AP - 008

STAGE 1 & 2 REPORTS

DATE: July 19,1799

Junction 1-9 Release Site

Stage 1 Abatement Report (Site Assessment Investigation)

19 July 1999

PREPARED FOR

Rice Operating Company Hobbs, New Mexico

Junction 1-9 Release Site

Stage 1 Abatement Report (Site Assessment Investigation)

Prepared for: Rice Operating Company Hobbs, New Mexico

Prepared by:
ARCADIS Geraghty & Miller Inc
1030 Andrews Hwy.
Suite 120
Midland
Texas 79701
Tel 915 699 1381
Fax 915 699 1978

Our Ref.: MT000591.0001

Date: 19 July 1999

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. Any dissemination, distribution, or copying of this document is strictly prohibited.

Table of Contents

٦.	INIR	RODUCTION	1
2.	SITE	HISTORY	1
3.	GEO	LOGY AND HYDROGEOLOGY	1.
4.	FIEL	D ACTIVITIES AND METHODOLOGY	2
	4.1	Excavation of Soil	2
	4.2	Installation and Sampling of Boreholes	3
	4.3	Installation and Sampling of Monitor Wells	3
5.	LAB	ORATORY ANALYTICAL RESULTS	4
	5.1 .	Soil Sample Analytical Results	4
	5.2	Groundwater Sample Analytical Results	5
6.	HEA	LTH AND SAFETY	6
7.	CON	ICLUSIONS	6
	7.1	SOIL	6
	7.2	Groundwater	6
8.	REC	OMMENDATIONS	7
9.	REF	ERENCES	7

Tables

- 1 Groundwater Elevations
- 2 Soil Sample Analytical Results
- 3 Groundwater Analytical Results

Figures

- 1 Site Location Map
- 2 Monitor Well and Boring Locations
- 3 Potentiometric Surface Map
- 4 Excavation and Soil Boring Locations
- 5 Total Petroleum Hydrocarbon Concentrations in Soil
- 6 Highest Benzene Concentrations in Groundwater

Appendices

- A Interim Abatement Communications
- **B** Boring Lithology Logs
- C Monitor Well Construction Diagrams
- D Laboratory Analytical Results
- **E** Recovery Well Volumes

Stage 1 Abatement Report (Site Assessment Investigation)

Rice Operating Company Hobbs, New Mexico

1. INTRODUCTION

The subject site is a former pipeline connection point on the Rice Operating Company Hobbs Salt Water Disposal System. The pipeline transports produced water from oil and gas leases to a permitted well for disposal by subsurface injection. The site is located in southwest Hobbs, New Mexico approximately 0.6 miles south of the intersection of Grimes Street and Stanolind Road (NE ¼ of the NE ¼ of Section 4, T19S-R38E, Lea County. (Figure 1).

2. SITE HISTORY

A pipeline leak was discovered and repaired at the subject site on June 5, 1998. Notification of an unauthorized release was submitted to the New Mexico Oil Conservation Division (NMOCD) District I Office located in Hobbs, New Mexico. A Stage I Abatement Plan was submitted to NMOCD on January 19, 1999. Interim abatement site activities including assessment of impacts to soil and groundwater and excavation of impacted soil were conducted during the period of August 24, 1998 to July 7, 1999. Recovery of phase separated hydrocarbons from groundwater has been conducted from January 18 to May 7, 1999. A total of three monitor wells, one recovery well, and nine boreholes wwas installed at the subject site (Figure 2). Correspondence between Rice Operating and the NMOCD is included in Appendix A.

3. GEOLOGY AND HYDROGEOLOGY

The Ogallala Formation is the principal source of groundwater in the subject area. Depth to groundwater in Lea County ranges from approximately 12 feet below ground surface (bgs) to approximately 300 feet bgs. The Ogallala consists of predominantly coarse fluvial conglomerate and sandstone and fine-grained eolian siltstone and clay. Where present in the subject area, the Ogallala unconformably overlies Triassic redbeds. The regional and site groundwater gradient (Figure 3) is to the south/southeast.

Depth to groundwater at the subject site is approximately 31 feet bgs. Groundwater elevations measured in the three monitor wells at the subject site are shown in Table 1.

Subsurface geology in the subject area consists of approximately one foot of light brown, fine-grained, calcareous sand underlain by white to gray caliche to a depth of approximately 15 feet bgs. The caliche is underlain by predominantly gray limestone and silty caliche to a depth of approximately 32 feet and red-brown and light brown to pink fine-grained sand. Boring lithology logs are included in this report in Appendix B.

Stage 1 Abatement Report (Site Assessment Investigation)

Rice Operating Company Hobbs, New Mexico

Rice Operating Company conducted a field search and review of the New Mexico State Engineer water well database. No evidence of impact to surface water bodies was identified. Two stock wells were located near the subject. One well is located approximately 1200 feet northwest of the site and one well is located approximately 3500 feet southeast of the site.

Table 1
GROUNDWATER ELEVATIONS
Junction I-9 Site
HOBBS, NEW MEXICO

MONITORING WELL	TOP OF DATE CASING		DEPTH TO GROUNDWATER	WATER ELEVATION		
	(feet)*		(feet)*	(feet)*		
MW-1	99.75	01/12/99	31.75	68.00 ⁻		
MW-1	99.75	01/16/99	32.04	67.71		
MW-2	99.96	01/12/99	31.82	68.14		
MW-2	99.96	01/16/99	32.04	67.92		
MW-3	100	01/12/99	30.58	69.62		
MW-3	100	01/16/99	31.85	68.15		

^{*} Calculated by Enercon from Rice Operating Company survey plat. Used relative benchmark = 100 feet, top of casing on MW-3.

4. FIELD ACTIVITIES AND METHODOLOGY

Field activities were conducted between of August 12, 1998 through July 7, 1999. Field activities included drilling and soil sampling of nine boreholes, drilling and sampling of three monitor wells, drilling of one recovery well and recovery of phase-separated hydrocarbons from the recovery well. All field activities were performed in accordance with the Stage 1 Abatement Plan (Site Assessment Investigation) as approved by the NMOCD. Photographs of field activities are included in Appendix C.

4.1 Excavation of Soil

Excavation activities were performed at the site between August 24, 1998 and September 21, 1998 to identify the vertical extent of impact. Where excavated, impacted soils were observed to a minimum depth of 16 feet bgs. The soil sample obtained from the deepest point of the excavation exhibited an organic vapor meter (OVM) reading of 264 parts per million (ppm). The area of excavation is shown in Figure 4.

Stage 1 Abatement Report (Site Assessment Investigation)

Rice Operating Company Hobbs, New Mexico

4.2 Installation and Sampling of Boreholes

A total of nine boreholes (B-1 through B-9) was drilled at this location (Figure 2). Boreholes B-1 through B-7 were drilled under the direction of Enercon Services Inc. Borehole lithology descriptions are included in Appendix B. Soil samples were screened in the field for volatile organic compounds (VOCs) using an OVM, and were inspected for the presence of staining or odor. The soil borings encountered groundwater at depths ranging from approximately 31 feet to 33 feet bgs. Borings B-1 and B-2 encountered phase-separated hydrocarbons on top of the groundwater.

A minimum of two soil samples was collected from each of the boreholes and submitted for analysis for benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) using USEPA Method 8021B and 8015B, respectively.

Boreholes B-8 and B-9 were installed under the direction of Rice Operating Company for the purpose of identifying the recovery well location. No soil samples from boreholes B-8 and B-9 were submitted for laboratory analysis.

4.3 Installation and Sampling of Monitor Wells

A total of three monitor wells and one recovery well was installed in the subject area. Monitor well locations are shown in Figure 2.

Monitor wells were constructed using 2-inch inside-diameter Schedule 40 PVC casing. The recovery well was constructed of 4-inch inside-diameter Schedule 40 PVC casing. The wells were constructed with fifteen feet of slotted PVC casing, 10 feet below top of groundwater, and five feet above top of groundwater. The wells were sand-packed with a five-foot bentonite plug placed immediately above the sand pack. The wells were grouted above the bentonite plug with cement containing 3-5% bentonite and completed with a flush mounted cover. Monitor well construction diagrams are included in Appendix D.

Groundwater samples were collected from each of the monitor wells on January 16, 1999 and analyzed for volatile organics, semi-volatile organics, general chemistry and metals using USEPA Methods 8260, 8270 C, 325.3, 4500, 150.1, 120.1, 375.4, 160.1, and 6010B.

MW-1 and MW-2 were resampled on July 7, 1999 to determine if BTEX concentrations were representative of downgradient aquifer conditions. The

Stage 1 Abatement Report (Site Assessment Investigation)

Rice Operating Company Hobbs, New Mexico

groundwater samples were submitted for analysis for BTEX using USEPA Method 8021B.

5. LABORATORY ANALYTICAL RESULTS

5.1 Soil Sample Analytical Results

Soil sample analytical results are summarized in Table 2. Laboratory analytical results are included in Appendix E.

TABLE 2
SOIL SAMPLE ANALYTICAL RESULTS

	SOIL SAMPLE ANALITICAL RESULTS										
Boring	Depth (feet)	OVM Reading	Benzene mg/kg	Toluene mg/kg	Ethylbenzene mg/kg	Xylenes mg/kg	TPH mg/kg				
		(ppm)									
B-1	20-20.6	54	0.684	0.759	11.000	21.700	1,070				
•	28	261	0.285	1.000	9.170	24.600	1,200				
	30	195	1.130	1.030	13.800	19.500	1,130				
B-2	25-26	274	0.477	0.716	11.300	25.200	520				
	30-31	174	<.050	0.070	0.870	2.510	278				
B-3	25	214	< 0.200	1.520	6.950	15.900	369				
	31-33	8	< 0.050	< 0.050	< 0.050	< 0.150	<10				
B-4	20	177	< 0.050	0.207	0.178	0.764	50				
	30	6.2	< 0.050	< 0.050	< 0.050	< 0.150	47				
B-5	20	174	< 0.050	0.288	0.188	0.759	22				
	25	81	< 0.050	0.268	0.264	0.566	69				
	30	28	< 0.050	< 0.050	< 0.050	< 0.150	18				
B-6	20-21	290	< 0.050	1.390	1.440	4.660	71				
	25-26	237	0.460	4.260	12.200	26.400	234				
	30-31	255	0.581	0.130	2.900	4.170	25				
B-7	25-26	125	< 0.050	0.100	<0.050	< 0.150	106				
	30	145	< 0.050	0.214	0.865	2.190	10				

Benzene concentrations range from not detected to 1.130 milligrams per kilogram (mg/kg). Toluene concentrations range from not detected to 4.260 mg/kg. Ethlybenzene concentrations range from not detected to 13.800 mg/kg. Xylene concentrations range from not detected to 26.400 mg/kg. TPH concentrations (diesel range organics) range from not detected to 1,200 mg/kg.

Boreholes B-8 and B-9 were drilled on January 7, 1998 under the direction of a Rice Operating Company representative to identify the location where a recovery well would

Stage 1 Abatement Report (Site Assessment Investigation)

Rice Operating Company Hobbs, New Mexico

be placed. No soil or groundwater samples were collected for analysis from B-8 and B-9.

All boreholes were plugged to surface with a cement grout containing a minimum of 3-5% bentonite.

5.2 Groundwater Sample Analytical Results

Groundwater analytical results are summarized in Table 3. Laboratory analytical results are included in Appendix E. Groundwater samples were collected from MW-1, MW-2 and MW-3 on January 16, 1999 and analyzed for volatile organics, semi-volatile organics, general chemistry and metals. Groundwater samples were collected from boreholes B-3 and B-4 on October 21, 1998 and analyzed for BTEX, chlorides and TDS. MW-1 and MW-2 were resampled on July 7, 1999 and analyzed for BTEX to identify if BTEX concentrations detected in the January 16, 1999 downgradient samples were representative of aquifer conditions.

Benzene was detected in the samples collected from MW-1 and MW-2 on January 16. 1999 and July 7, 1999 at a concentration of 0.008 milligrams per liter (mg/L), 0.017 mg/L, 0.262 mg/L and 0.289 mg/L, respectively. Benzene was detected in the samples collected from B-3 and B-4 at a concentration of 14.2 mg/L and 0.618 mg/L, respectively. Toluene was detected in the samples collected from MW-1 on July 7, 1999 and B-4 at a concentration of 0.01 mg/L and 0.331 mg/L, respectively. Ethylbenzene was detected in the samples collected from MW-1 and MW-2 on January 16, 1999 and July 7, 1999 at a concentration of 0.032 mg/L, 0.007 mg/L, 0.286 mg/L and 0.061 mg/L, respectively. Ethylbenzene was detected in the samples collected from B-3 and B-4 at a concentration of 1.31 mg/L and 0.182 mg/L, respectively. Xylenes were detected in the samples collected from MW-1 and MW-2 on January 16, 1999 and July 7, 1999 at a concentration of 0.012 mg/L, 0.012 mg/L, 0.131 mg/L, and 0.008 mg/L, respectively. Xylenes were detected in the samples collected from B-3 and B-4 at a concentration of 0.780 mg/L and 0.226 mg/L, respectively. 1,2,4-trimethylbenzene was detected in the January 1999 sample collected from MW-1 at a concentration of 0.007 mg/L. No other organic compounds analyzed for were detected.

Naturally-occurring inorganic analytes (metals, chlorides, pH, sulfate, TDS, calcium, potassium, bicarbonate, manganese and sodium) were detected in the groundwater samples collected from MW-1, MW-2 and MW-3.

Stage 1 Abatement Report (Site Assessment Investigation)

Rice Operating Company Hobbs, New Mexico

6. HEALTH AND SAFETY

All site activities were performed in accordance with Occupational Safety and Health Administration (OSHA) standards. All on-site personnel were required to wear a hard hat, safety glasses and steel-toe shoes during work activities.

7. CONCLUSIONS

7.1 **SOIL**

The vertical extent of hydrocarbon-impacted soil ranges from approximately 25 to 31 feet bgs. Based on analytical data and field screening (OVM readings, odor and staining) the horizontal extent of hydrocarbon impacted soil has been identified north, south and east of the release site. Delineation of the extent of hydrocarbon-impacted soil to the west will be performed in conjunction with Stage II Abatement activities. Figure 5 is a map of TPH concentrations in soil at a depth of 20-25 feet bgs. If more than one sample was analyzed from this interval (for example 20 feet bgs and 25 feet bgs), the analytical results from the deepest sample were used.

7.2 Groundwater

The regional and site groundwater gradient is to the south/southeast. Depth to groundwater at the subject site is approximately 31 feet bgs.

Phase-separated hydrocarbons were measured in Boreholes B-1 and B-2 and are present in recovery well RW-1. To date, approximately 0.796 gallons of phase-separated hydrocarbons have been removed from RW-1. A summary of recovery volumes is included in Appendix F.

Benzene was detected at a concentration above the New Mexico Water Quality Control Commission (20 NMAC 6.2 3-103) standard of 0.01 mg/L in the sample collected from MW-2 on January 16, the samples collected from MW-1 and MW-2 on July 7, 1999 and the samples collected from B-3 an B-4. Figure 6 is an isopleth map showing benzene concentrations. Because all of the wells/boreholes were not sampled during each sampling event, the highest concentration of benzene detected in each well/borehole was used.

Ethylbenzene and xylenes were detected in the sample collected from B-3 at concentrations above the 20 NMAC 6.2 3-103 standard of 0.75 mg/L and 0.62 mg/L, respectively.

No other organic compounds analyzed were detected above 20 NMAC 6.2 3-103 standards.

Naturally-occurring inorganic analytes (metals, chlorides, pH, sulfate, total dissolved solids, calcium, potassium, bicarbonate, manganese and sodium) were detected in the groundwater samples collected from MW-1, MW-2 and MW-3 on January 16, 1999. Aluminum, iron and manganese were detected in MW-1, MW-2 and MW-3 above 20 NMAC 6.2 3-103 standards of 5.0 mg/L, 1.0 mg/L, and 0.2 mg/L, respectively. Barium was detected above the 20 NMAC 6.2 3-103 standard of 1.0 mg/L in the sample collected from MW-3. Total dissolved solids were detected above the 20 NMAC 6.2 3-103 standard of 1000 mg/L in the samples collected from MW-2 and MW-3 and B-3 and B-4. Chlorides were detected in the sample collected from B-4 above the 20 NMAC 6.2 3-103 standard of 250 mg/L.

No other inorganic compounds analyzed were detected above 20 NMAC 6.2 3-103 standards.

8. RECOMMENDATIONS

Rice Operating Company recommends the drilling of an additional downgradient monitor well to delineate the horizontal extent of benzene concentrations above 20 NMAC 6.2 3-103 standards. Following review of this data and approval by NMOCD that no further assessment activities be performed at the subject site, Rice Operating Company will submit a Stage II Abatement Plan to NMOCD for remedial activities at the site. Remedial activities will likely include continued recovery of phase-separated hydrocarbons, excavation of hydrocarbon-impacted soil and semi-annual monitoring of groundwater.

9. REFERENCES

Groundwater Handbook; United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Research Information; 1992

Hydrology and Hydrochemistry of the Ogallala Aquifer, Southern High Plains, Texas Panhandle and Eastern New Mexico; Report Number 177; Bureau of Economic Geology; 1988

Stage 1 Abatement Report (Site Assessment Investigation)

Rice Operating Company Hobbs, New Mexico

Hydrogeochemistry and Water Resources of the Lower Dockum Group in the Texas Panhandle and Eastern New Mexico; Report Number 161: Bureau of Economic Geology; 1986

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

Stage 1 Abatement Report (Site Assessment Investigation)

Rice Operating Company Hobbs, New Mexico

TABLE 3
GROUNDWATER ANALYTICAL RESULTS

Well Name	MW-1		MV	V-2	MW-3	B-3	B-4
Date Sampled	1/16/99	7/7/99	1/16/99	7/7/99	1/16/99	10/21/98	10/21/98
Compound Name	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
VOCs	(** B ,/	(8)	(8)	(8,)	((8/	(****8/****)
Benzene	0.008	0.262	0.017	0.289	ND	14.200	0.618
Bromobenzene	ND	NA	ND	NA	ND	NA	NA
Bromochloromethane	ND	NA NA	ND	NA NA	ND ND	NA	NA NA
Bromodichloromethane	ND	NA NA	ND	NA NA	ND	NA NA	NA NA
Bromoform	ND	NA NA	ND ND	NA NA	ND	NA NA	NA NA
Bromomethane	ND	NA NA	ND ND	NA NA	ND	NA NA	NA NA
n-butylbenzene	ND ND	NA NA	ND	NA NA	ND	NA NA	NA NA
sec-butylbenzene	ND ND	NA NA	ND ND	NA NA	ND	NA NA	NA NA
tert-butylbenzene	ND ND	NA NA	ND ND	NA NA	ND ND	NA NA	NA NA
Carbon tetrachloride	ND ND	NA NA	ND ND	NA NA	ND	NA NA	NA NA
Chlorobenzene	ND ND	NA NA	ND	NA NA	ND	NA NA	NA NA
Chlorodibromomethane	ND ND			NA NA		NA NA	NA NA
		NA	ND		ND		
Chloroethane	ND	NA NA	ND ND	NA	ND	NA NA	NA
Chloroform	ND	NA	ND	NA	ND	NA	NA NA
Chloromethane	ND	NA	ND	NA	ND	NA NA	NA
2-Chlorotoluene	ND	NA	ND	NA	ND	NA	NA
4-Chlorotoluene	ND	NA	ND	NA	ND	NA	NA
1,2-Dibromo-3-chloropropane	ND	NA	ND	NA	ND	NA	NA
1,2-Dibromoethane	ND	NA	ND	NA	ND	NA	NA
Dibromomethane	ND	NA	ND	NA	ND	NA	NA
1,2-Dichlorobenzene	ND	NA	ND	NA	ND	NA	NA
1,3-Dichlorobenzene	ND	NA	ND	NA	ND	NA	NA
1,4-Dichlorobenzene	ND	NA	ND	NA	ND	NA	NA
Dichlorodifluoromethane	ND	NA	ND	ÑΑ	ND	NA	NA
1,1-Dichloroethane	ND	NA	ND	NA	ND	NA	NA
1,2-Dichlorethane	ND	NA	ND	NA	ND	NA	NA
1,1-Dichloroethene	ND	NA	ND	NA	ND	NA	NA
cis-1,2-dichloroethene	ND	NA	ND	NA	ND	NA	NA
trans-1,2-dichloroethene	ND	NA	ND	NA	ND	NA	NA
1,2-Dichloropropane	- ND	NA	ND	NA	ND	NA	NA
1,3-Dichloropropane	ND	NA	ND	NA	ND	NA	NA
2,2-Dichloropropane	ND	NA	ND	NA	ND	NA	NA
1,1-Dichloropropene	ND	NA	ND	NA	ND	NA	NA
Ethylbenzene	0.032	0.286	0.007	0.061	ND	1.310	0.182
Hexachlorobutadiene	ND	NA	ND	NA	ND	NA	NA
Isopropylbenzene	ND	NA	ND	NA	ND	NA	NA
p-isopropytoluene	ND	NA	ND	NA	ND	NA	NA
Methylene chloride	ND	NA	ND	NA	ND	NA	NA
Naphthalene	ND	NA	ND	NA	ND	NA	NA
n-propylbenzene	ND	NA	ND	NA	ND	NA	NA
Styrene	ND	NA	ND	NA	ND	NA	NA
1,1,1,2-Tetrachloroethane	ND [.]	NA	ND	NA	ND	NA	NA
1,1,2,2-Tetrachloroethane	ND	NA	ND	NA	ND	NA	NA
Tetrachloroethene	ND	NA	ND	NA	ND	NA	NA
			Î				

TABLE 3
GROUNDWATER ANALYTICAL RESULTS

Well Name	MW-1		MW-2		MW-3	B-3	B-4
Date Sampled	1/16/99	7/7/99	1/16/99	7/7/99	1/16/99	10/21/98	10/21/98
Compound Name	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Toluene	ND	0.01	ND	< 0.005	ND	< 0.050	0.331
1,2,3-Trichlorobenzene	ND	NA	ND	NA	ND	NA	NA
1,2,4-Trichlorobenzene	ND	NA	ND	NA	ND	NA	NA
1,1,1-Trichloroethane	ND	NA	ND	NA	ND	NA	NA
1,1,2-Trichloroethane	ND	NA	ND	NA	ND	NA	NA
Trichloroethene	ND	NA	ND	NA	ND	NA	NA
Trichlorofluoromethane	ND	NA	ND	NA	ND	NA	NA
1,2,3-Trichloropropane	ND	NA	ND	NA	ND	NA	NA
1,2,4-Trimethylbenzene	0.007	NA	ND	NA	ND	NA	NA
1,3,5-Trimethylbenzene	ND	NA	ND	NA	ND	NA	NA
Vinyl chloride	ND	NA	ND	NA	ND	NA	NA
Xylenes, total	0.012	0.131	0.012	0.008	ND	0.78	0.226
Acetone	ND	NA	ND	NA	ND	NA	NA
Carbon disulfide	ND	NA	ND	NA	ND	NA	NA
Vinyl acetate	ND	NA	ND	NA	ND	NA	NA
2-Butanone	ND	NA	ND	NA	ND	NA	NA
1,2-Dichloroethene	ND	NA	ND	NA	ND	NA	NA
2-Chloethylvinylether	ND	NA	ND	NA	ND	NA	NA
4-Methyl-2-pentanone	ND	NA	ND	NA	ND	NA	NA
cis-1,3-dichloropropene	ND	NA	ND	NA	ND	NA	NA
trans-1,3-dichloropropene	ND	NA	ND	NA	ND	NA	NA
2-Hexanone	ND	NA	ND	NA	ND	NA	NA
Methyl tert butyl ether	ND	NA	ND	NA	ND	NA	NA
ario a			!	ļ <u>.</u>			
SVOCs							5+1
Acenaphthene	ND	NA	ND	NA	ND	NA	NA
Acenaphthylene	ND	NA	ND	NA	ND	NA	NA
Aniline	ND	NA	ND	NA	ND	NA	NA
Anthracene	ND	NA	ND	NA	ND	NA	NA
Benzo(a)anthracene	ND	NA	ND	NA	ND	NA_	NA
Benzo(b)fluoranthene	ND	NA	ND	NA	ND	NA	NA
Benzo(k)fluoranthene	ND	NA	ND	NA	ND	NA	NA NA
Benzo(a)pyrene	ND	NA NA	ND	NA NA	ND	NA NA	NA NA
Benzoic acid	ND	NA NA	ND	NA NA	ND	NA NA	NA NA
Benzo(g,h,i)perylene	ND ND	NA	ND	NA	ND	NA	NA NA
Benzyl alcohol	ND	NA	ND	NA NA	ND	NA	NA
4-Bromophenylphenyl ether	ND	NA	ND	NA	ND	NA NA	NA
Butybenzylphthalate	ND	NA NA	ND	NA NA	ND	NA NA	NA
di-n-butyl phthalate	ND	NA NA	ND ND	NA NA	ND ND	NA NA	NA NA
Carbazole	ND	NA NA	ND	NA NA	ND	NA NA	NA NA
4-Chloroaniline	ND	NA NA	ND	NA NA	ND	NA NA	NA NA
bis(2-chloroethoxy)methane	ND ND	NA	ND	NA NA	ND	NA NA	NA NA
bis(2-chloroethyl)ether	ND	NA NA	ND	NA NA	ND	NA NA	NA NA
bis(2-chloroisopropyl)ether	ND	NA NA	ND ND	NA NA	ND	NA NA	NA NA
4-Chloro-3-methylphenol	ND	NA	ND	NA NA	ND	NA	NA

TABLE 3
GROUNDWATER ANALYTICAL RESULTS

Well Name	MW-1		MV	W-2.	MW-3	B-3	B-4
Date Sampled	1		1/16/99 7/7/99		1/16/99	10/21/98	10/21/98
Compound Name	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
2-Chloronaphthalene	ND	NA	ND	NA	ND	NA	NA
2-Chlorophenol	ND	NA	ND	NA NA	ND	NA.	NA NA
4-Chlorophenylphenyl ether	ND	NA NA	ND	NA	ND	NA NA	NA NA
Chrysene	ND	NA NA	ND	NA NA	ND	NA NA	NA NA
Dibenz(a,h)anthracene	ND	NA NA	ND	NA	ND	NA	NA NA
Dibenzofuran	ND	NA	ND	NA	ND	NA	NA NA
1,2-Dichlorobenzene	ND	NA	ND	NA	ND	NA	NA NA
1,3-Dichlorobenzene	ND	NA	ND	NA	ND	NA	NA
1,4-Dichlorobenzene	ND	NA	ND	NA	ND	NA	NA
3,3-Dichlorobenzidine	ND	NA	ND	NA	ND	NA	NA
2,4-Dichlorophenol	ND	NA	ND	NA	ND	NA	NA
Diethylphthalate	ND	NA	ND	NA	ND	NA	NA
2,4-Dimethylphenol	ND	NA	ND	NA	ND	NA	NA
Dimethyl phthalate	ND	NA	ND	NA	ND	NA	NA
4,6-Dinitro-2-methylphenol	ND	NA	ND	NA	ND	NA	NA
2,4-Dinitrophenol	ND	NA	ND	NA	ND	NA	NA
2,4-Dinitrotoluene	ND	NA	ND	NA	ND	NA	NA
2,6-Dinitrotoluene	ND	NA	ND	NA	ND	NA	NA
1,2-Diphenylhydrazine	ND	NA	ND	NA	ND	NA	NA
bis(2-ethylhexyl)phthalate	ND	NA	ND	NA	ND	NA	NA
Fluoranthene	ND	NA	ND	NA	ND	NA	NA
Fluorene	ND	NA	ND	NA	ND	NA NA	NA
Hexachlorobenzene	ND	NA	ND	NA	ND	NA	NA
Hexachlorobutadiene	ND	NA	ND	NA	ND	NA	NA
Hexachloroethane	ND	NA	ND	NA	ND	NA	NA
Hexachlorocyclopehtadiene	ND	NA	ND	NA	ND	NA	NA
Indeno(1,2,3-cd)pyrene	ND	NA	ND	NA	ND	NA	NA
Isophorone	ND	NA	ND	NA	ND	NA	NA
2-Methylnaphthalene	ND	NA	ND	NA	ND	NA	NA
2-Methylphenol	ND	NA	ND	NA	ND	NA	NA
4-Methylphenol	ND	NA	ND	NA	ND	NA	NA
Naphthalene	ND	NA	ND	NA	ND .	NA	NA
2-Nitroaniline	ND	NA	ND	NA	ND	NA	NA
3-Nitroaniline	ND	NA	ND	NA	ND	NA	NA
4-Nitroaniline	ND	NA	ND	NA	ND	NA	NA
Nitrobenzene	ND	NA	ND	NA	ND	NA	NA
2-Nitrophenol	ND	NA	ND	NA	ND	NA	NA
4-Nitrophenol	ND	NA	ND	NA	ND	NA	NA
N-nitrosodiphenylamine	ND	NA	ND	NA	ND	NA	NA
N-nitroso-di-n-propylamine	ND	NA	ND	NA	ND	NA	NA
Di-n-octyl phthalate	ND	NA	ND	NA	ND	NA	NA
Pentachlorophenol	ND	NA	ND	NA	ND	NA	NA
Phenanthrene	ND	NA	ND	NA	ND	NA	NA
Phenol	ND	NA	ND	NA	ND	NA	NA_
Pyrene	ND	NA	ND	NA	ND	NA	NA

TABLE 3
GROUNDWATER ANALYTICAL RESULTS

Well Name	MW-1		MV	V-2	MW-3	B-3	B-4
Date Sampled	1/16/99	7/7/99	1/16/99	7/7/99	1/16/99	10/21/98	10/21/98
Compound Name	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Pyridine	ND	NA	ND	NA_	ND	NA	NA
1,2,4-Trichlorobenzene	ND	NA	ND	NA	ND	NA	NA
2,4,5-Trichlorophenol	ND	NA	ND	NA	ND	NA	NA
2,4,6-Trichlorophenol	ND	NA	ND	NA	ND	NA	NA
General Chemistry							
Resistivity	0.74	NA	0.58	NA	0.53	NA	NA
Specific Gravity	0.982	NA	0.985	NA_	0.996	NA	NA
Chloride	128	NA	230	NA	195	230	2400
Carbonate (CaCO ₃)	ND	NA	ND	NA	ND	NA	NA
Bicarbonate (CaCO ₃)	332	NA	322	NA	370	NA	NA
pН	7.29	NA	7.51	NA	7.51	NA	NA
Sulfate	318	NA	372	NA	483	NA	NA
Total dissolved solids	890	NA	1190	NA	1340	1710	5460
Calcium	727	NA	578	NA	1255	NA	NA
Potassium	3	NA	30	NA	8	NA	NA
Sodium	144	NA	171	NA	310	NA	NA
Metals							
Silver	ND	NA	ND	NA	ND	NA	NA
Aluminum	12.3	NA	16.5	NA	32.7	NA	NA
Arsenic	0.019	NA	0.025	NA	0.028	NA	NA
Barium	0.87	NA	0.970	NA_	3.91	NA	NA
Cadmium	ND	NA	ND	NA	ND	NA	NA
Cobalt	ND	NA	ND	NA	ND	NA	NA
Chromium	ND	NA	0.02	NA	0.03	NA	NA
Copper	0.02	NA	0.02	NA_	0.02	NA	NA
Iron	9.34	NA	11.6	NA	26.4	NA	NA
Mercury	ND	NA	ND	NA	ND	NA	NA
Manganese	0.214	NA	0.288	NA	0.535	NA	NA
Molybdenum	ND	NA	ND	NA	0.03	NA	NA
Nickel	0.02	NA	ND	NA	0.05	NA	NA
Lead	0.005	NA	0.007	NA	0.013	NA	NA
Selenium	ND	NA	ND	NA	ND	NA	NA
Zinc	0.05	NA	0.04	NA	0.04	NA	NA

All results are reported in milligrams per liter (mg/L)

NA - Not analyzed

ND - Not detected

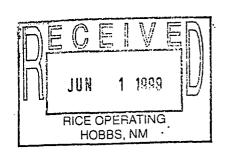
APPENDIX A

INTERIM ABATEMENT COMMUNICATIONS

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

May 24, 1999

<u>CERTIFIED MAIL</u> RETURN RECEIPT NO: Z 357 870 129


Carolyn Doran Haynes Operations Engineer Rice Operating Company 122 West Taylor Hobbs, New Mexico 88240

RE:

Stage 1 Abatement Plan Junction I-9 Release Site

NE 1/4 SE 1/4 Section 09-Ts19s-R38e Hobbs Salt Water Disposal System

Lea County, New Mexico

Dear Ms. Haynes:

The New Mexico Oil Conservation Division (NMOCD) is in receipt of Rice Operating Company's (ROC) letter dated April 23, 1999 concerning public notice requirements for the above captioned Stage 1 Abatement Plan. As of this date, NMOCD has not received any response to the public notices issued. The interim investigation and remediation activities conducted to date are satisfactory and the Stage 1 Abatement Plan i.e. (Investigation Plan) submitted on January 19, 1999 is hereby approved with the following conditions:

- 1. All final soil samples submitted for laboratory analyses shall be sampled for BTEX (8021), TPH (418.1 or 8015 GRO & DRO) and Chlorides.
- 2. ROC shall complete the new monitor well(s) as follows:
 - a. At least 15 feet of well screen shall be placed across the water table interface with 5 feet of the well screen above the water table and 10 feet of the well screen below the water table.
 - b. An appropriately sized gravel pack shall be set in the annulus around the well screen from the bottom of the hole to 2-3 feet above the top of the well screen.
 - c. A 2-3 foot bentonite plug shall be placed above the gravel pack.
 - d. The remainder of the hole shall be grouted to the surface with cement containing 3-5% bentonite.
 - e. A concrete pad shall be placed at the surface around the well. The well shall be installed with a suitable protective locking device.
 - f. The well(s) shall be developed after construction using EPA approved procedures.

- 3. No less than 48 hours after the well(s) are developed, ground water from all monitor well(s) shall be purged, sampled and analyzed for concentrations of benzene, toluene, ethylbenzene, xylene, polycyclic aromatic hydrocarbons (PAH), total dissolved solids (TDS) and New Mexico Water Quality Control Commission (WQCC) metals and major cations and anions using EPA approved methods and quality assurance/quality control (QA/QC) procedures.
- 4. All wastes generated during the investigation shall be disposed of at an OCD approved facility.
- 5. ROC shall submit the results of the investigation to the OCD Santa Fe Office by July 23, 1999 with a copy provided to the OCD Hobbs District Office and shall include the following investigative information:
 - a. A description of all investigation, remediation and monitoring activities which have occurred including conclusions and recommendations.
 - b. A geologic/lithologic log and well completion diagram for each monitor well.
 - c. A water table potentiometric map showing the location of the leaks and spills, excavated areas, monitor wells, and any other pertinent site features as well as the direction and magnitude of the hydraulic gradient.
 - d. Isopleth maps for contaminants of concern which were observed during the investigations.
 - e. Summary tables of all ground water quality sampling results and copies of all laboratory analytical data sheets and associated OA/OC data taken within the past year.
 - f. The quantity and disposition of all recovered product and/or wastes generated.
- 6. ROC will notify the OCD Santa Fe office and the OCD District office at least 48 hours in advance of all scheduled activities such that the OCD has the opportunity to witness the events and/or split samples during OCD's normal business hours.

Please be advised that NMOCD approval of this plan does not relieve ROC of liability should their investigations and/or operations fail to adequately investigate and/or remediate contamination that poses a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve ROC of responsibility for compliance with any other federal, state, or local laws and/or regulations.

If you have any questions, please contact Wayne Price of my staff at (505) 827-7155.

Sincerely,

Roger C. Anderson

Environmental Bureau Chief

RCA/wp

cc: OCD Hobbs Office

Bill McNeil-Landowner

RICE Operating Company

122 West Taylor • Hobbs, New Mexico 88240 Phone: (505)393-9174 • Fax: (505) 397-1471

CERTIFIED MAIL
RETURN RECEIPT NO: P 622 726 279

January 19, 1999

Mr. Wayne Price New Mexico Energy and Minerals Department Oil Conservation Division 2040 South Pacheco Street Santa Fe, New Mexico 87505

Re:

Stage I Abatement Plan Junction I-9 Release Site Unit Letter I, Section 9 of T19S R38E Hobbs Salt Water Disposal System Lea County, New Mexico

Mr. Price:

Enclosed is the Stage I Abatement Plan required by your letter dated December 17, 1998. I have also enclosed a draft Notice of Publication. Within 15 days after the New Mexico Oil Conservation Division (OCD) determines that the Stage I Abatement Plan is administratively complete, Rice Operating Company will issue public notice in a form approved by OCD in a newspaper of general circulation in the county in which the release occurred, and in a newspaper of general circulation in the State. Prior to public notice, Rice shall give written notice, as approved by the OCD, of this Stage I Abatement Plan to the following persons:

- Surface owners of record within 1 mile of the perimeter of the geographic area where the standards and requirements are exceeded.
- The County Commission for the geographic area where the standards and requirements are exceeded is located.
- The appropriate city official(s) for the geographic area where the standards and requirements are exceeded is located.

- Those persons, as identified by the Director, who have requested notification.
- The New Mexico Trustee for Natural Resources, and any other local, state, or federal governmental agency affected, as identified by the Director, which shall be notified by certified mail.
- The appropriate Governor or President of any Indian Tribe, Pueblo or Nation if the geographic area where the standards and requirements are exceeded is located or partially located within tribal boundaries or within 1 mile of the tribal boundaries, who shall be notified by certified mail.

Please contact me at (505) 393-9174 with your comments or suggested changes.

Sincerely,

F. Wesley Root Projects Manager

Enclosure: Notice of Publication

7. Wesley Post

NOTICE OF PUBLICATION

State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division

Notice is hereby given that pursuant to New Mexico Oil Conservation Division Regulations, the following Stage I Abatement Plan has been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7131:

Rice Operating Company, F. Wesley Root (505) 393-9174, 122 West Taylor, Hobbs, New Mexico 88240, has submitted a Stage I Abatement Plan Proposal for Pipeline Junction I-9, Hobbs Salt Water Disposal System, 0.6 miles southwest of Hobbs in the NE/4, SE/4 of Section 09, Township 19 South, Range 38 East, Lea County, New Mexico. The site is approximately one acre where Rice Operating Company operates a saltwater disposal pipeline. Light Non-Aqueous Phase Liquid (LNAPL) has been observed on the ground water. The Stage I Abatement Plan presents the following subsurface investigation activities: determine site geology and hydrogeology, and physical properties of the aquifer; conduct a registered water well search within a one mile radius of the site; installation of monitoring wells to delineate impact at the site; collect soil and groundwater samples for laboratory analysis from each monitor well to determine the magnitude of impact to ground water; survey all well locations to establish a relative datum; obtain depth to ground water measurements; calculate the ground water gradient and flow direction; and prepare a report summarizing field activities and laboratory results.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The Stage I Abatement Plan may be viewed at the above address or at the Oil Conservation Division District Office, 1000 West Broadway, Hobbs, New Mexico 88240, Telephone (505) 392-4046, between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed Stage I Abatement Plan, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him.

RICE Operating Company

122 West Taylor • Hobbs, NM 88240 Phone: (505) 393-9174 • Fax: (505) 397-1471

April 23, 1999

Mr. Wayne Price NM Energy, Minerals, and Natural Resources Department Oil Conservation Division, Environmental Bureau 2040 S. Pacheco Santa Fe, NM 87505

RE:

Stage I Abatement Plan Junction I-9 Release Site Unit Letter I, Section 9 of T19S, R38E Hobbs Salt Water Disposal System Lea County, New Mexico

Mr. Price:

Attached please find the proof of notification for Rice Operating Company's Stage I Abatement Plan for the junction I-9 Release Site. Included in this package are the affidavits of publication from the three newspapers that were required: Albuquerque Journal, Hobbs News Sun, Lovington Daily Leader; copies of the certified mail return cards from the notification mailed to owners of record within one mile radius of the site; and copies of the certified mail return cards from the notification mailed to "those persons as identified by the Director, who have requested notification."

The public notice was published in these three newspapers on April 9, 1999. It is understood that there is a 30-day waiting period for public comment, and that after the 30 days, the Stage I Abatement Plan will be reviewed for approval or approval with conditions. Rice Operating Company will expect to hear from you the week of May 10, 1999.

Sincerely,

Carolyn Doran Haynes Operations Engineer

Parolyn Rosan Hayner

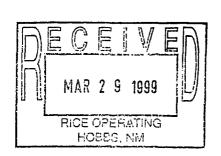
Attachment

Cc: KH, JC, LG, file, Mr. Chris Williams, OCD Hobbs District Office

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

March 25, 1999

CERTIFIED MAIL RETURN RECEIPT NO: Z 357 870 113


Carolyn Doran Haynes Operations Engineer Rice Operating Company 122 West Taylor Hobbs, New Mexico 88240

RE: Stage I Abatement Plan

Junction I-9 Release Site

NE 1/4 SE 1/4 Section 09-Ts19s-R38e Hobbs Salt Water Disposal System

Lea County, New Mexico

Dear Ms. Haynes:

The New Mexico Oil Conservation Division (OCD) has reviewed Rice Operating Company 's (ROC) January 19, 1999 Stage I Abatement Plan for the above referenced site. This document contains ROC's Stage 1 Abatement Plan Proposal for investigating ground water contamination resulting from a salt water disposal pipeline spill at ROC's Junction I-9 Release site.

The OCD has determined that the Stage 1 Abatement Plan Proposal is administratively complete. Before the OCD can issue approval of the Stage 1 proposal, the OCD requires that:

- 1. ROC issue by April 9, 1999 the attached public notice of the Stage 1 proposal in the Albuquerque Journal, Hobbs News Sun and the Lovington Daily Leader pursuant to OCD Rule 19.G.(2).
- 2. Prior to issuing the public notice, ROC will also issue written notice of the Stage 1 proposal pursuant to OCD Rule 19.G.(1). For written notification of "those persons, as identified by the Director, who have requested notification" pursuant to OCD Rule 19.G.(1).(d), enclosed you will find a 3.5" disk containing a "WordPerfect" listing of those persons.

Please provide the OCD with proof of notice upon completing issuance of the written and public notice. If you have any questions, please contact Wayne Price of my staff at (505) 827-7155.

Sincerely,

Roger C. Anderson

Environmental Bureau Chief

xc: Chris Williams, OCD Hobbs District Office

Bill McNeill- Landowner

NOTICE OF PUBLICATION

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Oil Conservation Division Regulations, the following Stage 1 Abatement Plan Proposal has been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7131:

Rice Operating Company, Carolyn Doran Haynes, Operations Engineer, Telephone (505)393-9174, 122 West Taylor, Hobbs, New Mexico 88240, has submitted a Stage 1 Abatement Plan Proposal for the Pipeline Junction I-9, Hobbs Salt Water Disposal System, located approximately .6 miles southwest of Hobbs, NM in the NE 1/4, SE 1/4 of Section 09, Township 19 South, Range 38 East, NMPM, Lea County, New Mexico. Rice Operating Company operates a salt water disposal pipeline at the site. Phase-separated hydrocarbon (PSH) has been observed on the ground water. The Stage 1 Abatement Plan Proposal presents the following subsurface investigation activities: determine site geology and hydrogeology; conduct a registered water well search within a 1 mile radius of the site; install a minimum of 3 monitoring wells; if necessary, install additional wells; collect soil samples for field screening and/or laboratory analysis from each boring; collect ground water samples for laboratory analysis from each monitoring well; obtain depth to ground water measurements and calculate the ground water gradient and direction; survey all well locations by a professional land surveyor registered in the State of New Mexico; and prepare a report summarizing field activities and laboratory results.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The Stage 1 Abatement Plan Proposal may be viewed at the above address or at the Oil Conservation Division Hobbs District Office, 1625 N. French Drive, Hobbs, New Mexico 88240, Telephone (505) 393-6161 between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed Stage 1 Abatement Plan Proposal, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which written comments may be submitted.

Fax

To:

Mr. Chris Williams

From: F. Wesley Root

NMOCD District I Office

Fax:

(505) 393-0720

Pages 1

Phone (505) 393-6161

Date: 01/14/99

Re:

Interim Abatement

CC:

Mr. Roger Anderson / Wayne Price

Jct I-9, 09-T19S-R38E

NMOCD Environmental Bureau

Lea County, NM

NMOCD Santa Fe Office

• Comments: 48 hour Ground Water Sampling Notification.

The three monitor wells installed on January 7 and 8, 1999 at the above listed site will be sampled by an independent contractor on January 16, 1999. Sampling will be conducted pursuant to item 4 of the NMOCD abatement approval letter dated December 17, 1998 with the following exception. A separate PAH analysis will not be performed since PAH compounds will be included in the volatile and semi-volatile analysis.

7. Wely Root

TRANSACTION REPORT

Transmission

Transaction(s) completed

NO. TX DATE/TIME

DESTINATION

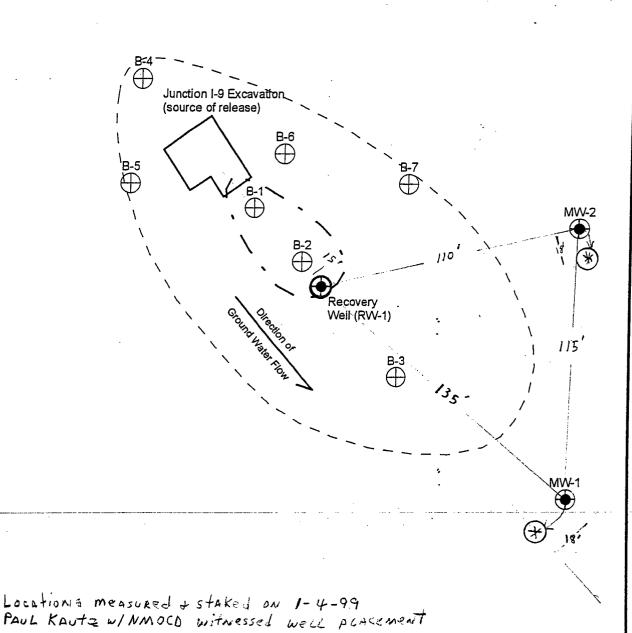
DURATION PGS.

RESULT · MODE

206 JAN. 6 15:46

15053930720

0, 00, 38,


001

ОК

Normal

RICE OPERATING COMPANY 122 WEST TAYLOR HOBBS, NM 88240 Phone: (505) 393-9174 Fax: (505) 397-1471

SITE MAP

Jct. I-9 Release Site 09-T19S-R38E, Hobbs SWD System Lea County, New Mexico

> Rice Operating Company 122 W. Taylor Hobbs, NM 88240

Legend

Proposed location for recovery well / monitor well

Soil boring completed in 10 / 98

Estimated boundary of crude oil plume

Estimated boundary of dissolved hydrocarbon plume Map Scale

40'

RICE Operating Company

122 West Taylor • Hobbs, New Mexico 88240 Phone: (505)393-9174 • Fax: (505) 397-1471

December 18, 1998

Mr. Wayne Price New Mexico Energy and Minerals Department Oil Conservation Division 2040 South Pacheco Street Santa Fe, New Mexico 87505

Re:

Junction I-9 Release Site

Unit Letter I, Section 9 of T19S R38E Hobbs Salt Water Disposal System Lea County, New Mexico

Mr. Price:

Thank you for your prompt review and approval of our request to initiate interim abatement measures at the above referenced site. However, based on the contents of your approval letter, there apparently has been a slight misunderstanding as to our conversations on December 15 and 17, 1998. Specifically, the reason we want to initiate interim abatement, why we would like to include monitoring wells, and the number of wells we want to install need to be clarified.

Rice requested interim abatement because it just makes good sense to begin abatement of the crude oil floating on the ground water; we are concerned that the Stage I Abatement approval process will take several months, and pursuant to New Mexico Oil Conservation Division (NMOCD) Rule 19.D.(g), we are allowed, with NMOCD approval, to begin abating water pollution while abatement plan approval is pending.

-Rice Operating Company wishes to install a total of three wells, one recovery well and two down gradient monitoring wells as part of the interim abatement measures. As I stated on December 15th, the direction of ground water flow at the site could be accurately determined if there are three wells present. This information would allow us to develop a more accurate Stage I Abatement Plan.

While a potential for the release to have impacted water wells does exist, visual inspection of the two water wells we have identified within a one mile radius of the site to date showed no evidence of adverse impact. Both water wells are used to supply a stock tank. The well I discussed with you on December 15th is located approximately ¼ of a mile northwest of and in an apparent up gradient position relative to the site. The well I found on December 16th is located ¾ of a mile down gradient from the release site.

At this time there is no reason to assume that either water well has been adversely affected by our release and their existence had absolutely no bearing on Rice's decision to request installation of monitoring wells. The location of the two wells is shown on the enclosed topographic map.

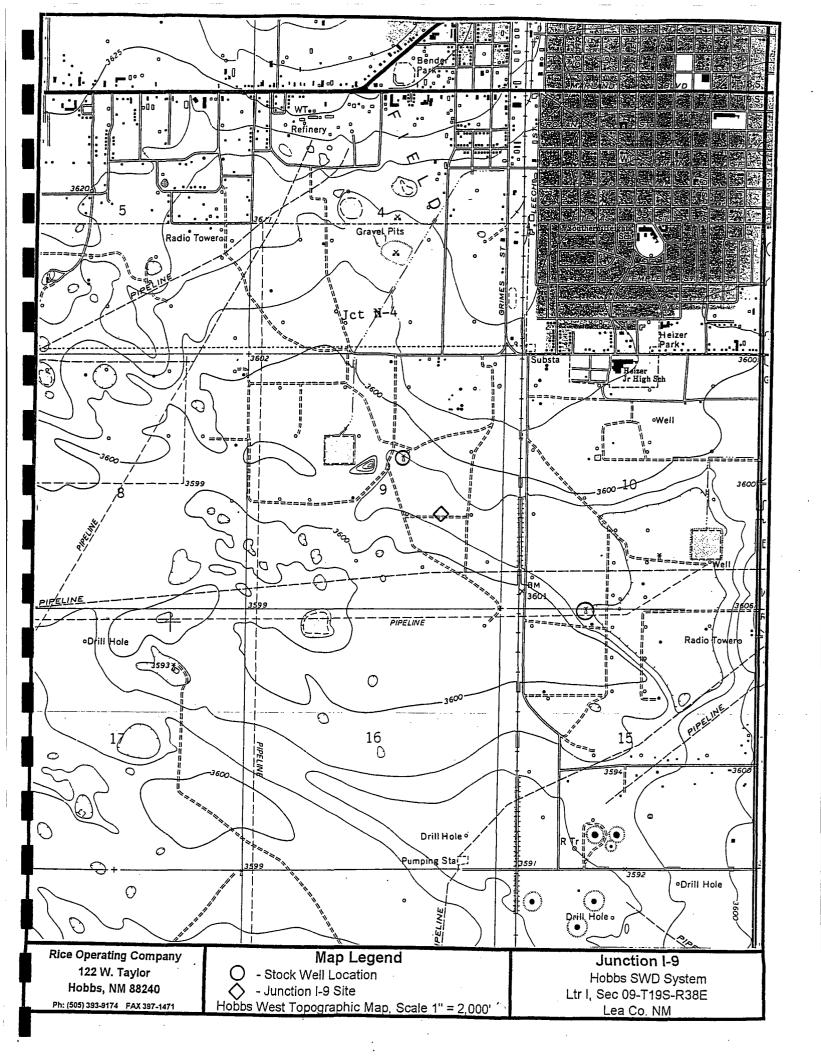
Therefore, while we appreciate the decision to allow three monitoring wells to be installed, the combination of one recovery well and two monitor wells should be more than adequate for Rice to develop the Stage I Abatement plan. The three wells will be installed pursuant to the conditions specified in the approval letter. A site map showing the proposed locations for the recovery well (RW-1) and two monitoring wells (MW-1 and MW-2) is enclosed.

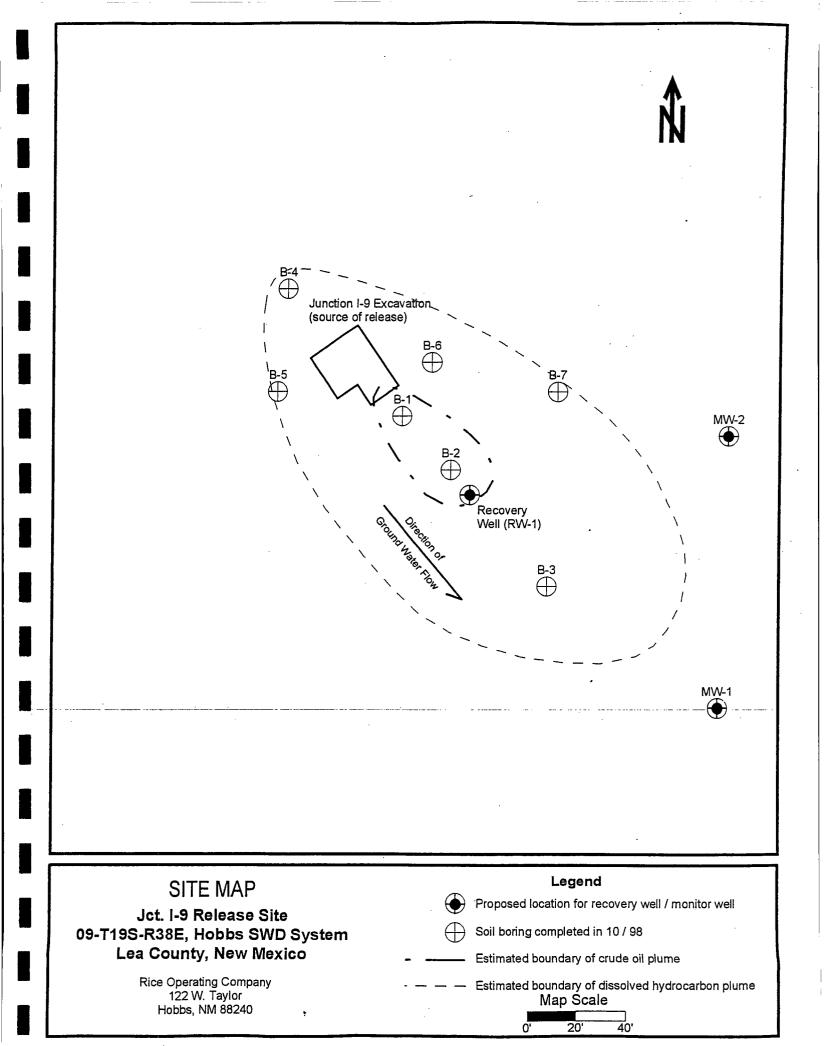
The two monitoring wells will be initially sampled for the parameters included in condition 4 of your approval letter. If these results are below regulatory limits, Rice requests that the NMOCD allow parameters, such as metals, be removed from future testing.

If you have any questions please feel free to call.

Sincerely,

F. Wesley Root


Projects Manager


7. Welesley Root

Enclosures

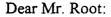
cc. Mr. Chris Williams, NMOCD District I Office

KH. File

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

CERTIFIED MAIL RETURN RECEIPT NO: P 288 259 090

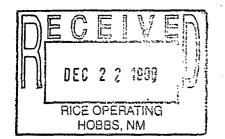
December 17, 1998


Mr. F. Wesley Root Projects Manager Rice Operating Company (ROC) 122 West Taylor Hobbs, New Mexico 88240

RE: Abatement Plan (AP-8) Requirement

Rice Operating Company

Hobbs Salt Water Disposal System


UL I-Sec 9-Ts19s-R38e Lea County, New Mexico

New Mexico Oil Conservation Division (NMOCD) is in receipt of your letter sent by fax dated December 15, 1998 requesting permission to initiate emergency interim abatement measures at the above referenced facility. NMOCD also acknowledges your verbal request pursuant to our telephone conversation on December 17, 1998 to allow three monitor wells to be installed in addition to the one recovery well. It is NMOCD's understanding this decision was made after you confirmed that there is a domestic water well located down gradient from the spill site.

Therefore due to the potential for impacts on down gradient water wells and pursuant to NMOCD Rule 19.D.(g) your request is hereby approved subject to the following conditions:

- 1. All recovery and monitor wells shall be constructed per your drawing, except monitor wells can have different casing size. The annulus above the bentonite plug shall be grouted to the surface with an approved type cement grout containing 3-5% bentonite. Boring logs shall be recorded with all appropriate information.
- 2. Product recovery records shall be maintained and shall include volumes recovered, the product thickness measured before each recovery event, and the disposition of all waste generated. These Field records shall be maintained and submitted in subsequent reports. ROC shall properly retain a sample of the recovered oil for future possible fingerprinting.

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

- 3. NMOCD will allow one recovery well as proposed, and three monitor wells strategically located to determine the groundwater gradient and located a sufficient distance from the recovery well to make a preliminary determination of the down gradient extent of contamination.
- 4. Initial groundwater sampling analysis for all monitor wells shall include volatile organics (Method 8060), Semi-volatile organics (Method 8270), PAH's (Method 8310), WQCC Metals, and General Chemistry (PH, TDS, Conductivity, Major Cations and Anions).
- 5. ROC shall notify the District office 48 hours in advance before commencing any significate activities.
- 6. The above emergency action shall not interfere with the normal abatement plan process pursuant to NMOCD Rule 19.

Please be advised that NMOCD approval of this emergency plan does not relieve ROC of liability should their operations fail to adequately investigate and remediate contamination that poses a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve ROC of responsibility for compliance with any other federal, state, or local laws and/or regulations.

If you require any further information or assistance please do not hesitate to write or call me at (505-827-7155).

Sincerely Yours,

Wayne Price-Environmental Bureau

Wagne Pine

cc: Chris Williams-NMOCD District I Supervisor

Bill McNeill-Hobbs

file: O/wp/riceaba1

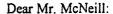
OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

HOBES, NM

Certified Mail Return Receipt No. Z 357 870 111

December 16, 1998

Mr. Bill McNeill P.O. Box 1058 Hobbs, NM 88241 505-392-8790


Re:

Abatement Plan (AP-8) Requirement

Rice Operating Company

Hobbs Salt Water Disposal System

Lea County, New Mexico

New Mexico Oil Conservation Division (NMOCD) hereby gives notice that NMOCD has required Rice Operating Company to submit an Abatement Plan for the above referenced facility located in Unit Letter I, Section 9-Ts 19s-R38e, pursuant to NMOCD Rule 19 (Prevention and Abatement of Water Pollution). A copy of Rule 19 has been enclosed for your information.

Pursuant to our telephone conversation on December 15, 1998 NMOCD understands that you are the current land owner and that one of your down gradient water wells approximately 1/4 mile away which is used for watering domestic stock has been impacted from this spill. We understand your technical adviser has sampled this well to verify this fact and has indicted to you that ground water movement could be as high as three feet per day. In order to expedite this matter NMOCD respectfully requests that you send us a map showing the location of your well in reference to the spill, the analytical results of any water quality sampling, and information from your technical adviser as to the ground water flow rate.

NMOCD understands you wish to intervene in this case and will copy you on all correspondence concerning this issue. NMOCD is very concerned about any oilfield groundwater contamination in the state of New Mexico and requires that a responsible person abate pollution in accordance with all applicable rules and regulations.

If you require any further information or assistance please do not hesitate to write or call me at (505-827-7155).

Sincerely Yours,

Wayne Price-Environmental Bureau

Wayne Price

cc: Roger Anderson-Environmental Bureau Chief, Santa Fe, NM

Lori Wrotenbery-NMOCD Director

Mr. Wes Root-Rice Operating Co.-Hobbs

OCD District I Office-Hobbs

attachments-1

file: O/wp/mcneille

RICE Operating Company

122 West Taylor • Hobbs, New Mexico 88240 Phone: (505)393-9174 • Fax: (505) 397-1471

December 15, 1998

Mr. Wayne Price New Mexico Energy and Minerals Department Oil Conservation Division 2040 South Pacheco Street Santa Fe, New Mexico 87505

Re:

Junction I-9 Release Site

Unit Letter I, Section 9 of T19S R38E Hobbs Salt Water Disposal System

Lea County, New Mexico

Mr. Price:

Rice Operating Company requests that the New Mexico Oil Conservation Division approve the installation of a recovery well at the above listed site as an interim abatement measure.

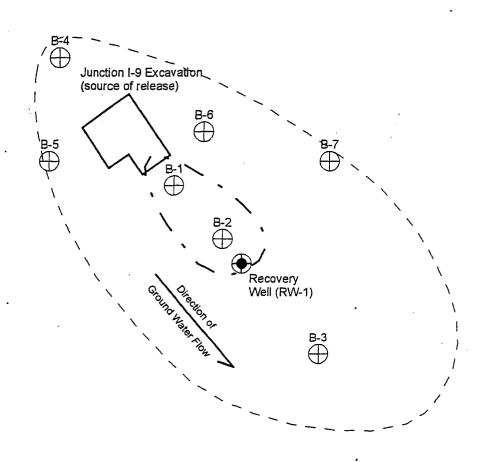
As we discussed during our telephone conversation this morning, the well would be used to recover crude oil floating on top of the water table at the site until an abatement plan pursuant to 19 NMAC 15.A.19 can be approved and implemented. A site map showing the proposed location for the recovery well (RW-1) and well construction diagram are enclosed.

Crude oil would be recovered by manually bailing the well a minimum of three days per week. The initial bailing schedule will be Monday, Wednesday, and Friday. After measuring the volume of crude oil recovered during each bailing event, the recovered fluids will be placed back into the Hobbs Salt Water Disposal System for disposal. A monthly summary of the crude oil volume recovered, including a cumulative total, will be prepared and kept on file at our Hobbs Office.

Your prompt response to this request will greatly assist our abatement efforts. If you have any questions please feel free to call.

Sincerely,

F. Wesley Root


F. Wesley Root Projects Manager

Enclosure

cc. Mr. Chris Williams, NMOCD District I Office

KH. File

SITE MAP

Jct. I-9 Release Site 09-T19S-R38E, Hobbs SWD System Lea County, New Mexico

Rice Operating Company 122 W. Taylor Hobbs, NM 88240

Legend

Proposed location for recovery well

Soil boring completed in 10 / 98

Estimated boundary of crude oil plume

Estimated boundary of dissolved hydrocarbon plume Map Scale

40'

Comparaction Diagram Flush Mounted Recovery Well Junction I-9 Release Site Unit Ltr. I, 09-T19S-R38E Installation Date: Monitor Well Number: Job Number: Hobbs SWD System, Lea Co. NM RW-1. Top of Water Elevation: Casing Size: Bore Size: Casing Elevation: Screen Size: 40 feet 7-inches 4-INCH PVC 0.02-INCh SLot Ground Surface Locking Monitor Well Cap Top of Casing (25') (30')
Depth to Top of
Static Water Table

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

CERTIFIED MAIL RETURN RECEIPT NO: P 288 259 088

Mr. F. Wesley Root Projects Manager Rice Operating Company (ROC) 122 West Taylor Hobbs, New Mexico 88240

RE: Abatement Plan (AP-8) Requirement

Rice Operating Company

Hobbs Salt Water Disposal System

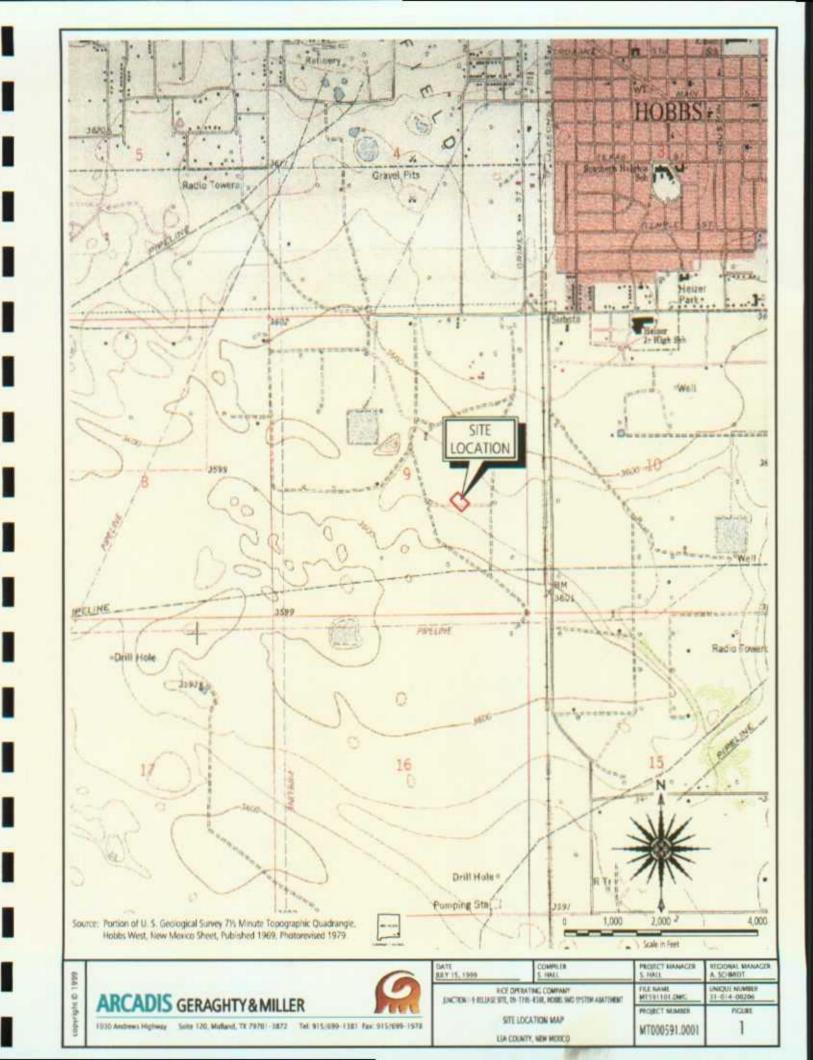
Lea County, New Mexico

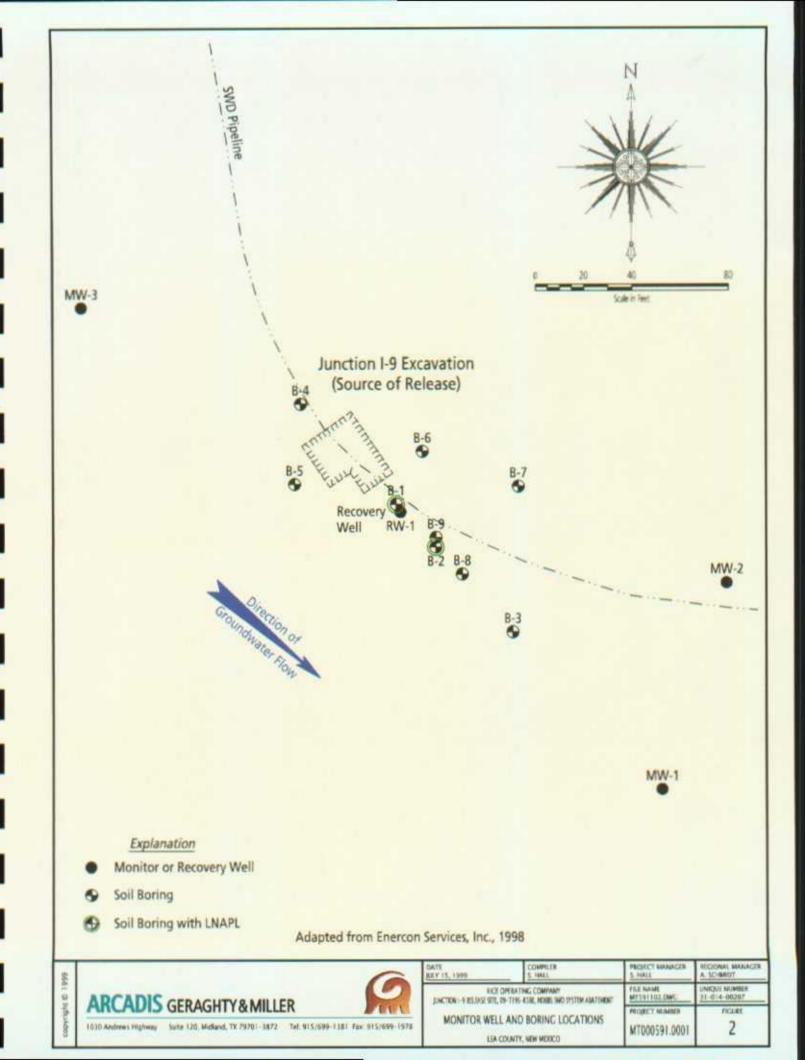
Dear Mr. Root:

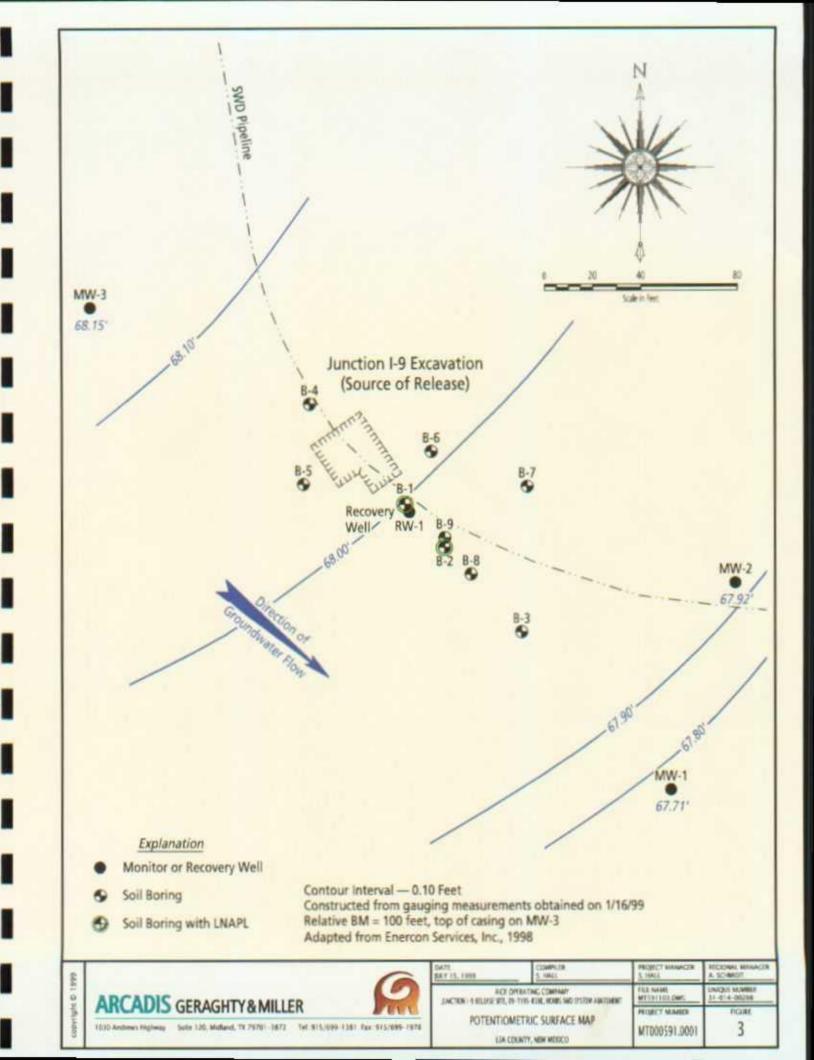
The New Mexico Oil Conservation Division (OCD) has reviewed Rice Operating Company's (ROC) Release Notification letter dated October 22, 1998 concerning the discovery of hydrocarbon-impacted ground water on October 20, 1998 located at ROC's Hobbs Salt Water Disposal System Unit letter I, Section 9, Township 19 south, Range 38 east in Lea County, New Mexico.

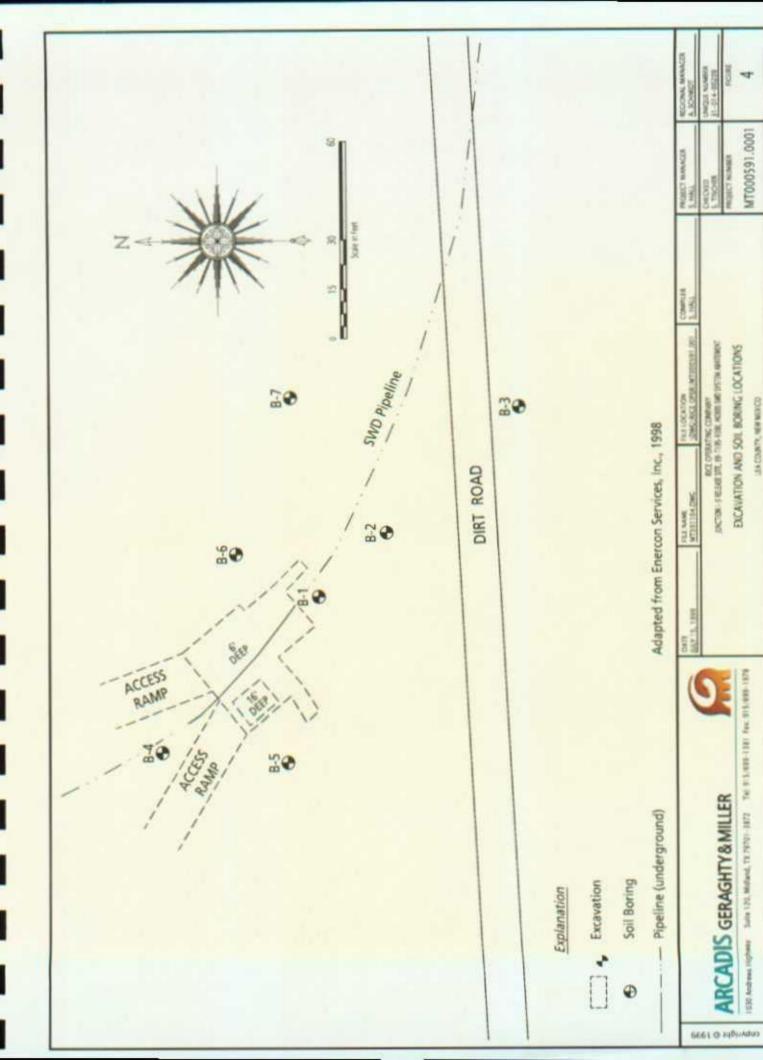
Pursuant to 19 NMAC 15.A.19.C.1, the OCD requires an abatement plan for the ROC site to abate ground water pollution. To initiate the abatement plan process, the OCD requires that ROC submit to the OCD by January 20, 1999 a Stage 1 abatement plan investigation proposal pursuant to OCD Rule 19.E.1. and OCD Rule 19.E.3.

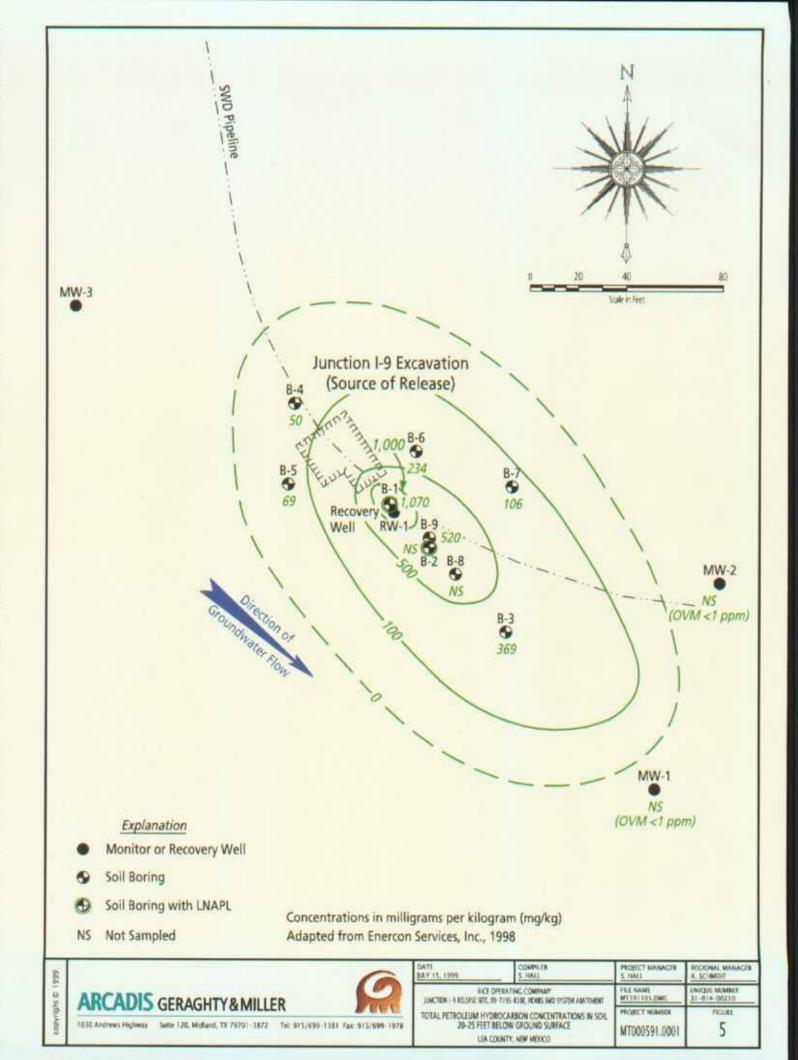
If you have any questions, please contact Wayne Price of my staff at (505) 827-7155.

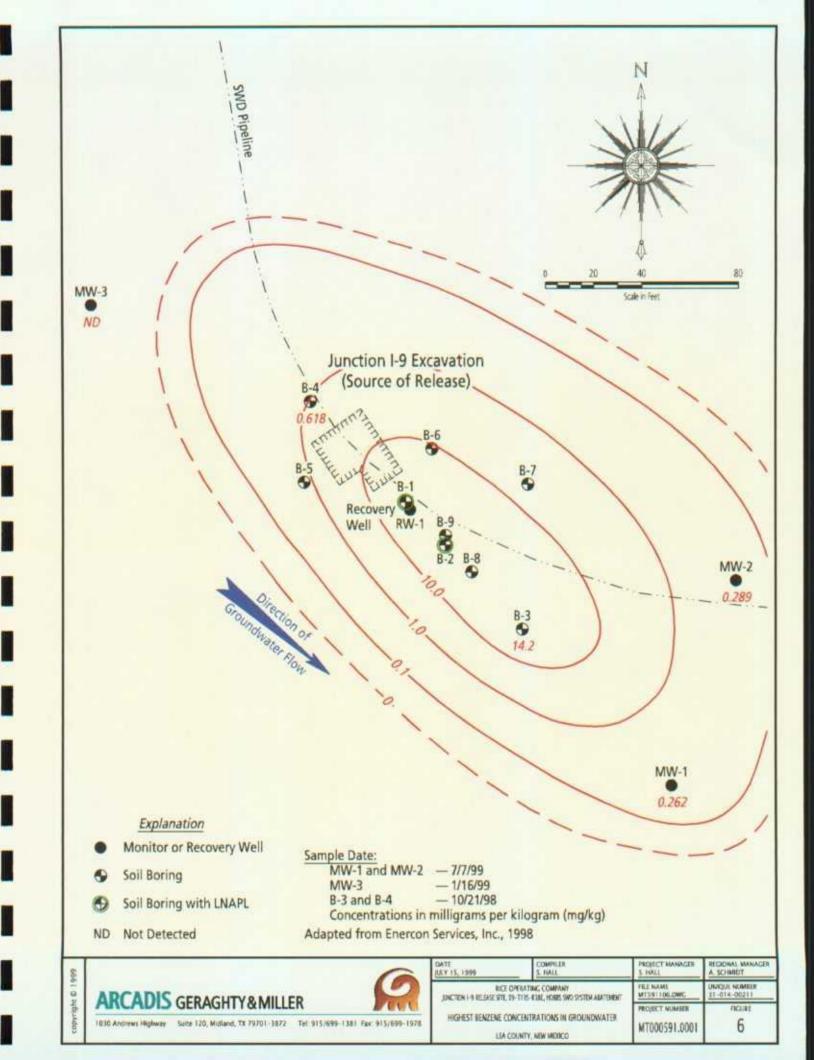

Sincerely,


Roger C. Anderson


Environmental Bureau Chief


xc: Chris Williams-NMOCD District I Supervisor





APPENDIX B BORING LITHOLOGY LOGS

ENERCON SERVICES, INC. RECORD OF SUBSURFACE EXPLORATION 2775 VILLA CREEK, SUITE 120 DALLAS, TX 75234-7420 Well/Boring #: Project #: EV-958 Date Drilled: 10/20/98 West Texas Water Junction I-9 Drilling Air Rotary Drilling Project: Hobbs SWD System Company: Well Service Method: Lea County, New Mexico Driller: Bernie Logged By: SAL SAMPLE REMARKS/SAMPLE SAMPLE OVA DEPTH SOIL DESCRIPTION NUMBER/ (FEET) TYPE (PPM) DESCRIPTION TIME 0 Brown sandy top soil to 6" Brown silty fine SAND 6" to 2 White to ian caliche-soft crumbly 1/8:45 Sample 1 collected from 4' to 5' using a split Light tan caliche with tine sand 5 spoon sampling device. Sample was light tan to white caliche. 2 / 8:55 Sample 2 collected from 10' to 12' using a 10 Light tan caliene with fine tan sand split spoon. Sample was light tan with from 10' to 15'. some gray staining. Some odor. 3 / 9:00 Sample 3 collected from 15' to 16' using Light tan fine caliche and sand a split spoon. Sample was light tan caliche stained gray, 15' to 20'. and fine sand stained gray. Strong odor. 4/9:10 SS Sample 4 collected from 20' to 20'.6" using 20 a split spoon. Sample was hard light blue Light blue caliche with blue stained chert, very hard from 20' to stained caliche and chert. Some odor. approximately 20.6 feet. Then sandy tan to tan and gray stained layer to 25'. 5/9:40 Core Sample 5 collected from 25' to 26' using 25 Caliche stained blue-gray, some fine a split spoon. Sample was soft caliche and sand tan to gray from 25' to fine sand stained gray. Strong odor. approximately 28'. Hard 679:50 Core Sample 6 collected at 28' using a core Hard red chert stained blue-gray. sampling tool. Sample was hard red chert Caliche stained gray from 28' to 30'. and caliche stained blue-gray. Strong odor. 30 Sample 7 collected at 30' using a core 77 10:00 Core Caliche and sand stained gray sampling tool. Sample was power caliche from 30' to approximately 32'. stained gray. Some odor. 110 87 10:10 Core Sample 8 collected at 32' using a core Light tan caliche with chips of pinksampling tool. Sample was light tan sand red chert and no odor from 32' to 34'. and caliche. No staining and no odor. Total depth of boring, 34 feet. Depth to groundwater, 31.6 feet measured on 10/21/98. Phase-separated hydrocarbon (PSH), 0.8 feet, measured on 10/21/98.

ABBREVIATIONS AND SYMBOLS

SS - Driven Split Spoon

ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

THD - Texas Highway Department Cone

CT-5' - Continuous Sampler

HSA - Hollow Stem Auger CFA - Continuous Flight Augers

DC - Driving Casing

						
ENE	ERCON SERVICES, INC.					
2775	VILLA CREEK, SUITE 120	RE	CORD (F SU	BSURFACE EXPLORAT	TION
l	DALLAS, TX 75234-7420					
Project i		Well/Borin				0/20/98
	Junction I-9	Drilling	West Texa	s Water	Drilling Air Rota	ary
Project:	Hobbs SWD System	Company:	Well Servi	ce	Method:	
	Lea County, New Mexico	Driller:	Bernie		Logged By: SAL	
DEPTH	7	SAMPLE	SAMPLE	OVA	REMARKS/SAMP	LE
		NUMBER/	TYPE	(PPM)	•	لل ا
(FEET)		TIME	TIPE	(PPIVI)	DESCRIPTION	
o	Brown sandy top soil to 6"	-{	}			0
	Drown sailey top son to o					
	Brown silty fine sand 6" to 2"] . i				
	White to tan caliche-soft crumbly					
5	from 2' to 5' Light tan to white caliche with fine	1 / 10:45	SS	0	Sample 1 collected from 5' to 6' using a spi spoon sampling device. Sample was light	
	sand, crumbly, soft, 5' to 10'.] ;			tan to white, soft, crumbly caliche.	
_	1.	i				
	1	2 / 10:50	SS	0	Sample 2 collected from 10' to 12' using a	
10	Light tan caliche with tine tan sand,			<u>_</u>	split spoon. Sample was light tan	10
_	crumbly and soft, from 10' to 15'.		1		caliche. No odor.	
			- 1			
		37 10:55	Core	2	Sample 3 collected from 15' to 16' using	15 —
——— 15 ——	Hard white caliche and tan fine sand.				a coring tool. Sample was light tan/white	
	Some blue-gray color, 15' to 20'.	}			caliche and fine sand stained gray. No odor	i
						-
		4711:00	Core		Sample 4 collected from 20' to 21' using a	20
	Hard caliche stained blue-gray, 20 to 23'. Strong odor. Then hard blue-gray				coring tool. Sample was hard blue-gray stained caliche. Strong odor.	l
_	stained caliche and chert, 23' to 25'.			ļ	amilia adiono. Saprig adot.	
]	5/11:10	Core	274	Sample 5 collected from 25' to 26' using a	4 = =
25	Hard caliche stained blue-gray with	3711.10	Core		coring tool. Sample was hard caliche and	25
_	blue-gray stained chert mixed in, 25'	1	(chert stained blue-gray. Strong odor.	
_	to 28'. Light tan caliche stained blue-gray	ł		I		1 -
	with chips of chert, 28' to 30'.	6711:20	Core	174	Sample 6 collected at 30' to 31' using a core	11
30 -	Light tan caliche stained gray with				sampling tool. Sample was white caliche	30
_	thin black lines in the center of the core, from 30' to 33'.	1			stained gray with black lines running through the sample core. Some odor.	l —
-	55.6, 110111 55 10 55 .			ľ	through the sample core. Some odor.	-
- 35]			-	•	35
-					······································	1
-						
40	Total depth of boring, 33 feet. Depth to groundwater, 31.6 feet meas	ured or 10/21/6	18			40
	Phase-separated hydrocarbon (PSH),			8.		
	(x, 0xx/)					

ABBREVIATIONS AND SYMBOLS

SS - Driven Split Spoon
ST - Pressed Shelby Tube
CA - Continuous Flight Auger
RC - Rock Core
THD - Texas Highway Department Cone
CT-5' - Continuous Sampler

HSA - Hollow Stem Auger CFA - Continuous Flight Augers DC - Driving Casing MD - Mud Drilling

2775	RCON SERVICES, INC. VILLA CREEK, SUITE 120 ALLAS, TX 75234-7420	RE	CORD C	F SU	BSURFACE EXPLORAT	ΓΙΟΝ
Project #:	EV-958	Well/Borin			B-3 Date Drilled: 10	0/20/98
Project:	Junction I-9 Hobbs SWD System	Drilling Company:	West Texa Well Servi		Drilling Air Rota Method:	ıry
-	Lea County, New Mexico	Driller:	Bernie	-	Logged By: SAL	
DEPTH (FEET)	SOIL DESCRIPTION	SAMPLE NUMBER/ TIME	SAMPLE TYPE	OVA (PPM)	•	LE
o 	Brown sandy top soil to 6". Brown silty fine sand 6" to 2".			·		0 -
5 	Light tan caliche 2' to 15'. No evidence of staining and no odor.		·			5 —
10				·		10 —
_ _],	Light tan soft caliche and tine sand with intermittent hard layers and no evidence of staining from 15' to approximately 25'.	1 / 14:05	Core	2.2	Sample I collected at 15' using a coring tool. Sample was light tan/white caliche and fine sand no staining. No odor.	15 —
20		2/14:10	Core	1.3	Sample 2 collected at 20' using a coring tool. Sample was light tan and soft. No stain. No odor.	20 —
25 I	Light tan caliche stained blue-gray. Staining color became darker blue-gray from 25' to approximately 30'.	3 / 14:20	Core	214	Sample 3 collected at 25' using a coring tool. Sample was crumbly caliche stained blue-gray. Strong odor.	25 —
- ∤u	crumbly caliche stained dark gray with thin black lines in the center of the core, from 30' to 31'.	4 / 14:30 5 / 1435	Core		Sample 4 collected from 30' to 31' using a coring tool. Sample was dark gray stained caliche with black lines running through the sample core. Some odor. Sample 5 collected from 31' to 33' using a	30 —
- - - - -	an sand from 31'33'.				split spoon. Sample was tan sand, no stain or odor.	35
40 D	otal depth of boring, 33 feet. epth to groundwater, 31 feet measur			Q		40 —

ABBREVIATIONS AND SYMBOLS

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger RC - Rock Core THD - Texas Highway Department Cone CT-5' - Continuous Sampler

HSA - Hollow Stem Auger CFA - Continuos Flight Augers DC - Driving Casing MD - Mud Drilling

ENERCON SERVICES, INC. RECORD OF SUBSURFACE EXPLORATION 2775 VILLA CREEK, SUITE 120 DALLAS, TX 75234-7420 Well/Boring #: Project #: EV-958 B-4 Date Drilled: 10/20/98 Drilling West Texas Water Junction I-9 Drilling Air Rotary Project: Hobbs SWD System Company: Well Service Method: Droller: Lea County, New Mexico Bernie Logged By: SAL SAMPLE REMARKS/SAMPLE SAMPLE DEPTH OVA SOIL DESCRIPTION NUMBER/ (FEET) TYPE (PPM) **DESCRIPTION** TIME Brown sandy top soil to 6" Brown silty fine sand 6" to 2 White to tan caliche-soft crumbly from 2' to 5' 17 15:05 Sample I collected from 5' to 6' using a split Light tan to white caliche with fine spoon sampling device. Sample was light sand, crumbly, soft, 5' to 10'. tan to white, soft, crumbly caliche. Dry and no odor. 2/15:10 SS Sample 2 collected from 10' to 12' using a Light tan caliche with line tan sand, split spoon. Sample was light tan, dry crumbly and soft, from 10' to caliche. No odor. approximately 14'. 3/15:12 Core Sample 3 collected at 15' using 15 Hard red chert with white and light a coring tool. Sample was light tan/white tan hard caliche and some sand, 14' caliche with red hard pieces of chert. to approximately 20'. No odor. 4 / 15:15 Sample 4 collected at 20' using a Core 20 20 Dry powdered caliche stained coring tool. Sample was powdered, blueblue-gray with odor, from 20' to 30'. gray stained caliche. Odor. At approximately25' and 28' is thin layer of red chert. 5 / 15:25 Core Sample 5 collected at 25' using a coring tool. Sample was caliche with some chert, stained blue-gray. Some odor. 6/15:40 Sample 6 collected at 30' using a split spoor 30 Light tan caliche with light gray sampling tool. Sample was white caliche stain and very little odor, from 30' stained light blue-gray. Slight odor. to approximately 33'. 35 Total depth of boring, 33 feet. Depth to groundwater, 32.8 feet measured on 10/21/98. Phase-separated hydrocarbon (PSH), NONE, measured on 10/21/98.

ABBREVIATIONS AND SYMBOLS

SS - Driven Split Spoon

ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

THD - Texas Highway Department Cone

CT-5' - Continuous Sampler

HSA - Hollow Stem Auger

CFA - Continuous Flight Augers

DC - Driving Casing

ENERCON SERVICES, INC. RECORD OF SUBSURFACE EXPLORATION 2775 VILLA CREEK, SUITE 120 DALLAS, TX 75234-7420 Well/Boring #: Project #: EV-958 B-5 Date Drilled: 10/20/98 Drilling West Texas Water Junction I-9 Drilling Air Rotary Well Service Project: Hobbs SWD System Company: Method: Lea County, New Mexico Driller: Bernie Logged By: SAL SAMPLE REMARKS/SAMPLE SAMPLE DEPTH OVA SOIL DESCRIPTION NUMBER/ (FEET) TYPE (PPM) DESCRIPTION TIME Brown sandy top soil to 6' Brown silty fine sand 6" to 2" White to tan caliche-soft crumbly from 2' to 5' Light tan to white caliche with tine sand, crumbly, dry, soft, 5' to 15'. 10 10 1/16:15 Core Sample I collected at 15' using a coring tool. Sample was light tan/white Dry tan crumbly caliche stained blue-gray from 15' to 30'. Some odor. caliche, dry, crumbly, stained blue-gray. Red chert encountered at Some odor. approximately 26'. Sample 2 collected at 20' using a 2 / 16:23 Core 20 a coring tool. Sample was light tan/white caliche, dry, crumblý, stained blue-gray. Some odor. Sample 3 collected at 25' using a 3 / 16:35 Core 25 coring tool. Sample was light tan caliche and chert stained blue-gray. Some odor. Sample 4 collected at 30' using a core 4 / 16:45 Core 30 Light tan caliche stained gray with sampling tool. Sample was white caliche thin black lines in the center of the stained gray with black lines running core, from 30' to 33'. through the sample core. Some odor. 35 35 Total depth of boring, 33 feet. 40 Depth to groundwater, 32.7 feet measured on 10/21/98.

ABBREVIATIONS AND SYMBOLS

SS - Driven Split Spoon

ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

Phase-separated hydrocarbon (PSH), NONE, measured on 10/21/98.

THD - Texas Highway Department Cone

CT-5' - Continuous Sampler

HSA - Hollow Stem Auger

CFA - Continuous Flight Augers

DC - Driving Casing

ENERCON SERVICES, INC. RECORD OF SUBSURFACE EXPLORATION 2775 VILLA CREEK, SUITE 120 DALLAS, TX 75234-7420 Well/Boring #: 10/21/98 Project #: EV-958 Date Drilled: B-6 Drilling West Texas Water Junction I-9 Drilling Air Rotary Hobbs SWD System Well Service Method: Project: Company: Lea County, New Mexico Driller: Logged By: SAL Bernie SAMPLE REMARKS/SAMPLE DEPTH SAMPLE OVA SOIL DESCRIPTION NUMBER/ (FEET) TYPE (PPM) DESCRIPTION TIME Brown sandy top soil to 6 Light tan to gray caliche and sand from 6" to 5'. 1 / 8:35 Core Sample 1 collected from 5' to 7' using a cori Light gray caliche and silty sand from tool. Sample was light gray silty sand. No odor. 2/8:40 Sample 2 collected from 10' to 12' using a Core 10 coring tool. Sample was light gray caliche and silty sand. No odor. 3 / 8:45 Core Sample 3 collected from 15' to 16' using Light gray to brown silty sand from a coring tool. Sample was gray to brown 15' to approximately 25'. silry sand. No odor. 4 / 8:47 Sample 4 collected from 20' to 21' using a Core 20 coring tool. Sample was light brown and gray silty sand. Strong odor. 5 / 8:50 Core Sample 5 collected from 25' to 26' using a Tan and gray silty sand from coring tool. Sample was light gray and tan 25' to approximately 30'. silty sand. Strong odor. 6 / 9:05 255 Sample 6 collected at 30' to 31' using a core Core 30 30 Tan sand from 30 to 33'. sampling tool. Sample was tan sand Some odor. 35 35 Total depth of boring, 33 feet. 40 Depth to groundwater, 32.7 feet measured on 10/21/98. Phase-separated hydrocarbon (PSH), NONE, measured on 10/21/98.

ABBREVIATIONS AND SYMBOLS

SS - Driven Split Spoon

ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

THD - Texas Highway Department Cone

CT-5' - Continuous Sampler

HSA - Hollow Stem Auger

CFA - Continuous Flight Augers

DC - Driving Casing

ENERCON SERVICES, INC. RECORD OF SUBSURFACE EXPLORATION 2775 VILLA CREEK, SUITE 120 DALLAS, TX 75234-7420 Well/Boring #: EV-958 10/21/98 Date Drilled: Project #: West Texas Water Junction I-9 Drilling Air Rotary Drilling Project: Hobbs SWD System Company: Well Service Method: Driller: Lea County, New Mexico Bernie Logged By: SAL SAMPLE REMARKS/SAMPLE **DEPTH** SAMPLE OVA SOIL DESCRIPTION NUMBER/ (FEET) **TYPE** (PPM) DESCRIPTION TIME Brown sandy top soil to 6" Light tan to gray caliche and sand from 6" to 5'. Light gray caliche and silty sand from 5' to 15'. 10 1/9:30 Core Sample I collected from 15' to 16' using 15 Light tan dry, crumbly caliche from a coring tool. Sample was tan crumbly 15' to approximately 25'. caliche. No odor. 2/9:40 Core Sample 2 collected from 20' to 21' using a 20 coring tool. Sample was tan crumbly caliche. No odor. .: 3 / 9:45 Core Sample 3 collected from 25' to 26' using a Soft light tan caliche with coring tool. Sample was soft tan caliche hard blue-gray stained caliche from and hard blue-gray caliche. Some odor. 25' to approximately 30'. Sample 4 collected at 30' to 31' using a core Core 4 / 9:55 30 30 Light tan silty sand from 30' to 31'. sampling tool. Sample was light tan silty sand. No staining. Some odor. 35 Total depth of boring, 31 feet. Depth to groundwater, NONE. Phase-separated hydrocarbon (PSH), NONE, measured on 10/21/98.

ABBREVIATIONS AND SYMBOLS

SS - Driven Split Spoon

ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

THD - Texas Highway Department Cone

CT-5' - Continuous Sampler

HSA - Hollow Stem Auger

CFA - Continuous Flight Augers

DC - Driving Casing

Well No. Date Drilled: Driller: Logged by: **DRILLING LOG** Site Name /Location B-8 C. Harrison 1-7-99 **FWR** Boring Depth: Well Depth: Well Material: Construction: Junction I-9 RICE Operating Company N/A 40' N/A 09-T19S-R38E 122 West Taylor Plugged boring Boring Diameter: Casing Length: Casing Size: Hobbs, New Mexico 88240 **Hobbs SWD System** by filling from 8" N/A N/A Phone: (505) 393-9174 total depth to Lea Co. New Mexico Screen Length: **Drilling Method:** Slot Size: Fax: (505) 397-1471 surface with Air Rotary N/A N/A bentonite DEPTH SUBSURFACE LITHOLOGY Sample OVM REMARKS Boring (ppm) (Feet) Type 0 Light brown, fine-grained, calcareous sand 1 2 3 4 **Drill Cuttings** >1 5 6 7 White to light gray Caliche 8 9 **Drill Cuttings** >1 10 11 12 13 14 >1 **Drill Cuttings** 15 16 17 18 19 **Drill Cuttings** >1 20 21

Drill Cuttings

Drill Cuttings

Drill Cuttings

Drill Cuttings

22

19

>1

>1

Hydrocarbon stain

Depth to Water

gauged 1-8-99

0.00 feet LNAPL

Bentonite Seal

22 23 24

30

31

32

33

34

35 36

37 38

39 40 Light brown to pink fine-grained sand

Well No. Date Drilled: Logged by: **DRILLING LOG** Site Name / Location C. Harrison B-9 1-7-99 FWR Well Depth: Boring Depth: Well Material: Construction: Junction I-9 RICE Operating Company 40' N/A N/A 09-T19S-R38E 122 West Taylor Plugged boring Casing Length: Boring Diameter: Casing Size: Hobbs, New Mexico 88240 **Hobbs SWD System** by filling from 8" N/A N/A Phone: (505) 393-9174 total depth to Lea Co. New Mexico Drilling Method: Screen Length: Slot Size: Fax: (505) 397-1471 surface with Air Rotary N/A N/A bentonite OVM DEPTH SUBSURFACE LITHOLOGY Sample REMARKS Boring (Feet) (ppm) Type 0 Light brown, fine-grained, calcareous sand 1 2 3 4 **Drill Cuttings** >1 5 6 7 White to light gray Caliche 8 9 **Drill Cuttings** >1 10 11 12 13 14 >1 **Drill Cuttings** 15 16

17 18 19 127 **Drill Cuttings** Hydrocarbon stain 20 21 22 Indurated red-brown silicious sandstone 23 24 **Drill Cuttings** 173 Hydrocarbon stain 25 Light gray caliche 26 27 28 29 **Drill Cuttings** 46 30 31 Depth to Water 32 0.00 feet LNAPL Indurated red-brown silicious sandstone gauged 1-8-99 33 34 **Drill Cuttings** 4 35 Light brown to pink fine-grained sand 36 Bentonite Seal 37 38 **Drill Cuttings** >1 39 40

APPENDIX C

MONITOR WELL CONSTRUCTION DIAGRAMS

Well No. Date Drilled: Driller: **DRILLING LOG** Site Name/Location MW-1 1-7-99 C. Harrison Well Depth: Boring Depth: Well Material: Junction I-9 RICE Operating Company Sch 40 PVC 40' 40' 09-T19S-R38E 122 West Taylor Casing Length: Boring Diameter: Casing Size: Hobbs, New Mexico 88240 **Hobbs SWD System** 6" 2" 25' Phone: (505) 393-9174 Lea Co. New Mexico Screen Length: Drilling Method: Slot Size: Fax: (505) 397-1471 Air Rotary 0.02" 15'

Logged by: FWR

Construction:

Flush-mount

set in 3' by 3'

pad w/ locking

cap

DEPTH (Feet)	SUBSURFACE LITHOLOGY	Sample Type	OVM (ppm)	REMARKS	Well Design
- 0					8888 8888
L 1	Light brown, fine-grained, calcareous sand	<u>'</u>			
2	White to light gray Caliche	ł			
· 3	white to light gray canone				
5		Drill Cuttings	>1		
- 6					
7					
8				·	
9		Drill Cuttings	>1		
10			· · · · · · · · · · · · · · · · · · ·		
11					
12					
13					
14		Drill Cuttings	>1		
15		2 0	•		
16					
17		·			
18					
19		Drill Cuttings	>1		
20		Dilli Cuttings	~1		
21					
22					
23					
24		Duill Cuttings	>1		
25		Drill Cuttings	>1		
26				•	
27		•		· · · · · · · · · · · · · · · · · · ·	
28					
<u> </u>	Gray limestone	D 11 C 11			
30	Carlo	Drill Cuttings	>1		
31					
32]		● Depth to Water	
33		-			
34	Indurated red-brown silicious sandstone				
35	mumated red-orown sincious sandstone	Drill Cuttings	>1	Cement Grout	
36		<u></u>]	
37		.]		Bentonite Seal	
38		·		Sand Pack	
39	Light brown to pink fine-grained sand	Drill Cuttings	>1		
40				Factory Slot Screen	
1		<u> </u>			النات النا

Date Drilled: Well No. Driller: Logged by: **DRILLING LOG** Site Name /Location MW-2 1-7-99 C. Harrison FWR Well Depth: Boring Depth: Well Material: Construction: Junction I-9 RICE Operating Company 40 40' Sch 40 PVC 09-T19S-R38E 122 West Taylor Flush-mount Casing Length: Boring Diameter: Casing Size: Hobbs, New Mexico 88240 **Hobbs SWD System** set in 3' by 3' 25' Phone: (505) 393-9174 pad w/ locking Lea Co. New Mexico Drilling Method: Screen Length: Slot Size: Fax: (505) 397-1471 cap Air Rotary 0.02" 15' **DEPTH** SUBSURFACE LITHOLOGY OVM Sample REMARKS Well (ppm) (Feet) Type Design 0 Light brown, fine-grained, calcareous sand 1 2 White to light gray Caliche 3 4 >1 **Drill Cuttings** 5 6 7 8 9 **Drill Cuttings** >1 10 11 12 13 14 **Drill Cuttings** >1 15 16 17 18 19 Light gray limestone >1 **Drill Cuttings** 20 21 22 23 24 Light gray, silty, caliche **Drill Cuttings** >1 25 26 27 28 29 Gray limestone >1 **Drill Cuttings** 30 Depth to Water 31 32 Light brown to pink fine-grained sand 33 34 **Drill Cuttings** >1 35 Cement Grout 36 Bentonite Seal 37

Drill Cuttings

38

39

40

Sand Pack

Factory Slot Screen

>1

DRILLING LOG	Site Name /Location	Well No. RW-1	Date Drilled: 1-7-99	Driller: C. Harrison	Logged by: FWR
RICE Operating Company 122 West Taylor Hobbs, New Mexico 88240 Phone: (505) 393-9174 Fax: (505) 397-1471	Junction I-9 09-T19S-R38E	Well Depth: 35'	Boring Depth: 35'	Well Material: Sch 40 PVC	Construction:
	Hobbs SWD System	Casing Length: 20'	Boring Diameter: 8"	Casing Size: 4"	Flush-mount set in 3' by 3' pad w/ locking
	Lea Co. New Mexico	Screen Length: 15'	Drilling Method: Air Rotary	Slot Size: 0.02"	cap

	EPTH (Feet)	SUBSURFACE LITHOLOGY	Sample	OVM (ppm)	REMARKS	Well
- ├			Type	<u>'EB'</u>		Design
	— O	Light brown, fine-grained, calcareous sand				
	- 1					
_	- 2	White to light gray Caliche				
	- · 3 - 4				İ	
	- 4 5		Drill Cuttings	>1		
•		,				
	-					
	- 8	\$,	
▮┈	- 9		<u> </u>		.	
▋	<u> </u>		Drill Cuttings	48	Hydrocarbon stain	
_ _	- 11		Ļ		1	
	- 12					
•	- 13					
╸┡╴	- 14		- · · ·	100		
I -	 15		Drill Cuttings	180	Hydrocarbon stain	
\vdash	- 16					
▮	- 17	Gray limestone				
╸├─	- 18					27 27
_	- 19		Drill Cuttings	114	II	
	20		Dian cutangs	***	Hydrocarbon stain	
•	- 21					
	- 22]			
	- 23 - 24					
	- 24 25	Light gray, silty, caliche	Drill Cuttings	212	Hydrocarbon stain	
	- 25 - 26		_			
	- 27					
	- 28				·	
	- 29	Gray limestone interbedded with red-brown silicous				
-	— 30	sandstone	Drill Cuttings	89	Hydrocarbon stain	
-	- 31				11) di ocaioon siani	
 	- 32		}	. ,	Depth to Water	
<u> </u>	- 33	Indurated red-brown silicious sandstone	<u> </u>		0.25 feet LNAPL	
 	- 34		Drill Cuttings	>1	gauged 1-8-99	
•	— 35				Cement Grout	
₊⊢	- 36				- Bontonito Sool	
┠├─	- 37	·				
- -	- 38		j		Sand Pack	
• -	39		1		Factory Slot Screen	
	- 40			: 		

DRILLING LOG

RICE Operating Company 122 West Taylor Hobbs, New Mexico 88240 Phone: (505) 393-9174 Fax: (505) 397-1471 Site Name /Location

Junction I-9 09-T19S-R38E Hobbs SWD System Lea Co. New Mexico

Well No.	Date Drilled:	Driller:	Logged by:		
MW-3	1-8-99	C. Harrison	FWR		
Well Depth:	Boring Depth:	Well Material:	Construction:		
40'	40'	Sch 40 PVC			
Casing Length: 25'			Flush-mount set in 3' by 3' pad w/ locking		
Screen Length:	Drilling Method:	Slot Size:	cap		
15'	Air Rotary	0.02"			

DEPTH (Feet)	SUBSURFACE LITHOLOGY	Sample Type	OVM (ppm)	REMARKS	Well Design
0					
1 2					
· 3					
_ 4					
5					
6	•				
7					
8				·	
- 9					
10					
— 11 I					
— 12 — 13					
— 13 — 14					
15			i		
16					
17					
18	·				
19					
20					
— 21					
22					
23					
24					
25 26					
— 26 — 27					
28					
29	•				
30					
_ 31					
<u> </u>			•		
— 33					
— 34 					
— 35 h				Cement Grout	
— 36				Bentonite Seal	
— 37		,			
- 38				Sand Pack	
_ 39				Factory Slot Screen	
 40					

APPENDIX D LABORATORY ANALYTICAL RESULTS

Environmental Laboraturies

2209 Wisconsin Street, Suite 200
Dallas, Texas 75229
972-620-7966
800-394-2872
972-620-7963 FAX • Email: certes@aol.com

CERTES ENVIRONMENTAL LABORATORIES ANALYTICAL REPORT

Certes File Number: 98-3543

Client Project I.D.:

EV 958

Prepared for:

ENERCON SERVICES, INC. - DALLAS 2775 Villa Creek Suite 120 Dallas, TX 75234

Attention: Scott Lowry

Report Date:

10/30/98

Included are the results of chemical analyses for the samples submitted to Certes Environmental Laboratories, L.L.C., on 10/22/98. All analytical results met Quality Control requirements as set by the industry accepted criteria. Please refer to the Laboratory Quality Control Results section of this report.

Sincerely,

Certes Environmental Laboratories, L.L.C.

Bharat Vandra

Laboratory Manager

ATTACHMENT E LABORATORY REPORTS

Report Date: 10/30/98 Results of Analyses CEL File No.: 98-3543 Reporting Date Analyzed Date Units Ξ

		Result	Units	Limit	Prepare	d Analyzed	Ву	Dilution
Client Sample ID): B-1/20'-20.6'					Sample Number	r: 98-35	43-001
Date Sampled:	10/20/98					Sample Matrix:	Solid	
Time Sampled:	9:10			·		Sampled By:	SL	
EPA 8021B	Benzene	684	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Toluene	759	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Ethyl benzene	11000	μg/Kg	200	10/23/98	10/23/98 .	DWT	40
	Xylenes (Total)	21700	μg/Kg	600	10/23/98	10/23/98	DWT	40
	Total BTEX (Calculated)	34143	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogat	e			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	97%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	158%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	1070	mg/Kg	500	10/26/98	10/27/98	JCA	50
	**Quality Control Surrogate	;			10/26/98	10/27/98	JCA	- 50
	p-Terphenyl (SS)	*0%	60-140%		10/26/98	10/27/98	JCA	50

^{*} Surrogate recovery is out of range

Client Sample ID): B-1/28'				5	Sample Number:	98-3543	3-002
Date Sampled:	10/20/98				5	Sample Matrix:	Solid	
Time Sampled:	9:50				S	Sampled By:	SL	
EPA 8021B	Benzene	285	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Toluene	1000	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Ethyl benzene	9170	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Xylenes (Total)	24600	μg/Kg	600	10/23/98	10/23/98	DWT	40
	Total BTEX (Calculated)	35055	μg/Kg		10/23/98	10/23/98	DWT	1
•	**Quality Control Surrogate	e			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	93%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	153%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	1200	mg/Kg	500	10/26/98	10/27/98	JCA	50
	**Quality Control Surrogate	····· · · · · · · · · · · · · · · · ·	<u>. </u>		10/26/98	10/27/98	JCA	50
	p-Terphenyl (SS)	*0%	60-140%		10/26/98	10/27/98	JCA	50

^{*} Surrogate recovery is out of range

Client Sample ID): B-1/30'				S	ample Number:	98-3543	3-003
Date Sampled: 10/20/98					S	ample Matrix:	Solid	
Time Sampled:	10:00	•			S	Sampled By:		
EPA 8021B	Benzene	1130	μg/Kg	200	10/23/98	10/23/98	DWT	4(
	Toluene	1030	μg/Kg	200	10/23/98	10/23/98	DWT	4(

Page 2 of 9

Sample: 98-3	543-003 continued	Result	Units	Reporting Limit	Date Prepared	Date Analyzed	Analyzed By	Dilution
EPA 8021B	Ethyl benzene	13800	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Xylenes (Total)	19500	μg/Kg	600	10/23/98	10/23/98	DWT	40
	Total BTEX (Calculated)	35460	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate	e			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	84%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	141%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	1130	mg/Kg	500	10/26/98	10/27/98	JCA	50
	**Quality Control Surrogate	:			10/26/98	10/27/98	JCA	50
	p-Terphenyl (SS)	*0%	60-140%	•	10/26/98	10/27/98	JCA	50

^{*} Surrogate recovery is out of range

Client Sample ID): B-2/25'-26'					Sample Number	98-354	3-004
Date Sampled:	10/20/98		. •			Sample Matrix:	Solid	
Time Sampled:	11:10				5	Sampled By:		
EPA 8021B	Benzene	477	μg/Kg	200	10/23/98	10/23/98	DWT	40
•	Toluene	716	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Ethyl benzene	11300	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Xylenes (Total)	25200	μg/Kg	600	10/23/98	10/23/98	DWT	40
	Total BTEX (Calculated)	37693	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate	e	•		10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	89%	74-119%		10/23/98	10/23/98	DWT	1 .
	4-Bromofluorobenzene (SS)	142%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	520	mg/Kg	250	10/26/98	10/27/98	JCA	25
	**Quality Control Surrogate	2			10/26/98	10/27/98	JCA	25
	p-Terphenyl (SS)	*0%	60-140%		10/26/98	10/27/98	JCA	25

^{*} Surrogate recovery is out of range

Client Sample ID): B-2/30'-31'					Sample Number:	98-3543	3-005
Date Sampled:	10/20/98	·				Sample Matrix:	Solid	•
Time Sampled:	11:20				:	Sampled By:	SL	
EPA 8021B	Benzene	<50	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Toluene	70	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Ethyl benzene	870	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Xylenes (Total)	2510	μg/Kg	150	10/23/98	10/23/98	DWT	10
	Total BTEX (Calculated)	3450	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogat	e			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	111%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	135%	49-158%		10/23/98	10/23/98	DWT	1

Page 3 of 9

CEL File No.: 98-3543

Report Date: 10/30/98

Sample: 98-3	543-005 continued	Result	Units	Reporting Limit	Date Prepared	Date Analyzed	Analyzed By	Dilution
EPA 8015B	TPH (DRO)	278	mg/Kg	250	10/26/98	10/27/98	JCA	25
	**Quality Control Surrog	gate			10/26/98	10/27/98	JCA	- 25
	p-Terphenyl (SS)	*0%	60-140%		10/26/98	10/27/98	JCA	25

^{*} Surrogate recovery is out of range

Client Sample ID): B-3/25'					Sample Number	r: 98-354	3-006
Date Sampled:	10/20/98					Sample Matrix:	Solid	
Time Sampled:	14:20					Sampled By:	SL	
EPA 8021B	Benzene	<200	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Toluene	1520	μg/Kg	200	10/23/98	10/23/98	DWT	40
•	Ethyl benzene	6950	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Xylenes (Total)	15900	μg/Kg	600	10/23/98	10/23/98	DWT	40
	Total BTEX (Calculated)	24370	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate	e			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	102%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	145%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	369	mg/Kg	250	10/26/98	10/27/98	JCA	25
	**Quality Control Surrogate	2			10/26/98	10/27/98	JCA	25
	p-Terphenyl (SS)	*0%	60-140%	-	10/26/98	10/27/98	JCA	25

^{*} Surrogate recovery is out of range

Client Sample II): B-3/31'-33'				5	Sample Number	98-3543	3-007
Date Sampled:	10/20/98				5	Sample Matrix:	Solid	
Time Sampled:	14:35		•		5	Sampled By:	SL	
EPA 8021B	Benzene	<50	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Toluene	<50	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Ethyl benzene	<50	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Xylenes (Total)	<150	μg/Kg	150	10/23/98	10/23/98	DWT	10
	Total BTEX (Calculated)	0	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate	e			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	108%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	96%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	<10	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surrogate	e			10/26/98	10/27/98	JCA	1
	p-Terphenyl (SS)	80%	60-140%		10/26/98	10/27/98	JCA	1

Report Date: 10/30/98

	•	Result	Units	Reporting Limit		Date ed Analyzed	Analyzed By	Dilutio
Client Sample I	D: B-4/20 '					Sample Num	ber: 98-3	543-008
Date Sampled:	10/20/98					Sample Matr		_
Time Sampled:	15:15					Sampled By:	SL	
EPA 8021B	Веплепе	<50	μg/Kg	50	10/23/9	8 10/23/98	DWT	10
	Toluene	207	μg/Kg	50	10/23/98	8 10/23/98	DWT	10
	Ethyl benzene	178	μg/Kg	50	10/23/98	3 10/23/98 .	DWT	10
•	Xylenes (Total)	764	μg/Kg	150	10/23/98	3 10/23/98	DWT	10
	Total BTEX (Calculated)	1149	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogat	e			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	111%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	134%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	50	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surrogate	e			10/26/98	10/27/98	JCA	1
	p-Terphenyl (SS)	64%	60-140%		10/26/98	10/27/98	JCA	1
Client Sample ID Date Sampled:	10/20/98				S	ample Numbo	: Solid	3-009
Fime Sampled:	15:40	450		50		ampled By:	SL	
EPA 8021B	Benzene Toluene	<50 <50	μg/Kg			10/23/98 10/23/98	DWT	10
	Ethyl benzene	<50	μg/Kg μg/Kg			10/23/98	DWT DWT	10 10
	Xylenes (Total)	<150	μg/Kg μg/Kg			10/23/98	DWI	10
	Total BTEX (Calculated)	0	μg/Kg μg/Kg			10/23/98	DWT	10
	**Quality Control Surrogate		ro ··o			10/23/98	DWT	1
	Difluorobenzene (SS)	109%	74-119%			10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	108%	49-158%			10/23/98	DWT	1
EPA 8015B	TPH (DRO)	47	mg/Kg		•	10/27/98	JCA	1
	**Quality Control Surrogate					10/27/98	JCA	1:
	p-Terphenyl (SS)	70%	60-140%			10/27/98	JCA	1
lient Sample ID:	B-5/20' 10/20/98		·	·		ample Numbe		 3-010
-	10/20/98 16:23					imple Mairix: impled By:	Solid	
		<50	110/V c	50 1		10/23/98		10
PA 8021B	Benzene	~30	μg/Kg	JU 1	W/43/70	10/23/98	DWT	
	Toluene	288	μg/Kg	50 1	0/22/09	10/23/98	DWT	10

<u>Sample: 98-3</u>	543-010 continued	Result	Units	Reporting Limit	Date Prepared	Date Analyzed	Analyzed By	Dilution
EPA 8021B	Ethyl benzene	188	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Xylenes (Total)	759	μg/Kg	150	10/23/98	10/23/98	DWT	10
	Total BTEX (Calculated)	1235	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate				10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	112%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	125%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	22	mg/Kg	10	10/26/98	10/27/98	JCA	1
·	**Quality Control Surrogate				10/26/98	10/27/98	JCA	1
	p-Terphenyl (SS)	72%	60-140%		10/26/98	10/27/98	JCA	1

Client Sample ID): B-5/25'					Sample Number	r: 98-3543	3-011
Date Sampled:	10/20/98					Sample Matrix:		
Time Sampled:	16:35				\$	Sampled By:	SL	
EPA 8021B	Benzene	<50	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Toluene	268	μg/Kg	50	10/23/98	10/23/98	DWT	. 10
	Ethyl benzene	264	μg/Kg	<i>5</i> 0	10/23/98	10/23/98	DWT	10
	Xylenes (Total)	566	μg/Kg	150	10/23/98	10/23/98	DWT	10
	Total BTEX (Calculated)	1098	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate	e			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	104%	74-119%		10/23/98	10/23/98	DWT	1 .
	4-Bromofluorobenzene (SS)	135%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	69	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surrogate	:			10/26/98	10/27/98	JCA	1
	p-Terphenyl (SS)	* 57%	60-140%		10/26/98	10/27/98	JCA	1

^{*} Surrogate recovery is out of range

Client Sample ID	: B-5/30'				S	Sample Number	98-3543	3-012
Date Sampled: Time Sampled:	10/20/98 16:45					ample Matrix: ampled By:	Solid SL	
EPA 8021B	Benzene	<50	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Toluene	<50	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Ethyl benzene	<50	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Xylenes (Total)	<150	μg/Kg	150	10/23/98	10/23/98	DWT	10
	Total BTEX (Calculated)	0 .	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate	е			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	111%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	99%	49-158%		10/23/98	10/23/98	DWT	1

Sample: 98-3	543-012 continued	Result	Units	Reporting Limit	Date Prepared	Date Analyzed	Analyzed By	Dilution
EPA 8015B	TPH (DRO)	18	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surrogate				10/26/98	10/27/98	JCA	1
	p-Terphenyl (SS)	63%	60-140%		10/26/98	10/27/98	JCA	1

Client Sample ID): B-6/20'-21'					Sample Number	98-354	3-013
Date Sampled:	10/21/98					Sample Matrix:	Solid	
Time Sampled:	8:47					Sampled By:	SL	
EPA 8021B	Benzene	<50	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Toluene	1390	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Ethyl benzene	1440	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Xylenes (Total)	4660	μg/Kg	150	10/23/98	10/23/98	DWT	10
	Total BTEX (Calculated)	7490	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate				10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	114%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	127%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	71	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surrogate			•	10/26/98	10/27/98	JCA	1
	p-Terphenyl (SS)	61%	60-140%		10/26/98	10/27/98	JCA	1

Client Sample ID	: B-6/25'-26'				S	Sample Number:	98-3543	3-014
Date Sampled:	10/21/98				S	Sample Matrix:	Solid	
Time Sampled:	8:50				S	Sampled By:	SL	
EPA 8021B	Benzene	460	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Toluene	4260	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Ethyl benzene	12200	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Xylenes (Total)	26400	μg/Kg	600	10/23/98	10/23/98	DWT	40
	Total BTEX (Calculated)	43320	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate				10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	85%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	143%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	234	mg/Kg	50	10/26/98	10/27/98	JCA	5
	**Quality Control Surrogate				10/26/98	10/27/98	JCA	5
	p-Terphenyl (SS)	86%	60-140%		10/26/98	10/27/98	JCA	5
	L rathmently (pp)		J					

Results of An	alyses C	EL File No.:	98-3543			Repo	ort Date: 10	0/30/98
		Result	Units	Reporting Limit		Date I Analyzed	Analyzed By	Diluti
Client Sample I	D: B-6/30'-31'		· — — — — — — — — — — — — — — — — — — —			Sample Num	ber: 98-35	43-015
Date Sampled:	10/21/98					Sample Matr		
Time Sampled:	9:05				:	Sampled By:	SL	
EPA 8021B	Benzene	581	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Toluene	130	μg/Kg	5 0	10/23/98	10/23/98	DWT	. 10
	Ethyl benzene	2900	μg/Kg	50	10/23/98	10/23/98 .	DWT	10
	Xylenes (Total)	4170	μg/Kg	150	10/23/98	10/23/98	DWT	10
	Total BTEX (Calculated)	7781	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate	e			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	116%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	152%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	25	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surrogate				10/26/98	10/27/98	JCA	1
	p-Terphenyl (SS)	67%	60-140%		10/26/98	10/27/98	JCA	1
lient Sample ID Pate Sampled:	: B-7/25'-26' 10/21/98					ımple Numbo ımple Matrix		3-016
ime Sampled:	9:45					imple Mau ix impled By:	. Solid SL	
PA 8021B	Benzene	<50	μg/Kg	50	10/23/98		DWT	10
	Toluene	100	μg/Kg		10/23/98		DWT	10
	Ethyl benzene	<50	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Xylenes (Total)	<150	μg/Kg	150	10/23/98	10/23/98	DWT	10
	Total BTEX (Calculated)	100	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate				10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	103%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	117%	49-158%		10/23/98	10/23/98	DWT	1
PA 8015B	TPH (DRO)	106	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surrogate				10/26/98	10/27/98	JCA .	1
	p-Terphenyl (SS)	*59%	60-140%		10/26/98	10/27/98	JCA	1
* Surrogate red	covery is out of range							
ent Sample ID:	R-7/30'			<u> </u>	Sa	mple Numbe	r: 98-3543	3-017
one dumpid in.	2					mpro riumo	1. 70 00 11	

Client Sample ID: B-7/30'					Sample Number	Sample Number: 98-3543-017		
Date Sampled:	10/21/98				Sample Matrix:	Solid		
Time Sampled: 9:55		•			Sampled By:	SL		
EPA 8021B	Benzene	<50	μg/Kg	50	10/23/98 10/23/98	DWT	10	
	Toluene	214	μg/Kg	50	10/23/98 10/23/98	DWT	10	

Page 8 of 9

Results of Analyses

CEL File No.: 98-3543

Report Date: 10/30/98 Reporting Date Date Analyzed Sample: 98-3543-017 continued... Units Result Limit Prepared Analyzed Вy Dilution **EPA 8021B** Ethyl benzene 865 μg/Kg 50 10/23/98 10/23/98 DWT 10 Xylenes (Total) 2190 μg/Kg 150 10/23/98 10/23/98 DWT 10 Total BTEX (Calculated) 3269 μg/Kg 10/23/98 10/23/98 DWT **Quality Control Surrogate 10/23/98 10/23/98 DWT Difluorobenzene (SS) 115% 74-119% 10/23/98 10/23/98 DWT 1 4-Bromofluorobenzene (SS) 49-158% 117% 10/23/98 10/23/98 DWT **EPA 8015B** TPH (DRO) 10 mg/Kg 10/26/98 10/27/98 10 JCA **Quality Control Surrogate 10/26/98 10/27/98 JCA p-Terphenyl (SS) 89% 60-140% 10/26/98 10/27/98 JCA

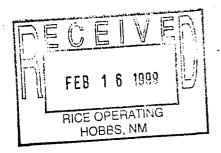
	Benzene	Toltrene	e griny e	- Xiy lenes	Diesel
			benzene		Range
					Organies
Matrix Spike					
		<u> </u>			
Batch Number	102398H1	102398H1	102398H1	102398H1	DROS- . 0099
Date Prepared	10/23/98	10/23/98	10/23/98	10/23/98	10/26/98
Date Analyzed	10/23/98	10/23/98	10/23/98	10/23/98	10/27/98
Spiked Sample ID	3543-17	3543-17	3543-17	3543-17	N/A
Spike Level					
(mg/L) (µg/L) (mg/Kg) (µg/Kg)	100	100	100	200	83.3
Spike Result					
(mg/L) (µg/L) (mg/Kg) (µg/Kg)	108	104	93	183	30.0*
% Recovery	108	104	93	92	N/A
Spike Duplicate Result					
(mg/L) (µg/L) (mg/Kg) (µg/Kg)	111	107	96	191	196*
% Recovery Duplicate	111	107	96	96	N/A
Relative Percent Difference (RPD)	3	3	3	4	N/A
Control Limits (%low-%high)	70-130	70-130	70-130	70-130	53.3-112
Method Blank					
(mg/L) (µg/L) (mg/Kg) (µg/Kg)	<1	<1	<1	<3	<10.0
Laboratory Control Sample			· · · · · · · · · · · · · · · · · · ·		
Spike Level					
(mg/L) (µg/L) (mg/Kg) (µg/Kg)	100	100	100	200	83.3
Spike Result	1				<i>c</i> o :
(mg/L) (µg/L) (mg/Kg) (µg/Kg)	110	110	111	227	63.1
% Recovery	110	110	111	114	75
Spike Duplicate Result	N/A	N/A	N/A	N/A	70.5
(mg/L) (μg/L) (mg/Kg) (μg/Kg)	N/A	N/A N/A	N/A N/A	.N/A	85
% Recovery Duplicate	N/A N/A	N/A N/A	N/A N/A	N/A	11
Relative Percent Difference (RPD)					53.3-112
Control Limits (%low-%high)	70-130	70-130	70-130	70-130	33.3-112

^{*}See Case Narrative

μg/l = micrograms per liter (ppb)
μg/kg = micrograms per kilogram (ppb)
< = less than
MS = Matrix Spike
MSD = Matrix Spike Duplicate
LCS = Laboratory Control Sample
BS = Blank Spike
μmhos/cm = micromhos/centimeter

mg/l = milligrams per liter (ppm)
mg/kg = milligrams per kilogram (ppm)
% = percent
RPD = Relative Percentage Difference
RW - Reagent Water
LCSD = Laboratory Control Sample Duplicate
BSD = Blank Spike Duplicate

Certes	Environmental La 2209 Wisconsin Si Dallas, Texas 7522	Environmental Laboratories, L.L.C. 2209 Wisconsin Street, Suite 200 Dallas, Texas 75229	Ā	Analysis(es) Requested	1/2
	_	972-620-7963 Fax			
* CALBATING		3	(
122 MEST TAYLOR	Fax No.)	<u>ত্</u> য		
	Ö	M Zip C. 22 JA	L)		
Purchase Order No.	ling, please	nce quotation number.	<u>S</u> 10		
Project Manager A. Lowley	Sile Location	1(1)1 C 1/1 C 1	18 I		
San	Matr	No. & Type of Container?	37.25 -47.T		
10 13-5/26	10/20/98 1623 Sav	->			
11 18-5/25'	1635	\-\'			
12 13-5/30		->			
13 13-6/20-21	10/21/48 847 Son	->			
14 B-6/25-26	10/21/98 850 Sort	->			
15 B-6/30-31	10/21/98 905 Sm	->			
16 R-7/25-26	10/21/98 945 Son	->			
178-1/30		->			
			>		
Sampled By SAL	1 Matrix: A 2 2 Container Type: V 4 3 Preservative: HCI	Air Bag, CCharcoal Tube; L 40ml VOA Vial; GAmber or Gl. Hydrochloric Acid; HNO - Nit	A - Air Bag, C - Charcoal Tube: L - Liquid, OL - Oil, S - Soil, SD - Solid, SL - 9 V - 40ml VOA Vial, G - Amber or Glass 1 Liter, J - 250ml Wide-mouth Glass Jar; HCl - Hydrochloric Acid - HNO - Nitire Acid - Jacob, etc.	d; SL-Sludge; WP: Wipe; W:-Water/Wastewa	W - Wafer/Wastewa
7		Special Instructions (including specific detection limits)	recific detection limits)	Wher: Certes Job Number	
Standard: Date Required 15/30	C	KL Spr. 422			. (1)
Relinguished by Sample	N N O	Date Time	Received By		ر اوا
Relinquished by .		Date	Received By		
Relinquished by		Date 10/27/94 Time	Time 55 Received By Laboratory	4.0 A	
NOTE: By submitting these samples, you agree to the terms and conditions contained in Certes' Schedule of Fees. Certes cannot acceptive that changes proceed to the second	igree to the terms and conditions conf	alned in Certes' Schedule of Fees	. Certes cannot accept verbal channer	My Jose X	
			The facilitation of the facility of the facili	Service of Willemschandeste	1972/102/107/10/


Certes	Environmental 2209 Wisconsin Nallas Texas 74	Environmental Laboratories, L.L.C. 2209 Wisconsin Street, Suite 200 Nallas, Texas, 75,230		Analysis(es) Requested	2/2
	972-620-7966	972-620-7963 Fax	(M
Committee Co.	ENECCON-DIPPIPED		(O)()
2 WEST TAYLOR		-	1)		
Ü	Cily Hobbes State	M 24 88246	910		
, o,	To ensure proper billing, please reference	ince quotation number.	28		
Project Manager A. Cowley	Site Location Site Location	Holdesmiss	X31 H9		-
Certes No.	Date Time Matrix!	No. & Type of Contain	<u>1</u> S1		
B-1/26-26.6	10/20/98 9.16 Sone	->	>		
2 18-1/28, 10%	10/2098 980 Soil	-'>	> >		
3 13-1/36' 10/	10/20/78 16 Soil	->	>		
4 18-2/26' 26' 10'	10/20/96 11 10 Sov	->	>>>		
5 B-2/30-31' 16/	16/20/98 1126 Son	-7	>		
6 13-3/15' 101:	10/25/92 1420 Sen	->	7	-	
8-3/31-53'	iolzolge 1435 Soil	->	>		
8 3-4/20' 101	10/20/98 1918 Son	_>	7		
9 B-4/30' 101	10/20/96 1546 Son	->	7		
Sampled By SML	1 Matnx: 2 Container Type: V : 3 Preservative: HG	Air Bag; C : Charcoal Tube; L 40ml VOA Vial; G : Amber or C 1; Hydrochloric Acid; HNO; « N	Liquid: OL - Oil; S - Soil; blass 1 Liter; J - 250ml Wide- lific Acid: H SO - Suit nic Acid	A - Air Bag; C. Charcoal Tube: L. Liquid, OL - Oil; S. Soil; SD. Solid; SL - Sludge; WP - Wip. V - 40ml VOA Vial; G. Amber of Glass 1 Liter; J - 250ml Wide-mouth Glass Jar; O - Other: HCl.; Hydrochloric Acid; HNO, - Nitinc Acid; H. SO, - Suitting Acid; On Solid	Sludge; WP - Wipe, W - Water/Wasiew; O - Other:
10/20	Client Project ID	Special Instructions (including specific detection limits)	specific detection limits)	nits) Certes Job Number	11
Standard+ Date Required 10130	Rice Operation Co.	A 5A 10/22		EASE-26	y3
Relinquished By Sampler		Date 122/98 Time	Received By		7/2
Relinquished by		Date Time	Received By		
Relinquished by		Date to 12 ag	1655 Received By Laboratory	boratory / 10/0 (000	
NOTE: By submitting these samples; you agree to the terms and conditions contained in Centes	e to the terms and conditions cont	tained in Certes' Schedule of Fee	ss. Certes cannot accept verba	Schedule of Fees. Certes cannot accept verbal changes. Please FAX written changes to (972) 620-7963	os to (972) 620-7963
:					

February 10, 1999

F. Wesley Root RICE OPERATING COMPANY 122 West Taylor Hobbs, NM 88240

The following report contains analytical results for the sample(s) received at Southern Petroleum Laboratories (SPL) on January 19, 1999. The sample(s) was assigned to Certificate of Analysis No. (s) 9901761 and analyzed for all parameters as listed on the chain of custody.

Sample MW-2 (SPL#9901761-01D) was randomly chosen as a quality Control sample for Total metals analysis by SW-846 method 6010. The Matrix Spike (MS) and Matrix Spike Duplicate (MSD) recoveries were outside of advisable limits for Aluminum and Iron. A Laboratory Control Sample (LCS) was analyzed as a Quality Control check for the analytical batch and all recoveries were within acceptable limits.

Any data flags or quality control exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

Electa Brown
Project Manager

Southern Petroleum Laboratories, Inc.

Certificate of Analysis Number: 99-01-761

Approved for Release by:

Electa Brown, Project Manager

/ Daye

Greg Grandits Laboratory Director

Cynthia Schreiner Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory. The results relate only to the samples tested.

Results reported on a Wet Weight Basis unless otherwise noted.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-02

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-1

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 12:30:00

DATE RECEIVED: 01/19/99

	ANALYTICAL DA	TA		
PARAMETER		RESULTS	DETECTION LIMIT	UNITS
Method 3520C Analyzed by:		01/20/99		
Chloride Method 325.3 Analyzed by: Date:		128	2	mg/L
Carbonate, as Method SM 450 Analyzed by: Date:	00-CO2D **	ND ·	2	mg/L
Bicarbonate, a Method SM 450 Analyzed by: Date:	0-CO2D **	332	2	mg/L
pH Method 150.1	*	7.29		pH Units
Analyzed by:				
Resistivity Method 120.1 Analyzed by: Date:		0.74	0.001	Mohms-cm

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-02

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-1

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 12:30:00

DATE RECEIVED: 01/19/99

		ANAL	TICAL DAT	ra -		
PARAMETER				RESULTS	DETECTION LIMIT	UNITS
Sulfate Method 375.4 Analyzed by: Date:		13:30:00		318	25	mg/L
Specific Grav ASTM D1429 Analyzed by: Date:	_	14:00:00		0.982		g/cm3
Total Dissolve Method 160.1 Analyzed by: Date:	*	10:00:00		890	20	mg/L
Silver, Total Method 6010B Analyzed by: Date:		10:00:00		ND	0.01	mg/L
Aluminum, Tota Method 6010B				12.3	0.1	mg/L
Analyzed by:	,	10:00:00	٠, .	· .		
Arsenic, Total Method 6010B Analyzed by: Date:	***	15:28:00		0.019	0.005	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-02

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-1

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 12:30:00

DATE RECEIVED: 01/19/99

		ANALYTICAL	DATA		
PARAMETER		·	RESULTS	DETECTION LIMIT	UNITS
Barium, Total Method 6010B Analyzed by: Date:		10:00:00	0.870	0.005	mg/L
Calcium, Tota Method 6010B Analyzed by: Date:	***	10:00:00	727	1	mg/L
Cadmium, Total Method 6010B Analyzed by: Date:	***	10:00:00	ND	0.005	mg/L
Cobalt, Total Method 6010B Analyzed by: Date:		10:00:00	ND	0.01	mg/L
Chromium, Tota Method_6010B Analyzed by:	***		ND	0.01	mg/L
	01/20/99	10:00:00		•	
Copper, Total Method 6010B Analyzed by: Date:		10:00:00	0.02	0.01	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-02

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-1

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 12:30:00

DATE RECEIVED: 01/19/99

		ANALYT	CAL DATA			
PARAMETER	•		RES	SULTS	DETECTION LIMIT	UNITS
Iron, Total Method 6010B Analyzed by: Date:		0:00:00		9.34	0.02	mg/L
Mercury, Total Method 7470 A Analyzed by: Date:	<u> </u>	4:50:00		ND	0.0002	mg/L
Potassium, Tot Method 6010B Analyzed by: Date:	***	0:00:00		3	2	mg/L
Magnesium, Tot Method 6010B Analyzed by: Date:	***	0:00:00		43.9	0.1	mg/L
Manganese, Tot Method 6010B	***		0	.214	0.005	mg/L
Analyzed by: Date:	JM 01/20/99 1	0:00:00				
Molybdenum, To Method 6010B Analyzed by: Date:	***	0:00:00		ND	0.02	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-02

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-1

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 12:30:00

DATE RECEIVED: 01/19/99

		ANALYTIC	AL DATA		
PARAMETER			RESULTS	DETECTION LIMIT	UNITS
Sodium, Total			144	0.5	mg/L
Method 6010B					
Analyzed by:		10 00 00			
Date:	01/20/99	10:00:00			
Nickel, Total			0.02	0.02	mg/L
Method 6010B					
Analyzed by:					
Date:	01/20/99	10:00:00			
Acid Digestion Method 3010A Analyzed by: Date:	***		01/19/99		·
Lead, Total Method 6010B Analyzed by: Date:		15:28:00	0.005	0.005	mg/L
Selenium, Tota			ND	0.005	mg/L
Method 6010B Analyzed by:					
* * .	01/21/99	15.28.00			•
Dacc.	01/21/33	15.20.00			
Zinc, Total			0.05	0.02	mg/L
Method 6010B					•
Analyzed by:					
Date:	01/20/99	10:00:00			

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

the first Mathed and To Describe Cold Water R Addewater, 101

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-02

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-1

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 12:30:00

DATE RECEIVED: 01/19/99

ANALYTIC			
PARAMETER	RESULTS	PQL*	UNITS
Benzene	8	5	ug/L
Bromobenzene	ND	5	ug/L
Bromochloromethane	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	10	ug/L
n-Butylbenzene	ND	5	ug/L
sec-Butylbenzene	ND	5	ug/L
tert-Butylbenzene	ND	5	ug/L
Carbon tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chlorodibromomethane	ND	5	ug/L
Chloroethane	ND	10	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	10	ug/L
2-Chlorotoluene	ND	5	ug/L
4-Chlorotoluene	ND	5	ug/L
1,2-Dibromo-3-chloropropane	ND	5	ug/L
1,2-Dibromoethane	ND	5	ug/L
Dibromomethane	ND	5	ug/L
1,2-Dichlorobenzene	ND	5	ug/L
1,3-Dichlorobenzene	ND	5	ug/L
1,4-Dichlorobenzene	ND	5	ug/L
Dichlorodifluoromethane	ND	10	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
cis-1,2-Dichloroethene	ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
1,3-Dichloropropane	ND	5	ug/L
2,2-Dichloropropane	ND	5	ug/L
1,1-Dichloropropene	ND	5	ug/L
Ethylbenzene	32	5	ug/L
Hexachlorobutadiene	ND	5	ug/L
Isopropylbenzene	ND	5	ug/L
p-Isopropyltoluene	ND	5	ug/L
Methylene chloride	ND	5	ug/L

METHOD: 8260 Water, Volatile Organics (continued on next page)

Certificate of Analysis No. H9-9901761-02

Rice Operating Company

SAMPLE ID: MW-1

ANALYTIC	CAL DATA (cont	inued)	
PARAMETER	RESULTS	PQL*	UNITS
Naphthalene	ND .	5	ug/L
n-Propylbenzene	ND	5	ug/L
Styrene	ND	5	ug/L
1,1,1,2-Tetrachloroethane	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L
Tetrachloroethene	ND	5 5 5 5	ug/L
Toluene	ND	5	ug/L
1,2,3-Trichlorobenzene	ND	5	ug/L
1,2,4-Trichlorobenzene	ND	5 5 5 5 5	ug/L
1,1,1-Trichloroethane	ND	5 .	ug/L
1,1,2-Trichloroethane	, ND	5	ug/L
Trichloroethene	ND	5	ug/L
Trichlorofluoromethane	ND		ug/L
1,2,3-Trichloropropane	ND	5	ug/L
1,2,4-Trimethylbenzene	7	5	ug/L
1,3,5-Trimethylbenzene	ND	5	ug/L
Vinyl chloride	ND	10	ug/L
Xylenes (total)	12	5	ug/L
Acetone	ND	100	ug/L
Carbon Disulfide	ND	5	ug/L
Vinyl Acetate	ND	10	ug/L
2-Butanone	ND	20	ug/L
1,2-Dichloroethene (total)	ND	5	ug/L
2-Chloroethylvinylether	ND	10	ug/L
4-Methyl-2-Pentanone	ND	10	ug/L
cis-1,3-Dichloropropene	ND	5	${ t ug/L}$
trans-1,3-Dichloropropene	ND	5	ug/L
2-Hexanone	ND	10	ug/L
Methyl t-Butyl Ether	ND	10	ug/L

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
1,2-Dichloroethane-d4	50 ug/L	86	76	114
Toluene-d8	50 ug/L	102	88	110
4-Bromofluorobenzene	50 ug/L	86	86	115

ANALYZED BY: GLT DATE/TIME: 01/23/99 20:10:00

METHOD: 8260 Water, Volatile Organics

* - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

Certificate of Analysis No. H9-9901761-02

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-1

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 12:30:00

DATE RECEIVED: 01/19/99

ANALYTIC	AL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Acenaphthene	ND	5 .	ug/L
Acenaphthylene	ND	5	ug/L
Aniline	ND	5	ug/L
Anthracene	ND	5	ug/L
Benzo(a)Anthracene	ND	5 5 5 5 5	ug/L
Benzo(b)Fluoranthene	ND	5	ug/L
Benzo(k)Fluoranthene	ND	5	ug/L
Benzo(a)Pyrene	ND	5	ug/L
Benzoic Acid	ND	25	ug/L
Benzo(g,h,i)Perylene	ND		ug/L
Benzyl alcohol	ND	5 5 5 5	ug/L
4-Bromophenylphenyl ether	ND	5	ug/L
Butylbenzylphthalate	ND	5	ug/L
di-n-Butyl phthalate	ND	5	ug/L
Carbazole	ND	5	ug/L
4-Chloroaniline	ND	5 5	ug/L
bis(2-Chloroethoxy)Methane	ND	5	ug/L
bis(2-Chloroethyl)Ether	ND	5	ug/L
bis(2-Chloroisopropyl)Ether	ND	5	ug/L
4-Chloro-3-Methylphenol	ND	5	ug/L
2-Chloronaphthalene	ND	. 5	ug/L
2-Chlorophenol	ND	5	ug/L
4-Chlorophenylphenyl ether	ND	5	ug/L
Chrysene	ND ND	5	ug/L
Dibenz (a, h) Anthracene	ND	5	ug/L
Dibenzofuran	ND		ug/L
1,2-Dichlorobenzene	ND	5	ug/L
1,3-Dichlorobenzene	ND	5 5 5	ug/L
1,4-Dichlorobenzene	ND	5	ug/L
3,3'-Dichlorobenzidine	ND	10	
2,4-Dichlorophenol	ND	5	ug/L
Diethylphthalate	ND ND	5	ug/L
2,4-Dimethylphenol	ND	5	ug/L
Dimethyl Phthalate		5	ug/L
4,6-Dinitro-2-Methylphenol	ND ND	25	ug/L
2,4-Dinitrophenol			ug/L
	ND	25	ug/L
2,4-Dinitrotoluene	ND	5	ug/L
2,6-Dinitrotoluene	ND	5	ug/L

METHOD: 8270C, Semivolatile Organics - Water (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-02

Rice Operating Company

SAMPLE ID: MW-1

ANALYTICAL DATA (continued)				
PARAMETER	RESULTS	PQL*	UNITS	
1,2-Diphenylhydrazine	ND	5	ug/L	
bis(2-Ethylhexyl)Phthalate	ND	5	ug/L	
Fluoranthene	ND	5	ug/L	
Fluorene	ND	5	ug/L	
Hexachlorobenzene	ND	5	ug/L	
Hexachlorobutadiene	ND	5	ug/L	
Hexachloroethane	ND	5	ug/L	
Hexachlorocyclopentadiene	ND	5 5 5 5	ug/L	
Indeno(1,2,3-cd)Pyrene	ND	5	ug/L	
Isophorone	ND	5 .	ug/L	
2-Methylnaphthalene	ND	· 5	ug/L	
2-Methylphenol	ND	5	ug/L	
4-Methylphenol	ND	5 5	ug/L	
Naphthalene	ND	5	ug/L	
2-Nitroaniline	ND	25	ug/L	
3-Nitroaniline	ND	25	ug/L	
4-Nitroaniline	ND	25	ug/L	
Nitrobenzene	ND	5	ug/L	
2-Nitrophenol	ND	5	ug/L	
4-Nitrophenol	ND	25	ug/L	
N-Nitrosodiphenylamine	ND	5	ug/L	
N-Nitroso-Di-n-Propylamine	ND	5	ug/L	
Di-n-Octyl Phthalate	ND	5	ug/L	
Pentachlorophenol	ND	25	ug/L	
Phenanthrene	$\mathtt{N}\mathtt{D}$	5	\mathtt{ug}/\mathtt{L}	
Phenol	ND	5	ug/L	
Pyrene	ND	5 5 5	ug/L	
Pyridine	ND	5	ug/L	
1,2,4-Trichlorobenzene	ND		ug/L	
2,4,5-Trichlorophenol	ND	10	ug/L	
2,4,6-Trichlorophenol	ND	5	ug/L	

METHOD: 8270C, Semivolatile Organics - Water (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-02

Rice Operating Company

SAMPLE ID: MW-1

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
Nitrobenzene-d5	50 ug/L	74	35	114
2-Fluorobiphenyl	50 ug/L	78	43	116
Terphenyl-d14	50 ug/L	60	3 3 ·	141
Phenol-d5	75 ug/L	21	10	110
2-Fluorophenol	75 ug/L	37	21	110
2,4,6-Tribromophenol	75 ug/L	65	10	123

ANALYZED BY: YL

DATE/TIME: 01/22/99 19:55:00

EXTRACTED BY:

KL

DATE/TIME:

01/20/99 13:00:00

METHOD: 8270C, Semivolatile Organics - Water

* - Practical Quantitation Limit

ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-01

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-2

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 11:20:00

DATE RECEIVED: 01/19/99

	ANALYTICAL DA	\TA		
PARAMETER		RESULTS	DETECTION LIMIT	UNITS
Method 3520C Analyzed by:		01/20/99	BIMII	
Chloride Method 325.3 Analyzed by: Date:		230	5	mg/L
Carbonate, as Method SM 450 Analyzed by: Date:	00-CO2D **	ND	2	mg/L
Bicarbonate, a Method SM 450 Analyzed by: Date:	00-CO2D **	322	2	mg/L
pH Method 150.1	*	7.51		pH Units
Analyzed by:				
Resistivity Method 120.1 Analyzed by: Date:		0.58	0.001	Mohms-cm

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-01

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-2

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 11:20:00

DATE RECEIVED: 01/19/99

		ANALYTICAL	DATA		
PARAMETER	·		RESULTS	DETECTION LIMIT	UNITS
Sulfate			372	25	mg/L
Method 375.4					
Analyzed by:					
Date:	01/28/99	13:30:00			
Specific Grav	ity		0.985		g/cm3
ASTM D1429					
Analyzed by:					
Date:	02/02/99	14:00:00			
Total Dissolve	ed Solids		1190	20	mg/L
Method 160.1					
Analyzed by:					
Date:	02/05/99	10:00:00			
Silver, Total			ND	0.01	mg/L
Method 6010B					_
Analyzed by:					
Date:	01/20/99	10:00:00			
Aluminum, Tota	al		16.5	0.1	mg/L
Method 6010B	· · · · · · · · · · · · · · · · · · ·				
Analyzed by:					·
Date:	01/20/99	10:00:00			
Arsenic, Total			0.025	0.005	mq/L
Method 6010B	***				•
Analyzed by:					
Date:	01/21/99	15:28:00			

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 02/09/99

Certificate of Analysis No. H9-9901761-01

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

PROJECT: Jct. I-9 Hobbs SWD System
SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-2

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 11:20:00

DATE RECEIVED: 01/19/99

PARAMETER	ANALYTICAL	DATA RESULTS	DETECTION	UNITS
I AIGMID I DIN	•	KEDOLID	LIMIT	ONTIB
Barium, Total Method 6010B *** Analyzed by: JM Date: 01/20	/99 10:00:00	0.970		mg/L
Calcium, Total Method 6010B *** Analyzed by: JM Date: 01/20	/99 10:00:00	578	. 1	mg/L
Cadmium, Total Method 6010B *** Analyzed by: JM Date: 01/20	/99 10:00:00	ND	0.005	mg/L
Cobalt, Total Method 6010B *** Analyzed by: JM Date: 01/20	/99 10:00:00	ND	0.01	mg/L
Chromium, Total Method 6010B ***		0.02	0.01	mg/L
Analyzed by: JM Date: 01/20,	/99 10:00:00			
Copper, Total Method 6010B *** Analyzed by: JM Date: 01/20,	/99 10:00:00	0.02	0.01	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

the first Market for Derivating Calif Market a Market Calif Hall

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-01

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-2

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 11:20:00

DATE RECEIVED: 01/19/99

	ANALYTIC.	AL DATA		
PARAMETER		RESULTS	DETECTION LIMIT	UNITS
Iron, Total Method 6010B *** Analyzed by: JM Date: 01/20/	99 10:00:00	11.6	0.02	mg/L
Mercury, Total Method 7470 A*** Analyzed by: AG Date: 01/20/9	99 14:50:00	ND	0.0002	mg/L
Potassium, Total Method 6010B *** Analyzed by: JM Date: 01/20/9	99 10:00:00	30	2	mg/L
Magnesium, Total Method 6010B *** Analyzed by: JM Date: 01/20/9	99 10:00:00	101	0.1	mg/L
Manganese, Total Method 6010B ***		0.288	0.005	mg/L
Analyzed by: JM Date: 01/20/9	99 10:00:00			
Molybdenum, Total Method 6010B *** Analyzed by: JM Date: 01/20/9	99 10:00:00	ND	0.02	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA
**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-01

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-2

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 11:20:00

DATE RECEIVED: 01/19/99

		ANALYT	CAL DATA		
PARAMETER			RESULTS	DETECTION LIMIT	UNITS
Sodium, Total Method 6010B Analyzed by: Date:		10:00:00	171	0.5	mg/L
Nickel, Total Method 6010B Analyzed by: Date:		10:00:00	ND	0.02	mg/L
Acid Digestion Method 3010A Analyzed by: Date:	***		01/19/99		
Lead, Total Method 6010B Analyzed by: Date:		15:28:00	0.007	0.005	mg/L
Selenium, Tota _Method_6010B_	***		ND	0.005	mg/L
Analyzed by: Date:	EG 01/21/99	15:28:00			
Zinc, Total Method 6010B Analyzed by: Date:		10:00:00	0.04	0.02	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-01

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

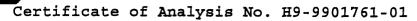
SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-2

PROJECT NO:

MATRIX: WATER


DATE SAMPLED: 01/16/99 11:20:00

DATE RECEIVED: 01/19/99

ANALYTICAL	DATA		
PARAMETER	RESULTS	PQL*	UNITS
Benzene	17	5 ·	ug/L
Bromobenzene	ND	5	ug/L
Bromochloromethane	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	10	ug/L
n-Butylbenzene	ND	5	ug/L
sec-Butylbenzene	ND	5	ug/L
tert-Butylbenzene	ND	5	ug/L
Carbon tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chlorodibromomethane	ND	5	ug/L
Chloroethane	ND	10	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	10	ug/L
2-Chlorotoluene	ND	5	ug/L
4-Chlorotoluene	ND	5	ug/L
1,2-Dibromo-3-chloropropane	ND .	5	ug/L
1,2-Dibromoethane	ND	5	ug/L
Dibromomethane	ND	. 5	ug/L
1,2-Dichlorobenzene	ND	5	ug/L
1,3-Dichlorobenzene	ND	5	ug/L
1,4-Dichlorobenzene	ND	5	ug/L
Dichlorodifluoromethane	ND	10	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
cis-1,2-Dichloroethene	ND	5	ug/L
trans-1,2-Dichloroethene	. N D	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
1,3-Dichloropropane	ND	5	ug/L
2,2-Dichloropropane	ND	5	ug/L
1,1-Dichloropropene	ND	5	ug/L
Ethylbenzene	7	5	ug/L
Hexachlorobutadiene	ND	5	ug/L
Isopropylbenzene	ND	5	ug/L
p-Isopropyltoluene	ND	5	ug/L
Methylene chloride	ND	5	ug/L

METHOD: 8260 Water, Volatile Organics (continued on next page)

Rice Operating Company

SAMPLE ID: MW-2

ANALYTIC	AL DATA (cont	inued)	
PARAMETER	RESULTS	PQL*	UNITS
Naphthalene	ND	, 5	ug/L
n-Propylbenzene	ND .	. 5	. ug/L
Styrene	ND	5	ug/L
1,1,1,2-Tetrachloroethane	ND	5 5 5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L
Tetrachloroethene	, N D	5	ug/L
Toluene	ND	5	ug/L
1,2,3-Trichlorobenzene	ND	5	ug/L
1,2,4-Trichlorobenzene	ND	5	ug/L
1,1,1-Trichloroethane	ND	5 5 5 5 5	ug/L
1,1,2-Trichloroethane	ND		uġ/L
Trichloroethene	ND	5	ug/L
Trichlorofluoromethane	ND	5	ug/L
1,2,3-Trichloropropane	ND	5 5 5	ug/L
1,2,4-Trimethylbenzene	ND	5	ug/L
1,3,5-Trimethylbenzene	ND	5	ug/L
Vinyl chloride	ND	10	ug/L
Xylenes (total)	12	5	ug/L
Acetone	ND	100	ug/L
Carbon Disulfide	ND	5	ug/L
Vinyl Acetate	ND	10	ug/L
2-Butanone	ND	20	\mathtt{ug}/\mathtt{L}
1,2-Dichloroethene (total)	ND	5	ug/L
2-Chloroethylvinylether	ND	10	ug/L
4-Methyl-2-Pentanone	ND	10	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
2-Hexanone	ND	10	ug/L
Methyl t-Butyl Ether	ND	10	ug/L

SURROGATES	TRUOMA		LOWER	UPPER
	SPIKED	RECOVERY	LIMIT	LIMIT
1,2-Dichloroethane-d4	50 ug/L	84	76	114
Toluene-d8	50 ug/L	104	88	110
4-Bromofluorobenzene	50 ug/L	90	86	115

ANALYZED BY: GLT DATE/TIME: 01/23/99 19:42:00

METHOD: 8260 Water, Volatile Organics

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-01

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-2

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 11:20:00

DATE RECEIVED: 01/19/99

ANALYTICAL	DATA		
PARAMETER	RESULTS	PQL*	UNITS
Acenaphthene	ND	5	ug/L
Acenaphthylene	ND	5	ug/L
Aniline	ND	5	ug/L
Anthracene	ND	5	ug/L
Benzo(a)Anthracene	ND	5	ug/L
Benzo(b)Fluoranthene	ND	5	ug/L
Benzo(k)Fluoranthene	ND	5	ug/L
Benzo(a) Pyrene	ND	5	ug/L
Benzoic Acid	ND	25	ug/L
Benzo(g,h,i)Perylene	ND	5	ug/L
Benzyl alcohol	ND	5	ug/L
4-Bromophenylphenyl ether	ND	5	ug/L
Butylbenzylphthalate	ND	5	ug/L
di-n-Butyl phthalate	ND	5	ug/L
Carbazole	ND	5	ug/L
4-Chloroaniline	ND	5	ug/L
bis(2-Chloroethoxy)Methane	ND	5	ug/L
bis(2-Chloroethyl)Ether	ND	5	ug/L
bis(2-Chloroisopropyl)Ether	ND	5	ug/L
4-Chloro-3-Methylphenol	ND	5	ug/L
2-Chloronaphthalene	ND	5	ug/L
2-Chlorophenol	ND	5	ug/L
4-Chlorophenylphenyl_ether	ND	5	ug/L
Chrysene	ND	5	ug/L
Dibenz(a,h)Anthracene	ND	5	ug/L
Dibenzofuran	ND	5	\mathtt{ug}/\mathtt{L}
1,2-Dichlorobenzene	ND	5	ug/L
1,3-Dichlorobenzene	ND	5	ug/L
1,4-Dichlorobenzene	, N D	5	ug/L
3,3'-Dichlorobenzidine	ND	10	${\tt ug/L}$
2,4-Dichlorophenol	ND	5	ug/L
Diethylphthalate	ND	5	ug/L
2,4-Dimethylphenol	ND	5	ug/L
Dimethyl Phthalate	ND	5	ug/L
4,6-Dinitro-2-Methylphenol	ND	25	\mathtt{ug}/\mathtt{L}
2,4-Dinitrophenol	ND	25	ug/L
2,4-Dinitrotoluene	ND	5	ug/L
2,6-Dinitrotoluene	ND	5	ug/L

METHOD: 8270C, Semivolatile Organics - Water (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-01

Rice Operating Company

SAMPLE ID: MW-2

ANALYTIC	AL DATA (cont	inued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2-Diphenylhydrazine	ND	5	ug/L
bis(2-Ethylhexyl)Phthalate	ND	5	ug/L
Fluoranthene	ND	5	· ug/L
Fluorene	ND	5	ug/L
Hexachlorobenzene	ND	5	ug/L
Hexachlorobutadiene	ND	5	ug/L
Hexachloroethane	ND	5	ug/L
Hexachlorocyclopentadiene	ND	5	ug/L
Indeno(1,2,3-cd)Pyréne	ND	5	ug/L
Isophorone	ND	5	ug/L
2-Methylnaphthalene	ND	5 5 5 5 5 5 5 5 5 5	ug/L
2-Methylphenol	ND	5	\mathtt{ug}/\mathtt{L}
4-Methylphenol	ND	5	ug/L
Naphthalene	ND	5	ug/L
2-Nitroaniline	ND	25	ug/L
3-Nitroaniline	ND	25	ug/L
4-Nitroaniline	ND	25	ug/L
Nitrobenzene	ND	5	\mathtt{ug}/\mathtt{L}
2-Nitrophenol	ND	5	ug/L
4-Nitrophenol	ND	25	ug/L
N-Nitrosodiphenylamine	, ND	5	ug/L
N-Nitroso-Di-n-Propylamine	ND	5	ug/L
Di-n-Octyl Phthalate	ND	5	ug/L
Pentachlorophenol	ND	25	\mathtt{ug}/\mathtt{L}
Phenanthrene	ND	5	ug/L
Phenol	ND	5	ug/L
Pyrene	ND	5 5	ug/L
Pyridine	ND		ug/L
1,2,4-Trichlorobenzene	ND	5	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	5	ug/L

METHOD: 8270C, Semivolatile Organics - Water (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-01

Rice Operating Company

SAMPLE ID: MW-2

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
Nitrobenzene-d5	50 ug/L	. 78	35	114
2-Fluorobiphenyl	50 ug/L	82	43.	116
Terphenyl-d14	50 ug/L	56	33	141
Phenol-d5	75 ug/L	21	10	110
2-Fluorophenol	75 ug/L	37	21	110
2,4,6-Tribromophenol	75 ug/L	73	10	123

ANALYZED BY: YL DATE/TIME: 01/22/99 19:24:00 EXTRACTED BY: KL DATE/TIME: 01/20/99 13:00:00

METHOD: 8270C, Semivolatile Organics - Water

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-03

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-3

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 14:30:00

DATE RECEIVED: 01/19/99

ANALYTICAL D	ATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Liquid-liquid extraction SEMIVOLATILES Method 3520C *** Analyzed by: KL Date: 01/20/99 13:00:00	01/20/99	BIMII	·
Chloride Method 325.3 * Analyzed by: CV Date: 01/29/99 11:00:00	195	5	mg/L
Carbonate, as CaCO3 Method SM 4500-CO2D ** Analyzed by: TK Date: 01/19/99 16:20:00	ND	2	mg/L
Bicarbonate, as CaCO3 Method SM 4500-CO2D ** Analyzed by: TK Date: 01/19/99 16:20:00	370	2	mg/L
pH Method 150.1 * Analyzed by: TK Date: 01/19/99 17:00:00	7.51		pH Units
Resistivity Method 120.1 * Analyzed by: TK Date: 01/19/99 16:50:00	0.53	0.001	Mohms-cm

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA
**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.
***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-03

Rice Operating Company 122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company DATE SAMPLED: 01/16/99 14:30:00

SAMPLE ID: MW-3

DATE RECEIVED: 01/19/99

MATRIX: WATER

PROJECT NO:

		ANALYTICAL D	ATA		
PARAMETER			RESULTS	DETECTION LIMIT	UNITS
Sulfate Method 375.4 Analyzed by: Date:		13:30:00	483	25	mg/L
Specific Grav: ASTM D1429 Analyzed by:	DS		0.996		g/cm3
Date: Total Dissolve Method 160.1 Analyzed by:	*	14:00:00	1340	40	mg/L
Date: Silver, Total Method 6010B Analyzed by:	02/05/99 *** JM		ND	0.01	mg/L
luminum, Tota Method 6010B	***	10:00:00	32.7	0.1	mg/L
	01/20/99	10:00:00	0.028	0.005	ma /I
Arsenic, Total Method 6010B Analyzed by: Date:	***	15:28:00		0.005	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 02/09/99

Certificate of Analysis No. H9-9901761-03

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

PROJECT NO:

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-3

MATRIX: WATER

DATE SAMPLED: 01/16/99 14:30:00 DATE RECEIVED: 01/19/99

		ANALYTICAI	DATA		
PARAMETER			RESULTS	DETECTION LIMIT	UNITS
Barium, Total Method 6010B Analyzed by: Date:		10:00:00	3.91	0.005	mg/L
Calcium, Total Method 6010B Analyzed by: Date:	***	10:00:00	1255	1	mg/L
Cadmium, Total Method 6010B Analyzed by: Date:	***	10:00:00	ND	0.005	mg/L
Cobalt, Total Method 6010B Analyzed by: Date:		10:00:00	ND	0.01	mg/L
Chromium, Tota Method 6010B	***		0.03	0.01	mg/L
Analyzed by: Date:		10:00:00			
Copper, Total Method 6010B Analyzed by: Date:		10:00:00	0.02	0.01	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-03

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-3

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 14:30:00

DATE RECEIVED: 01/19/99

		ANALYTICAL	DATA		
PARAMETER			RESULTS	DETECTION LIMIT	UNITS
Iron, Total Method 6010B Analyzed by: Date:		10:00:00	26.4	0.02	mg/L
Mercury, Total Method 7470 A Analyzed by: Date:	7***	14:50:00	ND	0.0002	mg/L
Potassium, Tot Method 6010B Analyzed by: Date:	***	10:00:00	8	2	mg/L
Magnesium, Tot Method 6010B Analyzed by: Date:	***	10:00:00	76.5	0.1	mg/L
Manganese, Tot Method 6010B			0.535	0.005	mg/L
Analyzed by: Date:	JM 01/20/99	10:00:00			
Molybdenum, To Method 6010B Analyzed by: Date:	***	10:00:00	0.03	0.02	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-03

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-3

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 14:30:00

DATE RECEIVED: 01/19/99

		ANALYTI	CAL DATA		
PARAMETER			RESULTS	DETECTION LIMIT	UNITS
Sodium, Total Method 6010B Analyzed by: Date:		LO:00:00	310	0.5	mg/L
Nickel, Total Method 6010B Analyzed by: Date:		LO:00:00	0.05	0.02	mg/L
Acid Digestion Method 3010A Analyzed by: Date:	***		01/19/99		•
Lead, Total Method 6010B Analyzed by: Date:		5:28:00	. 0.013	0.005	mg/L
Selenium, Tota Method 6010B			ND	0.005	mg/L
Analyzed by: Date:	EG 01/21/99 1	5:28:00			
Zinc, Total Method 6010B Analyzed by: Date:		.0:00:00	0.04	0.02	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-03

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-3

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 14:30:00

DATE RECEIVED: 01/19/99

ANALYTICA	L DATA		
PARAMETER	RESULTS	PQL*	UNITS
Benzene	ND	5 ·	ug/L
Bromobenzene	ND	5	ug/L
Bromochloromethane	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	10	ug/L
n-Butylbenzene	ND	5	ug/L
sec-Butylbenzene	ND	5	ug/L
tert-Butylbenzene	ND	5 .	ug/L
Carbon tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chlorodibromomethane	ND	5	ug/L
Chloroethane	ND	10	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	10	ug/L
2-Chlorotoluene	ND	5	ug/L
4-Chlorotoluene	ND	5	ug/L
1,2-Dibromo-3-chloropropane	ND	5	ug/L
1,2-Dibromoethane	${f N}{f D}$	5	ug/L
Dibromomethane	ND	5	ug/L
1,2-Dichlorobenzene	ND.	5	ug/L
1,3-Dichlorobenzene	ND	. 5	ug/L
1,4-Dichlorobenzene	ND	5	ug/L
Dichlorodifluoromethane	ND	10	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	\mathtt{ug}/\mathtt{L}
cis-1,2-Dichloroethene	ND	5	ug/L
trans-1,2-Dichloroethene	, ND	. 5 5	ug/L
1,2-Dichloropropane	ND		ug/L
1,3-Dichloropropane	ND	5	${ t ug/L}$
2,2-Dichloropropane	ND	5	ug/L
1,1-Dichloropropene	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
Hexachlorobutadiene	ND	5	ug/L
Isopropylbenzene	ND	5	ug/L
p-Isopropyltoluene	ND	5	ug/L
Methylene chloride	ND	5	ug/L

METHOD: 8260 Water, Volatile Organics (continued on next page)

Certificate of Analysis No. H9-9901761-03

Rice Operating Company

SAMPLE ID: MW-3

ANALYTIC	AL DATA (cont	cinued)	
PARAMETER	RESULTS	PQL*	UNITS
Naphthalene	ND	5	ug/L
n-Propylbenzene	ND	5	. ug/L
Styrene	ND	5	ug/L
1,1,1,2-Tetrachloroethane	ND	5	\mathtt{ug}/\mathtt{L}
1,1,2,2-Tetrachloroethane	\mathtt{ND}	5 5 5	ug/L
Tetrachloroethene	ND	5	ug/L
Toluene	ND		ug/L
1,2,3-Trichlorobenzene	ND	5 5 5	ug/L
1,2,4-Trichlorobenzene	ND	5	ug/L
1,1,1-Trichloroethane	ND		ug/L
1,1,2-Trichloroethane	ND	. 5	ug/L
Trichloroethene	ND	5	ug/L
Trichlorofluoromethane	ND	5	ug/L
1,2,3-Trichloropropane	ND	5	ug/L
1,2,4-Trimethylbenzene	ND	5	ug/L
1,3,5-Trimethylbenzene	ND	5	ug/L
Vinyl chloride	ND	10	ug/L
Xylenes (total)	ND	5	ug/L
Acetone	ND	100	ug/L
Carbon Disulfide	ND	5	ug/L
Vinyl Acetate	ND	10	ug/L
2-Butanone	ND	20	ug/L
1,2-Dichloroethene (total)	ND	5	ug/L
2-Chloroethylvinylether	ND	10	ug/L
4-Methyl-2-Pentanone	ND	10	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
2-Hexanone	ND	10	ug/L
Methyl t-Butyl Ether	ND	10	ug/L

SURROGATES	AMOUNT	%	LOWER	UPPER
- · · ·	SPIKED	RECOVERY	LIMIT	LIMIT
1,2-Dichloroethane-d4	50 ug/L	84	76	114
Toluene-d8	50 ug/L	106	88	110
4-Bromofluorobenzene	50 ug/L	86	86	115

ANALYZED BY: GLT DATE/TIME: 01/23/99 20:38:00

METHOD: 8260 Water, Volatile Organics

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

© Certificate of Analysis No. H9-9901761-03

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

02/09/99

PROJECT: Jct. I-9 Hobbs SWD System

SITE: 09-T195-R38E, Lea County

SAMPLED BY: Rice Operating Company

SAMPLE ID: MW-3

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 01/16/99 14:30:00

DATE RECEIVED: 01/19/99

ANALYTIC	AL DATA		
PARAMETER	RESULTS	PQL*	UNIT
Acenaphthene	$\mathtt{N}\mathtt{D}$	5 .	ug/
Acenaphthylene	ND	5	ug/
Aniline	ND	5	ug/
Anthracene	ND	5	ug/
Benzo(a)Anthracene	ND	, 5	ug/
Benzo(b)Fluoranthene	ND	5	ug/
Benzo(k)Fluoranthene	ND	5	ug/
Benzo(a) Pyrene	ND	5	ug/
Benzoic Acid	ND	25	ug/
Benzo(g,h,i)Perylene	ND	5	ug/
Benzyl alcohol	ND	5	ug/
4-Bromophenylphenyl ether	ND	5 5 5 5 5	ug/
Butylbenzylphthalate	ND	5	ug/
di-n-Butyl phthalate	ND	5	ug/
Carbazole	ND	5	ug/
4-Chloroaniline	ND	5	ug/
bis(2-Chloroethoxy)Methane	ND	5	ug/
bis(2-Chloroethyl)Ether	ND	5	ug/
bis(2-Chloroisopropyl)Ether	ND	5 5	ug/
4-Chloro-3-Methylphenol	ND	5	ug/
2-Chloronaphthalene	ND	5	ug/
2-Chlorophenol	ND	5	ug/
4-Chlorophenylphenyl ether	ND	5	ug/
Chrysene	ND	5	ug/
Dibenz(a,h)Anthracene	ND	5	ug/
Dibenzofuran	ND	5	ug/
1,2-Dichlorobenzene	ND	5 5	ug/
1,3-Dichlorobenzene	ND	5	ug/
1,4-Dichlorobenzene	ND	5	ug/
3,3'-Dichlorobenzidine	ND	10	ug/
2,4-Dichlorophenol	ND	5	ug/
Diethylphthalate	ND	5	ug/
2,4-Dimethylphenol	ND	5	ug/
Dimethyl Phthalate	ND	5	ug/
4,6-Dinitro-2-Methylphenol	ND	25	ug/
2,4-Dinitrophenol	ND	25	ug/
2,4-Dinitrotoluene	ND	5	ug/:
2,6-Dinitrotoluene	ND	5 ·	ug/:

METHOD: 8270C, Semivolatile Organics - Water (continued on next page)

Certificate of Analysis No. H9-9901761-03

Rice Operating Company

SAMPLE ID: MW-3

ANALYTIC	AL DATA (cont	inued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2-Diphenylhydrazine	ND	5	ug/L
bis(2-Ethylhexyl)Phthalate	ND	5	ug/L
Fluoranthene	ND	5	ug/L
Fluorene	ND	5	ug/L
Hexachlorobenzene	ND	5	ug/L
Hexachlorobutadiene	ND	5	ug/L
Hexachloroethane	ND	5	ug/L
Hexachlorocyclopentadiene	ND	5 5 5 5 5	ug/L
Indeno(1,2,3-cd)Pyrene	ND	5	ug/L
Isophorone	ND	5 .	ug/L
2-Methylnaphthalene	ND	5	ug/L
2-Methylphenol	ND	5	ug/L
4-Methylphenol	ND	5	ug/L
Naphthalene	ND	5	ug/L
2-Nitroaniline	ND	25	ug/L
3-Nitroaniline	ND	25	ug/L
4-Nitroaniline	ND	25	ug/L
Nitrobenzene	ND	5	ug/L
2-Nitrophenol	$\mathtt{N}\mathtt{D}$	5	ug/L
4-Nitrophenol	ND	25	ug/L
N-Nitrosodiphenylamine	ND ND	5	ug/L
N-Nitroso-Di-n-Propylamine	ND	5	ug/L
Di-n-Octyl Phthalate	ND	5	ug/L
Pentachlorophenol	ND	25	ug/L
Phenanthrene	ND	5	ug/L
Phenol	ND	5	ug/L
Pyrene	ND	5	ug/L
Pyridine	ND	5	ug/L
1,2,4-Trichlorobenzene	ND	5	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	5	ug/L

METHOD: 8270C, Semivolatile Organics - Water (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-03

Rice Operating Company

SAMPLE ID: MW-3

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
Nitrobenzene-d5	50 ug/L	. 86	35	114
2-Fluorobiphenyl	50 ug/L	86	43	116
Terphenyl-d14	50 ug/L	56	33	141
Phenol-d5	75 ug/L	25	10	110
2-Fluorophenol	75 ug/L	45	21	110
2,4,6-Tribromophenol	75 ug/L	87	10	123

ANALYZED BY: YL DATE/TIME: 01/22/99 20:27:00 EXTRACTED BY: KL DATE/TIME: 01/20/99 13:00:00

METHOD: 8270C, Semivolatile Organics - Water

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

QUALITY CONTROL

DOCUMENTATION

3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: SPL

Contract:

Lab Code:

Case No.: 9901750 SAS No.:

SDG No.:

Matrix Spike - EPA Sample No.: 99-006 A/B

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC #	QC. LIMITS REC.
	=======	=========	==========	======	=====
1,1-Dichloroethene	50	0	56	112	61-145
Trichloroethene	50	0	52	104	71-120
Benzene	50	0	52	104	76-127
Toluene	50	0	53	106	76-125
Chlorobenzene	50	0	51	102	75-130

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION (ug/L)	MSD % REC #	% RPD #	QC L: RPD	MITS REC.
=======================================	=======	=========	=====	=====	======	=====
1,1-Dichloroethene	50	58	106	6	14	61-145
Trichloroethene	50	47	100	4	14	71-120
Benzene	50	50	104	0	11	76-127
Toluene ·	50	48	108	2	13	76-125
Chlorobenzene	50	48	102	0	13	75-130

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 out of 5 outside limits

Spike Recovery: 0 out of 10 outside limits due to matrix interferences

^{*} Values outside of QC limits

Data File: /var/chem/n.i/n990123.b/n023t11.d

Report Date: 23-Jan-1999 11:37

SPL Houston Labs

RECOVERY REPORT

Client Name:

Sample Matrix: LIQUID

Lab Smp Id: METHSPIKE-8260W Level: LOW

Data Type: MS DATA

SpikeList File: 8260_water.spk Sublist File: 8260_lcs.sub

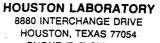
Method File: /var/chem/n.i/n990123.b/n8260w.m

Misc Info: N023W1//N023CW1

Client SDG: n990123

Fraction: VOA

Client Smp ID: LCS


Operator: GLT

SampleType: METHSPIKE

Quant Type: ISTD

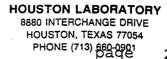
SPIKE	COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
29	1,1-Dichloroethene Trichloroethene Benzene	50 50 50	53 52 52	106.00 104.00 104.00	61-145 71-120 76-127
37	Toluene Chlorobenzene	50 50	53 51	104.00	76-125 75-130

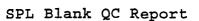
SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
\$ 21 1,2-Dichloroethane	50	41	82.00	76-114
\$ 36 Toluene-d8	50	51	102.00	88-110
\$ 56 Bromofluorobenzene	50	43	86.00	86-115

1

PHONE (713) 660-0901

SPL Blank QC Report


Matrix: Aqueous Sample ID: VLBLK Batch: N990123122720 Reported on: 01/25/99 17:44 Analyzed on: 01/23/99 10:55


Analyst: GLT

METHOD 8260/8240 N023B01

Compound	Result	Detection Limit	Units
Dichlorodifluoromethane	ND	10	ug/L
Chloromethane	ND	10	ug/L
Vinyl Chloride	ND	10	ug/L
Bromomethane	ND	10	ug/L
Chloroethane	ND	10	ug/L
Trichlorofluoromethane	ND	5	ug/L
Acetone	ND	100	ug/L
1,1-Dichloroethene	ND	5	ug/L
Methylene Chloride	ND	5	ug/L
Carbon Disulfide	ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
Vinyl Acetate	ND	10	ug/L
2-Butanone	ND	20	ug/L
cis-1,2-Dichloroethene	ND	5	ug/L
1,2-Dichloroethene (total)	ND	5	ug/L
2,2-Dichloropropane	ND	5	ug/L
Bromochloromethane	ND	5	ug/L
Chloroform	ND	5	ug/L
1,1,1-Trichloroethane	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,1-Dichloropropene	ND	5 5	ug/L
Benzene	ND		ug/L
Carbon Tetrachloride	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
Trichloroethene	ND	5	ug/L
Dibromomethane	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
2-Chloroethylvinylether	ND	10	ug/L
4-Methyl-2-Pentanone	ND	10	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
Toluene	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L

<u>Notes</u>

Reported on: 01/25/99 17:44 Analyzed on: 01/23/99 10:55

Analyst: GLT

Matrix: Aqueous Sample ID: VLBLK Batch: N990123122720

METHOD 8260/8240 N023B01

1,3-Dichloropropane	Compound	Result	Detection Limit	Units
Dibromochloromethane	1,3-Dichloropropane	ND	l I	
1,2-Dibromoethane	11	ND	10	ug/L
Tetrachloroethene	Dibromochloromethane	ND	5	ug/L
Chlorobenzene		11 1		ug/L
1,1,1,2-Tetrachloroethane	il :	11 1		ug/L
Ethylbenzene	11	l: I		ug/L
Bromoform ND 5 ug/L	1,1,1,2-Tetrachloroethane	li)		ug/L
Styrene ND S ug/L		II t		ug/L
Xylene (Total) ND 5 ug/L 1,1,2,2-Tetrachloroethane ND 5 ug/L 1,2,3-Trichloropropane ND 5 ug/L 1,sopropylbenzene ND 5 ug/L Bromobenzene ND 5 ug/L N-Propylbenzene ND 5 ug/L N-Propylbenzene ND 5 ug/L 2-Chlorotoluene ND 5 ug/L 4-Chlorotoluene ND 5 ug/L 1,3,5-Trimethylbenzene ND 5 ug/L 1,2,4-Trimethylbenzene ND 5 ug/L 1,3-Dichlorobenzene ND 5 ug/L 1,4-Dichlorobenzene ND 5 ug/L 1,2-Dichlorobenzene ND 5 ug/L 1,2-Dichlorobenzene ND 5 ug/L 1,2-Dibromo-3-Chloropropan ND 5 ug/L 1,2,4-Trichlorobenzene ND 5 ug/L Naphthalene ND 5 ug/L Naphthalene ND 5 ug/L	Bromoform	11		ug/L
1,1,2,2-Tetrachloroethane ND 5 ug/L 1,2,3-Trichloropropane ND 5 ug/L Isopropylbenzene ND 5 ug/L Bromobenzene ND 5 ug/L N-Propylbenzene ND 5 ug/L N-Propylbenzene ND 5 ug/L 2-Chlorotoluene ND 5 ug/L 4-Chlorotoluene ND 5 ug/L 1,3,5-Trimethylbenzene ND 5 ug/L 1,2,4-Trimethylbenzene ND 5 ug/L 1,3-Dichlorobenzene ND 5 ug/L 1,4-Dichlorobenzene ND 5 ug/L 1,4-Dichlorobenzene ND 5 ug/L 1,2-Dichlorobenzene ND 5 ug/L 1,2-Dichlorobenzene ND 5 ug/L 1,2-Dibromo-3-Chloropropan ND 5 ug/L 1,2,4-Trichlorobenzene ND 5 ug/L Naphthalene ND 5 ug/L Hexachlorobutadiene ND 5	II →	1		ug/L
1,2,3-Trichloropropane ND 5 ug/L Isopropylbenzene ND 5 ug/L Bromobenzene ND 5 ug/L N-Propylbenzene ND 5 ug/L 2-Chlorotoluene ND 5 ug/L 2-Chlorotoluene ND 5 ug/L 4-Chlorotoluene ND 5 ug/L 1,3,5-Trimethylbenzene ND 5 ug/L 1,2,4-Trimethylbenzene ND 5 ug/L 1,3-Dichlorobenzene ND 5 ug/L sec-Butylbenzene ND 5 ug/L 1,4-Dichlorobenzene ND 5 ug/L 1,2-Dichlorobenzene ND 5 ug/L 1,2-Dichlorobenzene ND 5 ug/L 1,2-Dibromo-3-Chloropropan ND 5 ug/L 1,2,4-Trichlorobenzene ND 5 ug/L Naphthalene ND 5 ug/L Naphthalene ND 5 ug/L Hexachlorobutadiene ND 5 ug/L		I I		ug/L
Isopropylbenzene	1,1,2,2-Tetrachloroethane			ug/L
Bromobenzene ND 5 ug/L N-Propylbenzene ND 5 ug/L 2-Chlorotoluene ND 5 ug/L 4-Chlorotoluene ND 5 ug/L 1,3,5-Trimethylbenzene ND 5 ug/L tert-Butylbenzene ND 5 ug/L 1,2,4-Trimethylbenzene ND 5 ug/L 1,3-Dichlorobenzene ND 5 ug/L sec-Butylbenzene ND 5 ug/L 1,4-Dichlorobenzene ND 5 ug/L 1,2-Dichlorobenzene ND 5 ug/L 1,2-Dichlorobenzene ND 5 ug/L 1,2-Dibromo-3-Chloropropan ND 5 ug/L 1,2-Trichlorobenzene ND 5 ug/L 1,2,4-Trichlorobenzene ND 5 ug/L Naphthalene ND 5 ug/L Naphthalene ND 5 ug/L Naphthalene ND 5 ug/L 1,2,3-Trichlorobenzene ND 5 ug/L	1,2,3-Trichloropropane	l i		ug/L
N-Propylbenzene ND 5 ug/L 2-Chlorotoluene ND 5 ug/L 4-Chlorotoluene ND 5 ug/L 1,3,5-Trimethylbenzene ND 5 ug/L 1,2,4-Trimethylbenzene ND 5 ug/L 1,3-Dichlorobenzene ND 5 ug/L 1,4-Dichlorobenzene ND 5 ug/L 1,4-Dichlorobenzene ND 5 ug/L 1,2-Dichlorobenzene ND 5 ug/L 1,2-Dichlorobenzene ND 5 ug/L 1,2-Dibromo-3-Chloropropan ND 5 ug/L 1,2,4-Trichlorobenzene ND 5 ug/L 1,2,4-Trichlorobenzene ND 5 ug/L 1,2,4-Trichlorobenzene ND 5 ug/L 1,2,3-Trichlorobenzene				ug/L
2-Chlorotoluene	11	l l		ug/L∥
4-ChlorotolueneND5ug/L1,3,5-TrimethylbenzeneND5ug/Ltert-ButylbenzeneND5ug/L1,2,4-TrimethylbenzeneND5ug/L1,3-DichlorobenzeneND5ug/Lsec-ButylbenzeneND5ug/L1,4-DichlorobenzeneND5ug/L1,2-DichlorobenzeneND5ug/Ln-ButylbenzeneND5ug/L1,2-Dibromo-3-ChloropropanND5ug/L1,2,4-TrichlorobenzeneND5ug/LNaphthaleneND5ug/LHexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L		ND		ug/L
1,3,5-TrimethylbenzeneND5ug/Ltert-ButylbenzeneND5ug/L1,2,4-TrimethylbenzeneND5ug/L1,3-DichlorobenzeneND5ug/Lsec-ButylbenzeneND5ug/L1,4-DichlorobenzeneND5ug/Lp-IsopropyltolueneND5ug/L1,2-DichlorobenzeneND5ug/Ln-ButylbenzeneND5ug/L1,2-Dibromo-3-ChloropropanND5ug/L1,2,4-TrichlorobenzeneND5ug/LNaphthaleneND5ug/LHexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L	11	ND		ug/L
tert-ButylbenzeneND5ug/L1,2,4-TrimethylbenzeneND5ug/L1,3-DichlorobenzeneND5ug/Lsec-ButylbenzeneND5ug/L1,4-DichlorobenzeneND5ug/Lp-IsopropyltolueneND5ug/L1,2-DichlorobenzeneND5ug/Ln-ButylbenzeneND5ug/L1,2-Dibromo-3-ChloropropanND5ug/L1,2,4-TrichlorobenzeneND5ug/LNaphthaleneND5ug/LHexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L	((ND)		ug/L
1,2,4-TrimethylbenzeneND5ug/L1,3-DichlorobenzeneND5ug/Lsec-ButylbenzeneND5ug/L1,4-DichlorobenzeneND5ug/Lp-IsopropyltolueneND5ug/L1,2-DichlorobenzeneND5ug/Ln-ButylbenzeneND5ug/L1,2-Dibromo-3-ChloropropanND5ug/L1,2,4-TrichlorobenzeneND5ug/LNaphthaleneND5ug/LHexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L	1,3,5-Trimethylbenzene			ug/L
1,3-DichlorobenzeneND5ug/Lsec-ButylbenzeneND5ug/L1,4-DichlorobenzeneND5ug/Lp-IsopropyltolueneND5ug/L1,2-DichlorobenzeneND5ug/Ln-ButylbenzeneND5ug/L1,2-Dibromo-3-ChloropropanND5ug/L1,2,4-TrichlorobenzeneND5ug/LNaphthaleneND5ug/LHexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L		ND		ug/L
sec-ButylbenzeneND5ug/L1,4-DichlorobenzeneND5ug/Lp-IsopropyltolueneND5ug/L1,2-DichlorobenzeneND5ug/Ln-ButylbenzeneND5ug/L1,2-Dibromo-3-ChloropropanND5ug/L1,2,4-TrichlorobenzeneND5ug/LNaphthaleneND5ug/LHexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L		ND	5	ug/L
1,4-DichlorobenzeneND5ug/Lp-IsopropyltolueneND5ug/L1,2-DichlorobenzeneND5ug/Ln-ButylbenzeneND5ug/L1,2-Dibromo-3-ChloropropanND5ug/L1,2,4-TrichlorobenzeneND5ug/LNaphthaleneND5ug/LHexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L	1,3-Dichlorobenzene	ND	5	ug/L
1,4-DichlorobenzeneND5ug/Lp-IsopropyltolueneND5ug/L1,2-DichlorobenzeneND5ug/Ln-ButylbenzeneND5ug/L1,2-Dibromo-3-ChloropropanND5ug/L1,2,4-TrichlorobenzeneND5ug/LNaphthaleneND5ug/LHexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L	sec-Butylbenzene	UD	5	ug/L
p-Isopropyltoluene ND 5 ug/L 1,2-Dichlorobenzene ND 5 ug/L n-Butylbenzene ND 5 ug/L 1,2-Dibromo-3-Chloropropan ND 5 ug/L 1,2,4-Trichlorobenzene ND 5 ug/L Naphthalene ND 5 ug/L Hexachlorobutadiene ND 5 ug/L 1,2,3-Trichlorobenzene ND 5 ug/L ug/L 1,2,3-Trichlorobenzene ND 5 ug/L ug/L	1,4-Dichlorobenzene	ND	5	
n-ButylbenzeneND5ug/L1,2-Dibromo-3-ChloropropanND5ug/L1,2,4-TrichlorobenzeneND5ug/LNaphthaleneND5ug/LHexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L	p-Isopropyltoluene	ND	5	
n-ButylbenzeneND5ug/L1,2-Dibromo-3-ChloropropanND5ug/L1,2,4-TrichlorobenzeneND5ug/LNaphthaleneND5ug/LHexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L	1,2-Dichlorobenzene	ND	5	
1,2-Dibromo-3-ChloropropanND5ug/L1,2,4-TrichlorobenzeneND5ug/LNaphthaleneND5ug/LHexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L	n-Butylbenzene	ND	5	
NaphthaleneND5ug/LHexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L	1,2-Dibromo-3-Chloropropan	ИD	5	ug/L
NaphthaleneND5ug/LHexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L	1,2,4-Trichlorobenzene	ND	5	
HexachlorobutadieneND5ug/L1,2,3-TrichlorobenzeneND5ug/L	Naphthalene	ND	5	
1,2,3-Trichlorobenzene ND 5 ug/L	Hexachlorobutadiene	ND	5	
	1,2,3-Trichlorobenzene	ND	5	
1 21 1111	Methyl t-Butyl Ether	ND	10	ug/L

<u>Notes</u>

ND - Not detected.

2

SPL Blank QC Report

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054

HOUSTON, TEXAS 77054 PHONE (713) 660-0901 PAGE

3

Reported on: 01/25/99 17:44 Analyzed on: 01/23/99 10:55

Analyst: GLT

Matrix: Aqueous Sample ID: VLBLK Batch: N990123122720

METHOD 8260/8240 N023B01

Surrogate	Result	QC Criteria	Units
1,2-Dichloroethane-d4	86	88-110	% Recovery
Toluene-d8	102		% Recovery
Bromofluorobenzene	88		% Recovery

Samples in Batch 9901761-01 9901761-02 9901761-03 Notes

3C WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:

SPL

Contract:

Lab Code:

Case No:

SAS No:

SDG

No:

Matrix Spike - EPA

Sample No:

Level (low/med):

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATIO	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC #	REC
Phenol	75	0	. 16	21	12-110
2-Chlorophenol	75	0	38	51	27-123
1,4-Dichlorobenzene	50	0	. 29	58	36- 97
N-Nitroso-di-n-propylamine	50	0	32	64	41-116
1,2,4-Trichlorobenzene	50	0	34	. 68	39- 110
4-Chloro-3-methylphenol	75	0	47	63	23-110
Acenaphthene	50	0	38	76	46-125
4-Nitrophenol	75	0	19	25	25-150
2,4-Dinitrotoluene	50	0	38	76	50-150
Pentachlorophenol	75	0	51	68	9-125
Pyrene	50	0	58	116	26-127

	SPIKE	MSD	MSD			
	ADDED	CONCENTRATIO	%	%	QC	LIMITS
COMPOUND	(ug/L)	(ug/L)	REC #	RPD #	RP	REC
Phenol	75	18	24	13	42	12-110
2-Chlorophenol	75	47	63	21	40	27-123
1,4-Dichlorobenzene .	50	g 34	68	16	28	36- 97
N-Nitroso-di-n-propylamine	50	46	92	36	38	41-116
1,2,4-Trichlorobenzene	50	40	80	16	28	39-110
4-Chloro-3-methylphenol	75	56	75	17	42	23-110
Acenaphthene	50	45	90	17	31	46-125
4-Nitrophenol	75	19	25	0	50	25-150
2,4-Dinitrotoluene	50	44	88	15	50	50-150
Pentachiorophenoi	75	56	75 ∴	10	50	9-125
Pyrene	50	62	124	7	31	26-127

Column to be used to flag recovery and RPD values with an asterisk

RPD:

0

out of 11 outside limits

Spike Recovery:

out of 22 outside limits

FORM III SV-1

3/90

SPL Blank QC Report

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

page

Matrix: Aqueous
Sample ID: BLANK

Batch: E990120042258

Reported on: 02/02/99 17:15 Analyzed on: 01/21/99 19:37

Analyst: YL

METHOD 8270 H020B03

Compound	Result	Detection Limit	Units
Pyridine Phenol	ND	5	ug/L
Aniline	ND ND	5	ug/L
bis(2-Chloroethyl)ether	ND	5 5	ug/L
2-Chlorophenol	ND	5	ug/L
1,3-Dichlorobenzene	ND	5	ug/L ug/L
1,4-Dichlorobenzene	ND ND	5	ug/L
Benzyl alcohol	ND	5 5	ug/L
1,2-Dichlorobenzene	ND	5	ug/L
2-Methylphenol	ND	5	ug/L
bis(2-chloroisopropyl)ethe	ND	5	ug/L
4-Methylphenol	ND	5	ug/L
N-Nitroso-di-n-propylamine	ND	555555555555555555555555555555555555555	ug/L
Hexachloroethane	ND	5	ug/L
Nitrobenzene	ND	5	ug/L
Isophorone	ND	5	ug/L
2-Nitrophenol	ND		ug/L
2,4-Dimethylphenol	ND	5	ug/L
Benzoic acid	ND	25	ug/L
bis(2-Chloroethoxy)methane	ND	5	ug/L
2,4-Dichlorophenol	ND	5	ug/L
1,2,4-Trichlorobenzene	ND	5	ug/L
Naphthalene	ND	5	ug/L
4-Chloroaniline ————————————————————————————————————	ND	5 5	ug/L
4-Chloro-3-methylphenol	ND ND	5	ug/L
2-Methylnaphthalene	ND ND	5	ug/L
Hexachlorocyclopentadiene	ND	5	ug/L ug/L
2,4,6-Trichlorophenol	ND	5	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2-Chloronaphthalene	ND	5	ug/L
2-Nitroaniline	ND	25	ug/L
Dimethylphthalate	ND	5	ug/L
2,6-Dinitrotoluene	ND	5	ug/L
motes	. "	11	٥. ١١

Notes

SPL Blank QC Report

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TEXAS 77054 PHONE (713) 660-0901

page

2

Matrix: Aqueous Sample ID: BLANK Batch: E990120042258 Reported on: 02/02/99 17:15 Analyzed on: 01/21/99 19:37

Analyst: YL

METHOD 8270 H020B03

Compound	Result	Detection Limit	Units
Acenaphthylene	ND	5	ug/L
3-Nitroaniline	ND	25	ug/L
Acenaphthene	ND	5	ug/L
2,4-Dinitrophenol	ND	25	ug/L
4-Nitrophenol	ND	25	ug/L
Dibenzofuran	ND	5	ug/L
2,4-Dinitrotoluene	ND	5	ug/L
Diethylphthalate	ND	5	ug/L
4-Chlorophenyl-phenylether	ND	5	ug/L
Fluorene	ND	5	ug/L
4-Nitroaniline	ND	25	ug/L
4,6-Dinitro-2-methylphenol	ND	25	ug/L
n-Nitrosodiphenylamine	ND ND	5	ug/L
1,2-Diphenylhydrazine	ND	5	ug/L
4-Bromophenyl-phenylether	ND	5	ug/L
Hexachlorobenzene	ND	5	ug/L
Pentachlorophenol	ND	25	ug/L
Phenanthrene	ND	5	ug/L
Anthracene	ND	5	ug/L
Carbazole	ND	5	ug/L
Di-n-butylphthalate	ND	5 5 5 5	ug/L
Fluoranthene	ND	5	ug/L
Pyrene	ND		ug/L
Butylbenzylphthalate	ND	5	ug/L
3,3'-Dichlorobenzidine	ND	10	ug/L
Benzo[a]anthracene	ND	5	ug/L
Chrysene	ND	5	ug/L
bis(2-Ethylhexyl)phthalate	ND	5	ug/L
Di-n-octylphthalate	ND	5	ug/L
Benzo[b]fluoranthene	ND	. 5	ug/L
Benzo[k]fluoranthene	ND	5	ug/L
Benzo[a] pyrene	ND	5	ug/L
Indeno[1,2,3-cd]pyrene	ND	5	ug/L
Dibenz[a,h]anthracene	ND	5	ug/L

Notes

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

page

3

SPL Blank QC Report

Matrix: Aqueous Sample ID: BLANK

Batch: E990120042258

Reported on: 02/02/99 17:15 Analyzed on: 01/21/99 19:37 Analyst: YL

METHOD 8270 H020B03

Compound	Result	Detection Limit	: · · · · · · · · · · · · · · · · · · ·
Benzo[g,h,i]perylene	ND	5	ug/L

Surrogate	Result	QC Criteria	Units
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	74 84 112 19 36 73	43-116 33-141 10-110 21-110	% Recovery % Recovery % Recovery % Recovery % Recovery

Samples in Batch 9901761-01 9901761-02 9901761-03 Notes

ICP Spectroscopy Method 6010 Quality Control Report

Matrix: Water

Units: mg/L

Analyst: EG

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Date:012199 Time:1528 File Name: 0121PB6

Laboratory Control Sample

Trace-icp

Element	Mth. Blank	True Value	Result	% Recovery	Lower Limit	Upper Limit
Silver						
Aluminum						
Arsenic	ND	4.00	4.29	107	3.20	4.80
Barium						
Beryllium						
Calcium						
Cadmium						
Cobalt						
Chromium						
Copper						
Iron						
Potassium						
Magnesium						
Manganese						
Sodium						
Nickel						
Lead	ND	2.00	2.07	103	1.60	2.40
Antimony						
Selenium	ND	4.00	4.26	106	3.20	4.80
Thallium						
Vanadium						
Zinc						

Work Orders in Batch								
Work Order	Fractions							
99-01-761	01D-03D							

Matrix Spike - Spike Duplicate Results Work Order Spiked: 9901761-01D

Matrix Spike	e - Spike Di	Work Order Spiked: 9901761-010								
	Sample	Spike	Matr	ix Spike	Matrix Sp	ike Duplicate	QCI	.imits	Spike	QC
Element	Result	Added	Result	Recovery	Result	Recovery	% Re	covery	RPD %	Limits %
Silver										
Aluminum										
Arsenic	0.0249	2.0	1.921	94.8	1.949	96.2	80	120	1.5	20.0
Barium										
Beryllium										
Calcium										
Cadmium										
Cobalt										
Chromium										
Copper										
Iron										
Potassium								-		
Magnesium										
Manganese										
Sodium										
Nickel										
Lead	0.0073	1.0	0.8777	87.0	0.8826	87.5	80	120	0.6	20.0
Antimony										
Selenium	ND	2.0	1.869	93.5	1.883	94.2	80	120	0.7	20.0
Thallium										
Vanadium										
Zinc										

Checked: 69. 1/22/99

Analyst: JM

Matrix: Water

Units: mg/L

HOUSTON LABORATORY
8880 INTERCHANGE DRIVE
HOUSTON, TEXAS 77054
PHONE (713) 660-0901

Date:012099 Time:1000 File Name: 0120PB2

Laboratory Control Sample

Element		True Value	Result	% Recovery	Lower Limit	Upper Limit
Silver	ND	2.00	2.07	103	1.60	2.40
Aluminum	ND	2.00	2.03	101	1.60	2.40
Arsenic						
Barium	ND	2.00	2.01	100	1.60	2.40
Beryllium						
Calcium	ND	20.00	21.07	105	16.00	24.00
Cadmium	ND	2.00	2.07	104	1.60	2.40
Cobalt	ND	2.00	2.09	104	1.60	2.40
Chromium	ND	2.00	2.12	106	1.60	2.40
Copper	ND	2.00	2.05	102	1.60	2.40
lron	ND	2.00	2.12	106	1.60	2.40
Potassium	ND	20.00	20.52	103	16.00	24.00
Magnesium	ND	20.00	20.37	102	16.00	24.00
Manganese	ND	2.00	2.04	102	1.60	2.40
Molybdenum	ND	2.00	2.12	106	1.60	2.40
Nickel	ND	2.00	2.09	104	1.60	2.40
Lead						
Antimony						
Selenium						
Thallium						
Vanadium						
Zinc	ND	2.00	2.07	103	1.60	2.40

Work Orders in Batch									
Work Order	Fractions								
99-01-761	01D-03D								
99-01-705	04B .								
99-01-734	01A								

Matrix Spike - Spike Duplicate Results

Work Order Spiked: 9901761-01D

	Sample	Spike	Matr	ix Spike		Matrix Spi	ke Duplicate		QC L	imits.	Spike		QC
Element	Result	Added	Result	Recover	/_	Result	Recovery		% Red	covery	RPD %		Limits %
Silver	ND	1.0	0.886	88.6	Π	0.9046	90.5		80	120	2.1	Ι	20.0
Aluminum	16.53	1.0	20.81	428.0	٠	21.15	462.0	*	80	120	7.6		20.0
Arsenic													
Barium	0.9704	1.0	1.857	88.7		1.856	88.6		80	120	0.1	Γ	20.0
Beryllium								П					
Calcium	578.2	100.0	665.8	87.6		677.8	99.6	Γ	80	120	12.8	Т	20.0
Cadmium	ND	1.0	0.8877	88.8		0.9043	90.4	Γ	80	120	1.9	П	20.0
Cobalt	ND	1.0	0.8559	85.6	Π	0.8698	87.0	Π	80	120	1.6	Т	20.0
Chromium	0.015	1.0	0.8921	87.7	Г	0.9073	89.2	Γ.	80	120	1.7	Τ	20.0
Copper	0.0248	1.0	0.9108	88.6		0.9355	91.1		80	120	2.7	F	20:0
Iron	11.58	1.0	13.38	180.0	•	13.5	192.0	*	80	120	6.5		20.0
Potassium	30.28	10.0	39.69	94.1	П	41.04	107.6		80	120	13.4		20.0
Magnesium	100.9	10.0	109.5	86.0	П	112.6	117.0		80	120	30.5	**	20.0
Manganese	0.2882	1.0	1.131	84.3		1.152	86.4		80	120	2.5		20.0
Molybdenum	ND	1.0	0.8831	88.3	П	0.8925	89.3		80	120	1.1		20.0
Nickel	ND	1.0	0.8679	86.8	П	0.8882	88.8		80	120	2.3		20.0
Lead													
Antimony												T	
Selenium					П								
Thallium					П								
Vanadium					П								
Zinc	0.0435	1.0	0.9025	85.9		0.9227	87.9		80	120	2.3		20.0

^{*} Spike Results Outside Method Limits

Checked: 34 1/21/99

^{**} Spike RPD Outside Method Limits Elements Post Spiked:Ca (10x dilution)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on: 01/20/99

Analyzed on:

01/20/99

Analyst:

AG

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

> Mercury, Total Method 7470 A***

SPL Sample ID Number	Blank Value ug/L	LCS Concentration ug/L Measured Concentration ug/L		% Recovery	QC Limits Recovery
LCS	ND	2.0	2.0	100	80 - 120

-9901533

Samples in batch:

9901761-01D

9901761-02D 9901761-03D

COMMENTS:

LCS= SPL ID# 94-452-49-12

ICP Spectroscopy Method 6010 Quality Control Report

Analyst: JM

Matrix: Water

Units: mg/L

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Date:012099 Time:1000 File Name: 0120PB4

Laboratory Control Sample

Element	Mth. Blank	True Value	Result	% Recovery	Lower Limit	Upper Limit
Silver						
Aluminum						
Arsenic						
Barium						
Beryllium						
Calcium						
Cadmium	·					
Cobalt						
Chromium						
Copper						
Iron						
Potassium						
Magnesium						
Manganese						
Sodium	ND	20.00	19.95	100	16.00	24.00
Nickel						
Lead						
Antimony		·				
Selenium						
Thallium						
Vanadium						
Zinc						

Work Orders in Batch Work Order Fractions

99-01-761 01D-03D

Work Order Sniked: 9901761-01D

Matrix Spike - Spike Duplicate Results						Work Order Spiked: 9901761-01D							
	Sample	Spike	Mati	ix Spike			ike Duplicate		QCL	imits	Spike		QC
Element	Result	Added	Result	Recover	у	Result	Recovery		% Red	covery	RPD %	•	Limits %
Silver								I				\perp	
Aluminum													
Arsenic													
Barium													
Beryllium					\prod								
Calcium								П					
Cadmium												1	
Cobalt					\sqcap			Π					
Chromium					\Box			Γ				\top	
Copper					\sqcap							\top	
Iron								Γ					
Potassium	-				\prod			Π					
Magnesium								Π					
Manganese								Π					
Sodium	171.3	10.0	175	37.0	*	181.4	101.0	Γ	80	120	92.8	**	20.0
Nickel							1						
Lead					\sqcap			Г				Т	
Antimony	, , , , , , , , , , , , , , , , , , ,							Π				\top	
Selenium					\sqcap								
Thallium												Τ	
Vanadium													
Zinc					\Box			Π					
		!					1	1					

^{*} Spike Results Outside Method Limits

Checked: 90 2 5 99

^{**} Spike RPD Outside Method Limits

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix: Aq

Aqueous

Reported on: 01

01/31/99

Analyzed on: Analyst:

01/29/99 CV

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Chloride
Method 325.3 *

SPL Sample ID Number	Blank Value mg/L		Measured Concentration mg/L	% Recovery	QC Limits Recovery		
LCS	ND	105.0	99.3	94.6	94	- 106	

-9901837

Samples in batch:

9901409-01D	9901409-02D	9901409-03D	9901409-04D
9901410-01D	9901410-02D	9901410-03D	9901410-04D
9901411-01D	9901411-02D ·	9901411-03D	9901411-04D
9901761-01C	9901761-020	9901761-030	

COMMENTS:

LCS-SPL ID#94453222-14

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix: Aqueous Reported on: 01/31/99 Analyzed on: 01/29/99 CV

Analyst:

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Chloride Method 325.3 *

SPL Sample	Method	Sample	Spike	Matr	ix Spike	t	ix Spike licate	RPD	I .	QC LIMITS Advisory)
ID Number	Blank mg/L	Result mg/L	Added mg/L	Result mg/L	Recovery %	Result mg/L	Recovery %	(%)	RPD Max	% REC
9901761-01C	ND	46.1	50.0	95.7	99.2	95.7	99.2	0	5	92 -109

-9901836

Samples in batch:

9901409-01D 9901409-02D 9901410-01D 9901761-01C 9901409-03D 9901761-02C 9901409-04D

9901761-03C

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

* SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on: 0 Analyzed on: 0

01/19/99 01/19/99

Analyst:

TK

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Carbonate, as CaCO3 Method SM 4500-CO2D **

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration mg/L	Duplicate Sample mg/L	RPD	RPD Max.
9901705-04A	ND	ND	0	5

-9901480

Samples in batch:

9901705-04A

9901761-01C

9901761-02C

9901761-03C

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

01/19/99

Analyzed on:

01/19/99

Analyst:

TK

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Bicarbonate, as CaCO3 Method SM 4500-CO2D **

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration mg/L	Duplicate Sample mg/L	RPD	RPD Max.
9901705-04A	722.2	722.4	0	5

-9901479

Samples in batch:

9901705-04A

9901761-01C

9901761-02C

9901761-03C

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

01/19/99

Analyzed on:

01/19/99

Analyst:

TK

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

pH Method 150.1 *

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration pH Units	Duplicate Sample pH Units	RPD	RPD Max.
9901705-04A	6.87	6.86	0.1	1.0

-9901483

Samples in batch:

9901705-04A

9901761-01C

9901761-02C

9901761-03C

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 01/19/99

Analyzed on: 01/19/99

Analyst: TK

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Resistivity
Method 120.1 *

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration Momhs-cm	Duplicate Sample Momhs-cm	RPD	RPD Max.
9901761-02C	0.74	0.74	0	1.0

-9901484

Samples in batch:

9901705-04A

9901761-01C

9901761-02C

9901761-03C

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on: 01/29/99

Analyzed on: Analyst:

01/28/99 TW

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

> Sulfate Method 375.4 *

SPL Sample ID Number	Blank Value mg/L		Measured Concentration mg/L	% Recovery		Limits covery
LCS	ND	26.80	25.64	95.7	82	- 111

-9901785

Samples in batch:

9901408-01D

9901408-02D

9901408-03D

9901408-04D

9901416-01D

9901520-01D

9901761-01C

9901761-02C

9901761-03C

COMMENTS:

SPL LCS#95535252-14

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on: 01/29/99 Analyzed on: 01/28/99

Analyst:

TW

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Sulfate Method 375.4 *

 SPL Sample	Method	Sample	 Spike	Matr:	ix Spike	•	ix Spike licate	RPD	1	QC LIMITS Advisory)
ID Number	:		 Added mg/L	Result mg/L	: -	Result mg/L	Recovery	(%)	RPD Max	% REC
9901408-01D	ND	8.58	10.00	18.17	95.9	18.61	100	4.2	9.5	84 -120

-9901784

Samples in batch:

9901408-01D 9901408-02D 990 9901416-01D 9901520-01D 990

9901408-03D 9901408-04D 9901761-01C 9901761-02C

9901761-03C

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on: 02/02/99

Analyzed on: 02/02/99

Analyst:

DS

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

> Specific Gravity **ASTM D1429**

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration g/cm3	Duplicate Sample g/cm3	RPD	RPD Max.
9901761-01C	0.9849	0.9852	0	1.0

-9902059

Samples in batch:

9901761-01C 9901761-02C 9901762-03C

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

02/09/99

Analyzed on: 02/05/99

Analyst:

DS

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

> Total Dissolved Solids Method 160.1 *

SPL Sample ID Number	Blank Value mg/L		Measured Concentration mg/L	% Recovery		Limits
LCS	nd	430.9	425	98.6	93	- 107

-9902251

Samples in batch:

9901761-01C 9901761-02C 9901761-03C

COMMENTS:

lcs= spl id#95535254-2

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix: Aqueous Reported on:

02/09/99

Analyzed on: 02/05/99

Analyst:

DS

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Total Dissolved Solids Method 160.1 *

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration mg/L	Duplicate Sample mg/L	RPD	RPD Max.
9901761-01C	1182	1186	0.3	5

-9902250

Samples in batch:

9901761-01C 9901761-02C 9901761-03C

-cc	MM	${ m ENJ}$	 •
~~	1,11,1	1111	 •

	_		S	SPL. Inc.	nc.				SP	SPL Workarder No:	der No:		107210	
	¥	Analysis Request & Chain of Custody Record	quest &	k Chai	n of C	ustody	r Reco	Ę.	· 	8	0110	-0	page / of	6.1
Client Name: RICE OPERATIONS	600	ANG		matrix	matrix bottle	size	pres.		1	1	Requested	2	Analysis	
Address Thone: 122 West TAY LOR	8	MM	88240		glass	lsiv			-		<u> </u>			
Chent Contact: F. Wesley Root	、 , I				per {			JGL2						
Project Name: $J_c + T 9'$				lios= 130=	lms= lsiv=	z09 ;	HY High		•	-				· · · · · ·
Project Number: Hobbs SWD System	1 54ster	7			=∧ =∀				778					
Project Location: 09-7195-838E, Lea County	38E, Lea (ante	New Maxico	rer agbı	zijc ss	er 4	₹O\$	10 15		5¢√ 3(
Invoice To: RICE OPERATIONS COMPANY	Company				.glas	3il [HV2		201					
SAMPLE ID	DATE (TIME	comp grab	M	Б= С=									
MW-2	1-16-99	11:20	7	Z	>	04	/	3						
MW- 2	1-16-93	11:20	7	W	А	/	3 21	/	7					
MW-2	66-91-1	11:20	7	W	ρ	1	10 E			7				
MW- 2.	1-16-99	11:20	7	×	ď	/	2	2			7			
MW-i	1-16-79	/2;36	7	N	Ż	04	/	3						·
/MW-/	1-16-99	/2:30	4	X	A	/	32/	/	7					
MW-1	1-16-39	/2:30	7	3	d	1	301	/		7				
1-MW-1	1-16-99	12:30	7	W	۵	/	૮	2			7			
MW-3	1-16-39	14:30	7	×	/	0#	,	w 7	7					•
MW-3	1-16-99	14:30	7	Ž	~	\	JCE.	/						
Client Consultant Remarks: See Attached List for ANA page parameters of Mineral Pattern + Wacc Metals	Hached 1	See Attached List for Analyticallatives Areas	valytic.		oratory remarks:	ü	`			·		<u>II</u>	، ۵۲ (z
	Special Report	Special Reporting Requirements	- {	L. D. L.				Special Detection Limits (enecifu)	- Judipa	imite (m		T		=
Kednestea 1A1		- &		results	J (raw Data	J (j			ä
24hr	3u 1. Relinquishe	1. Relinquished by Sample	ž	Jewel 3 Ver	5	date	7	ime	12	2. Received by	1		4	
3 (7	4	7.40			90	66	14:00	<u>. </u>		÷			
48hr 📗 Standard 🔀	3. Relinquished by:	d by:		·		date	,	ime	41	4. Received by:	j.		,'	1
Other	5. Relinquished by:	d by:				date		time	9	6. Rolling	Tabout 1	Lony:	1411	200
8880 Interchange Drive, Houston, TX 77054 (713) 660-0901	Houston, Terse City, N	X 77054 (71:	3) 660-0	901		o	500 Am	bassadı	or Cafe	ery Pa	rkway,	Scott, LA 7	500 Ambassador Caffery Parkway, Scott, LA 70583 (318) 237-4775	3

	S	SPI Inc				SPL. Workarder No:		107011
	Analynia Degreet			1 10.222	7	77700		7777
	Alialysis Request & Chain of Custody Record	S Chain	or Custo	Jy Kecor	ا	1216	bage	7 IO 7
Client Name: RICE OPERATING COMPANY	g Company	matrix bottle		pres.		Requested	sted Analysis	
Address Phone: 122 West TAYLOR	yler, Hobbs, NM 88240	28/2	·		*			
Client Contact: F. Wesley Rost		ier:	/=0	£0.		*		
Project Name: Jof, Z-9		lios: =oth	lsiv:	ч10- НИ	rtain Hee			
Project Number: Hobbs SWD System	System	- 0		5		57 0 }		-
Project Location: 09-T195- A38E,	07-TITS-R38E, Lea County, New Mexico	əgp	s 			>W .		
Invoice To: RICK OPERATIONS COMPANY	Company		glas lite	IOI	<u> </u>	25		
SAMPLE ID	DATE TIME comp grab	= M	C=5]=[•	DM		;
MW-3 /-	1-16-99 14:30 1	N	/ d	/c E	7	-		
MW-3 1-	1-16-99 14:30	W	ا ر	7	2	7		
			-					
				1				
					+			
ChenVConsultant Remarks: See AttAched List for ANAC PARAMETERS OF MineRAL Pattern & WGCC Metals	See attached List for Anacytical Veral Pattern & Wacc Metals	Laboratory remarks:	emarks:				Intact? TY	× ON
Requested TAT Sp	Special Reporting Requirements Fax	Fax Results	Raw Data	0	ecial Detection	Special Detection Limits (specify):		PM review (initial):
. (Level 3 QC	Level 4 QC	۵ 8			85	
abla T	1. Relinquished by Sampler:		d de la	8	time [H: OC	2. Received by:		
48hr Standard 🔯 3.	3. Relinquished by:		date		time	4. Received by:		1
Other 5.1	5. Relinquished by:		date	13	time	6 Receifed by Laborators	Style Style	6001
8880 Interchange Drive, Ho	8880 Interchange Drive, Houston, TX 77054 (713) 660-0901 459-Hughes Drive, Traverse City, MI 49684 (616) 947-5777	901	<u> </u>	500 Am	oassador C	affery Parkway,	500 Ambassador Caffery Parkway, Scott, LA 70583 (318) 237-4775	237-4775

SPL Houston Environmental Laboratory

Sample Login Checklist

Da	te: Time:			
	1-19-99 10	100		
امر			•	
SPI	L Sample ID:			
	9901761			
			^a Yes	<u>No</u>
1	Chain-of-Custody (COC) form is pre	esent.		
2	COC is properly completed.			
3	If no, Non-Conformance Worksheet	has been completed.		
4	Custody seals are present on the ship	pping container.		
5	If yes, custody seals are intact.			
6	All samples are tagged or labeled.		_	
7	If no, Non-Conformance Worksheet	has been completed.		
8	Sample containers arrived intact			
9	Temperature of samples upon arrival	:	3	C
10	Method of sample delivery to SPL:	SPL Delivery		
		Client Delivery		
	·	FedEx Delivery (airbill #)	808198	48332
		Other:		
11	Method of sample disposal:	SPL Disposal		
		HOLD		
		Return to Client		
_				
Nai	me:	Date:		
		1.10	00	

						1.01		
		Result	Units	Reporting Limit		Date A d Analyzed	Analyzed By	Dilution
Client Sample I	D: B-3					Sample Numb	er: 98-35	44-001
Date Sampled:	10/21/98					Sample Matrix		id
Time Sampled:	9:30					Sampled By:	SL	
EPA 8021B	Benzene	14200	μg/L	50	10/23/98	3 10/23/98	DWT	50
	Toluene	<50	μg/L	5 0	10/23/98	10/23/98	DWT	50
	Ethyl benzene	1310	μg/L	50	10/23/98	10/23/98	DWT	50
	Xylenes (Total)	780	μg/L	150	10/23/98	10/23/98	DWT	50
	Total BTEX (Calculated)	16290	μg/L		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogat	e	. •			10/23/98	DWT	1
	Difluorobenzene (SS)	108%	74-116%		10/23/98		DWT	1
	4-Bromofluorobenzene (SS)	102%	80-151%			10/23/98	DWT	1
EPA 160.1	Total Dissolved Solids	1710	mg/L	10	10/28/98	10/28/98	SM	1
SM 4500CLB	Chloride	230	mg/L	50	10/28/98	10/28/98	AJ	10
				····			<u></u>	
Client Sample ID						ample Number		
Date Sampled:	10/21/98					ample Matrix:	Liquid	
Time Sampled:	10:55					ampled By:	SL	
EPA 8021B	Benzene	618	µg/L		10/23/98		DWT	5
	Toluene	331	μg/L		10/23/98		DWT	5
	Ethyl benzene	182	μg/L		10/23/98		DWT	5
	Xylenes (Total)	226	μg/L		10/23/98 ·		DWT	5
	Total BTEX (Calculated)	1357	μg/L		10/23/98	10/23/98	DWT	1
•	**Quality Control Surrogate				10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	110%	74-116%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	111%	80-151%		10/23/98	10/23/98	DWT	1
EPA 160.1	Total Dissolved Solids	5460	mg/L	10	10/28/98	10/28/98	SM	1
M 4500CLB	Chloride	2400	mg/L	250	10/28/98	10/28/98	AJ	<i>5</i> 0

Certes	Envir 2209 Dallas 972-6	Environmental Labu 2209 Wisconsin Stre Dallas, Texas 75229 972-620-7966 972	Environmental Laboratories, L.L.C. 2209 Wisconsin Street, Suite 200 Dallas, Texas 75229 972-620-7966 972-620-7963 Fax	es, L.L.C. e 200 163 Fax			Analy	Analysis(es) Requested	quested		
الزائد أراجمه الماليان	Knachio	Phone No.	FT1 212	1 7							
1/2/1 1/2/10/2		Fax No.		114							
Billing Address	City	State	Zi	のアインリ	1			-			-
Purchase Order No.	To ensure proper billing, please reference quotation number.	g, please reteren	ice quotation num	iber.		₹34()					
Project Manager	Site Location	5	えがい されれ	1 17	X :				-		
Сенеs No.	Date Time	Mairix	No. & Type of	No. & Type of Container?	37.5	N1.) 24T					
R-3		8	7) 							\$
					>	>					
B-4	10/21/95 IC BE	1	1 7								
					>	•					
			-								
								-			
Sampled By	1 Matrix 2 Container Type: 3 Preservative	A - 7 Set Type: V - 4	A Air Bag. C. Charcoal Tube; L. Liquid, OL. Oit, S. Soil, SD. Soild: SL. Sludge; WP. Wipe; W. Water/Wastey ACT DIM YOA Vial; G. Amber or Glass 1, Liter; J. 250ml Wide-mouth; Glass Jar., O. Oiher.	larcoal Tube: G - Amber or	L-Liquid; Ol Glass 1 Liter,	L - Oil; S - Soi J - 250ml Wid	SD - Solid; e-mouth Glass	SL Sludge	e: WP Wip	e: W-Wat	er/Wastew
TAT	Client Project ID		Special Instruct	pedal Instructions (including specific detection limits)	specific detec	tion limits)	Acid; OOth	left.			
+6	らっている								Celles Job Number	_	
RUSH: Date Required	_			ſ				-			
addliber to pariethinian			10/22/ 15			Received By					
Relinquished by))		Date	Time		Received By					-
Relinquished by		To the second se	3) LL CI eled	1 G Time	Time 1/55	Received By Laboratory	Laboratory	12 M			
NOTE: by subtinuing triese samples, you agree to the terms and conditions contained in Certes' Schedule of Fees, Certes cannot acceptive ball changes. Please FAX written changes to (972) 620, 7963.	agree to the terms and o	conditions conte	aned in Certes	Schedule of Fe	les. Certes ca	nnot accept ver	bal changes. F	lease FAX v	vrliten chang	ss to (972) 6	20-7963.
											i

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A

Lubbock, Texas 79424 El Paso, Texas 79922 888 • 588 • 3443

915 • 585 • 3443

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

E-Mail: lab@traceanalysis.com

Analytical and Quality Control Report

Tom Larson

Geraghty & Miller, Inc.

1030 Andrews Highway, Suite 120

Midland, TX 79701

Report Date:

7/13/99

Project Number:

MT000591.0001

Project Name:

N/A

Order ID Number: 99070811

Project Location:

Rice (Hobbs)

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to TraceAnalysis, Inc. for analysis:

Sample Number	Sample Description	Matrix	Date Taken	Time Taken	Date Received
127806	MW-2	Water	7/7/99	11:00	7/8/99
127807	MW-1	Water	7/7/99	11:45	7/8/99

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 3 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

r. Blair Leftwich, Director

Report Date: 7/13/99

Order ID Number: 99070811

Page Number: 2 of 3

Rice (Hobbs)

MT000591.0001

N/A

Analytical Results Report

Sample Number:

127806

Description:

MW-2

Param	Flag	Result	Dilution	Analytical Method	Date Prepared	Date Analyzed	Analyst	Prep Batch #	QC Batch #	RDL
Benzene (mg/L)		0.289	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Toluene (mg/L)		<0.005	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Ethylbenzene (mg/L)		0.061	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
M,P,O-Xylene (mg/L)		0.008	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Total BTEX (mg/L)		0.358	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Surrogate TFT (mg/L) 4-BFB (mg/L)		Result 0.623 0.619	Dilution 5	Spike Amount 0.1 0.1	% Rec. 125 124	% Rec. Limit 72 - 128 72 - 128	Analyst RC RC	Prep Batch # PB01429 PB01429	QC Batch # QC01776 QC01776	

Sample Number:

127807

Description: MW-1

Description: WW-1				Analytical	Date	Date		Prep	QC	
Param	Flag	Result	Dilution	Method	Prepared	Analyzed	Analyst	Batch #	Batch #	RDL
Benzene (mg/L)		0.262	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Toluene (mg/L)		0.01	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Ethylbenzene (mg/L)		0.286	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
M,P,O-Xylene (mg/L)		0.131	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Total BTEX (mg/L)		0.689	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
				Spike	%	% Rec.		Prep	QC	
Surrogate		Result	Dilution	Amount	Rec.	Limit	Analyst	Batch #	Batch #	
TFT (mg/L)		0.642	5	0.1	128	72 - 128	RC	PB01429	QC01776	
4-BFB (mg/L)		0.626	5	0.1	125	72 - 128	RC	PB01429	QC01776	

Quality Control Report Method Blanks

Param	Flag	Blank Result	Reporting Limit	Date Analyzed	Prep Batch #	QC Batch #
Benzene (mg/L)		<0.001	0.001	7/8/99	PB01429	QC01776
Toluene (mg/L)		< 0.001	0.001	7/8/99	PB01429	QC01776
Ethylbenzene (mg/L)		< 0.001	0.001	7/8/99	PB01429	QC01776
M,P,O-Xylene (mg/L)		< 0.001	0.001	7/8/99	PB01429	QC01776
Total BTEX (mg/L)		< 0.001	0.001	7/8/99	PB01429	QC01776

Report Date: 7/13/99

Order ID Number: 99070811

MT000591.0001

N/A

Page Number: 3 of 3

Rice (Hobbs)

Quality Control Report Lab Control Spikes and Duplicate Spike

		Dlank		Spike	Matrix	07		0/ D	DDD	00
	Param	Blank Result	Dil.	Amount Added	Spike Result	% Rec.	RPD	% Rec. Limit	RPD Limit	QC Batch #
LCS	MTBE (mg/L)	< 0.001	1	0.1	0.117	117		80 - 120	0 - 20	QC01776
LCS	Benzene (mg/L)	< 0.001	1	0.1	0.115	115		80 - 120	0 - 20	QC01776
LCS	Toluene (mg/L)	< 0.001	1	0.1	0.116	116		80 - 120	0 - 20	QC01776
LCS	Ethylbenzene (mg/L)	< 0.001	1	0.1	0.116	116		80 - 120	0 - 20	QC01776
LCS	M,P,O-Xylene (mg/L)	< 0.001	1	0.3	0.349	116		80 - 120	0 - 20	QC01776
Standar LCS	d Surrogate TFT (mg/L)		Dil. 1	Spike Amount 0.1	Result	% Rec. 100		% Rec. Limit 72 - 128		QC Batch # QC01776
LCS	4-BFB (mg/L)		1	0.1	0.103	103		72 - 128		QC01776
LCSD	MTBE (mg/L)	< 0.001	1	0.1	0.115	115	2	80 - 120	0 - 20	QC01776
LCSD	Benzene (mg/L)	< 0.001	1	0.1	0.117	117	2	80 - 120	0 - 20	QC01776
LCSD	Toluene (mg/L)	< 0.001	1	0.1	0.117	117	1	80 - 120	0 - 20	QC01776
LCSD	Ethylbenzene (mg/L)	< 0.001	1	0.1	0.117	117	1	80 - 120	0 - 20	QC01776
LCSD	M,P,O-Xylene (mg/L)	< 0.001	1	0.3	0.353	118	1	80 - 120	0 - 20	QC01776
Standar LCSD LCSD	d Surrogate TFT (mg/L) 4-BFB (mg/L)		Dil. 1 1	Spike Amount 0.1 0.1	Result 0.102 0.104	% Rec. 102 104		% Rec. Limit 72 - 128 72 - 128		QC Batch # QC01776 QC01776

Quality Control Report Continuing Calibration Verification Standard

Standard	Param	Flag	CCVs TRUE Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed	QC Batch #
ICV	Benzene (mg/L)		0.1	0.093	93	80 - 120	7/8/99	QC01776
ICV	Toluene (mg/L)		0.1	0.092	92	80 - 120	7/8/99	QC01776
ICV	Ethylbenzene (mg/L)		0.1	0.091	91	80 - 120	7/8/99	QC01776
ICV	M,P,O-Xylene (mg/L)		0.3	0.262	87	80 - 120	7/8/99	QC01776
CCV (1	Benzene (mg/L)		0.1	0.113	113	80 - 120	7/8/99	QC01776
CCV (1	Toluene (mg/L)		0.1	0.114	114	80 - 120	7/8/99	QC01776
CCV (1	Ethylbenzene (mg/L)		0.1	0.110	110	80 - 120	7/8/99	QC01776
CCV (1	M,P,O-Xylene (mg/L)		0.3	0.330	110	80 - 120	7/8/99	QC01776

	-							-			-								÷
jo		<u>`</u>		TOTAL	3	~									Seal Intact? Yes No N/A	Seal Intact? Yes No N/A			SPECIFY Southprint 91-1768
CHAIN-OF-CUSTODY RECORD Page	SAMPLE BOTTLE / CONTAINER DESCRIPTION													Total No. of Bottles/ Containers	Date 7/07/99 Time /200	Date 7/07/99 Time 10:30 PM. Date / / Time			MB Fard 7/13
Laboratory Task Order No.	SAMPLE BO		TWO X	378	3 (27.80%	3 127807		(Organization: Alakalus and alution	Organization: 21 Are (Malyans Organization:		A AL OCITY	Common Carrier 159-384 FOR C9-4.
GEPAGHTY & MILLER, INC. Laboratory Ta	8	Project Location (C/cc (Hosss)	Weese AGM	Times of	MW-2 6 7-7-99 1100	,			/					Sample Code: L = Liquid; S = Solid; A = Air	Received by: Active Charles Or	Relinquished by: Please all the Or Or Received by: Or	Special Instructions/Remarks:		Delivery Method: Li In Person X Com

APPENDIX E

RECOVERY WELL VOLUMES

	40448	Holls Club System	VSTEM	NE14	55/4 3	3509.	- 7/93	R38E	LEA C	MYTH NO	NEIL SEIL GEP 9 T195 R38E LEA COUNTY NOW MEXICO	0
	7.07.07	× × × ×	181=11		~~~ t-~							
ICE EMPLOYEE	\$7000.11	11.401.75	STUPLI	STIPE II STURE II STURE		STUARUM 5708CL11	_	57086111	STURC, 11 STURE, 11	57026.11		
DATE	Jan 18 99	0		JON 21 99 Jan 22 99	10	TANAS 99		Jan 22, 99	Jan 29.99	F61 1999		
IME - START	8:30	08.8	8:30	08:80	8:30	9.00		9.30	8:45	8:30		
IME - END	10:30	9:30	9:30	9:30		10:30	4:30	9:30	9.15	6:00		
WH.J. MO.	1-m8	1-m2	1-018	RW-1		R W -1	1-07	Rw.1	Pw-1	1-1-1		
WELL WELL	FLUSK	F 405 4	FLUSK MOOW t	FLUSA	F2008	FLUSH	1=1.054 movet	FLUS L Mosel	Fr. 45 L.	FLUS L		
WILL, SECUMBY	Lock	LOCK	Lock	1	Lock	Lock	Lock	Lock	Lock	Lock		
וואור טאוטאווו	"/a	1/2), A/	2/2	// m//	4/10	8/2	8/2	1/2	4/4		
אט אאז אס דוווינטט (דיו)	31,12	31'7"	31.1"	31,'7"		31.7"	317"	31.15	3"71	3.".7"		
רצוו דוווכאאפגא (ויו)		7.67.	الا 10:	-/4	-/2		, ,	:	, / ,,		-	
Volume Water RECOURRED	. ~1~	120.07		2 010	1 to . or to	1. 2. 2. L	2.2	4 6.0	1.00 st	120.3t		
VOLUME ESIL INGOVERIED	20)	302		, /e z	, o ,		12.03	1503	/03	1202		
FURGING	manuall Ro: be	ma cont	MA2641	Mrs Just	Mis Went	<u> </u>	MANONOA	MANNOUL	mandendell	MANNOII Roile		
SAMITINE DHILLINE	N/A	0/2	1/4	, 4/2	12	1/10	4/2	1/4	1/2/	2/2		
SAMFILING	Seperation Separate 10:11 + Water					Seperation of the	- W			september 3		
NATIBU TIBUTBUATURE 'F	N/A	NIA	4/10	11/14	ala	NIA	1/4	1/4	3	3		
שאופוו פון	1/10	110	4/11	NIA	1/1/16	Mia	3	3/	3/8	3		
SPECIFIC	N/A	NIB	1/16	aln	1/10	NIA	1/4	2/19	1/4	8/8		
אטוחטאסט זונוווראואי	HS:	•			*			·		•		

પણિતાયક

15.5 02

6.21	40665	40665 SWD SYSTEM	YSTEM	NE14	SE14 3	FC 9.	7195	R38E	LEA COU	NE/4 SE/4 3EC9 T195 R38E LEACOUNTY NEW MEXICO	0
٠.					•			•		•	
ICE EMPLOYEE	I. Sturgill	I. STUKBIL	T. STOKEIL J. STOKEIL	J. Store	J. STOKER T. STUED IN STUEGIL	,	STUCCI	STURGIII	STURGE!!		
DATE	84-99	29-99 12-15-99 2 16.99	16.71	2178	4-817	4-22-49	2179 418-912-39 2-23-99 2-3599	2-3589	4-76-99		
ME - START											
ME - END											
WILL NO.	カルー	€w-1		Rw-1	Rw-)	Rw-1	R W-1		Rw-1		<u> </u>
WELL	F2054	F2054	=6034 Mosst	F 405h	7	FLUSh,	4	FLUSK Mount	FRUS h .		
WILL SECURITY	Locked	Locked	T = \	Loaked	Lockel	 -	+	1	Locked		
FUICHE TIMI	NIB	n/a		0/0	4/10	2/4		מוע	1/10	·	
ווערוון דס שאזעת (דיו)	317	31.6	57.4	31.4"	31:4"		31.'6"	31.8"	31.6		<u></u>
rsii 1111CKMESS (171)	-/4	-14	2 1.1	1.5"	,,,	" 2. Cx		2 4			
Nolume Water RECOURRED		Trpt	1/1 pt	1/201	"Inpt	127	tot	2 p. ut	ナマナ		
VOLUME ESH JURCOVERUED	1, FL03	1.5/=403	2 6405	J FLO3	1 1-Kox	2 Flos	15 FLOX		1 15603		
FUNGING	MANNEL	mountel	Bailug 80:1.09	manno-11	Mannell Bailon	mannell Brilin	Briling Bailing	mrewasoli Bailing	m *** 2011		
SAKIFI JHG TIKITE	M/A	l <u> </u>	2/19	1/4	2/0		8/2	2/10			
SAKIFIJNO TECHNIOUE	Seperation O. / + Water	Sofranting	ر ا		Septemble		Seporation 0:1+20xer	Seperator O. It Wate	٧ ١		
ոցություցը ՝ բ	11/4	n/A	MIA	4/6	2/10	N/n	2/14	W/M	NP		
אאזעוו ףוו	NA	0/0	Np	2/10	NIO	N/A	NIA	אנט	N/M		
STECHTC CONTICIANCIE	11/10	NIA	NIA	2/10	NIA	11/19	0/10	NIA	NIA		
งเราบเยน CONDITIONS:	HS:										

WAINING TO (cet 31 FLUID DUNGE PROM JAN 18, 1999 To Feb 26-1999

11.5

	40665	40665 SWD SYSTEM	YSTEM	1 :	SE14 3	3EC 9.	- 7198	R38E	LEA CO	NE/4 SE/4 SEC 9 T195 R38E LEACOUNTY NEW MEXICO	Mexic	0
334074	STUR6111	Stuesill STURGil	ST419.1	STURGILL	STURGILL STURGUL	STUREUIL	570xG111 .	Sturgill				
DATE	3-4-99	i	3-10-99		3-15-99 3-16.99	3-17.89	3-11-88	3-22				
ME - START	8,30	S . 30	9.80	&: 30	8.45	8.00	9:00	9:00				
ME - END	9:00	4:00	9:00		9:05		6.30	9.30				
WHIL HO.	RW-(1- my	A 10-1	1-02 N	Rw-1			A 8-1				į -
wer.t	F 6034	FLUSH	F6037	4507=l	FLUSh	(}	-	F2054				
CONSTRUCTION	moont	mount	Mount	moont	moont	mount	Moont	moust				
שינונו. גויבטאוריץ	Logled	Lock Locked	Locked		Licked		Looked	Locked		: 		
רווות פאומוויו	2/4	1/2	2/4		w/a			N/A		·		
אטראש סדווד <i>י</i> טט (דיו)	31"5	31"4'	31.6	31.7	31.7	31.6	31.18	31." 5.				
FSII TIIICKMESS (F1)	2.5'	2.	1.5.1		8.5	2.	7	", £				
PECOVERED	10 to t	rpt	24	+12	tot	+1/2	+1/-	12 pt				
VOLUME ESH	76756	1.5 FLOY	1562	1.5 1.42	2 #403	2 FC13		2 1-412				
FUNGING TISSINIOUE	M Ander	Mandel	Washer Carler	Amoust Bailee	mossoe! Bailer	Baike	mandel Bailer	Railer				
SANTI JNG TINE	2/18	1 1	NA	2/0	2/4	NIA	2/4	1/C				
SANITIAND	Seperato Dilewater											
WATIEN TIENTERATUNG *F	4/4	2/10	NIA	2/18	N/M	2/10	2/10	2/4				
ווק וופרואש	1/2	NA	2/14	2/0	W/A	n/u	11/4	Ma				
SPECHIC COMMETANCE	2/4	0/0	1/0	NIA	1/14	1/1	2/9	w//w				
יצאטווונוע בסאטווווזגעה	NS:	•					_					

(SAIAIUKS)

工

001			,						1			
NE/4 SE/4 SEC 9 T195 R38E LEACOUNTY NEW MEXICO			·									
County												
E LEA	7. Sturgill 5-7	Rw-1 Frust	Locked Locked	31.5	, ,	390/5		04:1.29	Seperation Direction	1/2	243	14
R38E	4-6 #-12 4-19 4-23 4-26 5-7 4:00 8:45 10:15 9:00 10:00	Rw-1 FLUSK Mount		31.6	الا	29.918		50.1.01 N/a	,	2/8	Z 2	2
- 7/98	1.57akqill 4-23 10:15	RW-1 F2084 Mad Ut	Locked	31.6	3.11	/rot		11/10		1/18	2 -	N/P
SEC 9.	1.58ug. 11.19 4-19 8:45	RW.1 FLUSA Moust	Locked.	31.5	.,0	- 1	4.51-10x	1 1 A		NIA	N/A	NIM
SE/4.	1. Stues 1. 4-12. 9:00		Locked W/A	31.5	5.	44	MANNETT	N 18	Seperation water	N/A	N/A	N/4
7		RW-1 FLUS 4 MIDSULT	Locked W/M	31.6	"/		1 3	1/16		0/10	4/10	a to
4066s SWD SYSTEM	3.30 4-1 4.5 8:00 8:15 8:00 8:45 9:00 8:45	Rw-1 Frust moust	Nockell N/A	31.7			maniell Bailing			WIA	2/10	
S.SWD.	17.5tors 4-1 8:15 9:00	Rw-1 F1054 Mount	W/n	31,7	<u> </u>		MANNEY			n/2	9/10	
4099		I-9 RW-1 FLUSH MOUNT	20cked NA	31.6	<u> </u>	cost.	Mannell Bailin	NIA	Sperker Sperker	4/2	2/2	£S:
b- I	RICE EMPLOYEE DATE TIME - START TIME - END	WHIT HO.	FUNCHING TIMIL	DEFILITO WATER (TT) FISH THICKNESS	Volume WATER	RECOURERS	FUNCING	SAMPLING TIME	TECHNIOUS	TENTERCATURE TO WATER FILE	SPECIFIC	WEATTHER CONDITIONS:

RESIMERS

3