87	28- 89	8.9	47
Pyrene	3330	3650	3500	110	105	35-142	4.2	36
N-Nitrosodi-n-propylamine	3330	2790	28 60	84	86	41-126	2.5	38
1,4-Dichlorobenzene	3330	2530	2420	76	73	28-104	4.4	27
Test: VOA on Standard Soil QC Lot: VOA 029AK <u>Concentration Units: (ug/kg)</u>								
1,1-Dichloroethene	5000	4020	4320	8 0	86	59-172	7.2	22
Trichloroethene	5000	5430	569 0	109	114	62-137	4.7	24
Chlorobenzene	5000	5700	592 0	114	118	60-133	3.8	21
Toluene	5000	5530	58 00	111	116	59-139	4.8	21
Benzene	5000	5130	538 0	103	108	66-142	4.8	21

= Recovery outside standard QC limits.

SURROGATE CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

	Concer	ntration	Accur	acy(%)
Analyte	<u>Spiking</u>	Measured	<u>SCS</u>	<u>Limits</u>
Test: BNA on Standard Soil QC Lot: BNA 097BA <u>Concentration Units: (ug/kg)</u>				
Phenol-D5	3330	2050	62	24-113
2-Fluorophenol	3330	28 60	86	25-121
2,4,6-Tribromophenol	3330	286 0	86	19-122
Nitrobenzene-D5	1670	1520	91	23-120
2-Fluorobiphenyl	1670	1620	97	30-115
Terphenyl-D14	1670	1720	103	18-137
Test: VOA on Standard Soil QC Lot: VOA 029DK <u>Concentration Units: (ug/kg)</u>				
Toluene-D8 Promofluorobenzana (PEP)	50 00 5 000	4910 4990	98 100	81-117 74-121
Bromofluorobenzene (BFB) 1,2-Dichloroethane-D4	50 00	5240	105	70-121

Enseco

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY

İ

Laboratory		QC Lot Number				
Sample Number	<u>QC Matrix</u>	Test	LCS	<u>SCS</u>		
67123-001-00	Standard Soil	601	601 115AW	601 115AW		
67123-001-00	Standard Soil	602	602 124AW	602 124AW		
67123-002-00	Standard Soil	6 01	601 115AW	601 115AW		
67123-002-00	Standard Soil	602	602 124AW	602 124AW		
67123-003-00	Standard Soil	6 01	601 113AW	601 113AW		
67123-003-00	Standard Soil	6 02	602 122AW	602 122AW		
67123-004-00	Standard Soil	6 01	601 115AW	601 115AW		
67123-004-00	Standard Soil	602	602 124AW	602 124AW		
67123-005-00	Standard Soil	601	601 113AW	601 113AW		
67123-005-00	Standard Soil	602	602 122AW	602 122AW		
67123-006-00	Standard Soil	601	601 113AW	601 113AW		
67123-006-00	Standard Soil	602	602 122AW	602 122AW		
67123-007-00	Standard Soil	6 01	601 115AW	601 115AW		
67123-007-00	Standard Soil	602	602 124AW	602 124AW		
67123-008-00	Standard Soil	6 01	601 113AW	601 113AW		
67123-008-00	Standard Soil	602	602 122AW	602 122AW		
67123-009-00	Standard Soil	601	601 113AW	601 113AW		
67123-009-00	Standard Soil	602	602 122AW	602 122AW		
67123-010-00	Standard Soil	601	601 115AW	601 115AW		
67123-010-00	Standard Soil	602	602 124AW	602 124AW		
67123-011-00	Standard Soil	601	601 113AW	601 113AW		
67123-011-00	Standard Soil	602	602 122AW	602 122AW		
67123-012-00	Standard Soil	601	601 113AW	601 113AW		
67123-012-00	Standard Soil	602	602 122AW	602 122AW		
67123-013-00	Standard Soil	601	601 113AW	601 113AW		
67123-013-00	Standard Soil	602	602 122AW	602 122AW		
67123-014-00	Standard Soil	601	601 115AW	601 115AW		
67123-014-00	Standard Soil	602	602 124AW	602 124AW		
67123-015-00	Standard Soil	601	601 114AW	601 114AW		
67123-015-00	Standard Soil	602	602 123AW	602 123AW		
67123-016-00	Standard Soil	601	601 115AW	601 115AW		
67123-016-00	Standard Soil	602	602 124AW	602 124AW		
67123-017-00	Standard Soil	601	601 114AW	601 114AW		
67123-017-00	Standard Soil	602	602 123AW	602 123AW		
67123-018-00	Standard Soil	601	601 114AW	601 114AW		
67123-018-00	Standard Soil	602	602 123AW	602 123AW		

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Con <u>Spikin</u> g	centratio Mea <u>LCS1</u>	on asured <u>LCS2</u>	Acc <u>LCS1</u>	curacy(<u>LCS2</u>	%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 601 on Standard Soil QC Lot: 601 113AW <u>Concentration Units: (ug/kg)</u>								
Chloromethane	200 0	1510	1480	76	74	59-140	2.0	25
Bromomethane	2000	2620	2560	131	128	58-141	2.3	25
Vinyl chloride	2000	1780	1750	89	88	68-132	1.7	25
Chloroethane	2000	2210	2210	111	111	77-123	0.0	20
Methylene chloride	2000	2570	2470	129#	124#	77-123	4.0	20
Trichlorofluoromethane	20 00	2190	21 00	110	105	66-134	4.2	25
1,1-Dichloroethene	2000	2060	20 10	103	101	63-137	2.5	20
1,1-Dichloroethane	2000	2040	1990	102	100	84-116	2.5	20
trans-1,2-Dichloroethene	2000	2130	2010	107	101	64-136	5.8	20
Chloroform	2000	210 0	2100	105	105	75-125	0.0	20
1,1,2-Trichloro-1,2,2-trifluor	2000	1910	1810	96	91	67-134	5.4	20
1,2-Dichloroethane	2000	2210	2030	111	102	72-129	8.5	20
1,1,1-Trichloroethane	2000	187 0	1760	94	88	71-129	6.1	20
Carbon tetrachloride	2000	2080	1920	104	96	68-131	8.0	20
Bromodichloromethane	2000	1950	1870	98	94	76-124	4.2	20
1,2-Dichloropropane	20 00	1950	1860	98	93	74-126	4.7	20
trans-1,3-Dichloropropene	2000	1980	187 0	9 9	94	64-136	5.7	20
Trichloroethene	20 00	2380	208 0	119	104	77-123	13.5	20
1,1,2-Trichloroethane	6 000	8430	7560	141#	126	69-132	10.9	20
Dibromochloromethane	6 000	8430	7560	141#	126	69-132	10.9	20
cis-1,3-Dichloropropene	60 00	843 0	7560	141#	126	69-132	10.9	20
1,2-Dibromoethane (EDB)	2000	179 0	1710	9 0	86	74-127	4.6	20
Bromoform	20 00	197 0	196 0	9 9	98	74-127	0.5	20
1,1,2,2-Tetrachloroethane	40 00	3720	36 20	93	91	60-140	2.7	20
Tetrachloroethene	4000	3720	3620	93	91	60-140	2.7	20
Chlorobenzene	2000	1950	193 0	98	97	72-128	1.0	20
1,3-Dichlorobenzene	2000	1950	1890	98	95	50-150	3.1	20
1,2-Dichlorobenzene	2000	1820	1770	91	89	70-130	2.8	20
1,4-Dichlorobenzene	2000	178 0	1740	89	87	70-130	2.3	20
Test: 601 on Standard Soil QC Lot: 601 114AW <u>Concentration Units: (ug/kg)</u>								
Chloromethane	2000	1340	1230	67	62	59-14 0	8.6	25
Bromomethane	2000	2550	25 00		125	59-14 0 58-14 1	2.0	25
		2350 1740	2300 1740	128			2.0 0.0	23 25
Vinyl chloride Chloroethane	2000	1740		87	87 90	68-132 77-123	0.0 1.7	23
	2000		1800	92	9 0	77-123		20 20
Methylene chloride	2000	2450	2500	123	123#	77-123	2.0	20

= Recovery outside standard QC limits.

1.1

📱 Enseco

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Con <u>Spiking</u>	centratio Mea <u>LCS1</u>	on Isured <u>LCS2</u>	Ac <u>LCS1</u>	curacy([,] LCS2	%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 601 on Standard Soil QC Lot: 601 114AW <u>Concentration Units: (ug/kg)</u>								
Trichlorofluoromethane	2000	2100	2330	105	117	66-134	10.4	25
1,1-Dichloroethene	2000	1950	2060	98	103	63-137	5.5	20
1,1-Dichloroethane	2000	1970	2040	9 9	102	84-116	3.5	20
trans-1,2-Dichloroethene	2 000	2030	2040	102	102	64-136	0.5	20
Chloroform	2000	2070	2070	104	104	75-125	0.0	20
1,1,2-Trichloro-1,2,2-trifluor	20 00	1750	1780	88	8 9	67-134	1.7	20
1,2-Dichloroethane	2000	1840	19 00	92	95	72-129	3.2	20
1,1,1-Trichloroethane	200 0	1770	1790	89	9 0	71-129	1.1	20
Carbon tetrachloride	2000	19 10	196 0	96	98	68-131	2.6	20
Bromodichloromethane	2000	1830	193 0	92	97	76-124	5.3	20
1,2-Dichloropropane	2000	1820	189 0	91	95	74-126	3.8	20
trans-1,3-Dichloropropene	20 00	1830	198 0	92	9 9	64-136	7.9	20
Trichloroethene	2000	2060	2310	103	116	77-123	11.4	20
1,1,2-Trichloroethane	60 00	7370	8210	123	137#	69-132	10.8	20
Dibromochloromethane	6 000	737 0	8 210	123		69-132	10.8	20
cis-1,3-Dichloropropene	6 000	7370	8 210	123	137#	69-132	10.8	20
1,2-Dibromoethane (EDB)	2000	1700	1800	85	9 0	74-127	5.7	20
Bromoform	2000	1820	1870	91	94	74-127	2.7	20
1,1,2,2-Tetrachloroethane	4000	3780	3730	95	93	60-140	1.3	20
Tetrachloroethene	4000	3780	3730	95	93	60-140	1.3	20
Chlorobenzene	2000	1980	1970	99	99	72-128	0.5	20
1,3-Dichlorobenzene	2000	2070	1950	104	98	50-150	6.0	20
1,2-Dichlorobenzene	2000	2080	2010	104	101	70-130	3.4	20
1,4-Dichlorobenzene	20 00	1800	1800	90	9 0	70-130	0.0	20
Test: 601 on Standard Soil QC Lot: 601 115AW Concentration Units: (ug/kg)								
Chloromethane	20 00	1170	1130	59	57#	59-140	3.5	25
Bromomethane	2000	2130	2190	107	110	58-141	2.8	25
Vinyl chloride	2000	1430	1500	72	75	68-132	4.8	25
Chloroethane	2000	1660	1670	83	84	77-123	0.6	20
Methylene chloride	2000	2370	2450	119	123	77-123	3.3	20
Trichlorofluoromethane	2000	1930	194 0	97	97	66-134	0.5	25
1,1-Dichloroethene	2000	1640	1600	82	80	63-137	2.5	20
1,1-Dichloroethane	2000	1920	1920	96	96	84-116	0.0	20
trans-1,2-Dichloroethene	2000	1790	1780	90	89	64-136	0.6	20
Chloroform	2000	2030	2050	102	103	75-125	1.0	20

= Recovery outside standard QC limits.

#=1

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

.

Analyte	Con <u>Spiking</u>	centratio Mea <u>LCS1</u>	on asured <u>LCS2</u>	Ac <u>LCS1</u>	curacy(<u>LCS2</u>	%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 601 on Standard Soil QC Lot: 601 115AW Concentration Units: (ug/kg)								
1,1,2-Trichloro-1,2,2-trifluor	20 00	1650	1720	83	86	67-134	4.2	20
1,2-Dichloroethane	20 00	1660	1770	83	89	72-129	6.4	2 0
1,1,1-Trichloroethane	2 000	1730	1760	87	88	71-129	1.7	20
Carbon tetrachloride	2000	1870	1940	94	97	68-131	3.7	20
Bromodichloromethane	20 00	1850	1940	93	97	76-124	4.7	20
1,2-Dichloropropane	2 000	1810	1850	91	93	74-126	2.2	20
trans-1,3-Dichloropropene	20 00	1880	1880	94	94	64-136	0.0	20
Trichloroethene	2000	198 0	2100	9 9	105	77-123	5.9	20
1,1,2-Trichloroethane	6 000	736 0	8100	123	135#	69-132	9.6	20
Dibromochloromethane	60 00	7360	8 100	123	135#	69-132	9.6	20
cis-1,3-Dichloropropene	60 00	7360	8100	123	135#	69-132	9.6	20
1,2-Dibromoethane (EDB)	2000	1740	1830	87	92	74-127	5.0	20
Bromoform	2000	1890	1980	95	9 9	74-127	4.7	20
1,1,2,2-Tetrachloroethane	4000	3470	3690	87	92	60-140	6.1	20
Tetrachloroethene	40 00	3470	3690	87	92	6 0-140	6.1	20
Chlorobenzene	20 00	1790	1880	9 0	94	72-128	4.9	20
1,3-Dichlorobenzene	2 000	188 0	1890	94	95	50-150	0.5	20
1,2-Dichlorobenzene	2000	1890	1910	95	96	70-130	1.1	20
1,4-Dichlorobenzene	2000	1710	1740	86	87	70-130	1.7	20
Test: 602 on Standard Soil QC Lot: 602 122AW Concentration Units: (ug/kg)								
Benzene	2 000	2030	2010	102	101	77-123	1.0	20
Toluene	2000	2030	2000	102	100	77-123	1.5	20
Chlorobenzene	2000	2170	2150	109	108	81-119	0.9	20
Ethylbenzene	2000	2110	2070	106	104	63-137	1.9	20
m-Xylene	2000	2000	1960	100	98	77-123	2.0	20
o & p-Xylene(s)	4000	4260	4170	107	104	77-123	2.1	20
1,3-Dichlorobenzene	2000	2110	2090	106	105	77-123	1.0	20
1,2-Dichlorobenzene	2000	2000	1990	100	100	63-137	0.5	20
1,4-Dichlorobenzene	2000	2110	2130	106	107	70-130	0.9	20
,								

= Recovery outside standard QC limits.

🗧 Enseco

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Con <u>Spiking</u>	centratio Mea <u>LCS1</u>	on asured <u>LCS2</u>	Ac LCS1	curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precis: <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 602 on Standard Soil QC Lot: 602 123AW Concentration Units: (ug/kg)								
Benzene	2000	1990	2020	100	101	77-123	1.5	20
Toluene	2000	2010	2050	101	103	77-123	2.0	20
Chlorobenzene	2000	2150	2190	108	110	81-119	1.8	20
Ethylbenzene	20 00	2080	2120	104	106	63-137	1.9	20
m-Xylene	2000	1990	2010	100	101	77-123	1.0	20
o & p-Xylene(s)	4000	4230	4290	106	107	77-123	1.4	20
1,3-Dichlorobenzene	2000	2130	2140	107	107	77-123	0.5	20
1,2-Dichlorobenzene	20 00	1990	2020	100	101	63-137	1.5	20
1,4-Dichlorobenzene	2000	2180	2190	109	110	70-130	0.5	20
Test: 602 on Standard Soil QC Lot: 602 124AW Concentration Units: (ug/kg)								
Benzene	20 00	1890	1920	95	96	77-123	1.6	20
Toluene	2000	1900	1930	95	97	77-123	1.6	20
Chlorobenzene	2000	2080	2100	104	105	81-119	1.0	20
Ethylbenzene	2000	2010	2030	101	102	63-137	1.0	20
m-Xylene	2000	1950	1910	98	96	77-123	2.1	20
o & p-Xylene(s)	4000	4040	4090	101	102	77-123	1.2	20
1,3-Dichlorobenzene	20 00	2070	2060	104	103	77-123	0.5	20
1,2-Dichlorobenzene	2000	1950	197 0	98	9 9	63-137	1.0	20
1,4-Dichlorobenzene	2000	2090	2110	105	106	70-130	1.0	20

- 🐌 Enseco

SURROGATE CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Conce <u>Spiking</u>	ntration <u>Measured</u>	Accura <u>SCS</u>	ncy(%) <u>Limits</u>
Test: 601 on Standard Soil QC Lot: 601 113AW Concentration Units: (ug/kg)				
Bromochloromethane	3000	3010	100	20-160
Test: 601 on Standard Soil QC Lot: 601 114AW Concentration Units: (ug/kg)				
Bromochloromethane	3000	2880	96	20-160
Test: 601 on Standard Soil QC Lot: 601 115AW <u>Concentration Units: (ug/kg)</u> Bromochloromethane	3000	2980	99	20-160
Diomocnioiomethane	5000	2700		20 100
Test: 602 on Standard Soil QC Lot: 602 122AW <u>Concentration Units: (ug/kg)</u>				
a,a,a-Trifluorotoluene	3000	3530	118	20-160
Test: 602 on Standard Soil QC Lot: 602 123AW <u>Concentration Units: (ug/kg)</u> a,a,a-Trifluorotoluene	3000	327 0	109	20-160
Test: 602 on Standard Soil QC Lot: 602 124AW <u>Concentration Units: (ug/kg)</u>				
a,a,a-Trifluorotoluene	3000	3430	114	20-160

QC LOT ASSIGNMENT REPORT INORGANICS - METALS

Laboratory <u>Sample Number</u>	<u>QC Matrix</u>	Test	QC Lot Number LCS
67123-002-00	Standard Soil	FAST	FAST205AA
67123-002-00	Standard Soil	FSET	FSET205AA
67123-002-00	Standard Soil	HGT	HGT 196AA
67123-002-00	Standard Soil	ICPT	ICPT234AA

- 🗧 Enseco

:

ļ

LABORATORY CONTROL SAMPLE REPORT INORGANICS - METALS

Analyte	Concentra <u>Spiking</u> M <u>LCS</u>	leasured	Ac <u>LCS1</u>	curacy(<u>LCS2</u>	(%) Limits	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: FAST on Standard Soil QC Lot: FAST205AA <u>Concentration Units: (mg/kg)</u>							
Arsenic	4 4.:	3 4.2	108	105	75-125	2.4	20
Test: FSET on Standard Soil QC Lot: FSET205AA <u>Concentration Units: (mg/kg)</u>							
Selenium	2 2.0	2.1	100	105	75-125	4.9	20
Test: HGT on Standard Soil QC Lot: HGT 196AA <u>Concentration Units: (ug/kg)</u>							
Mercury	500 51	6 532	103	106	75-125	3.1	20
Test: ICPT on Standard Soil QC Lot: ICPT234AA <u>Concentration Units: (mg/kg)</u>							
Antimony	0.5 0.44	0.46	88	92	75-125	4.4	20
Arsenic	2.0 1.74		87	87	75-125	0.0	20
Barium	2.0 1.94		97	99	75-125	1.5	20
Beryllium	0.05 0.046		92	92	75-125	0.0	20
Cadmium	0.05 0.050	0.050	100	100	75-125	0.0	20
Chromium	0.2 0.19	0.19	95	95	75-125	0.0	20
Cobalt	0.5 0.48	3 0.48	9 6	9 6	75-125	0.0	20
Copper	0.25 0.20		104	104	75-125	0.0	20
Lead	0.5 0.48		9 6	96	75-125	0.0	20
Manganese	0.5 0.52		104	104	75-125	0.0	20
Nickel	0.5 0.52		104	104	75-125	0.0	20
Silver	0.05 0.045		90	86	75-125	4.5	20
Tin	0.5 0.52		104	110	75-125	5.6	20
Vanadium	0.5 0.4		94	94	75-125	0.0	20
Zinc	0.5 0.49	0.49	98	98	75-125	0.0	20

		Remarks	tol	TA	- 18) ~) /		51-5-CM+			ignature) Date / Time	y by: Date / Time
	nel L. Bridwell	Parameters	80 10 1 80 20 sagare (rat	Ears. K. a sut Mure 16	5310: 5020 man Lead		$ z = \frac{1}{\sqrt{2}} \left[\frac{1}{2} - \frac{1}{2} \right] = 0$			11-12-11 (M.	(e) Date / Time Received by: (Signature)	Received for Laboratory by: (Signature)
CHAIN OF CUSTODY	RMAL Project No Sampling Personnel Sampling Site	No. Containers	8 Shine	& Ten		<u>(</u>	b h			1, 4	ne Relinquished by: (Signature)	Delivered by: (Signature)
N OF	marinh.	Type	Sail	Soil	Soils						•) Date / Time	
Rocky Mountain Analytical Laboratory 4955 Yarrow Street. Arvada. CO 80002 (303) 421-6611 A DIVISION OF ENSECO INCORPORATED	Danse 1 moor - Cordon 4. Correction	Sample ID/Description	BH-1	BH-4	BH-5						Ural Date / Time Received by: (Signature)	
Rocky Mountain Analytical L 4955 Yarrow Street, Arvada, CO 80002 (303) 421-6611	RMAL Client <u>) ()</u> () Sampling Co	Date Time	1100-1130	1300	005/						Relinquished by: (Siggatura)	Method of Shipment:

1 1

I I

1

|

RMAL Project No Sampling Person Sampling Site Type No. Containers Type No. Containers Type Type Type Type Type Type Type Type	Client Dame (Ing Co. Indo (Indo (Indo 8/4 1100 8/4					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	t Name/No			RMAL Proje Sampling P	to And	25129
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1100 BH	1.0.10/100 11 100/1000	TVD	Sampling S No Containers	and	Romarke
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00/1		Soils		1 10- 5020 -5	C.IN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	al de la companya de la compa	2/	÷	7	- 9	
$ \frac{34.11}{12} $		8	:	3	% 00 to 1018020 - 10-12	
2H.M 1 2 $76.al$ $8010-8026$ $6-7$ 67 67 17 $2H-3$ 2 $76.al$ $8010-8026$ $6-7$ <td>100</td> <td></td> <td></td> <td></td> <td></td> <td></td>	100					
113 11 2 10 10 10 113 11 11 12 10 10 113 11 12 1 10 10 113 12 1 10 10 10 113 12 1 10 10 10 113 12 1 10 10 10 114 12 1 10 10 10 115 10 10 10 10 10 115 10 10 10 10 10 115 10 10 10 10 10 116 10 10 10 10 10 116 10 10 10 10 10 116 10 10 10 10 10 116 10 10 10 10 10 116 10 10 10 10 10 117 10 10 10 10 10 116 10 10 10 10 10 116 10 10 10 10 117 10 10	- 1500 3.14-			Ч	1	
3.4-7 1. 2. 7. 8.17 8.1 1.0 1. 1. 1. 1. 1. 1. 1.1 1.1 1. 1. 1. 1. 1. 1.1 1.1 1. 1. 1. 1. 1. 1.1 1.1 1. 1. 1. 1. 1. 1.1 1.1 1. 1. 1. 1. 1. 1.1 1.1 1. 1. 1. 1. 1. 1.1 1. 1. 1. 1. 1. 1. 1.1 1. 1. 1. 1. 1. 1. 1.1 1. 1. 1. 1. 1. 1. 1.1 1. 1. 1. 1. 1. 1. 1.1 1. 1. 1. 1. 1. 1. 1.1 1. 1. 1. 1. 1. 1. 1.1 1. 1. 1. 1. 1. 1. 1.1 1. 1. 1. 1. 1. 1. 1.1 1. 1. 1. 1. 1. 1.	/360		~	2		/
Mile Copy to Lab Mile	S	Z		V	12- \$ 0205-1108 (1-1)	/
Date / Time Received by: <i>rsumeture</i>) Date / Time Relinquished by: <i>rsumeture</i>) Date / Time Received by: <i>rsumeture</i>) Date / Time Received by: <i>rsumeture</i>) Date / Time Received by: <i>rsumeture</i>) Date / White Copy to Lab Multe Copy to Lab Pink Copy to Client Yellow Copy to Sampler						
Date / Time Received by: (Signature) Date / Time Retinquished by: (Signature) Date / Time Received by: (Signature) Date /						
Image: Date / Time Received by: (Signature) Date / Time Received by: (Signature) Date / Time M// (bd// 3) Shipped by: (Signature) Date / (1/3) Date / (1/3) Date / (1/3) M// (bd// 3) Shipped by: (Signature) Delivered by: (Signature) Date / (1/3) Mhite Copy to Lab Pink Copy to Client Yellow Copy to Sampler				-		
Image: A second by: (Signature) Date / Time Received by: (Signature) Date / Time Received by: (Signature) Date / Time Image: A second by: (Signature) Image: A second by: (Signature) Date / Time Received by: (Signature) Date / Time Image: A second by: (Signature) Image: A second by: (Signature) Date / Time Received by: (Signature) Date / Time Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature) Date / Time Image: A second by: (Signature) Date / Time Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature) Image: A second by: (Signature)						
of Shipment: Shipped by: Rignature) Shipped by: Rignature) Referred by: Rignature) Referred for Labo/atthy/by Date / FL/X White Copy to Lab Pink Copy to Client Yellow Copy to Sampler	1	/Time	11~		Date / Time	
Pink Copy to Client Yellow Copy to Sampler	Metrod of Shipment	Shipped by: (Signature)		Delivered by: (Si		J CJ/ &
		White Copy to Lab	Pink Copy	to Client	Yellow Copy to Sampler	

Enseco

VI. ANALYTICAL METHODOLOGY

Enseco - Rocky Mountain Analytical Laboratory performs analytical services according to methods approved by EPA and other regulatory agencies, whenever possible.

Methods for metals and organic compounds are primarily derived from three sources of EPA methods, 1) the methods promulgated in 40 CFR 136 for priority pollutants, 2) the methods published in SW-846 and 3) methods developed by the EPA-EMSL/LV for Superfund investigations, as well as several documents published by the EPA and Enseco - Rocky Mountain Analytical Laboratory in 1984 and 1985. These methods all use the same generic technology as summarized below:

- Metals: acid digestion followed by analyses by ICP supported by graphite furnace AA
- Volatile Organics: purge and trap GC/MS or purge and trap GC with a selective detector.
- Semivolatile (base/neutral and acid) organics: solvent extraction followed by capillary column GC/MS, and
- Pesticides/Herbicides: solvent extraction, followed by gas chromatography.

Exact method references are given in the following tables.

ANALYTICAL METHODOLOGY - ORGANIC TESTS

	<u>Test</u>	Description	Methodology	Reference
1	VOA BNA DXN	Volatile Organics Semivolatile Organics Dioxin	Purge & Trap, GC/MS Extraction, GC/MS Extraction, GC/MS	624(1)/8240(2) 625(1)/8270(2) 613(1)/8280(2)
:	601	Halogenated Volatile Organics	Purge & Trap GC/Hall	601(1)/8010(2)
	THM	Trihalomethanes	Purge & Trap GC/Hall	601(1)/8010(2)
	602	Aromatic Volatile Organics	Purge & Trap GC/PID	602(1)/8020(2)
	OCP	Organochlorine Pesticides	Extraction, GC/ECD	608(1)/8080(2)
	OPP	Organophosphate Pesticides	Extraction, GC/FPD	614(1)/8140(2)
	619	Triazine Pesticides	Extraction, GC/NPD	619(1)
	LC CARB	Carbamate and Urea Pesticides	Extraction, HPLC	632(1)
	PCB HRB 603	PCB's Phenoxyacid Herbicides	Extraction, GC/ECD Extraction, GC/ECD	608(1)/8080(2) 615(1)/8150(2) 603(1)/8030(2)
	604 605 606	Acrolein & Acrylonitrile Phenols Benzidines Phthalate Esters	Purge & Trap GC/FID Extraction, GC/FID Extraction, HPLC Extraction, GC/FID	603(1)/8030(2) 604(1)/8040(2) 605(1)/8050(2) 606(1)/8060(2)
	607	Nitrosamines	Extraction, GC/NPD	607(1)
	609	Nitroaromatics & Cyclic Ketones	Extraction, GC/NPD	609(1)/8090(2)
	PNA	Polynuclear Aromatic Hydrocarbons	Extraction, HPLC	610(1)/8310(2)
•	611	Haloethers	Extraction, GC/ECD	611(1)
	612	Chlorinated Hydrocarbons	Extraction, GC/ECD	612(1)/8120(2)
	GD FID	Hydrocarbon Scan	Extraction, GC/FID	D3328-78(3)
	GC BPD	Boiling Point Determination	Extraction, GC/FID	D2887-84(4)

T References

Π

İ

(1) Code of Federal Regulations, Chapter 40, Part 136 (40 CFR 136).
 (2) SW-846, 2nd Edition, 1984.
 (3) "Annual Book of ASTM Standards", Volume 11.01, 1985.
 (4) "Annual Book of ASTM Standards", Volume 05.02, 1984.

💈 Enseco

ANALYTICAL METHODOLOGY - INORGANIC TESTS

à	<u>Test</u>	Description	<u>Methodology</u>	Reference
	ICP FSB FAS	Trace Metals Antimony Ameonic	ICP Emission Spectroscopy Furnace Atomic Absorption	200.7(1)/6010(2) 204.2(1)/7041(2) 205.2(1)/7050(2)
1	FCD FPB	Arsenic Cadmium Lead	Furnace Atomic Absorption Furnace Atomic Absorption Furnace Atomic Absorption	206.2(1)/7060(2) 213.2(1)/7131(2) 239.2(1)/7421(2)
1	FSE	Selenium	Furnace Atomic Absorption	270.2(1)/7740(2)
	FAG	Silver	Furnace Atomic Absorption	272.2(1)/7761(2)
ſ	FTL	Thallium	Furnace Atomic Absorption	279.2(1)/7841(2)
	CVHG	Mercury	Cold Vapor Atomic	245.1(1)/7471(2)
	CR + 6	Chromium (VI)	Colorimetric	312B(3)
	IC CL	Chloride	Ion Chromatography	300.0(1)
	BURCL	Chloride	Manual Titrimetric	325.3(1)
_	METF	Fluoride	Electrode	340.2(1)
	IC SO4	Sulfate	IC	300.0(1)
	SPESO4	Sulfate	Manual Turbidimetric	375.4(1)
	METALK	Alkalinity, Total	Titrimetric	310.1(1)
	METACK	Alkalinity, Forms	Titrimetric	403(3)
	TECNOXT	Nitrate+Nitrite as N	Cd Reduction Colorimetric	353.2(1)
	METPH	pH	Meter	150.1(1)/9045(2)
	CELSP	Specific Conductance @ 25°C	Bridge	120.1(1)
	BALTDS	Total Dissolved Solids	Gravimetric, 180ºC	160.1(1)
	BALTSS	Total Suspended Solids	Gravimetric, 105ºC	160.2(1)
ii a	BALTS	Total Solids	Gravimetric, 105°C	160.3(1)
	BALTVS	Total Volatile Solids	Gravimetric, 550°C	160.4(1)
	TECO P	Ortho-Phosphate as P	Two Reagent Colorimetric	365.3(1)
	TECT P	Total Phosphorus as P	Digestion-Colorimetric	365.3(1)
	ICP	Total Phosphorus as P	Digestion-ICP/AES	200.7(1)
	ICP	Silica as SiO ₂	ICP/AES	200.7(1)
	SPESI02	Silica as SiO2	Colorimetric	370.1(1)
	METBOD	Biochemical Oxygen Demand	Dilution Bottle-D.O. probe	405.1(1)
	METCOD	Chemical Oxygen Demand	Micro Colorimetric	410.4(1)
	TOCTOC	Total Organic Carbon	UV Oxidation-IR	415.2(1)
	METNH3	Ammonia as N	Electrode	350.3(1)
12	TECNH3	Ammonia as N	Automated Colorimetric	350.1(1)
	METTKN	Total Kjeldahl Nitrogen as N	Digestion-Electrode	351.4(1)
I	TECTKN TOXTOX TONO1	Total Kjeldahl Nitrogen as N Total Organic Halogen Total Organic Nitrogen	Digestion-Colorimetric Combustion-Titrimetric Calculation (TKN-NH3)	351.2(1) 9020(2)
	BAL O&G	Oil and Grease	Freon Extraction- Gravimetric	413.1(1)
	IR AO&G TECCN F	Oil and Grease Cyanide Amendable to Chlorination	Freon Extraction-IR Chlorination-Distillation- Colorimetric	413.2(1) 335.1(1)
r		Weak & Dissolved Cyanide Total Cyanide	Distillation-Colorimetric Distillation-Colorimetric	412H(3) 335.2(1)/9010(2)
	STEPHEN	Phenolics	Distillation-Colorimetric	420.1(1)
	COLIF F	Fecal Coliform	Membrane Filter	909C(3)
	COLIF T	Total Coliform	Membrane Filter	909A(3)

Enseco

ANALYTICAL METHODOLOGY - INORGANIC TESTS (CONT.)

IC BR Bromide Ion Chromatography POTCL2R Residual Chlorine Amperometric NESCOLR Color Pt-Co Colorimetric	300.0(1) 330.2(1) 110.2(1) 200.7(1)/314A(3) 354.1(1)
NESCULR LOIOR Pt-LO COLORIMETRIC	200.7(1)/314A(3)
ICPHAR Hardness as CaCo ₃ Calculation TECNO2 Nitrite as N Colorimetric	
L SPES Sulfide Colorimetric BURSO3 Sulfite Titrimetric SPEMBAS MBAS (Surfactants) Colorimetric	376.2(1)/9030(2) 377.1(1)
SPETURB Turbidity Turbidimeter	425.1(1) 180.1(1)
Gross Alpha Proportional Counter Gross Beta Proportional Counter	703(3) 703(3)
Radium 226Separation - CounterRadium 228Separation - Counter	705 (3) 707 (3)
Uranium Fluorimetric	D2907.75(4)
- <u>References</u>	
 (1) Code of Federal Regulations, Chapter 40, Part 136 (40 CFR 136). (2) SW-846, 2nd Edition, 1984. (3) "Standard Methods for the Examination of Water and Wastewater", 15th (4) "Annual Book of ASTM Standards", Part 31, Water, 1980. 	n Edition, 1980.

Enseco-RMAL Product Summary Total Chromatographable Hydrocarbons by GC/FID Price List Item # 278

<u>Summary</u>: After a solvent extraction, the sample is analyzed by capillary column gas chromatography with flame ionization detection (GC/FID). The GC conditions are adjusted to measure compounds with boiling points between 70°C and 500°C. Results are reported as "total chromatographable hydrocarbons." The nominal detection limit is 50-100 ug/L for waters and 1-5 mg/kg for solids. The "fingerprint" resulting from the analysis is compared to fingerprints from standard petroleum products (gasoline, jet fuel, kerosene, etc.). If, based on the analyst's interpretation, a match to a petroleum product can be assigned, then the product identification is also reported.

<u>Discussion</u>: A flame ionization detector is a "universal" detector that responds to virtually any organic compound. The use of this detector system to measure petroleum products can be found in ASTM Method D-2887. The technique has also been used as a method for identifying "water borne oil," (ASTM D3328-78). The EPA has extended the technique to measuring diesel in drill cuttings (<u>Federal Register</u>, August 26, 1985). The EPA has also described an approach for determining "total chromatographable organics." (IERL-RTP Procedures Manual, EPA-600/7-78-201, 1978).

The method developed at Enseco-RMAL is based on this previous work, but has been designed for broader applications. The sample extraction technique and the GC analysis conditions are designed to address not only common petroleum products but also the range of semivolatile organics determined by GC/MS in EPA Method 625. Thus, besides providing an estimate of the type and concentration of petroleum products in a sample, the technique also serves as a "screen" for the presence of semivolatile compounds normally analyzed by GC/MS.

Due to weathering, soil attenuation, water solubilities and other related effects, product identifications cannot always be achieved by this technique. Furthermore, since the technique is constrained to compounds with boiling points greater than 70°C, it does not address the full range of gasoline components. In terms of the screening aspects of this method, the results do provide an indication as to the maximum concentration of any semivolatile compound that could be present in a sample.

Sample Requirements: Water - 1000 mL, Soil - 100 g

به . 1

1

I

}

1

Ì

ļ

ļ

.

| |

-

í -

.

Rocky Mountain Analytical Laboratory

ANALYTICAL RESULTS FOR DAMES & MOORE

MAY 20, 1988

Dan oubert Jeannie B. Howbert

Michael P. Phillips, Ph.D.

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Reviewed by:

I. OVERVIEW

On April 19, 1988, Enseco-Rocky Mountain Analytical Laboratory received 14 samples from Dames & Moore. A complete listing of tests requested, by sample, is given in Section III.

Enseco

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- I. Overview
 - A. Standard
 - B. Regulatory Refinery
- II. Sample Description Information
- III. Analytical Tests Assigned (not included)
- IV. Analytical Results
- V. Quality Control Report
- VI. Description of Analytical Methodology

Standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. All laboratory QC samples analyzed in conjunction with the samples in this project were within established control limits.

The detection limits for the volatile and semivolatile analyses for sample 67161-08 are elevated due to the presence of non-target compounds.

B. Regulatory Overview - Refinery

In 1984, the EPA distributed several versions of a subset of Appendix VIII constituents to be used principally for delisting petroleum refinery wastes (K048-K052). This list, commonly referred to as the "Skinner" list has been adapted for use in land treatment demonstrations, site closures and other related activities associated with petroleum refining RCRA programs. In early

1985, a modified version of the Skinner list appeared in "Petitions to Delist Hazardous Waste, A Guidance Manual" (EPA/530-SW-85-003). This revised list, as shown in Table I, consists of 12 metals and 43 organic compounds and currently forms the basis for analytical work on samples collected at petroleum refineries.

🖆 Enseco

The organic compounds have been classified as volatile and semivolatile (base/neutral/acid) compounds. Three of the "compounds" listed (xylenes, dichlorobenzenes and cresols) are measured and reported in terms of their specific isomers. Analytical standards are not available for two of the compounds, dibenz(a,h)acridine and methyl chrysene. Therefore, these compounds cannot be measured and analytical results are not presented for these compounds. Two of the remaining compounds, benzenethiol and pyridine cannot be recovered consistently from environmental samples and consequently, method detection limits for these compounds cannot be established. This statement is made based on the results of a methods evaluation study sponsored by API.

Table 2 summarizes the analytical methods used to determine Appendix VIII refinery constituents. For the organic compounds, methods are listed for both the complete list and a subset of this list analyzed by alternate methods.

Between October, 1983 and July, 1985, the EPA released three methods manuals and a "Guidance Manual" which were compendiums of modified SW-846 methods specifically adapted for the analysis of Appendix VIII constituents in petroleum refining wastes. The most useful document was an October, 1984 draft methods manual which was released but never formally distributed by EPA. These documents did not contain many of the important details that are critical to the successful analysis of environmental samples relevant to petroleum refineries.

Thus, although the methods used by Enseco-RMAL in the analysis of petroleum refinery wastes are based on these various EPA documents, the actual details of each method have been modified in order to generate acceptable data. These modifications have been based on information given in numerous documents, some of which are cited in Table 3. In addition to the documents listed in the bibliography, Enseco-RMAL an ongoing dialogue with EPA/OSW to ensure that the latest EPA guidance is incorporated into the analytical approach.

Enseco

The analytical data tables which follow present results for the Appendix VIII refinery hazardous constituents which are measurable.

Enseco

TABLE 1. APPENDIX VIII HAZARDOUS CONSTITUENT SUBSET FOR PETROLEUM REFINERY STUDIES*

Metals

Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Lead Mercury Nickel Selenium Vanadium

Volatile Organics

Benzene Carbon disulfide Chlorobenzene Chloroform 1,2-Dibromoethane 1,2-Dichloroethane 1,4-Dioxane Methyl ethyl ketone Styrene Ethyl benzene Toluene Xylenes1

Base/Neutral Organics

Anthracene Benz(a)anthracene Benzo(b)fluoranthene Base/Neutral Organics (Cont.)

Benzo(k)fluoranthene Benzo(a)pyrene Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate Chrysene Dibenz(a,h)acridine² Dibenz(a,h)anthracene Di-n-butyl phthalate Dichlorobenzenes¹ Diethyl phthalate 7,12-Dimethylbenz(a)anthracene Dimethyl phthalate Di-n-octyl phthalate Fluoranthene Indene Methyl chrysene² 1-Methylnaphthalene Naphthalene Phenanthrene Pyrene Pyridine³ Quinoline

Acid Organics

Benzenethiol³ Cresols¹ 2,4-Dimethylphenol 2,4-Dinitrophenol 4-Nitrophenol Phenol

*"Petitions to Delist Hazardous Wastes, A Guidance Manual," EPA/530-SW-85-003, April, 1985.

- 1) Reported as ortho-, meta-, and para-isomers.
- 2) No analytical standard available.
- 3) Not consistently recoverable using standard analytical methods.

TABLE 2. SUMMARY OF ANALYTICAL METHODS FOR REFINERY CONSTITUENTS

Metals	Method
Antimony	7041
Arsenic	7060
Lead	7421
Mercury	7470
Selenium	7740
ICP Scan (Ba, Be, Cd, Cr, Co, Ni, V)	6010

	GC/MS Method	Screening Method
Volatile Organics	8240	8020ª
Semivolatile Organics	8270	8310b

a) Volatile Aromaticsb) Polynuclear Aromatic Hydrocarbons

TABLE 3. BIBLIOGRAPHY

Enseco

A. Documents Pertaining to Appendix VIII Constituents

- January, 1984 letter from Myles Morse pertaining to delisting petitions as well as land treatment demonstrations, including sampling procedures and data requirements.
- (2) March, 1984 letter to delisting petitioners from Barbara Bush revising target parameters.
- (3) April, 1984 memo from John Skinner to Permit Branch Chiefs concerning land treatment containing target parameters and analytical methods.
- (4) May, 1984 memo from John Skinner clarifying previous memo.
- (5) September, 1984 letter to Petitioners from Barbara Bush distributing Refinery Handbook.
- (6) November, 1984 letter from Eileen Claussen to all delisting petitioners describing new RCRA requirements.
- (7) May 3, 1985 RMAL Memo.
- (8) January 8, 1985 RMAL letter to Eileen Claussen, EPA-OSW.

B. Documents Pertaining to Analytical Methods

- "Handbook for the Analysis of Petroleum Refinery Residuals and Waste", October, 1984 - prepared by Radian Corporation for EPA/OSW.
- (2) "Evaluation of the Applicability of the SW-846 Manual To Support All RCRA Subtitle C Testing", December 20, 1984 - prepared by Rocky Mountain Analytical Laboratory for API.
- (3) "Comments on the 'Handbook for the Analysis of Petroleum Refinery Residuals and Waste, October, 1984'", December 12, 1984 - Prepared by Rocky Mountain Analytical Laboratory for API.
- (4) "Comments on the 'Handbook for the Analysis of Petroleum Refinery Residuals and Waste, April 2, 1984'", August 15, 1984 - Prepared by Rocky Mountain Analytical Laboratory for API.
- (5) "Handbook for the Analysis of Petroleum Refinery Residuals and Waste", April 2, 1984 - prepared by S-Cubed for EPA/OSW.
- (6) EPA document "Guidance for the Analysis of Refinery Wastes", July 5, 1985.
- (7) "Recovery and Detection Limits of Organic Compounds in Petroleum Refinery Wastes", January 25, 1985.
- (8) SW-846 "Test Methods for Evaluating Solid Waste, Physical Chemical Methods" USEPA, 2nd Edition, 1982.
- (9) 40 CFR 136 "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act."

II. SAMPLE DESCRIPTION INFORMATION

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique five digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the five digit project code and the sample sequence number.

Enseco

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

SAMPLE DESCRIPTION INFORMATION

for

DAMES AND MOORE

RMAL <u>Sample No.</u>	Sample Description	Sample Type	Date <u>Sampled</u>	Date <u>Received</u>
67161-001-00	BH-7 5'-7'	Solid	04/17/88	04/19/88
67161-002-00	BH-7 10'-12'	Solid	04/17/88	04/19/88
67161-003-00	BH-7 15'-17'	Solid	04/17/88	04/19/88
67161-004-00	BH-10 12'	Solid	04/17/88	04/19/88
67161-005-00	BH-10 15'	Solid	04/17/88	04/19/88
67161-006-00	BH-10 17'	Solid	04/17/88	04/19/88
67161-007-00	BH-2 5'-7'	Solid	04/18/88	04/19/88
67161-008-00	BH-2 7'	Solid	04/18/88	04/19/88
67161-009-00	BH-2 10'-12'	Solid	04/18/88	04/19/88
67161-010-00	BH-2 15'-17'	Solid	04/18/88	04/19/88
67161-011-00	BH-3 5'-7'	Solid	04/17/88	04/19/88
67161-012-00	BH-3 11'	Solid	04/17/88	04/19/88
67161-013-00	BH-3 10'-12'	Solid	04/17/88	04/19/88
67161-014-00	BH-3 15'-17'	Solid	04/17/88	04/19/88

IV. ANALYTICAL RESULTS

The analytical results for this project are presented in the following data tables. The results are presented by sample, by test, with tests reported in the following order: GC/MS, Chromatography, Metals and Inorganics.

Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed. The authorization data is the date when the project was defined by the client such that laboratory work could begin.

Data sheets contain a listing of the parameters measured in each test, the analytical results and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content. All data is "blank corrected", i.e. the level of contamination, if any, found in the laboratory blank is subtracted from the analytical result before it is reported.

In addition, surrogate recovery data is presented for all GC/MS analyses. The surrogate recovery is an indication of the affect of the sample matrix on the performance of the method. The results from the Standard Enseco QA/QC Program, which generates data which are independent of matrix effects, is given in Section V.

The analytical data reported are subject to the following limitations of the analytical methodology:

GC/MS

Volatile Organics

 a) The cis- and trans-isomers of dichloroethylene cannot be distinguished using EPA Method 624. All dichloroethylene present is reported as trans-dichloroethylene.

Semivolatile Organics

 a) Benzo(b) and benzo(k) fluoranthene cannot be differentiated based on their mass spectra; retention times are almost identical. The isomer which is the closest in retention time to the sample is reported.

🖆 Enseco

- b) 1,2-diphenylhydrazine is measured as azobenzene.
- c) N-Nitrosodiphenylamine decomposes in the gas chromatographic inlet to diphenylamine.

Chromatography

Methods 601 and 8010

- a) Dichlorodifluoromethane (Freon 12) and vinyl chloride coelute under the specified analytical conditions. All data are reported as a combined value for the two compounds.
- b) Dibromochloromethane, cis-1,3-dichloropropene and
 1,1,2-trichloroethane are unresolved. The three compounds are reported as a single combined value.
- c) Tetrachloroethene and 1,1,2,2-tetrachloroethane coelute and are reported as a combined result.

Method 602 and 8020

a) The ortho and para isomers of xylene coelute and are reported as a single concentration value.

TOTAL CHROMATOGRAPHABLE ORGANICS

🖅 Enseco

Total Chromatographable Organics (TCO) were determined from a methylene chloride extraction and subsequent analysis by capillary column gas chromatography with a flame ionization detector (GC/FID). The TCO result was based on the entire area under the chromatogram as compared to the response to eicosane. The detection limit is based on the response of diesel.

The pattern of the FID chromatogram (fingerprint) was compared to fingerprints of various petroleum products. If, on the judgement of the analyst, the fingerprint of the sample matched the fingerprint of a petroleum product, the concentration of the product was also reported. If components of a particular product were present, but the complexity of the overall chromatogram was such that it could not be reliably determined if the product was or was not present, then, the result for that product contains the following statement: "Primary components of this product were detected in the sample. Due to the overall complexity of the chromatogram, reliable identification of this product cannot be achieved."

In addition to reporting a TCO value, the results contain boiling point information. This boiling point range represents the range of 80 to 90 percent of the compounds detected in the sample.

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-7 5'-7'

Laboratory ID: 67161-001

Enseco ID: 67161-001

Matrix: Solid	Sampled: 04/17/88	Received: 04/19/88
Authorized: 04/19/88		Analyzed: 04/28/88

<u>Parameter</u>	<u>Result</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/kg	500
Carbon tetrachloride	N .D.	ug/kg	50
Chlorobenzene	N.D.	ug/kg	2 00
Chloroethane	N.D.	ug/kg	500
Chloroform	N.D.	ug/kg	50
Dibromochloromethane	N.D.	ug/kg	100
Bromodichloromethane	N.D.	ug/kg	100
1,1-Dichloroethane	N.D.	ug/kg	50
1,2-Dichloroethane	N.D.	ug/kg	100
1,1-Dichloroethene	N.D.	ug/kg	50
1,2-Dichloropropane	N.D.	ug/kg	100
cis-1,3-Dichloropropene	N.D.	ug/kg	200
trans-1,3-Dichloropropene	N.D.	ug/kg	50
Bromomethane	N.D.	ug/kg	500
Chloromethane	N.D.	ug/kg	500
Methylene chloride	N.D.	ug/kg	500
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	100
Tetrachloroethene	N.D.	ug/kg	50
trans-1,2-Dichloroethene	N.D.	ug/kg	50
1,1,1-Trichloroethane	N.D.	ug/kg	50
1,1,2-Trichloroethane	N.D.	ug/kg	100
Trichloroethene	N.D.	ug/kg	100
Vinyl chloride	N.D.	ug/kg	100
1,1,2-Trichloro-		-01-0	
1,2,2-trifluoroethane	N.D.	ug/kg	100
1,2-Dibromoethane (EDB)	N.D.	ug/kg	200

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND I Client ID: BH-7 5'-7'	MOORE			
Laboratory ID: 67161-001	Enseco ID: 6	7161-001		
Matrix: Solid	Sampled: 04/17/88	Received:	04/19/88	
Authorized: 04/19/88		Analyzed:	04/28/88	
Parameter	Res	<u>ult</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	N	D.	ug/kg	50
Chlorobenzene	N.	D.	ug/kg	50
1,2-Dichlorobenzene	N.	D.	ug/kg	50
1,3-Dichlorobenzene	N.	D.	ug/kg	50
1,4-Dichlorobenzene	N	D.	ug/kg	50
Ethylbenzene	N	D.	ug/kg	50
Toluene	N	D.	ug/kg	50
m-Xylene	N	D.	ug/kg	50
o & p-Xylene(s)	N.	D.	ug/kg	50

N.D. = Not detected

Reported by: Helmer Morse

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-7 5'-7'

Laboratory ID: 67161-001

Enseco ID: 67161-001

Matrix: Solid Authorized: 04/19/88	Sampleo	d: 04/17/88	Received: 04/19/88		
Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Oil Water Solids	2.3 13.9 83.8	% % %	0.1 0.1 0.1		05/03/88 05/03/88 05/03/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-7 10'-12'

Laboratory ID: 67161-002

Enseco ID: 67161-002

Matrix: Solid	Sampled: 04/17/88	Received:	04/19/88	
Authorized: 04/19/88	······································	Analyzed:	04/28/88	·
Parameter	Resi	<u>ilt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.	D.	ug/kg	500
Carbon tetrachloride	N.:	D.	ug/kg	50
Chlorobenzene	N.:	D.	ug/kg	200
Chloroethane	N.:	D.	ug/kg	5 00
Chloroform	N	D.	ug/kg	50
Dibromochloromethane	N.:	D.	ug/kg	100
Bromodichloromethane	N .:	D.	ug/kg	100
1,1-Dichloroethane	N.:	D.	ug/kg	50
1,2-Dichloroethane	N.:	D.	ug/kg	100
1,1-Dichloroethene	N.:	D.	ug/kg	50
1,2-Dichloropropane	N .:	D.	ug/kg	100
cis-1,3-Dichloropropene	N .:	D.	ug/kg	200
trans-1,3-Dichloropropene	N.:	D.	ug/kg	50
Bromomethane	N.:	D.	ug/kg	500
Chloromethane	N.:	D.	ug/kg	500
Methylene chloride	N	D.	ug/kg	500
1,1,2,2-Tetrachloroethane	N.:	D.	ug/kg	100
Tetrachloroethene	N .:	D.	ug/kg	50
trans-1,2-Dichloroethene	N .:	D.	ug/kg	50
1,1,1-Trichloroethane	N .:	D.	ug/kg	50
1,1,2-Trichloroethane	N.:	D.	ug/kg	100
Trichloroethene	N.:	D.	ug/kg	100
Vinyl chloride	N.:	D.	ug/kg	100
1,1,2-Trichloro-				
1,2,2-trifluoroethane	N.	D.	ug/kg	100
1,2-Dibromoethane (EDB)	N.I	D.	ug/kg	200

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Susan Brillante

- -- --- -- --- ---

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-7 10'-12'

Laboratory ID: 67161-002

Enseco ID: 67161-002

Matrix: Solid Authorized: 04/19/88	Sampled: 04/17/88		Received: 04/19/88 Analyzed: 04/28/88	
Parameter	Re	<u>esult</u>	Units (as received)	Reporting <u>Limit</u>
Benzene		N.D.	ug/kg	5 0
Chlorobenzene		N.D.	ug/kg	50
1,2-Dichlorobenzene		N.D.	ug/kg	50
1,3-Dichlorobenzene		N.D.	ug/kg	50
1,4-Dichlorobenzene		N.D.	ug/kg	50
Ethylbenzene		N.D.	ug/kg	50
Toluene		N.D.	ug/kg	50
m-Xylene		N.D.	ug/kg	50
o & p-Xylene(s)		N.D.	ug/kg	50

N.D. = Not detected Reported by: Helmer Morse

Approved by: Susan Brillante

METALS PARAMETERS

Client Name: DAMES AND MOORE Client ID: BH-7 10'-12' Enseco ID: 67161-002 Laboratory ID: 67161-002 Matrix: Solid Sampled: 04/17/88 Received: 04/19/88 Authorized: 04/19/88 Units (as Reporting Analytical received) <u>Limit</u> <u>Method</u> **Parameter** <u>Result</u> **Analyzed** Total Organic Lead N.D. mg/kg 1 Enseco 05/03/88

N.D. = Not detected

Approved by: Will Pratt

ANALYTICAL RESULTS FOR TOTAL CHROMATOGRAPHABLE ORGANICS

Client Name: Dames & Moore Client ID: BH- 7 (10-12') Laboratory ID: 67161-002 Matrix: Solid Authorized: 04/19/88	Sampled: Prepared:	Enseco ID: 04/17/88 04/21/88	67161-002 Received: Analyzed:	04/19/88 04/25/88
Total Chromatographable Orga Initial Boiling Point*	nics	<u>Value</u> ND	<u>Units</u> ug/kg	Detection Limit 1,700
Final Boiling Point* Gasoline Stoddard Solvent Jet Fuel Kerosene Diesel Motor Oil		ND ND ND ND ND ND	ος ος ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	- 17,000 17,000 17,000 17,000 17,000 330,000

- * The initial and final boiling points define the range of compounds detected. The method is capable of detecting compounds between 100°C and 500°C.
- ** Primary components of this product were detected in the sample. Due to the overall complexity of the chromatogram, reliable identification of this product cannot be achieved.

🔄 Enseco

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE Client ID: BH-7 10'-12' Laboratory ID: 67161-002 Enseco ID: 67161-002 Matrix: Solid Sampled: 04/17/88 Received: 04/19/88 Authorized: 04/19/88 Reporting Analytical Parameter <u>Result</u> <u>Units</u> <u>Limit</u> Method <u>Analyzed</u> Oil 2.7 % 0.1 05/03/88 Water 21.6 % 0.1 05/03/88 Solids 75.7 % 0.1 05/03/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-7 15'-17'

Authorized: 04/19/88

Laboratory ID: 67161-003

Enseco ID: 67161-003

Matrix: Solid Sampled: 04/17/88

Received: 04/19/88

Analyzed: 04/28/88

Parameter	Result	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/kg	500
Carbon tetrachloride	N.D.	ug/kg	50
Chlorobenzene	N.D.	ug/kg	200
Chloroethane	N.D.	ug/kg	500
Chloroform	N.D.	ug/kg	50
Dibromochloromethane	N.D.	ug/kg	100
Bromodichloromethane	N.D.	ug/kg	100
1,1-Dichloroethane	N.D.	ug/kg	50
1,2-Dichloroethane	N.D.	ug/kg	100
1,1-Dichloroethene	N.D.	ug/kg	50
1,2-Dichloropropane	N.D.	ug/kg	100
cis-1,3-Dichloropropene	N.D.	ug/kg	200
trans-1,3-Dichloropropene	N.D.	ug/kg	50
Bromomethane	N.D.	ug/kg	500
Chloromethane	N.D.	ug/kg	500
Methylene chloride	N.D.	ug/kg	500
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	100
Tetrachloroethene	N.D.	ug/kg	50
trans-1,2-Dichloroethene	N.D.	ug/kg	50
1,1,1-Trichloroethane	N.D.	ug/kg	50
1,1,2-Trichloroethane	N.D.	ug/kg	100
Trichloroethene	N.D.	ug/kg	100
Vinyl chloride	N.D.	ug/kg	100
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/kg	100
1,2-Dibromoethane (EDB)	N.D.	ug/kg	200

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Susan Brillante

50

50

50

50

50

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-7 15'-17'

1,4-Dichlorobenzene

Ethylbenzene

o & p-Xylene(s)

Toluene

m-Xylene

Laboratory ID: 67161-003

Enseco ID: 67161-003

Matrix: Solid	Sampled: 04/17/88	Rece	eived: 04/19/88	
Authorized: 04/19/88		Ana	lyzed: 04/28/88	
Parameter	Re	sult	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	1	N.D.	ug/kg	50
Chlorobenzene	1	N.D.	ug/kg	50
1,2-Dichlorobenzene	1	N.D.	ug/kg	50
1,3-Dichlorobenzene	1	N.D.	ug/kg	5 0

N.D.

N.D.

N.D.

N.D.

N.D.

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Susan Brillante

🗧 🗄 Enseco

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-7 15'-17'

Laboratory ID: 67161-003

Enseco ID: 67161-003

Matrix: Solid Authorized: 04/19/88	Sampleo	1: 04/17/88	Received: 04/19/88		
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Oil	1.5	%	0.1		05/03/88
Water Solids	17.8 80.7	% %	0.1 0.1		05/03/88 05/03/88

N.D. = Not detected

Approved by: Lindsay Breyer

_

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND MOORE Client ID: BH-10 12'

Laboratory ID: 67161-004

Enseco ID: 67161-004

Laboratory ID: 6/161-004	Enseco ID: 6/161-004			
Matrix: Solid	Sampled: 04/17/88	Rece	eived: 04/19/88	
Authorized: 04/19/88		Anal	yzed: 04/28/88	
Parameter	Res	<u>alt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.	D.	ug/kg	500
Carbon tetrachloride	N.	D.	ug/kg	50
Chlorobenzene	N.	D.	ug/kg	200
Chloroethane	N.	D.	ug/kg	500
Chloroform	N.	D.	ug/kg	50
Dibromochloromethane	N.	D.	ug/kg	100
Bromodichloromethane	N.	D.	ug/kg	100
1,1-Dichloroethane	N.	D.	ug/kg	50
1,2-Dichloroethane	N.	D.	ug/kg	100
1,1-Dichloroethene	N.	D.	ug/kg	50
1,2-Dichloropropane	N.	D.	ug/kg	100
cis-1,3-Dichloropropene	N.	D.	ug/kg	200
trans-1,3-Dichloropropene	N.	D.	ug/kg	50
Bromomethane	N.	D.	ug/kg	500
Chloromethane	N.	D.	ug/kg	5 00
Methylene chloride	N.	D.	ug/kg	500
1,1,2,2-Tetrachloroethane	N.	D.	ug/kg	100
Tetrachloroethene	N.	D.	ug/kg	50
trans-1,2-Dichloroethene	N.	D.	ug/kg	5 0

N.D. = Not detected

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,2-trifluoroethane

1,2-Dibromoethane (EDB)

Trichloroethene

1,1,2-Trichloro-

Vinyl chloride

Reported by: Helmer Morse

Approved by: Susan Brillante

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

Sample: 67161-004

50

100

100

100

100

200

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-10 12'

Laboratory ID: 67161-004

Enseco ID: 67161-004

Matrix: Solid Authorized: 04/19/88	Sampled: 04/17/88	Received: 04/19 Analyzed: 04/28		
Parameter	Resi		nits (as ceived)	Reporting <u>Limit</u>
Benzene	410) ug	/kg	200
Chlorobenzene	N.	•	/kg	200
1,2-Dichlorobenzene	N .:		/kg	200
1,3-Dichlorobenzene	N.I		/kg	200
1,4-Dichlorobenzene	N.I	D. ug	/kg	200
Ethylbenzene	10000		/kg	200
Toluene	87		/kg	200
m-Xylene	63000		/kg	200
o & p-Xylene(s)	13000		/kg	200

N.D. = Not detected

Reported by: Helmer Morse

l i

Approved by: Susan Brillante

05/03/88

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-10 15'

Solids

Laboratory ID: 67161-005

Enseco ID: 67161-005

0.1

Matrix: Solid Sampled: 04/17/88 Received: 04/19/88 Authorized: 04/19/88 Reporting Analytical **Parameter** <u>Result</u> <u>Units</u> <u>Limit</u> <u>Method</u> **Analyzed** Oil 0.7 % 0.1 05/03/88 Water % 05/03/88 15.8 0.1

%

83.5

N.D. = Not detected

Approved by: Lindsay Breyer

Enseco

ANALYTICAL RESULTS FOR TOTAL CHROMATOGRAPHABLE ORGANICS

Client Name: Dames & Moore Client ID: BH-10 17' Laboratory ID: 67161-006 Matrix: Solid Authorized: 04/19/88	Sampled: Prepared:	Enseco ID: 04/17/88 04/21/88	67161-006 Received: Analyzed:	04/19/88 04/25/88
		Value	Units	Detection Limit
Total Chromatographable Orga Initial Boiling Point* Final Boiling Point* Gasoline Stoddard Solvent Jet Fuel Kerosene Diesel Motor Oil	anics	40,000 100 330 ND ND ND ND ND ND	ug/kg oc ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	1,700 - 17,000 17,000 17,000 17,000 17,000 330,000

- * The initial and final boiling points define the range of compounds detected. The method is capable of detecting compounds between 100°C and 500°C.
- ** Primary components of this product were detected in the sample. Due to the overall complexity of the chromatogram, reliable identification of this product cannot be achieved.

Ì

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client ID: BH-2 5'-7'				
		1(1 007		
Laboratory ID: 67161-007	Enseco ID: 6'	/161-00/		
Matrix: Solid	Sampled: 04/18/88	Received	1: 04/19/88	
Authorized: 04/19/88		Analyze	d: 05/02/88	
<u>Parameter</u>	Resi	<u>ilt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.	D.	ug/kg	10000
Carbon tetrachloride	N.	D.	ug/kg	1000
Chlorobenzene	N.	D.	ug/kg	40 00
Chloroethane	N.	D.	ug/kg	10000
Chloroform	N.	D.	ug/kg	1000
Dibromochloromethane	N.	D.	ug/kg	200 0
Bromodichloromethane	N.	D.	ug/kg	2000
1,1-Dichloroethane	N.	D.	ug/kg	1000
1,2-Dichloroethane	N.	D.	ug/kg	2000
1,1-Dichloroethene	N.	D.	ug/kg	1000
1,2-Dichloropropane	N.	D.	ug/kg	20 00
cis-1,3-Dichloropropene	N.	D.	ug/kg	40 00
trans-1,3-Dichloropropene	N.	D.	ug/kg	1000
Bromomethane	N.	D.	ug/kg	10000
Chloromethane	N.	D.	ug/kg	10000
Methylene chloride	N.	D.	ug/kg	10000
1,1,2,2-Tetrachloroethane	N.	D.	ug/kg	20 00
Tetrachloroethene	N.	D.	ug/kg	1000
trans-1,2-Dichloroethene	N.	D.	ug/kg	1000
1,1,1-Trichloroethane	N.	D.	ug/kg	1000
1,1,2-Trichloroethane	N.	D.	ug/kg	2000
Trichloroethene	N.	D.	ug/kg	2000
Vinyl chloride	N.	D.	ug/kg	2000
1,1,2-Trichloro-				
1,2,2-trifluoroethane	N.	D.	ug/kg	2000
1.2. Dibromosthana (EDP)	N	D	$n \sigma / k \sigma$	4000

N.D. = Not detected

Reported by: Helmer Morse

1

1,2-Dibromoethane (EDB)

Approved by: Susan Brillante

N.D.

Sample: 67161-007

ug/kg

4000

ł

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-2 5'-7'

Laboratory ID: 67161-007

Enseco ID: 67161-007

Matrix: Solid Authorized: 04/19/88	Sampled: 04/18/88		ed: 04/19/88 ed: 05/02/88	
Parameter	Resu	<u></u>	Units (as received)	Reporting <u>Limit</u>
Benzene	21000)	ug/kg	1000
Chlorobenzene	N.I).	ug/kg	1000
1,2-Dichlorobenzene	N.)) .	ug/kg	1000
1,3-Dichlorobenzene	N .1	Э.	ug/kg	1000
1,4-Dichlorobenzene	N.I).	ug/kg	1000
Ethylbenzene	39000)	ug/kg	1000
Toluene	170000	1	ug/kg	1000
m-Xylene	210000	1	ug/kg	1000
o & p-Xylene(s)	120000	1	ug/kg	1000

N.D. = Not detected Reported by: Helmer Morse

Approved by: Susan Brillante

INORGANIC PARAMETERS

Client Name: DAMES ANI) MOORE				
Client ID: BH-2 5'-7'					
Laboratory ID: 67161-007		Enseco ID:	67161-007		
Matrix: Solid	Sampled: 04/18/88		Received: 04/19/88		
Authorized: 04/19/88					
Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Oil	1.0	%	0.1		05/03/88
Water	13.9	%	0.1		05/03/88
Solids	85.1	%	0.1		05/03/88

N.D. = Not detected

1

Approved by: Lindsay Breyer

REFINERY HAZARDOUS CONSTITUENT VOLATILES

EPA METHOD 8240

Client Name: DAMES AND MOORE

Client ID: BH-2 7'

Laboratory ID: 67161-008

Enseco ID: 67161-008

Dato 1 atory 12. 07101 000					
Matrix: Solid	Sampled: 04/18/88	Re	ceived: 04/19/88		
Authorized: 04/19/88	Analyzed: 05/18/88				
Parameter	Resi	<u>ılt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>	
Benzene	N.	D.	ug/kg	5000	
Carbon disulfide	N.	D.	ug/kg	50 00	
Chlorobenzene	N.	D.	ug/kg	5000	
Chloroform	N.	Ď.	ug/kg	50 00	
1,2-Dibromoethane	N.	D.	ug/kg	5000	
1,2-Dichloroethane	N.	D.	ug/kg	5000	
1,4-Dioxane	N.	D.	ug/kg	100000	
Methyl ethyl ketone	N.	D.	ug/kg	25000	
Styrene	N.	D.	ug/kg	5000	
Ethylbenzene	1500	C	ug/kg	5000	
Toluene	6500	C	ug/kg	5000	
m-Xylene	99 00	C	ug/kg	5000	
o & p-Xylene(s)	6900	C	ug/kg	5000	
Surrogate					
Toluene-D8	10	0	%	-	
Bromofluorobenzene(BFB)	9	9	%	-	

100

N.D. = Not detected

1,2-Dichloroethane-D4

Reported by: Daniel Albritton

Sample: 67161-008

%

i.

REFINERY HAZARDOUS CONSTITUENT SEMIVOLATILES

Client Name: DAMES AND MOORE							
Client ID: BH-2 7'	Client ID: BH-2 7'						
Laboratory ID: 67161-008	Enseco	ID: 67161	-008				
Matrix: Solid	Sampled: 04/18/88 Received: 04/19/88						
Authorized: 04/19/88	Prepared: 04/22/88		Analyzed: 04	4/26/88			
				Units (as	Reporting		
<u>Parameter</u>		<u>Result</u>		received)	Limit		
Anthracene		N.D.		ug/kg	99 0		
Benzo(a)anthracene		N.D.		ug/kg	990		
Benzo(b)fluoranthene		N.D.		ug/kg	9 90		
Benzo(k)fluoranthene		N.D.		ug/kg	9 90		
Benzo(a)pyrene		N.D.		ug/kg	9 90		
bis(2-Ethylhexyl)phthalate		4400		ug/kg	9 90		
Butylbenzyl phthalate		N.D.		ug/kg	99 0		
Chrysene		N.D.		ug/kg	99 0		
Dibenz(a,h)anthracene		N.D.		ug/kg	990		
Di-n-butyl phthalate		N.D.		ug/kg	990		
1,2-Dichlorobenzene		N.D.		ug/kg	990		
1,3-Dicholrobenzene		N.D.		ug/kg	990		
1,4-Dichlorobenzene		N.D.		ug/kg	990		
Diethyl phthalate		N.D.		ug/kg	990		
7,12-Dimethylbenzanthracene		N.D.		ug/kg	99 0		
Dimethyl phthalate		N.D.		ug/kg	99 0		
Di-n-octyl phthalate		N.D.		ug/kg	99 0		
Fluoranthene		N.D.		ug/kg	99 0		
Indene		N.D.		ug/kg	99 0		
1-Methylnaphthalene		6500		ug/kg	99 0		
Naphthalene		5800		ug/kg	990		
Phenanthrene		1200		ug/kg	99 0		
Pyrene		N.D.		ug/kg	99 0		
Pyridine		N.D.		ug/kg	-		
Quinoline		N.D.		ug/kg	990		
Benzenethiol		N.D.		ug/kg	-		
o-Cresol		N.D.		ug/kg	99 0		
p & m-Cresol		N.D.		ug/kg	99 0		
2,4-Dimethylphenol		N.D.		ug/kg	990		
2,4-Dinitrophenol		N.D.		ug/kg	4800		
4-Nitrophenol		N .D.		ug/kg	4800		

N.D. = Not detected

1

REFINERY HAZARDOUS CONSTITUENT SEMIVOLATILES (CONT.)

Client Name: DAMES AND	MOORE				
Client ID: BH-2 7'					
Laboratory ID: 67161-008	Enseco ID: 67	161-008			
Matrix: Solid	Sampled: 04/18/88 Received: 04/19/88				
Authorized: 04/19/88	Prepared: 04/22/88	Analyzed: 04/26/88			
Parameter	Resu	Units (as t received)	Reporting <u>Limit</u>		
Phenol	N.E	ug/kg	990		
Surrogate					
Nitrobenzene-D5	93	%	-		
2-Fluorobiphenyl	82	%	-		
Terphenyl-D14	78	%	-		
Phenol-D5	65	%	-		
2-Fluorophenol	49	%	-		
2,4,6-Tribromophenol	69	%	-		

N.D. = Not detected

Reported by: Julie Niermann

Approved by: Jeffrey Lowry

- Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-2 10'-12'

Laboratory ID: 67161-009

Enseco ID: 67161-009

Laboratory ID: 67161-009 Enseco ID: 67161-009				
Matrix: Solid	Sampled: 04/18/88	R	eceived: 04/19/88	
Authorized: 04/19/88		A	nalyzed: 05/02/88	
Parameter	Res	<u>ult</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N	D.	ug/kg	3400
Carbon tetrachloride	N	.D.	ug/kg	340
Chlorobenzene	N	.D.	ug/kg	1300
Chloroethane	N	.D.	ug/kg	3400
Chloroform	N	.D.	ug/kg	34 0
Dibromochloromethane	N	.D.	ug/kg	670
Bromodichloromethane	N	.D.	ug/kg	67 0
1,1-Dichloroethane	N	.D.	ug/kg	340
1,2-Dichloroethane	N	.D.	ug/kg	67 0
1,1-Dichloroethene	N	.D.	ug/kg	340
1,2-Dichloropropane	N	.D.	ug/kg	670
cis-1,3-Dichloropropene	N	.D.	ug/kg	1300
trans-1,3-Dichloropropene	N	.D.	ug/kg	340
Bromomethane	N	.D.	ug/kg	3400
Chloromethane	N	.D.	ug/kg	34 00
Methylene chloride	N	.D.	ug/kg	34 00
1,1,2,2-Tetrachloroethane	N	.D.	ug/kg	67 0
Tetrachloroethene	N	.D.	ug/kg	340
trans-1,2-Dichloroethene	N	.D.	ug/kg	340
1,1,1-Trichloroethane	N	.D.	ug/kg	340
1,1,2-Trichloroethane	N	.D.	ug/kg	67 0
Trichloroethene	N	.D.	ug/kg	670
Vinyl chloride	N	.D.	ug/kg	67 0
1,1,2-Trichloro-				
1,2,2-trifluoroethane	N	.D.	ug/kg	670

N.D. = Not detected

Reported by: Helmer Morse

1,2-Dibromoethane (EDB)

Approved by: Susan Brillante

N.D.

Sample: 67161-009

1300

ug/kg

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-2 10'-12'

Laboratory ID: 67161-009

Enseco ID: 67161-009

Matrix: Solid Authorized: 04/19/88	Sampled: 04/18/88	ived: 04/19/88 yzed: 05/02/88		
Parameter	Resi	<u>ilt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	250)	ug/kg	340
Chlorobenzene	N.	D.	ug/kg	340
1,2-Dichlorobenzene	N.	D.	ug/kg	340
1,3-Dichlorobenzene	N.	D,	ug/kg	340
1,4-Dichlorobenzene	N.	D.	ug/kg	340
Ethylbenzene	700)	ug/kg	340
Toluene	2700)	ug/kg	340
m-Xylene	3900)	ug/kg	340
o & p-Xylene(s)	2100)	ug/kg	340

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Susan Brillante

METALS PARAMETERS TOTAL METALS

Client Name: DAMES AND MOORE

Client ID: BH-2 7'

Laboratory ID: 67161-008

Enseco 1D: 67161-008

Matrix: Solid

Sampled: 04/18/88

Received: 04/19/88

Authorized: 04/19/88

Parameter	Result	Units (as <u>received)</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Antimony	N .D.	mg/kg	5	6010	04/25/88
Arsenic	1.0	mg/kg	0.3	7060	05/06/88
Barium	110	mg/kg	0.5	6010	04/25/88
Beryllium	0.2	mg/kg	0.1	6010	04/25/88
Cadmium	N.D.	mg/kg	0.5	6010	04/25/88
Chromium	3	mg/kg	1	6010	04/25/88
Cobalt	2	mg/kg	1	6010	04/25/88
Lead	13	mg/kg	5	6010	04/25/88
Mercury	N.D.	ug/kg	50	7471	04/29/88
Nickel	N.D.	mg/kg	4	6010	04/25/88
Selenium	N.D.	mg/kg	0.4	7740	05/05/88
Vanadium	10	mg/kg	1	6010	04/25/88

N.D. = Not detected

Approved by: Will Pratt

Enseco

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-2 10'-12'

Laboratory ID: 67161-009

Enseco ID: 67161-009

Matrix: Solid Authorized: 04/19/88	Sampleo	i: 04/18/88	Received: 04/19/88			
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed	
Oil Water	0.8 18.4	% %	0.1 0.1		05/03/88 05/03/88	
Solids	80.8	%	0.1		05/03/88	

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND	MOORE						
Client ID: BH-2 15'-17'							
Laboratory ID: 67161-010	Enseco ID: 67	7161-010					
Matrix: Solid	Sampled: 04/18/88 Received: 04/19/88						
Authorized: 04/19/88		Analyzed: 04/28/88					
Parameter	Resu	Units lt receive	• • •				
Bromoform	N.I	D. ug/kg	500				
Carbon tetrachloride	N.I	D. ug/kg	50				
Chlorobenzene	N.I	D. ug/kg	200				
Chloroethane	N.I	D. ug/kg	5 00				
Chloroform	N.I	D. ug/kg	50				
Dibromochloromethane	N.I	D. ug/kg	100				
Bromodichloromethane	N.I	D. ug/kg					
1,1-Dichloroethane	N.I	D. ug/kg	50				
1,2-Dichloroethane	N.I	D. ug/kg	100				
1,1-Dichloroethene	N.I	D. ug/kg	50				
1,2-Dichloropropane	N.I	D. ug/kg	100				
cis-1,3-Dichloropropene	N.I	D. ug/kg					
trans-1,3-Dichloropropene	N.I	D. ug/kg	50				
Bromomethane	N.I	D. ug/kg	500				
Chloromethane	N.I	D. ug/kg	500				
Methylene chloride	N.I	D. ug/kg	5 00				
1,1,2,2-Tetrachloroethane	N.I	ug/kg	100				
Tetrachloroethene	N.I	D. ug/kg	50				
trans-1,2-Dichloroethene	N.I	D. ug/kg	50				
			c 0				

N.D. = Not detected

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,2-trifluoroethane

1,2-Dibromoethane (EDB)

Trichloroethene

1,1,2-Trichloro-

Vinyl chloride

Reported by: Helmer Morse

Approved by: Susan Brillante

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

Sample: 67161-010

50

100

100

100

100

200

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

- 🚝 Enseco

.....

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

.....

Client Name: DAMES AND I	MOORE		
Client ID: BH-2 15'-17'			
Laboratory ID: 67161-010	Enseco ID: 671	61-010	
Matrix: Solid	Sampled: 04/18/88	Received: 04/19/88	
Authorized: 04/19/88		Analyzed: 04/28/88	
Parameter	Result	Units (as received)	Reporting <u>Limit</u>
Benzene	N.D.	ug/kg	50
Chlorobenzene	N.D.	ug/kg	50
1,2-Dichlorobenzene	N.D.	ug/kg	50
1,3-Dichlorobenzene	N.D.	ug/kg	50
1,4-Dichlorobenzene	N.D.	ug/kg	50
Ethylbenzene	N.D.	ug/kg	50
Toluene	N.D.	ug/kg	50
m-Xylene	N.D.	ug/kg	50
o & p-Xylene(s)	N.D.	ug/kg	50

N.D. = Not detected Reported by: Helmer Morse

11 1

Approved by: Susan Brillante

INORGANIC PARAMETERS

1 1 1

Client Name: DAMES ANI	MOORE				
Client ID: BH-2 15'-17'					
Laboratory ID: 67161-010		Enseco ID:	67161-010		
Matrix: Solid	Sampleo	1: 04/18/88	Received:	04/19/88	
Authorized: 04/19/88					
Parameter	Result	<u>Units</u>	Reporting Limit	Analytical <u>Method</u>	<u>Analyzed</u>
Oil	0.9	%	0.1		05/03/88
Water	14.9	%	0.1		05/03/88
Solids	84.2	%	0.1		05/03/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-3 5'-7'

Laboratory ID: 67161-011

Enseco ID: 67161-011

Matrix: Solid	Sampled: 04/17/88	Received: 04/19/88
Authorized: 04/19/88		Analyzed: 05/02/88

<u>Parameter</u>	Result	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/kg	5000
Carbon tetrachloride	N.D.	ug/kg	50 0
Chlorobenzene	N.D.	ug/kg	2000
Chloroethane	N.D.	ug/kg	50 00
Chloroform	N.D.	ug/kg	500
Dibromochloromethane	N.D.	ug/kg	1000
Bromodichloromethane	N.D.	ug/kg	1000
1,1-Dichloroethane	N.D.	ug/kg	500
1,2-Dichloroethane	N.D.	ug/kg	1000
1,1-Dichloroethene	N.D.	ug/kg	500
1,2-Dichloropropane	N.D.	ug/kg	1000
cis-1,3-Dichloropropene	N.D.	ug/kg	2000
trans-1,3-Dichloropropene	N.D.	ug/kg	500
Bromomethane	N.D.	ug/kg	5000
Chloromethane	N.D.	ug/kg	5000
Methylene chloride	N.D.	ug/kg	50 00
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	1000
Tetrachloroethene	N.D.	ug/kg	500
trans-1,2-Dichloroethene	N.D.	ug/kg	500
1,1,1-Trichloroethane	N.D.	ug/kg	500
1,1,2-Trichloroethane	N.D.	ug/kg	1000
Trichloroethene	N.D.	ug/kg	1000
Vinyl chloride	N.D.	ug/kg	1000
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/kg	1000
1,2-Dibromoethane (EDB)	N.D.	ug/kg	2000

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-3 5'-7'

Laboratory ID: 67161-011

Enseco ID: 67161-011

Matrix: Solid	Sampled: 04/17/88	Received:	04/19/88	
Authorized: 04/19/88	Analyzed: 05/02/88			
<u>Parameter</u>	Resu	<u>lt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	5200		ug/kg	500
Chlorobenzene	N.I).	ug/kg	500
1,2-Dichlorobenzene	N.I).	ug/kg	500
1,3-Dichlorobenzene	N.I).	ug/kg	500
1,4-Dichlorobenzene	N.I).	ug/kg	500
Ethylbenzene	26000		ug/kg	500
Toluene	13000		ug/kg	500
m-Xylene	17000		ug/kg	500
o & p-Xylene(s)	90000		ug/kg	500

N.D. = Not detected Reported by: Helmer Morse

- f

Approved by: Susan Brillante

INORGANIC PARAMETERS

Client Name: DAMES AN	ID MOORE				
Client ID: BH-3 5'-7'					
Laboratory ID: 67161-011		Enseco ID:	67161-011		
Matrix: Solid	Sampleo	1: 04/17/88	Received:	04/19/88	
Authorized: 04/19/88					
Parameter	<u>Result</u>	Units	Reporting Limit	Analytical <u>Method</u>	<u>Analyzed</u>

N.D. = Not detected

Approved by: Lindsay Breyer

Sample: 67161-011

i

İ.

METALS PARAMETERS EPI TOXICITY METALS

Client Name: DAMES AND MOORE

Client ID: BH-3 11'

Laboratory ID: 67161-012

Enseco ID: 67161-012

Received: 04/19/88

Matrix: Solid

Sampled: 04/17/88

Authorized: 04/19/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Arsenic	N.D.	mg/L	0.1	200.7	05/02/88
Barium	2.7	mg/L	0.005	200.7	05/02/88
Cadmium	N .D.	mg/L	0.005	200.7	05/02/88
Chromium	N.D.	mg/L	0.01	200.7	05/02/88
Lead	N.D.	mg/L	0.05	200.7	05/02/88
Mercury	N.D.	ug/L	1	245.1	04/29/88
Selenium	N.D.	mg/L	0.02	7740	05/05/88
Silver	N.D.	mg/L	0.005	200.7	05/02/88

N.D. = Not detected

Approved by: Will Pratt

ļ.

ł

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

.....

Client Name: DAMES AND MOORE

Client ID: BH-3 10'-12'

Laboratory ID: 67161-013

Enseco ID: 67161-013

Laboratory 10. 0/101 015				
Matrix: Solid	Sampled: 04/17/88	Received:	04/19/88	
Authorized: 04/19/88	Analyzed: 04/28/88			
<u>Parameter</u>	Resu	<u>lt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.I	D.	ug/kg	500
Carbon tetrachloride	N.I).	ug/kg	50
Chlorobenzene	N.I).	ug/kg	200
Chloroethane	N.I).	ug/kg	500
Chloroform	N.I) .	ug/kg	50
Dibromochloromethane	N.I) .	ug/kg	100
Bromodichloromethane	N.I).	ug/kg	100
1,1-Dichloroethane	N.I) .	ug/kg	50
1,2-Dichloroethane	N.I) .	ug/kg	100
1,1-Dichloroethene	N.I).	ug/kg	50
1,2-Dichloropropane	N.I) .	ug/kg	100
cis-1,3-Dichloropropene	N.I).	ug/kg	200
trans-1,3-Dichloropropene	N.I).	ug/kg	50
Bromomethane	N.I).	ug/kg	500
Chloromethane	N.I) .	ug/kg	500
Methylene chloride	N.I) .	ug/kg	5 00
1,1,2,2-Tetrachloroethane	N.I) .	ug/kg	100
Tetrachloroethene	N.I) .	ug/kg	50
trans-1,2-Dichloroethene	N.I) .	ug/kg	50
1,1,1-Trichloroethane	N.I) .	ug/kg	50
1,1,2-Trichloroethane	N.I) .	ug/kg	100
Trichloroethene	N.I).	ug/kg	100
Vinyl chloride	N.I) .	ug/kg	100
1,1,2-Trichloro-				
1,2,2-trifluoroethane	N.I) .	ug/kg	100
1,2-Dibromoethane (EDB)	N.I) .	ug/kg	200

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND N	MOORE		
Client ID: BH-3 10'-12'			
Laboratory ID: 67161-013	Enseco ID: 6716	01-013	
Matrix: Solid	Sampled: 04/17/88	Received: 04/19/88	
Authorized: 04/19/88		Analyzed: 04/28/88	
<u>Parameter</u>	<u>Result</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	140	ug/kg	50
Chlorobenzene	N.D.	ug/kg	50
1,2-Dichlorobenzene	N.D.	ug/kg	50
1,3-Dichlorobenzene	N.D.	ug/kg	50
1,4-Dichlorobenzene	N.D.	ug/kg	50
Ethylbenzene	240	ug/kg	50
Toluene	83	ug/kg	50
m-Xylene	170	ug/kg	50
o & p-Xylene(s)	730	ug/kg	50

N.D. = Not detected Reported by: Helmer Morse

ł.

1 4

1

Approved by: Susan Brillante

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-3 10'-12'

Laboratory ID: 67161-013

Enseco ID: 67161-013

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Oil	0.1	%	0.1		05/03/88
Water	18.4	%	0.1		05/03/88
Solids	81.5	%	0.1		05/03/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-3 15'-17'

Laboratory ID: 67161-014

Enseco ID: 67161-014

Matrix: Solid	Sampled: 04/17/88					
Authorized: 04/19/88		Analyzed: 04/28/88				
Parameter		Result	Units (as <u>received)</u>	Reporting <u>Limit</u>		
Bromoform		N.D.	ug/kg	500		
Carbon tetrachloride		N.D.	ug/kg	50		
Chlorobenzene		ND	ng/kg	200		

	N.D.	<u>ug/ng</u>	50
Chlorobenzene	N.D.	ug/kg	200
Chloroethane	N.D.	ug/kg	500
Chloroform	N.D.	ug/kg	50
Dibromochloromethane	N.D.	ug/kg	100
Bromodichloromethane	N.D.	ug/kg	100
1,1-Dichloroethane	N .D.	ug/kg	50
1,2-Dichloroethane	N.D.	ug/kg	100
1,1-Dichloroethene	N .D.	ug/kg	50
1,2-Dichloropropane	N.D.	ug/kg	100
cis-1,3-Dichloropropene	N.D.	ug/kg	200
trans-1,3-Dichloropropene	N.D.	ug/kg	50
Bromomethane	N.D.	ug/kg	500
Chloromethane	N.D.	ug/kg	500
Methylene chloride	N.D.	ug/kg	500
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	100
Tetrachloroethene	N.D.	ug/kg	50
trans-1,2-Dichloroethene	N.D.	ug/kg	50
1,1,1-Trichloroethane	N.D.	ug/kg	50
1,1,2-Trichloroethane	N.D.	ug/kg	100
Trichloroethene	N.D.	ug/kg	100
Vinyl chloride	N.D.	ug/kg	100
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/kg	100
1,2-Dibromoethane (EDB)	N.D.	ug/kg	200

N.D. = Not detected

Reported by: Helmer Morse

1 3 1

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND	MOORE			
Client ID: BH-3 15'-17'				
Laboratory ID: 67161-014	Enseco ID: 672	161-014		
Matrix: Solid	Sampled: 04/17/88	Received: 04	/19/88	
Authorized: 04/19/88		Analyzed: 04	/28/88	
<u>Parameter</u>	Resul	<u>t</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	N.D		ug/kg	50
Chlorobenzene	N.D		ug/kg	50
1,2-Dichlorobenzene	N.D		ug/kg	50
1,3-Dichlorobenzene	N.D		ug/kg	50
1,4-Dichlorobenzene	N.D	,	ug/kg	50
Ethylbenzene	N.D		ug/kg	50
Toluene	N.D		ug/kg	50
m-Xylene	N.D		ug/kg	50
o & p-Xylene(s)	N.D		ug/kg	50

N.D. = Not detected Reported by: Helmer Morse

Approved by: Susan Brillante

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE Client ID: BH-3 15'-17' Laboratory ID: 67161-014 Enseco ID: 67161-014 Matrix: Solid Sampled: 04/17/88 Received: 04/19/88 Authorized: 04/19/88 Reporting Analytical <u>Result</u> Parameter <u>Units</u> <u>Limit</u> Method Analyzed

Oil	1.6	%	0.1	05/03/88
Water	16.4	%	0.1	05/03/88
Solids	82.0	%	0.1	05/03/88

N.D. = Not detected

Approved by: Lindsay Breyer

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Laboratory			QC Lot N	lumber
Sample Number	QC Matrix	Test	LCS	<u>SCS</u>
67161-008-00	Standard Soil	BNA	BNA 097AA	BNA 097CA
67161-008-00	Standard Soil	VOA	VOA 032AA	VOA 032DA

T.

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Analyte	Cone Spiking	centratio Mea <u>LCS1</u>	on asured <u>LCS2</u>		uracy <u>LCS2</u>	(%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: BNA on Standard Soil QC Lot: BNA 097AA <u>Concentration Units: (ug/kg)</u>								
Pentachlorophenol	667 0	6100	598 0	91	9 0	17-109	2.0	47
Phenol	667 0	4620	4480	69	67	26-90	3.1	35
2-Chlorophenol	6 670	5720	5410	86	81	25-102	5.6	50
4-Chloro-3-methylphenol	667 0	637 0	59 50	96	89	26-103	6.8	33
4-Nitrophenol	667 0	4740	4510	71	68	11-114	5.0	50
1,2,4-Trichlorobenzene	3330	2760	264 0	83	79	38-107	4.4	23
Acenaphthene	3330	3020	29 20	91	88	31-137	3.4	19
2,4-Dinitrotoluene	33 30	3180	2910	95#	87	28-89	8.9	47
Pyrene	3330	3650	3500	110	105	35-142	4.2	36
N-Nitrosodi-n-propylamine	3330	2790	286 0	84	86	41-126	2.5	38
1,4-Dichlorobenzene	3330	2530	2420	76	73	28-104	4.4	27
Test: VOA on Standard Soil QC Lot: VOA 032AA Concentration Units: (ug/kg)								
1,1-Dichloroethene	50 00	5990	6030	120	121	59-172	0.7	22
Trichloroethene	5000	5160	5450	103	109	62-137	5.5	24
Chlorobenzene	5000	5240	5500	105	110	60-133	4.8	21
Toluene	5000	5000	5120	100	102	59-139	2.4	21
Benzene	5000	5320	5510	106	110	66-142	3.5	21

= Recovery outside standard QC limits.

SURROGATE CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

	Concer	ntration	Accuracy(%)		
Analyte	<u>Spiking</u>	Measured	<u>SCS</u>	Limits	
Test: BNA on Standard Soil QC Lot: BNA 097CA <u>Concentration Units: (ug/kg)</u>					
Phenol-D5	3330	2740	82	24-113	
2-Fluorophenol	3330	2870	86	25-121	
2,4,6-Tribromophenol	3330	18 10	54	19-122	
Nitrobenzene-D5	1670	1510	9 0	23-120	
2-Fluorobiphenyl	1670	1420	85	30-115	
Terphenyl-D14	1670	1700	102	18-137	
Test: VOA on Standard Soil QC Lot: VOA 032DA Concentration Units: (ug/kg)					
Toluene-D8	5000	5030	101	81-117	
Bromofluorobenzene (BFB)	5000	4910	98	74-121	
1,2-Dichloroethane-D4	5000	5070	101	70-121	

🛓 Enseco

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY

Laboratory			QC Lot 1	Number
Sample Number	<u>QC Matrix</u>	<u>Test</u>	LCS	<u>SCS</u>
67161-001-00	Standard Soil	601	601 121AL	601 121AL
67161-001-00	Standard Soil	602	602 146AL	6 02 146AL
67161-002-00	Standard Soil	601	601 121AL	601 121AL
67161-002-00	Standard Soil	602	602 146AL	602 146AL
67161-003-00	Standard Soil	601	601 121AL	601 121AL
67161-003-00	Standard Soil	602	602 146AL	602 146AL
67161-004- 00	Standard Soil	601	601 121AL	601 121AL
67161-004-00	Standard Soil	602	602 146AL	602 146AL
67161-007-00	Standard Soil	601	601 122AL	601 122AL
67161-007-00	Standard Soil	602	602 147AL	602 147AL
67161-009-00	Standard Soil	601	601 122AL	601 122AL
67161-009-00	Standard Soil	602	602 147AL	602 147AL
67161-010-00	Standard Soil	601	601 121AL	601 121AL
67161-010-00	Standard Soil	602	602 146AL	602 146AL
67161-011-00	Standard Soil	601	601 122AL	601 122AL
67161-011-00	Standard Soil	602	602 147AL	602 147AL
67161-013-00	Standard Soil	601	601 121AL	601 121AL
67161-013-00	Standard Soil	602	602 146AL	602 146AL
67161-014-00	Standard Soil	601	601 121AL	601 121AL
67161-014-00	Standard Soil	602	602 146AL	602 146AL

----- 🔄 Enseco

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Con <u>Spiking</u>	centratio Mea <u>LCS1</u>	on asured <u>LCS2</u>		uracy(' <u>LCS2</u>		Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 601 on Standard Soil QC Lot: 601 121AL <u>Concentration Units: (ug/kg)</u>								
Chloromethane	20 00	2700	297 0	135	149#	59-140	9.5	25
Bromomethane	2000	2300	2490	115	125	58-141	7.9	25
Vinyl chloride	2000	1720	1980	86	9 9	68-132	14.1	25
Chloroethane	2000	2030	2300	102	115	77-123	12.5	20
Methylene chloride	2 000	190 0	2230	95	112	77-123	16.0	20
Trichlorofluoromethane	2000	1780	197 0	89	9 9	66-134	10.1	25
1,1-Dichloroethene	20 00	1840	2030	92	102	63-137	9.8	20
1,1-Dichloroethane	2000	1660	1790	83#	9 0	84-116	7.5	20
trans-1,2-Dichloroethene	2000	1640	176 0	82	88	64-136	7.1	20
Chloroform	20 00	1650	1770	83	89	75-125	7.0	20
1,1,2-Trichloro-1,2,2-trifluor	2 000	1510	1560	76	78	67-134	3.3	20
1,2-Dichloroethane	2000	1730	1830	87	92	72-129	5.6	20
1,1,1-Trichloroethane	2000	1420	1510	71	76	71-129	6.1	20
Carbon tetrachloride	2000	1530	1620	77	81	68-131	5.7	20
Bromodichloromethane	20 00	1630	1750	82	88	76-124	7.1	20
1,2-Dichloropropane	2000	1550	1670	78	84	74-126	7.5	20
trans-1,3-Dichloropropene	2000	1540	1670	77	84	64-136	8.1	20
Trichloroethene	20 00	1690	1800	85	9 0	77-123	6.3	20
1,1,2-Trichloroethane	60 00	5890	6530	98	109	69-132	10.3	20
Dibromochloromethane	6 000	5890	653 0	9 8	109	69-132	10.3	20
cis-1,3-Dichloropropene	60 00	5890	653 0	9 8	109	69-132	10.3	20
1,2-Dibromoethane (EDB)	2000	1470	1560	74	78	74-127	5.9	20
Bromoform	20 00	1740	189 0	87	95	74-127	8.3	20
1,1,2,2-Tetrachloroethane	4000	3430	3730	86	93	60-140	8.4	20
Tetrachloroethene	400 0	3430	3730	86	93	60-140	8.4	20
Chlorobenzene	2000	2000	204 0	100	102	72-128	2.0	20
1,3-Dichlorobenzene	2000	1800	197 0	9 0	99	50-150	9.0	20
1,2-Dichlorobenzene	20 00	1720	187 0	86	94	70-130	8.4	20
1,4-Dichlorobenzene	2000	2070	2140	104	107	70-130	3.3	20
Test: 601 on Standard Soil QC Lot: 601 122AL <u>Concentration Units: (ug/kg)</u>								
Chloromethane	20 00	3360	3520	168#	176#	59-14 0	4.7	25
Bromomethane	2000	250 0	2730	125	137	59-14 0 58-14 1	8.8	25
Vinyl chloride	2000 200 0	1830	1890	92	95	68-132	3.2	25
Chloroethane	2000	2110	2340	106	117	77-123	10.3	20
Methylene chloride	2000	2150	2220	100	111	77-123	3.2	20
METHAIENE ENIOLIDE	2000	2150	<i>444</i> 0	100	* † †	11 145	بر. د	20

= Recovery outside standard QC limits.

- 🚆 Enseco

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

<u>Analyte</u>	Con <u>Spikin</u>	-	on asured <u>LCS2</u>	Ac <u>LCS1</u>	curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precision(RPD) <u>LCS Limits</u>	
Test: 601 on Standard Soil QC Lot: 601 122AL <u>Concentration Units: (ug/kg)</u>								
Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene Chloroform 1,1,2-Trichloro-1,2,2-trifluor 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene 1,1,2-Trichloroethane Dibromochloromethane cis-1,3-Dichloropropene 1,2-Dibromoethane (EDB) Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,3-Dichlorobenzene 1,3-Dichlorobenzene	2000 2000 2000 2000 2000 2000 2000 200	1800 1890 1750 1740 1620 1530 1710 1460 1550 1680 1570 1650 1790 6040 6040 6040 6040 1500 1780 3500 3500 2050 1880	1900 1880 1860 1830 1720 1490 1800 1530 1650 1720 1570 1630 1750 5980 5980 5980 5980 1530 1820 3510 3510 1970 1880	90 95 88 87 81 77 86 73 78 84 79 83 90 101 101 101 101 101 101 75 89 88 88 88 103 94	95 94 93 92 86 75 90 77 83 86 79 82 88 100 100 100 100 77 91 88 88 99 94	66-134 63-137 84-116 64-136 75-125 67-134 72-129 71-129 68-131 76-124 74-126 64-136 77-123 69-132 69-132 69-132 69-132 74-127 74-127 74-127 74-127 60-140 60-140 72-128 50-150	$5.4 \\ 0.5 \\ 6.1 \\ 5.0 \\ 6.0 \\ 2.6 \\ 5.1 \\ 4.7 \\ 6.3 \\ 2.4 \\ 0.0 \\ 1.2 \\ 2.3 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 2.0 \\ 2.2 \\ 0.3 \\ 0.3 \\ 4.0 \\ 0.0 $	25 20 20 20 20 20 20 20 20 20 20 20 20 20
1,2-Dichlorobenzene 1,4-Dichlorobenzene	2000 2000 2000	1960 1750	1950 1930	94 98 88	94 98 97	70-130 70-130 70-130	0.0 0.5 9.8	20 20 20
Test: 602 on Standard Soil QC Lot: 602 146AL <u>Concentration Units: (ug/kg)</u> Benzene Toluene Chlorobenzene	2000 2000 2000	1790 1900	1780 1920 1990	90 95 99	89 96	77-123 77-123 81-119	0.6 1.0	20 20 20
Ethylbenzene m-Xylene o & p-Xylene(s) 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene	2000 2000 2000 2000 2000 2000	1970 1990 1860 3880 2030 1860 1950	1990 2020 1880 3920 2050 1910 1960	99 100 93 97 102 93 98	100 101 94 98 103 96 98	81-119 63-137 77-123 77-123 77-123 63-137 70-130	1.0 1.5 1.1 1.0 1.0 2.7 0.5	20 20 20 20 20 20 20

📱 Enseco

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Conc <u>Spiking</u>	centratio Mea <u>LCS1</u>	on Isured <u>LCS2</u>	Ac <u>LCS1</u>	curacy(<u>LCS2</u>	9%) Limits	Precis: <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 602 on Standard Soil QC Lot: 602 147AL Concentration Units: (ug/kg)								
Benzene	2000	1660	1760	83	88	77-123	5.8	20
Toluene	2000	1780	1920	89	96	77-123	7.6	20
Chlorobenzene	2000	1830	196 0	92	98	81-119	6.9	20
Ethylbenzene	2000	1840	1980	92	99	63-137	7.3	20
m-Xylene	2000	1730	1880	87	94	77-123	8.3	20
o & p-Xylene(s)	4000	3570	3880	89	97	77-123	8.3	20
1,3-Dichlorobenzene	2000	1780	1990	89	100	77-123	11.1	20
1,2-Dichlorobenzene	2000	166 0	1840	83	92	63-137	10.3	20
1,4-Dichlorobenzene	2000	1710	1890	86	95	70-130	10.0	20

SURROGATE CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Concer <u>Spiking</u>	ntration <u>Measured</u>	Accura <u>SCS</u>	acy(%) <u>Limits</u>
Test: 601 on Standard Soil QC Lot: 601 121AL Concentration Units: (ug/kg)				
Bromochloromethane	3000	3330	111	20-160
Test: 601 on Standard Soil QC Lot: 601 122AL Concentration Units: (ug/kg)				
Bromochloromethane	3000	2770	92	20-160
Test: 602 on Standard Soil QC Lot: 602 146AL <u>Concentration Units: (ug/kg)</u>	2000	2220	107	20-160
a,a,a-Trifluorotoluene	30 00	3220	107	20-160
Test: 602 on Standard Soil QC Lot: 602 147AL <u>Concentration Units: (ug/kg)</u>				
a,a,a-Trifluorotoluene	3000	3180	106	20-160

QC LOT ASSIGNMENT REPORT INORGANICS - METALS

👍 Enseco

Laboratory			QC Lot Number
Sample Number	<u>QC Matrix</u>	<u>Test</u>	LCS
67161-002-00	Standard Soil	FPBO	FPBO001AA
67161-008-00	Standard Soil	FAST	FAST206AA
67161-008-00	Standard Soil	FSET	FSET206AA
67161-008-00	Standard Soil	HGT	HGT 196AA
67161-008-00	Standard Soil	ICPT	ICPT235AA
67161-012-00	Reagent Water	EP1P	EP1P152AA
67161-012-00	Reagent Water	EPSE	EPSE166AA
67161-012-00	Reagent Water	HGT	HGT 334AA

- 💈 Enseco

ļ

-

LABORATORY CONTROL SAMPLE REPORT INORGANICS - METALS

Analyte	Concentration Spiking Measured LCS1 LCS		Precision(RPD) <u>LCS Limits</u>
Test: EP1P on Reagent Water QC Lot: EP1P152AA <u>Concentration Units: (mg/L)</u>			
Aluminum	2.0 1.88 1.90	94 95 75-125	1.1 20
Antimony	0.5 0.55 0.54	110 108 75-125	1.8 20
Arsenic	2.0 2.36 2.39	118 120 75-125	1.3 20
Barium	2.0 1.95 1.97	98 99 75-125	1.0 20
Beryllium	0.05 0.045 0.046	90 92 75-125	2.2 20
Cadmium	0.05 0.040 0.040	80 80 75-125	0.0 20
Calcium	100 106 10'		0.9 20
Chromium	0.2 0.18 0.18		0.0 20
Cobalt	0.5 0.46 0.47	92 94 75-125	2.2 20
Copper	0.25 0.23 0.24		4.3 20
Iron	1.0 0.96 0.98	96 98 75-125	2.1 20
Lead	0.5 0.49 0.51	98 102 75-125	4.0 20
Magnesium	50 46.4 46.9		1.1 20
Manganese	0.5 0.47 0.48		2.1 20
Nickel	0.5 0.49 0.50	98 100 75-125	2.0 20
Potassium	50 55.2 55.1	110 110 75-125	0.2 20
Silver	0.05 0.044 0.045	88 90 75-125	2.2 20
Sodium	100 108 10	5 108 106 75-125	1.9 20
Tin	0.5 0.49 0.51	98 102 75-125	4.0 20
Vanadium	0.5 0.46 0.46	92 92 75-125	0.0 20
Zinc	0.5 0.51 0.52	102 104 75-125	1.9 20
Test: EPSE on Reagent Water QC Lot: EPSE166AA <u>Concentration Units: (mg/L)</u>			
Selenium	0.02 0.021 0.020	105 100 75-125	4.9 20
Test: HGT on Reagent Water QC Lot: HGT 334AA <u>Concentration Units: (ug/L)</u>			
Mercury	1.0 1.07 1.05	107 105 75-125	1.9 20

Enseco

LABORATORY CONTROL SAMPLE REPORT INORGANICS - METALS

<u>Analyte</u>	Concen <u>Spiking</u> L(tration Measured <u>CS1 LCS2</u>	Ac <u>LCS1</u>	curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precisi <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: FAST on Standard Soil QC Lot: FAST206AA <u>Concentration Units: (mg/kg)</u>							
Arsenic	4	3.8 3.8	95	95	75-125	0.0	20
Test: FSET on Standard Soil QC Lot: FSET206AA <u>Concentration Units: (mg/kg)</u>							
Selenium	2	1.8 1.8	9 0	9 0	75-125	0.0	20
Test: HGT on Standard Soil QC Lot: HGT 196AA Concentration Units: (ug/kg)							
Mercury	500	516 532	103	106	75-125	3.1	20
Test: ICPT on Standard Soil QC Lot: ICPT235AA Concentration Units: (mg/kg)							
Antimony	0.5 0.	.45 0.47	9 0	94	75-125	4.3	20
Arsenic		78 1.81	89	91	75-125	1.7	20
Barium		.01 2.03	101	101	75-125	1.0	20
Beryllium	0.05 0.0		94	96	75-125	2.1	20
Cadmium	0.05 0.0	52 0.050	104	100	75-125	3.9	20
Chromium	0.2 0.	.20 0.20	100	100	75-125	0.0	20
Cobalt	0.5 0.	.49 0.49	98	98	75-125	0.0	20
Copper	0.25 0.	.27 0.27	108	108	75-125	0.0	20
Lead	0.5 0.	.49 0.49	98	98	75-125	0.0	20
Manganese		.53 0.53	106	106	75-125	0 .0	20
Nickel		.52 0.53	104	106	75-125	1.9	20
Silver	0.05 0.0		92	92	75-125	0.0	20
Tin		.55 0.55	110	110	75-125	0.0	20
Vanadium		.48 0.48	96	96	75-125	0.0	20
Zinc	0.5 0.	.50 0.51	100	102	75-125	2.0	20

Ì

:

Ì

: ļ - ---i Ö

ii ii

ΞĹ.

Rocky Mountain Analytical Laboratory

i

ł

ANALYTICAL RESULTS FOR DAMES & MOORE

MAY 26, 1988

Howbei Allen J. Mødine, Ph.D.

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Reviewed by:

I. OVERVIEW

A. Project Overview

On April 22, 1988, Enseco-Rocky Mountain Analytical Laboratory received six samples from Dames & Moore. A complete listing of tests requested, by sample, is given in Section III.

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- I. Overview
 - A. Project Overview
 - B. Regulatory Overview
- II. Sample Description Information
- III. Analytical Tests Assigned (not included)
- IV. Analytical Results
- V. Quality Control Report
- VI. Description of Analytical Methodology

Standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. All laboratory QC samples analyzed in conjunction with the samples in this project were within established control limits.

B. Regulatory Overview - Refinery

In 1984, the EPA distributed several versions of a subset of Appendix VIII constituents to be used principally for delisting petroleum refinery wastes (K048-K052). This list, commonly referred to as the "Skinner" list has been adapted for use in land treatment demonstrations, site closures and other related activities associated with petroleum refining RCRA programs. In early 1985, a modified version of the Skinner list appeared in "Petitions to Delist Hazardous Waste, A Guidance Manual" (EPA/530-SW-85-003). This revised list, as shown in Table I, consists of 12 metals and 43 organic compounds and currently forms the basis for analytical work on samples collected at petroleum refineries.

The organic compounds have been classified as volatile and semivolatile (base/neutral/acid) compounds. Three of the "compounds" listed (xylenes, dichlorobenzenes and cresols) are measured and reported in terms of their specific isomers. Analytical standards are not available for two of the compounds, dibenz(a,h)acridine and methyl chrysene. Therefore, these compounds cannot be measured and analytical results are not presented for these compounds. Two of the remaining compounds, benzenethiol and pyridine cannot be recovered consistently from environmental samples and consequently, method detection limits for these compounds cannot be results of a methods evaluation study sponsored by API.

Table 2 summarizes the analytical methods used to determine Appendix VIII refinery constituents. For the organic compounds, methods are listed for both the complete list and a subset of this list analyzed by alternate methods.

Between October, 1983 and July, 1985, the EPA released three methods manuals and a "Guidance Manual" which were compendiums of modified SW-846 methods specifically adapted for the analysis of Appendix VIII constituents in petroleum refining wastes. The most useful document was an October, 1984 draft methods manual which was released but never formally distributed by EPA. These documents did not contain many of the important details that are critical to the successful analysis of environmental samples relevant to petroleum refineries.

Thus, although the methods used by Enseco-RMAL in the analysis of petroleum refinery wastes are based on these various EPA documents, the actual details of each method have been modified in order to generate acceptable data. These modifications have been based on information given in numerous documents, some of which are cited in Table 3. In addition to the documents listed in the bibliography, Enseco-RMAL an ongoing dialogue with EPA/OSW to ensure that the latest EPA guidance is incorporated into the analytical approach.

The analytical data tables which follow present results for the Appendix VIII refinery hazardous constituents which are measurable.

Ens

TABLE 1. APPENDIX VIII HAZARDOUS CONSTITUENT SUBSET FOR PETROLEUM REFINERY STUDIES*

<u>Metals</u>

Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Lead Mercury Nickel Selenium Vanadium

Volatile Organics

Benzene Carbon disulfide Chlorobenzene Chloroform 1,2-Dibromoethane 1,2-Dichloroethane 1,4-Dioxane Methyl ethyl ketone Styrene Ethyl benzene Toluene Xylenes1

Base/Neutral Organics

Anthracene Benz(a)anthracene Benzo(b)fluoranthene

Base/Neutral Organics (Cont.)

Benzo(k)fluoranthene Benzo(a)pyrene Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate Chrysene Dibenz(a,h)acridine² Dibenz(a,h)anthracene Di-n-butyl phthalate Dichlorobenzenes1 Diethyl phthalate 7,12-Dimethylbenz(a)anthracene Dimethyl phthalate Di-n-octyl phthalate Fluoranthene Indene Methyl chrysene² 1-Methylnaphthalene Naphthalene Phenanthrene Pyrene Pyridine³ Quinoline

Acid Organics

Benzenethiol³ Cresols¹ 2,4-Dimethylphenol 2,4-Dinitrophenol 4-Nitrophenol Phenol

*"Petitions to Delist Hazardous Wastes, A Guidance Manual," EPA/530-SW-85-003, April, 1985.

- 1) Reported as ortho-, meta-, and para-isomers.
- 2) No analytical standard available.

3) Not consistently recoverable using standard analytical methods.

TABLE 2. SUMMARY OF ANALYTICAL METHODS FOR REFINERY CONSTITUENTS

Metals	Method
Antimony	7041
Arsenic	7060
Lead	7421
Mercury	7470
Selenium	7740
ICP Scan (Ba, Be, Cd, Cr, Co, Ni, V)	6010

	GC/MS Method	Screening Method
Volatile Organics	8240	8020 a
Semivolatile Organics	8270	8310b

a) Volatile Aromaticsb) Polynuclear Aromatic Hydrocarbons

Ense

A. Documents Pertaining to Appendix VIII Constituents

- January, 1984 letter from Myles Morse pertaining to delisting petitions as well as land treatment demonstrations, including sampling procedures and data requirements.
- (2) March, 1984 letter to delisting petitioners from Barbara Bush revising target parameters.
- (3) April, 1984 memo from John Skinner to Permit Branch Chiefs concerning land treatment containing target parameters and analytical methods.
- (4) May, 1984 memo from John Skinner clarifying previous memo.
- (5) September, 1984 letter to Petitioners from Barbara Bush distributing Refinery Handbook.
- (6) November, 1984 letter from Eileen Claussen to all delisting petitioners describing new RCRA requirements.
- (7) May 3, 1985 RMAL Memo.
- (8) January 8, 1985 RMAL letter to Eileen Claussen, EPA-OSW.

B. Documents Pertaining to Analytical Methods

- "Handbook for the Analysis of Petroleum Refinery Residuals and Waste", October, 1984 - prepared by Radian Corporation for EPA/OSW.
- (2) "Evaluation of the Applicability of the SW-846 Manual To Support All RCRA Subtitle C Testing", December 20, 1984 - prepared by Rocky Mountain Analytical Laboratory for API.
- (3) "Comments on the 'Handbook for the Analysis of Petroleum Refinery Residuals and Waste, October, 1994'", December 12, 1984 - Prepared by Rocky Mountain Analytical Laboratory for API.
- (4) "Comments on the 'Handbook for the Analysis of Petroleum Refinery Residuals and Waste, April 2, 1984'", August 15, 1984 - Prepared by Rocky Mountain Analytical Laboratory for API.
- (5) "Handbook for the Analysis of Petroleum Refinery Residuals and Waste", April 2, 1984 - prepared by S-Cubed for EPA/OSW.
- (6) EPA document "Guidance for the Analysis of Refinery Wastes", July 5, 1985.
- (7) "Recovery and Detection Limits of Organic Compounds in Petroleum Refinery Wastes", January 25, 1985.
- (8) SW-846 "Test Methods for Evaluating Solid Waste, Physical Chemical Methods" USEPA, 2nd Edition, 1982.
- (9) 40 CFR 136 "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act."

- Ens

1

ł

ļ

l

II. SAMPLE DESCRIPTION INFORMATION

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique five digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the five digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Į.

Ì

SAMPLE DESCRIPTION INFORMATION

. .. .

.

for

DAMES AND MOORE

RMAL <u>Sample No.</u>	Sample Description	Sample Type	Date <u>Sampled</u>	Date <u>Receiv</u>
67196-001-00	BH-20 5 - 7'	Soil	04/21/88	04/22/
67196-002-00	BH-21 0 - 1.25'	Soil	04/21/88	04/22/
67196-003-00	BH-22 0 - 0.5'	Waste	04/21/88	04/22/
67196-004-00	BH-23 10 - 12'	Soil	04/21/88	04/22/
67196-005-00	BH-24 5 - 11.5'	Soil	04/21/88	04/22/
67196-006-00	BH-26 0 - 1'	Waste	04/21/88	04/22/

IV. ANALYTICAL RESULTS

The analytical results for this project are presented in the following data tables. The results are presented by sample, by test, with tests reported in the following order: GC/MS, Chromatography, Metals and Inorganics.

Ens

Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed. The authorization data is the date when the project was defined by the client such that laboratory work could begin.

Data sheets contain a listing of the parameters measured in each test, the analytical results and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content. All data is "blank corrected", i.e. the level of contamination, if any, found in the laboratory blank is subtracted from the analytical result before it is reported.

In addition, surrogate recovery data is presented for all GC/MS analyses. The surrogate recovery is an indication of the affect of the sample matrix on the performance of the method. The results from the Standard Enseco QA/QC Program, which generates data which are independent of matrix effects, is given in Section V.

The analytical data reported are subject to the following limitations of the analytical methodology:

GC/MS

Volatile Organics

a) The cis- and trans-isomers of dichloroethylene cannot be distinguished using EPA Method 624. All dichloroethylene present is reported as trans-dichloroethylene.

Semivolatile Organics

 a) Benzo(b) and benzo(k) fluoranthene cannot be differentiated based on their mass spectra; retention times are almost identical. The isomer which is the closest in retention time to the sample is reported.

: Ens

Total Chromatographable Organics

Total Chromatographable Organics (TCO) were determined from a methylene chloride extraction and subsequent analysis by capillary column gas chromatography with a flame ionization detector (GC/FID). The TCO result was based on the entire area under the chromatogram as compared to the response to eicosane. The detection limit is based on the response of diesel.

The pattern of the FID chromatogram (fingerprint) was compared to fingerprints of various petroleum products. If, on the judgement of the analyst, the fingerprint of the sample matched the fingerprint of a petroleum product, the concentration of the product was also reported. If components of a particular product were present, but the complexity of the overall chromatogram was such that it could not be reliably determined if the product was or was not present, then, the result for that product contains the following statement: "Primary components of this product were detected in the sample. Due to the overall complexity of the chromatogram, reliable identification of this product cannot be achieved."

In addition to reporting a TCO value, the results contain boiling point information. This boiling point range represents the range of 80 to 90 percent of the compounds detected in the sample.

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND MOORE Client ID: BH-20 Laboratory ID: 67196-001 Enseco ID: 67196-001 Matrix: Soil Sampled: 04/21/88 Received: 04/22/88 Authorized: 04/22/88 Analyzed: 05/03/88

Parameter	Result	Units (as <u>received)</u>	Reporti <u>Limit</u>
Bromoform	N.D.	ug/kg	500
Carbon tetrachloride	N.D.	ug/kg	50
Chlorobenzene	N.D.	ug/kg	200
Chloroethane	N.D.	ug/kg	500
Chloroform	N.D.	ug/kg	50
Dibromochloromethane	N.D.	ug/kg	100
Bromodichloromethane	N.D.	ug/kg	100
1,1-Dichloroethane	N.D.	ug/kg	50
1,2-Dichloroethane	N.D.	ug/kg	100
1,1-Dichloroethene	N.D.	ug/kg	50
1,2-Dichloropropane	N.D.	ug/kg	100
cis-1,3-Dichloropropene	N.D.	ug/kg	200
trans-1,3-Dichloropropene	N.D.	ug/kg	50
Bromomethane	N.D.	ug/kg	500
Chloromethane	N.D.	ug/kg	500
Methylene chloride	N.D.	ug/kg	500
1,1,2,2-Tetrachloroethane	N.D.	ug/kg	100
Tetrachloroethene	N.D.	ug/kg	50
trans-1,2-Dichloroethene	N.D.	ug/kg	50
1,1,1-Trichloroethane	N.D.	ug/kg	50
1,1,2-Trichloroethane	N.D.	ug/kg	100
Trichloroethene	N.D.	ug/kg	100
Vinyl chloride	N.D.	ug/kg	100
1,1,2-Trichloro-		<i>Q</i> (
1,2,2-trifluoroethane	N .D.	ug/kg	100
1,2-Dibromoethane (EDB)	N.D.	ug/kg	200

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Susan Brillante

1

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND	MOORE			
Client ID: BH-20				
Laboratory ID: 67196-001	Enseco ID: 6	7196-00	l	
Matrix: Soil	Sampled: 04/21/88	R	eceived: 04/22/88	
Authorized: 04/22/88		A	nalyzed: 05/03/88	
Parameter	Res	<u>ult</u>	Units (as <u>received)</u>	Reporti: Limit
Benzene	7	5	ug/kg	50
Chlorobenzene	N	D.	ug/kg	50
1,2-Dichlorobenzene	N	D.	ug/kg	50
1,3-Dichlorobenzene	N	D.	ug/kg	50
1,4-Dichlorobenzene	N	D.	ug/kg	50
Ethylbenzene	7	6	ug/kg	50
Toluene	12	0	ug/kg	50
m-Xylene	13	0	ug/kg	50
o & p-Xylene(s)	15	0	ug/kg	50

N.D. = Not detected Reported by: Helmer Morse

Approved by: Susan Brillante

ANALYTICAL RESULTS FOR TOTAL CHROMATOGRAPHABLE ORGANICS

Client Name: DAMES AND MOOR Client ID: BH-20 Laboratory ID: 67196-001 Matrix: Soil Authorized: 04/22/88	Sampled:	Enseco ID: 04/21/88 04/27/88	67196-001 Received: Analyzed:	04/22/88 04/29/88
		Value	<u>Units</u>	Detection Limit
Total Chromatographable Orga Initial Boiling Point* Final Boiling Point* Gasoline Stoddard Solvent Jet Fuel Kerosene Diesel Motor Oil		54,000,000 250 450 ND ND ND 54,000,000 ND	ug/kg OC Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg	830,000 - 8,300,000 8,300,000 8,300,000 8,300,000 8,300,000 8,300,000 83,000,000

- * The initial and final boiling points define the range of compounds detected. The method is capable of detecting compounds between 100°C and 500°C.
- ** Primary components of this product were detected in the sample. Due to the overall complexity of the chromatogram, reliable identification of this product cannot be achieved.

Ens

1

I.

1

INORGANIC PARAMETERS

Client Name: DAMES ANI) MOORE				
Client ID: BH-20					
Laboratory ID: 67196-001		Enseco ID:	67196-001		
Matrix: Soil	Sample	1: 04/21/88	Received:	04/22/88	
Authorized: 04/22/88					
<u>Parameter</u>	Result	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analy
Oil	10.3	%	0.1		05/03

N.D. = Not detected

Approved by: Lindsay Breyer

REFINERY HAZARDOUS CONSTITUENT VOLATILES

. . ..

EPA METHOD 8240

Client Name: DAMES AND 1	MOORE		
Client ID: BH-21			
Laboratory ID: 67196-002	Enseco ID: 671	96-002	
Matrix: Soil	Sampled: 04/21/88	Received: 04/22/88	
Authorized: 04/22/88		Analyzed: 05/14/88	
Parameter	Result	Units (a received	-
Benzene	N.D.	ug/kg	500
Carbon disulfide	N.D.	ug/kg	500
Chlorobenzene	N.D.	ug/kg	500
Chloroform	N.D.	ug/kg	500
1,2-Dibromoethane	N.D.	ug/kg	500
1,2-Dichloroethane	N.D.	ug/kg	500
1,4-Dioxane	N.D.	ug/kg	10000
Methyl ethyl ketone	N.D.	ug/kg	2500
Styrene	N.D.	ug/kg	500
Ethylbenzene	N.D.	ug/kg	500
Toluene	N.D.	ug/kg	500
m-Xylene	2600	ug/kg	500
o & p-Xylene(s)	2300	ug/kg	500
Surrogate			
Toluene-D8	101	%	-
Bromofluorobenzene(BFB)	107	%	-
1,2-Dichloroethane-D4	102	%	-

N.D. = Not detected

Reported by: Daniel Albritton

Approved by: Jeffrey Lowry

REFINERY HAZARDOUS CONSTITUENT SEMIVOLATILES

.

Client Name: DAMES AND MOORE

Client ID: BH-21

Laboratory ID: 67196-002	Enseco ID: 6	7196-002
Matrix: Soil	Sampled: 04/21/88	Received: 04/22/88

Matrix: Son	Sampleu: 04/21/88	Receiveu	04/22/00	
Authorized: 04/22/88	Prepared: 05/02/88 Analyzed: 05/20/88			
Parameter	Res	<u>ult</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Anthracene	N	.D.	ug/kg	99 0
Benzo(a)anthracene	N	.D.	ug/kg	99 0
Benzo(b)fluoranthene	N	.D.	ug/kg	99 0
Benzo(k)fluoranthene	N	.D.	ug/kg	9 90
Benzo(a)pyrene	N	.D.	ug/kg	9 90
bis(2-Ethylhexyl)phthalate	120	0	ug/kg	99 0
Butylbenzyl phthalate	N	.D.	ug/kg	99 0
Chrysene	N	.D.	ug/kg	9 90
Dibenz(a,h)anthracene	N	.D.	ug/kg	9 90
Di-n-butyl phthalate	N	.D.	ug/kg	990
1,2-Dichlorobenzene	N	.D.	ug/kg	9 90
1,3-Dicholrobenzene	N	.D.	ug/kg	9 90
1,4-Dichlorobenzene	N	.D.	ug/kg	99 0
Diethyl phthalate	N	.D.	ug/kg	99 0
7,12-Dimethylbenzanthracene	N	.D.	ug/kg	99 0
Dimethyl phthalate	N	.D.	ug/kg	99 0
Di-n-octyl phthalate	N	.D.	ug/kg	99 0
Fluoranthene	N	.D.	ug/kg	990
Indene	N	.D.	ug/kg	990
1-Methylnaphthalene	Ν	.D.	ug/kg	99 0
Naphthalene	N	.D.	ug/kg	99 0
Phenanthrene	140		ug/kg	99 0
Pyrene	N	.D.	ug/kg	9 90
Pyridine	N	.D.	ug/kg	-
Quinoline		.D.	ug/kg	990
Benzenethiol		.D.	ug/kg	-
o-Cresol		.D.	ug/kg	99 0
p & m-Cresol		.D.	ug/kg	99 0
2,4-Dimethylphenol		.D.	ug/kg	99 0
2,4-Dinitrophenol		.D.	ug/kg	4800
4-Nitrophenol		.D.	ug/kg	4800

N.D. = Not detected

_----

REFINERY HAZARDOUS CONSTITUENT SEMIVOLATILES (CONT.)

Client Name: DAMES AND	MOORE		
Client ID: BH-21			
Laboratory ID: 67196-002	Enseco ID: 671	96-002	
Matrix: Soil	Sampled: 04/21/88	Received: 04/22/88	
Authorized: 04/22/88	Prepared: 05/02/88	Analyzed: 05/20/88	
n	Decent	Units (as	Reporting
<u>Parameter</u>	Resul	t <u>received)</u>	<u>Limit</u>
Phenol	N.D.	ug/kg	99 0
Surrogate			
Nitrobenzene-D5	88	%	-
2-Fluorobiphenyl	107	%	-
Terphenyl-D14	103	%	-
Phenol-D5	59	%	-
2-Fluorophenol	73	%	-
2,4,6-Tribromophenol	120	%	-

N.D. = Not detected Reported by: Julie Niermann

Approved by: Jeffrey Lowry

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client ID: BH-21	
Laboratory ID: 67196-002 Enseco ID: 67196-002	
Matrix: Soil Sampled: 04/21/88 Received: 04/22/88	
Authorized: 04/22/88 Analyzed: 05/03/88	
Units (a Parameter Result received	• •
Bromoform N.D. ug/kg	500
Carbon tetrachloride N.D. ug/kg	50
Chlorobenzene N.D. ug/kg	200
Chloroethane N.D. ug/kg	500
Chloroform N.D. ug/kg	50
Dibromochloromethane N.D. ug/kg	100
Bromodichloromethane N.D. ug/kg	100
1,1-Dichloroethane N.D. ug/kg	50
1,2-Dichloroethane N.D. ug/kg	100
1,1-Dichloroethene N.D. ug/kg	50
1,2-Dichloropropane N.D. ug/kg	100
cis-1,3-Dichloropropene N.D. ug/kg	200
trans-1,3-Dichloropropene N.D. ug/kg	50
Bromomethane N.D. ug/kg	500
Chloromethane N.D. ug/kg	500
Methylene chloride N.D. ug/kg	500
1,1,2,2-Tetrachloroethane N.D. ug/kg	100
Tetrachloroethene N.D. ug/kg	50
trans-1,2-Dichloroethene N.D. ug/kg	50
1,1,1-Trichloroethane N.D. ug/kg	50
1,1,2-Trichloroethane N.D. ug/kg	100
Trichloroethene N.D. ug/kg	100
Vinyl chloride N.D. ug/kg	100
1,1,2-Trichloro-	
1,2,2-trifluoroethane N.D. ug/kg	100
1,2-Dibromoethane (EDB) N.D. ug/kg	200

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Susan Brillante

Sample: 67196-002

ł

i.

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND I	MOORE			
Client ID: BH-21				
Laboratory ID: 67196-002	Enseco ID: 67	196-002	2	
Matrix: Soil	Sampled: 04/21/88 Received: 04/22/88			
Authorized: 04/22/88		A	nalyzed: 05/03/88	
Parameter	Resi	<u>llt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	11()	ug/kg	100
Chlorobenzene	N.:	D.	ug/kg	100
1,2-Dichlorobenzene	N.:) .	ug/kg	100
1,3-Dichlorobenzene	N .:	D.	ug/kg	100
1,4-Dichlorobenzene	N.:	D .	ug/kg	100
Ethylbenzene	N.	D .	ug/kg	100
Toluene	N.:	D.	ug/kg	100
m-Xylene	3400)	ug/kg	100
o & p-Xylene(s)	1700)	ug/kg	100

N.D. = Not detected Reported by: Helmer Morse

Approved by: Susan Brillante

Sample: 67196-002

Ţ

ANALYTICAL RESULTS FOR TOTAL CHROMATOGRAPHABLE ORGANICS

	Enseco Sampled: 04/21/88 Prepared: 04/27/8	Received:	
Total Chromatographable Organ Initial Boiling Point* Final Boiling Point* Gasoline Stoddard Solvent Jet Fuel Kerosene Diesel Motor Oil	<u>Value</u> ics 60,000,00 290 500 ND ND ND ND ND ND ND	<u>Units</u> 0 ug/kg °C °C - - - - - - -	Detection Limit 170,000 - 1,700,000 1,700,000 1,700,000 1,700,000 1,700,000 1,700,000

- * The initial and final boiling points define the range of compounds detected. The method is capable of detecting compounds between 100°C and 500°C.
- ** Primary components of this product were detected in the sample. Due to the overall complexity of the chromatogram, reliable identification of this product cannot be achieved.

METALS PARAMETERS TOTAL METALS

Client Name: DAMES AND MOORE

Client ID: BH-21

Laboratory ID: 67196-002

Enseco ID: 67196-002

Matrix: Soil

Sampled: 04/21/88

Received: 04/22/88

Authorized: 04/22/88

Parameter	<u>Result</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Antimony	N.D.	mg/kg	5	6 010	04/29/88
Arsenic	1.2	mg/kg	0.3	7060	05/06/88
Barium	110	mg/kg	0.5	6010	04/29/88
Beryllium	0.2	mg/kg	0.1	6010	04/29/88
Cadmium	N.D.	mg/kg	0.5	6 010	04/29/88
Chromium	2	mg/kg	1	6010	04/29/88
Cobalt	2	mg/kg	1	6010	04/29/88
Lead	8	mg/kg	5	6010	04/29/88
Mercury	N.D.	ug/kg	50	7471	04/29/88
Nickel	N.D.	mg/kg	4	6010	04/29/88
Selenium	N.D.	mg/kg	0.2	7740	05/05/88
Vanadium	12	mg/kg	1	6010	04/29/88

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-21

Laboratory ID: 67196-002

Enseco ID: 67196-002

Matrix: Soil Authorized: 04/22/88	Sample	d: 04/21/88	21/88 Received: 04/22/8		88	
Parameter	<u>Result</u>	Units	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed	
Oil	2.6	%	0.1		05/03/88	
Water	6.0	%	0.1		05/03/88	
Solids	91.4	%	0.1		05/03/88	

N.D. = Not detected

Approved by: Lindsay Breyer

I

REFINERY HAZARDOUS CONSTITUENT VOLATILES

Client Name: DAMES AND	MOORE				
Client ID: BH-22					
Laboratory ID: 67196-003	Enseco ID	: 67196-	-003		
Matrix: Waste	Sampled: 04/21/88 Received: 04/22/88				
Authorized: 04/22/88			Analyzed: 05/20/88		
Parameter	P	Result	Units	Reporting <u>Limit</u>	
Benzene		N.D.	mg/kg	1.0	
Carbon disulfide		N.D.	mg/kg	1.0	
Chlorobenzene		N.D.	mg/kg	1.0	
Chloroform		N.D.	mg/kg	1.0	
1,2-Dibromoethane		N.D.	mg/kg	1.0	
1,2-Dichloroethane		N.D.	mg/kg	1.0	
1,4-Dioxane		N.D.	mg/kg	20	
Methyl ethyl ketone		N.D.	mg/kg	5.0	
Styrene		N.D.	mg/kg	1.0	
Ethylbenzene		N.D.	mg/kg	1.0	
Toluene		4.4	mg/kg	1.0	
m-Xylene		3.8	mg/kg	1.0	
o & p-Xylene(s)		2.5	mg/kg	1.0	
Surrogate					
Toluene-D8		94	%	-	
Bromofluorobenzene(BFB)		104	%	-	
			C /		

106

N.D. = Not detected

1,2-Dichloroethane-D4

Reported by: Stephen Siegal

Sample: 67196-003

%

REFINERY HAZARDOUS CONSTITUENT SEMIVOLATILE ORGANICS

Client Name: DAMES AND MOORE

Client ID: BH-22

Laboratory ID: 67196-003	Enseco ID: 67196-003			
Matrix: Waste	Sampled: 04/21/88	Received: 04/22/88		
Authorized: 04/22/88	Prepared: 05/02/88	Analyzed: 05/19/88		

			Reporting
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	<u>Limit</u>
			10
Anthracene	N.D.	mg/kg	10
Benzo(a)anthracene	N.D.	mg/kg	10
Benzo(b)fluoranthene	N.D.	mg/kg	10
Benzo(k)fluoranthene	N .D.	mg/kg	10
Benzo(a)pyrene	N.D.	mg/kg	10
bis(2-Ethylhexyl)phthalate	N .D.	mg/kg	10
Butylbenzyl phthalate	N.D.	mg/kg	10
Chrysene	28	mg/kg	10
Dibenz(a,h)anthracene	N.D.	mg/kg	10
Di-n-butyl phthalate	N.D.	mg/kg	10
1,2-Dichlorobenzene	N.D.	mg/kg	10
1,3-Dichlorobenzene	N .D.	mg/kg	10
1,4-Dichlorobenzene	N .D.	mg/kg	10
Diethyl phthalate	N.D.	mg/kg	10
7,12-Dimethylbenzanthracene	N.D.	mg/kg	10
Dimethyl phthalate	N .D.	mg/kg	10
Di-n-octyl phthalate	N.D.	mg/kg	10
Fluoranthene	N.D.	mg/kg	10
Indene	N .D.	mg/kg	10
1-Methylnaphthalene	N.D.	mg/kg	10
Naphthalene	N.D.	mg/kg	10
Phenanthrene	30	mg/kg	10
Pyrene	N.D .	mg/kg	10
Pyridine	N .D.	mg/kg	-
Quinoline	N.D.	mg/kg	10
Benzenethiol	N.D .	mg/kg	-
o-Cresol	N.D.	mg/kg	10
p & m-Cresol	N.D.	mg/kg	10
2,4-Dimethylphenol	N.D.	mg/kg	10
2,4-Dinitrophenol	N.D.	mg/kg	50
4-Nitrophenol	N.D.	mg/kg	50
1			

N.D. = Not detected

Enseco

REFINERY HAZARDOUS CONSTITUENT SEMIVOLATILE ORGANICS (CONT.)

Client Name: DAMES AND MOORE Client ID: BH-22 Laboratory ID: 67196-003 Enseco ID: 67196-003 Matrix: Waste Sampled: 04/21/88 Received: 04/22/88 Authorized: 04/22/88Prepared: 05/02/88 Analyzed: 05/19/88 Reporting Parameter Result <u>Units</u> <u>Limit</u> Phenol 10 N.D. mg/kg Surrogate Nitrobenzene-D5 % 98 2-Fluorobiphenyl 111 % _ Terphenyl-D14 % 102 Phenol-D5 47 % -58 2-Fluorophenol % -2,4,6-Tribromophenol 91 %

N.D. = Not detected

Reported by: Julie Niermann

Approved by: Jeffrey Lowry

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND	MOORE			
Client ID: BH-22				
Laboratory ID: 67196-003	Enseco ID: 6	7196-003		
Matrix: Waste	Sampled: 04/21/88	Received:	04/22/88	
Authorized: 04/22/88		Analyzed:	05/03/88	
Parameter	Resi	ilt	Units (as <u>received)</u>	Reporting <u>Limit</u>
Bromoform	N.	D.	ug/kg	1000
Carbon tetrachloride	N.	D.	ug/kg	100
Chlorobenzene	N.	D.	ug/kg	400
Chloroethane	N.	D.	ug/kg	1000
Chloroform	N.	D.	ug/kg	100
Dibromochloromethane	N.	D.	ug/kg	200
Bromodichloromethane	N.	D.	ug/kg	200
1,1-Dichloroethane	N.	D.	ug/kg	100
1,2-Dichloroethane	N.	D.	ug/kg	2 00
1,1-Dichloroethene	N.	D.	ug/kg	100
1,2-Dichloropropane	N.	D.	ug/kg	200
cis-1,3-Dichloropropene	N.	D.	ug/kg	4 00
trans-1,3-Dichloropropene	N.	D.	ug/kg	100
Bromomethane	N.	D.	ug/kg	1000
Chloromethane	N.	D.	ug/kg	10 00
Methylene chloride	N.	D.	ug/kg	1000
1,1,2,2-Tetrachloroethane	N.	D.	ug/kg	200
Tetrachloroethene	N.	D.	ug/kg	100
trans-1,2-Dichloroethene	N.	D.	ug/kg	100
1,1,1-Trichloroethane	N.	D.	ug/kg	100
1,1,2-Trichloroethane	N.	D.	ug/kg	200
Trichloroethene	N.	D.	ug/kg	2 00
Vinyl chloride	N.	D.	ug/kg	200
1,1,2-Trichloro-				
1,2,2-trifluoroethane	N.	D.	ug/kg	200
1,2-Dibromoethane (EDB)	N.	D.	ug/kg	400

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-22

Laboratory ID: 67196-003

Enseco ID: 67196-003

Matrix: Waste	Sampled: 04/21/88	Rece	ived: 04/22/88		
Authorized: 04/22/88	Analyzed: 05/03/88				
Parameter	Res	<u>11t</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>	
Benzene	200	0	ug/kg	100	
Chlorobenzene	N	D.	ug/kg	100	
1,2-Dichlorobenzene	N	D.	ug/kg	100	
1,3-Dichlorobenzene	N	D.	ug/kg	100	
1,4-Dichlorobenzene	N	D.	ug/kg	100	
Ethylbenzene	180	0	ug/kg	100	
Toluene	1100	0	ug/kg	100	
m-Xylene	1000	0	ug/kg	100	
o & p-Xylene(s)	610	0	ug/kg	100	

N.D. = Not detected

Reported by: Helmer Morse

Enseco

i

ANALYTICAL RESULTS FOR TOTAL CHROMATOGRAPHABLE ORGANICS

Client Name: DAMES AND MOOR Client ID: BH-22 Laboratory ID: 67196-003 Matrix: Waste Authorized: 04/22/88	Sampled:	Enseco ID: 04/21/88 : 04/27/88	67196-003 Received: Analyzed:	
Total Chromatographable Orga Initial Boiling Point* Final Boiling Point* Gasoline Stoddard Solvent Jet Fuel Kerosene Diesel Motor Oil	nics	<u>Value</u> 130,000,000 100 500 ND ND ND ND ND ND ND	Units ug/kg °C - - - - -	Detection Limit 830,000 - 8,300,000 8,300,000 8,300,000 8,300,000 8,300,000 8,300,000 83,000,000

- * The initial and final boiling points define the range of compounds detected. The method is capable of detecting compounds between 100°C and 500°C.
- ** Primary components of this product were detected in the sample. Due to the overall complexity of the chromatogram, reliable identification of this product cannot be achieved.

METALS PARAMETERS TOTAL METALS

Client Name: DAMES AND MOORE

Client ID: BH-22

Matrix: Waste

Laboratory ID: 67196-003

Enseco ID: 67196-003

Sampled: 04/21/88 Received: 04/22/88

Authorized: 04/22/88

<u>Parameter</u>	<u>Result</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Antimony	N.D.	mg/kg	5	6010	04/29/88
Arsenic	N.D.	mg/kg	0.3	7060	05/06/88
Barium	9.4	mg/kg	0.5	6010	04/29/88
Beryllium	N.D .	mg/kg	0.1	6010	04/29/88
Cadmium	N. D.	mg/kg	0.5	6010	04/29/88
Chromium	N.D.	mg/kg	1	6010	04/29/88
Cobalt	N.D.	mg/kg	1	6010	04/29/88
Lead	N .D.	mg/kg	5	6010	04/29/88
Mercury	N. D.	ug/kg	50	7471	04/29/88
Nickel	N.D.	mg/kg	4	6010	04/29/88
Selenium	N .D.	mg/kg	0.2	7740	05/05/88
Vanadium	N .D.	mg/kg	1	6010	04/29/88

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Client Name: DAMES ANI	D MOORE				
Client ID: BH-22					
Laboratory ID: 67196-003		Enseco 1D:	67196-003		
Matrix: Waste	Sampled: 04/21/88		Received: 04/22/88		
Authorized: 04/22/88					
Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Oil	93.7	%	0.1		05/03/88
Water	2.0	%	0.1		05/03/88
Solids	4.3	%	0.1		05/03/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND M	Client Name: DAMES AND MOORE							
Client ID: BH-23								
Laboratory ID: 67196-004	Enseco ID: 67	7196-004						
Matrix: Soil	Sampled: 04/21/88	Received: (04/22/88					
Authorized: 04/22/88		Analyzed: (05/03/88	· · · · · · · · · · · · · · · · · · ·				
Parameter	Resu	<u>ilt</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>				
Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane Bromodichloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane	N. N. N. N. N. N. N. N. N. N.	D. D. D. D. D. D. D. D. D.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	5000 500 5000 5000 1000 1000 500 1000 500				
cis-1,3-Dichloropropene trans-1,3-Dichloropropene Bromomethane Chloromethane Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene trans-1,2-Dichloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl chloride 1,1,2-Trichloro- 1,2,2-trifluoroethane	N. N.J N.J N.J N.J N.J N.J N.J N.J N.J N	D. D. D. D. D. D. D. D. D. D.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2000 500 5000 5000 1000 500 500 1000 1000 1000 1000				
1,2-Dibromoethane (EDB)	N.I		ug/kg ug/kg	2000				

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND M	IOORE		
Client ID: BH-23			
Laboratory ID: 67196-004	Enseco ID: 6719	6-004	
Matrix: Soil	Sampled: 04/21/88	Received: 04/22/88	
Authorized: 04/22/88		Analyzed: 05/03/88	<u></u>
Parameter	<u>Result</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>
Benzene	67 0	ug/kg	500
Chlorobenzene	N.D.	ug/kg	500
1,2-Dichlorobenzene	N.D.	ug/kg	500
1,3-Dichlorobenzene	N.D.	ug/kg	500
1,4-Dichlorobenzene	N .D.	ug/kg	500
Ethylbenzene	12000	ug/kg	500
Toluene	19 000	ug/kg	500
m-Xylene	72000	ug/kg	500
o & p-Xylene(s)	35000	ug/kg	500

N.D. = Not detected Reported by: Helmer Morse

Approved by: Susan Brillante

ł

ANALYTICAL RESULTS FOR TOTAL CHROMATOGRAPHABLE ORGANICS

Client Name: DAMES AND MOOR Client ID: BH-23 Laboratory ID: 67196-004 Matrix: Soil Authorized: 04/22/88	Sampled:	Enseco ID: 04/21/88 04/27/88	67196-004 Received: Analyzed:	04/22/88 04/29/88
Total Chromatographable Orga Initial Boiling Point* Final Boiling Point* Gasoline Stoddard Solvent Jet Fuel Kerosene Diesel Motor Oil	nics	<u>Value</u> 2,900,000 100 470 ND ND ND ND ND ND ND	Units ug/kg oC oC ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	Detection Limit 1,700 - 117,000 17,000 17,000 17,000 17,000 17,000 17,000

- * The initial and final boiling points define the range of compounds detected. The method is capable of detecting compounds between 100°C and 500°C.
- ** Primary components of this product were detected in the sample. Due to the overall complexity of the chromatogram, reliable identification of this product cannot be achieved.

Enseco

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: BH-23

Matrix: Soil

Laboratory ID: 67196-004

Enseco ID: 67196-004

Sampled: 04/21/88 Received: 04/22/88

Authorized: 04/22/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Oil	0.1	%	0.1		05/03/88
Water	11.4	%	0.1		05/03/88
Solids	88.5	%	0.1		05/03/88

N.D. = Not detected

Approved by: Lindsay Breyer

...

HALOGENATED VOLATILE ORGANICS

EPA METHOD 8010

Client Name: DAMES AND MOORE

Client ID: BH-24

Laboratory ID: 67196-005

Enseco ID: 67196-005

Laboratory 1D. 0/190-005		190-005		
Matrix: Soil	Sampled: 04/21/88	Receiv	ed: 04/22/88	
Authorized: 04/22/88	Analyzed: 05/03/88			<u> </u>
<u>Parameter</u>	Resu	<u>lt</u>	Units (as received)	Reporting <u>Limit</u>
Bromoform	N.I	D.	ug/kg	1000
Carbon tetrachloride	N.I) .	ug/kg	100
Chlorobenzene	N.I) .	ug/kg	400
Chloroethane	N.I) .	ug/kg	1000
Chloroform	N.I) .	ug/kg	100
Dibromochloromethane	N.I) .	ug/kg	200
Bromodichloromethane	N.I) .	ug/kg	200
1,1-Dichloroethane	N.I) .	ug/kg	100
1,2-Dichloroethane	N.I) .	ug/kg	200
1,1-Dichloroethene	N.I	Э.	ug/kg	100
1,2-Dichloropropane	N.I) .	ug/kg	200
cis-1,3-Dichloropropene	N.I) .	ug/kg	400
trans-1,3-Dichloropropene	N.I	Э.	ug/kg	100
Bromomethane	N.I) .	ug/kg	1000
Chloromethane	N.I) .	ug/kg	1000
Methylene chloride	N.I	Э.	ug/kg	1000
1,1,2,2-Tetrachloroethane	N.I	Э.	ug/kg	200
Tetrachloroethene	N.I) .	ug/kg	100
trans-1,2-Dichloroethene	N.I) .	ug/kg	100
1,1,1-Trichloroethane	N.I) .	ug/kg	100
1,1,2-Trichloroethane	N.I	Э.	ug/kg	200
Trichloroethene	N.I) .	ug/kg	200
Vinyl chloride 1,1,2-Trichloro-	N.]) .	ug/kg	200
1,2,2-trifluoroethane	N.I) .	ug/kg	200
1,2-Dibromoethane (EDB)	N.I		ug/kg	400

N.D. = Not detected

Reported by: Helmer Morse

11

1 4

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 8020

Client Name: DAMES AND MOORE

Client ID: BH-24

Laboratory ID: 67196-005

Enseco ID: 67196-005

Matrix: Soil	Sampled: 04/21/88	Receiv	red: 04/22/88			
Authorized: 04/22/88		Analyz	alyzed: 05/03/88			
Parameter	Res	ilt	Units (as <u>received)</u>	Reporting <u>Limit</u>		
Benzene	N	D.	ug/kg	100		
Chlorobenzene	N	D.	ug/kg	100		
1,2-Dichlorobenzene	N	D.	ug/kg	100		
1,3-Dichlorobenzene	N	D.	ug/kg	100		
1,4-Dichlorobenzene	N	D.	ug/kg	100		
Ethylbenzene	240	D	ug/kg	100		
Toluene	210	0	ug/kg	100		
m-Xylene	1700)	ug/kg	100		
o & p-Xylene(s)	1000)	ug/kg	100		

N.D. = Not detected Reported by: Helmer Morse

Approved by: Susan Brillante

L

ANALYTICAL RESULTS FOR TOTAL CHROMATOGRAPHABLE ORGANICS

	Sampled: Prepared:	Enseco ID: 04/21/88 04/27/88	67196-005 Received: Analyzed:	,
Total Chromatographable Organ Initial Boiling Point* Final Boiling Point* Gasoline Stoddard Solvent Jet Fuel Kerosene Diesel Motor Oil	ics	<u>Value</u> 250,000 100 400 ND ND ND ND ND ND	Units ug/kg oc oc ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	Detection Limit 1,700 - 17,000 17,000 17,000 17,000 17,000 170,000

- * The initial and final boiling points define the range of compounds detected. The method is capable of detecting compounds between 100°C and 500°C.
- ** Primary components of this product were detected in the sample. Due to the overall complexity of the chromatogram, reliable identification of this product cannot be achieved.

INORGANIC PARAMETERS

Client Name: DAMES ANI	D MOORE				
Client ID: BH-24					
Laboratory ID: 67196-005		Enseco ID:	67196-005		
Matrix: Soil	Sampled: 04/21/88		Received:	Received: 04/22/88	
Authorized: 04/22/88			······		
Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Oil Water Solids	0.2 10.6 89.2	% % %	0.1 0.1 0.1		05/03/88 05/03/88 05/03/88

N.D. = Not detected

- 1

....

I

111 6 13 11

Approved by: Lindsay Breyer

ANALYTICAL RESULTS FOR TOTAL CHROMATOGRAPHABLE ORGANICS

	Enseco ID: bled: 04/21/88 bared: 04/27/88	67196-006 Received: Analyzed:	,,
Total Chromatographable Organics Initial Boiling Point* Final Boiling Point* Gasoline Stoddard Solvent Jet Fuel Kerosene Diesel Motor Oil	<u>Value</u> 130,000,000 170 500 ND ND ND ND ND **	Units ug/kg oC oC ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	Detection Limit 170,000 - 1,400,000 1,400,000 1,400,000 1,400,000 1,400,000 1,400,000

- * The initial and final boiling points define the range of compounds detected. The method is capable of detecting compounds between 100°C and 500°C.
- ** Primary components of this product were detected in the sample. Due to the overall complexity of the chromatogram, reliable identification of this product cannot be achieved.

Enseco

METALS PARAMETERS TOTAL METALS

Client Name: DAMES AND MOORE

Client ID: BH-26

Laboratory ID: 67196-006

Enseco ID: 67196-006

Matrix: Waste

Sampled: 04/21/88

Received: 04/22/88

Authorized: 04/22/88

Ì

Parameter	<u>Result</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Arsenic	9.0	mg/kg	0.6	70 60	05/06/88
Barium	63	mg/kg	0.5	601 0	04/29/88
Cadmium	N .D.	mg/kg	0.5	60 10	04/29/88
Chromium	12	mg/kg	1	6 010	04/29/88
Lead	98	mg/kg	5	6010	04/29/88
Mercury	N.D.	ug/kg	50	7471	04/29/88
Selenium	N.D.	mg/kg	0.2	7740	05/05/88
Silver	N.D.	mg/kg	0.5	6010	04/29/88

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Client Name: DAMES ANI	MOORE					
Client ID: BH-26						
Laboratory ID: 67196-006 Enseco ID: 67196-006						
Matrix: Waste	Sampled: 04/21/88			Received: 04/22/88		
Authorized: 04/22/88						
<u>Parameter</u>	<u>Result</u>	<u>Units</u>		Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Oil Water Solids	51.3 9.0 39.7	% % %	-	0.1 0.1 0.1		05/03/88 05/03/88 05/03/88

N.D. = Not detected

Approved by: Lindsay Breyer

V. QUALITY CONTROL REPORT

The Enseco laboratories operate under a vigorous QA/QC program designed to ensure the generation of scientifically valid, legally defensible data by monitoring every aspect of laboratory operations. Routine QA/QC procedures include the use of approved methodologies, independent verification of analytical standards, use of duplicate Laboratory Control Samples to assess the precision and accuracy of the methodology on a routine basis, and a rigorous system of data review.

Enseco

In addition, the Enseco laboratories maintain a comprehensive set of certifications from both state and federal governmental agencies which require frequent analyses of blind audit samples. Enseco - Rocky Mountain Analytical Laboratory is certified by the EPA under the EPA/CLP program for both Organic and Inorganic analyses, under the USATHAMA (U.S. Army) program, by the Army Corps of Engineers, and the states of Colorado, New Jersey, New York, Utah, and Florida, among others.

The standard laboratory QC package is designed to:

- 1) establish a strong, cost-effective QC program that ensures the generation of scientifically valid, legally defensible data
- assess the laboratory's performance of the analytical method using control limits generated with a well-defined matrix
- 3) establish clear-cut guidelines for acceptability of analytical data so that QC decisions can be made immediately at the bench, and
- 4) provide a standard set of reportables which assures the client of the quality of his data.

The Enseco QC program is based upon monitoring the precision and accuracy of an analytical method by analyzing a set of duplicate Laboratory Control Samples (LCS) at frequent, well-defined intervals. An LCS is a wellcharacterized matrix which is spiked with target compounds at 5-100 times the reporting limit, depending upon the methodology being monitored. The purpose of the LCS is not to duplicate the sample matrix, but rather to provide an interference-free, homogeneous matrix from which to gather data to establish control limits. These limits are used to determine whether data generated by the laboratory on any given day is in control.

Enseco

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/- 3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate LCS results) to the average, historical relative percent difference + 3 standard deviation units. These control limits are fairly narrow based on the consistency of the matrix being monitored and are updated on a quarterly basis.

For Organic analyses an additional control measure is taken in the form of a Surrogate Control Sample (SCS). The SCS is a control sample spiked with surrogate standards which is analyzed with every analytical lot. The recovery of the SCS is charted in exactly the same manner as described for the LCS, and provides a daily check on the performance of the method.

Accuracy for LCS and SCS is measured by Percent Recovery.

Precision for LCS is measured by Relative Percent Difference (RPD).

RPD = ______(Measured Concentration LCS1 + Measured Concentration LCS2)/2

All samples analyzed concurrently by the same test are assigned the same QC lot number. Projects which contain numerous samples, analyzed over several days, may have multiple QC lot numbers associated with each test. The QC information which follows includes a listing of the QC lot numbers associated with each of the samples reported, LCS and SCS (where applicable) recoveries from the QC lots associated with the samples, and control limits for these lots. The QC data is reported by test code, in the order that the tests are reported in the analytical results section of this report. The test codes assigned are defined in Section VI., Analytical Methodology.

Enseco

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

		QC Lot Number			
<u>QC Matrix</u>	Test	LCS	<u>SCS</u>		
Standard Soil	BNA	BNA 098AA	BNA 098CA		
Standard Soil	VOA	VOA 032AA	VOA 032AA		
Standard Soil	BNA	BNA 098AA	BNA 098CA		
Standard Soil	VOA	VOA 031AK	VOA 031AK		
	Standard Soil Standard Soil Standard Soil	Standard Soil BNA Standard Soil VOA Standard Soil BNA	OC MatrixTestLCSStandard SoilBNABNA 098AAStandard SoilVOAVOA 032AAStandard SoilBNABNA 098AA		

🗧 Enseco

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Analyte	Con <u>Spiking</u>	-	on asured <u>LCS2</u>	Ac <u>LCS1</u>	curacy LCS2	(%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: BNA on Standard Soil QC Lot: BNA 098AA <u>Concentration Units: (ug/kg)</u>								
Pentachlorophenol	6 670	4260	3180	64	48	17-109	29.0	47
Phenol	6670	5580	4440	84	67	26-90	22.8	35
2-Chlorophenol	667 0	5790	4830	87	72	25-102	18.1	50
4-Chloro-3-methylphenol	667 0	649 0	588 0	97	88	26-103	9.9	33
4-Nitrophenol	667 0	68 10	4770	102	72	11-114	35.2	50
1,2,4-Trichlorobenzene	3330	26 00	2490	78	75	38-107	4.3	23
Acenaphthene	3330	3210	2390	96	72	31-137	29.3*	19
2,4-Dinitrotoluene	3330	2860	2130	86	64	28- 89	29.3	47
Pyrene	3330	3300	2200	9 9	6 6	35-142	40.0*	36
N-Nitrosodi-n-propylamine	3330	2820	246 0	85	74	41-126	13.6	38
1,4-Dichlorobenzene	3330	2510	2160	75	65	28-104	15.0	27
Test: VOA on Standard Soil QC Lot: VOA 031AK Concentration Units: (ug/kg)								
1,1-Dichloroethene	50 00	5020	5380	100	108	59-172	6.9	22
Trichloroethene	5000 5000	5020 5240	5620	100	112	62-137	7.0	24
Chlorobenzene	50 00	5560	5780	103	116	60-133	3.9	21
Toluene	50 00	5090	5380	102	108	59-139	5.5	21
Benzene	5000	5170	5520	103	110	66-142	6.5	21
Test: VOA on Standard Soil QC Lot: VOA 032AA <u>Concentration Units: (ug/kg)</u>								
1,1-Dichloroethene	50 00	5990	6030	120	121	59-172	0.7	22
Trichloroethene	50 00	5160	5450	103	109	62-137	5.5	24
Chlorobenzene	5000	5240	5500	105	110	60-133	4.8	21
Toluene	50 00	5000	5120	100	102	59-139	2.4	21
Benzene	5000	5320	5510	106	110	66-142	3.5	21

* = RPD outside standard QC limits.

SURROGATE CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Analyte	Conce: <u>Spiking</u>	ntration <u>Measured</u>	Accur <u>SCS</u>	acy(%) <u>Limits</u>
Test: BNA on Standard Soil QC Lot: BNA 098CA <u>Concentration Units: (ug/kg)</u>				
Phenol-D5	3330	265 0	8 0	24-113
2-Fluorophenol	3330	2730	82	25-121
2,4,6-Tribromophenol	3330	2150	65	19-122
Nitrobenzene-D5	1670	1290	77	23-120
2-Fluorobiphenyl	1670	1350	81	30-115
Terphenyl-D14	1670	1570	94	18-137
Test: VOA on Standard Soil QC Lot: VOA 031AK <u>Concentration Units: (ug/kg)</u> Toluene-D8 Bromofluorobenzene (BFB) 1,2-Dichloroethane-D4	5000 5000 5000	4820 6000 4980	96 120 100	81-117 74-121 70-121
Test: VOA on Standard Soil QC Lot: VOA 032AA Concentration Units: (ug/kg)				
Toluene-D8	5000	5110	102	81-117
Bromofluorobenzene (BFB)	5000	5020	100	74-121
1,2-Dichloroethane-D4	5000	536 0	107	70-121

🛓 Enseco

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY

Laboratory			QC Lot 1	Number
Sample Number	QC Matrix	<u>Test</u>	LCS	<u>SCS</u>
67196-001-00	Standard Soil	601	601 123AL	601 123AL
67196-001-00	Standard Soil	602	602 148AL	602 148AL
67196-002-00	Standard Soil	601	601 123AL	601 123AL
67196-002-00	Standard Soil	602	602 148AL	602 148AL
67196-003-00	Standard Soil	601	601 123AL	601 123AL
67196-003-00	Standard Soil	602	602 148AL	602 148AL
67196-004-00	Standard Soil	601	601 123AL	601 123AL
67196-004-00	Standard Soil	602	602 148AL	602 148AL
67196-005-00	Standard Soil	601	601 123AL	601 123AL
67196-005-00	Standard Soil	602	602 148AL	602 148AL

🐴 Enseco

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

<u>Analyte</u>	Con <u>Spiking</u>	centratio Mea <u>LCS1</u>	on asured <u>LCS2</u>	Ac <u>LCS1</u>	curacy(<u>LCS2</u>		Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 601 on Standard Soil QC Lot: 601 123AL Concentration Units: (ug/kg)								
Chloromethane	2000	2320	2410	116	121	59-140	3.8	25
Bromomethane	2000	2310	2330	116	117	58-141	0.9	25
Vinyl chloride	2000	1720	1700	86	85	68-132	1.2	25
Chloroethane	2000	2040	2050	102	103	77-123	0.5	20
Methylene chloride	2000	2150	2320	108	116	77-123	7.6	20
Trichlorofluoromethane	2000	1660	1530	83 89	77 89	66-134	8.2	25
1,1-Dichloroethene	2000	1780	1780 1790	89 93		63-137	0.0 3.8	20 20
1,1-Dichloroethane	2000 2000	1860 1750	1790 1690	93 88	90 85	84-116 64-136	3.8 3.5	20 20
trans-1,2-Dichloroethene Chloroform	2000 2000	1790	1740	90	83 87	75-125	2.8	20 20
1,1,2-Trichloro-1,2,2-trifluor	2000	1640	1540	82	77	67-134	2.8 6.3	20 20
1,2-Dichloroethane	2000	1860	1860	93	93	72-129	0.0	20
1,1,1-Trichloroethane	2000	1570	1500	79 79	75	71-129	4.6	20
Carbon tetrachloride	2000	1680	1600	84	80	68-131	4.9	20
Bromodichloromethane	2000	1860	1750	93	88	76-124	6.1	20
1,2-Dichloropropane	2000	1730	1660	87	83	74-126	4.1	20
trans-1,3-Dichloropropene	2000	1720	1620	86	81	64-136	6.0	20
Trichloroethene	2000	1830	1740	92	87	77-123	5.0	20
1,1,2-Trichloroethane	6000	6540	6110	109	102	69-132	6.8	20
Dibromochloromethane	6 000	6540	6110	109	102	69-132	6.8	20
cis-1,3-Dichloropropene	6 000	654 0	6110	109	102	69-132	6.8	20
1,2-Dibromoethane (EDB)	2000	1560	1510	78	76	74-127	3.3	20
Bromoform	2000	1840	1780	92	89	74-127	3.3	20
1,1,2,2-Tetrachloroethane	4000	36 00	3490	9 0	87	60-140	3.1	20
Tetrachloroethene	4000	36 00	3490	9 0	87	60-140	3.1	20
Chlorobenzene	2000	2210	2090	111	105	72-128	5.6	20
1,3-Dichlorobenzene	2000	2000	2100	100	105	50-150	4.9	20
1,2-Dichlorobenzene	2000	2050	1990	103	100	70-130	3.0	20
1,4-Dichlorobenzene	2000	2090	2320	105	116	70-130	10.4	20
Test: 602 on Standard Soil QC Lot: 602 148AL Concentration Units: (ug/kg)								
Benzene	2000	169 0	1680	85	84	77-123	0.6	20
Toluene	2000	1880	1830	94	92	77-123	2.7	20
Chlorobenzene	2000	2000	1950 1950	100	92 98	81-119	2.5	20
Ethylbenzene	2000	2000	1960	100	98	63-137	3.0	20
m-Xylene	2000	1870	184 0	94	92	77-123	1.6	20
	2000		1010	24	~~	., 140		20

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Conc <u>Spiking</u>	entratio Mea <u>LCS1</u>	on asured <u>LCS2</u>	Ac <u>LCS1</u>	curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precis: <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 602 on Standard Soil QC Lot: 602 148AL Concentration Units: (ug/kg)								
o & p-Xylene(s) 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene	4000 2000 2000 2000	3880 2020 1840 2000	3820 1970 1830 1920	97 101 92 100	96 99 92 96	77-123 77-123 63-137 70-130	1.6 2.5 0.5 4.1	20 20 20 20

---- 🛓 Enseco

SURROGATE CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Concer <u>Spiking</u>	ntration Measured	Accura SCS	cy(%) Limits
Test: 601 on Standard Soil QC Lot: 601 123AL Concentration Units: (ug/kg)	<u>-t</u> 2	<u></u>		
Bromochloromethane	3000	2780	93	20-160
Test: 602 on Standard Soil QC Lot: 602 148AL Concentration Units: (ug/kg)				
a,a,a-Trifluorotoluene	3000	3020	101	20-160

QC LOT ASSIGNMENT REPORT INORGANICS - METALS

OC Matrix	Test	QC Lot Number LCS
<u>VC Matrix</u>	1050	200
Standard Soil	FAST	FAST212AA
Standard Soil	FSET	FSET212AA
Standard Soil	HGT	HGT 196AA
Standard Soil	ICPT	ICPT240AA
Standard Soil	FAST	FAST212AA
Standard Soil	FSET	FSET212AA
Standard Soil	HGT	HGT 196AA
Standard Soil	ICPT	ICPT240AA
Standard Soil	FAST	FAST212AA
Standard Soil	FSET	FSET212AA
Standard Soil	HGT	HGT 196AA
Standard Soil	ICPT	ICPT240AA
	Standard Soil Standard Soil Standard Soil Standard Soil Standard Soil Standard Soil Standard Soil Standard Soil Standard Soil Standard Soil	Standard SoilFASTStandard SoilFSETStandard SoilHGTStandard SoilICPTStandard SoilFASTStandard SoilFSETStandard SoilHGTStandard SoilICPTStandard SoilICPTStandard SoilFASTStandard SoilFASTStandard SoilFASTStandard SoilFASTStandard SoilFSETStandard SoilFSETStandard SoilFSETStandard SoilHGT

🔮 Enseco

LABORATORY CONTROL SAMPLE REPORT INORGANICS - METALS

Analyte		tion leasured <u>LCS2</u>	Ac <u>LCS1</u>	curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precis: <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: FAST on Standard Soil QC Lot: FAST212AA <u>Concentration Units: (mg/kg)</u>							
Arsenic	4 4 .1	4.1	103	103	75-125	0.0	20
Test: FSET on Standard Soil QC Lot: FSET212AA Concentration Units: (mg/kg)							
Selenium	2.0 2.0) 1.9	100	95	75-125	5.1	20
Test: HGT on Standard Soil QC Lot: HGT 196AA Concentration Units: (ug/kg)							
Mercury	500 51	6 532	103	106	75-125	3.1	20
Test: ICPT on Standard Soil QC Lot: ICPT240AA <u>Concentration Units: (mg/kg)</u>							
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Manganese Nickel Silver Tin	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.95 2.06 0.049 0.054 0.20 0.51 0.25 0.50 0.54 0.54 0.54 0.048 0.59	102 98 105 100 110 100 104 104 102 108 110 100 122	100 98 103 98 108 100 100 100 100 108 108 96 118	75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125	2.0 0.5 1.4 2.0 1.8 0.0 1.9 3.9 2.0 0.0 1.8 4.1 3.3 2.0	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Vanadium Zinc	0.5 0.50 0.5 0.55		100 110	98 106	75-125 75-125	2.0 3.7	20 20

67196	kel)		Hemarks	TEH 02	- 2 /) 03	J 01	05	male OG		
	Kitland n. m. Larry Bardy		BO10-8020 9600	20 90 al		3010-8020 \$ 00 00	as chur (B4-23)	% oil TCH RCRA Mala		
CHAIN OF CUSTODY	RMAL Project No.	sampling site	No. Containers	9	6	S	ς	4		
		Con and	Type Carl	(1			4	*		
4955 Yarrow Street, Arvada, CO 80002 (303) 421-6611 A DIVISION OF ENSECO INCORPORATED	RMAL Client Charle Charles	ן ק	Sample ID/Description $BA-20$	B4-21	RH-22 Sudae Pit NAT	BH-23	BH-24	#26 Sludg Pit tan		
4955 Yarrow Street, Arvada, CO 80002 (303) 421-6611 A privision A privision ENSI	RMAL Client Charlo	Name/No	V/2004 1300 (/330	1400	1430	1500	0091		

APPENDIX D

!

Ţ

ſ

Ĩ

CHROMATOGRAMS

APPENDIX D

CHROMATOGRAMS

Included herein are the chromatograms from the 10 borehole samples analyzed for total chromatographable organics (TCO) and "type" chromatograms for gasoline, diesel fuel, oil, kerosene and a Clú-C36 sample. Analyses for TCO involved a methylene chloride extraction and subsequent analysis by capillary column gas chromatography with a flame ionization detector. This test is designed to detect the maximum concentration of hydrocarbons (which include refinery-related semivolatiles and additional non-hazardous aliphatic hydrocarbons). The type and concentration of common petroleum products (gasoline, stoddard solvent, jet fuel, kerosene, diesel, motor oil) can be defined if there is a good match. If a match to a specific petroleum product can be assigned, the product identification is then reported. The GC conditions measure compounds in the boiling point range of 100°C (212°F) to 500°C (932°F). The initial and final boiling points reported represent the boiling point of 80 to 90 percent of compounds in the sample.

This extraction technique and GC analysis serve as a screen for semivolatile compounds and as mentioned, provide only an indication of the maximum concentration of the semivolatile compounds, since the concentration includes many other hydrocarbons. Details of the test are included in RMAL's report, "Section IV, Analytical Results."

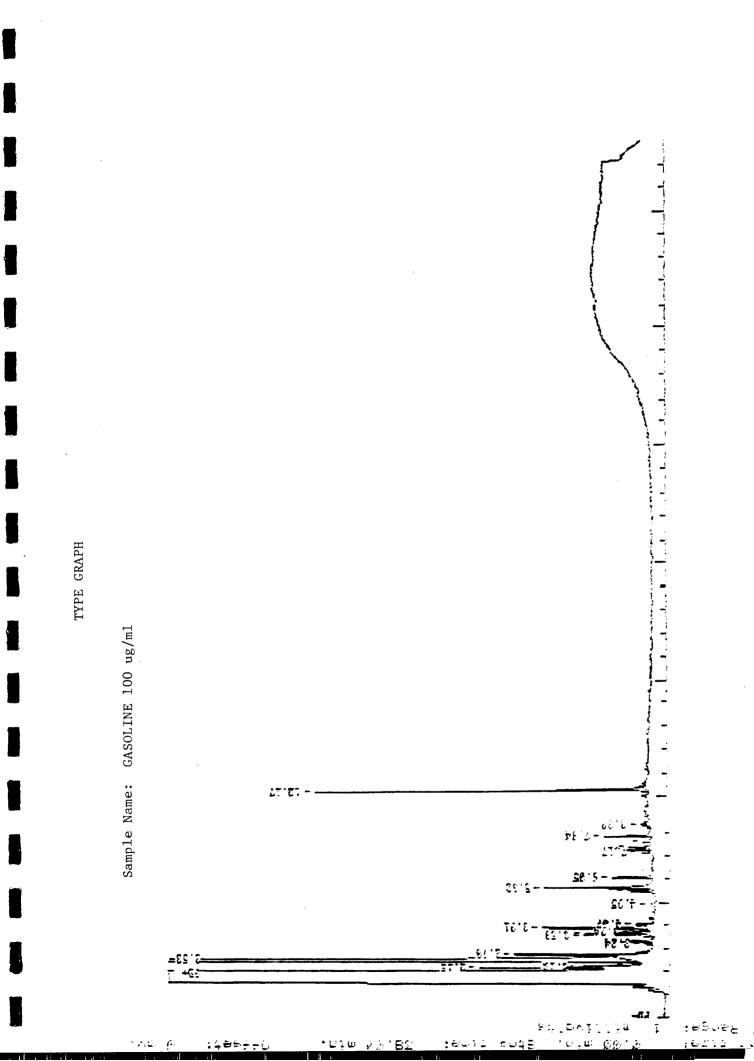
Results of the laboratory analyses for the 10 samples tested for TCO are summarized in Table 2. RMAL's complete report is included in Appendix C.

The sample analyses from BH-7 from 10 to 12 feet did not indicate any TCO at the detection limit of 1,700 ug/kg. This is consistent with the other data results for this sample in that no other organic parameters were detected at this site.

A high concentration of TCO was detected at BH-4 near the gasoline blending tanks, from 5 to 7 feet, at 2,800,000 ug/kg. The chromatogram indicated light end product, diesel fuel and/or gasoline. The boiling point ranged from 100°C to 340°C with a carbon (C) range of about C4 to C22 within RMAL's standard for diesel. The chromatogram generally indicated the presence in the sample of a considerable quantity of light end hydrocarbon product.

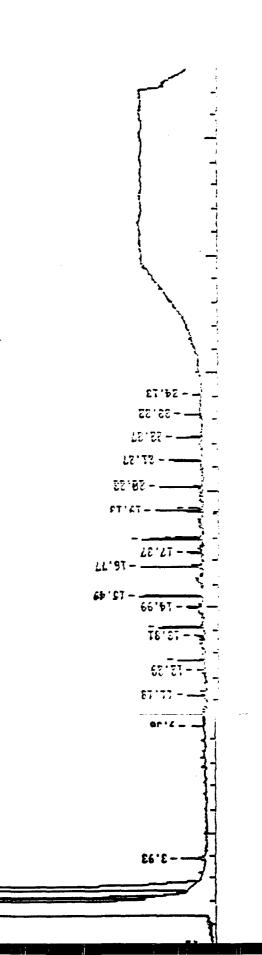
D-1

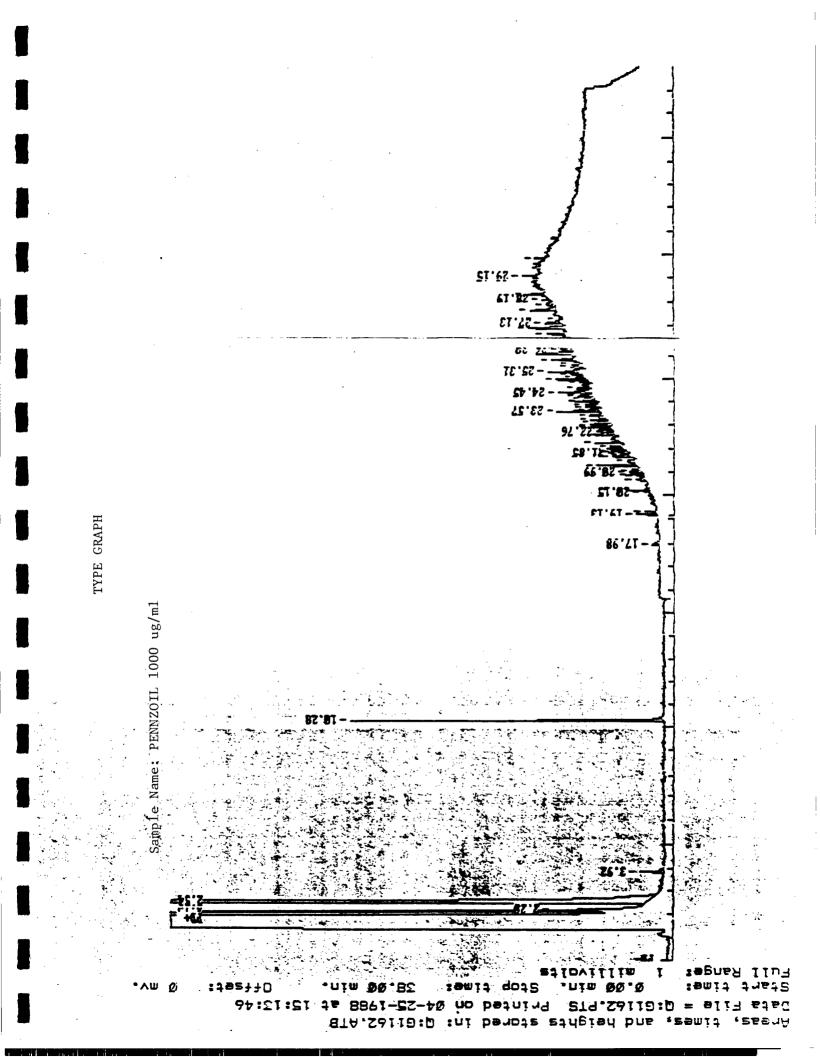
A very low concentration of TCO of 2,100 ug/kg was detected at BH-8 to the east of BH-4 near the berm and the gasoline tanks. The final boiling points were low, at 100°C to 170°C and the chromatogram also indicated light end product, primarily in the C4 to C12 range probably gasoline.


Moderately high levels of TCO were detected at BH-10 near the No. 5 Fuel Oil tank and at BH-24 near the No. 2 diesel fuel, crude oil and no-lead tanks. TCO levels were 40,000 ug/kg and 250,000 ug/kg and the boiling point ranges (100°C to 330°C) and (100°C to 400°C), respectively. The chromatograms indicated primarily light end products, probably diesel fuel and gasoline, with some oil. However, the complexity of the chromatogram would not permit reliable identification of the product.

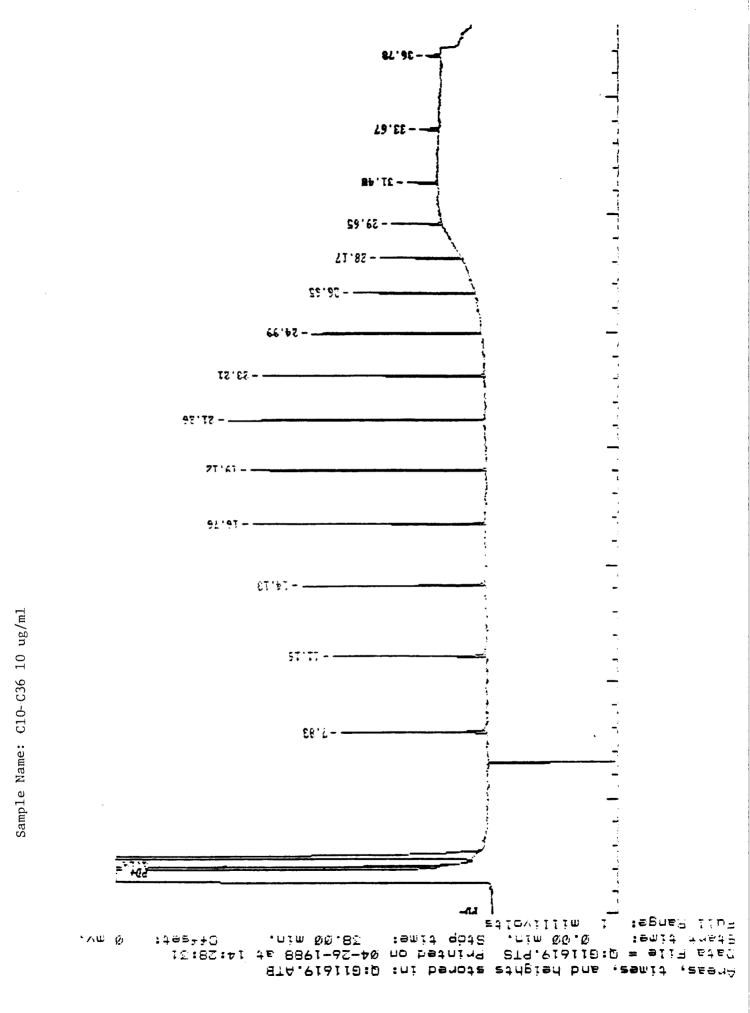
The TCO levels and chromatograms for the borehole samples to the northwest at BH-20 and BH-21 near the No. 5 Fuel Oil tank were high at 54,000,000 ug/kg and 60,000,000 ug/kg, respectively. The chromatograms and boiling point ranges (250°C to 450°C) and (270°C to 500°C), respectively, indicated light and heavy-end hydrocarbons (i.e., possibly diesel fuel and stove oil). RMAL matched the chromatogram from BH-20 to their diesel standard at a 100 percent match.

The solid waste sludges at BH-22 in the northwest corner of the tank farm and BH-26 in the eastern sludge pit, had very high TCO levels, both measuring 130,000,000 ug/kg with boiling point ranges of 100°C to 500°C and 170°C to 500°C, respectively. The primary hydrocarbons appear to include fuel oil and diesel fuel as well as heavier oil product.


The TCO level at BH-23 near the No. 5 Fuel Oil tank measured 2,900,000 ug/kg with a boiling point range from 100°C to 470°C ug/kg. The chromatogram was very complex but indicated gasoline and fuel oil as the primary hydrocarbons present.


D-2

Sample Name: DIESEL FUEL 100 ug/ml

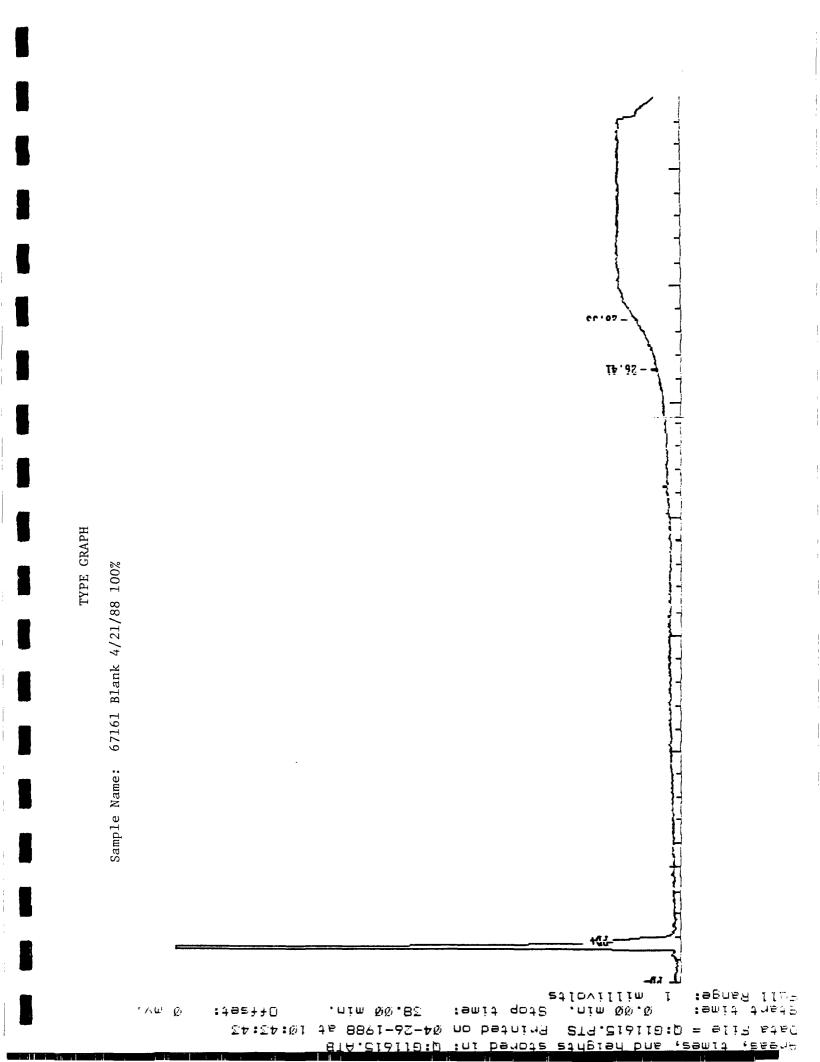


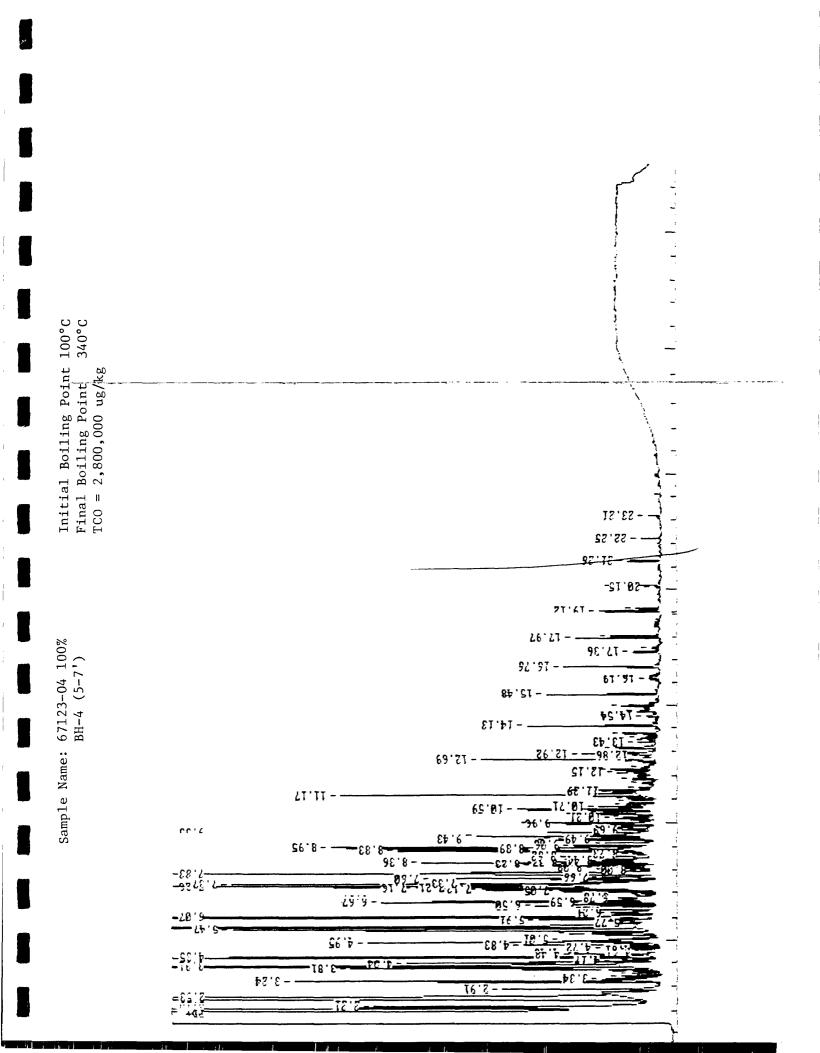
Sample Name: KEROSENE 100 ug/ml

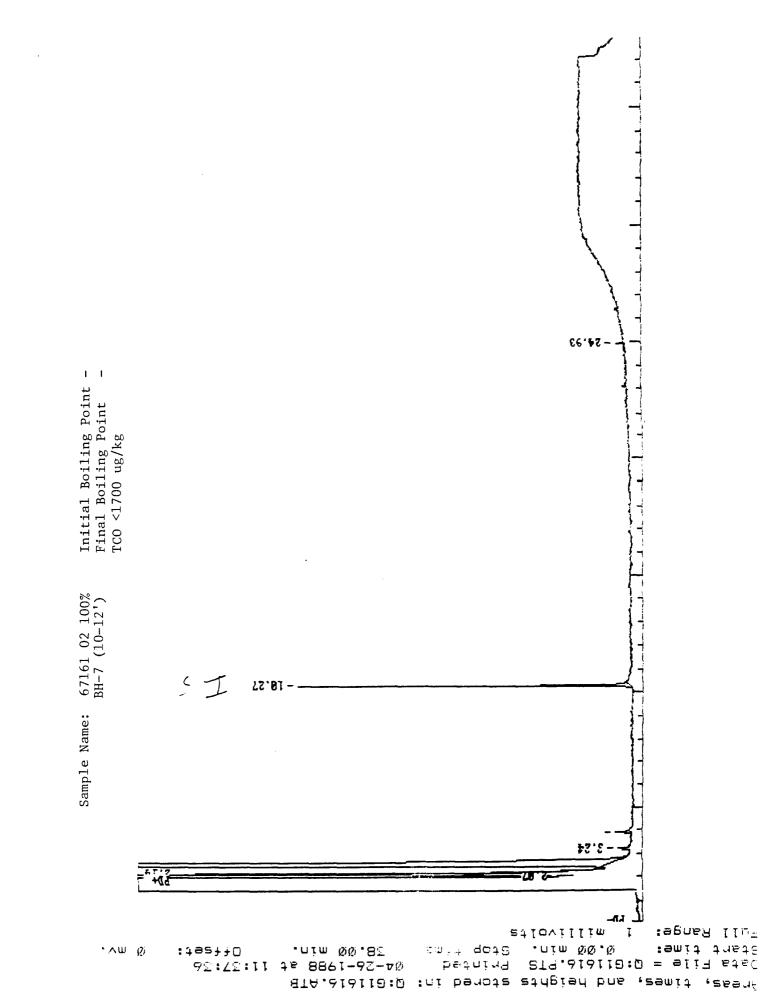
ł 11197 ţ REFE 78157 13 et '91-1 £9187 42127 17777 - 58177 12127 -۵. nn · z -26,6= しょう ちょうしょう ちょう Si'u 2610

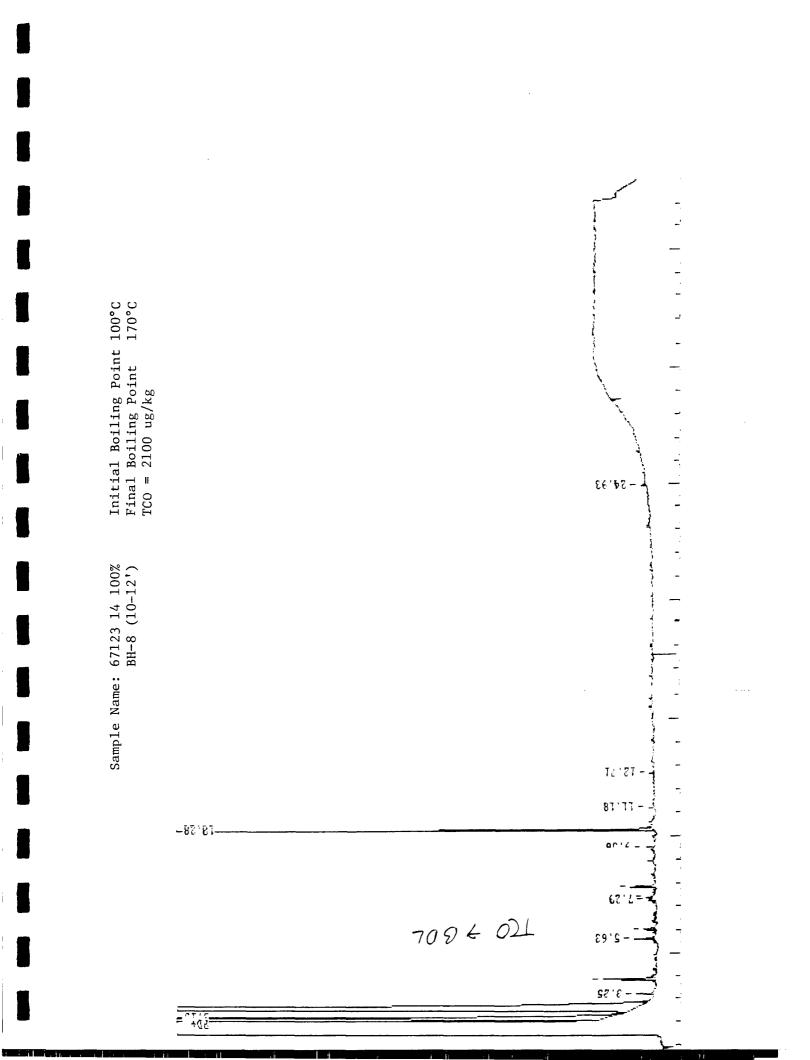
. .

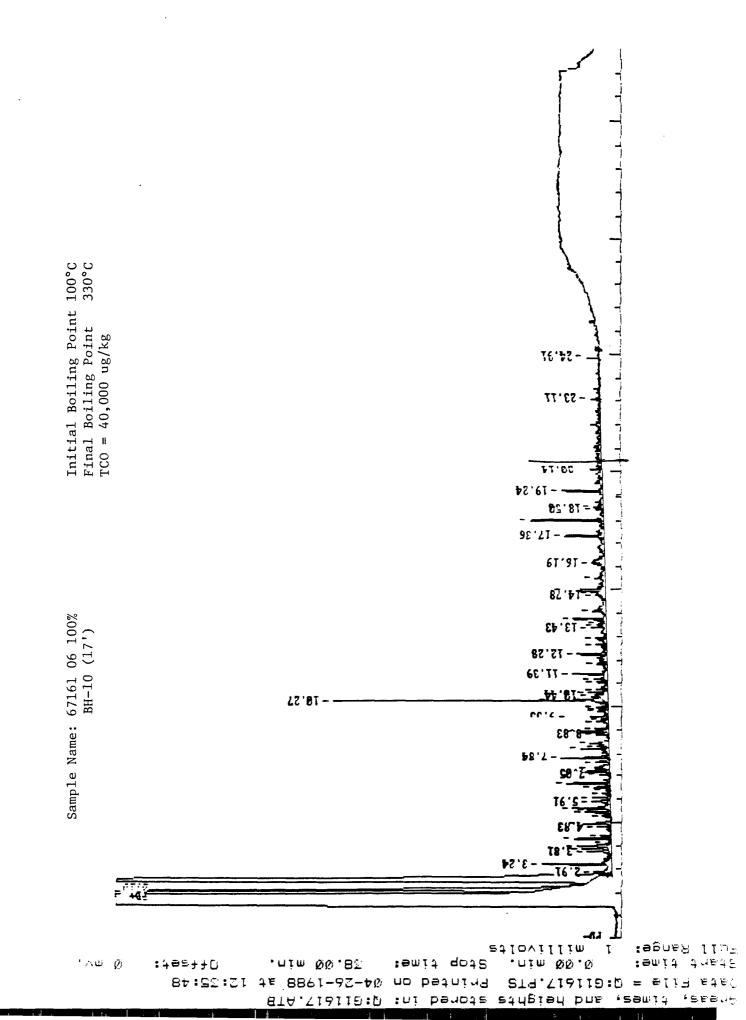
-

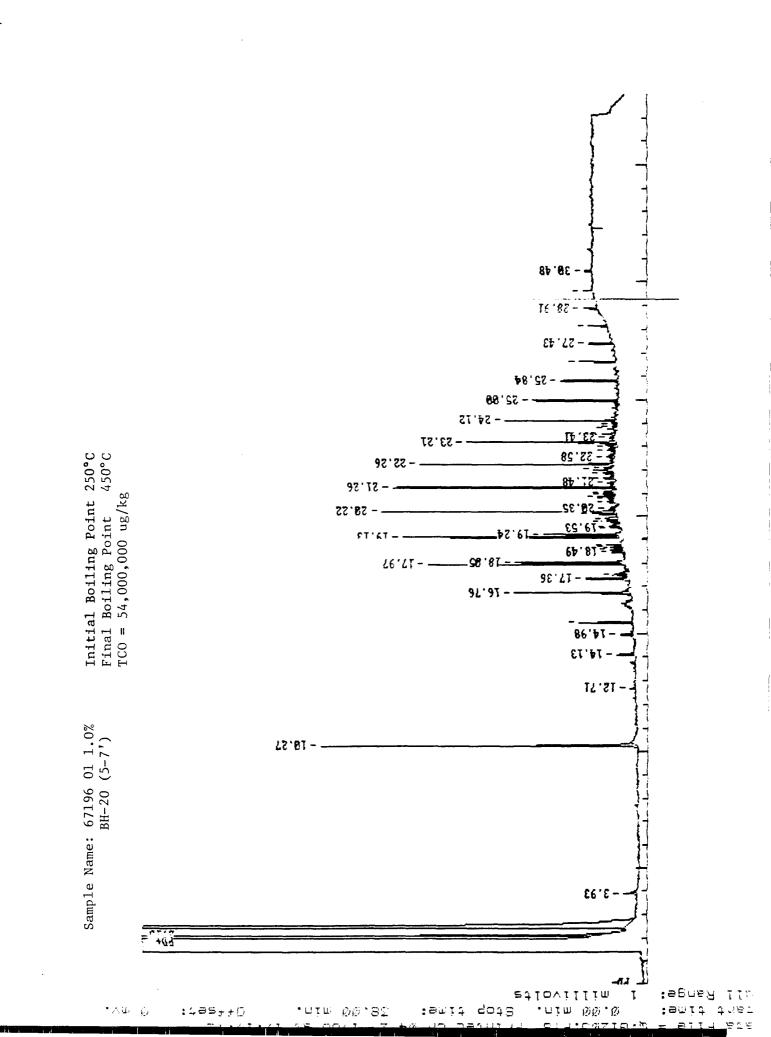


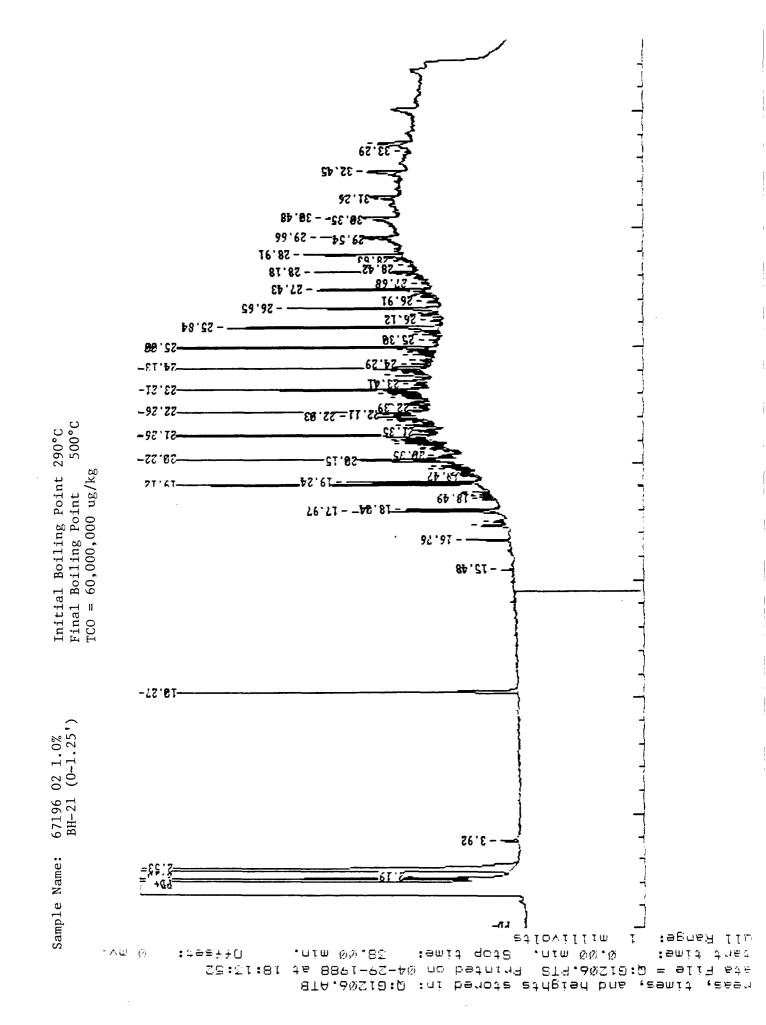

TYPE GRAPH

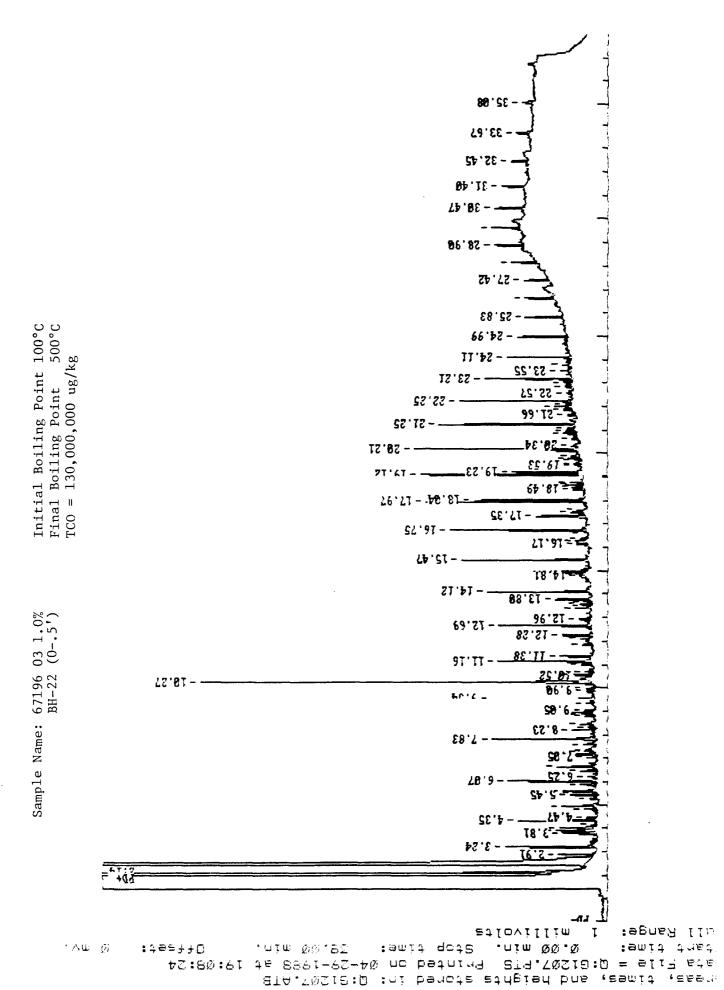

:ssnA letoT

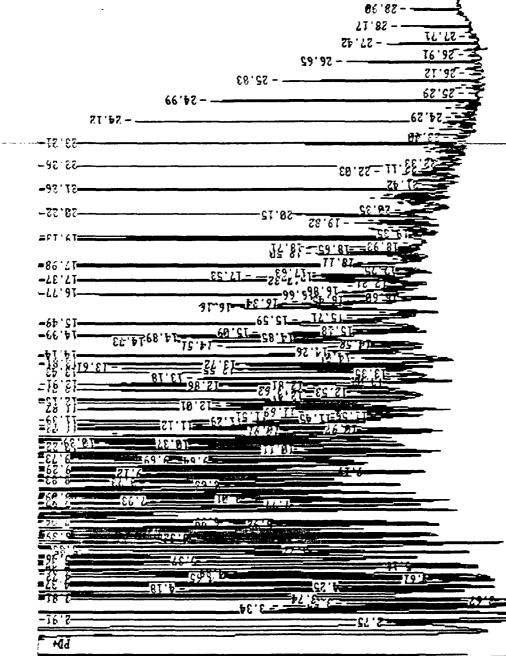

stoalag kana 91875


. Dee 064.0 reg algmas and Q







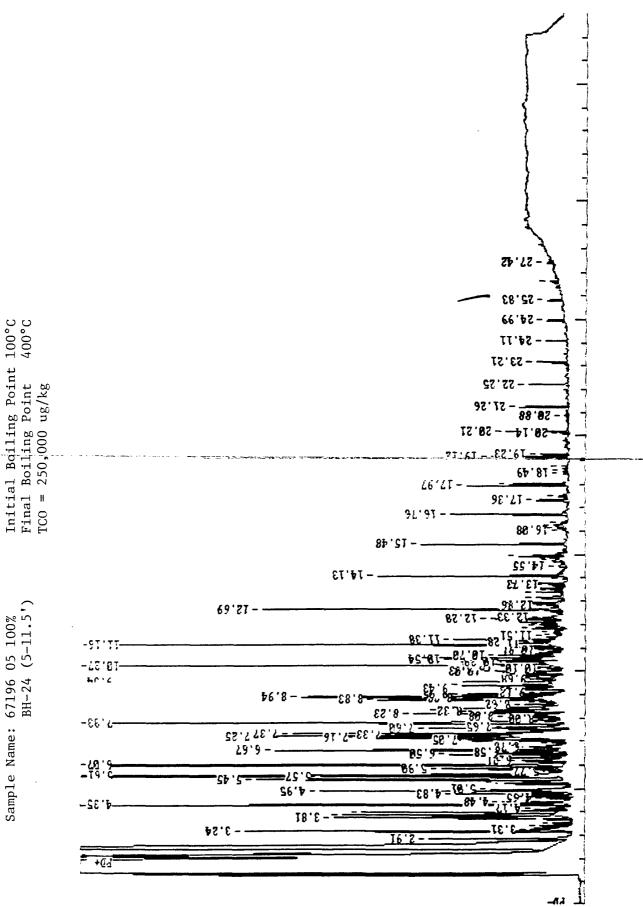

and % :tostak sanA 2284

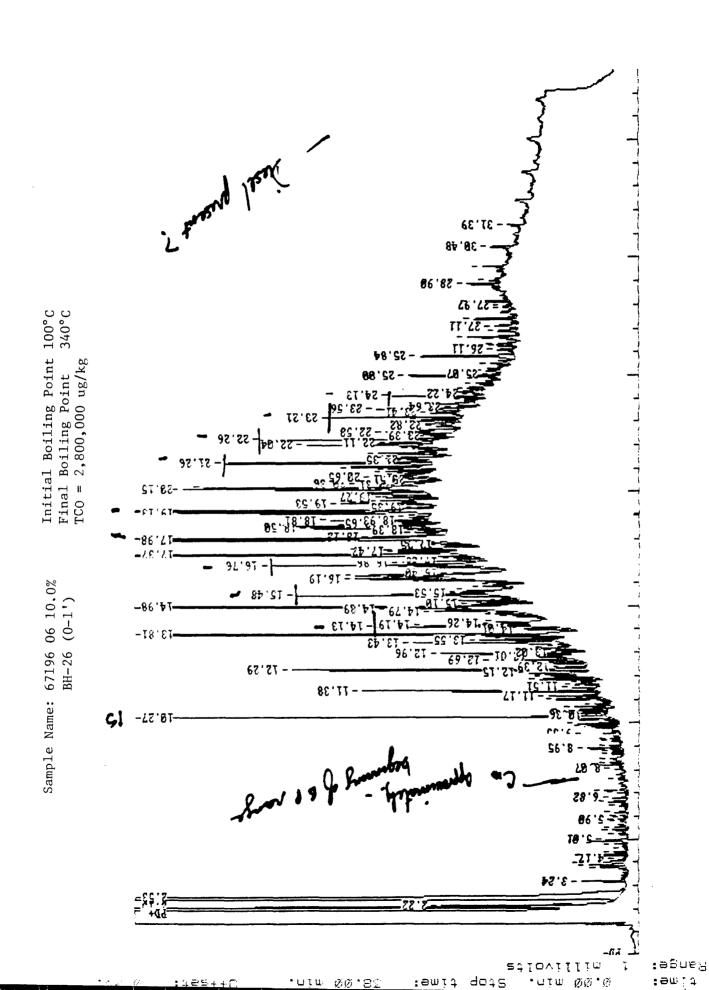
SSAA Leta

inter 004.0 Had sidmas sol

11 ediovillim I :agnsA 112 • AW _ Ø .uim ©0.8∑ :amid qod2 ுப⊺ய ⊘றுற :smit thet :185++0 90:50:05 the 8891-95-40 to betained ST9.80518:0 = elit sta BIA.80210:0 :nr benote stdgied bns ,semit ,seen

Initial Boiling Point 100°C Final Boiling Point 470°C TCO = 2,900,000 ug/kg


37.49


- 38' 45

Sample Name 67196 04 100% BH-23 (10-12')

reas, times, and heights stored in: Q:GI209.4TB Ata File = Q:GI209.PTG Printed on 04-29-1988 at 20:57:12 tart time: 0.00 min. Stop time: 36.00 min. Offset: 0 mv. time: 1 Sange: 1 millivolts

9

17 4 J E