

ANNUAL MONITORING REPORT

YEAR(S): 2004

Infrastructure, buildings, environment, communications

Wayne Price New Mexico Oil Conservation Division 1220 So. Saint Francis Drive Santa Fe, New Mexico 87505

Certified Mail

Subject:

Rice Operating Company Junction I-9, Hobbs, New Mexico 2004 Annual Report Submittal

Dear Mr. Price,

On behalf of Rice Operating Company, ARCADIS G&M respectfully submits this Annual report due October 15 for the Junction I-9 site located in Hobbs, New Mexico. The report details the Stage 2 Abatement activities and results.

If you have any questions or require additional information please do hesitate to call me at (432) 687-5400 or Carolyn Haynes at (505) 393-9174.

Sincerely,

ARCADIS G&M, Inc.

Shan E. Nael

Sharon E. Hall Site Evaluation Department Manager

Copies: Carolyn Haynes- Rice Operating Company

Attachment: Report ARCADIS G&M, Inc. 1004 N. Big Spring Street Suite 300 Midland Texas 79701 Tel 432.687.5400 Fax 432.687.5401 www.arcadis-us.com

Date: 30 September 2004

Contact: Sharon Hall

Phone: 432 687-5400

Email: shall@arcadis-us.com

Our ref: MT000643.0001

Part of a bigger picture

JUNCTION I-9

2004 Annual Report

Rice Operating Company Hobbs, New Mexico

Show E. Hael

Sharon E. Hall Site Evaluation Department Manager

Junction I-9 2004 Annual Report Rice Operating Company Hobbs, New Mexico

Prepared for: Rice Operating Company

Prepared by: ARCADIS G&M, Inc. 1004 N. Big Spring Street Suite 300 Midland, Texas 79701 Tel 432.687.5400 Fax 432.687.5401

Our Ref.: MT000643.0001.00001

Date: September 30, 2004

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. Any dissemination, distribution, or copying of this document is strictly prohibited.

Table of Contents

i

6.	References	8
5.	Conclusions	7
	4.2 Sampling of Monitor Wells	5
	4.1 Soil Excavation	4
4.	Stage 2 Abatement Field Activities	4
3.	Geology and Hydrogeology	3
2.	Site History	1
1.	Introduction	1

Table of Contents

Tables

1	Groundwater Elevations

- 2 Soil Sample Analytical Results
- 3 Groundwater Analytical Results

Figures

1 Site Location Map

Appendices

А	Stage 2 Abatement Report Approval
В	Groundwater Analytical Results, September 2004

Junction I-9

2004 Annual Report

1. Introduction

The subject site is a former pipeline connection point on the Rice Operating Company (ROC) Hobbs Salt Water Disposal System. The abandoned pipeline transported produced water from oil and gas leases to a permitted well for disposal by subsurface injection. The site is located in southwest Hobbs, New Mexico approximately 0.6 miles south of the intersection of Grimes Street and Stanolind Road (Section 9, T19S-R38E, Lea County) (Figure 1).

2. Site History

A pipeline leak was discovered and repaired at the subject site on June 5, 1998. Notification of an accidental release was submitted to the New Mexico Oil Conservation Division (NMOCD) District I Office located in Hobbs, New Mexico. A Stage I Abatement Plan was submitted to the NMOCD on January 19, 1999. Interim abatement site activities including assessment of impacts to soil and groundwater and excavation of impacted soil were conducted from August 24, 1998 to September 2, 1999. Recovery of phase-separated hydrocarbons (PSH) from groundwater has been conducted from January 18 to May 7, 1999. A total of four monitor wells, one recovery well and nine boreholes was installed at the subject site. A Stage 1 Abatement Plan report detailing the results of the Stage 1 Abatement investigation was submitted to the NMOCD on September 10, 1999.

A Stage 2 Abatement Plan Proposal was submitted to the NMOCD on January 10, 2000. Following requests for additional information from the NMOCD, three Revised Stage 2 Abatement Plan proposals were submitted. (December 13, 2000, March 31, 2001 and December 13, 2001). A final Stage 2 Abatement Plan Proposal revision was requested by ROC on April 5, 2004 and approved by the NMOCD on June 4, 2004. Copies of the plan, revisions and NMOCD approvals are on file at the NMOCD office in Santa Fe. The approved Stage 2 Abatement Plan Proposal is as follows:

• Sampling monitor wells 1, 3, 4 and the McNeil well quarterly for four quarters and analyzing for benzene, toluene, ethylbenzene and xylenes (BTEX), general quality and New Mexico Water Quality Control Commission (WQCC) metals. Based on sample results for four quarters, the sampling frequency will be reviewed and may be revised. Rice Operating Company Hobbs, New Mexico

Junction I-9

ARCADIS

Rice Operating Company

Hobbs, New Mexico

2004 Annual Report

- Sampling will be discontinued when eight quarters of sample results indicate that BTEX concentrations are below WQCC Title 20, Chapter 6, Part 2 standards.
- Excavation of soils in the area where hydrocarbons were detected in groundwater until the soil associated with the PSH is removed. When groundwater is encountered, excavation will be discontinued just below the depth where groundwater is encountered.
- Installation of a 12-15" compacted clay layer that meets or exceeds 95% of a Proctor Test ASTM-D-98 and permeability equal to or less than 1 x 10⁻⁷ cm/sec over the area excavated to groundwater. The liner extended 10 feet in all directions beyond the excavated area.
- Following backfilling, installation of a 12-15" compacted clay layer that meets or exceeds 95% of a Proctor Test ASTM-D-98 and permeability equal to or less than 1 x 10⁻⁷ cm/sec over the entire excavated area at a depth of 6-7 feet below ground surface (bgs).
- Excavation of soils exceeding total petroleum hydrocarbon (TPH), BTEX, benzene and chloride concentrations of 100 milligrams per kilogram (mg/kg), 50 mg/kg, 10 mg/kg and 250 mg/kg, respectively.
- Backfilling of blended soils not exceeding TPH, BTEX, benzene and chloride concentrations of 100 mg/kg, 50 mg/kg, 10 mg/kg and 1,099 mg/kg, respectively.
- Grading of the site to prevent ponding of rain water.

A Stage 2 Abatement Report was submitted to NMOCD on July 14, 2004 and approved by the NMOCD on August 17, 2004. NMOCD requested an annual report be submitted by October 15 each year until approval is given for no further monitoring. NMOCD requested that the annual report format will be the same as the Stage 2 Abatement Report format. The Stage 2 Abatement Report approval is included in Appendix A.

2004 Annual Report

Rice Operating Company Hobbs, New Mexico

3. Geology and Hydrogeology

ARCADIS

The Ogallala Formation is the principal source of groundwater in the subject area. Depth to groundwater in Lea County ranges from approximately 12 to approximately 300 feet bgs. The Ogallala consists of predominantly coarse fluvial conglomerate and sandstone and fine-grained Eolian siltstone and clay. Where present in the subject area, the Ogallala unconformably overlies Triasssic redbeds. The regional and site groundwater gradient is to the south/southeast.

Depth to groundwater at the subject site is approximately 36 bgs. Groundwater elevations measured in the monitor wells at the subject site are shown in Table 1.

Table 1 GROUNDWATER ELEVATIONS Junction I-9 Site HOBBS, NEW MEXICO

MONITORING WELL	TOP OF CASING (feet)*	DATE	DEPTH TO GROUNDWATER (feet)*	WATER ELEVATION (feet)*
MW-1	3595.37	01/12/99	31.75	3563.62
MW-1	3595.37	01/16/99	32.04	3563.33
MW-1	3595.37	08/31/99	29.03	3566.34
MW-1	3595.37	03/02/04	36.78	3558.59
MW-2	3595.58	01/12/99	31.82	3563.76
MW-2	3595.58	01/16/99	32.04	3563.54
MW-2	3595.58	08/31/99	28.89	3566.69
MW-2	3595.58	03/02/04	Dry	-
MW-3	3595.62	01/12/99	30.58	3565.04
MW-3	3595.62	01/06/99	31.85	3563.77
MW-3	3595.62	08/31/99	26.24	3569.38
MW-3	3595.62	03/02/04	35.58	3560.04
MW-4	3595.15	09/02/99	28.98	3566.17
MW-4	3595.15	03/02/04	36.80	3558.35

*Based on survey data provided by Rice Operating Company. Used surveyed benchmark = top of casing on MW-3.

Junction I-9

2004 Annual Report

4. Stage 2 Abatement Field Activities

Stage 2 Abatement field activities were conducted between September 15, 2000 and October 3, 2000 and September 26, 2003 and February 4, 2004. Stage 2 Abatement field activities included sampling of three monitoring wells and an agricultural well, excavation of impacted soils, installation of an upper and lower liner and backfilling and grading of the site. All field activities were performed in accordance with the Stage 2 Abatement Plan Proposal and revisions as approved by the NMOCD. Soil Excavation

Stage 2 excavation activities were performed at the site between September 15, 2000 and October 3, 2000 and September 26, 2003 and February 4, 2004. Excavation activities were continued in the area where hydrocarbons were detected on the groundwater until the soil associated with the PSH was removed. Soil in this area was excavated to 30-32' bgs. When groundwater was encountered, excavation was discontinued just below the depth where groundwater was encountered in order to maintain safe and practical excavation of soils. PSH was recovered with absorbent material where possible. Soil excavation continued until no visible staining of the soils occurred and no photoionization detecter (PID) detections were observed. Soil samples were collected to confirm that impacted soils had been removed and that TPH, BTEX, benzene and chloride concentrations did not exceed the concentrations as approved for the Stage 2 Abatement Plan. Confirmation sample results and PID readings are shown in Table 2. The area of excavation and sample locations are shown in the figures included in Appendix B. Laboratory analysis is included in Appendix B.

A 12-15" compacted clay layer was installed according to NMOCD clay layer specifications (meet or exceed 95% of a Proctor Test ASTM-D-698 an permeability equal to or less than 1×10^{-7} cm/sec) over the area excavated to the groundwater interface in order to inhibit downward migration of constituents and to protect the groundwater interface that was exposed. Once the excavation was backfilled, an additional compacted clay layer was installed (to NMOCD specifications) approximately 6-7 feet below bgs over the entire excavation in order to inhibit downward migration of potential constituents in soils below the compacted clay layer. Liner design specifications were submitted to the OCD on March 30, 2001. Proctor and Density test results are included in Appendix C.

Approximately 11,000 loose cubic yards of impacted soils were disposed at an NMOCD-approved facility during initial Stage 2 Abatement activities. All remaining excavated soils, between 70,000 and 80,000 cubic yards, were blended with

Rice Operating Company Hobbs, New Mexico

Junction I-9

2004 Annual Report

Rice Operating Company Hobbs, New Mexico

overburden/replacement soils and returned to the excavation as backfill. TPH, BTEX, benzene and chloride concentrations in the blended backfill material did not exceed the concentrations as approved for the Stage 2 Abatement Plan.

Following excavation the site was graded to prevent ponding of water and seeded with a blend of native vegetation.

4.1 Sampling of Monitor Wells

A total of four monitor wells and one recovery well were installed in the subject area. An additional existing well referred to as the McNeil well has been added to the monitor well sampling program. Monitor well MW-2 was dry and, therefore, not sampled in the March 2004 sampling event. The recovery well was removed during excavation activities. Well locations are shown in the figures included in Appendix B.

Groundwater samples were collected from MW-1, MW-2 and MW-3 on January 16, 1999 and analyzed for volatile organics, semi-volatile organics, general chemistry and metals using USEPA Methods 8260, 8270C, 325.3, 4500, 150.1, 120.1, 375.4, 160.1, and 6010B.

MW-1 and MW-2 were resampled on July 7, 1999 to determine if BTEX concentrations were representative of downgradient aquifer conditions. The groundwater samples were submitted for analysis for BTEX using USEPA Method 8021B.

MW-4 was sampled on September 2, 1999 and analyzed for volatile organics, semivolatile organics, general chemistry and metals using USEPA Methods 8260, 8270C, 325.3, 4500, 150.1, 120.1, 375.4, 160.1 and 6010B.

MW-1, MW-3, MW-4 and the McNeil well were sampled on March 2, 2004 and analyzed for volatile organics, gasoline range organics, diesel range organics and total hydrocarbon, die organics, general chemistry and metals using USEPA Methods 8260B, 8015M, 310.2M, 340.1, 325.3, 4500, 150.1, 120.1, 375.4, 160.1 and 7470A and 6010B. Laboratory analysis for March 2, 2004 sampling event is included in Appendix B. Groundwater analytical results are summarized in Table 3.

Benzene was detected in the samples collected from MW-1 and MW-2 on January 16, 1999 and July 7, 1999 at a concentration of 0.008 milligrams per liter (mg/L), 0.017 mg/L, 0.262 mg/L and 0.289 mg/L, respectively. Toluene was detected in the samples

Junction I-9

2004 Annual Report

Rice Operating Company Hobbs, New Mexico

collected from MW-1 on July 7, 1999 at a concentration of 0.01 mg/L. Ethylbenzene was detected in the samples collected from MW-1 and MW-2 on January 16, 1999 and July 7, 1999 at a concentration of 0.032 mg/L, 0.007 mg/L, 0.286 mg/L and 0.061 mg/L, respectively. Xylenes were detected in the samples collected from MW-1 and MW-2 on January 16, 1999 and July 7, 1999 at a concentration of 0.012 mg/L, 0.012 mg/L, 0.131 mg/L and 0.008 mg/L, respectively. 1,2,4-trimethylbenzene was detected in the January 1999 sample collected from MW-1 at a concentration of 0.007 mg/L. No other analyzed organic compounds were detected.

Naturally-occurring inorganic analytes (metals, chlorides, pH, sulfate, TDS, calcium, potassium, bicarbonate, manganese and sodium) were detected in the groundwater samples collected from MW-1, MW-2, MW-3 and MW-4.

No hydrocarbons (TPH or BTEX) were detected in any of the wells during the March 2004 groundwater sampling event. Metals analysis indicates a decrease in metals concentrations since the July and September 1999 sampling. Aluminum and lead were detected at concentrations in excess of New Mexico Water Quality Control Commission (WQCC) standards; however, the concentrations of these compounds have decreased since the wells were last sampled. Boron was detected at a concentration in excess of the WQCC standard. Boron has not previously been analyzed. Total dissolved solids and sodium were detected at a concentration above the WQCC standard, and chlorides were detected above the WQCC standard in one well, MW-3.

A quarterly groundwater sampling event was performed on September 2, 2004 following final approval of the Stage 2 Abatement workplan and Stage 2 Abatement report. Laboratory analytical results are included in Appendix B. No hydrocarbons were detected in any of the groundwater samples. Chloride concentrations were below New Mexico standard of 250 mg/L in all of the wells. Naturally occurring inorganic compounds including barium, iron and manganese were detected at concentrations excess of New Mexico Water Quality Control Commission (WQCC) standards.

No free product is evidenced at the site. During excavation activities the site was excavated to groundwater in the source area. No product was evidenced in the excavation.

Junction I-9

2004 Annual Report

5. Conclusions

Soils exceeding TPH, BTEX, benzene and chloride concentrations of 100 mg/kg, 50 mg/kg, 10 mg/kg and 250 mg/kg, respectively have been excavated and two clay liners installed as described in this report. Backfill material (blended soils) concentrations did not exceed TPH, BTEX, benzene and chloride concentrations of 100 mg/kg, 50 mg/kg, 10 mg/kg and 1,099 mg/kg, respectively. The site has been graded to prevent ponding of rainwater.

No hydrocarbons (TPH or BTEX) were detected in any of the wells during the March 2004 groundwater sampling event. Metals analysis indicates a decrease in metals concentrations since the July and September 1999 sampling. Aluminum and lead were detected at concentrations in excess of WQCC standards; however, the concentrations of these compounds have decreased since the wells were last sampled. Boron was detected at a concentration in excess of the WQCC standard. Boron has not previously been analyzed. Total dissolved solids and sodium were detected at a concentration above the WQCC standard, and chlorides were detected above the WQCC standard in one well, MW-3.

A quarterly groundwater sampling event was performed on September 2, 2004 following final approval of the Stage 2 Abatement workplan and Stage 2 Abatement report. Laboratory analytical results are included in Appendix B. No hydrocarbons were detected in any of the groundwater samples. Chloride concentrations were below New Mexico standard of 250 mg/L in all of the wells. Naturally occurring inorganic compounds including barium, iron and manganese were detected at concentrations excess of New Mexico Water Quality Control Commission (WQCC) standards.

No free product is evidenced at the site. During excavation activities the site was excavated to groundwater in the source area. No measurable product was evidenced in the excavation.

ROC will continue groundwater sampling of Monitor Well 1, 3, 4 and the McNeil well quarterly for a total of four quarters (three additional quarters) and analyze for BTEX, general quality and WQCC metals. Based on sample results for four quarters the sampling frequency will be reviewed and may be revised.

Sampling will be discontinued when a total of eight quarters (seven additional quarters) of sample results indicate that BTEX concentrations are below WQCC Title 20, Chapter 6, Part 2 standards.

Rice Operating Company Hobbs, New Mexico

Junction I-9

2004 Annual Report

ARCADIS

Rice Operating Company Hobbs, New Mexico

6. References

- Groundwater Handbook; United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Research Information; 1992.
- Hydrology and Hydrochemistry of the Ogallala Aquifer, Southern High Plains, Texas Panhandle and Eastern New Mexico; Report Number 177; Bureau of Economic Geology; 1988.
- Hydrogeochemistry and Water Resources of the Lower Dockum Group in the Texas Panhandle and Eastern New Mexico; Report Number 161; Bureau of Economic Geology; 1986.

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I.

Junction I-9 Release Site, Stage 1 Abatement Report (Site Assessment Investigation); ARCADIS Geraghty and Miller; September 10, 1999

Junction I-9 Stage 2 Abatement Report; ARCADIS Geraghty and Miller; July 2004

	les																																Π
	Total Xylenes	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Ethyl Benzene	N/A	N/A	, N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Toluene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Benzene	N/A	N/A	N/A	N/A	A/A	A/A	N/A	A/A	A/N	A/A	A/A	N/A	N/A	N/A	A/A	N/A	V/N	N/A	N/A	N/A	N/A	A/N	N/A	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Field CI		104					183					126					105					129					101					156
sılı	Field PID		NW 4.0	NE 4.8	Center 3.6	SW 6.0	SE 5.3	3.4	2.9	2.7	2.2	2.3	NE 3.3	NW 6.9	Center 3.6	SE 4.8	SW 2.0	SE 13.8	NE 1.4	Center 4.5	NW 3.5	SW 9.3	SE 5.3	NE 5.8	Center 10.3	SW 15.0	NW 3.3	NW 3.4	NE 3.3	Center 10.9	SE 3.6	SW 37.2	NE 4.8
Table 2 Soil Analytical Results	Lab CL	144	112					176					128					96					80					80					96
Ta Soil Anal <u>i</u>	Lab DRO	<10	<10					<10					<10					<10					<10					<10					34.2
	Lab GRO	<10 <10	<10					<10					<10					<10					<10					<10					<10
	Comment	Surface 5pt Comp	1st 5' lift after clav liner @ 8' S. 1/2					1st 5' lift after clay liner @ 8' N. 1/2					N 1/2 4th 5' lift					S 1/2 4th 5' lift					N. 3rd 5' lift comp					S. 3rd 5' lift by MW #1					S. 2nd 5' lift by MW #1
ARCADIS	Lab Number	H8435	H8420					H8407					H8347					H8331					H8307					H8289					H8265
	Date	2/5/2004	1/29/2004	1	=	÷	Ŧ	1/26/2004		=	=	Ŧ	1/12/2004	Ŧ	Ŧ	Ŧ	=	1/6/2004	μ	÷	=	=	12/30/2003	=	=	Ŧ	=	12/23/2003	=	÷	=	=	12/17/2003

,

G:\APROJECT\Rice Oper\Mt0643.001\reports\10-15-04 Annual report\Table 2 Soil Analytical Results

Page 1

	Total Xylenes	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<0.015
	Ethyl Benzene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<0.005
	Toluene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<0.005
	Benzene	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	A/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	. N/A	N/A	N/A	N/A	N/A	N/A	N/A	<0.005
	Field CI					101					82				115					95					180	105	177		110	105	203.44		
lts	Field PID	NW 5.2	Center 9.3	SE 6.3	SW 3.0	3.2	3.5	3.8	3.7	1.9	2.1				1.1	0.5	0.4	0.6	1.3	4.4	0.5	1.1	0.5	1.3	34.5	1.7	1.8		2.5	2.6	6.1	0.2	
Table 2 Soil Analyticai Results	Lab CL					128					176	144	80	96	80					112					160	112	144	96	32	16	48	160	80
T Soil Anal	Lab DRO					<10					<10 <10	<10	<10	<10	<10					<10 <10					<10	<10	<10	<10	<10	<10	<10	<10	28.8
	Lab GRO					<10	2				<10	<10	<10	<10 <10	<10					<10					<10	<10	<10	<10	<10	<10	<10	<10	<10
·	Comment					S 1st 5' lift 4th clav liner					2nd lift 3rd clav liner	S. wall 2pt comp	S end @ GW @ 36'	5 pt come S. end bttm	F wall 5pt comp N. 1/2					E wall 5nt comp S 1/2					5pt comp 3rd liner 1st 5' lilft	4pt comp @ GW 36'	5pt base comp @ 30'	GW backfill S. end	S. wall comp E. end	S. wall comp W. end	S. @ GW 36'	Water table backfili	7pt comp @ GW 36'
ARCADIS	l ah Niimher					HR746	Τ				H8736			Т	Т	Τ				H8222-2	Т				H8214			Г	Γ		Γ		H8102-1
-	Date	Т	=	=	=	10/11/2003		=	2	E	12/9/2003	12/5/2003		=	12/4/2003			=	=	101410003		£	=	=	12/2/2003	11/21/2003		11/6/2003	10/31/2003	=	10/30/2003	10/24/2003	10/21/2003

G:\APROJECT\Rice Oper\Mt0643.001\reports\10-15-04 Annual report\Table 2 Soil Analytical Results

Page 2

Table 2 Soil Analytical Results

Total Xylenes	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015		N/A	N/A	N/A	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Ethyl Benzene Total Xylenes	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Toluene	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Benzene	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Field CI			200	234	366	680	231				185.55	147.46	360.89	153.76	154.46	176.45	162.35	114.96	2044.36	
Field PID			1.3	1	2.5	2.3	0.7				1.3	2	0.7	1.5	1.7	18.1	1.6	6.6	96	
Lab CL	3 6	64	64	64	253	448	112		<20	21.3	35.4	53.2	35.4	35.4	35.4	106	<20	<20	1770	
Lab DRO	16.7	<10 <10	<10	<10	<10	<10	<10		<10	<10	26.4	<10	<10	12.1	18.9	11.6	<10	<10	401	
Lab GRO L	<10	<10	<10	<10	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	71.4	
Comment	W. wall S. 1/2 5pt comp	W. wall N. 1/2 5pt comp	Btm #1	Btm #2	Btm #3	Btm #4	Btm #5	ELOT	0308006-01 N. wall E. 1/2 comp	N. wali W. 1/2 comp	1st lift #1	1st lift #2	1st lift #3	1st lift #4	1st lift #5	W. wall bttm #6	W. wall bttm #7	W. wali bttm #8	W. wall bttm #9	
Lab Number	H8102-2	H8102-3	H8053-1	H8053-2	H8053-3	H8053-4	H8053-5	Lab ID	0308006-01	0308006-02	0307653-01	0307653-02	0307653-03	0307653-04	0307653-05	0307653-06	0307653-07	0307653-08	0307653-09	
Date	=	=	10/1/2003	=	£	Ξ	Ŧ		11/26/2003	=	10/6/2003	=	-	=	=	÷	z	E	=	

G:\APROJECT\Rice Oper\Mt0643.001\veports\10-15-04 Annual report\Table 2 Soil Analytical Results

Page 3

TABLE 3 GROUNDWATER ANALYTICAL RESULTS

Ì

Nomo Nomo		1-WW	-	ſ	MW-2	-2		MW-3			MW-4		McNeil Well	ll Well	B-3	4
Date Sampled	1/16/1999	6661/L/L	3/2/2004	9/2/2004	1/16/1999	6661/L/L	1/16/1999	3/2/2004	9/2/2004	9/2/1999	3/2/2004	9/2/2004	3/2/2004	9/2/2004	10/21/1998	10/21/1998
Compound Name	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
VOCs								ļ				ļ	ļ		000 11	0.610
Benzene	0.608	0.262	Ð	Ð	0.017	0.289	Q	Q.	10.0006/1	Q2		Į,			11.4	010'D
Bromobenzene	Ð	AN	NA	AN	£	AN	£!	V N	AN	¥Z ;	AN S	YN S	AN 1	AN AN	AN AN	VN
Bromochloromethane	₽	AN	AN	AN	Ð	¥2	Gu !	AN .	AN S	YZ :	YN.	4v	YN Y			VN
Bromodichloromethane	ĝ	V N	V	¥Z		AN :	2 f	AN S	A N	Y I	AN	AN	AN N	AN	AN	NA
Bromotorm		A N	AN S	E S		AN 1	Z	AN NA	VN	VN VN	VVI VVI	AN NA	AN	NA	AN	AN
Bromomethane	2 ¢	AN	AN	AN N				V.V	AN	VV VV	AN N	NA	NA	AN	AN N	AN
ni-outytoenzene					2 E	VN	E	NA	AN	AN N	NA	AN	NA	NA	NA	NA
sec-burytoenizene	Ę	V Z	VN VN	v v		NA NA	Ē	AN	AN	AN	VZ	AN	NA	NA	NA	NA
Tert-DutyIOEIIZEIIE	Ē	AN	AN	V N	E	AN	2	AN	NA	AN	AN	AN	AN	NA	AN	NA
Chlorohenzene	Ę	AN	NA	AN	Ē	NA	Ê	AN	AN	AN	AN	NA	NA	NA	NA	NA
Chlorodihromomethane	Ę	A N	AA	AN	Ð	AN	2	AN	AN	AN	AN	NA	NA	NA	NA	NA
Chloroethane	£	AN	AN	NA.	Ð	AN	Ð	AN	AN	AN	AN	NA	NA	NA	AN	NA
Chloroform	Ê	AN	NA	NA N	Q	AA	Ð	NA	AN	NA	٨N	NA	NA	NA	AN	AN
Chloromethane	Ę	AN	AN	NA	Ð	NA	az	AN	NA	NA	AN	NA	NA	NA	AN	AN
2-Chlorotoluene	QZ	٧Z	NA	AN	Ð	NA	Q	NA	NA	NA	AN	NA	AA	AN	AN	AN
4-Chlorotoluene	Ð	AN	NA	AN	Q	NA	QN	NA	NA	NA	AN	NA	NA	NA	AN	٩N
1.2-Dibromo-3-chloropropane	Ð	NA	AN	NA	Q	NA	Ð	NA	NA	NA	NA	NA	NA	NA	AN	NA
1.2-Dibromoethane	Ð	AN	AN	NA	Ð	NA	Ð	NA	NA	AN	NA	NA	NA	NA	NA	AN
Dibromomethane	ÐŽ	AN	AN	NA	QN	NA	Ð	NA	NA	NA	NA	NA	NA	NA	AN	AN
1.2-Dichlorobenzene	g	NA.	AN	NA	Ð	NA	Ð	NA	NA	NA	NA	NA	AN	NA	AN	AN
1.3-Dichlorobenzene	Ð	AN	NA	AN	Ð	NA	QN	NA	NA	NA	AN	NA	AA	NA	ΑN	AN
1.4-Dichlorobenzene	Ð	AN	NA	NA	Q	NA	Q	NA	NA	NA	ΑN	NA	NA	NA	Ą	NA
Dichlorodifluoromethane	Q	NA	NA	AN	Ð	NA	Q	NA	NA	NA	AN	NA	NA	NA	AN	NA
1,1-Dichloroethane	ą	AN	NA	NA	QN	NA	Ð	AN	AN	AN	٩N	AN	NA	NA	ΥN	NA
1,2-Dichlorethane	Ð	AN	NA	NA	QN	NA	Ð	AN	AN	٩N	٩N	AN	NA	AN	AN	AN
1,1-Dichloroethene	Q	NA	NA	NA	Q	NA	Ð	AN	AN	ΥN	AN	AN	NA	AN	Ϋ́	AA
cis-1,2-dichloroethene	Ê	AN	NA	NA	QN	NA	Ð	AN	AN	AN	AN	NA	NA	NA	ΑN	AA
trans-1,2-dichloroethene	av	NA	NA	NA	QN	NA	Ð	AN	AN	AN	AN	AN	AN	NA	ΑN	NA
1,2-Dichloropropane	Ð	AN	AN	AN	Ð	AN	Ê	AN	AN	٩N	AN	AN	AN	AA	A N	AN
1,3-Dichloropropane	Ð	AN	AN	AN	Ð	AN	Ê	AN	AN	¥Z	ž	AN S	A A	AN	V N	V N
2,2-Dichloropropane	£	AN	AN	¥2	£	AN	Ð	V N	NA	YN S	AN	AN S	AN S	AN	AN S	YN S
1,1-Dichloropropene	£	AN	¥.	¥,	Ê	AN 132	2¢	A L	AN ICLOSE OFF	¥,	AN	Į į	¥.	AN	AN 0151	AN O
Ethylbenzene Urauschlombutadiane	250.0	NA) M M	NA 1	2 E	NA	AN NA	NA	AN	NA	AN	AN	NA	NA NA
Isonronvibenzene	Q	AN	AN	AN	2	AN	Ð	AN	NA	AN	AN	AN	AN	ŇÅ	AN	AN
p-isopropytoluene	Ð	NA	AN	NA	£	NA	Ð	AN	AN	AN	NA	NA	NA	NA	AN	AN
Methylene chloride	£	NA	AN	AN	g	AN	Ð	AN	NA	NA	NA	NA	NA	NA	AN	NA
Naphthalene	QZ	NA	NA	NA	QN	NA	QN	AN	AN	NA	NA	NA	NA	NA	NA	NA
n-propylbenzene	Ð	AN	NA	NA	Q	NA	Q	NA	AN	NA	NA	NA	NA	NA	NA	NA
Styrene	Q	NA	NA	AN	Q	NA	QN	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1,2-Tetrachloroethane	Ð	NA	NA	NA	QN	NA	QN	NA	NA	NA	AN	NA	NA	NA	AN	NA
1,1,2,2-Tetrachloroethane	Q	NA	NA	NA	Q	NA	Ð	AN	AN	AN	AN	NA	AN	NA	NA	NA
Tetrachloroethene	Q	NA	NA	NA	Q	NA	Ð	ŇĂ	ŇĂ	NA	NA	AN	AN	NA	NA	NA
Toluene	Ê	0.01	ĝ	£	Q	<0.005	ĝ	Ê	Ð	Ð	£	Ð	QN	Ð	<0.050	0.331
1,2,3-Trichlorobenzene	ĝ	AN	ΑN	AN	£	AN	£	AN	NA	AN	AN	AA	NA	NA	AN	AN
1,2,4-Trichlorobenzene	Q	AN	٩N	AN	Ð	AN	£	AN	AN	NA	ΥN	NA	NA	NA	AN	NA
1,1,1-Trichloroethane	Ê	NA	NA	NA	£	AN	£	NA	NA	AN	NA	NA	NA	NA	AN	AA

G:\APROJECTRice OperMt0643.001\reports\10-15-04 Annual report\Table 3 GW Analyrical Results

Page 1 of 4

TABLE 3 GROUNDWATER ANALYTICAL RESULTS

ARCADIS

·~ .

Well Name		1-WM	-		MW-2			NW-3	ſ		MW-4	ſ	McNe	ll Well	B-3	B-4
Date Sampled	1/16/1999	99999	3/2/2004	9/2/2004	1/16/1999	6661/L/L	1/16/1999	3/2/2004	9/2/2004	6661/7/6	3/2/2004	9/2/2004	3/2/2004 9/2/	9/2/2004	10/21/1998	10/21/1998
Compound Name	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
1,1,2-Trichloroethane	Q	NA	NA	NA	an	NA	ę	AN	NA	NA	NA	AN	AN	AN	٩N	AN
Trichloroethene	Ð	NA	NA	AN	Ð	NA	Ð	NA	NA	NA	NA	NA	NA	NA	AN	AN
Trichlorofluoromethane	Ð	NA	NA	NA	Q	NA	Q	NA	NA	NA	NA	NA	NA	NA	AN	AN
1,2,3-Trichloropropane	QN	NA	NA	NA	QN	NA	QN	NA	NA	NA	NA	NA	ΝA	AN	AN	AN
1,2,4-Trimethylbenzene	0.007	NA	NA	NA	Q	NA	Ð	AN .	NA	NA	NA	NA	NA	AN	AN	AN
1,3,5-Trimethylbenzene	Ð	NA	NA	NA	Q	NA	Ð	ŇĂ	AN	AN	AN	AN	NA	NA	NA	NA
Vinyl chloride	Ð	NA	NA	NA	Q	NA	QN	NA	NA	NA	NA	NA	AN	AN	AN	NA
Xylenes, total	0.012	0.131	Q	Ð	0.012	0.008	Ð	Ð	J(0.000990)	QN	QN	Q	Q	ND	0.78	0.226
Acetone	QN	NA	NA	AN	Ð	NA	£	AN	NA	AN	NA	NA	NA	NA	NA	NA
Carbon disulfide	Q	NA	NA	NA	Q	NA	Q	NA	NA	NA	NA	AN	NA	AN	AN	NA
Vinvl acetate	Ð	AN	NA	Ą	Ð	AN.	Ð	NA	AN	NA	NA	NA	AN	NA	NA	NA
2-Butanone	Ð	NA	YN	AN	Ð	AN	P	AN	NA	NA	AN	NA	NA	NA	AN	AN
1.2-Dichloroethene	Ð	NA	AN	AN	Ð	AN	Ð	AN	AN	AN	NA	AN	AN	NA	NA	AN
2-Chloethylvinylether	ę	NA	AN	AN	£	NA	£	NA	NA	NA	NA	NA	AN	NA	NA	NA
4-Methyl-2-pentanone	Ð	AN	AN	AN	£	AN	Ð	AN	NA	NA	NA	AN	AN	NA	NA	NA
cis-1.3-dichloropropene	Ð	AN	AN	¥	Ð	AN	Ð	NA	AN	NA	NA	AN	AN	NA	AN	NA
trans-1,3-dichloropropene	Ð	NA	NA	NA	£	NA	Q	YV VV	AN	NA	AN	NA	NA	NA	NA	NA
2-Hexanore	Ð	NA	NA	NA	Ð	NA	QN	AA	NA	NA	NA	NA	NA	NA	NA	AN
Methyl tert butyl ether	Ð	NA	NA	NA	Q	NA	QN	NA	NA	NA	NA	NA	NA	NA	NA	AN
SVOC ₅				1		-										
Acenaphthene	Ð	AN	AN	Ϋ́	Ð	AN	ĝ	AN	AN	£	AN	AN	AN	AN	AN	AN
Acenaphthylene	Ð	NA	NA	NA	QN	NA	Q	AN	AN	£	NA	AN	AN	ΥN	AN	AN
Aniline	Ð	NA	NA	NA	QN	NA	Ð	AN	AN	NA	NA	AN	AN	NA	AN	٩N
Anthracene	Q	NA	NA	NA	ND	NA	Ð	AN	AN	AN	NA	AN	ΥN	NA	AN	NA
Benzo(a)anthracene	Ð	AN	NA	AN	Ð	NA	£	AN	AN	Ð	NA	AN	AA	NA	AN	AN
Benzo(b)fluoranthene	Ð	AN	NA	AN	Ð	AN	£	AN	AN	£	AN	¥	AN	AN	٨٨	AN
Benzo(k)fluoranthene	£	AN	AN	ΑN	Ð	AN	£	AA	NA	£	NA	AN	NA	NA	NA	NA
Benzo(a)pyrene	Ð	AN	AN	ΥN	£	NA	Ð	AN	AN	Ð	AN	AN	AN	ΑN	AN	NA
Benzoic acid	£	AN	AN	¥	Ð	AN	£	AA	NA	AA	AN	AN	NA	NA	AN	ΨN
Benzo(g,h,i)perylene	£	AN	ΨN	AN	ĝ	AA	£	AN	AN	£	NA	Υ <u>ν</u>	V Z	Ą	AN	NA
	2	AN	¥.	¥.	ĝ	AN		AN N	A N	AN.	AN	AN ;	AN	A N	AN	AN
4-Bromophenylphenyl ether	£,	AN S	AN S	YN :	Ð!	AN	2 ¢	¥.	AN S	¥.	AN S	¥,	AN S	AN 1	AN 1	AN
ButybenZylphthalate	2 £	AN N	AN N	AN N	₽₽	AN AN		AN AN	AN A	AN N	V N	AN AN	AN AN	AN AN	AN NA	AN
Carbazole	E	AN	AN	AN	Ē	AN		A Z	AN	NA N	AN	AN	AN	AN	AN AN	AN AN
4-Chloroaniline	£	NA	AN	AN	Ð	NA	Ð	AN	NA	NA	NA	NA	NA	NA	NA	NA
bis(2-chloroethoxý)methane	ą	NA	NA	AN	Ð	NA	QN	NA	NA	NA	NA	NA.	AN	AN	NA	AN
bis(2-chloroethyl)ether	Q	NA	NA	AN	R	NA	Ð	AN	NA	NA	NA	NA	NA	NA	NA	AN
bis(2-chloroisopropyl)ether	£	NA	NA	AN	Q	NA	Ð	AN	AN	ΥN	NA	AN	AN	NA	NA	NA
4-Chloro-3-methylphenol	Ð	NA	NA	NA	QN	NA	Ð	AN	AN	AN	AN	AN	NA	NA	NA	AN
2-Chloronaphthalene	Ð	NA	NA	NA	QN	NA	Q	AN	ΝA	NA	NA	NA	NA	NA	NA	AN
2-Chlorophenol	Ð	٩v	AN	ΥN	Ð	NA	Ð	AN	AN	NA	NA	AN	NA	NA	NA	NA
4-Chlorophenylphenyl ether	Ð	AN	AN	ΥN	Ð	NA	£	AN	AN	NA	AN	AN	AN	AN	NA	NA
Chrysene	£	AN	AN	Ą	Ê	AN	£	AN	NA	Ð	AN	AN	AN	AN	٩N	NA
Dibenz(a,h)anthracene	£	AN	AN	A N	ĝ	ΨN	ĝ	AN	AN	£	AA	AN	AN	NA	NA	NA.
Dibenzofuran	£	¥.	YN S	Y Z	Ð	YN S	£!	AN	¥.	YN S	AN	٩Ŋ	Ą	NA	NA	NA
1,2-Dichlorobenzene	Ð	AN 1	AN	A	Ê	AN	Ð	AN	AN	AN	AN	AN	Ϋ́	AN	NA	AN
1,3-Dichlorobenzene	CIN I	AN	AN	AN.	nn	NA	(IN)	AN	AN	AN	NA	AN	ΥN	NA	AN	AN

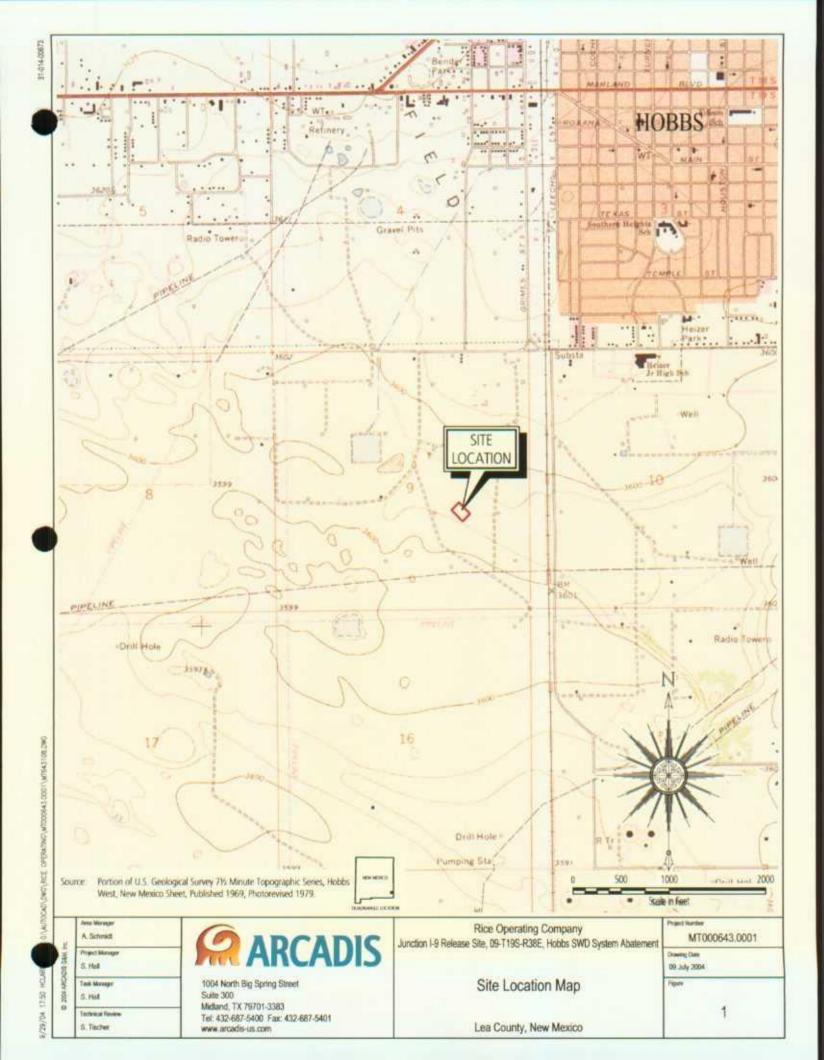
.

Page 2 of 4

G:\APROJECTIRice Oper\Mt0643.001\veports\10-15-04 Annual report\Table 3-GW Analytical Results

TABLE 3 GROUNDWATER ANALYTICAL RESULTS

Well Name		I-WM	- -		MW-2	-2		MW-3			MW-4		McNel	McNeil Well	B-3	Ŧ
Date Sampled	1	6661/L/L	3/2/2004	9/2/2004	1/16/1999	6661/L/L	1/16/1999	3/2/2004	9/2/2004	6661/2/6	3/2/2004	9/2/2004	3/2/2004	9/2/2004	10/21/1998	10/21/1998
		(11) 1 -11 - 1	(7/Åm)	(TARm)		(11/Rui)		(17/3m)	(17/Am)			(m.g.m)		(VIA VIA	(TAL)
1,4-Dichlorobenzene		AN	AN AN	AN N		AN N		AN AN	NA N	V N	AN N	AN N	AN	AN	¢ v	V Z
24-Dichloronhanol	Ē	V Z	VV.		Ē	V Z		V Z	V N	V N	VN N	V.V	AN.	AN	AN	AN
Diethvlnhthalate	Ę	NA	AN	NA	Ē	NA	Ē	AN A	NA	NA	NA	AN	AN	NA	٩v	AN
2.4-Dimethylphenol	Ð	NA	NA	AN	Ð	AN	Ð	NA	AN	AN	AN	AN	NA	NA	NA	AN
Dimethyl phthalate	Ð	NA	NA	AN	Ð	NA	Ð	AN	NA	AN	AN	AN	AN	NA	NA	NA
4,6-Dinitro-2-methylphenol	Ð	NA	NA	ŇA	Ð	NA	Q	NA	NA	NA	NA	AN	NA	NA	NA	NA
2,4-Dinitrophenol	Ð	NA	NA	NA	Ð	NA	Ð	AN	NA	NA	AN	NA	NA	NA	NA	NA
2,4-Dinitrotoluene	Q	ŅĀ	AN	NA	QN	NA	Ð	AN	NA	NA	NA	NA	NA	NA	AN .	NA
2,6-Dinitrotoluene	QN	AN	NA	NA	QN	NA	Ð	ΝA	NA	AN	NA	NA	NA	NA	ΥN	NA
1,2-Diphenylhydrazine	QN	NA	NA	NA	Q	NA	Ð	AN.	AN	NA	NA	NA	NA	NA	AN	AN
bis(2-ethylhexyl)phthalate	Ð	NA	NA	Ň	Ð	AN	Ð	NA	AN	AN	NA	NA	NA	NA	NA	AN
Fluoranthene	Q	NA	NA	NA	Q	NA	QN	NA	AN	QN	NA	NA	AN	NA	٩N	NA
Fluorene	Ð	AN	NA	AN	Ð	AN	QN	AN	AN	QN	NA	NA	NA	NA	NA	NA
Hexachlorobenzene	Q	ŇA	NA	NA	QN	AN	ДŅ	AA	AN	NA	NA	NA	NA	NA	NA	NA
Hexachlorobutadiene	QN	NA	NA	NA	QN	NA	QN	NA	NA	AN	AN	NA	NA	NA	NA	NA
Hexachioroethane	Ð	AN	AN	AN	Ð	AA	Ð	NA	NA	NA	AN	AN	NA	NA	NA	NA
Hexachlorocyclopehtadiene	₽	AN	AN	AN	ĝ	AN	Ð	AN	٩N	٩٧	AN	AN	NA	AN	AN	NA
Indeno(1,2,3-cd)pyrene	Ð	NA	NA	NA	Ð	AN	Ð	AN	AN	Ð	NA	AN	AN ,	AN	AN	AN
Isophorone	Ð	AN	NA	NA	Ð	٩N	Ð	ΝA	AN	AN	AN	NA	AN	AN	NA	AN
2-Methylnaphthalene	Ð	AN	AN	AN	Ð	AN	Ð	ΝA	AN	AN	AN	AN	ΑN	AN	AN	AN
2-Methyiphenol	Ð	٩Z	NA .	AN	Ð	AN	Ð	AN	AN	AN	NA	NA	AN	AN	ΝA	NA
4-Methylphenol	ß	٩Ŋ	AN	AA	£	AN	£	AN	AN	ΝA	AN	AN	AN	AN	AN	AN
Naphthalene	Ð	AN	AN	NA	Ð	٩N	Ð	ĄZ	AN	Ð	AN	AN	AN	AN	AN	AA
2-Nitroaniline	Ð	AN	AN	AN	£	AN.	Ð	AN	AA	AN	AN	AN	AN	AN	AN	AN :
3-Nitroaniline	Ð	AN	AN	AA	Ð	NA	Q	AN	Ϋ́Α	NA	AN	NA	AN	NA	AN	AN
4-Nitroaniline	Q	AN	AN	AN	Ð	٨٨	Ð	AN	NA	NA	AN	AN	AN	AN	AN	NA
Nitrobenzene	Ð	AN	AN	AN	Ð	AA	Ð	AN	AN	AN	AN	AN	AN	NA	NA	AN
2-Nitrophenol	Ð	AN	AN	AN	Ð	AN	£	AN	AA	AN	AN	ΥN	AN	NA	NA	AN
4-Nitrophenol	£	٩N	AN	AN	Q	AA	Ð	NA	AN	AN	AN	A	AN	AN	NA	AN
N-nitrosodiphenylamine	Ð	٩N	AN	AN	Ð	AN	£	NA	AN	AN	AN	Ą	AN	NA	AN	AN
N-nitroso-di-n-propylamine	£	AN NA	AN	AN	£	AN	Ð	AN	AN	AN	ΨN	Ą	AN	AN	AN	AN
Di-n-octyl phthalate	£	٩N	AN	¥	£	AN	£	٩N	AN	ΥN	¥Ν	AN	AN	AN	AN	NA
Pentachlorophenol	£	AN	AN	AN	£	AN	Ê	AN	AN	٩N	AN	AN	AN	NA	AN	NA
Phenanthrene	Ð	AN	AN	AN	Q	AN	ĝ	AN	٩v	£	¥	AN	AN	AN	NA	NA
Phenoi	ĝ	۲Z	A N	AN	£	ΥN	Ê	AN	ΨN	AN	AN	A	AN	٩N	AN	NA
Pyrene	£	AN	AN	٧N	£	AN	Ð	AN	AN	Ð	AN	٩N	AN	AN	AN	NA
Pyridine	£	Ϋ́	AN	ΨZ	£	AN	Ð	ĂŇ	ΥN	AN	AN	Υ.	AN	NA	AN	AN
1,2,4-Trichlorobenzene	Ê	Y Z	AN	AN	Ð	AN	£	ΨN	AN	AN	AN	AN	AN	AN	NA	NA
2,4,5-Trichlorophenol	£	ΨZ	AA	AN	£	AN	Ð	AN	AN	AN	AN	AN	٩N	NA	AN	NA
2,4,6-Trichlorophenol	£	ΥN	AN	AN	£	AN	Ð	AN	AN	AN	AN	AN	AN	NA	NA	NA
Gasoline Range C6-C12	٩N	٩N	£	AN	AN	AN	٩N	Ð	AN	AN	£	AN	Ð	NA	NA	NA
Diesel Range >C12-C35	AN	AN	Ð	AA	AN	٩N	AN	£	AN	AN	Q	AN	£	AN	AN	AA
TPH C6-C35	٩N	٩Z	ĝ	AN	NA	AN	AN	ĝ	AN	AN	£	AA	Ð	AN	NA	NA
General Chemistry							5			00000	;					
Kesistivity	0./4	AN	AN S	AN S	0.08	YZ :	50.0	AN S	YZ :	6000.0	AN :	AN :	AN	AN .	A N	AN
Specific Gravity	0.982	AN S	AN Na	AN	0.985	YN S	0.996	NA	AN AN	AN AN	AN	AN N	AN	VA V	ΥN	AN
Chloride	120 1	- AN	1 54	186	250 1	NA I	195	319 1	142	100	164	160	81.5	79.8	230	2400


Page 3 of 4

G:\APROJECTRice OperMt0643.001\veports\10-15-04 Annual report\Table 3 GW Analytical Results

TABLE 3 GROUNDWATER ANALYTICAL RESULTS

Well Name		1-WW			MW-2	-2		MW-3			MW-4		McNeil Well	l Well	B-3	B4
Date Sampled	1/16/1999	6661/L/L	3/2/2004	9/2/2004	1/16/1999	7/7/1999	1/16/1999	3/2/2004	9/2/2004	6661/7/6	3/2/2004	9/2/2004	3/2/2004	9/2/2004	10/21/1998	10/21/1998
Compound Name	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Carbonate (CaCO ₃)	Ð	AN	£	NA	Ð	NA	Ð	£	NA	QN	QN	NA	Q	NA	NA	NA
Bicarbonate (CaCO ₃)	332	NA	478	NA	322	NA	370 -	380	NA	220	264	NA	185	NA	NA	NA
Hydroxide Alkalinity	NA	NA	Ð	NA	AN	NA	NA	GN	NA	NA	Q	NA	Ð	AN	NA	٩N
hd	7.29	NA	7.22	NA	7.51	NA	7.51	6.99	NA	NA	7.03	NA	7.52	NA	AN	AN
Sulfate	318	NA	440	NA	372	NA	483	499	NA	180	367	NA	69.2	AN	NA	AN
Total dissolved solids	068	NA	1720	NA	1190	NA	1340	1320	NA	770	1040	NA	468	NA	1710	5460
Calcium	727	NA	72.8	NA	578	NA	1255	94.4	NA	93	100	NA	25.9	NA	AN	NA
Potassium	3	NA	4.45	NA.	30	NA	8	2.7	NA	2.4	1.85	NA	2.95	NA	NA	AN
Sodium	144	NA	244	NA	171	NA	310	200	NA	124	129	NA	104	AN	AN	NA
Specific Conductance	NA	AN	1870	NA	NA	NA	NA	1740	AN	NA	1380	NA	724	NA	NA	NA
Fluoride	AN	NA	1.57	NA	NA	NA	NA	16.1	NA	NA	1.89	NA	1.03	NA	NA	NA
Nitrate as N	NA	NA	0.2	NA	NA	NA	NA	0.1	NA	NA	0.2	NA	0.4	NA	AN	NA
										1						
Metals																
Silver	QN	NA	QN	QN	QN	NA	QN	ND	en de	QN	QN	Ð	QN	Q	NA	NA
Aluminum	12.3	NA	7	NA	16.5	NA	32.7	15.7	NA	3.1	1.14	NA	0.0491	NA	NA	NA
Arsenic	0.019	NA	Q	0.0213	0.025	NA	0.028	0.0127	0.0413	0.03	DN	QN	0.0467	0.0622	NA	NA
Barium	0.87	NA	0.446	0.903	0.970	NA	3.91	1.87	4.35	0.11	0.0932	0.128	0.0543	0.0587	AN	NA
Boron	AN	NA	1.38	NA	NA	NA	NA	0.999	NA	NA	0.592	NA	0.127	NA	NA	NA
Cadmium	Q	NA	QN	0.00240	QN	NA	Q	Q	0.00310	QN	0.0134	QN	QN	0.00110	NA	NA
Cobalt	Ð	NA	J[0.0008]	NA	Q	NA	Q	0.0047	AN	Ð	Ð	AA	£	NA	AN	AN
Chromium	Q	NA	J[0.0024]	0.0193	0.02	NA	0.03	0.0139	0.0484	QN	Q	Q	Q	J[0.00350]	NA	NA
Copper	0.02	NA	0.0044	0.0538	0.02	NA	0.02	QN	0.0183	0.03	Ð	0.00840	Q	0.0117	NA	NA
Iron	9.34	NA	5.58	9.72	11.6	AN	26.4	13.8	25.4	2.4	1.06	1.53	0.0609	0.0485	AN	AN
Magnesium	NA	NA	28.1	NA	NA	NA	NA	38.8	ΝA	NA	31.2	NA	3.93	AN	NA	NA
Mercury	Q	NA	Q	Q	Ð	NA	Ð	Q	QN	Q	ND.	Q	QN	0.00202	NA	NA
Manganese	0.214	NA	0.0741	0.234	0.288	NA	0.535	0.458	0.775	0.03	0.0524	0.0642	0.0221	0.0181	NA	NA
Molybdenum	Q	NA	Q	NA	Q	NA	0.03	£	NA	0.02	Ð	NA	Ð	NA	NA	NA
Nickel	0.02	NA	Ð	AN	Q	NA	0.05	Ð	٩N	0.1	Ð	NA	Q	NA	NA	NA
Lead	0.005	NA	Ð	Ð	0.007	NA	0.013	Q	£	0.008	Ð	Ê	Q	QN	NA	NA
Selenium	Ð	AN	£	Ð	Ð	NA	Ð	£	Ð	0.02	£	Ð	£	Ð	NA	NA
Zinc	0.05	NA	0.098	0.0533	0.04	NA	0.04	0.0342	0.186	0.04	0.0863	0.0547	0.0331	0.0857	NA	NA

All results are reported in milligrams per liter (mg/L) NA - Not analyzed ND - Not detected

.

.

Appendix A

Stage 2 Abatement Report Approval

.

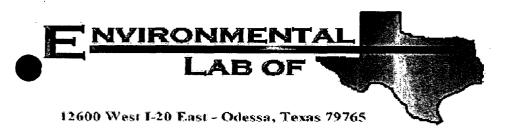
.

Hall, Sharon E.

From: ent: o: Cc: Subject: Price, Wayne [WPrice@state.nm.us] Tuesday, August 17, 2004 4:00 PM Carolyn Doran Haynes (E-mail) Hall, Sharon E.; Sheeley, Paul; Johnson, Larry Rice I-9 AP#8

The OCD is in receipt of the Stage 2 letter and Abatement Report dated July 14, 2004. OCD hereby approves of the closure activities of the excavated area. In addition, OCD approves of the long term groundwater monitoring plan. Please submit an annual report due on October 15 of each year. The report will follow the same outline as the Stage 2 Abatement report. Please plot constituents of concern and include conclusions and recommendations.

Please be advised that NMOCD approval of this plan does not relieve (Rice Operating Company) of liability should their operations fail to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve (Rice Operating Company) of responsibility for compliance with any other federal, state, or local laws and/or regulations.


Sincerely:

Wayne Price New Mexico Oil Conservation Division 220 S. Saint Francis Drive anta Fe, NM 87505 505-476-3487 fax: 505-476-3462 E-mail: WPRICE@state.nm.us

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the MessageLabs Email Security System.

Appendix B

Groundwater Analytical Results September 2004

Analytical Report

Prepared for:

Kristin Farris Pope ARCADIS 1004 N. Big Spring Street Midland, TX 79701

Project: I-9 SWD Project Number: I-9 SWD Location: Rice Operating/Hobbs

Lab Order Number: 4I03015

Report Date: 09/15/04

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
	ANALYTICAL REPORT FOR SAM	IPLES		
Midland TX, 79701	09/15/04 15:15			
1004 N. Big Spring Street	Project Number: I-9 SWD			Reported:
ARCADIS	Project: 1-9 SWD		F	ax: (432) 687-5401

4103015-01	Water	09/02/04 10:20	09/03/04 14:40
4103015-02	Water	09/02/04 11:20	09/03/04 14:40
4103015-03	Water	09/02/04 11:50	09/03/04 14:40
4103015-04	Water	09/02/04 12:25	09/03/04 14:40
4103015-05	Water	09/02/04 00:00	09/03/04 14:40
	4103015-02 4103015-03 4103015-04	4103015-02 Water 4103015-03 Water 4103015-04 Water	4103015-02 Water 09/02/04 11:20 4103015-03 Water 09/02/04 11:50 4103015-04 Water 09/02/04 12:25

ARCADIS 1004 N. Big Spring Street Midland TX, 79701		Project Nu	roject: I-9 SV mber: I-9 SV nager: Kristi	VD	Pope			Fax: (432) 6 Report 09/15/04	ed:
		Or	ganics by	GC					
		Environm	iental Lal	o of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-3 (4103015-01) Water	<u></u>		·				<u></u>		
Benzene	J [0.000671]	0.00100	mg/L	1	EI41004	09/08/04	09/08/04	EPA 8021B	
Toluene	ND	0.00100			m		۳		
Ethylbenzene	J [0.000413]	0.00100	•					*	
Xylene (p/m)	J [0.000552]	0.00100	M				•	Ħ	
Xylene (o)	J [0.000990]	0.00100	H		"	"	#	it	
Surrogate: a,a,a-Trifluorotoluene		109 %	80-120		"	11	"	"	
Surrogate: 4-Bromofluorobenzene		94.5 %	80-120)	"	"	"	"	
MW-1 (4103015-02) Water									
Benzene	ND	0.00100	mg/L	1	EI41004	09/08/04	09/08/04	EPA 8021B	
Toluene	ND	0.00100	-	۳	м	•	*	•	
Ethylbenzene	ND	0.00100	•	*	*	*	*		
Xylene (p/m)	ND	0.00100			• ·		۳	*	
Xylene (o)	ND	0.00100	•	•	н			•	
Surrogate: a,a,a-Trifluorotoluene		112 %	80-120)	"	"	"	*	•
Surrogate: 4-Bromofluorobenzene		82.5 %	80-120	0	"	"	"	. "	
MW-4 (4103015-03) Water									
Benzene	ND	0.00100	mg/L	1	EI41004	09/08/04	09/08/04	EPA 8021B	
Toluene	ND	0.00100		٠		•	•	*	
Ethylbenzene	ND	0.00100			•				
Xylene (p/m)	ND	0.00100		"		"	к		
Xylene (o)	ND	0.00100	-		"	n	Ħ		
Surrogate: a,a,a-Trifluorotoluene		111 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	80-12	0	n	"	n	"	
McNeill's Well (4103015-04) Water									
Benzene	ND	0.00100	mg/L	1	EI41004	09/08/04	09/08/04	EPA 8021B	
Toluene	ND	0.00100	•	-	*	n Ó	n		
Ethylbenzene	ND	0.00100	•			"	۳	•	
Xylene (p/m)	ND	0.00100	•	"				7	
Xylene (0)	ND	0.00100	•	-	n	"	e		
Surrogate: a,a,a-Trifluorotoluene		95.5 %	80-12	0	"		"	H	
Surrogate: 4-Bromofluorobenzene		95.5 %	80-12		"		"		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 13

ARCADIS	Project: I-9 SWD	Fax: (432) 687-5401
1004 N. Big Spring Street	Project Number: I-9 SWD	Reported:
Midland TX, 79701	Project Manager: Kristin F	arris Pope 09/15/04 15:15

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Trip Blank (4103015-05) Water	<u></u>				· · ·		<u></u>		
Benzene	ND	0.00100	mg/L	1	EI41004	09/08/04	09/08/04	EPA 8021B	
Toluene	ND	0.00100				•			
Ethylbenzene	ND	0.00100		•		*	•		
Xylene (p/m)	ND	0.00100				*	-	*	
Xylene (o)	ND	0.00100			-	•	"		
Surrogate: a,a,a-Trifluorotoluene		111 %	80-12	0	· 11	n	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	80-12	0		*	"	**	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 3 of 13

ARCADISProject: 1-9 SWDFax: (432) 687-54011004 N. Big Spring StreetProject Number: 1-9 SWDReported:Midland TX, 79701Project Manager: Kristin Farris Pope09/15/04 15:15

General Chemistry Parameters by EPA / Standard Methods

		Environn	nental I	Lab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (4103015-01) Water				··					
Chloride	142	5.00	mg/L	1	E140805	09/07/04	09/07/04	EPA 325.3M	
MW-1 (4103015-02) Water									
Chloride	186	5,00	mg/L	1	E140805	09/07/04	09/07/04	EPA 325.3M	
MW-4 (4103015-03) Water									
Chloride	160	5.00	mg/L	1	EI40805	09/07/04	09/07/04	EPA 325.3M	
McNeill's Well (4103015-04) Water									
Chloride	79.8	5.00	mg/L	1	EI40805	09/07/04	09/07/04	EPA 325.3M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 4 of 13

ARCADIS 1004 N. Big Spring Street		Project Nu		SWD				Fax: (432) Repor		
Midland TX, 79701	····	Project Manager: Kristin Farris Pope							09/15/04 15:15	
	Tot	al Metals by	EPA / S	Standard	I Method	ls				
		Environn	nental I	ab of Te	xas					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No	
MW-3 (4103015-01) Water					· · · · · · · · · · · · · · · · · · ·					
Mercury	ND	0.000500	mg/L	1	EI41501	09/14/04	09/15/04	EPA 7470A		
Arsenic	0.0413	0.00800	-		EI41415	09/13/04	09/14/04	EPA 6010B		
Barium	4.35	0.00100	*	•	•		•			
Cadmium	0.00310	0.00100			•	*				
Chromium	0.0484	0.00500			•	. "		*		
Copper	0.0183	0.00200	Ħ	*	•	n		."		
Lead	ND	0.0110			-	•		"		
Iron	25.4	0.0200	-	10	"			r		
Manganese	0.775	0.00100		1	•	•	•	r		
Selenium	ND	0.00400		•	"	-	۳			
Silver	ND	0.00500	H	۳	•		N	"		
Zinc	0,186	0.00100	-	ч	-			7		
Mercury Arsenic	ND 0.0213	0.000500 0.00800	mg/L "	1 "	EI41501 EI41415	09/14/04 09/13/04	09/15/04 09/14/04	EPA 7470A EPA 6010B		
Barium	0.903	0,00100				M	"			
Cadmium	0.00240	0.00100	-				11			
Chromium	0.0193	0.00500					*			
Copper	0.0538	0.00200				**	*	*		
Lead	ND	0.0110	-	"		"				
Iron	9.72	0.0100	"	5		*	"	μ		
Manganese	0,234	0.00100		1				u		
Selenium	ND	0.00400	"		"	н				
Silver	ND	0.00500				"	19	n		
Zinc	0.0533	0.00100		•	•	•		*		
MW-4 (4103015-03) Water										
Mercury	ND	0.000500	mg/L	1	E141501	09/14/04	09/15/04	EPA 7470A		
Arsenic	ND	0.00800			EI41415	09/13/04	09/14/04	EPA 6010B		
Barium	0.128	0.00100		H			P	**		
Cadmium	ND	0.00100	π	•			"	м		
Chromium	ND	0.00500	. "	P				"		
	0.00840	0.00200				"	"	"		
Copper						**	"	4		
Copper Iron	1.53	0.00200								
	1.53 ND	0,00200 0.0110	*				"	н .		
Iron				11	*	41 17	17	ri ·		

Environmental Lab of Texas

.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 5 of 13

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

ARCADIS	Project:	1-9 SWD	Fax: (432) 687-5401
1004 N. Big Spring Street	Project Number:	I-9 SWD	Reported:
Midland TX, 79701	Project Manager:	Kristin Farris Pope	09/15/04 15:15

Total Metals by EPA / Standard Methods

					·····				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-4 (4103015-03) Water									
Silver	ND	0.00500	mg/L	1	EI41415	09/13/04	09/14/04	EPA 6010B	
Zinc	0.0547	0.00100		*	•		-		
McNeill's Well (4103015-04) Water									
Mercury	0.00202	0.000500	mg/L	1	EI41501	09/14/04	09/15/04	EPA 7470A	
Arsenic	0.0622	0.00800		•	EI41415	09/13/04	09/14/04	EPA 6010B	
Barium	0.0587	0:00100			*	*	*	•	
Cadmium	0.00110	0.00100				H			
Chromium	J [0.00350]	0.00500	•	n .	-	*		*	
Copper	0.0117	0.00200	•		"			10	
Iron	0.0485	0.00200			-	•	•	*	
Lead	ND	0.0110				"	"		
Manganese	0.0181	0.00100	•			"		н .	
Selenium	ND	0.00400	-			"		. "	
Silver	ND	0.00500					*	*	•
Zinc	0.0857	0.00100	۳					н	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

ARCADIS 1004 N. Big Spring Street Midland TX, 79701		Pr Project Nu Project Mar		SWD	ope				Fax: (432) Repo 09/15/0	rted:
	Oı	rganics by Environm	-	•						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI41004 - EPA 5030C (GC)	<u> </u>								- <u></u>	
Blank (E141004-BLK1)				Prepared &	Analyzed:	09/08/04	,			
Benzene	ND	0.00100	mg/L							
foluene	ND	0.00100								
Ethylbenzene	ND	0.00100					•			
Xylene (p/m)	ND	0.00100	n							
Xylene (o)	ND	0.00100								
Surrogate: a,a,a-Trifluorotoluene	23.4		ug/l	20.0		117	80-120			
Surrogate: 4-Bromofluorobenzene	18.3		"	20.0	•	91.5	80-120 80-120			
LCS (E141004-BS1)				Prepared: ()9/08/04 A	nalvzed: 09	/10/04			
Benzene	93.0		ug/l	100		93.0	80-120			
foluene	95.0			100		95.0	80-120			
Ethylbenzene	95.1			100		95.1	80-120			
Yylene (p/m)	196		• •	200		98.0	80-120			
Xylene (o)	104		. н	100		104	80-120			
Surrogate: a,a,a-Trifluorotoluene	16.7		"	20.0		83.5	80-120			
Surrogate: 4-Bromofluorobenzene	18.6			20.0		93.0	80-120			
LCS Dup (E141004-BSD1)				Prepared: ()9/08/04 A	nalyzed: 09	0/10/04			
enzene	96.3		ug/l	100		96.3	80-120	3.49	20	
Foluene	99.4		"	100		99.4	80-120	4.53	20	
Ethylbenzene	99.5		"	100		99.5	80-120	4.52	20	
Xylene (p/m)	206			200		103	80-120	4.98	20	
Xylene (o)	105		•	100		105	80-120	0.957	20	
Surrogate: a,a,a-Trifluorotoluene	18.0		"	20.0		90.0	80-120			
Surrogate: 4-Bromofluorobenzene	21.9		"	20.0		110	80-120			
Calibration Check (EI41004-CCV1)				Prepared &	Analyzed:	09/08/04				
Benzene	94.3		ug/l	100		94.3	80-120			
Toluene	95.8		•	100		95.8	80-120			
Ethylbenzene	102			100		102	80-120			
Xylene (p/m)	207		-	200		104	80-120			
Xylene (0)	105			100		105	80-120			
Surrogate: a,a,a-Trifluorotoluene	23.0		- "	20.0		115	80-120			
Surrogate: 4-Bromofluorobenzene	18.6		"	20.0		93.0	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 13

ARCADIS	Project: I-9 SWD	Fax: (432) 687-5401
1004 N. Big Spring Street	Project Number: 1-9 SWD	Reported:
Midland TX, 79701	Project Manager: Kristin Farris I	Pope 09/15/04 15:15

Organics by GC - Quality Control

Environmenta	Lab of Texas
--------------	--------------

· · · · · · · · · · · · · · · · · · ·										
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EI41004 - EPA 5030C (GC)

Matrix Spike (EI41004-MS1)	Source: 41	07001-01	Prepared: 0	9/08/04 A	nalyzed: 09	9/10/04			
Benzene	97.5	ug/l	100	ND	97.5	80-120			
Toluene	101	•	100	ND	101	80-120			
Ethylbenzene	97.8	*	100	ND	97.8	80-120			
Xylene (p/m)	203		200	ND	102	80-120			
Xylene (0)	102	*	100	ND	102	80-120			
Surrogate: a,a,a-Trifluorotoluene	17.2	"	20.0		86.0	80-120			
Surrogate: 4-Bromofluorobenzene	20.9	"	20.0		104	80-120			
Matrix Spike Dup (EI41004-MSD1)	Source: 41	07001-01	Prepared: 0	9/08/04 A	nalyzed: 09	9/10/04			
Benzene	99.0	ug/l	100	ND	99.0	80-120	1.53	20	
Toluene	101	۳	100	ND	101	80-120	0.00	20	
Ethylbenzene	99.6	-	100	ND	99.6	80-120	1.82	20	
Xylene (p/m)	201	•	200	ND	100	80-120	1.98	20	
Xylene (0)	100	•	100	ND	100	80-120	1.98	20	
Surrogate: a,a,a-Trifluorotoluene	16.5	"	20.0		82.5	80-120			
Surrogate: 4-Bromofluorobenzene	19.3	"	20.0		96.5	80-120			` .

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 8 of 13

ARCADIS		Pr	oject: I-9	SWD					Fax: (432)	687-5401
1004 N. Big Spring Street		Project Nu	mber: I-9	SWD					Repa	rted:
Midland TX, 79701		Project Man	nager: Kr	istin Farris Po	ope				09/15/0	4 15:15
General C	hemistry Para	meters by	EPA /	Standard	Method	s - Qua	lity Cont	trol		
		Environm	ental I	ab of Te	kas					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (E140805-BLK1)	ND	5.00	mg/L	Prepared &	z Analyzed:	09/07/04				
		rce: 4107001-0	-	Prepared &	z Analyzed:	09/07/04				
Matrix Spike (E140805-MS1)				•						
	1670	5.00	mg/L	500	1170	100	90-110			
Chloride	1670	5.00 rce: 4107001-0	·	500	1170 z Analyzed:		90-110			
Chloride Matrix Spike Dup (E140805-MSD1)	1670		·	500			90-110 90-110	0.601	20	
Matrix Spike (E140805-MS1) Chloride Matrix Spike Dup (E140805-MSD1) Chloride Reference (E140805-SRM1)	1670 Sour	rce: 4107001-0)6	500 Prepared & 500	Analyzed:	09/07/04 98.0		0.601	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 9 of 13

ARCADIS			oject: I-9 :						Fax: (432)	
1004 N. Big Spring Street		Project Nur Project Mar							Repo 09/15/04	
Midland TX, 79701		110,000 14141		oun rams Po		······			09/15/04	+ 15.15
	Total Metals b	y EPA / St	andard	Methods	- Quali	ty Contr	ol			
		Environm	ental L	ab of Te	kas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI41415 - EPA 3005A										
Blank (EI41415-BLK1)				Prepared &	Analyzed:	09/14/04				
Arsenic	ND	0.00800	mg/L							
Barium	ND	0.00100	•							
Cadmium	ND	0.00100								
Chromium	ND	0.00500	"							
Copper	ND	0.00200	*							
iron	ND	0.00200								
Lead	ND	0.0110	н							
Manganese	ND	0.00100	-							
Selenium	ND	0.00400								
Silver	ND	0.00500								
Zinc	ND	0.00100	•							
LCS (E141415-BS1)				Prepared &	k Analyzed:	09/14/04				
Arsenic	0.817	0.00800	mg/L	0.800		102	85-115			
Barium	0.213	0.00100		0.200		106	85-115			
Cadmium	0.202	0.00100		0.200		101	85-115			
Chromium	0.203	0.00500	"	0.200		102	85-115			
Copper	0.198	0.00200		0.200		99.0	85-115			
ead	1.10	0.0110		1.10		100	85-115			
Iron	0.206	0.00200	п	0.200		103	85-115			
Manganese	0.204	0.00100	и	0.200		102	85-115			
Selenium	0.421	0.00400		0.400		105	85-115			
Silver	0.107	0.00500		0.100		107	85-115			
Zinc	0.230	0.00100	u	0.200		115	85-115			
LCS Dup (EI41415-BSD1)				Prepared 8	2 Analyzed	09/14/04				_
Arsenic	0.827	0.00800	mg/L	0.800		103	85-115	1.22	20	
Barium	0.210	0.00100	"	0.200		105	85-115	1.42	20	
Cadmium	0.202	0.00100		0.200		101	85-115	0.00	20	
Chromium	0.205	0.00500	•	0.200		102	85-115	0.980	20	
Copper	0.202	0.00200		0.200		101	85-115	2.00	20	
Lead	1.10	0.0110		1,10		100	85-115	0.00	20	
Iron	0.207	0.00200	-	0.200		104	85-115	0.484	20	
Manganese	0.203	0.00100		0.200		102	85-115	0.491	20	
Selenium	0.415	0.00400	•	0.400		104	85-115	1.44	20	
Silver	0.103	0.00500		0.100		103	85-115	3.81	20	
Zinc	0.230	0.00100		0.200		115	85-115	0,00	20	

Environmental Lab of Texas

.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 10 of 13

ARCADIS	Project: 1-9 SWD	Fax: (432) 687-5401
1004 N. Big Spring Street	Project Number: I-9 SWD	Reported:
Midland TX, 79701	Project Manager: Kristin Farris Pope	09/15/04 15:15

Total Metals by EPA / Standard Methods - Quality Control

		Environm	ental L	ab of Tex	kas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI41415 - EPA 3005A										
Calibration Check (EI41415-CCV1)				Prepared &	Analyzed:	09/14/04				
Arsenic	0.974		mg/L	1.00		97.4	90-110			
Barium	1.01		M	1.00		101	90-110			
Cadmium	0.978		•	· 1.00		97.8	90-110			
Chromium	0.974		"	1.00		97.4	90-110			
Copper	0.954			1.00		95.4	90-110			
ron	0.960			1.00		96.0	90-110			
Lead	0.980			1.00		98.0	90-110			
Manganese	0,959			1.00		95.9	90-110			
Selenium	0.968			1.00		96. 8	90-110			
Silver	0.514		۲	0.500		103	90-110			
Zinc	1.02		•	1.00		102	90-110			
Matrix Spike (EI41415-MS1)	Sou	rce: 4103015-0)1	Prepared 8	k Analyzed:	09/14/04				
Arsenic	0.729	0.00800	mg/L	0.800	0.0413	86.0	75-125			-
Barium	4.61	0.00100		0.200	4.35 ·	130	75-125			QM-
Cadmium	0.157	0.00100		0.200	0.00310	77.0	75-125			
Chromium	0.207	0.00500	н	0.200	0.0484	79.3	75-125			
Copper	0.185	0.00200	"	0.200	0.0183	83.4	75-125			
non	26.0	0.0200	"	0.200	25.4	300	75-125			QM-
Lead	0.837	0.0110	۳	1.10	ND	76.1	75-125			
Manganese	0.949	0.00100	*	0.200	0.775	87.0	75-125			
Selenium	0.340	0.00400		0.400	ND	85.0	75-125			
Silver	0.0925	0.00500	n	0.100	ND	92.5	75-125			
Zinc	0.257	0.00100	'n	0.200	0.186	35.5	75-125			QM
Matrix Spike Dup (EI41415-MSD1)	Sou	rce; 4103015-()1	Prepared &	k Analyzed:	09/14/04				
Arsenic	0.739	0.00800	mg/L	0.800	0.0413	87.2	75-125	1.36	20	
Barium	4.60	0.00100	۳	0.200	4.35	125	75-125	0.217	20	
Cadmium	0.156	0.00100	•	0.200	0.00310	76.4	75-125	0.639	20	
Chromium	0.201	0.00500	•	0.200	0.0484	76.3	75-125	2.94	20	
Copper	0.180	0.00200	"	0.200	0.0183	80.8	75-125	2.74	20	
Iron	25.7	0.0200		0.200	25.4	150	75-125	1.16	20	QM
Lead	0.824	0.0110	-	1.10	ND	74.9	75-125	1.57	20	QM
Manganese	0.934	0.00100		0.200	0.775	79.5	75-125	1,59	20	-
Selenium	0.330	0,00400		0.400	ND	82.5	75-125	2.99	20	
Silver	0.0868	0.00500	-	0.100	ND	86.8	75-125	6.36	20	
Zinc	0.254	0.00100		0.200	0.186	34.0	75-125	1.17	20	QM-

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Γ	ARCADIS	Project:	I-9 SWD	Fax: (432) 687-5401	
	1004 N. Big Spring Street	Project Number:	I-9 SWD	Reported:	
	Midland TX, 79701	Project Manager:	Kristin Farris Pope	09/15/04 15:15	

Total Metals by EPA / Standard Methods - Quality Control

- - -

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EI41501 - EPA 7470A										
Blank (EI41501-BLK1)				Prepared: 0	9/14/04 A	nalyzed: 09	/15/04			
Mercury	ND	0.000500	mg/L							
LCS (EI41501-BS1)				Prepared: 0	9/14/04 Ai	nalyzed: 09	/15/04			
Mercury	0.000780	0.000500	mg/L	0.000733		106	85-115			
LCS Dup (E141501-BSD1)				Prepared: 0	9/14/04 A	nalyzed: 09	/15/04			
Мегсигу	0.000790	0.000500	mg/L	0.000733		108	85-115	1.27	20	
Calibration Check (EI41501-CCV1)				Prepared: 0	9/14/04 A	nalyzed: 09	/15/04			
Мегсигу	0.000900		mg/L	0.00100		90.0	90-110			
Matrix Spike (E141501-MS1)	Sou	rce: 4103015-6)1	Prepared: 0	9/14/04 A	nalyzed: 09	/15/04			
Мегсигу	0.000740	0.000500	mg/L	0.000733	ND	101	75-125			
Matrix Spike Dup (E141501-MSD1)	Sou	rce: 4103015-0)1	Prepared: 0	9/14/04 A	nalyzed: 09	/15/04			
Mercury	0.000740	0.000500	mg/L	0.000733	ND	101	75-125	0.00	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

ARCADIS	Project: I-9 SWD	Fax: (432) 687-5401
1004 N. Big Spring Street	Project Number: I-9 SWD	Reported:
Midland TX, 79701	Project Manager: Kristin Farris Pope	09/15/04 15:15

Notes and Definitions

- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K hands

Date:

9/15/04

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Biezugbe, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 13 of 13

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713