3R - 261

REPORTS

DATE: Oct. 30, 1997

SITE INVESTIGATION REPORT

for

WELLEX/OTIS ENGINEERING FACILITY HALLIBURTON ENERGY SERVICES

2600 EAST BLOOMFIELD HIGHWAY FARMINGTON, NEW MEXICO

by

Brown & Root Environmental 2300 Buena Vista SE, Suite 110 Albuquerque, New Mexico 87106

RECEIVED

OCT 3 1 1997 Environmental Bureau Oil Conservation Division

Submitted to:

State of New Mexico

Energy, Minerals and Natural Resources Department Oil Conservation Division

2040 S. Pacheco

Santa Fe, New Mexico 87505

October 30, 1997

Brown & Root Environmental

SITE INVESTIGATION REPORT

for

WELLEX/OTIS ENGINEERING FACILITY HALLIBURTON ENERGY SERVICES

2600 EAST BLOOMFIELD HIGHWAY FARMINGTON, NEW MEXICO

by

Brown & Root Environmental 2300 Buena Vista SE, Suite 110 Albuquerque, New Mexico 87106

Submitted to: State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 2040 S. Pacheco Santa Fe, New Mexico 87505

October 30, 1997

TABLE OF CONTENTS

____ --- -- -- --

SECTION

-

PAGE

1.0	INTRO	DUCTION	1-1
	1.1	SITE DESCRIPTION AND ENVIRONMENTAL SETTING	. 1-1
	1.2	PREVIOUS INVESTIGATIONS	. 1-2
	1.1.1	Site Description	. 1-1
	1.1.2	Environmental Setting	. 1-1
2.0	FIELD	ACTIVITIES	. 2-1
	2.1	METHODOLOGY	. 2-1
	2.1.1	Work Activities	. 2-1
	2.2	OBSERVATIONS	. 2-5
3.0	RESU	LTS AND DISCUSSION	. 3-1
	3.1	SAMPLE RESULTS	. 3-1
	3.1.1	Excavation No. 1	. 3-1
	3.1.2	Excavation No. 2	. 3-1
	3.1.3	Excavation No. 3	. 3-3
	3.1.4	Excavation No. 4	. 3-3
	3.1.5	Excavation No. 5	. 3-3
	3.1.6	Excavation No. 6	. 3-3
4.0	CONC	LUSIONS	. 4-1
	4.1	RECOMMENDATIONS	. 4-1

APPENDICES

Analytical Lab Report

TABLES

NUMBER PAGE 3.1 Results of Soil Analyses for Semi-Volatile Organic Compounds, Volatile Organic Compounds and Metals for Samples Collected at 2600 East Bloomfield HWY, Farmington, New Mexico...... 3-2

FIGURES

NUMB	ER	PAGE
2.1	Site Plan of 2600 East Bloomfield Hwy, Farmington, New Mexico	2-2
2.2	Sampling Locations and Excavation Areas	2-3

1.0 INTRODUCTION

On behalf of Halliburton Energy Services (HES), Brown & Root Environmental (B&RE) conducted an environmental site investigation at 2600 East Bloomfield Highway, Farmington, New Mexico. The investigation was conducted on September 4 and 5, 1997. This report documents the findings of the investigation. The site is owned by Halliburton Energy Services (HES).

1.1 SITE DESCRIPTION AND ENVIRONMENTAL SETTING

1.1.1 <u>Site Description</u>

The facility is located on a 150 ft by 290 ft fenced parcel identified as Section 14 of Township 29 North and Range 13 West in San Juan County, New Mexico. The address of the site is 2600 East Bloomfield Highway, Farmington, New Mexico. The facility consists of a building approximately 50 feet by 150 feet containing service bays and a small office space. The working area of the site is enclosed within an eight foot chain link fence. The site formerly operated as both a Wellex and an Otis Engineering facility and has been abandoned since 1993. While in operation, an oil/water separator (OWS) was located on site. The OWS consisted of a cinderblock enclosure located below grade with no floor. The OWS was demolished in 1995.

No records are available that document operations at this site. It is known that this facility supported well logging activities. Waste streams discharged into the former OWS are unknown.

1.1.2 Environmental Setting

The HES facility is approximately 1.5 miles southeast of Farmington, New Mexico within a commercial zone. Site elevation is 5338 ft above MSL on a southwest trending slope approximately 1 mile north of the San Juan river. The facility is situated on soils of the Garland series which is formed from mixed alluvial sediments. Typical horizons in this series consist of a upper layer of brown loam 4 inches thick. The subsoil is brown clay loam about 20 inches thick underlain by light brown gray very gravely loamy sand. These characteristics were evident during the site investigation. Groundwater is encountered at 25 to 27 feet below ground surface (ft bgs). Groundwater was not encountered during this investigation.

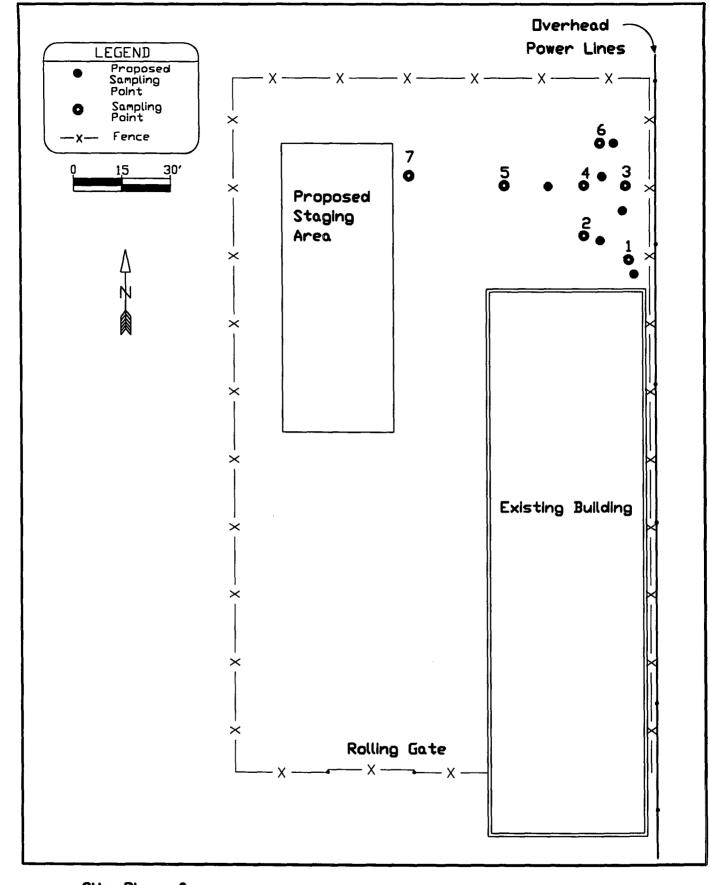
1.2 PREVIOUS INVESTIGATIONS

A preliminary site investigation was conducted by OVAC Engineering in 1993. Their effort included soil sampling and analysis and a general site review. Eleven soil samples were collected and analyzed for volatile organic compounds (VOCs), toxicity characteristic leaching procedure (TCLP) metals, total petroleum hydrocarbons (TPH) and pH. Samples were collected at depths varying from 2 ft to 12 ft bgs at locations throughout the facility. Sample results showed TPH present in the vicinity of the OWS. A sample collected along the east side of the OWS at 9 ft bgs showed a TPH concentration 4,200 mg/kg. A second sample collected approximately 20 ft southeast of the OWS at 3 ft bgs showed a TPH concentration of 807 mg/kg. A third sample collected 20 ft due south of the OWS showed a toluene concentration of 26.3 mg/kg. The 1993 investigation concluded that the OWS was the source of the petroleum hydrocarbons. An estimated 4 cubic yards of sludge was observed within the OWS enclosure. The investigation report concluded that approximately 75 to 80 cubic yards of soil had been impacted with TPH by the OWS

In 1995, a cosmetic clean-up of the site was performed consisting of cleaning and policing of the site and the building. The OWS was demolished and sludge within the excavation was left in place. No remediation of the OWS facility was performed. In addition, no formal report was generated by OVAC. This operation was documented in a letter from Halliburton to the New Mexico Department of Energy, Minerals and Natural Resources, Oil Conservation Division (OCD).

2.0 FIELD ACTIVITIES

The New Mexico Energy, Minerals and Natural Resources Department (NMEMNR), Oil Conservation Division (OCD) requested that Halliburton Energy Services perform a site investigation to determine the nature and extent of the hydrocarbon contamination resulting from the OWS. Brown & Root Environmental performed a site investigation of the former OWS facility on September 4 and 5, 1997.

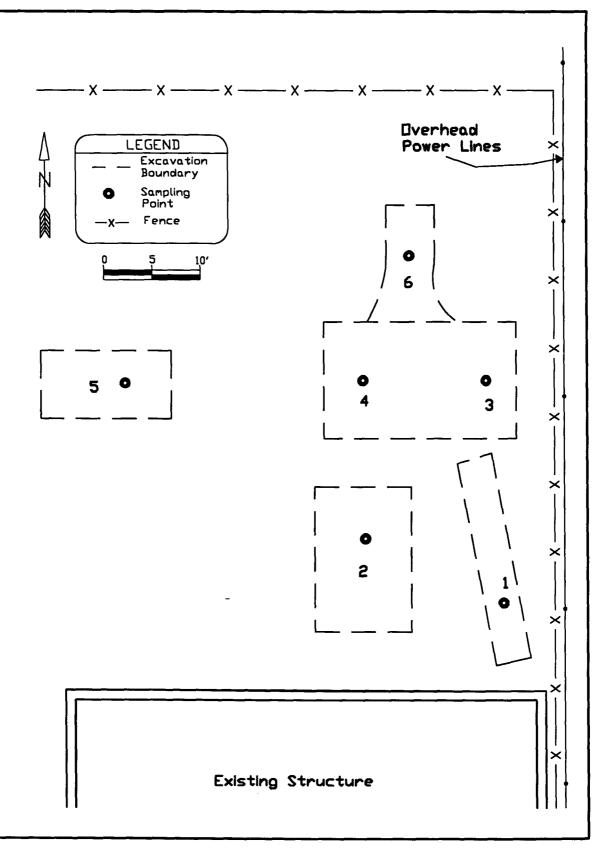

2.1 METHODOLOGY

The work was performed in accordance with the work plan dated June 27, 1997 approved by the OCD. Six separate excavations were made using a Caterpillar 320L long reach excavator. Proposed and actual excavation points are shown in Figure 2-1. The work plan called for excavating and sampling to a depth of 20 ft bgs. Sampling was performed at 5 ft increments beginning at 5 ft bgs. The sample exhibiting the highest organic vapor analyzer (OVA) reading from each excavation was submitted for analysis. Analyses performed included VOCs (EPA Method 8260A), SVOCs (EPA Method 8270B), and target analyte metals (EPA Methods 6010, 6020 and 7000).

The maximum depth achieved was 15 ft bgs. Soil conditions did not permit excavating to the proposed 20 foot depth. Soils consisted of very cobbly, silty sands with little cohesive strength. The sides of the excavations caved continually during the excavation and greater depth could not be reached without endangering the excavator and its operator. Adjustments were also made to the location of the excavations due to site constraints and observations during the excavations. The existing building, overhead power lines and the property boundary all limited the work area.

2.1.1 <u>Work Activities</u>

Work began on September 4, 1997. Figure 2-2 illustrates the location and size of the excavations created during the investigation.



Site Plan of 2600 East Bloomfield Hwy Farmington, New Mexico

Figure 2-1

Brown & Root Environmental

(111)

Sampling Location and Excavation Areas

Figure 2-2

2.1.1.1 Excavation No. 1

Excavation No. 1 was located immediately north of the existing building southeast of the former OWS. The soil appeared in its natural condition exhibiting no staining or other visible signs of contamination. A petroleum odor was apparent during the initial soil removal in the excavation but did not continue with depth. Samples were collected at 5, 10, and 15 ft bgs. Readings from the OVA showed 0 (zero) meter units at 5, 10, and 15 ft bgs, respectively. The excavation was lined with 10-mil High Density Polyethlyene (HDPE) as specified in the work plan. The HDPE ripped during backfilling operations due to the nature of the soil material. Cobbles made up approximately 50 percent of the soil matrix with an average diameter of 12 inches.

2.1.1.2 Excavation No. 2

Excavation No. 2 was located due south of the former OWS adjacent to the building. Samples collected at 5, 10, and 15 ft bgs showed OVA readings of 9, 7, and 43 units, respectively. Grayish to black staining was evident on the northern side of the excavation. A noticeable petroleum odor was present during this excavation. The sample from 15 ft bgs was submitted for analysis. The excavation was lined with 10-mil HDPE and backfilled. However, the liner again failed due to the loading placed on it and the coarseness of the media.

2.1.1.3 Excavation No. 3 and No. 4

Excavations No. 3 and 4 were performed concurrently due to their proximity to each other and the poor integrity of the soils as excavation proceeded. Excavation No. 3 was located on the eastern limit of the former OWS. Excavation No. 4 was located in what was believed to be the center of the former OWS. These two proposed sample points were approximately 13 feet apart. Both exhibited significant staining, and a petroleum odor. The affected area extended to within 10 feet of the eastern property boundary. The western end of the excavation exhibited black soil and noticeable petroleum odors.

Samples were collected at 5, 10 and 15 ft bgs in both excavations. Sample OVA readings in Excavation No. 3 were 31, 21, and 173 meter units for the 5, 10, and 15 ft depths respectively. Sample OVA readings from Excavation No. 4 for the 5, 10, and 15 ft bgs samples were 37, 57, and 113 units, respectively. The 15 ft bgs samples were subsequently sent in for analysis. Within the dual excavation, noticeable quantities of cinder blocks, debris and black grease waste were observed.

The excavation was lined with 10-mil HDPE prior to backfilling but again, the material ripped due to loading and the coarseness of the material.

2.1.1.4 Excavation No. 5

Excavation No. 5 was located approximately 25 feet west of Excavation No. 4. This adjustment to the work plan was made in order to attempt to delineate the extent of the affected area. This decision was mutually made between the B&RE site manager and OCD personnel on site. No visible sign of contamination or odor were evident. Organic Vapor Analyzer readings showed 3, 2, and 3 meter units for the 5, 10 and 15 ft samples respectively. The 15 ft sample was submitted to the lab.

2.1.1.5 Excavation No. 6

Excavation No. 6 was located north of excavation No. 3. No visible contamination was evident until approximately 7 ft bgs. At this point a black, asphaltic layer was encountered. This layer extended laterally approximately 48 ft north of the building. Readings from the OVA showed 12, 53 and 54 units at the 5, 10, and 15 ft depths, respectively. The 15 ft sample was submitted for analysis. This excavation was not lined prior to backfilling.

2.1.1.6 Excavation No. 7 (Background)

A sample was collected at 4 ft bgs to establish background levels for all parameters. This excavation exhibited no hazardous characteristics and appeared to be previously undisturbed soil.

2.2 OBSERVATIONS

The site did not exhibit any other noticeable characteristics indicating other sources of contamination. Affected areas including Excavations 3,4, and 6 exhibited stained soils down to the 15 foot depth. It is assumed that the contaminants continued down to greater depth based on visual observations.

3.0 RESULTS AND DISCUSSION

Samples were collected from each excavation and analyzed for the contaminants of concern specified in the Work Plan. Site conditions warrant the implementation of some remedial action. Six samples were collected and analyzed from the excavations made in the vicinity of the former OWS, north of the existing building. The background sample (SB07) was collected west of the disturbed area and utilized for baseline comparisons.

3.1 SAMPLE RESULTS

Results from all samples analyzed are shown in Table 3-1. All were analyzed for VOCs (EPA 8260A), SVOCs (EPA 8270B) and TAL metals (EPA 6010, 6020 and 7000 series). A review of all sample data showed that reported concentrations of acetone and methylene chloride were false positives. This review also showed that reported concentrations for potassium were biased high due to higher than normal recovery levels for this parameter. All other data was found to meet data acceptance criteria. The data report is included within Appendix A.

3.1.1 Excavation No. 1

The first excavation was begun approximately 10 feet north of the northeast corner of the building (Fig 2-1). The sample from Excavation No. 1, collected at 10 ft bgs, showed no presence of VOCs or SVOCs. All metals concentrations were below background sample levels with the exception of copper, lead, silver and zinc. Copper in the Excavation No. 1 sample was 49.8 mg/kg with a background concentration of 15 mg/kg. Lead in the sample was 14.7 mg/kg compared to a background concentration of 7.8 mg/kg. Silver and zinc were detected at 1.4 and 40.8 mg/kg compared to background levels of no silver and 28.5 mg/kg of zinc.

3.1.2 Excavation No. 2

Excavation No. 2 was made 16 feet north of the building and approximately 15 west of Excavation No. 1. Sample data from Excavation No. 2 showed no VOCs. The sample had detectable quantities of SVOCs including 2.4 mg/kg of 2-methylnaphthalene, 0.41 mg/kg of naphthalene and 0.4 mg/kg of phenanthrene. Metals detected above background concentrations included chromium and zinc. Chromium was detected

TABLE 3-1. RESULTS OF SOIL ANALYSES FOR SEMI-VOLATILE ORGANIC COMPOUNDS, VOLATILE ORGANIC COMPOUNDS AND METALS FOR SAMPLES COLLECTED AT 2600 EAST BLOOMFILED HWY, FARMINGTON, NEW MEXICO

		VATION					DEPTH		
	SB01- 10	SB02- 15	SB03- 15	SB04- 15	SB05- 15	SB06- 15	SB07-04		EPA REGION VI HHRB LEVEL
							backgrnd	GUIDELINE	
Analysis Parameter	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
VOCs EPA 8260A									
Ethylbenzene	nd	nd	160	320	nd	170	nd	· · · · · · · · · · · · · · · · · · ·	2900
Xylenes (total)	nd	nd	1200	1700	nd	1000	nd	BTEX	980
TOTAL			1360	2020		1170		50	
SVOCs EPA 8270B									
2-Methylnaphthalene	nd	2.4	15	30	nd	9.9	nd		NA
Naphthalene	nd	0.41	nd	5	nd	2	nd		NA
Phenanthrene	nd	0.4	nd	nd	nd	nd	nd		NA
Metals EPA 6020 (ICP/MS)		1.0	0.7			10			
Arsenic		1.6	2.7	1.4	1.4	1.2	2.3		22n
Beryllium		0.15	0.24	0.17	0.14	0.15	0.19		0.14
Selenium		nd	nd	nd	nd	nd	nd		380
Thallium	nd	nd	nd	nd	nd	nd	nd		NA
Total Metals EPA 6010		,							
Aluminum	3520	3350	6130	6030	2960	6590	5360		77000
Antimony	nd	nd	nd	nd	nd	nd	nd		31
Barium	74.1	63.6	224	289	69.5	120	103		5300
Cadmium	nd	nd	1.8	1.2	nd	nd	nd		38
Calcium	24400	35300		34400	34800	60100	41600		NA
Chromium	4.1	4.4	7.1	7	3.7	6.8	4.2		210
Cobalt	3.2	3.1	4.3	3.2	2.9	4.4	3.9		4700
Copper		11.8	155	116	8.2	30.2	15		2800
Iron	6830	6890	10400	8640	6330	11200	10200		23000
	14.7	5.7	84.2	61.4	nd	22.3	7.8		400
Magnesium		3520	3120	3740	3300	6180	9280		NA
Manganese		352	295	304	276	479	375		380
Mercury (EPA 7471)		0.04	0.079	nd	nd	nd	0.02		23
Molybdenum		nd	2.4	nd	nd	nd	nd		380
Nickel		nd	7.1	5.8	nd	6.6	4.5		1500
Potassium		620	1200	891	nd	998	866		NA
Silver		nd	16.5	14.4	nd	3.2	nd		380
Sodium		nd	nd	nd	nd	nd	nd		NA
Vanadium		9.7	13.8	11.7	8.4	16	15.3		540
Zinc	40.8	27.1	505	1230	20.1	325	28.5		23000

at 4.4 mg/kg compared to 4.2 mg/kg in the background sample. Mercury was found at 0.04 mg/kg compared to a background concentration of 0.02 mg/kg.

3.1.3 Excavation No. 3

Excavation No. 3 appeared to define the eastern extent of the former OWS. This excavation exhibited some of the higher concentrations of contaminants detected during the investigation. Two VOCs (ethylbenzene and xylene) and one SVOC were detected. Elevated concentrations of aluminum, barium beryllium, cadmium chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, potassium, silver, and zinc were detected above background levels.

3.1.4 Excavation No. 4

Excavation No. 4, directly west of Excavation No. 3, appeared to be the center of the former OWS location. Two VOCs (ethylbenzene and xylene), two SVOCs (2-methylnaphthalene, naphthalene) and elevated concentrations of aluminum, barium, cadmium chromium, copper, lead, molybdenum, nickel, potassium, silver, and zinc were found.

3.1.5 Excavation No. 5

Excavation No. 5 was made approximately 25 ft west of excavation no. 4. It was anticipated that this sample point might delineate the western extent of the contaminant plume. However, no visual signs of contamination were identified during the excavation. No VOCs or SVOCs were found in the soil sample. Additionally, all metal parameters analyzed were less than those in the background sample.

3.1.6 Excavation No. 6

Excavation no. 6 was made approximately 12 ft north of excavations 3 and 4. Observation showed during excavation that the stained, blackened soil zone extended about 6 feet north of sample point no. 4. Values in Table 3-2 show comparisons between this sample and the background sample. Sample analysis showed the same two VOCs (ethylbenzene and xylene) and two SVOCs (2-methylnaphthalene, naphthalene) were found in excavations 3 and 4. Elevated concentrations of metals, above background levels, including aluminum, barium, beryllium calcium chromium, cobalt, copper, iron, lead, manganese, nickel potassium, silver, vanadium and zinc were also found.

4.0 CONCLUSIONS

The waste that entered the oil/water separator has created contaminated conditions within the soil profile. Potential groundwater contamination has not yet been investigated.

4.1 RECOMMENDATIONS

A source removal is recommended to remove as much of the contaminated soil as practicable. Concentrations of ethylbenzene and xylene exceed the OCD guideline of 50 mg/kg for BTEX. The contaminated soil may be excavated through conventional means and disposed at an OCD permitted land treatment facility. The excavation can be backfilled with clean soil. At least two groundwater monitoring wells are recommended to determine whether groundwater is impacted. The installation of one monitoring well near the center of the former OWS location and one at the property line downgradient from the facility is recommended.

APPENDIX

I. OVERVIEW

On September 6, 1997, Quanterra Environmental Services, Denver laboratory received seven solid samples and one trip blank from Brown & Root.

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- I. Overview
- II. Sample Description Information/Analytical Test Requests
- III. Analytical Results
- IV. Quality Control Report
 - A. Standard Quanterra QC
 - B. Matrix Specific QC

Sample Receipt

The cooler temperatures were 2.3 and 3.0 degrees celsius upon receipt at the laboratory. Sample 056857-0009 on the chain of custody was not received. (Trip Blank) Mr. Brad Sumrall directed the laboratory to perform additional analyses on sample HX20-SB04-15 (056857-0008). These additional requests are reported under 056857-0009.

Volatile Organics

Samples 056857-0001, -0006, -0007 and -0008 were analyzed as medium level volatiles.

Semivolatile Organics (TCLP)

Samples 056857-0001, -0005, -0007 and -0008 were analyzed for semivolatiles by Method 8270. Dilutions were required for these samples due to the concentration of target compounds in excess of the linear calibration range. The reporting limits have been adjusted relative to the required dilution. The surrogates for samples 056857-0007 and -0008 were not recovered due to dilution and are reported as NC or not calculated.

GC Semivolatiles

The %recovery of DCB and DBC in sample 056857-0009 and -0002 were below control limits for Method 8080. TCX is in control as is lab QC. The DCS's are reported due to the matrix QC being out of control. Matrix interferences are indicated. DDD is reported but was not confirmed on the 2nd channel as it co-elutes with Endosulfan II.

The %recovery of the sample surrogate DCAA is high in sample 056857-0009. Matrix interference is suspected. Other associated QC for this analysis is in control.

<u>Metals</u>

No anomalies were noted.

Wet Chemistry

The reactive sulfide reporting limit was raised proportionate to the amount of sample prepared.

•

LIMs Report Key

Section	Description
Cover Letter	Signature page, report narrative as applicable.
Sample Description Information	Tabulated cross-reference between the Lab ID and Client ID, including matrix, date and time sampled, and the date received for all samples in the project.
Sample Analysis Results Sheets	Lists sample results, test components, reporting limits, dates prepared and analyzed, and any data qualifiers. Pages are organized by test.
QC LOT Assignment Report	Cross-reference between lab IDs and applicable QC batches (DCS, LCS, Blank, MS/SD, DU)
Duplicate Control Sample Report	Percent recovery and RPD results, with acceptance limits, for the laboratory duplicate control samples for each test are tabulated in this report. These are measures of accuracy and precision for each test. Acceptance limits are based upon laboratory historicai data.
Laboratory Control Sample Report	Percent recovery results for a single Laboratory Control Sample (if applicable) are tabulated in this report, with the applicable acceptance limits for each test.
Matrix Spike/Matrix Spike Duplicate Report	Percent recovery and RPD results for matrix- specific QC samples and acceptance limits, where applicable. This report can be used to assess matrix effects on an analysis.
Single Control Sample Report	A tabulation of the surrogate recoveries for the blank for organic analyses.
Method Blank Report	A summary of the results of the analysis of the method blank for each test.

List of Abbreviations and Terms

Abbreviation	Тегт	Abbreviation	Term
DCS	Duplicate Control Sample	MSD	Matrix Spike Duplicate
DU	Sample Duplicate	QC Run	Preparation Batch
EB	Equipment Blank	QC Category	LIMs QC Category
FB	Field Blank	QC Lot	DCS Batch
FD	Field Duplicate	ND	Not Detected at or above the reporting limit expressed
IDL	Instrument Detection Limit (Metals)	QC Matrix	Matrix of the laboratory control sample(s)
LCS	Laboratory Control Sample	RL	Reporting Limit
MB	Method Blank	QC	Quality Control
MDL	Method Detection Limit	SA	Sample
MS	Matrix Spike	SD	Spike Duplicate
RPD	Relative Percent Difference	TB	Trip Blank
ppm (part-per- million)	mg/L or mg/kg (usually)	ppb (part-per- billion)	ug/L or ug/kg (usually)
QUAL	Qualifier flag	DIL	Dilution Factor

N: WORD REPKET DOC

۰.

II. SAMPLE DESCRIPTION INFORMATION/ANALYTICAL TEST REQUESTS

Sample Description Information

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned to each sample. Each project received at Quanterra's Denver laboratory is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

SAMPLE DESCRIPTION INFORMATION for Brown and Root Environmental

				ceived
Lab ID	Client ID	Matrix	Date Time	Date
056857-0001-SA 056857-0002-SA 056857-0003-SA 056857-0004-TB 056857-0005-SA 056857-0006-SA 056857-0007-SA 056857-0008-SA 056857-0009-SA	HX20-SB06-15 HX20-SB05-15 HX20-SB07-04 Trip Blank- TB-01-090597 HX20-SB01-10 HX20-SB02-15 HX20-SB03-15 HX20-SB04-15 HX20-SB04-15	SOLID SOLID SOLID AQUEOUS SOLID SOLID SOLID SOLID SOLID	05 SEP 97 08:06 06 05 SEP 97 09:55 06 05 SEP 97 09:55 06 05 SEP 97 10:48 06 04 SEP 97 08:22 06 04 SEP 97 11:19 06 04 SEP 97 14:57 06 04 SEP 97 15:07 06 04 SEP 97 15:07 06	SEP 97 SEP 97 SEP 97 SEP 97 SEP 97 SEP 97 SEP 97 SEP 97

ANALYTICAL TEST REQUESTS for Brown and Root Environmental

Page 1 of 1

Lab ID: 056857	Group Code	Analysis Description	Custom Test?
0001 - 0003, 0005 - 0008	A	Mercury, Cold Vapor AA Prep - Mercury, Cold Vapor AA ICP/MS Metals - (Total for Soils) ICP/MS prep TAL Metals done by ICP Prep - Total Metals, ICP Percent Water Volatile Organics Target Compound List (TCL) GC Screen For Low Level Soils TCL Semivolatile Organics Prep - Semivolatile Organics by GC/MS, Low Level Soils	N N Y N Y N Y N Y N Y N
0004	В	Volatile Organics Target Compound List (TCL) Screen - Volatile Organics for 25mL Purge	Y N
0009	С	Chlorinated Herbicides SW-846 List Prep - Herbicides by GC Volatile Organic Toxicity Characteristic List Prep-Volatile Organics /API TCLP Extraction / Purgeable Volatile Organics Semivolatile Organics / TCLP Prep - Semivolatile Organics by GC/MS, TCLP Leachate	N N N N N N
-		TCLP Extraction / Extractable Organics & Metals Toxicity Characteristic Metals Digestion for Metals from a TCLP leachate Mercury, Cold Vapor AA TCLP Leachate Mercury, Cold Vapor AA from a TCLP Leachate Cyanide, Reactive Prep - Reactive Sulfide & Cyanide SW-846 Chap 7 / Method 9030A - Sulfide, Reactive pH	N N N N N N N N N N N N N N N N N N N
		Prep - pH soils Ignitability, SW846 Chapter 7 Chlorinated Pesticides and PCB's Target Compound List (TCL) OCP/PCB Low Level Soils Percent Water	N N N N

7

III. ANALYTICAL RESULTS

The analytical results for this project are presented in the following data tables. The results are presented by sample, by test, with tests reported in the following order: GC/MS, Chromatography, Metals and Inorganics.

Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed. The authorization date is the date when the project was defined by the client such that laboratory work could begin. The date prepared is typically the date an extraction or digestion was initiated. For volatile organic compounds in water, the date prepared is the date the screening of the sample was performed.

Datasheets contain a listing of the parameters measured in each test, the analytical results and Quanterra's Denver laboratory reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and soil samples are reported on a "Dry weight" basis, i.e. correction is made for moisture content.

In addition, surrogate recovery data is presented for all GC/MS analyses. The surrogate recovery is an indication of the effect of the sample matrix on the performance of the method. The results from Quanterra's Denver Laboratory Standard QA/QC Program, which generates data independent of matrix effects, are given in Section IV.

Duanterra Environmental Services

Client Name: Brown and Re	ot Environmental	
Client ID: HX20-SB06-1		
Lab ID: 056857-0001	SA	
Matrix: SOLID	Sampled: 05 SEP 97	Prepared: 10 SEP 97
Authorized: 08 SEP 97	Received: 06 SEP 97	Analyzed: 15 SEP 97

Parameter	Result	Dry Weight Units	Reporting Limit	
Acetone	450	ug/kg	2600	J
Benzene	ND	ug/kg	650	-
Bromodichloromethane	ND	ug/kg	650	
Bromoform	ND	ug/kg	650	
Bromomethane	ND	ug/kg	1300	
2-Butanone (MEK)	ND	ug/kg	2600	
Carbon disulfide	ND	ug/kg	650	
Carbon tetrachloride	ND	ug/kg	650	
Chlorobenzene	ND	ug/kg	650	
Chloroethane	ND	ug/kg	1300	
2-Chloroethyl vinyl ether	ND	ug/kg	6500	
Chloroform	ND	ug/kg	650	
Chloromethane	ND	ug/kg	1300	
Dibromochloromethane	ND	ug/kg	650	
1,1-Dichloroethane	ND	ug/kg	650	
1,2-Dichloroethane	ND	ug/kg	650	
1.1-Dichloroethene	ND	ug/kg	650	
cis-1.2-Dichloroethene	ND	ug/kg	330	
trans-1,2-Dichloroethene	ND	ug/kg	330	
1,2-Dichloroethene (total)	ND	ug/kg	650	
1,2-Dichloropropane	ND	ug/kg	650	
cis-1,3-Dichloropropene	ND	ug/kg	650	
trans-1,3-Dichloropropene	ND	ug/kg	650	
Ethylbenzene	170	ug/kg	650	J
2-Hexanone	ND	ug/kg	2600	v
Methylene chloride	160	ug/kg	650	J
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	2600	•
Styrene	ND	ug/kg	650	
1,1,2,2-Tetrachloroethane	ND	ug/kg	650	
Tetrachloroethene	ND	ug/kg	650	
Toluene	ND	ug/kg	650	
1.1.1-Trichloroethane	ND	ug/kg	650	
1,1,2-Trichloroethane	ND	ug/kg	650	
Trichloroethene	ND	ug/kg	650	
Vinyl acetate	ND	ug/kg	1300	
Vinyl chloride	ND	ug/kg	1300	
Xylenes (total)	1000	ug/kg	650	
	TAAA	~3/ ~J	030	

Percent moisture is 5.3%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

Reported By: Steven Francis

Wuanterra Environmental Services(cont.)

Client ID:	Brown and Root HX20-SB06-15	Environmental		
Lab ID: Matrix:	056857-0001-SA SOLID	Sampled: 05 SE		Prepared: 10 SEP 97
Authorized:	08 SEP 97	Received: 06 SE	P 9/	Analyzed: 15 SEP 97

Parameter	Dry Result U		Reporting Limit
Surrogate	Recovery		Limits
1.2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	90 103 96	x x x	77-114 83-118 84-114

Percent moisture is 5.3%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

Reported By: Steven Francis

()) Wuanterra Environmental Services

Client Name: Brown and Root Environmental

Client ID: HX20-SB05-15 Lab ID: 056857-0002-SA Matrix: SOLID Authorized: 08 SEP 97	Sampled: 05 SEF Received: 06 SEF	97 P 97 A	repared: 09 Si nalyzed: 15 Si	EP 97 EP 97
Parameter	Result	Dry Weight Units	Reporting Limit	
Acetone Benzene Bromodichloromethane Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethene cis-1.2-Dichloroethene trans-1.2-Dichloroethene trans-1.2-Dichloropropene trans-1.3-Dichloropropene trans-1.3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone (MIBK) Styrene 1.1.2.7richloroethane I.1.1-Trichloroethane 1.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane Irichloroethene Vinyl acetate	Result 3.7 ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg	$\begin{array}{c} 21 \\ 5.1 \\ $	J
Vinyl chloride m&p-Xylene o-Xylene	ND ND ND	ug/kg ug/kg ug/kg	10 2.6 2.6	

Percent moisture is 2.7%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

Reported By: Sandra Jones

.....

()) *uanterra* Environmental Services (cont.)

Client Name:	Brown and Root	Environmental			
Client ID:	HX20-SB05-15				
Lab ID:	056857-0002-SA				
Matrix:	SOLID	Sampled:	05 SEP	97	Prepared: 09 SEP 97
Authorized:	08 SEP 97	Received:	06 SEP	97	Analyzed: 15 SEP 97
	-				•

.. . . .

Parameter	Result	Dry Weight Units	Reporting Limit
Surrogate	Recovery	* * *	Limits
1,2-Dichloroethane-d4	92		77-115
4-Bromofluorobenzene	96		90-113
Toluene-d8	101		86-115

Percent moisture is 2.7%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

Reported By: Sandra Jones

۰.

()) Wuanterra Environmental Services

Authorized:08 SEP 97Received:06 SEP 97Analyzed:15 SERParameterDry WeightReporting LimitLimit	Client Name: Client ID: Lab ID: Matrix: Authorized:	Brown and Root HX20-SB07-04 056857-0003-SA SOLID 08 SEP 97	Sampled:	05 SEP	97 07	Prepared: 09 Analyzed: 15	SEP 97	
	Author izeu:	00 SEP 97	Received:	UD SEP	97	Analyzed: 15	SEP 9/	
	Parameter		Res	ult				
Acetone 4.1 ug/kg 20	Acetone			A 1	ua/ka	20	1	

Acetone	4.1	ug/kg	20	J
Benzene	ND	ug/kg	5.1	
Bromodichloromethane	ND	ug/kg	5.1	
Bromoform	ND	ug/kg	5.1	
Bromomethane	ND	ug/kg	10	
2-Butanone (MEK)	ND	ug/kg	20	
Carbon disulfide	ND	ug/kg	5.1	
Carbon tetrachloride	ND	ug/kg	5.1	
Chlorobenzene	ND	ug/kg	5.1	
Chloroethane	ND	ug/kg	10	
2-Chloroethyl vinyl ether	ND	uğ/kğ	51	
Chloroform	ND	ug/kg	5.1	
Chloromethane	ND	ug/kg	10	
Dibromochloromethane	ND	ug/kg	5.1	
1.1-Dichloroethane	ND	ug/kg	5.1	
1,2-Dichloroethane	ND	ug/kg	5.1	
1,1-Dichloroethene	ND	ug/kg	5.1	
cis-1,2-Dichloroethene	ND	ug/kg	2.6	
trans-1,2-Dichloroethene	ND	ug/kg	2.6	
1,2-Dichloroethene (total)	ND	ug/kg	5.1	
1,2-Dichloropropane	ND	ug/kg	5.1	
cis-1,3-Dichloropropene	ND	ug/kg	5.1	
trans-1,3-Dichloropropene	ND	ug/kg	5.1	
Ethylbenzene	ND	ug/kg	5.1	
2-Hexanone	ND	ug/kg	20	
Methylene chloride	1.5	ug/kg	5.1	J
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	20	
Styrene	ND	ug/kg	5.1	
1,1,2,2.Tetrachloroethane	ND	ug/kg	5.1	
Tetrachloroethene	ND	ug/kg	5.1	
Toluene	ND	ug/kg	5.1	
1,1,1-Trichloroethane	ND	ug/kg	5.1	
1,1,2-Trichloroethane	ND	ug/kg	5.1	
Trichloroethene	ND	ug/kg	5.1	
Vinyl acetate	ND	ug/kg	10	
Vinyl chloride	ND	ug/kg	10	
m&p-Xylene	ND	uğ/kğ	2.6	
o-Xylene	ND	ug/kg	2.6	

Percent moisture is 2.3%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

Reported By: Sandra Jones

Wuanterra Environmental Services(cont.)

.

Volatile Organics Target Compound List (TCL) Method 8260A

Client Name: Client ID: Lab ID:	Brown and Root HX20-SB07-04	Environmental		
Matrix:	056857-0003-SA SOLID 08 SEP 97	Sampled: Received:		Prepared: 09 SEP 97 Analyzed: 15 SEP 97

Parameter	Result	Dry Weight Units	Reporting Limit
Surrogate 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	Recovery 93 95 104	x x x	Limits 77-115 90-113 86-115

Percent moisture is 2.3%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

Reported By: Sandra Jones

۰.

Duanterra Environmental Services

.

J

.

Volatile Organics Target Compound List (TCL) Method 8260A

Client Name:	Brown and Root Envi	ronmental	
Client ID:	Trip Blank- TB-01-0	90597	
Lab ID:	056857-0004-TB		
Matrix:	AQUEOUS	Sampled: 05 SEP 97	Prepared: 09 SEP 97
Authorized:	08 SEP 97	Received: 06 SEP 97	Analyzed: 12 SEP 97

Parameter	Result	Units	Reporting Limit
Acetone	ND	ug/L	10
Benzene	ND	ug/L	1.0
Bromodichloromethane	ND	ug/L	1.0
Bromoform	ND	ug/L	1.0
Bromomethane	ND	ug/L	2.0
2-Butanone (MEK)	ND	ug/L	5.0
Carbon disulfide	ND	ug/L	1.0
Carbon tetrachloride	ND	ug/L	1.0
Chlorobenzene	ND	ug/L	1.0
Chloroethane	ND	ug/L	2.0
Chloroform	ND	ug/L	1.0
Chloromethane	ND	ug/L	2.0
Dibromochloromethane	ND	uğ/L	1.0
Vinyl acetate	ND	ug/L	2.0
1,1-Dichloroethane	ND	ug/L	1.0
1,2-Dichloroethane	ND	ug/L	1.0
1.1-Dichloroethene	ND	ug/L	1.0
cis-1,2-Dichloroethene	ND	ug/L	0.50
trans-1.2-Dichloroethene	ND	ug/L	0.50
1,2-Dichloroethene (total)	ND	ug/L	1.0
1,2-Dichloropropane	ND	ug/L	1.0
cis-1,3-Dichloropropene	ND	ug/L	1.0
trans-1,3-Dichloropropene	ND	ug/L	1.0
Ethylbenzene	ND	ug/L	1.0
2-Hexanone	ND	ug/L	5.0
Methylene chloride	0.51	ug/L	1.0
4-Methyl-2-pentanone (MIBK)	ND	uğ/L	5.0
Styrene	ND	uğ/L	1.0
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0
Tetrachloroethene	ND	ug/L	1.0
Toluene	ND	uğ/L	1.0
1,1,1-Trichloroethane	ND	ug/L	1.0
1,1,2-Trichloroethane	ND	ug/L	1.0
Trichloroethene	ND	ug/L	1.0
2-Chloroethyl vinyl ether	ND	ug/L	2.0
Vinyl chloride	ND	ug/L	2.0
o-Xylene	ND	ug/L	0.50
m& p-Xylenes	ND	ug/L	0.50
Xylenes (total)	· ND	ug/L	1.0

Dilution factor is 1.0. All results and limits are corrected for dilution.

J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

Reported By: Mike Hoffman

Duanterra Environmental Services(cont.)

Client Name:	Brown and Root Envi	ironmental				
Client ID:	Trip Blank- TB-01-0)90597				
Lab ID:	056857-0004-TB					
Matrix:	AQUEOUS	Sampled:	05 SEP 9	7 Prepared:	: 09 SEP	97
Authorized:	08 SFP 97	Received:				

Parameter	Result	Units	Reporting Limit
Surrogate 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	Recovery 100 102 106	સ્ સ્	Limits 78-113 88-113 90-108

Dilution factor is 1.0.

All results and limits are corrected for dilution.

Reported By: Mike Hoffman

(*Duanterra*) Environmental Services

Client Name: Brown	and Root Environmental	
Client ID: HX20-S	SB01-10	
Lab ID: 056857	7-0005-SA	
Matrix: SOLID	Sampled: 04 S	SEP 97 Prepared: 09 SEP 97
Authorized: 08 SEP	97 Received: 06 S	

Parameter	Result	Dry Weight Units	Reporting Limit	
Acetone	2.9	ug/kg	21	J
Benzene	ND	ug/kg	5.2	
Bromodichloromethane	ND	ug/kg	5.2	
Bromoform	ND	ug/kg	5.2	
Bromomethane	ND	ug/kg	10	
2-Butanone (MEK)	ND	ug/kg	21	
Carbon disulfide	ND	ug/kg	5.2	
Carbon tetrachloride	ND	ug/kg	5.2	
Chlorobenzene	ND	ug/kg	5.2	
Chloroethane	ND	ug/kg	10	
2-Chloroethyl vinyl ether	ND	ug/kg	52	
Chloroform	ND	ug/kg	5.2	
Chloromethane	ND	ug/kg	10	
Dibromochloromethane	ND	ug/kg	5.2	
1,1-Dichloroethane	ND	ug/kg	5.2	
1,2-Dichloroethane	ND	ug/kg	5.2	
1,1-Dichloroethene	ND	ug/kg	5.2 5.2 2.6 2.6 5.2 5.2 5.2 5.2 5.2 5.2 5.2	
cis-1,2-Dichloroethene	ND	ug/kg	2.6	
trans-1,2-Dichloroethene	ND	ug/kg	2.6	
1,2-Dichloroethene (total)	ND	ug/kg	5.2	
1,2-Dichloropropane	ND	ug/kg	5.2	
cis-1,3-Dichloropropene	ND	ug/kg	5.2	
trans-1,3-Dichloropropene	ND	ug/kg	5.2	
Ethylbenzene	ND	ug/kg	5.2	
2-Hexanone	ND	ug/kg	21	
Methylene chloride	1.3	ug/kg	5.2	J
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	21	
Styrene	ND	ug/kg	52	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.2 5.2 5.2 5.2 5.2	
Tetrachloroethene	ND	ug/kg	5.2	
Toluene	ND	ug/kg	5.2	
1,1,1-Trichloroethane	ND	ug/kg	5.2	
1,1,2-Trichloroethane	ND	ug/kg	5.2	
Trichloroethene	ND	ug/kg	5.2	
Vinyl acetate	ND	ug/kg	10	
Vinyl chloride	ND	ug/kg	ĩŏ	
m&p-Xylene	ND	ug/kg	2.6	
o-Xylene	ND	ug/kg	2.6	
		~3, 1,2	2.0	

Percent moisture is 3.2%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

Reported By: Sandra Jones

(*Duanterra*) Environmental Services (cont.)

.

Volatile Organics Target Compound List (TCL) Method 8260A

Client Name:	Brown and Root	Environmental			
Client ID:	HX20-SB01-10				
Lab ID:	056857-0005-SA				
Matrix:	SOLID	Sampled:	04 SEP	97	Prepared: 09 SEP 97
Authorized:	08 SEP 97	Received:			Analyzed: 15 SEP 97

Parameter	Result	Dry Weight Units	Reporting Limit	
Surrogate 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	Recovery 93 92 105	* * *	Limits 77-115 90-113 86-115	

Percent moisture is 3.2%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

Reported By: Sandra Jones

٠.

(Duanterra) Environmental Services

.

Volatile Organics Target Compound List (TCL) Method 8260A

Client Name:	Brown and Root	Environmental			
Client ID:	HX20-SB02-15				
Lab ID:	056857-0006-SA				
Matrix:	SOLID	Sampled:	04 SEP	97	Prepared: 10 SEP 97
Authorized:	08 SEP 97	Received:			Analyzed: 15 SEP 97

Parameter	Result	Dry Weight Units	Reporting Limit	
Acetone	360	ug/kg	2700	J
Benzene	ND	ug/kg	660	
Bromodichloromethane	ND	ug/kg	660	
Bromoform	ND	ug/kg	660	
Bromomethane	ND	ug/kg	1300	
2-Butanone (MEK)	ND	ug/kg	2700	
Carbon disulfide	ND	ug/kg	660	
Carbon tetrachloride	ND	ug/kg	660	
Chlorobenzene	ND	ug/kg	660	
Chloroethane	ND	ug/kg	1300	
2-Chloroethyl vinyl ether	ND	ug/kg	6600	
Chloroform	ND	ug/kg	660	
Chloromethane	ND	ug/kg	1300	
Dibromochloromethane	ND	ug/kg	660	
1,1-Dichloroethane	ND	ug/kg	660	
1,2-Dichloroethane	ND	ug/kg	660	
1,1-Dichloroethene	ND	ug/kg	660	
cis-1,2-Dichloroethene	ND	ug/kg	330	
trans-1,2-Dichloroethene	ND	ug/kg	330	
1,2-Dichloroethene (total)	ND	ug/kg	660	
1,2-Dichloropropane	ND	ug/kg	660	
cis-1,3-Dichloropropene	ND	ug/kg	660	
trans-1,3-Dichloropropene	ND	ug/kg	660	
Ethylbenzene	ND	ug/kg	660	
2-Hexanone	ND	ug/kg	2700	-
Methylene chloride	160	ug/kg	660	J
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	2700	
Styrene	ND	ug/kg	660	
1,1,2,2-Tetrachloroethane	ND	ug/kg	660	
Tetrachloroethene	ND	ug/kg	660	
Toluene	ND	ug/kg	660	
1,1,1-Trichloroethane	ND	ug/kg	660	
1,1,2-Trichloroethane	ND	ug/kg	660	
Trichloroethene	ND	ug/kg	660	
Vinyl acetate	ND	ug/kg	1300	
Vinyl chloride	ND	ug/kg	1300	
Xylenes (total)	ND	ug/kg	6 60	

Percent moisture is 6.6%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

Reported By: Steven Francis

(*Duanterra* Environmental Services(cont.)

Client Name: Client ID: Lab ID:	Brown and Root HX20-SB02-15 056857-0006-SA	Environmental			
Matrix:	SOLID 08 SEP 97	Sampled: Received:		Prepared: Analyzed:	

Dry Weight

Reporting

Parameter	Result	Ŭnits	Limit	
Surrogate	Recovery			
1.2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	91 99 97	* * *	77-114 83-118 84-114	

Percent moisture is 6.6%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

Reported By: Steven Francis

Duanterra Environmental Services

Volatile Organics Target Compound List (TCL) Method 8260A

Client ID:	Brown and Root HX20-SB03-15	Environmental		
Lab ID:	056857-0007-SA			
Matrix:	SOLID	Sampled: 04	SEP 97	Prepared: 10 SEP 97
Authorized:	08 SEP 97	Received: 06	SEP 97	Analyzed: 15 SEP 97

Parameter	Result	Dry Weight Units	Reporting Limit	
Acetone	530	ug/kg	2700	J
Benzene	ND	ug/kg	680	•
Bromodichloromethane	ND	ug/kg	680	
Bromoform	ND	ug/kg	680	
Bromomethane	ND	ug/kg	1300	
2-Butanone (MEK)	ND	ug/kg	2700	
Carbon disulfide	ND	ug/kg	680	
Carbon tetrachloride	ND	ug/kg	680	
Chlorobenzene	ND	ug/kg	680	
Chloroethane	ND	ug/kg	1300	
2-Chloroethyl vinyl ether	ND	ug/kg	6800	
Chloroform	ND	ug/kg	680	
Chloromethane	ND	ug/kg	1300	
Dibromochloromethane	ND	ug/kg	680	
1.1-Dichloroethane	ND	ug/kg	680	
1,2-Dichloroethane	ND	ug/kg	680	
1,1-Dichloroethene	ND	ug/kg	680	
cis-1.2-Dichloroethene	ND	ug/kg	340	
trans-1.2-Dichloroethene	ND	ug/kg	340	
1,2-Dichloroethene (total)	ND	ug/kg	680	
1,2-Dichloropropane	ND	ug/kg	680	
cis-1,3-Dichloropropene	ND	ug/kg	680	
trans-1,3-Dichloropropene	ND	ug/kg	680	
Ethylbenzene	160	ug/kg	680	J
2-Hexanone	ND	ug/kg	2700	-
Methylene chloride	160	ug/kg	680	J
4-Methy1-2-pentanone (MIBK)	ND	ug/kg	2700	-
Styrene	ND	ug/kg	680	
1,1,2,2-Tetrachloroethane	ND	ug/kg	680	
Tetrachloroethene	ND	ug/kg	680	
Toluene	ND	ug/kg	680	
1,1,1-Trichloroethane	ND	ug/kg	680	
1,1,2-Trichloroethane	ND	ug/kg	680	
Trichloroethene	ND	ug/kg	680	
Vinyl acetate	ND	ug/kg	1300	
Vinyl chloride	ND	ug/kg	1300	
Xylenes (total)	1200	ug/kg	680	

Percent moisture is 8.6%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

Reported By: Steven Francis

Wuanterra Environmental Services(Cont.)

Volatile Organics Target Compound List (TCL) Method 8260A

Client Name: Client ID: Lab ID:	Brown and Root HX20-SB03-15 056857-0007-SA	Environmental					
Matrix:	SOLID	Sampled:	04	SEP	97	Prepared: 10 SEP 97	
	08 SEP 97	Received:				Analyzed: 15 SEP 97	
///////////////////////////////////////	00 321 37	Nece i ved.	00	JLF	31	Analyzed. 13 SEP 37	

Dry Weight

Reporting

Parameter	Result	Units	Limit
Surrogate	Recovery		Limits
1.2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	91 106 99	સ્ સ્	77-114 83-118 84-114

Percent moisture is 8.6%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

,

Reported By: Steven Francis

Wuanterra Environmental Services

Volatile Organics Target Compound List (TCL) Method 8260A

Client Name: Brown and Root Enviror Client ID: HX20-SB04-15 Lab ID: 056857-0008-SA Matrix: SOLID Authorized: 08 SEP 97	mental Sampled: 04 SEP Received: 06 SEP	97 97	Prepared: 10 SF Analyzed: 15 SF	EP 97 EP 97
Parameter	Result	Dry Weight Units	t Reporting Limit	
Acetone Benzene Bromodichloromethane Bromodichloromethane Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane 1.1-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethene trans-1.2-Dichloroethene trans-1.2-Dichloropethene trans-1.3-Dichloropropene trans-1.3-Dichloropropene trans-1.3-Dichloropropene trans-1.3-Dichloropropene trans-1.3-Dichloropropene trans-1.3-Dichloropropene trans-1.3-Dichloropropene trans-1.3-Dichloropropene trans-1.3-Dichloropropene thylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone (MIBK) Styrene 1.1.2.2-Tetrachloroethane Tetrachloroethene Toluene 1.1.1-Trichloroethane 1.1.2-Trichloroethane Trichloroethene	380 ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg	2700 680 680 1300 2700 680 680 1300 680 680 680 680 680 680 680 6	J
Vinyl acetate Vinyl chloride Xylenes (total)	ND ND 1700	ug/kg ug/kg ug/kg	1300 1300 680	

Percent moisture is 8.8%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

Reported By: Steven Francis

Quanterra Environmental ^{Services}(cont.)

Volatile Organics Target Compound List (TCL) Method 8260A

Client ID:	Brown and Root HX20-SB04-15			
Lab ID: Matrix: Authorized:	056857-0008-SA SOLID 08 SEP 97	Sampled: Received:		Prepared: 10 SEP 97 Analyzed: 15 SEP 97

Parameter	Result	Dry Weight Units	Reporting Limit
Surrogate	Recovery		Limits
1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	90 106 99	એ એ એ એ એ એ એ એ એ એ એ એ એ	77-114 83-118 84-114

Percent moisture is 8.8%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

Reported By: Steven Francis

÷ .

Duanterra Environmental Services

Client Name:	Brown and Root	Environmental						
Client ID:	HX20-SB06-15							
Lab ID:	056857-0001-SA							
Matrix:	SOLID	Sampled:	05 SEP	97	Prepared:	09	SEP	97
Authorized:	08 SEP 97	Received:	06 SEP	97	Ana'ı yzed:	11	SEP	97

Parameter	Result	Dry Weight Units	Reporting Limit
Acenaphthene	ND	ug/kg	1400
Acenaphthylene	ND	ug/kg	1400
Anthracene	ND	ug/kg	1400
Benzo(a)anthracene	ND	ug/kg	1400
Benzo(b)fluoranthene	ND	ug/kg	1400
Benzo(k)fluoranthene	ND	ug/kg	1400
Benzo(g,h,i)perylene	ND	ug/kg	1400
Benzo(a)pyrene	ND	ug/kg	1400
4-Bromophenyl phenyl ether	ND	ug/kg	1400
Butyl benzyl phthalate	ND	ug/kg	1400
Carbazole	ND	ug/kg	1400
4-Chloroaniline	ND	ug/kg	1400
bis(2-Ch]oroethoxy)methane	ND	ug/kg	1400
bis(2-Chloroethyl) ether	ND	ug/kg	1400
2,2'-oxybis(1-chloropropane)	ND	ug/kg	1400
4-Chloro-3-methylphenol	ND	ug/kg	1400
2-Chloronaphthalene	ND	ug/kg	1400
2-Chlorophenol	ND	ug/kg	1400
4-Chlorophenyl phenyl ether	ND	ug/kg	1400
Chrysene	ND	ug/kg	1400
Dibenz(a,h)anthracene	ND	ug/kg	1400
Dibenzofuran	ND	ug/kg	1400
Di-n-butyl phthalate	ND	ug/kg	1400
1.2-Dichlorobenzene	ND	ug/kg	1400
1.3-Dichlorobenzene	ND	ug/kg	1400
1.4-Dichlorobenzene	ND	ug/kg	1400
3.3'-Dichlorobenzidine	ND	ug/kg	6800
2.4-Dichlorophenol	ND	ug/kg	1400
Diethyl phthalate	ND	ug/kg	1400
2.4-Dimethylphenol	ND	ug/kg	1400
Dimethyl phthalate	ND	ug/kg	1400
4.6-Dinitro-2-methylphenol	ND	ug/kg	6800
2.4-Dinitrophenol 2.4-Dinitrotoluene	ND ND	ug/kg	6800
2.6-Dinitrotoluene		ug/kg	1400
Di-n-octyl phthalate	ND ND	ug/kg	1400
bis(2-Ethylhexyl)phthalate	ND	ug/kg	1400 1400
Fluoranthene	ND	ug/kg	1400
Fluorene	ND	ug/kg ug/kg	1400
Hexachlorobenzene	ND	ug/kg	1400
Hexachlorobutadiene	ND	ug/kg	1400
Hexachlorocyclopentadiene	ND	ug/kg	6800
nervention of 2010 beneficiente		uy/ Ny	0000

Percent moisture is 5.3%. All results and limits are reported on a dry weight basis. Dilution factor is 4.0. All results and limits are corrected for dilution.

ND = Not Detected

Reported By: Deneen Spence

Environmental Services (cont.)

Client Name:	Brown and Root	Environmental		
Client ID:	HX20-SB06-15			
Lab ID:	056857-0001-SA			
Matrix:	SOLID	Sampled:	05 SEP 97	Prepared: 09 SEP 97
Authorized:	08 SEP 97	Received:	06 SEP 97	Analyzed: 11 SEP 97

Parameter	Result	Dry Weight Units	Reporting Limit
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol Naphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Nitrobenzene 2-Nitrophenol 4-Nitrobenzene 2-Nitrophenol N-Nitroso-di-n-propylamine Benzyl alcohol Bis(2-chloroisopropyl) ether-dl2 Pyridine Benzoic acid Pentachlorophenol Phenol Pyrene 1.2,4-Trichlorobenzene 2,4,5-Trichlorophenol	ND ND 9900 ND 2000 ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg	1400 1400 1400 1400 1400 1400 6800 6800 6800 1400 1400 1400 1400 1400 1400 2800 6800 6800 6800 6800 6800 1400 1400 1400 1400
2.4.6-Trichlorophenol	ND	ug/kg	1400
Surrogate	Recovery		Limits
Nitrobenzene-d5	75	ər ər ər ər ər ər	56-108
2-Fluorobiphenyl	75		56-110
Terphenyl-d14	54		51-135
2-Fluorophenol	74		57-112
Phenol-d5	71		61-110
2,4,6-Tribromophenol	95		42-106

Percent moisture is 5.3%. All results and limits are reported on a dry weight basis. Dilution factor is 4.0. All results and limits are corrected for dilution.

ND = Not Detected

Reported By: Deneen Spence

iiiuanterra Environmental Services

Client Name: Brown and Root Environmental

Client ID: Lab ID:	HX20-SB05-15 056857-0002-SA			
	SOLID	Sampled: 05 SEP	97 F	Prepared: 09 SEP 97
Author 12ed:	06 SEP 91	Received: 06 SEP	9/ F	Analyzed: 10 SEP 97
			Dry Weight	Reporting
Parameter		Result	Units	Limit
Acenaphthene		ND	ug/kg	340
Acenaphthy1e	ne	ND	ug/kg	340
Anthracene		ND	ug/kg	340
Benzo(a)anth		ND	ug/kg	340
Benzo(b)fluo		ND	ug/kg	340
Benzo(k)fluo		ND	ug/kg	340
Benzo(g,h,i)	perylene	ND	ug/kg	340
Benzo(a)pyre		ND	ug/kg	340
Butyl benzyl	phenyl ether	ND ND	ug/kg	340 340
Carbazole	pricharace	ND ND	ug/kg ug/kg	340
4-Chloroanil	ine ⁻	. ND ND	ug/kg	340
	ethoxy)methane	ND	ug/kg	340
bis(2-Chloro		ND	ug/kg	340
$2.2' \cdot \text{oxybis}($	1-chloropropane)	ND	ug/kg	340
4-Chloro-3-m	ethylphenol	ND	ug/kg	340
2-Chloronaph	thalene	ND	ug/kg	340
2-Chlorophen	0]	ND	ug/kg	340
4-Chlorophen	yl phen yl ether	ND	ug/kg	340
Chrysene		ND	ug/kg	340
Dibenz(a,h)a		ND	ug/kg	340
Dibenzofuran		ND	ug/kg	340
Di-n-butyl p	nthalate	ND	ug/kg	340
1.2-Dichloro		ND	ug/kg	340
1.3-Dichloro 1.4-Dichloro		ND	ug/kg	340
3.3'-Dichlor		ND ND	ug/kg	340 1600
2,4-Dichloro	phenol	ND	ug/kg ug/kg	340
Diethyl phth	alate	ND	ug/kg	340
2.4-Dimethyl	phenol	ND	ug/kg	340
Dimethyl pht		ND	ug/kg	340
4.6-Dinitro-	2-methylphenol	ND	ug/kg	1600
2.4-Dinitrop	henol	ND	ug/kg	1600
2.4-Dinitrot	oluene	ND	ug/kg	340
2.6-Dinitrot	oluene	ND	ug/kg	340
Di-n-octyl pi	hthalate	ND	ug/kg	340
	exyl)p hthalate	ND	ug/kg	340
Fluoranthene	•.	ND	ug/kg	340
Fluorene		ND	ug/kg	340
Havachloroba	n70N0	ND	ualka	240

Percent moisture is 2.7%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

ND

ND

ND

ND = Not Detected

Hexachlorobenzene

Hexachlorobutadiene

Reported By: Deneen Spence

Hexachlorocyclopentadiene

Approved By: Audrey Cornell

ug/kg

ug/kg

ug/kg

340

340

1600

Quanterra Environmental Services (cont.)

TCL Semivolatile Organics Method 8270B

Client Name:	Brown and Root	Environmental					
Client ID:	HX20-SB05-15						
Lab ID:	056857-0002-SA						
Matrix:	SOLID	Sampled:	05 SEP	97	Prepared: 0	9 SEP	97
Authorized:	08 SEP 97	Received:	06 SEP	97	Analyzed: 1	0 SEP	97

Parameter	Result	Dry Weight Units	Reporting Limit
Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol Naphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Nitrobenzene 2-Nitrophenol 4-Nitrophenol N-Nitroso-di-n-propylamine Benzyl alcohol Bis(2-chloroisopropyl) ether-d12 Pyridine Benzoic acid Pentachlorophenol Phenol Pyrene 1.2,4-Trichlorobenzene 2.4,6-Trichlorophenol		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	340 340 340 340 340 340 1600 1600 1600 1600 340 340 340 340 340 1600 1600 1600 1600 340 340 340 340 340 340 340 340 340 3
Surrogate	Recovery		Limits
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Fluorophenol Phenol-d5 2.4.6-Tribromophenol	64 71 64 78 75 91	* * * * *	56-108 56-110 51-135 57-112 61-110 42-106

Percent moisture is 2.7%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

ND = Not Detected

Reported By: Deneen Spence

@uanterra Environmental Services

Client Name: Brown and Root Environ Client ID: HX20-S B07-04 Lab ID: 05685 7-0003-SA Matrix: SOLID Authorized: 08 SEP 97	mental Sampled: 05 SEP Received: 06 SEP		Prepared: 09 SEP 97 Analyzed: 10 SEP 97
Parameter	Result	Dry Weight Units	: Reporting Limit
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(a)pyrene 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloroaniline bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane bis(2-Chlorophenyl) ether 2.2' oxybis(1-chloropropane) 4-Chloro-3-methylphenol 2-Chlorophenol 4-Chlorophenol 4-Chlorophenol bibenzofuran Di-n-butyl phthalate 1.2-Dichlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene 3.3'-Dichlorobenzene 3.3'-Dichlorobenzidine 2.4-Dichlorophenol Diethyl phthalate 2.4-Dimethylphenol Dimethyl phthalate 4.6-Dinitro-2-methylphenol 2.4-Dinitrotoluene 2.6-Dinitrotoluene Di-n-octyl phthalate bis(2-Ethylhexyl)phthalate Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene	ND N	ġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġ	$\begin{array}{c} 340\\ 340\\ 340\\ 340\\ 340\\ 340\\ 340\\ 340\\$
Hexachlorocyclopentadiene	ND ND	ug/kg ug/kg	340 1600

Percent moisture is 2.3%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

ND = Not Detected

Reported By: Deneen Spence

()) Duanterra Environmental Services (cont.)

Client Name:	Brown and Root	Environmental			
Client ID:	HX20-SB 07-04				
Lab ID:	056857-0003-SA				
Matrix:	SOLID	Sampled:	05 SEP	97	Prepared: 09 SEP 97
Authorized:	08 SEP 97	Received:	06 SEP	97	Analyzed: 10 SEP 97

Parameter	Result	Dry Weight Units	Reporting Limit
Hexachloroethane Indeno(1.2,3-cd)pyrene Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol Naphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitrobenzene 2-Nitrophenol 4-Nitrobenzene 2-Nitrophenol N-Nitroso-di-n-propylamine Benzyl alcohol Bis(2-chloroisopropyl) ether-dl2 Pyridine Benzoic acid Pentachlorophenol Phenol Pyrene 1.2,4-Trichlorobenzene 2.4,5-Trichlorophenol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	340 340 340 340 340 1600 1600 1600 340 340 340 340 340 340 340 340 340 3
Surrogate	Recovery		Limits
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Fluorophenol Phenol-d5 2.4.6-Tribromophenol	57 64 58 69 66 86	* * * * * *	56-108 56-110 51-135 57-112 61-110 42-106

Percent moisture is 2.3%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

ND = Not Detected

Reported By: Deneen Spence

Duanterra Environmental Services

TCL Semivolatile Organics Method 8270B

Client Name:	Brown and Root	Environmental						
Client ID:	HX20-SB01-10							
Lab ID:	056857-0005-SA							
Matrix:	SOLID	Sampled:	04 SEP	97	Prepared:	09	SEP	97
Authorized:	08 SEP 97	Received:			Analyzed:			

Parameter	Result	Dry Weight Units	Reporting Limit
Acenaphthene	ND	ug/kg	680
Acenaphthylene	ND	ug/kg	680
Anthracene	ND	ug/kg	680
Benzo(a)anthracene	ND	ug/kg	680
Benzo(b)fluoranthene	ND	ug/kg	680
Benzo(k)fluoranthene	ND	ug/kg	680
Benzo(g,h,i)perylene	ND	ug/kg	680
Benzo(a)pyrene	ND	ug/kg	680
4-Bromophenyl phenyl ether	ND	ug/kg	680
Butyl benzyl phthalate	ND	ug/kg	680
Carbazole	ND	ug/kg	680
4-Chloroaniline	ND	ug/kg	680
bis(2-Chloroethoxy)methane	ND	ug/kg	680
bis(2-Chloroethyl) ether	ND	ug/kg	680
2,2'-oxybis(1-chloropropane)	ND	ug/kg	680
4-Chloro-3-methylphenol	ND	ug/kg	680
2-Chloronaphthalene	ND	ug/kg	680
2-Chlorophenol	ND	ug/kg	680
4-Chlorophenyl phenyl ether	ND	ug/kg	680
Chrysene	ND	ug/kg	680
Dibenz(a,h)anthracene	ND	ug/kg	680
Dibenzofuran	NÐ	ug/kg	680
Di-n-butyl phthalate	ND	ug/kg	680
1,2-Dichlorobenzene	ND	ug/kg	680
1,3-Dichlorobenzene	ND	ug/kg	680
1,4-Dichlorobenzene	ND	ug/kg	680
3,3'-Dichlorobenzidine	ND	ug/kg	3300
2,4-Dichlorophenol	ND	ug/kg	680
Diethyl phthalate	ND	ug/kg	680
2,4-Dimethylphenol	ND	ug/kg	680
Dimethyl phthalate	ND	ug/kg	680
4.6-Dinitro-2-methylphenol	ND	ug/kg	3300
2.4-Dinitrophenol	ND	ug/kg	3300
2.4-Dinitrotoluene	ND	ug/kg	680
2.6-Dinitrotoluene	ND	ug/kg	680
Di-n-octyl phthalate	ND	ug/kg	680
bis(2-Ethylhexyl)phthalate	ND	ug/kg	680
Fluoranthene	ND	ug/kg	680
Fluorene	ND	ug/kg	680
Hexachlorobenzene	ND	ug/kg	680
Hexachlorobutadiene	ND	ug/kg	680
Hexachlorocyclopentadiene	ND	ug/kg	3300

Percent moisture is 3.2%. All results and limits are reported on a dry weight basis. Dilution factor is 2.0. All results and limits are corrected for dilution.

ND = Not Detected

Reported By: Deneen Spence

(Duanterra Environmental Services (cont.)

Client Name:	Brown and Root	Environmental					
Client ID:	HX20-SB01-10						
Lab ID:	056857-0005-SA						
Matrix:	SOLID	Sampled:	04	SEP	97	Prepared: 09 SEP 97	
Authorized:	08 SEP 97	Received:				Analyzed: 11 SEP 97	

	D	Dry Weight	Reporting
Parameter	Result	Units	Limit
Hexachloroethane	ND	ug/kg	680
Indeno(1,2,3-cd)pyrene	ND	ug/kg	680
Isophorone	ND	ug/kg	680
2-Methylnaphthalene	ND	ug/kg	680
2-Methylphenol	ND	ug/kg	680
4-Methylphenol	ND	ug/kg	680
Naphthalene	ND	ug/kg	680
2-Nitroaniline	ND	ug/kg	3300
3-Nitroaniline	ND	ug/kg	3300
4-Nitroaniline	ND	ug/kg	3300
Nitrobenzene	ND	ug/kg	680
2-Nitrophenol	ND	ug/kg	680
4-Nitrophenol	ND	ug/kg	3300
N-Nitrosodiphenylamine	ND	ug/kg	680
N-Nitroso-di-n-propylamine	ND	ug/kg	680
Benzyl alcohol	ND	ug/kg	680
Bis(2-chloroisopropyl) ether-d12	ND	ug/kg	680
Pyridine	ND	ug/kg	1400
Benzoic acid	ND	ug/kg	3300
Pentachlorophenol	ND	ug/kg	3300
Phenanthrene	ND	ug/kg	680
Pheno1	ND	ug/kg	680
Pyrene	ND	ug/kg	680
1,2,4-Trichlorobenzene	ND	ug/kg	680
2,4,5-Trichlorophenol	ND	ug/kg	680
2,4,6-Trichlorophenol	ND	ug/kg	680
Surrogate	Recovery		Limits
Nitrobenzene-d5	58	2	56-108
2-Fluorobiphenyl	68	x	56-110
Terphenyl-d14	53	x	51-135
2-Fluorophenol	67	* * * * *	57-112
Phenol - d5	65	x	61-110
2,4,6-Tribromophenol	84	x	42-106
and the state and histories.		-	

Percent moisture is 3.2%. All results and limits are reported on a dry weight basis. Dilution factor is 2.0. All results and limits are corrected for dilution.

ND = Not Detected

Reported By: Deneen Spence

Approved By: Audrey Cornell

33

Duanterra Environmental Services

Client Name: Brown and Root Environmental

Client ID: HX20-SB02-15			
Lab ID: 056857-0006-SA			
Matrix: SOLID Authorized: 08 SEP 97	Sampled: 04 SEP		Prepared: 09 SEP 97
Authorized: 08 SEP 97	Received: 06 SEP	97	Analyzed: 10 SEP 97
		Dry Weight	Reporting
Parameter	Result	Units	Limit
	Nesure	01115	
Acenaphthene	ND	ug/kg	350
Acenaphthylene	ND	ug/kg	350
Anthracene	ND	ug/kg	350
Benzo(a)anthracene	ND	ug/kg	350
Benzo(b)fluoranthene	ND	ug/kg	350
Benzo(k)fluoranthene	ND	ug/kg	350
Benzo(g,h,i)perylene	ND	ug/kg	350
Benzo(a)pyrene	ND	ug/kg	350
4-Bromophenyl phenyl ether	ND	ug/kg	350
Butyl benzyl phthalate	ND	ug/kg	350
Carbazole	, ND	ug/kg	350
4-Chloroaniline	ND	ug/kg	350
bis(2-Chloroethoxy)methane	ND	ug/kg	350
bis(2-Chloroethyl) ether	ND	ug/kg	350
2,2'-oxybis(1-chloropropane)	ND	ug/kg	350
4-Chloro-3-methylphenol 2-Chloronaphthalene	ND ND	ug/kg	350
2-Chlorophenol	ND	ug/kg ug/kg	350 350
4-Chlorophenyl phenyl ether	ND	ug/kg	350
Chrysene	ND	ug/kg	350
Dibenz(a,h)anthracene	ND	ug/kg	350
Dibenzofuran	ND	ug/kg	350
Di-n-butyl phthalate	ND	ug/kg	350
1.2-Dichlorobenzene	ND	ug/kg	350
1,3-Dichlorobenzene	ND	ug/kg	350
1.4-Dichlorobenzene	ND	ug/kg	350
3,3'-Dichlorobenzidine	ND	ug/kg	1700
2,4-Dichlorophenol	ND	ug/kg	350
Diethyl phthalate	ND	ug/kg	350
2,4-Dimethylphenol	ND	ug/kg	350
Dimethyl phthalate 4,6-Dinitro-2-methylphenol	ND	ug/kg	350
2,4-Dinitrophenol	ND . ND	ug/kg	1700
2,4-Dinitrotoluene	ND	ug/kg ug/kg	1700 350
2,6-Dinitrotoluene	ND	ug/kg	350
Di-n-octyl phthalate	ND	ug/kg	350
bis(2-Ethylhexyl)phthalate	ND	ug/kg	350
Fluoranthene	ND	ug/kg	350
Fluorene	ND	ug/kg	350
Hexachlorobenzene	ND	ug/kg	350
Hexachlorobutadiene	ND	ug/kg	350
Hexachlorocyclopentadiene	ND	ug/kg	1700

Percent moisture is 6.6%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

ND = Not Detected

Reported By: Deneen Spence

()) *Quanterra* Environmental Services (cont.)

Client Name:	Brown and Root	Environmental			
Client ID:	HX20-SB02-15				
Lab ID:	056857-0006-SA				
Matrix:	SOLID	Sampled:	04 SEP	97	Prepared: 09 SEP 97
Authorized:	08 SEP 97	Rece'i ved:	06 SEP	97	Analyzed: 10 SEP 97

Parameter	Result	Dry Weight Units	Reporting Limit
Hexachloroethane Indeno(1,2,3-cd)pyrene	ND ND	ug/kg ug/kg	350 350
Isophorone 2-Methylnaphthalene	ND 2400	ug/kg ug/kg	350 350
2-Methylphenol	ND	ug/kg	350
4-Methylphenol	ND	ug/kg	350
Naphthalene	410	ug/kg	350
2.Nitroaniline	ND	ug/kg	1700
3-Nitroaniline 4-Nitroaniline	ND ND	ug/kg ug/kg	1700 1700
Nitrobenzene	ND	ug/kg	350
2-Nitrophenol	ND	ug/kg	350
4-Nitrophenol	ND	ug/kg	1700
N-Nitrosodiphenylamine	ND	ug/kg	350
N-Nitroso-di-n-propylamine	ND	ug/kg	350
Benzyl alcohol	ND	ug/kg	350
Bis(2-chloroisopropyl) ether-d12 Pyridine	ND ND	ug/kg ug/kg	350 710
Benzoic acid	ND	ug/kg	1700
Pentachlorophenol	ND	ug/kg	1700
Phenanthrene	400	ug/kg	350
Pheno1	ND	ug/kg	350
Pyrene	ND	ug/kg	350
1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol	ND ND	ug/kg ug/kg	350 350
2,4,6-Trichlorophenol	ND	ug/kg	350
•		~3, ~3	
Surrogate	Recovery		Limits
Nitrobenzene-d5	66	*	56-108
2-Fluorobiphenyl	70	₹ ₹ ₹	56-110
Terphenyl-d14	54	ž	51-135
2-Fluorophenol Phenol-d5	71 70	<u>አ</u>	57-112
2,4,6-Tribromophenol	70 91	ሌ ፝	61-110 42-106
	31	Q	47.100

Percent moisture is 6.6%. All results and limits are reported on a dry weight basis. Dilution factor is 1.0. All results and limits are corrected for dilution.

ND = Not Detected

Reported By: Deneen Spence

Duanterra Environmental Services

_

Client Name:	Brown and Root	Environmental			
Client ID:	HX20-SB03-15				
Lab ID:	056857-0007-SA				
Matrix:	SOLID	Sampled:	04 SI	EP 97	Prepared: 09 SEP 97
Authorized:	08 SEP 97	Received:			Analyzed: 11 SEP 97

Acenaphthene ND ug/kg 3600 Acenaphthylene ND ug/kg 3600 Anthracene ND ug/kg 3600 Benzo(a) anthracene ND ug/kg 3600 Benzo(b) fluoranthene ND ug/kg 3600 Benzo(b) fluoranthene ND ug/kg 3600 Benzo(a) pyrene ND ug/kg 3600 Benzo(a) pyrene ND ug/kg 3600 A-Bromophenyl phenyl ether ND ug/kg 3600 A-thoroarniline ND ug/kg 3600 bis(2-Chloroethoxy)methane ND ug/kg 3600 bis(2-Chloroethyl) ether ND ug/kg 3600 2.2' oxybis(1-chloropropane) ND ug/kg 3600 2.Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600	Parameter	Result	Dry Weight Units	Reporting Limit
Acenaphthylene ND ug/kg 3600 Anthracene ND ug/kg 3600 Benzo(a) anthracene ND ug/kg 3600 Benzo(b) fluoranthene ND ug/kg 3600 Benzo(a) anthracene ND ug/kg 3600 Benzo(a) fluoranthene ND ug/kg 3600 Benzo(a) pyrene ND ug/kg 3600 Benzo(a) pyrene ND ug/kg 3600 A-Bromophenyl phenyl ether ND ug/kg 3600 Carbazole ND ug/kg 3600 bis(2-Chloroethoxy)methane ND ug/kg 3600 bis(2-Chloroethyl) ether ND ug/kg 3600 2.2' oxybis(1-chloropropane) ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 Chlorophenol ND ug/kg 3600 1	Acenaphthene	ND	ua/ka	3600
AnthraceneNDug/kg3600Benzo(a)anthraceneNDug/kg3600Benzo(b)fluorantheneNDug/kg3600Benzo(g,h,i)peryleneNDug/kg3600Benzo(a)pyreneNDug/kg3600Benzo(a)pyreneNDug/kg3600Benzo(a)pyreneNDug/kg3600Benzo(a)pyreneNDug/kg3600Butyl benzyl phthalateNDug/kg3600CarbazoleNDug/kg36004-ChloroantlineNDug/kg3600bis(2-Chloroethoxy)methaneNDug/kg36002.2-oxybis(1-chloropropane)NDug/kg36002-ChloroaphthaleneNDug/kg36002-Chlorophenyl phenyl etherNDug/kg36002-Chlorophenyl phenyl etherNDug/kg36002-ChlorophenolNDug/kg36004-ChlorophenolNDug/kg36000-Dibenz(a, h)anthraceneNDug/kg3600Di-n-butyl phthalateNDug/kg36001.4-DichlorobenzeneNDug/kg36001.4-DichlorobenzeneNDug/kg36001.4-DichlorobenzeneNDug/kg36001.4-DichlorobenzeneNDug/kg36001.4-DichlorobenzeneNDug/kg36002.4-Dimethyl phenolNDug/kg36001.5-ChlorobenzeneNDug/kg36002.6-Dinitro-2-methyl	Acenaphthylene	ND		
Benzo(b)fluoranthene ND ug/kg 3600 Benzo(k)fluoranthene ND ug/kg 3600 Benzo(a)fluoranthene ND ug/kg 3600 Benzo(a)pyrene ND ug/kg 3600 4.Bromophenyl phenyl ether ND ug/kg 3600 Athromophenyl phenyl ether ND ug/kg 3600 Garbazole ND ug/kg 3600 Athromophenyl phenyl ether ND ug/kg 3600 Garbazole ND ug/kg 3600 4.Chloroethoxy)methane ND ug/kg 3600 bis(2-Chloroethoxy)methane ND ug/kg 3600 2.Chlorophenyl phenol ND ug/kg 3600 2.Chlorophenol ND ug/kg 3600 2.Chlorophenol ND ug/kg 3600 2.Chlorophenol ND ug/kg 3600 2.Chlorophenol ND ug/kg 3600 1.a.pithilate ND ug/kg 3600	Anthracene	ND		3600
Benzo(k)fluoranthene ND ug/kg 3600 Benzo(g,h,i)perylene ND ug/kg 3600 Benzo(a)pyrene ND ug/kg 3600 4-Bromophenyl phenyl ether ND ug/kg 3600 Butyl benzyl phthalate ND ug/kg 3600 A-Bromophenyl phenyl ether ND ug/kg 3600 A-Chloroaniline ND ug/kg 3600 bis(2-Chloroethoxy)methane ND ug/kg 3600 bis(2-Chloroethyl) ether ND ug/kg 3600 2.2'-oxybis(1-chloropropane) ND ug/kg 3600 2.Chloroaphthalene ND ug/kg 3600 2.Chlorophenol ND ug/kg 3600 2.Chlorophenyl phenyl ether ND ug/kg 3600 Dibenzofuran ND ug/kg 3600 Dibenzofuran ND ug/kg 3600 1.2-Dichlorobenzene ND ug/kg 3600 1.3.3 Dichlorobenzene ND ug/kg <td></td> <td></td> <td>ug/kg</td> <td></td>			ug/kg	
Benzo(g,h,i)perylene ND ug/kg 3600 Benzo(a)pyrene ND ug/kg 3600 4-Bromophenyl phenyl ether ND ug/kg 3600 Butyl benzyl phthalate ND ug/kg 3600 Carbazole ND ug/kg 3600 4-Chloroaniline ND ug/kg 3600 bis(2-Chloroethoxy)methane ND ug/kg 3600 bis(2-Chloroethoxy)methane ND ug/kg 3600 2.2'-oxybis(1-chloroptopane) ND ug/kg 3600 2.Chloroaphthalene ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 Dibenz(a,h)anthracene ND ug/kg 3600 Di-n-butyl phthalate ND ug/kg 3600 <			ug/kg	
Benzo(a)pyrehe ND ug/kg 3600 4-Bromophenyl phenyl ether ND ug/kg 3600 Butyl benzyl phthalate ND ug/kg 3600 Carbazole ND ug/kg 3600 4-Chloroaniline ND ug/kg 3600 bis(2-Chloroethoxy)methane ND ug/kg 3600 bis(2-Chloroethyl) ether ND ug/kg 3600 2.2'-oxybis(1-chloropropane) ND ug/kg 3600 2.Chloroaphthalene ND ug/kg 3600 2-Chloroaphthalene ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 Chrysene ND ug/kg 3600 Dibenz(a, h)anthracene ND ug/kg 3600 Di-n-butyl phthalate ND ug/kg 3600 1.2-Dichlorobenzene ND ug/kg 3600 1.2-Dichlorophenol ND ug/kg 3600 <				
4-Bromophenyl phenyl ether ND ug/kg 3600 Butyl benzyl phthalate ND ug/kg 3600 Carbazole ND ug/kg 3600 4-Chloroaniline ND ug/kg 3600 bis(2-Chloroethoxy)methane ND ug/kg 3600 bis(2-Chloroethoxy)methane ND ug/kg 3600 c2-'crybis(1-chloropropane) ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 4-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 Chrysene ND ug/kg 3600 Dibenz(a, h) anthracene ND ug/kg 3600 Di-n-butyl phthalate ND ug/kg 3600 1, 2-Dichlorobenzene ND ug/kg 3600 1, 3-Dichlorobenzene ND ug/kg 3600 <td></td> <td></td> <td></td> <td></td>				
Butyl benzyl phthalate ND ug/kg 3600 Carbazole ND ug/kg 3600 4-Chloroaniline ND ug/kg 3600 bis(2-Chloroethoxy)methane ND ug/kg 3600 bis(2-Chloroethoxy)methane ND ug/kg 3600 2.2: oxybis(1-chloropropane) ND ug/kg 3600 2Chloroaphthalene ND ug/kg 3600 2Chloroaphthalene ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenyl phenyl ether ND ug/kg 3600 Chrysene ND ug/kg 3600 Dibenz(a, h) anthracene ND ug/kg 3600 Dibenzofuran ND ug/kg 3600 1, 2-Dichlorobenzene ND ug/kg 3600 1, 3-Dichlorobenzene ND ug/kg 3600 1, 4-Dichlorobenzidine ND ug/kg 3600 2, 4-Dichlorophenol ND ug/kg 3	Benzo(a)pyrene			
CarbazoleNDug/kg36004-ChloroanilineNDug/kg3600bis(2-Chloroethoxy)methaneNDug/kg3600bis(2-Chloroethyl) etherNDug/kg36002.2'-oxybis(1-chloropropane)NDug/kg36002-ChloronaphthaleneNDug/kg36002-ChloronaphthaleneNDug/kg36002-ChlorophenolNDug/kg36002-ChlorophenolNDug/kg36002-ChlorophenolNDug/kg36002-Chlorophenyl phenyl etherNDug/kg3600Dibenz(a,h)anthraceneNDug/kg3600DibenzofuranNDug/kg36001.3-DichlorobenzeneNDug/kg36001.3-DichlorobenzeneNDug/kg36002.4-DichlorobenzeneNDug/kg36002.4-DichlorobenzeneNDug/kg36002.4-DichlorobenzeneNDug/kg36002.4-DichlorobenzeneNDug/kg36002.4-DinitroolenolNDug/kg36002.4-DinitroolenolNDug/kg36002.4-DinitroolueneNDug/kg36002.4-DinitroolueneNDug/kg36002.4-DinitroolueneNDug/kg36002.4-DinitroolueneNDug/kg36002.4-DinitroolueneNDug/kg36002.4-DinitroolueneNDug/kg36002.4-Dinitrooluene				
4-Chloroaniline ND ug/kg 3600 bis(2-Chloroethoxy)methane ND ug/kg 3600 bis(2-Chloroethyl) ether ND ug/kg 3600 cloored and the second and the se				
bis(2-Chloroethoxy)methane ND ug/kg 3600 bis(2-Chloroethyl) ether ND ug/kg 3600 2.2'-oxybis(1-chloropropane) ND ug/kg 3600 4-Chloro-3-methylphenol ND ug/kg 3600 2-Chloronaphthalene ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 Chrysene ND ug/kg 3600 Dibenzofuran ND ug/kg 3600 1.3-Dichlorobenzene ND ug/kg 3600 1.4-Dichlorobenzene ND ug/kg 3600 2.4-Dichlorophenol ND ug/kg 3600 2.4-Dichlorophenol ND ug/kg 3600 2.4-Dichlorophenol ND ug/kg 3600 2.4-Dinthylphenol ND ug/kg 3600				
bis(2-Chloroethyl) ether ND ug/kg 3600 2.2' - oxybis(1-chloropropane) ND ug/kg 3600 4-Chloro-3-methylphenol ND ug/kg 3600 2-Chloronaphthalene ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 4-Chlorophenol ND ug/kg 3600 4-Chlorophenyl phenyl ether ND ug/kg 3600 Dibenz(a,h)anthracene ND ug/kg 3600 Di-n-butyl phthalate ND ug/kg 3600 1,2-Dichlorobenzene ND ug/kg 3600 1,4-Dichlorobenzene ND ug/kg 3600 3,3'-Dichlorobenzene ND ug/kg 3600 2,4-Dinchlorophenol ND ug/kg 3600 2,4-Dinthyl phenol ND ug/kg 3				
2.2' $\cdot oxybis(1-chloropropane)$ NDug/kg 3600 4-Chloro-3-methylphenolNDug/kg 3600 2-ChloronaphthaleneNDug/kg 3600 2-ChlorophenolNDug/kg 3600 2-ChlorophenolNDug/kg 3600 2-ChlorophenolNDug/kg 3600 ChryseneNDug/kg 3600 Dibenz(a, h) anthraceneNDug/kg 3600 DibenzofuranNDug/kg 3600 Di-n-butyl phthalateNDug/kg 3600 1.2-DichlorobenzeneNDug/kg 3600 1.3-DichlorobenzeneNDug/kg 3600 1.4-DichlorobenzeneNDug/kg 3600 2.4-DichlorobenzeneNDug/kg 3600 2.4-DichlorobenzeneNDug/kg 3600 2.4-DirchlorobenzeneNDug/kg 3600 2.4-DirchlorobenzidineNDug/kg 3600 2.4-DirchlorobenzidineNDug/kg 3600 2.4-DirthorohenolNDug/kg 3600 2.4-DirtrotolueneNDug/kg 3600 2.4-DinitrotolueneNDug/kg 3600 2.4-DinitrotolueneNDug/kg 3600 2.4-DinitrotolueneNDug/kg 3600 2.4-DinitrotolueneNDug/kg 3600 2.4-DinitrotolueneNDug/kg 3600 2.4-DinitrotolueneNDug/kg 3600 2.4-DinitrotolueneNDug/	Dis(2-Chioroetnoxy)methane			
4-Chloro-3-methylphenol ND ug/kg 3600 2-Chloronaphthalene ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 2-Chlorophenol ND ug/kg 3600 4-Chlorophenol ND ug/kg 3600 4-Chlorophenyl phenyl ether ND ug/kg 3600 Chrysene ND ug/kg 3600 Dibenz(a, h) anthracene ND ug/kg 3600 Dibenzofuran ND ug/kg 3600 1, 2-Dichlorobenzene ND ug/kg 3600 1, 2-Dichlorobenzene ND ug/kg 3600 1, 4-Dichlorobenzene ND ug/kg 3600 1, 4-Dichlorobenzene ND ug/kg 3600 2, 4-Dichlorobenzene ND ug/kg 3600 2, 4-Dichlorobenzene ND ug/kg 3600 2, 4-Dichlorophenol ND ug/kg 3600 2, 4-Dichlorophenol ND ug/kg 3600 2, 4-Dinitro-2-methylphenol ND ug/kg 3600				
2-ChloronaphthaleneNDug/kg36002-ChlorophenolNDug/kg36004-ChlorophenolNDug/kg3600ChryseneNDug/kg3600Dibenz(a,h)anthraceneNDug/kg3600DibenzofuranNDug/kg3600Di-n-butyl phthalateNDug/kg36001.2-DichlorobenzeneNDug/kg36001.3-DichlorobenzeneNDug/kg36001.4-DichlorobenzeneNDug/kg36002.4-DichlorobenzidineNDug/kg36002.4-DichlorobenzidineNDug/kg36002.4-DichlorobenzidineNDug/kg36002.4-DinthrophenolNDug/kg36002.4-Dintro-2-methylphenolNDug/kg36002.4-Dinitro-2-methylphenolNDug/kg36002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36003.5(-Ethylhexyl)phthalateNDug/kg36004.6-Dinitrotoluen				
2-ChlorophenolNDug/kg36004-Chlorophenyl phenyl etherNDug/kg3600ChryseneNDug/kg3600Dibenz(a,h)anthraceneNDug/kg3600DibenzofuranNDug/kg3600Di-n-butyl phthalateNDug/kg36001,2-DichlorobenzeneNDug/kg36001,3-DichlorobenzeneNDug/kg36001,4-DichlorobenzeneNDug/kg36001,4-DichlorobenzeneNDug/kg36002,4-DichlorobenzidineNDug/kg36002,4-DichlorophenolNDug/kg3600Diethyl phthalateNDug/kg36002,4-Dimethyl phenolNDug/kg36002,4-Dinitro-2-methyl phenolNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-Dinitrotoluene <td></td> <td></td> <td></td> <td></td>				
4-Chlorophenyl phenyl etherNDug/kg3600ChryseneNDug/kg3600Dibenz(a,h)anthraceneNDug/kg3600DibenzofuranNDug/kg3600Di-n-butyl phthalateNDug/kg36001,2-DichlorobenzeneNDug/kg36001,3-DichlorobenzeneNDug/kg36001,4-DichlorobenzeneNDug/kg36003,3'-DichlorobenzeneNDug/kg36002,4-DichlorobenzidineNDug/kg36002,4-DichlorophenolNDug/kg3600Diethyl phthalateNDug/kg36002,4-Dimethyl phenolNDug/kg36000,6-Dinitro-2-methyl phenolNDug/kg36002,4-DinitrophenolNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,6-DinitrotolueneNDug/kg36005(2-Ethylhexyl)pht				
ChryseneNDug/kg3600Dibenz(a,h)anthraceneNDug/kg3600DibenzofuranNDug/kg3600Di-n-butyl phthalateNDug/kg36001,2-DichlorobenzeneNDug/kg36001,3-DichlorobenzeneNDug/kg36001,4-DichlorobenzeneNDug/kg36002,4-DichlorobenzeneNDug/kg36002,4-DichlorobenzidineNDug/kg36002,4-DichlorobenzidineNDug/kg36002,4-DichlorobenzidineNDug/kg36002,4-DinthalateNDug/kg36002,4-Dinitro-2-methylphenolNDug/kg36002,4-Dinitro-2-methylphenolNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,6-DinitrotolueneNDug/kg36005(2-Ethylhexyl)phthalateNDug/kg3600FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600	2-Uniorophenoi A Chieneshenvi shervi sther			
Dibenz(a,h)anthraceneNDug/kg3600DibenzofuranNDug/kg3600Di-n-butyl phthalateNDug/kg36001,2-DichlorobenzeneNDug/kg36001,3-DichlorobenzeneNDug/kg36001,4-DichlorobenzeneNDug/kg36003,3'-DichlorobenzeneNDug/kg36002,4-DichlorobenzidineNDug/kg36002,4-DichlorophenolNDug/kg3600Diethyl phthalateNDug/kg36002,4-Dimethyl phenolNDug/kg3600Dimethyl phthalateNDug/kg36002,4-Dinitro-2-methylphenolNDug/kg36002,4-DinitrotolueneNDug/kg36002,6-DinitrotolueneNDug/kg36002,6-DinitrotolueneNDug/kg36005(2-Ethylhexyl)phthalateNDug/kg3600bis(2-Ethylhexyl)phthalateNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600	4-Uniorophenyi phenyi ether			
DibenzofuranNDug/kg3600Di-n-butyl phthalateNDug/kg36001.2-DichlorobenzeneNDug/kg36001.3-DichlorobenzeneNDug/kg36001.4-DichlorobenzeneNDug/kg36003.3'-DichlorobenzidineNDug/kg36002.4-DichlorophenolNDug/kg3600Diethyl phthalateNDug/kg36002.4-Dimethyl phthalateNDug/kg3600Dimethyl phthalateNDug/kg36002.4-Dimitro-2-methyl phenolNDug/kg36002.4-Dinitro-2-methyl phenolNDug/kg36002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36005(2-Ethyl hexyl) phthalateNDug/kg3600bis(2-Ethyl hexyl) phthalateNDug/kg3600FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobenzeneNDug/kg3600				
Di-n-butyl phthalateNDug/kg36001,2-DichlorobenzeneNDug/kg36001,3-DichlorobenzeneNDug/kg36001,4-DichlorobenzeneNDug/kg36003,3'-DichlorobenzidineNDug/kg36002,4-DichlorobenzidineNDug/kg36002,4-DichlorophenolNDug/kg3600Diethyl phthalateNDug/kg36002,4-DimethylphenolNDug/kg360002,4-Dimitro-2-methylphenolNDug/kg36002,4-Dinitro-2-methylphenolNDug/kg180002,4-DinitrophenolNDug/kg36002,4-DinitrotlueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,6-DinitrotolueneNDug/kg3600Di-n-octyl phthalateNDug/kg3600bis(2-Ethylhexyl)phthalateNDug/kg3600FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobenzeneNDug/kg3600				
1.2-DichlorobenzeneNDug/kg36001.3-DichlorobenzeneNDug/kg36001.4-DichlorobenzeneNDug/kg36003.3'-DichlorobenzidineNDug/kg180002.4-DichlorophenolNDug/kg3600Diethyl phthalateNDug/kg36002.4-Dimethyl phthalateNDug/kg3600Dimethyl phthalateNDug/kg36002.4-Dimethyl phthalateNDug/kg36002.4-Dinitro-2-methylphenolNDug/kg36002.4-DinitroblueneNDug/kg36002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36005.2-Ethylhexyl)phthalateNDug/kg36005.2-Ethylhexyl)phthalateNDug/kg3600FluoreneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
1,3-DichlorobenzeneNDug/kg36001,4-DichlorobenzeneNDug/kg36003,3'-DichlorobenzidineNDug/kg180002,4-DichlorophenolNDug/kg3600Diethyl phthalateNDug/kg36002,4-DimethylphenolNDug/kg3600Dimethyl phthalateNDug/kg360001,4-Dinitro-2-methylphenolNDug/kg36002,4-Dinitro-2-methylphenolNDug/kg180002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,6-DinitrotolueneNDug/kg3600Di-n-octyl phthalateNDug/kg3600FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
1,4-DichlorobenzeneNDug/kg36003,3'-DichlorobenzidineNDug/kg180002,4-DichlorophenolNDug/kg3600Diethyl phthalateNDug/kg36002,4-DimethylphenolNDug/kg3600Dimethyl phthalateNDug/kg36000 jmethyl phthalateNDug/kg36002,4-Dinitro-2-methylphenolNDug/kg180002,4-DinitroblueneNDug/kg180002,4-DinitrotolueneNDug/kg36002,4-DinitrotolueneNDug/kg36002,6-DinitrotolueneNDug/kg3600Di-n-octyl phthalateNDug/kg3600bis(2-Ethylhexyl)phthalateNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
3.3'-DichlorobenzidineNDug/kg180002.4-DichlorophenolNDug/kg3600Diethyl phthalateNDug/kg36002.4-DimethylphenolNDug/kg3600Dimethyl phthalateNDug/kg36000 Dimethyl phthalateNDug/kg36002.4-Dinitro-2-methylphenolNDug/kg180002.4-DinitrophenolNDug/kg180002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36002.6-DinitrotolueneNDug/kg3600Di-n-octyl phthalateNDug/kg3600FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
2.4-DichlorophenolNDug/kg3600Diethyl phthalateNDug/kg36002.4-DimethylphenolNDug/kg3600Dimethyl phthalateNDug/kg36004.6-Dinitro-2-methylphenolNDug/kg180002.4-DinitrophenolNDug/kg180002.4-DinitrotolueneNDug/kg36002.4-DinitrotolueneNDug/kg36002.6-DinitrotolueneNDug/kg3600Di-n-octyl phthalateNDug/kg3600bis(2-Ethylhexyl)phthalateNDug/kg3600FluorantheneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
Diethyl phthalateNDug/kg36002,4-Dimethyl phenolNDug/kg3600Dimethyl phthalateNDug/kg36004,6-Dinitro-2-methyl phenolNDug/kg180002,4-DinitrophenolNDug/kg180002,4-Dinitrotol ueneNDug/kg36002,6-Dinitrotol ueneNDug/kg3600Di-n-octyl phthalateNDug/kg3600bis(2-Ethyl hexyl) phthalateNDug/kg3600FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
2,4-DimethylphenolNDug/kg3600Dimethyl phthalateNDug/kg36004,6-Dinitro-2-methylphenolNDug/kg180002,4-DinitrophenolNDug/kg180002,4-DinitrotolueneNDug/kg36002,6-DinitrotolueneNDug/kg3600Di-n-octyl phthalateNDug/kg3600bis(2-Ethylhexyl)phthalateNDug/kg3600FluorantheneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
Dimethyl phthalateNDug/kg36004,6-Dinitro-2-methylphenolNDug/kg180002,4-DinitrophenolNDug/kg180002,4-DinitrotolueneNDug/kg36002,6-DinitrotolueneNDug/kg3600Di-n-octyl phthalateNDug/kg3600bis(2-Ethylhexyl)phthalateNDug/kg3600FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600	2 A.Dimethylphonol			
4,6-Dinitro-2-methylphenolNDug/kg180002,4-DinitrophenolNDug/kg180002,4-DinitrotolueneNDug/kg36002,6-DinitrotolueneNDug/kg3600Di-n-octyl phthalateNDug/kg3600bis(2-Ethylhexyl)phthalateNDug/kg3600FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
2,4-DinitrophenolNDug/kg180002,4-DinitrotolueneNDug/kg36002,6-DinitrotolueneNDug/kg3600Di-n-octyl phthalateNDug/kg3600bis(2-Ethylhexyl)phthalateNDug/kg3600FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600	A_{6} Dinitro 2 methylphonol			
2,4-DinitrotolueneNDug/kg36002,6-DinitrotolueneNDug/kg3600Di-n-octyl phthalateNDug/kg3600bis(2-Ethylhexyl)phthalateNDug/kg3600FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
2,6-DinitrotolueneNDug/kg3600Di-n-octyl phthalateNDug/kg3600bis(2-Ethylhexyl)phthalateNDug/kg3600FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
Di-n-octyl phthalateNDug/kg3600bis(2-Ethylhexyl)phthalateNDug/kg3600FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
bis(2-Ethylhexyl)phthalateNDug/kg3600FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
FluorantheneNDug/kg3600FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
FluoreneNDug/kg3600HexachlorobenzeneNDug/kg3600HexachlorobutadieneNDug/kg3600				
Hexachlorobenzene ND ug/kg 3600 Hexachlorobutadiene ND ug/kg 3600				
Hexachlorobutadiene ND ug/kg 3600				
		. –		
	Hexachlorocyclopentadiene	ND	ug/kg	18000

Percent moisture is 8.6%. All results and limits are reported on a dry weight basis. Dilution factor is 10. All results and limits are corrected for dilution.

ND = Not Detected

.

-

Reported By: Deneen Spence

Duanterra Environmental Services (cont.)

Client Name:	Brown and Root	Environmental					
Client ID:	HX20-SB03-15						
Lab ID:	056857-0007-SA						
Matrix:	SOLID	Sampled:	04	SEP	97	Prepared: 09 SEP 97	
Authorized:	08 SEP 97	Received:				Analyzed: 11 SEP 97	

Parameter	Result	Dry Weight Units	Reporting Limit
Hexach]oroethane	ND	ug/kg	3600
Indeno(1,2,3-cd)pyrene	ND	ug/kg	3600
Isophorone	ND	ug/kg	3600
2-Methylnaphthalene	15000	ug/kg	3600
2-Methylphenol	ND	ug/kg	3600
4-Methylphenol	ND	ug/kg	3600
Naphthalene	ND	ug/kg	3600
2-Nitroaniline	ND	ug/kg	18000
3-Nitroaniline	ND	ug/kg	18000
4-Nitroaniline	ND	ug/kg	18000
Nitrobenzene	ND	ug/kg	3600
2-Nitropheno]	ND	ug/kg	3600
4-Nitrophenol	ND	ug/kg	18000
N-Nitrosodiphenylamine	ND	ug/kg	3600
N-Nitroso-di-n-propylamine	ND	ug/kg	3600
Benzyl alcohol	ND	ug/kg	3600
Bis(2-chloroisopropyl) ether-d12	ND	ug/kg	3600
Pyridine	ND	ug/kg	7200
Benzoic acid	ND	ug/kg	18000
Pentachlorophenol	ND	ug/kg	18000
Phenanthrene	ND	ug/kg	3600
Phenol Burnene	ND ND	ug/kg	3600
Pyrene 1,2,4-Trichlorobenzene	ND	ug/kg	3600 3600
	ND	ug/kg	3600
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ND	ug/kg	3600
2,4,0.11101010000000	ND	ug/kg	2000
Surrogate	Recovery		Limits
Nitrobenzene-d5	NC	· ¥	56-108
2-Fluorobiphenyl	NC	₹ ₹ ₹ ₹ ₹	56-110
Terphenyl - d14	NC	ž	51-135
2-Fluorophenol	NČ	ž	57-112
Phenol-d5	NČ	*	61-110
2,4,6-Tribromophenol	NČ	x	42-106

Percent moisture is 8.6%. All results and limits are reported on a dry weight basis. Dilution factor is 10. All results and limits are corrected for dilution.

NC = Not Calculated, calculation not applicable. ND = Not Detected

Reported By: Deneen Spence

(*Duanterra*) Environmental Services

Client Name: Brown and Root	Environmental	
Client ID: HX20-SB04-15		
Lab ID: 056857-0008-SA		
Matrix: SOLID	Sampled: 04 SEP 97	Prepared: 09 SEP 97
Authorized: 08 SEP 97	Received: 06 SEP 97	Analyzed: 11 SEP 97

Parameter	Result	Dry Weight Units	Reporting Limit
Acenaphthene	ND	ug/kg	3600
Acenaphthylene	ND	ug/kg	3600
Anthracene	ND	ug/kg	3600
Benzo(a)anthracene	ND	ug/kg	3600
Benzo(b)fluoranthene	ND	ug/kg	3600
Benzo(k)fluoranthene	ND	ug/kg	3600
Benzo(g,h,i)perylene	ND	ug/kg	3600
Benzo(a)pyrene	ND	ug/kg	3600
4-Bromophenyl phenyl ether	ND	ug/kg	3600
Butyl benzyl phthalate	ND	ug/kg	3600
Carbazole	ND	ug/kg	3600
4-Chloroaniline	ND	ug/kg	3600
bis(2-Chloroethoxy)methane	ND	ug/kg	3600
bis(2-Chloroethyl) ether	ND	ug/kg	3600
2.2'-oxybis(1-chloropropane)	ND	ug/kg	3600
4-Chloro-3-methylphenol	ND	ug/kg	3600
2-Chloronaphthalene	ND ND	ug/kg	3600
2-Chlorophenol	ND	ug/kg	3600
4-Chlorophenyl phenyl ether Chrysene	ND	ug/kg	3600 3600
Dibenz(a,h)anthracene	ND	ug/kg ug/kg	3600
Dibenzofuran	ND	ug/kg	3600
Di-n-butyl phthalate	ND	ug/kg	3600
1.2-Dichlorobenzene	ND	ug/kg	3600
1,3-Dichlorobenzene	ND	ug/kg	3600
1.4-Dichlorobenzene	NĎ	ug/kg	3600
3,3'-Dichlorobenzidine	ND	ug/kg	18000
2,4-Dichlorophenol	ND	ug/kg	3600
Diethyl phthalate	ND	ug/kg	3600
2,4-Dimethylphenol	ND	ug/kg	3600
Dimethyl phthalate	ND	ug/kg	3600
4,6-Dinitro-2-methylphenol	ND	ug/kg	18000
2,4-Dinitrophenol	ND	ug/kg	18000
2,4-Dinitrotoluene	ND	ug/kg	3600
2,6-Dinitrotoluene	ND	ug/kg	3600
Di-n-octyl phthalate	ND	ug/kg	3600
bis(2-Ethylhexyl)phthalate	ND	ug/kg	3600
Fluoranthene	ND	ug/kg	3600
Fluorene	ND	ug/kg	3600
Hexachlorobenzene	ND	ug/kg	3600
Hexachlorobutadiene	ND	ug/kg	3600
Hexachlorocyclopentadiene	ND	ug/kg	18000

Percent moisture is 8.8%. All results and limits are reported on a dry weight basis. Dilution factor is 10. All results and limits are corrected for dilution.

ND = Not Detected

Reported By: Deneen Spence

()) Wuanterra Environmental Services (cont.)

.

TCL Semivolatile Organics Method 8270B

Client Name:	Brown and Root	Environmental				
Client ID:	HX20-SB04-15					
Lab ID:	056857-0008-SA					
Matrix:	SOLID	Sampled:	04 S	EP 97	Prepared: 09 SEP 97	
Authorized:	08 SEP 97	Received:			Analyzed: 11 SEP 97	

Parameter	Result	Dry Weight Units	Reporting Limit
Hexachloroethane	ND	ug/kg	3600
Indeno(1,2,3-cd)pyrene	ND	ug/kg	3600
Isophorone	ND	ug/kg	3600
2-Methylnaphthalene	30000	ug/kg	3600
2-Methylphenol	ND	ug/kg	3600
4-Methylphenol	ND	ug/kg	3600
Naphthalene	5000	ug/kg	3600
2-Nitroaniline	ND	ug/kg	18000
3-Nitroaniline	ND	ug/kg	18000
4-Nitroaniline	ND	ug/kg	18000
Nitrobenzene	ND	ug/kg	3600
2-Nitrophenol	ND	ug/kg	3600
4-Nitrophenol	ND	ug/kg	18000
N-Nitrosodiphenylamine	ND	ug/kg	3600
N-Nitroso-di-n-propylamine Benzyl alcohol	ND ND	ug/kg	3600 3600
Bis(2-chloroisopropyl) ether-d12	ND	ug/kg ug/kg	3600
Pyridine	ND	ug/kg	7200
Benzoic acid	ND	ug/kg	18000
Pentachlorophenol	ND	ug/kg	18000
Phenanthrene	ND	ug/kg	3600
Phenol	ND	ug/kg	3600
Pyrene	ND	ug/kg	3600
1,2,4-Trichlorobenzene	ND	ug/kg	3600
2,4,5-Trichlorophenol	ND	ug/kg	3600
2.4.6-Trichlorophenol	ND	ug/kg	3600
Surrogate	Recovery		Limits
Nitrobenzene-d5	NC	*	56-108
2-Fluorobiphenyl	NÇ	અ અ અ અ	56-110
Terphenyl-d14	NC	×	51-135
2-Fluorophenol	NC	x	57-112
Pheno1-d5	NC	×	61-110
2,4,6-Tribromophenol	NC	x	42-106

Percent moisture is 8.8%. All results and limits are reported on a dry weight basis. Dilution factor is 10. All results and limits are corrected for dilution.

NC = Not Calculated, calculation not applicable. ND = Not Detected

Reported By: Deneen Spence

-

Metals Total Metals

Client Name: Client ID: Lab ID:	Brown and Root E HX20-SB06-15 056857-0001-SA							
Matrix:	SOLID		Sampled.	05 SEP 97		Received: 06	SFP 97	
Authorized:	08 SEP 97			See Below		Analyzed: See		
Author ized.			i i cpui cu.	Jee Delow		And 192cu. See	Deron	
					Test	Prepared	Analyzed	
Parameter	Result Qual	Dil	RL	Units	Method	Date	Date	
i di ancoci	Acourt quui	5.1		011105	nethod	Duit	Ducc	
Aluminum	6590	1.0	10.6	mg/kg	6010		11 SEP 97	
Antimony	ND	1.0	6.3	mg/kg	6010	10 SEP 97	11 SEP 97	
Barium	120	1.0	1.1	mg/kg	6010	10 SEP 97	11 SEP 97	
Beryllium	0.42	1.0	0.21	mg/kg	6010	10 SEP 97	11 SEP 97	
Cadmium	ND	1.0	0.53	mg/kg	6010	10 SEP 97	11 SEP 97	
Calcium	60100	1.0	21.1	mg/kg	6010	10 SEP 97	11 SEP 97	
Chromium	6.8	1.0	1.1	mg/kg	6010	10 SEP 97	11 SEP 97	
Cobalt	4.4	1.0	1.1	mg/kg	6010	10 SEP 97	11 SEP 97	
Copper	30.2	1.0	2.1	mg/kg	6010		11 SEP 97	
Iron	11200	1.0	10.6	mg/kg	6010	10 SEP 97	11 SEP 97	
Lead	22.3	1.0	5.3	mg/kg	6010	10 SEP 97	11 SEP 97	
Magnesium	6180	1.0	21.1	mg/kg	6010	10 SEP 97	11 SEP 97	
Manganese	47 <u>9</u>	1.0	1.1	mg/kg	6010	10 SEP 97	11 SEP 97	
Mercury	ND	1.0	0.017	mg/kg	7471		17 SEP 97	
Mo1ybdenum	ND	1.0	1.6	mg/kg	6010		11 SEP 97	
Nickel	6.6	1.0	4.2	mg/kg	6010		11 SEP 97	
Potassium	998	1.0	528	mg/kg	6010		11 SEP 97	
Silver	3.2	1.0	1.1	mg/kg	6010		11 SEP 97	
Sodium	ND	1.0	528	mg/kg	6010		11 SEP 97	
Vanadium	16.0	1.0	1.1	mg/kg	6010		11 SEP 97	
Zinc	325	1.0	2.1	mg/kg	6010	10 SEP 97	11 SEP 97	

Percent moisture is 5.3%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Doug Gomer

Client Name: Client ID: Lab ID:	Brown and Root E HX20-SB05-15 056857-0002-SA	nvironn	nental				
Matrix:	SOLID		Sampled:	05 SEP 97		Received: 06	SEP 97
Authorized:	08 SEP 97		Prepared:	See Below		Analyzed: Se	
Parameter	Result Qual	Dil	RL	Units	Test Method	Prepared Date	Analyzed Date
Aluminum	2960	1.0	10.3	mg/kg	6010	10 SEP 97	11 SEP 97
Antimony	ND	1.0	6.2	mg/kg	6010		11 SEP 97
Barium	69.5	1.0	1.0	mg/kg	6010		11 SEP 97
Beryllium	ND	1.0	0.21	mg/kg	6010		11 SEP 97
Cadmium	ND	1.0	0.51	mg/kg	6010	10 SEP 97	11 SEP 97
Calcium	34800	1.0	20.6	mg/kg	6010		11 SEP 97
Chromium	3.7	1.0	1.0	mg/kg	6010	10 SEP 97	11 SEP 97
Cobalt	2.9	1.0	1.0	mg/kg	6010		11 SEP 97
Copper	8.2	1.0	2.1	mg/kg	6010		11 SEP 97
Iron	6330	1.0	10.3	mg/kg	6010	10 SEP 97	11 SEP 97
Lead	ND	1.0	5.1	mg/kg	6010		11 SEP 97
Magnesium	3300	1.0	20.6	mg/kg	6010		11 SEP 97
Manganese	276	1.0	1.0	mg/kg	6010		11 SEP 97
Mercury	ND	1.0	0.017	mg/kg	7471		17 SEP 97
Molybdenum	ND	1.0	1.5	mg/kg	6010	10 SEP 97	
Nickel	ND	1.0	4.1	mg/kg	6010		11 SEP 97
Potassium	ND	1.0	514	mg/kg	6010	10 SEP 97	
Silver	ND	1.0	1.0	mg/kg	6010		11 SEP 97
Sodium	ND	1.0	514	mg/kg	6010		11 SEP 97
Vanadium	8.4	1.0	1.0	mg/kg	6010		11 SEP 97
Zinc	20.1	1.0	2.1	mg/kg	6010	10 SEP 97	11 SEP 97

Percent moisture is 2.7%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Doug Gomer

Approved By: Richard Persichitte

-

Client Name: Client ID: Lab ID:	Brown and Root E HX20-SB07-04 056857-0003-SA	nvironn	nental			
Matrix:	SOLID		Sampled:	05 SEP 97		Received: 06 SEP 97
Authorized:	08 SEP 97			See Below		Analyzed: See Below
					Test	Prepared Analyzed
Parameter	Result Qual	Dil	RL	Units	Method	Date Date
Aluminum	5360	1.0	10.2	mg/kg	6010	10 SEP 97 11 SEP 97
Antimony	ND	1.0	6.1	mg/kg	6010	10 SEP 97 11 SEP 97
Barium	103	1.0	1.0	mg/kg	6010	10 SEP 97 11 SEP 97
Beryllium	0.40	1.0	0.20	mg/kg	6010	10 SEP 97 11 SEP 97
Cadmium	ND	1.0	0.51	mg/kg	6010	10 SEP 97 11 SEP 97
Calcium	41600	1.0	20.5	mg/kg	6010	10 SEP 97 11 SEP 97
Chromium	4.2	1.0	1.0	mg/kg	6010	10 SEP 97 11 SEP 97
Cobalt	3.9	1.0	1.0	mg/kg	6010	10 SEP 97 11 SEP 97
Copper	15.0	1.0	2.0	mg/kg	6010	10 SEP 97 11 SEP 97
Iron	10200	1.0	10.2	mg/kg	6010	10 SEP 97 11 SEP 97
Lead	7.8	1.0	5.1	mg/kg	6010	10 SEP 97 11 SEP 97
Magnesium	9280	1.0	20.5	mg/kg	6010	10 SEP 97 11 SEP 97
Manganese	375	1.0	1.0	mg/kg	6010	10 SEP 97 11 SEP 97
Mercury	0.020	1.0	0.017	mg/kg	7471	17 SEP 97 17 SEP 97
Molybdenum	ND	1.0	1.5	mg/kg	6010	10 SEP 97 11 SEP 97
Nickel	4.5	1.0	4.1	mg/kg	6010	10 SEP 97 11 SEP 97
Potassium	866	1.0	512	mg/kg	6010	10 SEP 97 11 SEP 97
Silver	ND	1.0	1.0	mg/kg	6010	10 SEP 97 11 SEP 97
Sodium	ND	1.0	512	mg/kg	6010	10 SEP 97 11 SEP 97
Vanadium	15.3	1.0	1.0	mg/kg	6010	10 SEP 97 11 SEP 97
Zinc	28.5	1.0	2.0	mg/kg	6010	10 SEP 97 11 SEP 97

Percent moisture is 2.3%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Doug Gomer

Client Name: Client ID: Lab ID:	Brown and Root E HX20-SB01-10 056857-0005-SA	nviron	nental			
Matrix: Authorized:	SOLID 08 SEP 97		Sampled: Prepared:	04 SEP 97 See Below		Received: 06 SEP 97 Analyzed: See Below
Parameter	Result Qual	Dil	RL	Units	Test Method	Prepared Analyzed Date Date
Aluminum	3520	1.0	10.3	mg/kg	6010	10 SEP 97 11 SEP 97
Antimony	ND	1.0	6.2	mg/kg	6010	10 SEP 97 11 SEP 97
Barium	74.1	1.0	1.0	mg/kg	6010	10 SEP 97 11 SEP 97
Beryllium	ND	1.0	0.21	mg/kg	6010	10 SEP 97 11 SEP 97
Cadmium	ND	1.0	0.52	mg/kg	6010	10 SEP 97 11 SEP 97
Calcium	24400	1.0	20.7	mg/kg	6010	10 SEP 97 11 SEP 97
Chromium	4.1	1.0	1.0	mg/kg	6010	10 SEP 97 11 SEP 97
Cobalt	3.2	1.0	1.0	mg/kg	6010	10 SEP 97 11 SEP 97
Copper	49.8	1.0	2.1	mg/kg	6010	10 SEP 97 11 SEP 97
Iron	6830	1.0	10.3	mg/kg	6010	10 SEP 97 11 SEP 97
Lead	14.7	1.0	5.2	mg/kg	6010	10 SEP 97 11 SEP 97
Magnesium	2630	1.0	20.7	mg/kg	6010	10 SEP 97 11 SEP 97
Manganese	226	1.0	1.0	mg/kg	6010	10 SEP 97 11 SEP 97
Mercury	0.022	1.0	0.017	mg/kg	7471	17 SEP 97 17 SEP 97
Molybdenum	ND	1.0	1.6	mg/kg	6010	10 SEP 97 11 SEP 97
Nickel	ND	1.0	4.1	mg/kg	6010	10 SEP 97 11 SEP 97
Potassium	606	1.0	517	mg/kg	6010	10 SEP 97 11 SEP 97
Silver	1.4	1.0	1.0	mg/kg	6010	10 SEP 97 11 SEP 97
Sodium	ND	1.0	517	mg/kg	6010	10 SEP 97 11 SEP 97
Vanadium	10.3	1.0	1.0	mg/kg	6010	10 SEP 97 11 SEP 97
Zinc	40.8	1.0	2.1	mg/kg	6010	10 SEP 97 11 SEP 97

Percent moisture is 3.2%. All results and limits are reported on a dry weight basis.

ND = Not Detected

Reported By: Doug Gomer

Metals Total Metals

Client Name: Client ID: Lab ID:	Brown and Root E HX20-SB02-15 056857-0006-SA	nviron	nental				
Matrix:	SOLID		Sampled:	04 SEP 97		Received: 06	SEP 97
Authorized:	08 SEP 97			See Below		Analyzed: Se	
_					Test	Prepared	Analyzed
Parameter	Result Qual	Dil	RL	Units	Method	Date	Date
Aluminum	3350	1.0	10.7	mg/kg	6010		11 SEP 97
Antimony	ND	1.0	6.4	mg/kg	6010	10 SEP 97	11 SEP 97
Barium	63.6	1.0	1.1	mg/kg	6010		11 SEP 97
Beryllium	ND	1.0	0.21	mg/kg	6010	10 SEP 97	11 SEP 97
Cadmium	ND	1.0	0.54	mg/kg	6010	10 SEP 97	11 SEP 97
Calcium	35300	1.0	21.4	mg/kg	6010		11 SEP 97
Chromium	4.4	1.0	1.1	mg/kg	6010		11 SEP 97
Cobalt	3.1	1.0	1.1	mg/kg	6010	10 SEP 97	
Copper	11.8	1.0	2.1	mg/kg	6010		11 SEP 97
Iron	6890	1.0	10.7	mg/kg	6010	10 SEP 97	
Lead	5.7	1.0	5.4	mg/kg	6010		11 SEP 97
Magnesium	3520	1.0	21.4	mg/kg	6010		11 SEP 97
Manganese	352	1.0	1.1	mg/kg	6010		11 SEP 97
Mercury	0.040	1.0	0.018	mg/kg	7471		17 SEP 97
Molybdenum	ND	1.0	1.6	mg/kg	6010		11 SEP 97
Nicke]	ND	1.0	4.3	mg/kg	6010		11 SEP 97
Potassium	620	1.0	535	mg/kg	6010	10 SEP 97	
Silver	ND	1.0	1.1	mg/kg	6010		11 SEP 97
Sodium	ND	1.0	535	mg/kg	6010		11 SEP 97
Vanadium	9.7	1.0	1.1	mg/kg	6010		11 SEP 97
Zinc	27.1	1.0	2.1	mg/kg	6010	10 SEP 97	11 SEP 97

Percent moisture is 6.6%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Doug Gomer

.

-

Approved By: Richard Persichitte

-

•

Metals Total Metals

Client Name: Client ID: Lab ID:	Brown and Root Environmental HX20-SB03-15 056857-0007-SA							
Matrix:	SOLID		Sampled:	04 SEP 97		Received: 06	SFP 97	
Authorized:	08 SEP 97			See Below		Analyzed: Se		
			•					
					Test	Prepared	Analyzed	
Parameter	Result Qual	Dil	RL	Units	Method	Date	Date	
Aluminum	6130	1.0	10.9	mg/kg	6010	10 SEP 97	11 SEP 97	
Antimony	ND	1.0	6.6	mg/kg	6010		11 SEP 97	
Barium	224	1.0	1.1	mg/kg	6010		11 SEP 97	
Beryllium	0.48	1.0	0.22	mg/kg	6010		11 SEP 97	
Cadmium	1.8	1.0	0.55	mg/kg	6010		11 SEP 97	
Calcium	23900	1.0	21.9	mg/kg	6010		11 SEP 97	
Chromium	7.1	1.0	1.1	mg/kg	6010		11 SEP 97	
Cobalt	4.3	1.0	1.1	mg/kg	6010		11 SEP 97	
Copper	155	1.0	2.2	mg/kg	6010		11 SEP 97	
Iron	10400	1.0	10.9	mg/kg	6010		11 SEP 97	
Lead	84.2	1.0	5.5	mg/kg	6010		11 SEP 97	
Magnesium	3120	1.0	21.9	mg/kg	6010		11 SEP 97	
Manganese	295	1.0	1.1	mg/kg	6010	10 SEP 97		
Mercury	0.079	1.0	0.018	mg/kg	7471		17 SEP 97	
Molybdenum	2.4	1.0	1.6	mg/kg	6010	10 SEP 97		
Nickel	7.1	1.0	4.4	mg/kg	6010		11 SEP 97	
Potassium	1200	1.0	547	mg/kg	6010	10 SEP 97	/	
Silver	16.5	1.0	1.1	mg/kg	6010		11 SEP 97	
Sodium	ND	1.0	547	mg/kg	6010		11 SEP 97	
Vanadium	13.8	1.0	1.1	mg/kg	6010		11 SEP 97	
Zinc	505	1.0	2.2	mg/kg	6010	10 SEP 97	11 SEP 97	

Percent moisture is 8.6%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Doug Gomer

.

-

Client Name: Client ID: Lab ID:	Brown and Root Environmental HX20-SB04-15 056857-0008-SA						
Matrix: Authorized:	SOLID 08 SEP 97		Sampled: Prepared:	04 SEP 97 See Below		Received: 06 SEP 97 Analyzed: See Below	
Parameter	Result Qual	Dil	RL	Units	Test Method	Prepared Analyzed Date Date	
Aluminum	6030 ND	1.0	11.0	mg/kg	6010	10 SEP 97 11 SEP 97	
Antimony Barium	289	1.0 1.0	6.6 1.1	mg/kg	6010	10 SEP 97 11 SEP 97 10 SEP 97 11 SEP 97	
Beryllium	0.40	1.0	0.22	mg/kg mg/kg	6010 6010	10 SEP 97 11 SEP 97 10 SEP 97 11 SEP 97	
Cadmium	1.2	1.0	0.55	mg/kg	6010	10 SEP 97 11 SEP 97 10 SEP 97 11 SEP 97	
Calcium	34400	1.0	21.9	mg/kg	6010	10 SEP 97 11 SEP 97	
Chromium	7.0	1.0	1.1	mg/kg	6010	10 SEP 97 11 SEP 97	
Cobalt	3.2	1.0	1.1	mg/kg	6010	10 SEP 97 11 SEP 97	
Copper	116	1.0	2.2	mg/kg	6010	10 SEP 97 11 SEP 97	
Iron	8640	1.0	11.0	mg/kg	6010	10 SEP 97 11 SEP 97	
Lead	61.4	1.0	5.5	mg/kg	6010	10 SEP 97 11 SEP 97	
Magnesium	3740	1.0	21.9	mg/kg	6010	10 SEP 97 11 SEP 97	
Manganese	304	1.0	1.1	mg/kg	6010	10 SEP 97 11 SEP 97	
Mercury	ND	1.0	0.018	mg/kg	7471	17 SEP 97 17 SEP 97	
Mo1ybdenum	ND	1.0	1.6	mg/kg	6010	10 SEP 97 11 SEP 97	
Nickel	5.8	1.0	4.4	mg/kg	6010	10 SEP 97 11 SEP 97	
Potassium	891	1.0	548	mg/kg	6010	10 SEP 97 11 SEP 97	
Silver	14.4	1.0	1.1	mg/kg	6010	10 SEP 97 11 SEP 97	
Sodium	ND	1.0	548	mg/kg	6010	10 SEP 97 11 SEP 97	
Vanadium	11.7	1.0	1.1	mg/kg	6010	10 SEP 97 11 SEP 97	
Zinc	1230	1.0	2.2	mg/kg	6010	10 SEP 97 11 SEP 97	

Percent moisture is 8.8%. All results and limits are reported on a dry weight basis.

ND = Not Detected

Reported By: Doug Gomer

Duanterra Environmental Services

Client Name: Client ID: Lab ID: Matrix: Authorized:	t ID: HX20-SB06-15 D: 056857-0001-SA x: SOLID Sampled: 05 SEP 97					Received: 06 SEP 97 Analyzed: See Below
Parameter	Result Qual	Dil	RL	Units	Test Method	Prepared Analyzed Date Date
Arsenic Beryllium Selenium Thallium	1.2 0.15 ND ND	1.0 1.0 1.0 1.0	0.53 0.11 0.53 0.11	mg/kg mg/kg mg/kg mg/kg	6020 6020 6020 6020	17 SEP 97 18 SEP 97 17 SEP 97 18 SEP 97

Percent moisture is 5.3%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Dave Roberts

(*Duanterra*) Environmental Services

Client Name: Client ID: Lab ID: Matrix: Authorized:	Brown and Root E HX20-SB05-15 056857-0002-SA SOLID 08 SEP 97	nviron	Sampled:	05 SEP 97 : See Below		Received: 06 SEP 97 Analyzed: See Below
Parameter	Result Qual	Dil	RL.	Units	Test Method	Prepared Analyzed Date Date
Arsenic Beryllium Selenium Thallium	1.4 0.14 ND ND	1.0 1.0 1.0 1.0	0.51 0.10 0.51 0.10	mg/kg mg/kg mg/kg mg/kg	6020 6020 6020 6020	17 SEP 97 18 SEP 97 17 SEP 97 18 SEP 97

Percent moisture is 2.7%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Dave Roberts

Client Name: Client ID: Lab ID: Matrix: Authorized:	Brown and Root E HX20-SB07-04 056857-0003-SA SOLID 08 SEP 97	nviron	Sampled:	05 SEP 97 See Below		Received: 06 SEP 97 Analyzed: See Below
Parameter	Result Qual	Dil	RL	Units	Test Method	Prepared Analyzed Date Date
Arsenic Beryllium Selenium Thallium	2.3 0.19 ND ND	1.0 1.0 1.0 1.0	0.51 0.10 0.51 0.10	mg/kg mg/kg mg/kg mg/kg	6020 6020 6020 6020	17 SEP 97 18 SEP 97 17 SEP 97 18 SEP 97

Percent moisture is 2.3%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Dave Roberts

.

۰.

()) *uanterra* Environmental Services

Client Name: Client ID: Lab ID: Matrix: Authorized:	Brown and Root E HX20-SB01-10 056857-0005-SA SOLID 08 SEP 97	nvironn	Sampled:	04 SEP 97 : See Below		Received: 06 SEP 97 Analyzed: See Below	
Parameter	Result Qual	Dil	RL	Units	Test Method	Prepared Analyzed Date Date	
Arsenic Beryllium Selenium Thallium	1.2 0.13 ND ND	1.0 1.0 1.0 1.0	0.52 0.10 0.52 0.10	mg/kg mg/kg mg/kg mg/kg	6020 6020 6020 6020	17 SEP 97 18 SEP 97 17 SEP 97 18 SEP 97	

Percent moisture is 3.2%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Dave Roberts

۰.

Duanterra Environmental Services

Client Name: Client ID: Lab ID: Matrix: Authorized:	Brown and Root En HX20-SB02-15 056857-0006-SA SOLID 08 SEP 97	nviron:	Sampled:	04 SEP 97 : See Below		Received: 06 SEP 97 Analyzed: See Below
Parameter	Result Qual	Dil	RL	Units	Test Method	Prepared Analyzed Date Date
Arsenic Beryllium Selenium Thallium	1.6 0.15 ND ND	1.0 1.0 1.0 1.0	0.54 0.11 0.54 0.11	mg/kg mg/kg mg/kg mg/kg	6020 6020 6020 6020	17 SEP 97 18 SEP 97 17 SEP 97 18 SEP 97

Percent moisture is 6.6%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Dave Roberts

ICP/MS Metals Total Metals

Client Name: Client ID: Lab ID: Matrix: Authorized:	Brown and Root E HX20-SB03-15 056857-0007-SA SOLID 08 SEP 97	nvironn	Sampled:	04 SEP 97 : See Below		Received: 06 SEP 97 Analyzed: See Below
Parameter	Result Qual	Dil	RL	Units	Test Method	Prepared Analyzed Date Date
Arsenic Beryllium Selenium Thallium	2.7 0.24 ND ND	1.0 1.0 1.0 1.0	0.55 0.11 0.55 0.11	mg/kg mg/kg mg/kg mg/kg	6020 6020 6020 6020	17 SEP 97 18 SEP 97 17 SEP 97 18 SEP 97

Percent moisture is 8.6%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Dave Roberts

Quanterra Environmental Services

Client Name: Client ID: Lab ID: Matrix: Authorized:	Brown and Root E HX20-SB04-15 056857-0008-SA SOLID 08 SEP 97	nvironn	Sampled:	04 SEP 97 : S ee Below		Received: 06 SEP 97 Analyzed: See Below
Parameter	Result Qual	Dil	RL	Units	Test Method	Prepared Analyzed Date Date
Arsenic Beryllium Selenium Thallium	1.4 0.17 ND ND	1.0 1.0 1.0 1.0	0.55 0.11 0.55 0.11	mg/kg mg/kg mg/kg mg/kg	6020 6020 6020 6020	17 SEP 97 18 SEP 97 17 SEP 97 18 SEP 97

Percent moisture is 8.8%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Dave Roberts

IV. QUALITY CONTROL REPORT

The Quanterra laboratories operate under a rigorous QA/QC program designed to ensure the generation of scientifically valid, legally defensible data by monitoring every aspect of laboratory operations. Routine QA/QC procedures include the use of approved methodologies, independent verification of analytical standards, use of duplicate Laboratory Control Samples to assess the precision and accuracy of the methodology on a routine basis, and a rigorous system of data review.

A. Standard Quanterra QC

The standard laboratory QC package is designed to:

- 1. establish a strong, cost-effective QC program that ensures the generation of scientifically valid, legally defensible data,
- 2. assess the laboratory's performance of the analytical method using control limits generated with a well-defined matrix,
- establish clear-cut guidelines for acceptability of analytical data so that QC decisions can be made immediately at the bench, and
- 4. provide a standard set of reportables which assures the client of the quality of his data.

The Quanterra QC program is based upon monitoring the precision and accuracy of an analytical method by analyzing a set of Duplicate Control Samples (DCS) at frequent, well-defined intervals. Each DCS is a well-characterized matrix which is spiked with target compounds at 5-100 times the reporting limit, depending upon the methodology being monitored. The purpose of the DCS is not to duplicate the sample matrix, but rather to provide an interference-free, homogeneous matrix from which to gather data to establish control limits. These limits are used to determine whether data generated by the laboratory on any given day is in control.

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/-3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate DCS results) to the average, historical relative percent difference +3 standard deviation units. These control limits are fairly narrow based on the consistency of the matrix being monitored and are updated on a quarterly basis.

For each batch of samples analyzed, an additional control measure is taken in the form of a Single Control Sample (SCS). The SCS consists of a control matrix that is spiked with surrogate compounds appropriate to the method being used. In cases where no surrogate is available, (e.g., metals or conventional analyses) a single DCS serves as the control sample. An SCS is prepared for each sample lot for which the DCS pair are not analyzed. The recovery of the SCS is charted in exactly the same manner as described for the DCS, and provides a daily check on the performance of the method.

Accuracy for DCS and SCS is measured by Percent Recovery.

Measured Concentration

% Recovery = _____

Actual Concentration

Precision for DCS is measured by Relative Percent Difference (RPD).

| Measured Concentration DCS1 - Measured Concentration DCS2 | RPD = ______ X 100 (Measured Concentration DCS1 + Measured Concentration DCS2)/2

-X100

All samples analyzed concurrently by the same test are assigned the same QC lot number. Projects which contain numerous samples, analyzed over several days, may have multiple QC lot numbers associated with each test. The QC information which follows includes a listing of the QC lot numbers associated with each of the samples reported, DCS and SCS (where applicable) recoveries from the QC lots associated with the samples, and control limits for these lots. The QC data is reported by test code, in the order that the tests are reported in the analytical results section of this report.

B. Matrix Specific QC

With this project, additional QC was requested in the form of duplicate sample analyses and/or spiked sample analyses. The use of an actual sample as the QC matrix is termed "matrix specific" QC.

Matrix specific QC is valuable in assessing the affect of the sample matrix on the performance of the analytical method. QC limits for accuracy and precision were assigned from data generated by laboratory historical data on similar sample matrices. However, these limits should be considered advisory due to the variability of the matrix at different sampling sites.

The results of the duplicate and/or spike sample analyses follow. For matrix spike analyses, the matrix specific QC results contain the analytical results from both analyses along with the spike level and percent recovery. The percent recovery calculation is not performed if the spike level is less than or equal to 25% of the value in the sample.

For duplicate analyses, the results from both the analyses are reported along with the relative percent difference.

QC LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
056857-0001-SA	SOLID	Q8260-S	10 SEP 97-A	10 SEP 97-A
056857-0002-SA	SOIL	Q8260-L-S	15 SEP 97-S	15 SEP 97-S
056857-0003-SA	SOIL	Q8260-L-S	15 SEP 97-S	15 SEP 97-S
056857-0004-TB	AQUEOUS	08260-A	12 SEP 97-H	12 SEP 97-H
056857-0005-SA	SOIL	08260-L-S	15 SEP 97-S	15 SEP 97-S
056857-0006-SA	SOLID	08260-S	10 SEP 97-A	10 SEP 97-A
056857-0007-SA	SOLID	08260-S	10 SEP 97-A	10 SEP 97-A
056857-0008-SA	SOLID	08260-S	10 SEP 97-A	10 SEP 97-A
056857-0009-SA	LEACHATE	Q8240-L	15 SEP 97-J	15 SEP 97-J

63

.

LABORATORY CONTROL SAMPLE REPORT Volatile Organics by GC/MS

-- -

Analyte	Concentration Spiked Measured	Accuracy(%) LCS Limits
Category: Q8260-L-S Matrix: SOIL QC Lot: 15 SEP 97-S Concentration Units: ug/kg	QC Run: 15 SEP 97-S	
1.1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene 1.2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	$\begin{array}{ccccccc} 50.0 & 57.7 \\ 50.0 & 47.4 \\ 50.0 & 48.8 \\ 50.0 & 49.1 \\ 50.0 & 48.2 \\ 50.0 & 45.1 \\ 50.0 & 45.1 \\ 50.0 & 49.1 \\ 50.0 & 49.9 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Analyte	Concentration Spiked Measured	Accuracy(%) LCS Limits
Category: Q8260-S Matrix: SOLID QC Lot: 10 SEP 97-A Concentration Units: ug/kg	QC Run: 10 SEP 97-A	
1.1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene 1.2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	6250532062506180625062106250625062506370625057506250655062506280	8565-1309973-1289982-12910083-12510285-1259277-11410583-11810184-114
Analyte	Concentration Spiked Measured	Accuracy(%) LCS Limits
Category: Q8260-A Matrix: AQUEOUS QC Lot: 12 SEP 97-H Concentration Units: ug/L	QC Run: 12 SEP 97-H	
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	$\begin{array}{ccccccc} 10.0 & 10.1 \\ 10.0 & 10.1 \\ 10.0 & 10.5 \\ 10.0 & 10.6 \\ 10.0 & 10.5 \\ 10.0 & 9.92 \\ 10.0 & 9.94 \\ 10.0 & 10.1 \end{array}$	10169-12610185-11110585-11510689-11210591-1129978-1139988-11310190-108

Environmental Services

.

LABORATORY CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Volatile Organics by GC/MS	Concentra		nt.)	2011
Analyte	Spiked	Measured	LCS	acy(%) Limits
Category: Q8240-L Matrix: LEACHATE QC Lot: 15 SEP 97-J Concentration Units: mg/L	QC Run: 15 SEP	97-J		
Vinyl chloride 1,1-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone Carbon tetrachloride Trichloroethene Benzene Tetrachloroethene Chlorobenzene 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	$\begin{array}{c} 0.500\\ 0.$	0.388 0.456 0.463 0.450 0.315 0.447 0.474 0.472 0.470 0.484 0.484 0.484 0.486	78 91 93 90 63 95 94 97 97 97	14-185 66-148 81-120 79-126 13-179 79-125 78-126 80-125 80-121 84-119 80-120 86-115 88-110

_

.

SINGLE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte	Concentr	ation	Accur	acy(%)
	Spiked	Measured	SCS	Limits
Category: Q8260-S Matrix: SOLID QC Lot: 10 SEP 97-A QC Run: Concentration Units: ug/kg	10 SEP 97-A			
1,2-Dichloroethane-d4	6250	6040	97	77-114
4-Bromofluorobenzene	6250	6630	106	83-118
Toluene-d8	6250	6290	101	84-114
Category: Q8260-L-S Matrix: SOIL QC Lot: 15 SEP 97-S QC Run: Concentration Units: ug/kg	15 SEP 97-S			
1,2-Dichloroethane-d4	50.0	47.7	95	77-115
4-Bromofluorobenzene	50.0	48.1	96	90-113
Toluene-d8	50.0	51.1	102	86-115
Category: Q8260-A Matrix: AQUEOUS QC Lot: 12 SEP 97-H QC Run: Concentration Units: ug/L	12 SEP 97-H			
1,2-Dichloroethane-d4	10.0	10.0	100	78-113
4-Bromofluorobenzene	10.0	10.1	101	88-113
Toluene-d8	10.0	10.4	104	90-108
Category: Q8240-L Matrix: LEACHATE QC Lot: 15 SEP 97-J QC Run: Concentration Units: mg/L	15 SEP 97-J			
1,2-Dichloroethane-d4	0.500	0.442	88	80-120
4-Bromofluorobenzene	0.500	0.482	96	86-115
Toluene-d8	0.500	0.490	98	88-110

.

METHOD BLANK REPORT Volatile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: Q8260-TCL-M-S Matrix: SOLID QC Lot: 10 SEP 97-A QC Run:	10 SEP 97-A		
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl_ether Chloroform Chloromethane 1.1-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethene (total) 1.2-Dichloropropane cis-1.3-Dichloropropene trans-1.3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone (MIBK) Styrene 1.1.2.2-Tetrachloroethane	390 ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2500 J 620 620 620 620 620 620 620 620 620 620
Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total)	nd Nd Nd Nd Nd Nd Nd	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	620 620 620 620 620 1200 1200 620

 ${\bf J}$ = Result is detected below the reporting limit or is an estimated concentration.

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: Q8260-TCL-L-S Matrix: SOLID QC Lot: 15 SEP 97-S QC Run:	15 SEP 97-S		
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl_ether Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	20 5.0 5.0 10 20 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.
(total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	5.0 5.0 5.0 5.0
Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone (MIBK)	ND ND ND ND	ug/kg ug/kg ug/kg	5.0 20 5.0 20
Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	5.0 5.0 5.0 5.0 5.0 5.0 5.0
Trichloroethene Vinyl acetate Vinyl chloride m&p-Xylene o-Xylene	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	5.0 10 10 2.5 2.5

•

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Test: Q8260-TCL-AP Matrix: AQUEOUS QC Lot: 12 SEP 97-H QC Run: 12 SEP 97-HAcetoneNDug/L10BenzeneNDug/L1.0BromodichloromethaneNDug/L1.0BromomethaneNDug/L1.0BromomethaneNDug/L1.0BromomethaneNDug/L1.0BromomethaneNDug/L2.02-Butanone (MEK)NDug/L2.0Carbon disulfideNDug/L1.0ChlorobenzeneNDug/L1.0ChlorobenzeneNDug/L1.0ChloroformNDug/L1.0ChloroformNDug/L1.0ChloroformNDug/L2.0ChloroformNDug/L1.0ChloroformNDug/L1.0ChloroformNDug/L1.0ChloropethaneNDug/L1.01.2-DichloroethaneNDug/L1.01.2-DichloroethaneNDug/L1.01.2-DichloropropaneNDug/L1.01.2-DichloropropaneNDug/L1.0trans-1.3-DichloropropeneNDug/L1.0trans-1.3-DichloropropeneNDug/L1.0trans-1.3-DichloropropeneNDug/L1.0trans-1.3-DichloropropeneNDug/L1.0trans-1.3-DichloropropeneNDug/L1.0trans-1.3-DichloropropeneNDug/L	Analyte	Result	Units	Reporting Limit
Benzene ND ug/L 1.0 Bromodichloromethane ND ug/L 1.0 Bromoform ND ug/L 1.0 Bromomethane ND ug/L 1.0 2-Butanone (MEK) ND ug/L 2.0 2-Butanone (MEK) ND ug/L 1.0 Carbon disulfide ND ug/L 1.0 Carbon tetrachloride ND ug/L 1.0 Chlorobenzene ND ug/L 1.0 Chlorobethane ND ug/L 1.0 Chloroform ND ug/L 1.0 Chloromethane ND ug/L 1.0 Dibromochloromethane ND ug/L 1.0 1.1-Dichloroethane ND ug/L 1.0 1.2-Dichloroethane ND ug/L 1.0 1.2-Dichloropropane ND ug/L 1.0 1.2-Dichloropropane ND ug/L 1.0 1.2-Dichloropropane ND ug/L <td>Matrix: AQUEOUS</td> <td>12 SEP 97-H</td> <td></td> <td></td>	Matrix: AQUEOUS	12 SEP 97-H		
IterrachioroetheneNDug/L1.0TolueneNDug/L1.01,1,1-TrichloroethaneNDug/L1.01,1,2-TrichloroethaneNDug/L1.0TrichloroetheneNDug/L1.02-Chloroethyl vinyl etherNDug/L2.0Vinyl chlorideNDug/L2.0Xylenes (total)NDug/L1.0	Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloromethane Dibromochloromethane Vinyl acetate 1.1-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloropropane cis-1.3-Dichloropropene trans-1.3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone (MIBK) Styrene 1.1.2.7richloroethane Tetrachloroethene I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane I.1.2-Trichloroethane Irichloroethene 2-Chloroethyl vinyl ether Vinyl chloride	22222222222222222222222222222222222222	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 1.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1$

.

Quanterra Environmental Services

.

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Analyte		Result	Units	Reporting Limit
Test: Q8240-TCLP-L Matrix: SOLID QC Lot: 15 SEP 97-J	QC Run:	15 SEP 97-J		
Benzene 2-Butanone Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichloroethane 1,1-Dichloroethane Tetrachloroethane Trichloroethane Vinyl chloride		ND ND ND ND ND ND ND ND	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	$\begin{array}{c} 0.050\\ 0.20\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10 \end{array}$

wuanterra Environmental Services

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Volatile Organics by GC/MS Project: 056857

Category: Q8260-L-S Volatile Organics in Soil (Method 8260) Matrix: SOIL Sample: 056816-0002 MS Run: 15 SEP 97-S Units ug/kg Units Qualifier: Dry weight

Concentration

		concentral	.1011	
	Sample	MS	MSD	Amount % Recov. RPD Spiked Recovery Accep. RPD Accept
Analyte	Result	Result	Result	MS MSD MS MSD Limits MS-MSD Limits
-				
1.1 Dichloroethene	ND	56.9	63.5	56.0 56.0 102 113 68-134 11 20
Trichloroethene	ND	51.5	52.0	56.0 56.0 92 93 81-116 0.8 20 56.0 56.0 101 107 85 116 6.0 20
Benzene Toluene	ND ND	56.3 60.7	59.8 64.6	56.0 56.0 101 107 85-116 6.0 20 56.0 56.0 108 115 86-119 6.3 20
Chlorobenzene	ND	54.4	54.7	56.0 56.0 97 98 83-120 0.4 20
····	•••			
Surrogates ,	-	%Recovery	/	Rec. Accept. Limits
1,2-Dichloroethane-d	4 94.8	87.3	89.4	77-115
4-Bromofluorobenzene		88.9	83.0	90-113
Toluene-d8	108	107	115	86-115
Catagony, 00060 C	Nathad 026		o Onennion	
Category: Q8260-S Matrix: SOLID	Method 820	u - volati	e Organics	
Sample: 056857-000	5			
MS Run: 10 SEP 97-/	Ą			
Units ug/kg	Units Qua	lifier: W	let wt.	
		Concentrat	ion	
		ouncentrat		Amount % Recov. RPD
	Sample	MS	MSD	Spiked Recovery Accep. RPD Accept
Analyte	Result	Result	Result	MS MSD MS MSD Limits MS-MSD Limits

5430

6120

6070

6260

6450

91.8

98.5

103

6250

6250

6250

6250

6250

6250

6250 6250

6250 6250

Rec. Accept. Limits

77-114

83-118

84-114

89

99

98

98

101

87

98

97

100

103

65-130

73-128

82-129

83-125

85-125

2.9

0.8

0.9

2.3 2.4

ND = Not Detected

1,2-Dichloroethane-d4

4-Bromofluorobenzene

1,1-Dichloroethene

Trichloroethene

Chlorobenzene

Surrogates

Toluene-d8

Benzene

Toluene

ND

ND

ND

ND

ND

91.0

99.1

97.3

5590

6170

6130

6120

6290

%Recovery

88.9

100

96.5

Calculations are performed before rounding to avoid round-off errors in calculated results.

20 20

20

20

20

.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Volatile Organics by GC/MS Project: 056857 (cont.)

Category:	Q8260-A	Volatile	Organics
Matrix:	AQUEOUS		•
Sample:	056886-0008	3	
MS Run:	12 SEP 97-H	1	
Units:	ug/L		

		Concentrat	ion	
Analyte	Sample Result	MS Result	MSD Result	Amount % Recov. RPD Spiked Recovery Accep. RPD Accept MS MSD MS MSD Limits MS-MSD Limits
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	ND ND ND ND ND	10.5 10.2 10.5 10.9 10.5	10.5 10.0 10.4 10.8 10.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Surrogates	-	%Recovery	,	Rec. Accept. Limits
1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	98.9 98.2 108	99.4 98.2 103	102 101 105	78-113 88-113 90-108
Category: Q8240-L Matrix: LEACHATE Sample: 056900-0001 MS Run: 15 SEP 97-J Units: mg/L	L	Organics for	• TCLP	
		Concentrat	ion	Amount % Recov. RPD
Analyte	Sample Result	MS Result	MSD Result	Spiked Recovery Accep. RPD Accept MS MSD MS MSD Limits MS-MSD Limits
Vinyl chloride 1,1-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone Carbon tetrachloride Trichloroethene Benzene Tetrachloroethene Chlorobenzene	ND 0.0701 ND ND ND ND ND ND ND ND	0.376 0.510 0.445 0.435 0.277 0.433 0.472 0.484 0.455 0.467	0.375 0.485 0.445 0.451 0.295 0.449 0.484 0.491 0.466 0.481	$ 0.500 \ 0.500 \ 75 \ 75 \ 14 \cdot 185 \ 0.2 \ 20 \\ 0.500 \ 0.500 \ 88 \ 83 \ 66 \cdot 148 \ 5.0 \ 20 \\ 0.500 \ 0.500 \ 89 \ 89 \ 81 \cdot 120 \ 0.0 \ 20 \\ 0.500 \ 0.500 \ 87 \ 90 \ 79 \cdot 126 \ 3.6 \ 20 \\ 0.500 \ 0.500 \ 55 \ 59 \ 13 \cdot 179 \ 6.3 \ 21 \\ 0.500 \ 0.500 \ 87 \ 90 \ 79 \cdot 125 \ 3.6 \ 20 \\ 0.500 \ 0.500 \ 87 \ 90 \ 79 \cdot 125 \ 3.6 \ 20 \\ 0.500 \ 0.500 \ 94 \ 97 \ 78 \cdot 126 \ 2.5 \ 20 \\ 0.500 \ 0.500 \ 97 \ 98 \ 80 \cdot 125 \ 1.4 \ 20 \\ 0.500 \ 0.500 \ 91 \ 93 \ 80 \cdot 121 \ 2.4 \ 20 \\ 0.500 \ 0.500 \ 93 \ 96 \ 84 \cdot 119 \ 3.0 \ 20 $

ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Volatile Organics by GC/MS Project: 056857 (cont.)

Surrogates		%Recovery		Rec. Accept. Limits
1,2-Dichloroethane-d4	86.3	91.5	91.5	80-120
4-Bromofluorobenzene	98.7	98.1	98.1	86-115
Toluene-d8	98.2	97.6	97.6	88-110

.

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
056857 - 0001 - SA 056857 - 0002 - SA 056857 - 0003 - SA 056857 - 0005 - SA 056857 - 0006 - SA 056857 - 0007 - SA 056857 - 0008 - SA 056857 - 0009 - SA	SOIL SOIL SOIL SOIL SOIL SOIL LEACHATE	Q8270-S Q8270-S Q8270-S Q8270-S Q8270-S Q8270-S Q8270-S Q8270-S Q8270-L	09 SEP 97-01 09 SEP 97-01 09 SEP 97-01 09 SEP 97-01 09 SEP 97-01 09 SEP 97-01 09 SEP 97-01 21 SEP 97-02	09 SEP 97-01 09 SEP 97-01 09 SEP 97-01 09 SEP 97-01 09 SEP 97-01 09 SEP 97-01 09 SEP 97-01 21 SEP 97-02

LABORATORY CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

Appluto	Concent		Accuracy(%		
Analyte	Spiked	Measured	LCS	Limits	
Category: Q8270-S Matrix: SOIL QC Lot: 09 SEP 97-01 Concentration Units: ug/kg	QC Run: 09 SEP	97-01			
Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-	5000 5000 3330	3030 3780 2510	61 76 75	41-104 44-111 54-99	
n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol	3330 3330 5000	2260 2780 3300	68 83 66	56-104 44-142 22-147	
Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol	3330 5000 3330 5000	2480 3010 2590 3670	74 60 78 73	47-145 48-117 55-118 14-176	
Pyrene Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	3330 3330 3330 3330 3330	2280 2010 2210 1900	68 60 66 57	50-114 56-108 56-110 51-135	
2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	5000 5000 5000	3590 3440 4350	72 69 87	57-112 61-110 42-106	

Environmental Services

LABORATORY CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

(cont.)

	Concenti			acy(%)
Analyte	Spiked	Measured	LCS	Limits
Category: Q8270-L Matrix: LEACHATE QC Lot: 21 SEP 97-02 Concentration Units: mg/L	QC Run: 21 SEP	97-02		
Pyridine 1,4-Dichlorobenzene 2-Methylphenol 3/4-Methylphenol Hexachloroethane Nitrobenzene Hexachlorobutadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.500 0.500 0.500 0.500 0.750 0.750	0.137 0.149 0.230 0.361 0.147 0.167 0.217 0.223 0.240 0.200 0.439 0.345 0.345 0.345 0.345 0.366 0.516 0.584 0.568	55 60 92 72 59 67 68 87 89 96 80 88 69 73 69 78 76	$18-130 \\ 48-97 \\ 55-119 \\ 52-111 \\ 40-113 \\ 35-180 \\ 41-95 \\ 37-144 \\ 53-103 \\ 55-114 \\ 58-110 \\ 14-176 \\ 57-102 \\ 43-116 \\ 43-128 \\ 26-104 \\ 33-117 \\ 37-117 \\ \end{array}$

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

Analyte	Concentration Spiked Measu		racy(%) Limits
Category: Q8270-S Matrix: SOIL QC Lot: 09 SEP 97-01 QC Run: 09 SEP Concentration Units: ug/kg	97-01		
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Fluorophenol Phenol-d5 2.4.6-Tribromophenol	3330 208 3330 236 3330 209 5000 366 5000 358 5000 449	50 71 50 61 50 73 30 72	56-108 56-110 51-135 57-112 61-110 42-106
Category: Q8270-L Matrix: LEACHATE QC Lot: 21 SEP 97-02 QC Run: 21 SEP Concentration Units: mg/L	97-02		
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Fluorophenol Phenol-d5 2,4.6-Tribromophenol	0.500 0.33 0.500 0.38 0.500 0.39 0.750 0.54 0.750 0.65 0.750 0.55	30 76 58 72 16 73 34 85	57-102 43-116 43-128 26-104 33-117 37-117

•

METHOD BLANK REPORT Semivolatile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: Q8270-TCL-L-S Matrix: SOLID QC Lot: 09 SEP 97-01 QC Run:	09 SEP 97-01		
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330
Benzo(g,h,i)perylene Benzo(a)pyrene 4-Bromophenyl	ND ND	ug/kg ug/kg	330 330
pheny] ether Butyl benzyl phthalate Carbazole 4-Chloroaniline bis(2-Chloroethoxy)	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	330 330 330 330
methane bis(2-Chloroethyl) ether 2,2'-oxybis(1-chloropropane) 4-Chloro-3-methylphenol	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	330 330 330 330
2.Chloronaphthalene 2.Chlorophenol 4.Chlorophenyl	ND ND	ug/kg ug/kg	330 330
phenyl ether Chrysene Dibenz(a,h)anthracene	ND ND ND	ug/kg ug/kg ug/kg	330 330 330
Dibenzofuran Di-n-butyl phthalate 1,2-Dichlorobenzene	ND ND ND	ug/kg ug/kg ug/kg	330 330 330
1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine	ND ND ND	ug/kg ug/kg ug/kg	330 330 1600
2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330
4,6-Dinitro- 2-methylphenol 2,4-Dinitrophenol	ND ND	ug/kg ug/kg ug/kg	1600 1600
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate	ND ND ND	ug/kg ug/kg ug/kg	330 330 330
bis(2-Ethylhexyl) phthalate	ND	ug/kg	330

Quanterra Environmental Services

.

METHOD BLANK REPORT Semivolatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: Q8270-TCL-L-S Matrix: SOLID QC Lot: 09 SEP 97-01 QC Run:	09 SEP 97-01		
Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol Naphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline 4-Nitrobenzene 2-Nitrophenol 4-Nitrobenzene 2-Nitrophenol M-Nitrosodiphenylamine N-Nitroso-di- n-propylamine Benzyl alcohol Bis(2-chloroisopropyl) ether-d12 Pyridine Benzoic acid Pentachlorophenol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330 330 330 330
Phenanthrene Phenol Pyrene 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	nd Nd Nd Nd Nd Nd	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330

METHOD BLANK REPORT Semivolatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: Q8270-TCLP-3520-L Matrix: SOLID QC Lot: 21 SEP 97-02 QC Run:	21 SEP 97-02		
1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane 2-Methylphenol 3/4-Methylphenol Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.25 0.10 0.050 0.050

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Semivolatile Organics by GC/MS Project: 056857

Category:	Q8270-S	Acid,	Base and	1 Neutrals	s by GC/MS.
Matrix:	SOIL				
Sample:	056868-00	01			
MS Run:	09 SEP 97	-01			
Units	ug/kg	Units	Qualif	ier: Dry	/Weight
	• •			•	•

Concentration RPD Amount % Recov. MS Spiked RPD Sample MSD Recovery Accep. Accept MSD Limits MS-MSD Limits Analyte Result Result Result MS MSD MS ND 5000 41-104 20 Pheno1 3170 3130 5000 63 63 1.4 3.7 20 ND 3980 5000 44-111 3840 5000 80 77 2-Chlorophenol ND 2510 2370 75 71 54-99 5.4 20 1.4-Dichlorobenzene 3330 3330 N-Nitroso-di-20 n-propylamine ND 2310 2380 3330 3330 69 71 56-104 2.8 1.2.4-2700 3330 3330 44-142 3.9 20 ND 2810 84 81 Trichlorobenzene 4-Chloro-3-ND 3430 20 methylphenol 3310 5000 5000 69 66 22-147 3.8 47-145 2540 0.3 20 ND 2530 3330 3330 76 76 Acenaphthene 20 ND 3430 3320 5000 5000 66 48-117 3.2 4-Nitrophenol 69 79 20 ND 2680 81 55-118 2.0 2,4-Dinitrotoluene 2630 3330 3330 8.5 20 ND 4060 3730 5000 5000 81 75 14-176 Pentachlorophenol 2280 20 ND 2270 3330 3330 69 68 50-114 0.5 Pyrene Surrogates %Recovery Rec. Accept. Limits 55.3 64.5 61.7 56-108 Nitrobenzene-d5 62.0 72.4 56-110 2-Fluorobiphenyl 66.9 Terphenyl-d14 54.6 61.6 51-135 58.3 74.1 70.7 2-Fluorophenol 66.0 76.0 57-112 Phenol-d5 63.4 74.2 61-110 96.3 42-106 2,4,6-Tribromophenol 83.5 92.0

ND = Not Detected

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Semivolatile Organics by GC/MS Project: 056857 (cont.)

Category:	Q8270-L	Semivolatile	Organics /	TCLP
Matrix:	LEACHATE		-	
Sample:	056857-0009			
MS Run:	21 SEP 97-0	2		
Units:	mg/L			

_

		Concentrat	tion		•.	_		_	
Analyte	Sample Result	MS Result	MSD Result	Amount Spiked R MS MSD	% ecove MS M	ry Ac	cov. cep. RP mits MS-	PD Ac	RPD ccept imits
Pyridine 1.4-Dichlorobenzene 2-Methylphenol 3/4-Methylphenol Hexachloroethane Nitrobenzene Hexachlorobutadiene 2.4.6-Trichlorophenol 2.4.5-Trichlorophenol 2.4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol		0.145 0.157 0.244 0.369 0.154 0.187 0.185 0.194 0.190 0.200 0.198 0.411	$\begin{array}{c} 0.160\\ 0.183\\ 0.264\\ 0.399\\ 0.186\\ 0.200\\ 0.224\\ 0.215\\ 0.222\\ 0.245\\ 0.223\\ 0.245\\ 0.223\\ 0.439 \end{array}$	$\begin{array}{c} 0.250 & 0.250 \\ 0.250 & 0.250 \\ 0.250 & 0.250 \\ 0.500 & 0.500 \\ 0.250 & 0.250 \\ 0.250 & 0.250 \\ 0.250 & 0.250 \\ 0.250 & 0.250 \\ 0.250 & 0.250 \\ 0.250 & 0.250 \\ 0.250 & 0.250 \\ 0.250 & 0.250 \\ 0.250 & 0.250 \\ 0.500 & 0.500 \end{array}$	58 63 98 74 62 75 74 78 76 80 79 82	64 73 106 80 74 80 90 86 93 98 89 88	18-130 48-97 55-119 52-111 40-113 35-180 41-95 37-144 53-103 55-114 58-110 14-176	9.8 15 7.9 7.8 19 6.7 19 10 20 20 12 6.6	32 20 20 20 20 20 20 20 20 20 20 20 20 20
Surrogates		%Recovery	/	Rec. Accept	. Lim	its			
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Flucrophenol Phenol-d5 2,4,6-Tribromophenol	71.8 69.1 63.6 74.0 76.9 80.6	69.0 59.9 69.5 67.6 79.9 77.2	77.0 72.9 70.5 79.3 85.5 84.5	57-10 43-11 43-12 26-10 33-11 37-11	.6 8 4 .7				

ND = Not Detected

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
056857-0009-SA	SOIL	8150-S	18 SEP 97-01	18 SEP 97-01
056857-0009-SA	SOIL	8080-S	18 SEP 97-01	18 SEP 97-01

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC

Analyte	Con Spiked	centratio DCS1	n Measured DCS2	AVG		curacy age(%) Limits	Preci (RPD DCS L)
Category: 8150-S Matrix: SOIL QC Lot: 18 SEP 97-01 Concentration Units: ug/kg								
2.4-D 2.4.5-TP (Silvex) 2.4.5-T	100 20.0 20.0	72.6 15.0 13.8	72.4 15.5 14.4	72.5 15.2 14.1	73 76 71	41- 91 49-103 45-109	0.28 3.3 4.3	40 35 35
Category: 8080-S Matrix: SOIL QC Lot; 18 SEP 97-01 Concentration Units: ug/kg	·							
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	26.7 26.7 26.7 66.7 66.7 66.7	28.6 29.2 30.9 62.1 65.6 60.8	24.8 25.8 27.0 55.0 58.5 53.6	26.7 27.5 29.0 58.6 62.0 57.2	100 103 108 88 93 86	70-113 71-115 71-113 36-146 30-147 64-115	14 12 13 12 11 13	15 15 15 15 15 15

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC

Analyte	Concentra Spiked M			acy(%) Limits
Category: 8150-S Matrix: SOIL QC Lot: 18 SEP 97-01 QC Run: 18 SI Concentration Units: ug/kg	EP 97-01			
DCAA	100	74.5	74	39-113
Category: 8080-S Matrix: SOIL QC Lot: 18 SEP 97-01 QC Run: 18 SI Concentration Units: ug/kg	EP 97-01			
Tetrachloro-m-xylene Dibutyl_chlorendate_ Decachlorobiphenyl	66.7 66.7 13.3	54.7 59.0 11.2	82 88 84	39-105 51-115 70-126

.

METHOD BLANK REPORT Semivolatile Organics by GC

Analyte			Result	Units	Reporting Limit
Test: 8150-S Matrix: SOLID QC Lot: 18 SEP 97-01	QC Run:	18 SEP	97-01		
2,4-D 2,4-DB 2,4,5-T 2,4,5-TP (Silvex) Dalapon Dicamba Dichlorprop Dinoseb MCPA MCPP		·	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	40 100 10 100 100 20 20 5000 5000
Test: 8080CPL-TCL-S Matrix: SOLID QC Lot: 18 SEP 97-01	QC Run:	18 SEP	97-01		
Aldrin Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) alpha-Chlordane gamma-Chlordane 4.4'-DDD 4.4'-DDD 4.4'-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Endrin ketone Heptachlor Heptachlor epoxide			8999999999999999999999999999999	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	$\begin{array}{c} 1.7\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3$

Quanterra Environmental Services

METHOD BLANK REPORT Semivolatile Organics by GC (cont.)

Analyte	Result	Units	Reporting Limit
Test: 8080CPL-TCL-S Matrix: SOLID QC Lot: 18 SEP 97-01 QC Run:	18 SEP 97-01		
Methoxychlor Toxaphene	ND ND	ug/kg ug/kg	17 170

Wuanterra Environmental **Services**

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Semivolatile Organics by GC Project: 056857

Category: 8150-S Herbicides Matrix: SOIL Sample: 056916-0001 MS Run: 18 SEP 97-01 Units ug/kg Units Qualifier: Dry weight

Concentration RPD Amount x Recov. MS MSD Sample Spiked Recovery Accep. RPD Accept Result MS MSD Limits MS-MSD Limits Analyte Result Result MS MSD 2.4-D 2.4.5-TP (Silvex) 2.4.5-T 94.4 ND 88.4 134 134 66 70 41-91 6.6 40 20.7 ND 20.3 26.9 26.9 76 77 49-103 2.0 35 18.4 ND 16.7 26.9 26.9 62 68 45-109 10 35

Category:	, 8080-S	Organochlorine Pest	ticides
Matrix:	SOIL	-	
Sample:	056857-0)009 ⁻	
MS Run:	18 SEP 9	97-01	
Units	ug/kg	Units Qualifier:	Wet wt.

Concentration

Analyte	Sample Result	MS Result	MSD Result	Amount Spiked MS MSD	X Recovery MS MSD	Recov. Accep. R Limits MS	
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	nd Nd Nd Nd Nd Nd	17.8 19.2 5.43 42.4 47.0 44.7	19.4 20.5 13.3 48.2 53.6 55.7	26.7 26.7 26.7 26.7 26.7 26.7 66.7 66.7 66.7 66.7 66.7 66.7	72 20 64 70	73 70-113 77 71-115 50 71-113 72 36-146 80 30-147 84 64-115	$\begin{array}{cccc} 8.6 & 15 \\ 6.5 & 15 \\ 84 & 15 \\ 13 & 15 \\ 13 & 15 \\ 22 & 15 \end{array}$

ND = Not Detected

- .

.

QC LOT ASSIGNMENT REPORT Metals Analysis and Preparation

-

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
056857 - 0001 - SA 056857 - 0001 - SA 056857 - 0001 - SA 056857 - 0002 - SA 056857 - 0002 - SA 056857 - 0002 - SA 056857 - 0003 - SA 056857 - 0003 - SA 056857 - 0003 - SA 056857 - 0005 - SA 056857 - 0005 - SA 056857 - 0006 - SA 056857 - 0006 - SA 056857 - 0006 - SA 056857 - 0006 - SA 056857 - 0007 - SA 056857 - 0007 - SA 056857 - 0007 - SA	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	HG-CVAA-S 6020-S ICP-S HG-CVAA-S 6020-S ICP-S HG-CVAA-S 6020-S ICP-S HG-CVAA-S 6020-S ICP-S HG-CVAA-S 6020-S ICP-S HG-CVAA-S 6020-S ICP-S HG-CVAA-S 6020-S	17 SEP 97-H1 17 SEP 97-L3 10 SEP 97-J1 17 SEP 97-H1 17 SEP 97-L3 10 SEP 97-L3	17 SEP 97-H1 17 SEP 97-L3 10 SEP 97-J1 17 SEP 97-L3 10 SEP 97-L3 10 SEP 97-J1 17 SEP 97-L3 10 SEP 97-J1 17 SEP 97-L3 10 SEP 97-J1 17 SEP 97-H1 17 SEP 97-L3 10 SEP 97-J1 17 SEP 97-L3 10 SEP 97-J1 17 SEP 97-L3 10 SEP 97-J1 17 SEP 97-L3 10 SEP 97-J1 17 SEP 97-L3 10 SEP 97-L3
056857 - 0008 - SA 056857 - 0009 - SA 056857 - 0009 - SA	SOIL LEACHATE LEACHATE	ICP-S ICP-RC-TL HG-CVAA-TL	10 SEP 97-J1 19 SEP 97-L2 23 SEP 97-P1	10 SEP 97-J1 17 SEP 97-T1 17 SEP 97-T1

LABORATORY CONTROL SAMPLE REPORT Metals Analysis and Preparation Project: 056857 Category: HG-CVAA-S Mercury by CVAA Matrix: SOIL QC Run: 17 SEP 97-H1 Date Analyzed: 17 SEP 97 Concentration Units: mg/kg Concentration Accuracy(%) Analyte Spiked Measured LCS Limits 0.417 98 Mercury 0.407 82-114 Category: 6020-S ICPMS Metals - (Total for Soils) Matrix: SOIL Date Analyzed: 18 SEP 97 QC Run: 17 SEP 97-L3 Concentration Units: mg/kg Concentration Accuracy(%)Analyte Spiked Measured LCS Limits 10.1 70-130 Arsenic 10.0 101 Beryllium 10.0 10.2 102 70-130 Selenium 10.0 9.88 99 70-130 Thallium 10.0 70-130 11.0 110 Category: ICP-S ICP Metals Matrix: SOIL Date Analyzed: 11 SEP 97 QC Run: 10 SEP 97-J1 Concentration Units: mg/kg Concentration Accuracy(%)Analyte Spiked Measured LCS Limits Aluminum 200 220 110 88-120 Antimony 50.0 47.5 95 82-113 92 Arsenic 200 184 80-120 99 Barium 200 199 85-112 Beryllium 5.00 5.02 100 78-118 120 Boron 100 120 85-125 Cadmium 96 80-120 5.00 4.81 5000 5040 101 Calcium 85-114 99 20.0 19.8 Chromium 83-112 Cobalt. 51.2 102 50.0 80-116 25.0 Copper 25.0 100 84-115 107 107 87-117 Iron 100 50.0 47.8 96 Lead 82-114 5000 105 5260 Magnesium 84-113 99 Manganese 50.0 49.6 84-114 Nickel 50.0 50.0 100 84-112 5000 103 82-110 Potassium 5140

Calculations are performed before rounding to avoid round-off errors in calculated results.

5.00

5000

200

Silver

Sodium

Selenium

5.00

199

5140

100

99

103

80-115

83-113

85-117

<i>wuanterra

Environmental Services

LABORATORY CONTROL SAMPLE REPORT Metals Analysis and Preparation Project: 056857

Mercury

(cont.)

100

80-111

Category: ICP-S ICP Metals Matrix: SOIL QC Run: 10 SEP 97-J1 (cont.) Concentration Units: mg/kg		Date A	Analyzed: 11 SEP 97
•••		ntration	Accuracy(%)
Analyte	Spiked	Measured	LCS Limits
Thallium Tin Vanadium Zinc	200 200 50.0 50.0	ND 174 49.9 47.4	97 79-115 87 80-118 100 85-116 95 80-120
Category: ICP-RC-TL TCLP Metals by ICP Matrix: LEACHATE QC Run: 17 SEP 97-T1 Concentration Units: mg/L		Date /	Analyzed: 22 SEP 97
Analyte	Conce Spiked	ntration Measured	Accuracy(%) LCS Limits
Arsenic Barium Cadmium Chromium Lead Selenium Silver	5.00 50.0 1.00 5.00 5.00 1.00 1.00	4.82 49.3 0.962 4.99 4.93 1.02 0.969	96 80-116 99 83-111 96 82-110 100 80-120 99 82-114 102 85-125 97 83-108
Category: HG-CVAA-TL TCLP Mercury by CVA Matrix: LEACHATE QC Run: 17 SEP 97-T1 Concentration Units: mg/L Analyte		Date A ntration Measured	Analyzed: 24 SEP 97 Accuracy(%) LCS Limits
	opined	incusui cu	200 2111103

ND = Not Detected Calculations are performed before rounding to avoid round-off errors in calculated results.

0.00500

0.00498

Quanterra Environmental Services

METHOD BLANK REPORT Metals Analysis and Preparation

Analyte	Result	Units	Reporting Limit
Test: HG-CVAA-S Matrix: SOLID QC Lot: 17 SEP 97-H1 QC F	Run: 17 SEP 97-H1		
Mercury	ND	mg/kg	0.033
Test: ICPMS-6020-S Matrix: SOLID QC Lot: 17 SEP 97-L3 QC F	Run: 17 SEP 97-L3		
Arsenic Beryllium Selenium Thallium	ND ND ND	mg/kg mg/kg mg/kg mg/kg	0.50 0.10 0.50 0.10
Test: ICP-TAL-S Matrix: SOLID QC Lot: 10 SEP 97-J1 QC F	Run: 10 SEP 97-J1		
Aluminum Antimony Barium Beryllium Cadmium Cadmium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel Potassium Silver Sodium Vanadium Zinc	ND ND ND ND ND ND ND ND ND ND ND ND ND N	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$\begin{array}{c} 10.0\\ 6.0\\ 1.0\\ 0.20\\ 0.50\\ 20.0\\ 1.0\\ 1.0\\ 2.0\\ 10.0\\ 5.0\\ 20.0\\ 1.0\\ 1.5\\ 4.0\\ 500\\ 1.0\\ 500\\ 1.0\\ 2.0\\ \end{array}$

Quanterra Environmental Services

.

METHOD BLANK REPORT Metals Analysis and Preparation (cont.)

Analyte		Result	Units	Reporting Limit
Test: ICP-RCRA-TCLP-L Matrix: SOLID QC Lot: 19 SEP 97-L2 Q	IC Run: 17 SEP	97-T1		
Arsenic Barium Cadmium Chromium Lead Selenium Silver		nd Nd Nd Nd Nd Nd Nd	mg/L mg/L mg/L mg/L mg/L mg/L	0.50 10.0 0.10 0.50 0.50 0.25 0.50
Test: HG-CVAA-TCLP-L Matrix: SOLID QC Lot: 23 SEP 97-P1 Q	C Run: 17 SEP	97-T1		
Mercury		ND	mg/L	0.00020

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Metals Analysis and Preparation Project: 056857

Category:	HG-CVAA-S	5 Mercury	y by CVAA	
Matrix:	SOIL		•	
Sample:	056857-00)08		
MS Run:	17 SEP 97	7-H1		
Units	mg/kg	Units	Qualifier:	Wet wt.
	•••		•	

		Conc	entration					
Analyte	Sample Result	MS Result	MSD Result	Amount Spiked MS/MSD	%Recove MS MS		Accepta Limi Recov.	
Mercury	ND	0.368	0.367	0.417	88	88 0.3	82-114	10

Category:	ICP-S	ICP	Met	als	
Matrix:	SOIL				
Sample:	056758	0011			
MS Run:	10 SEP				
Units	mg/kg	⁻ Un	its	Qualifier:	Wet wt.

	Concentration						
Analyte	Sample Result	MS Result	MSD Result	Amount Spiked MS/MSD	Acceptar %Recovery %RPD Limit MS MSD Recov.		
Aluminum Antimony Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel Potassium Silver Sodium Tin Vanadium	ND ND 1.3 ND 1260 ND 9.4 14.9 ND 441 1.4 ND 441 1.4 ND ND 2420 ND 2980 ND	226 47.1 196 4.94 5.30 6330 19.3 50.6 35.2 118 47.8 5680 51.0 98.9 49.3 8070 4.93 8400 154 49.1	225 46.6 191 4.86 4.59 6250 19.0 49.2 34.9 110 45.7 5580 50.0 96.7 48.2 7880 4.79 8340 147 48.2	$\begin{array}{c} 200\\ 50.0\\ 200\\ 5.00\\ 5.00\\ 20.0\\ 20.0\\ 50.0\\ 25.0\\ 100\\ 50.0\\ 50$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
Zinc	37.9	89.8	85.7	50.0	104 96 4.6 80-120	10	

ND = Not Detected

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Metals Analysis and Preparation Project: 056857 (cont.)

Category: ICP-RC-TL TCLP Metals by ICP Matrix: LEACHATE Sample: 056897-0003 MS Run: 19 SEP 97-L2 Units: mg/L

Concentration									
Analyte	Sample Result	MS Result	MSD Result	Amount Spiked MS/MSD	%Recov MS M	ery % SD	rpd	Acceptar Limit Recov.	
Arsenic Barium Cadmium Chromium Lead Selenium Silver	ND ND ND ND ND ND ND ND	3.25 32.0 0.683 3.18 3.34 0.765 0.649	4.31 41.1 0.886 4.10 4.31 0.999 0.835	5.00 50.0 1.00 5.00 5.00 1.00 1.00	65 64 68 64 67 76 65	86 82 89 82 86 100 83	28 25 26 25 25 27 25	80-116 83-111 82-110 80-120 82-114 85-125 83-108	10 10 10 10 10 11 10

Category: HG-CVAA-TL TCLP Mercury by CVAA Matrix: LEACHATE Sample: 056857-0009 MS Run: 23 SEP 97-P1 Units: mg/L

	Concentration						
Analyte	Sample Result	MS Result	MSD Result	Amount Acceptance Spiked %Recovery %RPD Limit MS/MSD MS MSD Recov. RPD			
Mercury	ND	0.00544	0.00545	0.00500 109 109 0.1 80-111 10			

ND = Not Detected

1

(*Duanterra*) Environmental Services

LABORATORY CONTROL SAMPLE REPORT Wet Chemistry Analysis and Preparation

.

Analyte	Concentrat Spiked	tion Measured	Accur LCS	acy(%) Limits
Category: CNR-S Matrix: SOIL QC Lot: 17 SEP 97-N1 Concentration Units: mg/kg	QC Run: 17 SEP 97	/-N1		
Cyanide, Reactive	79.0	6.89	8.7	1-32
Analyte	Concentrat Spiked	tion Measured	Accur LCS	acy(%) Limits
Category: SR-9030A-S Matrix: SOIL QC Lot: 17 SEP 97-N1 Concentration Units: mg/kg	QC Run: 17 SEP 97	/-N1		
Sulfide, Reactive	956	547	57	1-149
Analyte	Concentrat Spiked	tion Measured	Accur LCS	acy(%) Limits
Category: PH-9045B-S Matrix: SOIL QC Lot: 24 SEP 97-D3 Concentration Units: units	QC Run: 24 SEP 97	7-D3		
рН	9.14	9.16	100	97-103

Quanterra Environmental Services

τ

METHOD BLANK REPORT Wet Chemistry Analysis and Preparation

,

Test: CNREAC-TEC-S Matrix: SOIL QC Lot: 17 SEP 97-N1	QC Run:	17 SEP 97-N1		Reporting
Analyte		Result	Units	Limit
Cyanide, Reactive		ND	mg/kg	0.10
Test: SREAC-9030A-S Matrix: SOIL QC Lot: 17 SEP 97-N1	QC Run:	17 SEP 97-N1		b
Analyte		Result	Units	Reporting Limit
Sulfide, Reactive		. 25.4	mg/kg	25.0

ND = Not Detected

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Wet Chemistry Analysis and Preparation Project: 056857

Category:	CNR-S	Reactive	Cyanide
Matrix:	SOIL		•
Sample:	056975-0	008	
MS Run:	17 SEP 9	7-N1	
Units:	mg/kg		

		Conc	entration				
Analyte	Sample Result	MS Result	MSD Result	Amount Spiked MS/MSD	%Recovery %RPD MS MSD		ce RPD
,			neour c	11071100		10000	
Cyanide, Reactive	ND	14.9	6.07	100	15 6.1 84	1-32	151

Category: SR-9030A-S Sulfide, Reactive Matrix: SOIL Sample: 056975-0008 MS Run: 17 SEP 97-N1 Units: mg/kg

		Con	centration					
Analyte	Sample Result	MS Result	MSD Result	Amount Spiked MS/MSD	%Recovery MS MSD	%RPD		
Sulfide, Reactive	ND	440	264	743	5 9 3	6 50	1-149	213

ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.