AP - <u>30</u>

STAGE 1 & 2 REPORTS

DATE: April 2001

PB 11/5

PHASE II SITE ASSESSMENT REPORT

Amerada Hess Corporation Project No.: OPF00ES004 Meridian Alliance Group, LLC. Project No.: 07F005537

> Amerada Hess Corporation W.P. Byrd Lease SECTION 12, T-20-S, R-36-E, LEA COUNTY, NEW MEXICO

> > April 16, 2001

Prepared for:

Amerada Hess Corporation

Prepared by:

Meridian Alliance Group, L.L.C. 306 W. Wall, Suite 600 Midland, Texas 79701

District Manager - J. Curtis Henderson Project Manager - Mark A. Ehrlich

The of Constants

ٵ	1.0 Site Assessment 1.1 Scope of Services 1.2 Identified Potential Areas of Concern 1.3 Soils Investigation 1.4 Groundwater Investigation 1.5 Waste Management & Disposition 1.6 Limitations	
2	Attachments Attachment 1 – Site Map Attachment 2 – Subsurface Soil Contaminant Map Attachment 3 – Surface Soil Contaminant Map Attachment 4 – Groundwater Gradient Map Attachment 5 – Groundwater Contaminant Map	
3	Figures Figure 1 - Soil Laboratory Analytical Results Figure 2 – Fluid Level Measurements Figure 3 – Groundwater Laboratory Analytical Results Figure 4 – Groundwater Laboratory Pesticide Analytical Res	
4	Soil Boring Logs Monitor Well Completion Details Monitor Well Driller's Reports State Engineer Office Water Well Records	
5	Aerial Photographs 1949 1966 1975 1997	
6	Photographs	
7	Laboratory Analytical Results & Associated QA/QC Data	
8	Waste Disposal Manifests	

Identification (feet) (feet) <th< th=""></th<>
MW-1 580176 816099 3556.90 3559.30 32.93 3526.37 MW-2 580091 816331 3555.80 3555.40 3558.40 32.42 3526.38 MW-3 580302 816331 3555.70 3558.40 32.42 3552.98 3556.42 MW-4 580386 816257 3555.70 3558.20 35.60.70 33.65 3526.42 MW-4 580586 815899 3558.10 3560.70 33.65 3527.05 3527.05 MW-4 580586 815899 35560.70 33.65 3527.05
MW-2 580091 816331 3555.80 3558.40 35.42 3555.98 3555.98 MW-3 580302 816257 3555.70 3558.20 35.642 3526.42 3526.42 MW-4 580586 815899 3558.10 3558.20 33.65 3526.42 3526.42 MW-4 580586 815899 3558.10 3560.70 33.65 3527.05 3527.05 MW-4 580576 815899 3558.10 3560.70 33.65 3527.05 MW-4 580586 815899 3558.10 3560.70 33.65 3527.05 MW-4 580586 815899 3558.10 3560.70 33.65 3527.05
MW-3 580302 816257 3555.70 3558.20 32.05 3526.42 MW-4 580586 815899 3558.10 3560.70 33.65 3527.05
MW-4 580586 815899 3558.10 3560.70 33.65 3527.05 MW-4 580586 815899 3558.10 3560.70 33.65 3527.05

1.0 SITE ASSESSMENT

1.1 Scope of Services

Meridian Alliance Group, L.L.C. (MAG) has completed the approved Site Assessment Reporting activities for the Amerada Hess Corporation (Amerada Hess), W.P. Byrd Lease, located at SECTION 12, T-20-S, R-36-E, LEA COUNTY, NEW MEXICO. According to the approved Scope of Work, prior to the commencement of field activities, MAG Personnel researched The State of New Mexico Oil Conservation Division (NMOCD) records, interviewed Amerada Hess Personnel, interviewed the landowner, Mr. Red Byrd, reviewed Aerial Photographs, and conducted in-field visual inspections to determine potential areas of concern that could possibly introduce hydrocarbon and produced water contamination into the soils and groundwater at the subject area. After consultation with Amerada Hess Personnel, MAG drilled four (4) soil borings at predetermined points of concern at the site. Soil samples were collected from the appropriate intervals to assist with the definition of possible vertical hydrocarbon contamination in the native soils. The four (4) soil borings were subsequently completed into groundwater and sampled for various constituents according to the current United States Environmental Protection Agency (EPA) guidelines, to determine the possible horizontal extent of hydrocarbon contamination. Solid and liquid wastes produced during these assessment activities were disposed of at an NMOCD approved facility.

1.2 Identified Potential Areas of Concern

Upon receipt of the contract from Amerada Hess, MAG conducted preliminary research to determine potential areas of concern at and in the vicinity of the site. The research included NMOCD records, interviews with Amerada Hess Personnel and Mr. Red Byrd, reviews Aerial Photographs, and in-field visual inspections.

A review of NMOCD Records and interviews with Amerada Hess Personnel revealed no known reported spills or releases related to the subject area at the W.P. Byrd Lease.

A review of Aerial Photographs from the years 1949, 1966, 1975, and 1997 revealed the presence of four (4) pits of unknown contents within the subject area. The 1949 Aerial Photograph shows that at the time the picture was taken only one (1) pit existed in the subject area. This pit was located east of the tank battery as it appeared at that time. The 1966 Aerial Photograph shows the presence of three (3) additional pits north of the original pit and northeast of the tank battery as it appeared at the time the picture was taken. The 1975 Aerial Photograph reveals no additional areas of concern or significant changes in the landscape, structures or equipment associated with the subject area. The 1997 Aerial Photograph reveals no additional potential areas of concern, however, the photograph does show significant changes to the landscape, structures and equipment associated with the subject area. The tank battery appears to have been updated, with the structures completed partially over the original pit, first identified in the 1949 photograph. Additionally, the Byrd water tanks are visually documented in the area of the three (3) northern pits first identified in the 1966 photograph. The 1997 photograph also shows the Byrd Homestead for the first time. The structures of the homestead are complete and it appears as it did at the time of the visual inspections by MAG Personnel. Please refer to the Aerial Photographs in Section 5.

On January 26, 29, February 15, and March 1, 2001, MAG Personnel conducted inspections of the subject area to visually identify potential areas of concern. During the inspections, MAG identified six (6) pipelines crossing or in the vicinity of the subject area. Three (3) gas pipelines, Northen Natural Gas, Chevron LPG,

and El Paso Natural Gas lie to the north and northeast of the subject area and run west-to-east, northwest-tosoutheast, and north-to-south, respectively. One (1) pipeline, belonging to Rice Engineering is a produced water pipeline and runs west-to-east through the subject area just north of the Byrd Tank Battery. One (1) pipeline belonging to Warren Petroleum is a natural gas pipeline and runs north-to-south east of the Byrd Tank Battery. One (1) additional pipeline belonging to Texas New Mexico is a crude oil pipeline and runs from the northwest-to-southeast, south of the Byrd Tank Battery and the Byrd Homestead. Please refer to Attachment 1 in Section 2.

During the visual inspections, the four (4) pits originally identified in the Aerial Photographs were visually identified by MAG Personnel. Please refer to Attachment 1 in Section 2.

In addition, MAG Personnel also identified three (3) areas where an undocumented spill or a release had previously occurred. Two (2) small spill areas were identified, one (1) along the Warren Petroleum Pipeline just east of the flare stacks associated with the subject area, and one (1) northeast of the subject area where the Chevron LPG and El Paso Natural Gas Pipelines intersect. One (1) large spill was visually identified south of the Byrd Tank Battery. Please refer to Attachment 3 in Section 2.

To further assist with the placement of the proposed soil borings, MAG Personnel collected surficial soil samples from the identified areas of concern and performed field analysis for total petroleum hydrocarbons (TPH). Surficial soil samples collected and field analyzed from the Northwest pit area, the middle pit area, the south pit area, and the large spill area south of the Byrd Tank Battery exhibited concentrations of 4,270 mg/kg., 13,500 mg/kg., 2,420 mg/kg., and 6,070 mg/kg., respectively. Surficial soil samples collected and field analyzed from the leak area near the Warren Petroleum Pipeline, the Water Well #1 area, and an area northwest of Water Well #1 exhibited concentrations of 0.0 mg/kg. for all three samples. Please refer to Attachment 3 in Section 2.

1.3 Soils Investigation

The subject area is situated on the High Plains of Eastern New Mexico. The High Plains is essentially a flat plateau. A remarkable characteristic of the region is the great number of shallow depressions, or playas, which dot its surface. During periods of rainfall the playas accumulate drainage from local watershed areas ranging in size from less than one square mile to several square miles. Only a very small portion of rainfall drains into the streams which traverse the plateau.

The subject area is associated with Ogallala Formation. Pleistocene and recent soils form a thin mantle over the Ogallala Formation. Caliche horizons, at depths ranging from one (1) to six (6) feet, underlie the top and subsoil zones over most of the High Plains. These caliche zones are generally one (1) to two (2) feet thick and grade downward into the lower Pleistocene subsoils or into hard indurated caliche layers (caprock) at the top of the Ogallala. The caprock in many cases separates the Pleistocene sediments from the Ogallala Formation. The topsoils consist of three major textural types: fine sandy and silty loams, clay and clay loams, and fine sandy loams.

Based upon elevations provided to MAG from Topographic Land Surveyors (Topographic) of Midland, Texas, surface drainage over the subject area is to the northeast.

Upon completion of the preliminary investigation of the Byrd Lease subject area, MAG Personnel presented the findings to Amerada Hess. Based upon the findings, MAG and Amerada Hess Personnel mutually determined the placement of the four approved soil borings/monitor wells. The locations of the borings/monitor wells were chosen to best represent the primary areas of concern identified in the

Meridian Alliance Group, LLC preliminary investigation to identify possible vertical and horizontal hydrocarbon contamination in the soils and groundwater associated with the subject area.

On March 14, 2001, MAG Personnel and personnel from White Drilling Company (White) drilled four (4) soil borings in the locations predetermined by MAG and Amerada Hess. MW-1 was drilled south of the Byrd Tank Battery in the area of the identified large spill. MW-2 was drilled south of the Byrd Homestead Water Well (WW) and north of the Texas New Mexico Pipeline. MW-3 was drilled in the area of the south pit, first identified in the 1949 Aerial Photograph. MW-4 was drilled in the assumed up-gradient direction from the potential areas of concern west of the Warren Petroleum Pipeline. Please refer to Attachment 1 in Section 2.

During the drilling of the four (4) soil borings, MAG Personnel collected soil samples at five (5) foot intervals to maximum depths of forty (40) feet. The collected soil samples were field screened using an Organic Vapor Monitor (OVM) to determine which soil samples to submit for laboratory analytical analysis. It was determined that in all of the soil borings, the 25-27 foot sample was the sample directly above the groundwater interface. In all four (4) soil borings, the soil sample collected from the 25-27 foot interval was submitted to Millennium Laboratories, Inc. (Millennium) for analytical analysis. In addition, collected samples exhibiting field screening levels above 100 parts per million via the OVM were submitted by MAG to Millennium for analytical analysis. One sample from the 20-22 foot interval in MW-3 was submitted.

The lithology of the soil borings was silty-sand and sand from the surface to the maximum depths of forty (40) feet. The silty-sands were indurated with caliche, however not more than 20 percent in any of the soil samples. A five (5) foot sand layer was located in MW-1 at twenty (20) feet, and a five (5) foot gravelly-sand layer was identified in MW-4 at twenty (20) feet. Soil samples collected from MW-3 exhibited hydrocarbon discoloration in the 5-7 foot interval, and exhibited strong hydrocarbon odor in all other collected soil samples. Please refer to Section 4 for Soil Boring Logs, Monitor Well Completion Details and Monitor Well Driller's Reports.

The soil samples collected from the soil borings and submitted to Millennium were analyzed for constituents of BTEX (benzene, toluene, ethyl-benzene, and xylenes, Method SW-846 5030B/8021B), Chloride (EPA Method 300.0), and TPH (Method 418.1). The Laboratory Reports from Millennium documented that MW-1, MW-2, and MW-4 exhibited concentrations of BTEX and TPH which were below detection limits (<0.125 and <10.0 mg/kg., respectively). Concentrations for Chloride in MW-1, MW-2, and MW-4 were 1,045.0 mg/kg., 90.3 mg/kg., and 666.0 mg/kg., respectively. The Laboratory Reports from Millennium documented that MW-3 (20-22') concentrations for benzene, toluene, ethyl-benzene, and xylenes were <0.125 mg/kg., <0.125 mg/kg., 0.109 mg/kg., and 2.44 mg/kg., respectively. The MW-3 (25-27') concentrations for benzene, toluene, ethyl-benzene, and xylenes were <0.125 mg/kg., respectively. Concentrations in for Chloride and TPH in MW-3 (20-22') were 29.2 mg/kg. and 1,530.0 mg/kg. Concentrations in for Chloride and TPH in MW-3 (25-27') were 36.2 mg/kg. and 2,020.0 mg/kg. The complete analytical results for the constituents mentioned are presented in Table 1.

1	ab	le	T

Location	Date	Depth (feet)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	BTEX	Chloride	TPH
									418.1
MW-1	03/14/01	25-27	<0.125	<0.125	< 0.125	<0.125	<0.125	1,045.00	<10.0
MW-2	H	25-27	<0.125	< 0.125	<0.125	<0.125	< 0.125	90.30	<10.0
MW-3	11	20-22	< 0.125	<0.125	0.109	2.440	2.549	29.20	1,530.00
_	11	25-27	< 0.125	< 0.125	0.228	3.140	3.368	36.20	2,020.00
MW-4	"	25-27	<0.125	<0.125	<0.125	<0.125	< 0.125	666.00	<10.0
Drum Comp.	It		<0.125	< 0.125	< 0.125	<0.125	<0.125		<50.0

Concentrations in mg/kg.

Please refer to Figure 1 Section 3 for Soil Laboratory Analytical Results, Attachment 2 Section 2 for Subsurface Soil Contaminant Concentration Map, and Section 7 for Soil Laboratory Analytical Reports.

1.4 Groundwater Investigation

Groundwater associated with the subject area is associated with the Ogallala (High Plains) Aquifer. The Ogallala Formation of late Miocene to Pliocene age uncomfortably overlies Cretaceous, Jurassic, Triassic, and Permian rocks and consists primarily of sand, silt, clay, and gravel derived from the southern Rocky Mountains to the west. The Ogallala is the major water-bearing unit of the High Plains of Eastern New Mexico. Hydraulic continuity occurs between the Ogallala Formation and both the underlying Cretaceous, Jurassic, and Triassic rocks in many areas of the High Plains, and the Quaternary deposits, where present. The High Plains Aquifer consists of the saturated sediments of the Ogallala Formation and those geologic units which contain potable water and are in hydraulic continuity with the Ogallala.

Subsequent to the completion of drilling activities for the four (4) soil borings, they were completed as monitor wells as requested by Amerada Hess. The monitor wells are constructed of 2.0-inch diameter poly vinyl chloride (PVC) and completed to total depths of forty (40) feet below the ground surface (BGS). From forty (40) feet BGS to twenty (20) feet BGS, White installed 2.0-inch diameter, Schedule 40, threaded, slotted 0.010 PVC well screen. From twenty (20) feet BGS to approximately thirty-two (32) inches above the ground surface (AGS), White installed 2.0-inch diameter, Schedule 40, threaded, PVC riser pipe. From forty (40) feet BGS to eighteen (18) feet BGS, 8/16 sand was poured down the 5.0-inch diameter soil boring around the PVC pipe. From eighteen (18) feet BGS to sixteen (16) feet BGS, a Bentonite Pellet Seal was put in place to seal off the boring from possible surface contamination. From sixteen (16) feet BGS to the ground surface, a non-shrink grout was poured to further to seal off the boring from possible surface contamination and to set the monitor well. On the surface, a 2 x 2 foot concrete pad was installed with an upright metal vault to protect the PVC Riser Pipe from damage. A locking sealed well cap was placed on the PVC pipe and a lock was placed on the upright vault.

As per a request from Amerada Hess, the subject area, including the newly installed monitor wells, was surveyed by a third party company registered in the State of New Mexico. Ground surface, top of casing elevations, and monitor well locations were provided by Topographic of Midland, Texas.

On March 19, 2001, MAG Personnel, gauged each monitoring well, then manually purged each monitoring well of three well volumes using clean, dedicated 1.5-inch diameter disposable polyethylene bailers, before any groundwater samples were collected. This evacuation procedure allows representative groundwater to enter the well. Samples collected for the agreed specified constituents were placed in the proper containers with Teflon®-lined lids. All groundwater samples were stored on ice and shipped to Millennium following strict chain-of-custody procedures.

All equipment was thoroughly cleaned with an Alconox® wash and rinsed with distilled water between each well sampling.

During the groundwater monitoring event, depth to groundwater in MW-1, MW-2, MW-3, and MW-4 was gauged at 32.93 feet, 32.42 feet, 32.05 feet, and 33.65 feet below the top of casing (TOC), respectively. The site specific groundwater gradient for the site is 0.0016 ft/ft, trending to the Southeast. Approximately 0.31 feet of phase-separated hydrocarbons (PSH), identified as crude oil, was documented on top of the groundwater in MW-3. Additionally, a very light sheen and a very heavy sheen of PSH was documented in MW-1 and MW-2, respectively. Please refer to Figure 2 Section 3 for Fluid Level Measurements and Attachment 4 Section 2 for the Groundwater Gradient Map.

There are three identified water wells associated with the subject area. All three Byrd Water Well #1, Byrd Water Well #2, and the Byrd Homestead Water Well are not in use at the present time. According to State Well Records provided by the New Mexico State Engineers Office, Byrd Water Well #1 and Byrd Water Well #2 were drilled between May 8 and May 12, 1991, and were completed to totals depths of seventy (70) feet BGS. Byrd Water Well #1 was screened from fifty-two (52) feet BGS to seventy (70) feet BGS. Byrd Water Well #2 was not completed and no casing was installed. According to information provided by Amerada Hess, the Byrd Homestead Water Well is completed to a depth of approximately 46.45 feet BGS. The depth to water was recently measured at 29.02 feet below the top of the casing. Please refer to Section 4 for State of New Mexico State Engineers Office Well Records.

The four (4) monitor wells and the Byrd Homestead Water Well (WW) had groundwater samples analyzed by Millennium for constituents of MTBE (methyl-tertiary butyl ether, Method SW-846 5030B/8021B), BTEX (benzene, toluene, ethyl-benzene, and xylenes, Method SW-846 5030B/8021B), Bromofluorobenzene (Method 8021 Surrogate), TDS (total dissolved solids, EPA Method 160.1), Sulfate (EPA Method 300.0), Chloride (EPA Method 300.0), Bicarbonate/Carbonate (EPA Method 310.1), Calcium (Method SW-846 3010A/6020), Magnesium (Method SW-846 3010A/6020), Potassium (Method SW-846 3010A/6020), and Sodium (Method SW-846 3010A/6020). In addition, TPH (total petroleum hydrocarbons, Method TX 1005) analysis was performed by Millennium on groundwater samples submitted from MW-1 and MW-4. The complete analytical results for the constituents mentioned are presented in Table 2 and Table 3.

Table	2
-------	---

Location	Date	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	ТРН
								C ₆ -C ₂₈
MW-1	03/19/01	< 0.010	< 0.002	< 0.005	< 0.005	< 0.005	ND	<5.00
MW-2	03/19/01	< 0.010	0.0970	< 0.005	< 0.005	< 0.005	0.0970	
MW-3	03/19/01	< 0.010	0.0540	< 0.005	< 0.005	< 0.005	0.0540	
MW-4	03/19/01	< 0.010	0.0180	< 0.005	< 0.005	< 0.005	0.0180	<5.00
WW	03/19/01	< 0.010	< 0.002	< 0.005	< 0.005	< 0.005	ND	i
ww	03/19/01	<0.010	<0.002	<0.005	<u>\0.003</u>	N0.003	ND	

ND - Not Detected

Location	Date	Bromofluoro-	TDS	Sulfate	Chloride	Bicarbonate	Calcium	Magnesium	Potassium	Sodium
		benzene*				/ Carbonate				
MW-1	03/19/01	98.9	88,638.0	1,350.0	16,971.0	163/0.369	1,659.0	482.0	45.2	9,643.0
MW-2	03/19/01	102.0	25,608.0	1,410.0	19,108.0	1.88/8.44	2,425.0	630.0	74.7	8,859.0
MW-3	03/19/01	87.6	23,898.0	1,189.0	14,623.0	163/0.154	1,755.0	581.0	65.0	7,571.0
MW-4	03/19/01	99.8	23,414.0	1,321.0	15,209.0	166/0.48	1,443.0	434.0	34.0	8,394.0
WW	03/19/01	97.9	4,071.0	86.1	2,081.0	40.7/139	530.0	129.0	42.5	820.0

Table 3

All concentrations in mg/l.

* - % Recovery.

Please refer to Figure 3 Section 3 for Groundwater Laboratory Analytical Results and Attachment 5 Section 2 for the Groundwater Contaminant Concentration Map.

During the visual inspections of the subject area, MAG Personnel identified several chemicals of concern in the Byrd Homestead Water Well (WW) Shed. The Chemicals identified were: Napthylene, Methylcarbonate, Malathion, Fertilome Weed Out, Amdro, High Yield Sevin Dust, Green Charm Weed & Feed, Balan, Diazinon, and Ortho Weed B Gone. In addition, approximately eighty (80) gallons of gasoline was also found to be stored in the nearby barn. The water well is currently not being used, however, it is open at the surface, currently being covered by a flower pot. To determine if contamination of any type could possibly be introduced from the water well opening to the groundwater, on March 19, 2001, MAG

submitted groundwater samples from the water well (WW) to Millennium for pesticide analysis. Groundwater samples from MW-2 and MW-3 were also submitted to verify the background concentrations. The complete analytical results for the constituents mentioned are presented in Table 4.

Constituent	MW-2	MW-3	WW
2,4,5-T	<0.12	<0.12	<0.12
2,4,5-Тр	<0.12	<0.12	<0.12
2,4-D	<1.2	<1.2	<1.2
2,4-Db	<1.2	<1.2	<1.2
Dicamba	<0.12	<0.12	<0.12
Dichloroprop	<1.2	<1.2	<1.2
МСРА	<0.12	<0.12	<0.12
МСРР	<0.12	< 0.12	<0.12
alpha-BIIC	< 0.05	<0.05	< 0.05
beta-BIIC	<0.05	<0.05	<0.05
gamma-BIIC	<0.05	<0.05	<0.05
Heplachlor	<0.05	<0.05	< 0.05
Aldrin	<0.05	<0.05	<0.05
Heplachlor epoxide	< 0.05	<0.05	<0.05
Endosulfan I	<0.05	<0.05	<0.05
4,4-DDE	<0.10	<0.10	<0.10
Dieldrin	<0.10	<0.10	<0.10
Endrin	<0.10	<0.10	<0.10
Endosulfan II	<0.10	<0.10	<0.10
4,4-DDD	<0.10	<0.10	<0.10
Endrin aldehyde	<0.10	<0.10	<0.10
4,4-DDT	<0.10	<0.10	<0.10
Methoxychlor	<0.50	<0.50	<0.50
Endrin ketone	<0.10	<0.10	<0.10
alpha-Chlordane	< 0.05	<0.05	<0.05
gamma-Chlordane	< 0.05	<0.05	<0.05
Toxaphene	<1.0	<1.0	<1.0

Table 4

Concentrations in ug/l.

1.5 Waste Management and Disposition

Soil Cuttings generated from the drilling activities on March 14, 2001, and purged groundwater and fluids generated from the groundwater monitoring activities on March 19, 2001 were stored on-site in 55-gallon drums. On April 17, 2001, the generated wastes were transported to and disposed of by Gandy-Marley, Inc. at their NMOCD approved facility, located west of Tatum, in Chaves County, New Mexico. Please refer to Section 8 for the Waste Manifests.

1.6 Limitations

It should be noted that all environmental investigations are inherently limited in the sense that conclusions are drawn from observations and conversations only at specific locations and times designated in the report. Also, the passage of time may result in a change of conditions.

Our professional services have been performed in accordance with generally accepted environmental principals and practices. Meridian Alliance Group, LLC is not responsible for independent conclusions, opinions or recommendations made by others based on the information contained herein. Should any new information regrading the site become available during future investigations, we request that this information be presented to us so that we can review this data and make any necessary modification to this report in a timely and professional manner.

J. Curtis Henderson District Manager

mail Shull

Mark A. Ehrlich Project Manager

		Amer	Soil Labora ada Hess C SECTIOI LEA COI	Figure 1 atory Analy orporation N 12, T-20- UNTY, NEV	tical Resu - W.P. Byr S, R-36-E, V MEXICO	its d Lease			
Location	Date	Depth feet	Benzene	Toluene	Ethyl- benzene	Total Xylenes	втех	Chloride	TPH 418.1
MW-1	03/14/01	25-27	<0.125	<0.125	<0.125	<0.125	<0.125	1,045.00	<10.0
MW-2	z	25-27	<0.125	<0.125	<0.125	<0.125	<0.125	90.30	<10.0
MW-3		20-22	<0.125	<0.125	0.109	2.440	2.549	29.20	1,530.00
	2	25-27	<0.125	<0.125	0.228	3.140	3.368	36.20	2,020.00
MW-4	=	25-27	<0.125	<0.125	<0.125	<0.125	<0.125	666.00	<10.0
Drum Composite			<0.125	<0.125	<0.125	<0.125	<0.125		<50.0
								1	
NOTES: All values reported in I	mg/kg.								
								(

Location	Date	TOC Elev. Feet	Depth to Water Feet	PSH Thickness Feet	Corrected GW Elev Feet	Screene Interval
MW-1	03/19/01	3559.30	32.93	0.00	3526.37	20-40'
MW-2	03/19/01	3558.40	32.42	0.00	3525.98	20-40'
MW-3	03/19/01	3558.20	32.05	0.31	3526.42	20-40'
MW-4	03/19/01	3560.70	33.65	0.00	3527.05	20-40'

								Groundwa Amerada H SE	Figurate Figurate Her Laborato Her Laborato Heras Corporation 12, T-	re 3 ry Analytica Jon - W.P. Bj 20-S, R-36-E VEW MEXICI	a Results yrd Lease								
Location	Date	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xvienes	Total BTEX	TPH CrCis	TPH CurCa	TPH	Bromofluoro- benzene"	TDS	Suttate	Chloride	Bicarbonate / Carbonate	Calcium	Magnesium	Potassium	Sodium
I-WW	03/19/01	<0.010	<0.002	\$00.05	<0.005	<0.005	Q	€.00 €	8	8.9	8.8	88,638.0	1,350.0	16,971.0	163/0.369	1,659.0	482.0	452	9,643.0
MW-2	03/19/01	<0.010	0.0970	\$0.005	\$00 û>	<0.005	0.0870				102.0	25,608.0	1,410.0	19,108.0	1.88/8.44	2,425.0	630.0	7.47	8,859.0
S-WM	03/19/01	<0.010	0.0540	<0.005	<0.005	×0.005	0.0540				87.6	23,698.0	1,188.0	14,823.0	163/0.154	1,755.0	581.0	65.0	7,571.0
MW-4	03/19/01	<0.010	0.0180	\$00.05	<0.005	<0.005	0.0180	45.00 45.00	899	§.8	90 S	23,414.0	1,321.0	15,208.0	166/0.483	1,443.0	434.0	34.0	8,394.0
Byrd House Water Well	03/19/01	<0.010	<0.002	<0.005	<0.005	<0.005	9				679	4,071.0	88.1	2,081.0	40.7/139	530.0	129.0	42.5	820.0
NOTES: All concentr ND - Not De TDS - Total - % Recovi	ations present tected Dissolved Solk	ted in mg/l.]			1	1]								feridian Illiance roup, LLC	

Groundwate Amerada	Figure er Laboratory Pes a Hess Corporatio SECTION 12, T-2 LEA COUNTY, NE	4 ticde Analytical Re on - W.P. Byrd Leas 0-S, R-36-E, EW MEXICO	esults se
Constituent	MW-2	MW-3	ww
2,4,5-T	<0.12	<0.12	<0.12
2,4,5-Tp	<0.12	<0.12	<0.12
2,4-D	<1.2	<1.2	<1.2
2,4-Db	<1.2	<1.2	<1.2
Dicamba	<0.12	<0.12	< 0.12
Dichloroprop	<1.2	<1.2	<1.2
MCPA	<0.12	<0.12	<0.12
MCPP	<0.12	<0.12	<0.12
alpha-BIIC	< 0.05	< 0.05	< 0.05
beta-BIIC	< 0.05	<0.05	<0.05
gamma-BIIC	< 0.05	<0.05	< 0.05
Heplachlor	<0.05	< 0.05	< 0.05
Aldrin	< 0.05	< 0.05	< 0.05
Heplachlor epoxide	<0.05	< 0.05	<0.05
Endosulfan I	< 0.05	< 0.05	< 0.05
4,4-DDE	< 0.10	<0.10	<0.10
Dieldrin	<0.10	<0.10	<0.10
Endrin	< 0.10	<0.10	<0.10
Endosulfan II	<0.10	<0.10	<0.10
4,4-DDD	< 0.10	< 0.10	<0.10
Endrin aldehyde	< 0.10	<0.10	<0.10
4,4-DDT	<0.10	<0.10	<0.10
Methoxychlor	<0.50	<0.50	<0.50
Endrin ketone	< 0.10	<0.10	<0.10
alpha-Chlordane	<0.05	< 0.05	<0.05
gamma-Chlordane	< 0.05	< 0.05	<0.05
Toxaphene	<1.0	<1.0	<1.0

All concentrations presented in ug/l.

~		Ieridia	m				Project Number: 07C005537	Monito	or Well: MW-1	Sheet 1 of 1
		lliance Froup,	e LLC	2			Contractor: White Drilling Company		Drilling Me Air Coring	thod:
Project	t Name/L	ocation:					Driller: Bø		Location: South of Ta	nk Battery
Amera W.P. H SECT	da Hess Byrd Leas ION 12, 7	Corpora ie F-20-S, F	tion R-36-I	E,			Date Start: 3/14/01		Date Comp 3/14/01	leted:
LEAC	OUNTY	, INE W 1	VIEAI	CU			Top of Casing Elevation: 3559.30'		Logged By: Aaron Hale	
-	erval	Alavoo	8	ication					N Con	Aonitor Well struction Detail
Depti	Sample Inte (FT)	Sample Re((FT)	Sample Ty	Soil Classif	PIELD SCREENING INSTRUMENT: PID:OVM UNITS: 3		Sample Description and Conditions	Lithology	32"	Locking Top Cop Upright Voult Ground Surface
									0'	Nun Shriuk Grout
	5-7'	ľ	ST	SM	3.1	SILTY SAN nodules, ver	D: Fine to v. fine grained; 20% caliche y pale orange (10YR8/2).		2.8" 13. Schedule 48	
10'									Threaded PVC Riser Pipe	5.6" Diameter Hule
0000	10-12	0.5'	SS	SM	1.0	SILTY SAI indurated, v	ID: Fine to v. fine gramed, caliche ery pale orange (10YR8/2).			
	15-17	r	SS	SM	1.3	SILTY SAM	ND: Fine to v. fine grained; caliche ery pale orange (10YR8/2).		16'	
20'									18'	
20	20-22	1.5'	SS	SP	2.3	SAND: Fin	c grained, light brown (5YR5/6).			
	*25-27	0.5	SS	SM	15.3	SILTY SA fine sands,	ND: Fine to v. fine grained; poorly cemented moist, very pale orange (10YR8/2).			2.0" 1.D. Schedule 40 Threaded, Stotted 0.010 PVC Well Screen
30'	30-32'	0.66'	SS	SM	23.9	SILTY SA fine sands,	ND: Fine to v. fine grained, poorly cemented moist, very pale orange (10YR8/2).			
	35-37	ľ	SS	SM	N/A	SILTY SA fine sands,	ND: Fine to v. fine grained, poorly cemented wet, light brown (5YR6/4).			
40'									40'	- End Cap
SS - split SB - split ST - shel RC - roc	spoon t barrel by tube k core	pes	NOT * - si Bott Bott	TES: ample om of om of	e subm Boring Monit	itted for g @ 40.0 or Well	analytical analysis ' @ 40.0'			

-		Meridia	m				Project Number: 07C005537	Monite	or Well: MW-2	Sheet 1 of 1
	D	Illiance Group,		2			Contractor: White Drilling Company		Drilling Me Air Coring	thod:
Proje	ct Name/I	.ocation:					Driller: Bo		Location: South of By	rd Household
Amer W.P. SECT	ada Hess Byrd Lea TION 12,	Corpora se T-20-S, I	tion R-36-I	ε,			Date Start: 3/14/01		Date Comp 3/14/01	leted:
LEA	COUNTY	, NEW I	MEAI	0			Top of Casing Elevation: 3558.40'		Logged By: Mark Ehrli	ch
	rval	ŚJANO	2	ication					M	Aonitor Well struction Detail
Dept	sample Inte FT)	sample Rec FT)	Sample Tyr	soil Classif	BLD SCREENING VSTRUMENT: ID OVM UNITS: P		Sample Description and Conditions	Lithology	32"	Locking Top Cap
				01					0,	
	5-7'	P	ST	SM	0.0	SILTY SAN indurated, <	(D: Fine to v. fine grained; caliche 10% organics, very pale orange (10YR8/2).		2.6" LD. Schedule 48	
10'	10-12'	0.5'	SS	SM	0.7	SILTY SAI	ND: Fine to v. fine grained; caliche 10% organics; very pale orange (10YR8/2).		Threaded PVC Riser Pipe	
	15-17	P	SS	SM	0.0	SILTY SAI nodules, ve	ND: Fine to v. fine grained; 10% caliche ry pale orange (10YR8/2).		16'	Bartantia Pallet Need
20'									18'	
	20-22	0.66'	SS	SM	0.0	SILTY SAI mod orange	ND: Fine to v. fine grained; e pink (5YR8/4)			
	*25-27	0.83'	SS	SM	0.2	SILTY SAI moist; very	ND: Fine to v. fine grained; pale orange (10YR8/2).			2.8" LD, Schedule 40 Threaded, Slotted 8,019 PVC Well Screen
30'	30-32	r	SS	SM	0.0	SILTY SAI moist, very	ND: Fine to v. fine grained, pale orange (10YR8/2).			
40'									40'	
									_	
SS - spl SB - spl ST - she RC - ro	Sample Ty it spoon it barrel lby tube ck core	pes	NOT * - si Bott Bott	TES: ample om of om of	e subm Borin Monit	itted for g @ 40.0 tor Well	analytical analysis ' @ 40.0'			

	a.	Aeridia	m				Project Number: 07C005537	Monit	or Well: MW-3	Sheet 1 of 1			
		Iliance Group,		•			Contractor: White Drilling Company		Drilling Me Air Coring	thod:			
Projec	ct Name/L	<u>ocation:</u>					Driller: Bo		Location: East of Tan Vicinity of S	k Battery South Pit			
Amera W.P. J SECT	ada Hess Byrd Leas TON 12, 7	Corpora se F-20-S, F	tion R-36-E	E,			Date Start: 3/14/01		Date Comp 3/14/01	leted:			
	COUNTY	, 140. 00 1	VIEAI	co			Top of Casing Elevation: 3558.20'		Logged By: Mark Ehrli	Logged By: Mark Ehrlich			
-	arval	viavos	8	ication	L		8284 12		N Con	Aonitor Well struction Detail			
Dept	Sample Inte (FT)	Sample Rec (FT)	Sample Tyj	Soil Classif	TIELD SCREENING DNSTRUMENT: PID/OVM UNITS: P		Sample Description and Conditions	Lithology	32" -	Locking Top Cup Upright Vanit Oround Surface			
									0'	- Now-Shrink Grout			
	5-7'	1.5'	ST	SM	0.0	SILTY SAI discoloratio	ND: Fine to v. fine grained; hydrocarbon n; very pale orange (10YR8/2).		2.0° 1.D. Schedule 40 Threaded PVC Riser				
10'	10-12	2'	SS	SM	78.2	SII.TY SA) hydrocarbo	ND: Fine to v. fine grained; strong n odor, very pale orange (10YR8/2).		Phy				
\bullet	15-17'	r	SS	SM	63.7	SILTY SAI	ND: Fine to v. fine grained; strong n odor; very pale orange (10YR8/2).		16' 18'	Bentonite Pellet Seal			
20'	*20-22	1.5'	SS	SM	230.6	SILTY SA indurated; yellowish g	ND: Fine to v. fine grained; caliche strong hydrocarbon odor, ray (5Y7/2).		20'	8/16 Sand			
	*25-27	0.66'	SS	SM	192.2	SILTY SA indurated, yellowish g	ND: Fine to v. fine grained; caliche strong hydrocarbon odor; gray (5Y7/2).			2.0" I.D. Schedule 40 Thrunded, Slotted 9.010 PVC Well Screen			
30'	30-32'	0.66'	SS	SM	19.5	SILTY SA hydrocarbo	ND: Fine to v. fine grained; strong on odor; yellowish gray (5Y7/2).						
40'									40'	End Cap			
SS - spli SB - spli ST - she RC - roo SH - sho	ample Ty t spoon it barrel lby tube ck core ovel (surface)	pes	NOT * - s Bott Bott Gro	TES: ample om of om of undw	e subm Boring Monit ater @	itted for g @ 40.0 or Well ~ 30'	analytical analysis ' @ 40.0'	_ _					

ſ	~	a .	Aeridis					Project Number: 07C005537	Mo	nitor W	ell: MW-4	Sheet 1 of 1	
			Alliance Group,	e LLC	2			Contractor: White Drilling Company			Drilling Me Air Coring	thod:	
	Projec	t Name/I	ocation:					Driller: Bo			Location: NW of Tanl	(Battery	
All the second s	Amera W.P. I SECT	ida Hess Byrd Leas ION 12, 7	Corpora se F-20-S, F	tion R-36-I	E,			Date Start: 3/14/01			Date Comp 3/14/01	eted:	
	LEAC		, 142 1	VIEAI	co			Top of Casing Elevation: 3560.70'			Logged By: Mark Ehrli	ch	
ſ	h	erval	covery	be	fication						N Con	Ionitor Well struction Detail	
	Dept	Sample Int (FT)	Sample Re (FT)	Sample Ty	Soil Classi	FIGLD SCREENIN INSTRUMENT: FID/OVM UNITS:		and Conditions	Lithology		32"	Locking	Top Cap ht Vandt Surface
											0'	Non-Shri	nk Grout
		5-7'	r	ST	SM	1.2	SILTY SAN 10% caliche	ND: Fine to v. fine grained, 5% organics, e nodules, very pale orange (10YR8/2).		2.0	" LD. Schedule 40		
	10'	10-12	0.5'	SS	SM	1.0	SILTY SAN very pale or	(D: Fine to v. fine grained; caliche indurated; ange (10YR8/2).		Pip	e	5.8" Di	umeter Hole
		15-17	0.5'	SS	SM	0.7	SILTY SAN pale yellow	ID: Fine to v. fine grained, ish orange (10YR8/6).		2	16'		
I			1								18'	Benton	ite Pellet Seal
	20	20-22'	0.5'	SS	GM	N/A	GRAVELL gravel; 10%	Y SAND: Fine to v. fine grained; angular limestone; light brown (SYR6/4).			20.	8/16	Sand
		*25-27'	ľ	SS	SM	0.7	SILTY SAI moist, very	ND: Fine to v. fine grained; pale orange (10Y R8/2).				2.0" LD Thread PVC W	. Schedule 40 ed, Slotzed 0.010 ell Screen
	30'	30-32'	0.66'	SS	SM	19.5	SILTY SAN	ND: Fine to v. fine grained; ale orange (10Y R8/2).					
	40'										40'	P	nd Cap
											13		
d	Sa	imple Ty	pes	NOT	TES:								
	SS - split SB - split ST - shel RC - roc	spoon barrel by tube k core		* - s: Bott Bott	ample om of om of	e subm Boring Monit	itted for g @ 40.0 or Well (analytical analysis ' @ 40.0'					
L	SH - sho	vel (surface)		Gro	undwa	ater (a)	~ 29'		_				

STATE ENGINEER OFFICE

WELL RECORD

		0.53	-				-		-	
section	Ι.	GEN	IEK/	٩L.	ID	IFU	ю	ΝА		Ł

 A) Owner of we Street or Po: City and Sta Vell was drilled ur a b. Tract No. 	st Office Ad te	dress <u>I</u> H	Box 92 Hobbs, NM	88241		Owner	s well No	
City and Sta Vell was drilled ur a i b. Tract No.	te	NoI	lobbs, NM	88241				
Vell was drilled un a t b. Tract No.	nder Permit	NoI	10 160	<u>,</u>				
a ; b. Tract No.	Va Va		-10,100		and is located	in the:		
b. Tract No.		¼	<u>N 1</u> % of Se	ection 12	_ Township _	<u>20-S</u> Ran	ge <u>36-E_</u> _	N.M.P.M
		of Map No)	of the			·····	
c. Lot No Subdivisi	on, recorded	of Block No. I ín	Lea	of the	ounty.			
d. X= the	<u>.</u>	feet, Y=		feet, N.	M. Coordinate	System		Zone ir Grant
B) Drilling Con	tractor	W.	L. Van No)y		License No	WD-208	.
\ddress		Вол	: 7, 011 (lenter, NM	88266			
Drilling Began	May 8, 1	991 _{Сол}	pletedMa	y 10, 1991	. Type tools	cable	Size of hole	<u>8"</u> in
levation of land s	surface or			at wel	is	ft. Total depth	of well	<u>70</u> ft
completed well is	k⊊ s≵	nallow 🔲 .	artesian.		Depth to water	upon completion	of well	-55 ft
Denth in l	Faat	Se Se	ction 2. PRIN	CIPAL WATER	-BEARING ST		Detter et al 1	
Erom	To.	in Feet	s	Description of V	Vater-Bearing F	ormation	Estimated (gallons per n	(jeld jinute)
55	70	15		andy calie	he sa	lt water	<u> </u>	
			Sectio	on 3. RECORD	OF CASING			
Diameter	Pounds	Threads	Depth	in Feet	Length	Type of Sho	Perfor	ations
(incnes)	per 1001	per in.	Тор	Bottom	(feet)		From	To
5"	PVC		0	70			52	70
1		1 1		1		1	1	

Section 4. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	
From	То	Diameter	of Mud	of Cement	Method of Placement
		1			······································
			•		
		1			

Section 5. PLUGGING RECORD

Address	N.	Depth	in Feet	Cubic Feet
Plugging Method	NO.	Top	Bottom	of Cement
Date Well Plugged	<u>1</u>			
Plugging approved by:	2			
	3			
State Engineer Representat	ive 4			

Date Received May 20, 1991

Use <u>COM</u>

Quad _

#

17

__ FWL _____ FSL_

Location No. 20.36.12.21332

2- 6-01:10:22AM;NM. STATE ENG.

160		

1202 ess 8228

			Section 6. LOG OF HOLE	
Depth	in Feet	Thickness	Color and Type of Material F.	acountered
From	To	in Feet		
0	5	5	Top soil	
5	45	40	caliche	
45	55	10	Sandy Caliche	
5 5	70	15	salt water	
70			Red Bed	
			· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·	
		<u> </u>	1 	· · · · · · · · · · · · · · · · · · ·
·		}		
				· · · · · · · · · · · · · · · · · · ·
<u>-</u>				
				······································
		i		······································
<u></u>				
	•	·		
			· · · · · · · · · · · · · · · · · · ·	
	· · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
		Section	7 REMARKS AND ADDITIONAL INFORMATION	
			· · · · · · · · · · · · · · · · · · ·	T ULA SU - ULA A
				10 24 DEFICE

The undersigned here by certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

. `.

<u>AUJ No</u> Driller <u>4</u>

Э

1

ł

ł

ł

-

STATE ENGINEER OFFICE

WELL RECORD

, .

Section 1. GENERAL INFORMATION

(4) 0	f		J. B. F	lynd		0	2	
(A) Uwner of Street or	Post Office Ad	Aress	Box 92		·····	Owner's	well NO	
City and	State		Hobbs,	NM 8824	1			
Well was drille	d under Permit	No	I-10,10	50 <u>-</u> 5	and is located	i in the:		
a,	_ % <u>\$e</u> %	NE % N	[₩ ¼ of Sec	ction12	Township	20-S Range	36-E	N.M.P.M.
b. Tract	No,	of Map No.		of th	e			
c. Lot N Subdi	lo ivision, recorded	of Block No 1 ín	Lea	of th	e County.			
d. X≖ the		_ feet, Y=		feet, N	I.M. Coordinate	System		Zone in Grant.
(B) Drilling	Contractor		W. L.	Van Noy		License No. HD-2	208	
Address	· ·		Box 7	, Oil Gen	ter, NM 88	3266		
Drilling Began	-May 101	eo4 Com	pleted May 1	2, 1991	Type tools	lable	_ Size of hole_	8" in.
Elevation of la	nd surface or	.,,,		atwo	ell is	ft. Total depth of	well	70 ft.
<i>a</i>								
Completed we	11.13 A.A.I S	hallow L.a	rtesian.		Depth to wate	r upon completion of	well	
Denth	in Feet	Sec	tion 2. PRIN	CIPAL WATE	R-BEARING S	TRATA	Estimated.	Viald
From	To	in Feet		Description of	Water-Bearing l	Formation	(gallons per i	ninu'te)
55	70	15		sandy cal	liche	salt water		
L	.L.,	J	Section	n 3. RECORI	OF CASING			
Diameter	Pounds	Threads	Depth	in Feet	Length	Type of Shoe	Perfo	rations
(inches)	per foot	per in.	Top	Bottom	(feet)	Type of Shoe	From	То
N	o casing							
 			<u></u> .		·	<u></u>		
			• <u></u> .			L		1
		Secti	on 4. RECO	RD OF MUDI	DING AND CEN	IENTING	·	
Erom	in Feet	Hole Diameter	Sack of M	cs C uđ	Cubic Feet	Method	of Placement	
	1.							
<u> </u>	 	<u> </u>				·····		<u></u>
1	1		1	1				

Section 5. PLUGGING RECORD

Plugging ContractorAddress		Depth	in Feet	Cubic Feet
Plugging Method	^{No.} [Top	Bottom	of Cement
Date Well Plugged				
Plugging approved by:	2			
	3			
State Engineer Representative	4			
FOR USE OF STATE EN Date Received May 20, 1991	GINEER ONLY	7	1	ESI

L-10,160-S

1202 853 8228

File No.

/z #

(SUPP)) Location No 20.36.12.12442
	20.36.12.12942
. 1	2- 8-01;10:22AM;NM. STATE ENG.

		T	Section 6. LOG OF HOLE				
Depth	in Feet	Thickness	Color and Type of Material Encountered				
Prom	10	mreet					
0	E	5	Top sail				
5	45	40	Caliche				
45	55	10	Sandy Caliche				
55	70	15	Salt Water				
20			Ref Bed				
<i></i>							
.		ļ					
	····						
<u> </u>	ļ		· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·				
<u></u>							
	<u>}</u>						
			,				
			· · · · · · · · · · · · · · · · · · ·				
<u> </u>							
		· · · · ·					
	<u> </u>						
	· · · · ·	· · · · · · · · · · · · · · · · · · ·					

Section 7. REMARKS AND ADDITIONAL INFORMATION

	3
	3
	5
000	24

i

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

,

123 Driller

s

ł

Ť.

i

STATE ENGINEER OFFICE WELL RECORD

Section 1. GENERAL INFORMATION

(A) Owner of Street or	well <u>Ame</u> Post Office Ad	rada He dress <u>P</u> .	ss Corpo O. Box 8	ration 40	· · · · · · · · · · · · · · · · · · ·	Owner's	Well No. <u>MW</u> -	1
City and	State <u>Sem</u>	<u>inole,</u>	<u>TX 7936</u>	0				
Well was drilled	under Permit	No			(and is located i	GPS-N-32-35 in the: W-103-1	5-27-8" 8-28-3	
a	_ ¼ ¼	¥	¼ of Se	ction <u>12</u>	_ Township <u>T</u>	<u>-20-S</u> Range	<u>R-36-E</u>	_N.M.P.M.
b. Tract	No	of Map No	D	of the				
c. Lot No Subdiv	o vision, recorded	of Block No. I in		of the	ounty.			
d. X= the		_ feet, Y=		feet, N.I	M. Coordinate S	ystem		Zone in Grant.
(B) Drilling C	ContractorW	hite Dr	illing C	ompany		_ License No	ND-1456	
Address P.	0. Box 9	06 -	Clyde, T	<u>x 79510</u>				
Drilling Began	3/14/01	Cor	npleted3/	14/01	. Type tools	• 	Size of hole	5.0 in.
	+		ading ol	owntion .	. 2550 2	0.5	c 40.0	<i>c.</i>
Elevation of lai	nd surface or 🗠		asing er	eva Li stiwel	Is	Lit, Total depth o	i well 4010	II.
Completed wel	lis 🗆 sl	hallow 🗖	artesian. MO	nitor We	bepth to water	upon completion o	f well 40.0	ft.
•					-			
		S	ection 2. PRIN	CIPAL WATER	R-BEARING ST	RATA		
Depth	in Feet	Thickne	ss	Description of V	Vater-Bearing F	ormation	Estimated Y	ield
From	To	in ree	· · · · · · · · · · · · · · · · · · ·				(gations per in	inute)
29.8			very	pale ora	ange silt	y sand		
L	· ·	J,	Sectio	n 3 RECORD	OF CASING			
Diamatar	Pourida	Theorida	Denth	in Feet	UT CASING		Perfor	tions
(inches)	per foot	per in.	Ton	Bottom	(feet)	Type of Shoe	From	To
2.0		4	0.0	40.0	10.0	point	20.0	40.0

Depth in Feet		Hole	Sacks	Cubic Feet	
From	То	Diameter	of Mud	of Cement	Method of Placement
40.0	18.0	5.0	55	gravel packed	poured
18.0	16.0	5.0	1.0	bent. pellets	poured
16.0	0.0	5.0	6.5	cement	poured

Section 5. PLUGGING RECORD

Plugging Contractor				
Address	-	Depth	in Feet	Cubic Feet
Plugging Method	- NO.	Тор	Bottom	of Cement
Date Well Plugged	- 1			
Plugging approved by:	2			
	3			
State Engineer Representative	4		1	

FOR USE OF STATE ENGINEER ONLY

Use.

Ņ

Date Received

i.

Quad _____ FWL ____ FSL___

.

_____ Location No.__

	Section 6, LOG OF HOLE							
Depth i	n Feet	Thickness	Color and Type of Material Encountered					
From	10	In Feet						
0.0	20.0	20	Very pale orange silty sand w/caliche					
20.0	25.0	.5	Lt. Brown sand					
25.0	35.0	10	Very pale orange silty sand					
35.0	40.0	5	Lt. Brown silty sand					
		! *******						
		! 						
<u></u>								
<u></u>								
	\ !	· · · ·						
		·						
		1						
<u></u>								
<u> </u>	``							
······································	I	I	L					

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned here by certifies that, to the best of his knowledge and belief, the foregoing is a frue and correct record of the above described hole.

Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5.

ļ

STATE ENGINEER OFFICE

WELL RECORD

Section 1. GENERAL INFORMATION

Site of DS Office Address		
GPS-N-32-35-27-8" Meil was drilled under Permit No		
a. W W W of Section 12 Township T-20-S Range R-36-E b. Tract No. of Map No. of the c. Lot No. of Block No. of the Subdivision, recorded in County. d. X= feet, Y= feet, NM. Coordinate System the feet, Y feet, Y feet, NM. Coordinate System B) Drilling Contractor White Drilling Company License No. MD-1456 Address P.O. Box 906 Clyde, TX 79510 Orniling Began 3/14/01 Completed 3/14/01 Type tools Size of hole 5 Size of hole 5 Elevation of land surface or top of Casing elevatiq0ell is 3558.40ft. Total depth of well _40.0 Completed well is shallow artesian. Monitor WelDepth to water upon completion of well _40.0 Section 2. PRINCIPAL WATER-BEARING STRATA Estimated Yi Depth in Feet Thicknes Description of Water-Bearing Formation (gallons per mi 30.0 Very pale orange silty sand Image: sand sand sand sand sand sand sand sand		
b. Tract No	N.M.P.N	
c. Lot No		
d. X=		
B) Drilling Contractor White Drilling COMDANY License No. WD-1456 .ddress P.O. Box 906 - Clyde, TX 79510 Drilling Began 3/14/01 Completed 3/14/01 Type tools Size of hole 5 ilevation of land surface or top of casing elevative well is 3558.40ft. Total depth of well 40.0 Section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet Thickness Description of Water-Bearing Formation (gallons per min 30.0 Very pale orange silty sand Section 3. RECORD OF CASING Diameter Pounds Threads Depth in Feet Length (feet) Type of Shoe Perform 2.0 4 0.0 40.0 10.0 point 20.0 - Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement 40.0 18.0 5.0 5.5 gravel packed poured 18.0 16.0 5.0 1.0 bent. pellets poured	_Zone i _ Gran	
ddress P.O. Box 906 - Clyde, TX 79510 Drilling Began 3/14/01 Completed 3/14/01 Type tools Size of hole 5 ilevation of land surface or top of Casing elevative Rell is 3558.40ft. Total depth of well 40.0 Sompleted well is 3558.40ft. Total depth of well 40.0 completed well is shallow artesian.Monitor WelDepth to water upon completion of well 40.0 Section 2. PRINCIPAL WATER-BEARING STRATA Section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet Thickness Description of Water-Bearing Formation (gallons per minits) 30.0 Very pale orange silty sand Image: Section 3. RECORD OF CASING Diameter From Top Bottom (feet) Type of Shoe Perforat 2.0 4 0.0 40.0 10.0 point 20.0 Image: Site of ADD of Casing Section 4. RECORD OF MUDDING AND CEMENTING Section 4. RECORD OF MUDDING AND CEMENTING Image: Site of ADD of Casing Section 4. RECORD OF MUDDING AND CEMENTING Section 4. RECORD OF MUDDING AND CEMENTING Image: Site of ADD of Casing Section 4. RECORD OF MUDDING AND CEMENTING Section 4. RECORD OF MUDDING AND CEMENTING Image: Site of ADD of Casing Section 4. RECORD OF MUDDING AND CEMENTING Section 4. RECORD OF Site of Cement		
Drilling Began 3/14/01 Completed 3/14/01 Type tools Size of hole 5 Size at hole of Log of Casing elevative field is 3558.40ft. Total depth of well 40.0 Size of hole 40.0 Sompleted well is Ishallow artesian. Monitor WelDepth to water upon completion of well 40.0 Section 2. PRINCIPAL WATER-BEARING STRATA Section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet Thickness Description of Water-Bearing Formation Estimated Yi (gallons per mini 30.0 30.0 Very pale orange silty sand Image: Section 3. RECORD OF CASING Diameter Pounds Threads Depth in Feet Length Type of Shoe Perforat (inches) per foot Threads Depth in Feet Length Type of Shoe From 2.0 4 0.0 40.0 10.0 point 20.0 Image: Size of MudDing AND CEMENTING Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement Method of Casent Method of Casent O A 10.0 5.0 5.5 grave1 packed poured <td colspanete<="" td=""><td></td></td>	<td></td>	
Levation of land surface or top of casing elevation well is 3558.40ft. Total depth of well 40.0 completed well is shallow artesian. Monitor WelDepth to water upon completion of well 40.0 Section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet Thickness Description of Water-Bearing Formation Estimated Yi (gallons per mi 30.0 Very pale orange silty sand Image: Section 3. RECORD OF CASING Depth in Feet Depth in Feet Section 3. RECORD OF CASING Diameter Pounds inches) per foot Depth in Feet Length Type of Shoe From 2.0 4 0.0 40.0 10.0 point 20.0 Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Method of Placement A dott of Mud OC Center Method of Placement A dott of Mud Deputed Dep	<u>.0</u> i	
completed well is shallow artesian. Monitor WelDepth to water upon completion of well_40.0_ Section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet Thickness in Feet Description of Water-Bearing Formation Estimated Yi (gallons per mi 30.0 Very pale orange silty sand Image: Section 3. RECORD OF CASING Diameter Pounds (nches) Threads per foot Depth in Feet Length Top Type of Shoe Perforat 2.0 4 0.0 40.0 10.0 point 20.0 Image: Section 4. RECORD OF MUDDING AND CEMENTING Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Method of Placement 40.0 18.0 5.0 5.5 gravel packed poured	f	
Section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet Thickness in Feet Description of Water-Bearing Formation Estimated Yi (gallons per mi 30.0 Very pale orange silty sand Very pale orange silty sand Image: Section 3. RECORD OF CASING Section 3. RECORD OF CASING Diameter (inches) per foot Threads per in. 2.0 4 0.0 40.0 10.0 point 20.0 Section 4. RECORD OF MUDDING AND CEMENTING Section 4. RECORD OF MUDDING AND CEMENTING Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement 40.0 18.0 5.0 5.5 gravel packed poured	f	
Depth in FeetThickness in FeetDescription of Water-Bearing FormationEstimated Yi (gallons per mi30.0Very pale orange silty sand30.0Very pale orange silty sand30.0Section 3. RECORD OF CASINGSection 3. RECORD OF CASINGDiameter (inches)Pounds per foot2.040.040.010.09Section 4. RECORD OF MUDDING AND CEMENTINGSection 4. RECORD OF MUDDING AND CEMENTING1Diameter of Mud1O <td></td>		
30.0 Very pale orange silty sand 30.0 Very pale orange silty sand 1 1	eld nute)	
Section 3. RECORD OF CASING Diameter (inches) Pounds per foot Threads per in. Depth in Feet Top Length Bottom Type of Shoe Perforat 2.0 4 0.0 40.0 10.0 point 20.0 3 4 0.0 40.0 10.0 point 20.0 4 0.0 40.0 10.0 point 20.0 5 5 5 Gravel packed poured 40.0 18.0 5.0 1.0 bent. pellets poured		
Section 3. RECORD OF CASING Diameter (inches) Pounds per foot Threads per in. Depth in Feet Top Length (feet) Type of Shoe Perforat 2.0 4 0.0 40.0 10.0 point 20.0 4 0.0 40.0 10.0 point 20.0 5 5 Gravel perform 1 1 1 1 1 1 1 1 2.0 4 0.0 40.0 10.0 point 20.0 2.0 4 0.0 40.0 10.0 10.0 10.0 10.0 5 5 5 1 <td></td>		
Section 3. RECORD OF CASING Diameter (inches) Pounds per foot Threads per in. Depth in Feet Length (feet) Type of Shoe Perforat 2.0 4 0.0 40.0 10.0 point 20.0 20.0 2.0 4 0.0 40.0 10.0 point 20.0 20.0 2.0 4 0.0 40.0 10.0 point 20.0 4 2.0 4 0.0 5.8 Cubic Feet 10 10 10 2.0 18.0 5.0 5.5 gravel packed poured 18.0 16.0 5.0 1.0 bent. pellets poured		
Section 3. RECORD OF CASINGDiameter (inches)Pounds per footThreads per in.Depth in Feet TopLength (feet)Type of ShoePerforat2.040.040.010.0point20.042.040.040.010.0point20.042.040.040.010.0point20.042.040.040.010.0point20.042.040.040.010.0point20.042.040.040.010.0point20.042.040.040.010.0point20.042.040.05.01.010.0point20.040.05.05.5gravel packedpoured40.018.05.01.0bent. pelletspoured		
Diameter (inches)Pounds per footThreads per in.Depth in Feet TopLength (feet)Type of ShoePerforat2.040.040.010.0point20.02.040.040.010.0point20.02.040.040.010.0point20.02.040.040.010.0point20.02.040.040.010.0point20.02.040.040.010.0point20.02.040.040.010.0point20.02.040.040.010.0point20.02.055Cubic Feet of MudMethod of Placement40.018.05.05.5gravel packed poured18.016.05.01.0bent. pellets poured		
(inclus)per lootper in.TopBottom(teet)In.From2.040.040.010.0point20.02.040.040.010.0point20.0Section 4. RECORD OF MUDDING AND CEMENTINGSection 4. RECORD OF MUDDING AND CEMENTINGDepth in FeetHoleFromToDiameterof MudOf CementMethod of Placement40.018.05.05.5gravel packedpoured18.016.05.01.0bent. pelletspoured	ions	
Z.0 4 0.0 40.0 10.0 point 20.0 Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement 40.0 18.0 5.0 5.5 gravel packed poured 18.0 16.0 5.0 1.0 bent. pellets poured	<u> </u>	
Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement From To Diameter of Mud of Cement Method of Placement 40.0 18.0 5.0 5.5 gravel packed poured 18.0 16.0 5.0 1.0 bent. pellets poured	40.0	
Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement From To Diameter of Mud of Cement Method of Placement 40.0 18.0 5.0 5.5 gravel packed poured 18.0 16.0 5.0 1.0 bent. pellets poured		
Depth in FeetHole DiameterSacks of MudCubic Feet of CementMethod of Placement40.018.05.05.5gravel packedpoured18.016.05.01.0bent. pelletspoured		
40.0 18.0 5.0 5.5 gravel packed poured 18.0 16.0 5.0 1.0 bent. pellets poured		
18.0 16.0 5.0 1.0 bent. pellets poured	·	
16.0 0.0 5.0 6.5 cement poured		
Section 5. PLUGGING RECORD		

State Engineer Representative

Date Received

FOR USE OF STATE ENGINEER ONLY

Use

Quad _____ FWL ____ FSL___

,

_____ Location No. _

4

		w.c.ant	Section 6. LOG OF HOLE
Depth i	n Feet	Thickness in Feet	Color and Type of Material Encountered
From	То	In reet	
0.0	20.0	20.0	Very pale orange silty sand w/caliche
20.0	25.0	5.0	Mod. grange pink silty sand
25.0	40.0	15.0	Very pale orange silty sand
			[
			· ·
•••••••			
<u> </u>			
			· · · · · · · · · · · · · · · · · · ·
·		· · · ·	
		1	
		·	

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need by completed

STATE ENGINEER OFFICE WELL RECORD

Section 1. GENERAL INFORMATION

(A) Owner of	well <u>Amer</u>	ada Hess	Corpor	ation			Owner'	's Well	No. <u>MW-</u>	-3
Street or I	Post Office Add	iress P.O.	<u>Box 84</u>	0						· · · · · · · · · · · · · · · · · · ·
City and S	itate <u>Semi</u>	nole, T	<u>x 79360</u>	l		<u> </u>				
Well was drilled	under Permit N	1o				and is located	GPS-N-32-3 in the: W-103-	5-27 18-2	7-8" 28-3	
a	· ¼ ¼	¼	¼ of Sec	tion <u>1</u>	2	_ Township _I	<u>-20-S</u> Rang	ge <u>R – 3</u>	6-E	N.M.P.M.
b. Tract N	lo	_ of Map No.	·	of	f the .					
c. Lot No Subdiv	ision, recorded	of Block No in		of	f the_ Co	ounty.		<u> </u>		
d. X= the		feet, Y=		fee	t, N.M	1. Coordinate	System			Zone in Grant.
(B) Drilling Co	ontractor <u> </u>	Nhite Dr	illing C	Compan	<u>y</u>	·	License No	WD-	-1456	
AddressP	.0. Box 9	906 -	Clyde,	ТХ	795	10				
Drilling Began _	3/14/01	L Com	pleted <u>3/1</u>	4/01		. Type tools	·	Siz	e of hole	<u>5.0</u> in.
Elevation of lan	d surface or t	op of ca	sing ele	evatia	Well	is 3558.2	0'ft. Total depth	of well	40.	<u>0</u> ft.
Completed well	is 🗆 sh	allow 🗖 a	artesianMon i	ltor W	e11	Depth to wate	r upon completion	of wel	40.	0 ft.
		Sec	tion 2. PRIN	CIPAL WA	ATER	BEARING S	TRATA			
Depth i From	n Feet To	Thickness in Feet	³ E	Description	n of V	Vater-Bearing	Formation	(g	Estimated 1 allons per n	r ield ninute)
30.0			Ye11	owish	gri	ay silty	sanđ			
							· · · · · · · · · · · · · · · · · · ·			
			Section	n 3. RECC	ORD	OF CASING				
Diameter	Pounds	Threads	Depth	in Feet		Length	Type of Sho	e	Perfor	ations
(inches)	per loot	per in.	Тор	Bottor	m	(reet)			From	To
2.0	<u> </u>	4	0.0	40.	0	10'	point		20.0	40.0
			4 PEGG							l
Denth	in Feet	Sect	ion 4. KECOI		ועעט	ING AND CEN	ALEIN LIING		· · · ·	
From	То	Diameter	Sack of Mu	uđ	of	Cement	Metho	d of P	lacement	
					····•					

40.0	18.0	5.0	5.5	gravel packed	poured
18.0	16.0	5.0	1.0	bent. pellets	poured
16.0	0.0	5.0	6.5	cement	poured

Section 5. PLUGGING RECORD

Plugging Contractor				
Address		Depth	in Feet	Cubic Feet
Plugging Method	NO.	Тор	Bottom	of Cement
Date Well Plugged	1			
Plugging approved by:	2			
	3			1
State Engineer Representa	tive 4			

FOR USE OF STATE ENGINEER ONLY

Use

Date Received

File No ...

_____ Location No._

,

	Section 6. LOG OF HOLE					
Depth	in Feet	Thickness	Color and Type of Material Encountered			
From	То	in Feet	Color and type of material Dicountered			
	10.0	10.0	Very pale orange silty sand w/hydrocarbon discolorat			
10.0	20.0	10.0	Very pale orange silty sand			
20.0	30.0	10.0	Yellowish gray silty sand w/caliche			
30.0	40.0	10.0	Yellowish gray silty sand			
<u></u>						
<u> </u>						
<u></u>						
<u></u>						
			-			
		1				

A.

I I

i

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is defined experience when this formation is a state of the section of the se

STATE ENGINEER OFFICE

WELL RECORD

Section 1. GENERAL INFORMATION

(A) Owner of well Ame	rada Hess (Corporation	Owner	's Well No. MW-	-4
Street or Post Office Ad	dress P.O.	Box 840			·
City and State <u>Sem</u> . Well was drilled under Permit	No	19300	GPS-N-32 and is located in the: $W-10$	-35-27-8" 3-18-28-3	
a ¼ ¼	· ¼	4 of Section 12	Township <u>T-20-S</u> Ran	ge <u>R-36-E</u>	N.M.P.M.
b. Tract No	of Map No	of the			
c. Lot No Subdivision, recorded	of Block No 1 in	of the	county.	, <u> </u>	
d. X= the	_ feet, Y=	feet, N	M. Coordinate System		Zone in Grant.
(B) Drilling Contractor <u>W</u>	hite Drill	ing Company	License No.	WD-1456	
Address P.O. Box	906 - C1	yde, TX 7951	0		
Drilling Began3/14/0	1 Complete	ed <u>3/14/01</u>	Type tools	Size of hole_	<u>5.0</u> in.
Elevation of land surface or _	top of cas	sing elevatator	al is <u>3560.70'</u> ft. Total depth	of well 40.0	ft.
Completed well is s	hallow 🗖 artes	sianMonitor Wel	Depth to water upon completion	n of well <u>40.0</u>	ft.
	Sectior	2. PRINCIPAL WATE	R-BEARING STRATA		
Depth in Feet	Thickness		Wata Dania Familia	Estimated	Yield

Depth	in Feet	Thickness	Description of Water-Bearing Formation	Estimated Yield (gallons per minute)	
From	To	in Feet			
29.0			very pale orange silty sand		
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	1				
		1		1	

Section 3. RECORD OF CASING

Diameter	Pounds per foot	Threads	Depth in Feet		Length		Perforations	
(inches)		per in.	Тор	Bottom	(feet)	Type of Shoe	From	То
2.0		4	0.0	40.0	10'	point	20.0	40.0
····								
								1

Section 4. RECORD OF MUDDING AND CEMENTING

Depth in Feet		Hole Sacks		Cubic Feet	Mathed of Placement		
From	То	Diameter	of Mud	of Cement	Method of Placement		
40.0	18.0	5.0	5.5	gravel pac	ked	poured	
18.0	16.0	5.0	1.0	bent. pell	ets	poured	
16.0	0.0	5.0	6.5	cement		poured	

Section 5. PLUGGING RECORD

Plugging Contractor					
Address			Depth	in Feet	Cubic Feet
Plugging Method		No.	Тор	Bottom	of Cement
Date Well Plugged	·····	- 1			
Plugging approved by:		2			
		3]
	State Engineer Representative	4			

FOR USE OF STATE ENGINEER ONLY

__ Use ____

Date Received

___ FWL ____

_____ FSL___

_____ Location No.____'

Depth in Feet Thickess Color and Type of Material Encountered 0.0 15.0 15.0 Very pale orange silty sand w/caliche 15.0 20.0 5.0 Pale yellowish orange silty sand 20.0 25.0 5.0 Light brown gravelly sand w/caliche 25.0 40.0 15.0 Very pale orange silty sand 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	Section 6. LOG OF HOLE					
From To in Feet Contain type of manna findements 0.0 15.0 15.0 Very pale orange silty sand w/caliche 15.0 20.0 5.0 Pale yellowish orange silty sand 20.0 25.0 5.0 Light brown gravelly sand w/limestone 25.0 40.0 15.0 Very pale orange silty sand 25.0 40.0 15.0 Very pale orange silty sand 25.0 40.0 15.0 Very pale orange silty sand	Depth i	n Feet	Thickness	Color and Type of Material Encountered		
0.0 15.0 15.0 Very pale orange silty sand w/caliche 15.0 20.0 5.0 Pale yellowish orange silty sand 20.0 25.0 5.0 Light brown gravelly sand w/limestone 25.0 40.0 15.0 Very pale orange silty sand	From	To	in Feet	Color and Type of Material Encountered		
15.0 20.0 5.0 Pale yellowish orange silty sand 20.0 25.0 5.0 Light brown gravelly sand w/limestone 25.0 40.0 15.0 Very pale orange silty sand 25.0 20.0 20.0 20.0 25.0 40.0 15.0 Very pale orange silty sand 25.0 20.0 20.0 20.0 25.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 <t< td=""><td>0.0</td><td>15.0</td><td>15.0</td><td>Very pale orange silty sand w/caliche</td></t<>	0.0	15.0	15.0	Very pale orange silty sand w/caliche		
20.0 25.0 5.0 Light brown gravelly sand v/limestone 25.0 40.0 15.0 Very pale orange silty sand	15.0	20.0	5.0	Pale yellowish orange silty sand		
25.0 40.0 15.0 Very pale orange silty sand	20.0	25.0	5.0	Light brown gravelly sand w/limestone		
	25.0	40.0	15.0	Very pale orange silty sand		
	<u></u>					
		· · · · · · · · · · · · · · · · · · ·				
		<u></u>				
				· · · · · · · · · · · · · · · · · · ·		
			1			

Į

L

Ì

ł

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a/true and correct record of the above described hole.

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled renaired or despended. When this form is used as a plusaing record, apply Section 14 hereits and accurately as possible when any well is

Driller
1949 Aerial Photograph Courtesy of: Earth Data Analysis Center University of New Mexico

Byrd #4

Tank Battery

MW-1

MW-1

View to the northeast across large spill area

Abandoned Water Well #2

View to the southeast across south pit

View to the northwest from south pit area

Chemical drums on Byrd property

Byrd water well shed

Inside Byrd water well shed

View west at Byrd water station. Note pit edge in foreground

MILLENNIUM Laboratories, Inc.

1544 SAWDUST ROAD * SUITE 402 * THE WOODLANDS, TEXAS 77380 * 281-362-8490

CLIENT:	Mark Ehrlich
	Meridian Alliance Group
	306 West Wall Suite 600
	Midland, TX 79701

Report No.:2001030122Report Date:03/30/2001

Phone: 915-682-5557

2001030122-2

2001030122-3

2001030122-4

2001030122-5

2001030122-6

2001030122-7

2001030122-8

Project Name: Amerada Hess Project Number: 07C005537-14 Received: 03/20/2001 Fax: 915-682-5593 Sampled by: Joe Mireles

Received: 03/20/2001 <u>Lab Number</u> 2001030122-1

Sample Identification MW-1 MW-2 MW-3 WW MW-2 MW-2 MW-3 WW

Our letters and reports are for the exclusive use of the client to whom they are addressed and shall not be reproduced except in full with out the approval of the testing laboratory. The use of our name must receive our prior written approval. Our letters and reports apply only to/the samples tested and are not necessarily indicative of the qualities of apparently identical or similar samples.

Technical - QA/QC review by : Matt Steere/Theresa Sorrells MILLENNIUM LABORATORIES, Inc.

Amanda Bourgeois/Daniel Duplechien Project Manager

April 6, 2001

Meridian Alliance Group Attn: Mr. Mark Ehrlich 306 West Wall, Suite 600 Midland, TX 79701

Millennium Labs Order Number: 2001030122 Project Name: Amerada Hess Project Number: 07C005537-14

Dear Mr. Ehrlich:

Enclosed you find the results of the samples submitted to Millennium Laboratories on 03/20/01 from the site referenced above.

Your samples for Pesticide and Herbicide analysis were sub-concontacted to PDP Analytical Services. The results and QC are enclosed.

As per your request and your revised chain, only BTEX is to be run on these soil samples.

Your sample "MW-1" (Millennium ID: 2001030122-1) was randomly chosen for use in Millennium's Quality Control Program for Metals by method 6020. The Matrix Spike recovery was outside the quality control limits, due to the high concentration of the original sample. A Laboratory Control Sample (LCS) was analyzed as part of the analytical batch and all recoveries were within acceptable limits.

This report retains its validity and integrity only when reported in full and accompanied by this letter. Any other use of this report must be granted, in writing, by Millennium Laboratories. All samples pertaining to this Order Number will be disposed of 60 days after the date of receipt, unless otherwise arranged in writing.

Please do not hesitate to contact us if you have any questions or comments concerning this report. Please reference the above Work Order Number.

Sincerely,

Danie)Duplechien Project Manager

Client: Meridian Alliance Group

Sample No.: 1	1 Date Collected: 03/19/2001 Time Collected: 14:04:00		Matrix: Groundwater			
Description: MW-1	Projec	t Name: A	merada Hess			
Test	Method	Results	Units	Detection Limit	Date Analyzed	Analyst
MtBE	SW-846 5030B/8021B	<0.010	mg/L	0.010	03/21/2001	MEP
Benzene	SW-846 5030B/8021B	< 0.002	mg/L	0.002	03/21/2001	MEP
Toluene	SW-846 5030B/8021B	<0.005	mg/L	0.005	03/21/2001	MEP
Ethylbenzene	SW-846 5030B/8021B	<0.005	mg/L	0.005	03/21/2001	MEP
Xylenes, total	SW-846 5030B/8021B	<0.005	mg/L	0.005	03/21/2001	MEP
Bromofluorobenzene	8021 Surrogate	98.9	% Rec.	0.000	03/21/2001	MEP
ГРН (1005) - C6 to C12	TX 1005	<5.00	mg/L	5.000	03/23/2001	KRW
TPH (1005) - >C12 to C28	TX 1005	<5.00	mg/L	5.000	03/23/2001	KRW
TPH (1005) - C6 to C28	TX 1005	<5.00	mg/L	5.000	03/23/2001	KRW
Fotal Dissolved Solids	EPA 160.1	88638	mg/L	10.000	03/21/2001	TW
Sulfate	EPA 300.0	1350	mg/L	1.000	03/22/2001	TW
Chloride	EPA 300.0	16971	mg/L	0.100	03/22/2001	TW
Bicarbonate/Carbonate	EPA 310.1	163/0.36	mg/L	0.000	03/26/2001	TW
Calcium	SW-846 3010A/6020	1,659	mg/L	0.100	03/26/2001	KF
Magnesium	SW-846 3010A/6020	482	mg/L	0.100	03/26/2001	KF
Potassium	SW-846 3010A/6020	45.2	mg/L	0.100	03/26/2001	KF
Sodium	SW-846 3010A/6020	9,643	mg/L	0.100	03/26/2001	KF
Sample No.: 2	Date Collected: 03/19/2	2001	Time Collecte	ed: 13:33:00	Matrix: Groun	ndwater
Description: MW-4	Projec	t Name: Ar	nerada Hess			
Test	Method	Results	Units	Detection Limit	Date Analyzed	Analyst
MtBE	SW-846 5030B/8021B	<0.010	mg/L	0.010	03/21/2001	MEP
Benzene	SW-846 5030B/8021B	0.018	mg/L	0.002	03/21/2001	MEP
Foluene	SW-846 5030B/8021B	<0.005	mg/L	0.005	03/21/2001	MEP
Ethylbenzene	SW-846 5030B/8021B	<0.005	mg/L	0.005	03/21/2001	MEP
Xylenes, total	SW-846 5030B/8021B	<0.005	mg/L	0.005	03/21/2001	MEP
Bromofluorobenzene	8021 Surrogate	99.8	% Rec.	0.000	03/21/2001	MEP
ГРН (1005) - C6 to C12	TX 1005	<5.00	mg/L	5.000	03/23/2001	KRW
ГРН (1005) - >C12 to C28	TX 1005	<5.00	mg/L	5.000	03/23/2001	KRW
TPH (1005) - C6 to C28	TX 1005	<5.00	mg/L	5.000	03/23/2001	KRW
Fotal Dissolved Solids	EPA 160.1	23414	mg/L	10.000	03/21/2001	TW
Sulfate	EPA 300.0	1321	mg/L	1.000	03/22/2001	TW
Chloride	EPA 300.0	15209	mg/L	0.100	03/22/2001	TW
Bicarbonate/Carbonate	EPA 310.1	166/0.48	mg/L	0.000	03/26/2001	TW
Calcium	SW-846 3010A/6020	1,443	mg/L	0.100	03/26/2001	KF
Magnesium	SW-846 3010A/6020	434	mg/L	0.100	03/26/2001	KF
Potassium	SW-846 3010A/6020	34.0	mg/L	. 0.100	03/26/2001	KF
Sodium	SW-846 3010A/6020	8,394	mg/L	0.100	03/26/2001	KF

Client: Meridian Alliance Group

	Date Collected: 03/19/2	2001	Time Collecte	ed: 15:01:00	Matrix: Groun	ndwater
Description: MW-2	Projec	t Name: Ar	nerada Hess			
Test	Method	Results	Units	Detection Limit	Date Analyzed	Analyst
MtBE	SW-846 5030B/8021B	<0.010	mg/L	0.010	03/21/2001	MEP
Benzene	SW-846 5030B/8021B	0.097	mg/L	0.002	03/21/2001	MEP
Toluene	SW-846 5030B/8021B	<0.005	mg/L	0.005	03/21/2001	MEP
Ethylbenzene	SW-846 5030B/8021B	<0.005	mg/L	0.005	03/21/2001	MEP
Xylenes, total	SW-846 5030B/8021B	<0.005	mg/L	0.005	03/21/2001	MEP
Bromofluorobenzene	8021 Surrogate	102	% Rec.	0.000	03/21/2001	MEP
Total Dissolved Solids	EPA 160.1	25608	mg/L	10.000	03/21/2001	TW
Sulfate	EPA 300.0	1410	mg/L	1.000	03/22/2001	TW
Chloride	EPA 300.0	19108	mg/L	0.100	03/22/2001	TW
Bicarbonate/Carbonate	EPA 310.1	1.88/8.44	mg/L	0.000	03/26/2001	TW
Calcium	SW-846 3010A/6020	2,425	mg/L	0.100	03/26/2001	KF
Magnesium	SW-846 3010A/6020	630	mg/L	0.100	03/26/2001	KF
Potassium	SW-846 3010A/6020	74.7	mg/L	0.100	03/26/2001	KF
Sodium	SW-846 3010A/6020	8,859	mg/L	0.100	03/26/2001	KF
Sample No.: 4	Date Collected: 03/19/2	2001	Time Collecte	ed: 15:30:00	Matrix: Grour	ndwater
Description: MW-3	Projec	t Name: Ar	nerada Hess			
Test	Method	Results	Units	Detection Limit	Date Analyzed	Analyst
MtBE	SW-846 5030B/8021B	<0.010	mg/L	0.010	03/21/2001	MEP
Benzene	SW-846 5030B/8021B	0.054	mg/L	0.002	03/21/2001	MEP
Toluene	SW-846 5030B/8021B	<0.005	mg/L	0.005	03/21/2001	MEP
Foluene Ethylbenzene	SW-846 5030B/8021B SW-846 5030B/8021B	<0.005 <0.005	mg/L mg/L	0.005 0.005	03/21/2001 03/21/2001	MEP MEP
Toluene Ethylbenzene Xylenes, total	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B	<0.005 <0.005 <0.005	mg/L mg/L mg/L	0.005 0.005 0.005	03/21/2001 03/21/2001 03/21/2001	MEP MEP MEP
Toluene Ethylbenzene Xylenes, total Bromofluorobenzene	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate	<0.005 <0.005 <0.005 87.6	mg/L mg/L mg/L % Rec.	0.005 0.005 0.005 0.000	03/21/2001 03/21/2001 03/21/2001 03/21/2001	MEP MEP MEP MEP
Foluene Ethylbenzene Xylenes, total Bromofluorobenzene Fotal Dissolved Solids	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate EPA 160.1	<0.005 <0.005 <0.005 87.6 23898	mg/L mg/L mg/L % Rec. mg/L	0.005 0.005 0.005 0.000 10.000	03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/21/2001	MEP MEP MEP TW
Toluene Ethylbenzene Xylenes, total Bromofluorobenzene Total Dissolved Solids Sulfate	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate EPA 160.1 EPA 300.0	<0.005 <0.005 <0.005 87.6 23898 1189	mg/L mg/L mg/L % Rec. mg/L mg/L	0.005 0.005 0.005 0.000 10.000 1.000	03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/22/2001	MEP MEP MEP TW TW
Toluene Ethylbenzene Xylenes, total Bromofluorobenzene Total Dissolved Solids Sulfate Chloride	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate EPA 160.1 EPA 300.0 EPA 300.0	<0.005 <0.005 <0.005 87.6 23898 1189 14623	mg/L mg/L mg/L % Rec. mg/L mg/L mg/L	0.005 0.005 0.005 0.000 10.000 1.000 0.100	03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/22/2001 03/22/2001	MEP MEP MEP TW TW TW
Foluene Ethylbenzene Xylenes, total Bromofluorobenzene Fotal Dissolved Solids Sulfate Chloride Bicarbonate/Carbonate	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate EPA 160.1 EPA 300.0 EPA 300.0 EPA 310.1	<0.005 <0.005 <0.005 87.6 23898 1189 14623 163/0.15	mg/L mg/L mg/L % Rec. mg/L mg/L mg/L mg/L	0.005 0.005 0.000 10.000 1.000 0.100 0.000	03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/22/2001 03/22/2001 03/26/2001	MEP MEP MEP TW TW TW TW
Toluene Ethylbenzene Xylenes, total Bromofluorobenzene Total Dissolved Solids Sulfate Chloride Bicarbonate/Carbonate Calcium	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate EPA 160.1 EPA 300.0 EPA 300.0 EPA 310.1 SW-846 3010A/6020	<0.005 <0.005 <7.6 23898 1189 14623 163/0.15 1,755	mg/L mg/L % Rec. mg/L mg/L mg/L mg/L mg/L	0.005 0.005 0.000 10.000 1.000 0.100 0.100 0.100	03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/22/2001 03/22/2001 03/26/2001 03/26/2001	MEP MEP MEP TW TW TW TW KF
Toluene Ethylbenzene Xylenes, total Bromofluorobenzene Total Dissolved Solids Sulfate Chloride Bicarbonate/Carbonate Calcium Magnesium	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate EPA 160.1 EPA 300.0 EPA 300.0 EPA 310.1 SW-846 3010A/6020 SW-846 3010A/6020	<0.005 <0.005 87.6 23898 1189 14623 163/0.15 1,755 581	mg/L mg/L % Rec. mg/L mg/L mg/L mg/L mg/L mg/L	0.005 0.005 0.000 10.000 1.000 0.100 0.100 0.100 0.100	03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/22/2001 03/22/2001 03/26/2001 03/26/2001	MEP MEP MEP TW TW TW TW KF KF
Foluene Ethylbenzene Xylenes, total Bromofluorobenzene Total Dissolved Solids Sulfate Chloride Bicarbonate/Carbonate Calcium Magnesium Potassium	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate EPA 160.1 EPA 300.0 EPA 300.0 EPA 310.1 SW-846 3010A/6020 SW-846 3010A/6020 SW-846 3010A/6020	<0.005 <0.005 87.6 23898 1189 14623 163/0.15 1,755 581 65.0	mg/L mg/L mg/L % Rec. mg/L mg/L mg/L mg/L mg/L mg/L	0.005 0.005 0.000 10.000 1.000 0.100 0.100 0.100 0.100 0.100	03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/22/2001 03/22/2001 03/26/2001 03/26/2001 03/26/2001 03/26/2001	MEP MEP MEP TW TW TW TW KF KF
Toluene Ethylbenzene Xylenes, total Bromofluorobenzene Total Dissolved Solids Sulfate Chloride Bicarbonate/Carbonate Calcium Magnesium Potassium Sodium	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate EPA 160.1 EPA 300.0 EPA 300.0 EPA 310.1 SW-846 3010A/6020 SW-846 3010A/6020 SW-846 3010A/6020	<0.005 <0.005 87.6 23898 1189 14623 163/0.15 1,755 581 65.0 7,571	mg/L mg/L mg/L % Rec. mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.005 0.005 0.000 10.000 1.000 0.100 0.100 0.100 0.100 0.100 0.100	03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/22/2001 03/22/2001 03/26/2001 03/26/2001 03/26/2001 03/26/2001 03/26/2001	MEP MEP MEP TW TW TW TW KF KF KF
Toluene Ethylbenzene Xylenes, total Bromofluorobenzene Total Dissolved Solids Sulfate Chloride Bicarbonate/Carbonate Calcium Magnesium Potassium Sodium	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate EPA 160.1 EPA 300.0 EPA 300.0 EPA 310.1 SW-846 3010A/6020 SW-846 3010A/6020 SW-846 3010A/6020 Date Collected: 03/19/2	<0.005 <0.005 87.6 23898 1189 14623 163/0.15 1,755 581 65.0 7,571 2001	mg/L mg/L mg/L % Rec. mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.005 0.005 0.000 10.000 1.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100	03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/22/2001 03/22/2001 03/26/2001 03/26/2001 03/26/2001 03/26/2001 03/26/2001 Matrix: Groun	MEP MEP MEP TW TW TW TW KF KF KF KF
Toluene Ethylbenzene Xylenes, total Bromofluorobenzene Total Dissolved Solids Sulfate Chloride Bicarbonate/Carbonate Calcium Magnesium Potassium Sodium Sample No.: 5 Description: WW	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate EPA 160.1 EPA 300.0 EPA 300.0 EPA 310.1 SW-846 3010A/6020 SW-846 3010A/6020 SW-846 3010A/6020 Date Collected: 03/19/2 Projec	<0.005 <0.005 87.6 23898 1189 14623 163/0.15 1,755 581 65.0 7,571 2001 t Name: Art	mg/L mg/L mg/L % Rec. mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.005 0.005 0.000 10.000 1.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/22/2001 03/22/2001 03/26/2001 03/26/2001 03/26/2001 03/26/2001 03/26/2001 Matrix: Groun	MEP MEP MEP TW TW TW TW KF KF KF KF
Toluene Ethylbenzene Xylenes, total Bromofluorobenzene Total Dissolved Solids Sulfate Chloride Bicarbonate/Carbonate Calcium Magnesium Potassium Sodium Sample No.: 5 Description: WW Test	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate EPA 160.1 EPA 300.0 EPA 300.0 EPA 310.1 SW-846 3010A/6020 SW-846 3010A/6020 SW-846 3010A/6020 Date Collected: 03/19/2 Projec Method	<0.005 <0.005 87.6 23898 1189 14623 163/0.15 1,755 581 65.0 7,571 2001 t Name: An Results	mg/L mg/L mg/L % Rec. mg/L mg/L mg/L mg/L mg/L Time Collecte nerada Hess	0.005 0.005 0.000 10.000 1.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/22/2001 03/22/2001 03/26/2001 03/26/2001 03/26/2001 03/26/2001 03/26/2001 Matrix: Groun	MEP MEP MEP TW TW TW TW KF KF KF KF adwater
Toluene Ethylbenzene Xylenes, total Bromofluorobenzene Total Dissolved Solids Sulfate Chloride Bicarbonate/Carbonate Calcium Magnesium Potassium Sodium Sample No.: 5 Description: WW Test MtBE	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate EPA 160.1 EPA 300.0 EPA 300.0 EPA 310.1 SW-846 3010A/6020 SW-846 3010A/6020 SW-846 3010A/6020 Date Collected: 03/19/2 Projec Method SW-846 5030B/8021B	<0.005 <0.005 87.6 23898 1189 14623 163/0.15 1,755 581 65.0 7,571 2001 t Name: An Results <0.010	mg/L mg/L mg/L % Rec. mg/L mg/L mg/L mg/L mg/L Time Collecte nerada Hess Units mg/L	0.005 0.005 0.000 10.000 1.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/22/2001 03/22/2001 03/26/2001 03/26/2001 03/26/2001 03/26/2001 03/26/2001 Matrix: Groun	MEP MEP MEP TW TW TW TW KF KF KF KF adwater MEP
Toluene Ethylbenzene Xylenes, total Bromofluorobenzene Total Dissolved Solids Sulfate Chloride Bicarbonate/Carbonate Calcium Magnesium Potassium Sodium Sample No.: 5 Description: WW Test MtBE Benzene	SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B 8021 Surrogate EPA 160.1 EPA 300.0 EPA 300.0 EPA 310.1 SW-846 3010A/6020 SW-846 3010A/6020 SW-846 3010A/6020 Date Collected: 03/19/2 Projec Method SW-846 5030B/8021B SW-846 5030B/8021B	<0.005 <0.005 87.6 23898 1189 14623 163/0.15 1,755 581 65.0 7,571 2001 t Name: An Results <0.010 <0.002	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.005 0.005 0.000 10.000 1.000 0.100 0.000 0.100 0.000 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100 0.000 0.100 0.001 0.001 0.001 0.001 0.002	03/21/2001 03/21/2001 03/21/2001 03/21/2001 03/22/2001 03/22/2001 03/26/2001 03/26/2001 03/26/2001 03/26/2001 03/26/2001 Matrix: Groun Date Analyzed 03/21/2001 03/21/2001	MEP MEP MEP TW TW TW TW KF KF KF KF adwater Analyst MEP MEP

Client: Meridian Alliance Group

Sample No.: 5	Date Collected: 03/19	0/2001	Time Collected: 14:32:00		Matrix: Groundwater	
Description: WW	Proje	ect Name: A	merada Hess			
Test	Method	Results	Units	Detection Limit	Date Analyzed	Analyst
Ethylbenzene	SW-846 5030B/8021	B <0.005	mg/L	0.005	03/21/2001	MEP
Xylenes, total	SW-846 5030B/8021	B <0.005	mg/L	0.005	03/21/2001	MEP
Bromofluorobenzene	8021 Surrogate	97.9	mg/L	0.000	03/21/2001	MEP
Total Dissolved Solids	EPA 160.1	4071	mg/L	10.000	03/21/2001	TW
Sulfate	EPA 300.0	86.1	mg/L	1.000	03/22/2001	TW
Chloride	EPA 300.0	2081	mg/L	0.100	03/22/2001	TW
Bicarbonate/Carbonate	EPA 310.1	40.7/139	mg/L	0.000	03/26/2001	TW
Calcium	SW-846 3010A/6020	530	mg/L	0.100	03/26/2001	KF
Magnesium	SW-846 3010A/6020) 129	mg/L	0.100	03/26/2001	KF
Potassium	SW-846 3010A/6020) 42.5	mg/L	0.100	03/26/2001	KF
Sodium	SW-846 3010A/6020	820	mg/L	0.100	03/26/2001	KF
Sample No.: 6	Date Collected: 03/19	/2001	Time Collect	ed: 15:01:00	Matrix: Groun	ndwater
Description: MW-2	Proje	ect Name: A	merada Hess			
Test	Method	Results	Units	Detection Limit	Date Analyzed	Analyst
2,4,5-T	SW-846 8151	<0.12	UG/L	0.120	03/27/2000	PDP
2,4,5-Tp	SW-846 8151	<0.12	UG/L	0.120	03/27/2000	PDP
2,4-D	SW-846 8151	<1.2	UG/L	1.200	03/27/2000	PDP
2,4-Db	SW-846 8151	<1.2	UG/L	1.200	03/27/2000	PDP
Dicamba	SW-846 8151	<0.12	UG/L	0.120	03/27/2000	PDP
Dichloroprop	SW-846 8151	<1.2	UG/L	1.200	03/27/2000	PDP
MCPA	SW-846 8151	<0.12	MG/L	0.120	03/27/2000	PDP
MCPP	SW-846 8151	<0.12	MG/L	0.120	03/27/2000	PDP
alpha-BHC	SW-846 8081A	<0.05	UG/L	0.050	03/28/2000	PDP
beta-BHC	SW-846 8081A	<0.05	UG/L	0.050	03/28/2000	PDP
gamma-BHC	SW-846 8081A	<0.05	UG/L	0.050	03/28/2000	PDP
delta-BHC	SW-846 8081A	<0.05	UG/L	0.050	03/28/2000	PDP
Heptachlor	SW-846 8081A	<0.05	UG/L	0.050	03/28/2000	PDP
Aldrin	SW-846 8081A	<0.05	UG/L	0.050	03/28/2000	PDP
Heptachlor epoxide	SW-846 8081A	<0.05	UG/L	0.050	03/28/2000	PDP
Endosulfan I	SW-846 8081A	<0.05	UG/L	0.050	03/28/2000	PDP
4,4'-DDE	SW-846 8081A	<0.10	UG/L	0.100	03/28/2000	PDP
Dieldrin	SW-846 8081A	<0.10	UG/L	0.100	03/28/2000	PDP
Endrin	SW-846 8081A	<0.10	UG/L	0.100	03/28/2000	PDP
Endosulfan II	SW-846 8081A	<0.10	UG/L	0.100	03/28/2000	PDP
4,4'-DDD	SW-846 8081A	<0.10	UG/L	0.100	03/28/2000	PDP
Endrin aldehyde	SW-846 8081A	<0.10	UG/L	0.100	03/28/2000	PDP
Endosulfan sulfate	SW-846 8081A	<0.10	UG/L	0.100	03/28/2000	PDP
4,4'-DDT	SW-846 8081A	<0.10	UG/L	0.100	03/28/2000	PDP
Methoxychlor	SW-846 8081A	<0.50	UG/L	0.500	03/28/2000 *	PDP

Client: Meridian Alliance Group

Sample No.: 6	Date Collected: 03/19	9/2001	Time Collecte	ed: 15:01:00	Matrix: Groundwater	
Description: MW-2	Proj	ect Name: A	merada Hess			
Test	Method	Results	Units	Detection Limit	Date Analyzed	Analyst
Endrin ketone	SW-846 8081A	<0.10	UG/L	0.100	03/28/2000	PDP
alpha-Chlordane	SW-846 8081A	<0.05	UG/L	0.050	03/28/2000	PDP
gamma-Chlordane	SW-846 8081A	<0.05	UG/L	0.050	03/28/2000	PDP
Toxaphene	SW-846 8081A	<1.0	UG/L	1.000	03/28/2000	PDP
Sample No.: 7	Date Collected: 03/19	9/2001	Time Collecte	ed: 15:30:00	Matrix: Grour	ndwater
Description: MW-3	Proj	ect Name: A	merada Hess			
Test	Method	Results	Units	Detection Limit	Date Analyzed	Analyst
2,4,5-T	SW-846 8151	<0.12	UG/L	0.120	03/27/2001	PDP
2,4,5-Tp	SW-846 8151	<0.12	UG/L	0.120	03/27/2000	PDP
2,4-D	SW-846 8151	0.221	UG/L	1.200	03/27/2000	PDP
2,4-Db	SW-846 8151	<1.2	UG/L	1.200	03/27/2000	PDP
Dicamba	SW-846 8151	<0.12	UG/L	0.120	03/27/2000	PDP
Dichloroprop	SW-846 8151	<1.2	UG/L	1.200	03/27/2000	PDP
MCPA	SW-846 8151	0.04	MG/L	0.120	03/27/2000	PDP
МСРР	SW-846 8151	<0.12	MG/L	0.120	03/27/2001	PDP
alpha-BHC	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
beta-BHC	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
gamma-BHC	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
delta-BHC	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
Heptachlor	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
Aldrin	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
Heptachlor epoxide	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
Endosulfan I	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
4,4'-DDE	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
Dieldrin	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
Endrin	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
Endosulfan II	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
4,4'-DDD	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
Endrin aldehyde	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
Endosulfan sulfate	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
4,4'-DDT	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
Methoxychlor	SW-846 8081A	<0.50	UG/L	0.500	03/28/2001	PDP
Endrin ketone	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
alpha-Chlordane	SW-846 8081A	<0.05	UG/L	0.500	03/28/2001	PDP
gamma-Chlordane	SW-846 8081A	<0.05	UG/L	0.500	03/28/2001	PDP
Toxaphene	SW-846 8081A	<1.0	UG/L	1.000	03/28/2001	PDP

Client: Meridian Alliance Group

Sample No.: 8	Date Collected: 03/1	9/2001	Time Collect	ed: 14:32:00	Matrix: Groundwater	
Description: WW	Proj	Project Name: Amerada Hess				
Test	Method	Results	Units	Detection Limit	Date Analyzed	Analyst
2,4,5-T	SW-846 8151	<0.12	UG/L	0.120	03/27/2001	PDP
2,4,5-Tp	SW-846 8151	<0.12	UG/L	0.120	03/27/2001	PDP
2,4-D	SW-846 8151	<1.2	UG/L	1.200	03/27/2001	PDP
2,4-Db	SW-846 8151	<1.2	UG/L	1.200	03/27/2001	PDP
Dicamba	SW-846 8151	< 0.12	UG/L	0.120	03/27/2001	PDP
Dichloroprop	SW-846 8151	<1.2	UG/L	1.200	03/27/2001	PDP
MCPA	SW-846 8151	<0.12	MG/L	0.120	03/27/2001	PDP
MCPP	SW-846 8151	<0.12	MG/L	0.120	03/27/2001	PDP
alpha-BHC	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
beta-BHC	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
gamma-BHC	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
delta-BHC	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
Heptachlor	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
Aldrin	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
Heptachlor epoxide	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
Endosulfan I	SW-846 8081A	< 0.05	UG/L	0.050	03/28/2001	PDP
4,4'-DDE	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
Dieldrin	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
Endrin	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
Endosulfan II	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
4,4'-DDD	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
Endrin aldehyde	SW-846 8081A	<0.10	. UG/L	0.100	03/28/2001	PDP
Endosulfan sulfate	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
4,4'-DDT	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
Methoxychlor	SW-846 8081A	<0.50	UG/L	0.500	03/28/2001	PDP
Endrin ketone	SW-846 8081A	<0.10	UG/L	0.100	03/28/2001	PDP
alpha-Chlordane	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
gamma-Chlordane	SW-846 8081A	<0.05	UG/L	0.050	03/28/2001	PDP
Toxaphene	SW-846 8081A	<1.0	UG/L	1.000	03/28/2001	PDP

QC Batch ID: 170125

QC SUMMARY REPORT

BTEX by EPA Method 8021B - Water

Laboratory Control Sample (LCS/LCSD) Method Blank Results

	Method	Spike	L	CS	L	CSD	LCS/D	QC	Acceptance Criteria
CONSTITUENT	Blank	Added	Result	Recovery	Result	Recovery	RPD	RPD	Spike % Recovery
· · · · · · · · · · · · · · · · · · ·	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(%)	(%)	(%)	(Low - High Limit)
MtBE	<0.010	0.100	0.100	99.6%	0.099	99.0%	1%	<u>+</u> 30	70 - 130
Benzene	<0.002	0.100	0.094	94.4%	0.098	97.6%	3%	<u>+</u> 30	70 - 130
Toluene	<0.005	0.100	0.093	93.3%	0.094	94.1%	1%	<u>+</u> 30	70 - 130
Ethylbenzene	<0.005	0.100	0.091	90.6%	0.092	92.0%	2%	<u>±</u> 30	70 - 130
Xylenes, total	<0.005	0.300	0.283	94.2%	0.285	95.1%	1%	<u>+</u> 30	70 - 130

Sample Matrix Spike (MS)

· · · · · · · · · · · · · · · · · · ·	Sample	Spike	٨	1S	M	ISD	MS/D	QC /	Acceptance Criteria
CONSTITUENT	Result	Added	Result	Recovery	Result	Recovery	RPD	RPD	Spike % Recovery
	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(%)	(%)	(%)	(Low - High Limit)
MtBE	<0.010	0.100	0.105	105.2%	0.106	106.0%	1%	<u>+</u> 30	70 - 130
Benzene	<0.002	0.100	0.090	89.5%	0.078	78.1%	14%	<u>+</u> 30	70 - 130
Toluene	<0.005	0.100	0.095	94.8%	0.082	82.3%	14%	± 30	70 - 130
Ethylbenzene	<0.005	0.100	0.094	93.6%	0.082	82.1%	13%	<u>+</u> 30	70 - 130
Xylenes, Total	<0.005	0.300	0.274	91.4%	0.245	81.7%	11%	<u>+</u> 30	70 - 130

Sequence Date(s):	3/21/01
Sample ID - MS/MSD:	2001030123-5
Data Qualifiers:	

Project(s) In Batch:	2001030124 (2)					
	2001030122 (1-5)					
	2001030123 (1-5)					
	2001030126 (1-4)					
	2001030127 (1-3)					

QC Batch ID: 0110022

QC SUMMARY REPORT

TPH by TX1005 Method

Water Q.C.

Laboratory Control Sample (LCS/LCSD) Method Blank Results

	Method	Spike	L	CS	L	CSD	LCS/D	QC .	Acceptance Criteria
CONSTITUENT	Blank	Added	Result	Recovery	Result	Recovery	RPD	RPD	Spike % Recovery
	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(%)	(%)	(%)	(Low - High Limit)
TPH - C ₆ to C ₁₂	<5.00	100	111.0	111.0%	116.0	116.0%	4%	<u>+</u> 30	70 - 130
TPH - >C ₁₂ to C ₂₈	<5.00	100	109.0	109.0%	116.0	116.0%	6%	<u>+</u> 30	70 - 130

Sequence Date(s):

3/23/01

Batch Extraction/Prep Date: 3/21/01

0/2 1/0

Data Qualifiers: NONE - associated with this batch of samples.

Project(s) In Batch:

2001030122 2001030123 2001030125 2001030126

QC SUMMARY REPORT

QC Batch ID: 32201

Anions by EPA Method 300.0

3/22/01

Laboratory Control Sample (LCS)

Method	Spike	L	CS	QC Acceptance Criteria
Blank (ppm)	Added (ppm)	Result (ppm)	Recovery (%)	Spike % Recovery (Low - High Limit)
<dl< td=""><td>50.00</td><td>45.648</td><td>91.0%</td><td>90 - 110</td></dl<>	50.00	45.648	91.0%	90 - 110
<dl< td=""><td>50.00</td><td>46.425</td><td>93.0%</td><td>90 - 110</td></dl<>	50.00	46.425	93.0%	90 - 110
	Method Blank (ppm) <dl <dl< td=""><td>MethodSpikeBlankAdded(ppm)(ppm)<dl< td="">50.00<dl< td="">50.00</dl<></dl<></td><td>Method Spike L Blank Added Result (ppm) (ppm) (ppm) <dl< td=""> 50.00 45.648 <dl< td=""> 50.00 46.425</dl<></dl<></td><td>Method Spike LCS Blank Added Result Recovery (ppm) (ppm) (ppm) (%) <dl< td=""> 50.00 45.648 91.0% <dl< td=""> 50.00 46.425 93.0%</dl<></dl<></td></dl<></dl 	MethodSpikeBlankAdded(ppm)(ppm) <dl< td="">50.00<dl< td="">50.00</dl<></dl<>	Method Spike L Blank Added Result (ppm) (ppm) (ppm) <dl< td=""> 50.00 45.648 <dl< td=""> 50.00 46.425</dl<></dl<>	Method Spike LCS Blank Added Result Recovery (ppm) (ppm) (ppm) (%) <dl< td=""> 50.00 45.648 91.0% <dl< td=""> 50.00 46.425 93.0%</dl<></dl<>

Sample Matrix Spikes (MS)

	Sample	Sample Dup	Spike	A	IS	QC Acceptance Criteria
CONSTITUENT	Result (ppm)	Result (ppm)	Added (ppm)	Result (ppm)	Recovery (%)	Spike % Recovery (Low - High Limit)
Chloride	2081	2161	10.00	2090.200	92.0%	80 -120
Sulfate	86.1	89.2	10.00	94.900	88.0%	80 -120
Sequence Date(s):		3/22	/01		Batch Extrac	tion/Prep Date:
Sample ID - MS/MSD:		2001030	0122-5			

Data Qualifiers:

NONE - associated with this batch of samples.

Project(s) In Batch:

QC SUMMARY REPORT

QC Batch ID: 32100

Total Dissolved Solids by EPA 160.1

Laboratory Control Sample (LCS)

	Method	Spike	L	CS	QC Acceptance Criteria
CONSTITUENT	Blank	Added	Result	Recovery	Spike % Recovery
	(ppm)	(ppm)	(ppm)	(%)	(Low - High Limit)
Total Dissolved Solids	<10.0	420.00	398.00	95.0%	80 - 120

Sample/Sample Duplicate

	Sample	Sample	Dup	QC Acceptance Criteria
CONSTITUENT	Result	Dup	Recovery	% Recovery
	(ppm)	(ppm)	(%)	(Low - High Limit)
Total Dissolved Solids	4071.00	3824.00	97.0%	75 - 125

 Sequence Date(s):
 3/21/01
 Batch Extraction/Prep Date:

 Sample ID - Sample/Dup
 2001030122-5

Data Qualifiers: NONE - associated with this batch of samples.

Project(s) In Batch: 2001030122

3/21/01

QC SUMMARY REPORT

QC Batch ID: 32601

Metals by EPA Method 6020

Laboratory Control Sample (LCS) Method Blank Results

	Method	Spike	L	.CS	QC Acceptance Criteria
CONSTITUENT	Blank (ppm)	Added (ppm)	Result (ppm)	Recovery (%)	Spike % Recovery (Low - High Limit)
Sodium	<dl< td=""><td>5.00</td><td>4.965</td><td>99.0%</td><td>75 - 125</td></dl<>	5.00	4.965	99.0%	75 - 125
Magnesium	<dl< td=""><td>5.00</td><td>5.146</td><td>103.0%</td><td>75 - 125</td></dl<>	5.00	5.146	103.0%	75 - 125
Potassium	<dl< td=""><td>5.00</td><td>4.881</td><td>98.0%</td><td>75 - 125</td></dl<>	5.00	4.881	98.0%	75 - 125
Calcium	<dl< td=""><td>5.00</td><td>4.976</td><td>99.0%</td><td>75 - 125</td></dl<>	5.00	4.976	99.0%	75 - 125

Sample Matrix Spikes (MS)

	Sample	Spike	1	N S	QC Acceptance Criteria
CONSTITUENT	Result (ppm)	Added (ppm)	Result (ppm)	Recovery (%)	Spike % Recovery (Low - High Limit)
Sodium	9,643	1.00	9,509	0.0%	75 - 125
Magnesium	482	1.00	476	0.0%	75 - 125
Potassium	45.2	1.00	53.7	849.0%	75 - 125
Calcium	1,659	1.00	1,506	0.0%	75 - 125

Sequence Date(s): 3/26/01

Batch Extraction/Prep Date:

3/23/01

Sample ID - MS/MSD: 2001030122-1

Data Qualifiers: "J" denotes analyte recovery above the MDL but below the reporting limit.

No contamination is associated with this value.

Project(s) In Batch: 2001030122

Sub-Contract Chain-or-Custody Record

Millennium La	boratories. Inc		Chain-of-Cu	stody Number	Sub	Contract Lab:
REPORT TO:	Billing Inforr	nation	000	 	Company:	2,2,2
Millennium Laboratories Inc. Attn: Data Control Dept.	Millennium Laboratorie Attn: Accounts Payab	es Inc. Ie	HO#:	53178	Address: City:	
1544 Sawdust Rd., Suite 402 The Woodlands TY 77380	1544 Sawdust Rd., Su The Moodlands TY 7	ite 402 7380	Date Sent:	5-7/21	State:	Zip:
		000	Turnaround Time:	10 Sex	Attn: Phone:	- (
Field Sample No /Identification	Date and Time	Sample Type	Sample Size	Analysis Reque	ested	Laboratory Remarks
2.2/25/26	7-5-1)))		1245 6	/H_	beda
(.	,					
<u>م</u> ر		>		5		
-						
-						
(signature)	Date: 3/3 Time: /3	z <i>i (bi</i> Receiv	ed by:			Date: S/ 24×64 Time: 21.445
Relinquished by: (signature)	Date: Time:	Receiv (signatu	ed by: ure)			Date: Time:
Relinquished by: (signature)	Date: Time:	Receiv (signatu	ed by Laboratory:			Date: Time:

ł

|

Ţ

ļ

PDP Analytical Services 1680 Lake Front Circle, Suite B, The Woodlands, TX 77380

Page 1 of 1

			LCS	/LCSD SU	MMARY F	REPORT					
			CHLORIN	ATED HE	RBICIDES	BY GC/	ECD				
CLIENT NAME	:						DA	re RECEIVE	D :		
PROJECT NAME	:						PR	INTED ON	: 4,	/6/2001	9:05
PROJECT NUMBER	:										
SAMPLE MATRIX	LIQUID						ME	THOD REFER	ENCE : SV	V846-815	1A
LAB CONTROL SAMP	LE						LAI	3 CONTROL	SAMPLE D	UPLICAT	Ξ
LCS SAMPLE ID	HERL103						LCS	SD SAMPLE	1D : HI	RL103D	
CLIENT SAMPLE ID	:						CL	IENT SAMPL	E ID :		
DATE ANALYZED	:03/27/01						DA	TE ANALYZE	D :03	3/27/01	
INSTRUMENT FILE	HEA08975.D						IN	STRUMENT F	ILE : H	EA08976	.D
			LCS	LCSD	LCS	LCSD	LCS	LCSD			
			TRUE	TRUE	FOUND	FOUND	RECOVERY	RECOVERY		RPD	QC LIMITS
PARAMETER		UNITS	VALUE	VALUE	VALUE	VALUE	(*)	(%)	RPD	LIMIT	REC.
2,4,5-T		UG/L	0.100	0.100	0.734	0.727	734 *	727 *	1.0	25	19 - 342
2,4,5-TP		UG/L	0.500	0.500	0.500	0.459	100	92	8.3	25	62 - 162
2,4-D		UG/L	5.00	5.00	4.58	4.46	92	89	3.3	25	41 - 168
2,4-DB		UG/L	5.00	5.00	3.81	3.76	76	75	1.3	25	56 - 148
Dalapon		UG/L	12.6	12.6	1.52	1.55	12	12	0.0	25	2 - 2E+
Dicamba		UG/L	0.500	0.500	0.409	0.388	82	78	5.0	25	26 - 154
Dichloroprop		UG/L	5.00	5.00	5.27	4.73	105	95	10.0	25	52 - 175
Dinoseb		UG/L	2.50	2.50	1.86	1.71	74	68	8.5	25	5 - 125
MCPA		MG/L	0.500	0.500	0.473	0.426	95	85	11.1	25	45 - 145
		210 /7	0.000	0.500	0.000						

* Indicate values outside of QC limits

i

RPD:0out of10outside limitsSpike Recovery:2out of20outside limits

PDP Analytical Services 1680 Lake Front Circle, Suite B, The Woodlands, TX 77380

Page 1 of 1

			LCS	/LCSD SU	IMMARY F	REPORT					
		OR	GANOCH	LORINE F	PESTICID	ES BY G	C/ECD				
CLIENT NAME	:						DA	TE RECEIVE	:D		
PROJECT NAME	:						PR	INTED ON	: 3/	28/2001	16:04
PROJECT NUMBER	:										
SAMPLE MATRIX	: LIQUID						ME	THOD REFER	ENCE : SI	1846-808	1A
LAB CONTROL SAM	PLE						LA	B CONTROL	SAMPLE (UPLICAT	E
LCS SAMPLE ID	: PESL599						LC	SD SAMPLE	ID : PE	SL599D	
CLIENT SAMPLE I	D :						CL	IENT SAMPL	E ID :		
DATE ANALYZED	: 03/28/01						DA	TE ANALYZE	D : 03	5/28/01	
INSTRUMENT FILE	: F11732.D						IN	STRUMENT P	ILE : F	11733.D	
			LCS	LCSD	LCS	LCSD	LCS	LCSD	. 1		
			TRUE	TRUE	FOUND	FOUN	RECOVER	RECOVERY		RPD	QC LIMIT
PARAMETER		UNIT	VALUE	VALUE	VALUE	VALUE	(%)	(%)	RPD	LIMIT	REC.
4,4`-DDT		UG/L	0.400	0.400	0.382	0.448	96	112	15.4	25	57 - 126
Aldrin		UG/L	0.400	0.400	0.316	0.359	79	90	13.0	25	42 - 144
Dieldrin		UG/L	0.400	0.400	0.371	0.407	93	102	9.2	25	49 - 125
Endrin		UG/L	0.400	0.400	0.352	0.401	88	100	12.8	25	59 - 127
gamma-BHC		UG/L	0.400	0.400	0.329	0.371	82	93	12.6	25	46 - 159
Heptachlor		UG/L	0.400	0.400	0.333	0.378	83	95	13.5	25	49 - 172

* Indicate values outside of QC limits

RPD:0out of6outside limitsSpike Recovery :0out of12outside limits

	Sage -		wher each chain	per project	ine sample with	st C ₁₀ -C ₂₈ ation	tal) - If TPH is non- BTEX (notal)		(PP		6	duib;	••• • • • • • • • • •	ners unbe imbe	ontain otal Nu 2 0 2		8		9	8	9				 ie(s) Rec'd At	Yes No		517 N
	ect Number		×		ppm Analyze (pm concentr	oling point based on TPH (To Invest aromatic createst o	No	Level III T				omments												Condition of Sam Lab	Custody Seal Intact	Sample(s) Rec'd Iced/Cool	Sample(s):
	Labs - Proj		AB USE ONL	3	C6-C28 total > 100	C6-C28 total >5.0 p	the cleanest same select sample with	Yes	rel: Level II	00 547	Str P	s/ca hellog	0 N P-	og voj	24° 2'8		/	1	1						Time:	Time:	Time:	ncig
	Aillennium I		5	う - 7 00	PAH-Soft: If, (PAH-water: If, (DS: Analyze	tx Results:	porting Lev) 	ہ ۲۲ ـ بر 162	عده (_۲, ۲۲۶	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	21-01 2-20 2-20 2-20 2-20 2-20 2-20 2-20		-			1 1	-	1 1				te:	te:	ate:	Le-1
	<u>~</u>	191 Fax	RMATION	4	l sset	me(s) Below	Ind/ac		Personnel Re		1.8 0	8310 8310	/ 023 / 50	01 H 28 H	AT Ag										 Da	Da	<u>um Labs:</u> Da	C
d Suite 402	Texas 77380	(281) 362-84	ROJECT INFOR	TCOOSS3	iame ada	mpled by: Print Nar	Too M		Meridian-Alliance Yes X N				OS	EX So So So So So	BT Vater					~					 		d by Millenni	
Sawdust	Voodlands,	00 Phone	Id NO	Polor O	c per Site h	л. Х	ation with	thorized to 2	er to narks		ſ.8 0	1158	/ 0/2	H 85	ATP Groundw	1								 	 Received by	Received by	Received	1 miles
1544	The V	(281) 362-849	VG INFORMATI	205537 - 14	e-Imbursement Site - Invoic Aliance agreement	led Project Site - Invoice per /quote	ing to Client - Include inform Justody	oject - Millennium Labs is au : Rush Fees	oject Manager		around Time) Working Days	5 Working Days	- ХЭ.	trix Method BT S X G C				×	- X	X				 1 ^{TIMe:} /7:05	Time:	& instructions]	From Client
ES			INVOICIN	.o.#: D7cc	TNRCC R Meridian-A	Non-Fund	Direct Billi Chain of C	Priority Pr invoice for	end Invoice		Dr Tum		ð	Ĵ	ted Mat Time W	X hosh	13 :33 (S		12:012	15:30 ×	14:32 X	*		 	 Date: 3-19-0	Jate:	pping address §	Laboratory Personnel
RATORI	•	0.		1		4		 	S E		t und				Collec Date	3/19/01	3/19/01		3/19/01	11/1/01	3/9/01		 		 le la		ck copy for shi	Contract
UM LABOF	USTODY RECORD	NLLIANCE GROUF	REPORT TO:			Mark Erlici					nun tes	certion			ple Identification.	1-01	マーチ		なっと	w-J	5				In Mue		hipment: [see bac	Next-day Air FedEx-UPS
MILLEN	CHAIN OF CI	MERIDIAN-A		Houston	Arlington	🔀 Midland 🖌	Tyler	Other Location:	Other Location:	Remarks:	10950	other			Lab No. Sam	1 M	2 11		~	H MI	S S				 Relinquished by:	Relinquished by	Method of Si	Express

R	2		each chain Iroject	mple with	ې	TPH Is non-	(1010)			e	duip	2 to 1	imbe:	lotal Nr Contain	2	Ч	2						Rec'd At			S
- bage	đ		Number of per p	alyze one sa	highest C ₁₀ icentration	(PH (Total) - If tent on BTEX (TRPP		• •	- 0	~ C) - ;	5 @ 5									Sample(s) Lab			11 11 11
N. mbor	ject number	×.	2	ppm And	opm con	pling point based on 1 I lowest aromatic con	No	Level III				omments											Condition of	Custody Seal Intact	Sample(s) Rec'd Iced/Cool	Tampar
ahe - Droi	aus - Proj	B USE ONL	20	%-C28 total > 100	6-C28 total >5.0 t	the cleanest sam elect sample with	Yes	el: Level II															Time:	Time:	Time:	
		Γ) J	-Soit: If, C	-Water: If, C	S: Analyze # detect.se	sults:	ng Leve	5.	p, S	<u>יכי</u>	9	12	H												
Milla			200	∎¥ □			Fax Re	Reporti		5.	<u>р</u>	hnics	looTo looto	9 99									Date:	Date:	Date:	
	Fax	TION	22	\$	Below:	seles		onnel		()158	/ 0/	78 H	Vd Solution								-			<u>Labs:</u>	
402	380 2-8491	VFORMA	5.500	H	nt Name(s)	9.14		ance Perso No		1.8	;I+ ,	/ \$0	H 10 EX	TB TP											<u>ennium</u>	
d, Suite)Xas // (281) 36	JECT IN	lumber	e e e	oled by: Pri	N De		ves				·OS	S0	LL IL											oy Mill€	
ust 🖌	ands, 16 one (PRC	Project	Site Ng	Samp	۲. -	10	ž		0	158	/ 0/3	28 H	A¶ Mundwa									 ived by:	ived by:	ceived [
4 Sawd	490 Ph	NOI	h1- 0	voice per	¥.	ormation with	authorized to	lefer to temarks		1.8	/ †ا BE	TM -	н 10 - хэ.	TH TT									9 Rece	Rece	Rec	
154 The	1 ne 1) 362-8	FORMAT	\$37	rment Site - In reement	Site - Invoice	nt - Include inf	lennium Labs i s	nager M		1 Time	ng Days	ng Days		Method G C	メ	メ	X				 		 ": 17,0		uctions]	TC Colline
	(28-	NI SNIC	000	CC Re-Imburst ian-Alliance ag	Funded Project nent/quote	t Billing to Che of Custody	ry Project - Mil e for Rush Fee	Project Ma		umaround	10 Worki	5 Worki	Other:	Matrix						 	 :		TIM /	ц Ті	ss & instr	Ĺ
		IOVNI	# 07	TNR(Merid	Non-I agreet	Direct	Priori	voice 🕅			2 2			e N	X 10	X ac	32 X		 	 	 	_	3-19		ig addres	
RIES			P.O.		X			Send In to:				2		ollected 9 Tin	6115	0/ 15:	6/ 14.	_	 	 	 		 Date	Date:	r shippir	L
RATO					ich					tor		ttach .		C Date	3/19/	3/9/)er/		 	 	 		 R		k copy fo	L
ABOI	GROUP	ö			Erl					test	4	9		cation			16						hul		[see bac	- **
UM L	IANCE	EPORT 1			sk					200	an	5.5		Identifi	1-1	U.J	4 K						he M		ment:	L
Nin al	N-ALL	R	c	u	a Ma		ä	ij		s S	cide.	ides	5	Sample	MM	ML	AL A						1 by:	by	of Ship	L
TAIN O	ERIDIA		Houstor	Arlingt	🗶 Midlan	☐ Tyler	her Locatio	her Locatio	marks:	0109	erbi	estes	eH.	<u>ه</u> .		2		-	 	 	 		 linquished	linquished	ethod (A Greathe

MILLENNIUM Laboratories, Inc.

1544 SAWDUST ROAD * SUITE 402 * THE WOODLANDS, TEXAS 77380 * 281-362-8490

CLIENT: Curt Henderson Meridian Alliance Group 306 West Wall Suite 600 Midland, TX 79701 Report No.:2001030119Report Date:03/27/2001

Phone: 915-682-5557

Fax: 915-682-5593

Project Name: Amerada-Hess Byrd Lease Project Number: 07C005537 Received: 03/19/2001 Sampled by: A. Hale

Lab Number 2001030119-1 2001030119-2 2001030119-3 2001030119-4 2001030119-5 2001030119-6 Sample Identification MW-1@25-27 MW-2@25-27 MW-3@20-22 MW-3@25-27 MW-4@25-27 Drum Comp

Our letters and reports are for the exclusive use of the client to whom they are addressed and shall not be reproduced except in full with out the approval of the testing laboratory. The use of our name must receive our prior written approval. Our letters and reports apply only to the samples tested and are not necessarily indicative of the qualities of apparently identical or similar samples.

Technical - QA/QC review by : Matt Steere/Theresa Sorrells MILLENNIUM LABORATORIES, Inc.

Amanda Bourgeois/Daniel Duplechien Project Manager

MILLENNIUM LABORATORIES, INC.

March 27, 2001

Meridian Alliance Group Attn: Mr. Curt Henderson 306 West Wall, Suite 600 Midland, TX 79701

Millennium Labs Order Number: 2001030119 Project Name: Amerada-Hess Byrd Lease Project Number: 07C005537

Dear Mr. Henderson:

Enclosed you find the results of the samples submitted to Millennium Laboratories on 03/19/01 from the site referenced above.

Your sample "MW-4 @25-27" (Millennium ID: 2001030119-5) was randomly chosen for use in Millennium's Quality Control Program for Chloride by method 300.0. The Matrix Spike recovery was outside the quality control limits, due to the elevated concentration of the original sample. A Laboratory Control Sample (LCS) was analyzed as part of the analytical batch and all recoveries were within acceptable limits.

All procedures and analyses have been reviewed and meet the Quality Control limits established at Millennium Laboratories.

This report retains its validity and integrity only when reported in full and accompanied by this letter. Any other use of this report must be granted, in writing, by Millennium Laboratories. All samples pertaining to this Order Number will be disposed of 60 days after the date of receipt, unless otherwise arranged in writing.

Please do not hesitate to contact us if you have any questions or comments concerning this report. Please reference the above Work Order Number.

Sincerely,

Danie Duplechien Project Manager

MELENNIUM LABORATORIES, INC.	1544 Sawdust Road, Suite 402. The Woodlands, Texas 77380. ph. 281-362-8490. fax 281-362-8491.

Report No: 2001030119

Client: Meridian Alliance Group Project Name: Amerada-Hess Project Number: 07C005537

MBTEX/TPH Summary Report

ample umber	Sample Description	Sample Matrix	Benzene	Toluene	Ëthylbenzene	Xylenes, total	Total BTEX*	MtBE	трн С6-С12	ТРН С12-С28	TPH C6-C28	Lead	units
-	, MW-1@25-27	Soil	<0.125	<0.125	<0.125	<0.125	QN	N/A	N/A	N/A	N/A	N/A	mg/Kg
2	MW-2@25-27	Soil	<0.125	<0.125	<0.125	<0.125	QN	N/A	N/A	N/A	N/A	N/A	mg/Kg
e	MW-3@20-22	Soil	<0.125	<0.125	0.109	2.44	2.549	N/A	N/A	N/A	N/A	N/A	mg/Kg
4	MW-3@25-27	Soil	<0.125	<0.125	0.228	3.14	3.368	N/A	N/A	N/A	N/A	N/A	mg/Kg
S	MW-4@25-27	Soil	<0.125	<0.125	<0.125	<0.125	QN	N/A	N/A	N/A	N/A	N/A	mg/Kg
9	Drum Comp	Soil	<0.125	<0.125	<0.125	<0.125	QN	N/A	N/A	N/A	N/A	N/A	mg/Kg

* Total BTEX calculation does not include MtBE ND = Not Detected N/A = Analysis not requested

Report Date 04/12/2001

ļ

Report No.: 2001030119 04/12/2001

Client: Meridian Alliance Group

Sample No.:	1	Date Collected: 03/14/2001 Time Collected: 12:30:00				Matrix: Soil		
Description:	MW-1@25-27	Projec						
Test	· · ·	Method	Results	Units	Detection Limit	Date Analyzed	Analyst	
Benzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP	
Toluene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP	
Ethylbenzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP	
Xylenes, total		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP	
Chloride		EPA 300.0	1045	mg/Kg	0.100	03/20/2001	TW	
TPH (418.1)		418.1	<10.0	mg/Kg	10.000	03/26/2001	MAT	
Sample No.:	2	Date Collected: 03/14/2	2001	Time Collect	ed: 15:50:00	Matrix: Soil		
Description:	MW-2@25-27	Projec	t Name: Ar	nerada-Hess By	yrd Lease			
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst	
Benzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP	
Toluene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP	
Ethylbenzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP	
Xylenes, total		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP	
Chloride		EPA 300.0	90.3	mg/Kg	0.100	03/20/2001	TW	
TPH (418.1)		418.1	<10.0	mg/Kg	10.000	03/26/2001	MAT	
Sample No.:	3	Date Collected: 03/14/2	2001	Time Collect	ed: 16:40:00	Matrix: Soil		
Description:	MW-3@20-22	Project	t Name: Ar	nerada-Hess By	yrd Lease			
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst	
Benzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP	
Toluene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP	
Ethylbenzene		SW-846 5030B/8021B	0.109	mg/Kg	0.125	03/21/2001	MEP	
Xylenes, total		SW-846 5030B/8021B	2.44	mg/Kg	0.125	03/21/2001	MEP	
Chloride		EPA 300.0	29.2	mg/Kg	0.100	03/20/2001	TW	
TPH (418.1)		418.1	1530	mg/Kg	100.000	03/26/2001	MAT	
Sample No.:	4	Date Collected: 03/14/2	2001	Time Collecto	ed: 16:45:00	Matrix: Soil		
Description:	MW-3@25-27	Project	t Name: Ar	nerada-Hess By	rd Lease			
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst	
Benzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP	
Toluene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP	
Ethylbenzene		SW-846 5030B/8021B	0.228	mg/Kg	0.125	03/21/2001	MEP	

Report No.: 2001030119 04/12/2001

Client: Meridian Alliance Group

Sample No.:	4	Date Collected: 03/14/	2001	Time Collecte	ed: 16:45:00	Matrix: Soil				
Description: MW-3@25-27 Project Name: Amerada-Hess Byrd Lease										
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst			
Xylenes, total		SW-846 5030B/8021B	3.14	mg/Kg	0.125	03/21/2001	MEP			
Chloride		EPA 300.0	36.2	mg/Kg	0.100	03/20/2001	TW			
ГРН (418.1)		418.1	2020	mg/Kg	100.000	03/26/2001	MAT			
Sample No.:	5	Date Collected: 03/15/	2001	Time Collecte	ed: 09:20:00	Matrix: Soil				
Description:	MW-4@25-27	Projec	Project Name: Amerada-Hess Byrd Lease							
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst			
Benzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP			
Toluene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP			
Ethylbenzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP			
Xylenes, total		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP			
Chloride		EPA 300.0	666	mg/Kg	0.100	03/20/2001	TW			
ГРН (418.1)		418.1	<10.0	mg/Kg	10.000	03/26/2001	MAT			
Sample No.:	6	Date Collected: 03/15/	2001	Time Collecte	ed: 10:00:00	Matrix: Soil				
Description:	Drum Comp	Projec	et Name: Ar	nerada-Hess By	rd Lease					
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst			
Benzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.130	03/21/2001	MEP			
Toluene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP			
Ethylbenzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP			
Xylenes, total		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	03/21/2001	MEP			
TPH (418.1)		418.1	<10.0	mg/Kg	10.000	03/26/2001	MAT			

QC Batch ID: 0120021A

QC SUMMARY REPORT

BTEX by EPA Method 8021B - Soil

Laboratory Control Sample (LCS/LCSD) Method Blank Results

	Method	ethod Spike		LCS		LCSD		QC Acceptance Criteria	
CONSTITUENT	Blank (ppm)	Added (ppm)	Result (ppm)	Recovery (%)	Result (ppm)	Recovery (%)	RPD (%)	RPD (%)	Spike % Recovery (Low - High Limit)
Benzene	<0.125	2.50	2.36	94.5%	2.58	103.2%	9%	<u>+</u> 30	70 - 130
Toluene	<0.125	2.50	2.30	91.9%	2.51	100.5%	9%	<u>+</u> 30	70 - 130
Ethylbenzene	<0.125	2.50	2.22	88.7%	2.39	95.6%	7%	<u>+</u> 30	70 - 130
Xylenes, total	<0.125	7.50	6.82	91.0%	7.40	98.6%	8%	<u>+</u> 30	70 - 130

.

Sample Matrix Spikes (MS/MSD)

	Sample Spike		MS		MSD		MS/D	QC Acceptance Criteria	
CONSTITUENT	Result (ppm)	Added (ppm)	Result (ppm)	Recovery (%)	Result (ppm)	Recovery (%)	RPD (%)	RPD (%)	Spike % Recovery (Low - High Limit)
Benzene	<0.125	2.50	1.44	57.5%	2.19	87.5%	41%	<u>+</u> 30	65 - 135
Toluene	11.5	2.50	18.08	261.1%	26.24	587.8%	37%	<u>+</u> 30	65 - 135
Ethylbenzene	10.1	2.50	19.25	364.7%	25.69	622.2%	29%	<u>+</u> 30	65 - 135
Xylenes, Total	51.1	7.50	98.89	637.4%	130.34	1056.7%	27%	<u>+</u> 30	65 - 135

3/21/01

Batch Extraction/Prep Date: 3/2

3/20/01

Sample ID - MS/MSD: 2001030116-7

Data Qualifiers:

Sequence Date(s):

Project(s) In Batch:

2001030119 (1-6) 2001030116 (4-8)

QC Batch ID: 032601S

QC SUMMARY REPORT

TPH by 418.1

Laboratory Control Sample (LCS/LCSD)

		Method	Spike	L	CS	L	CSD	LCS/D	QC	Acceptance Criteria	
	CONSTIT	TUENT	Blank	Added	Result	Recovery	Result	Recovery	RPD	RPD	Spike % Recovery
			(ppm)	(ppm)	(ppm)	(%)	(ppm)	(%)	(%)	(%)	(Low - High Limit)
	418.1	•	<10.0	500	429	85.8%	445	89.0%	4%	<u>+</u> 30	70 - 130

Sample Matrix Spikes (MS/MSD)

	Sample	Spike	٨	AS .	M	ISD	MS/D	QC	Acceptance Criteria
CONSTITUENT	Result	Added	Result	Recovery	Result	Recovery	RPD	RPD	Spike % Recovery
	(ṕpm)	(ppm)	(ppm)	(%)	(ppm)	(%)	(%)	(%)	(Low - High Limit)
418.1	<10.0	500	375	75.0%	405	81.0%	8%	<u>+</u> 30	70 - 130

Sequence Date(s):

(s): 3/26/01

Batch Extraction/Prep Date: 3/

3/26/01

Data Qualifiers: NONE - associated with this batch of samples.

Sample Spiked: 2001030120-2

Project(s) In Batch:

2001030119

QC SUMMARY REPORT

QC Batch ID: 32001

Anions by EPA Method 300.0

Laboratory Control Sample (LCS)

	Method	Spike	L	cs	QC Acceptance Criteria	
CONSTITUENT	Blank	Added	Result	Recovery	Spike % Recovery	
•.	(ppm)	(ppm)	(ppm)	(%)	(Low - High Limit)	
Chloride	<dl< td=""><td>50.00</td><td>45.627</td><td>91.0%</td><td>90 - 110</td></dl<>	50.00	45.627	91.0%	90 - 110	

Sample Matrix Spikes (MS)

	Sample	Sample Dup	Spike	MS		QC Acceptance Criteria
CONSTITUENT	Result	Result	Added	Result	Recovery	Spike % Recovery
	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(Low - High Limit)
Chloride	666	516	10.00	670.000	40.0%	80 -120

Sequence Date(s):

3/20/01

Batch Extraction/Prep Date:

3/20/01

Sample ID - MS/MSD:

2001030119-5

Data Qualifiers:

NONE - associated with this batch of samples.

Project(s) In Batch:
Test Methods, Phone N	Vumbers & Shippin	анну саприну счернос, g Information.	Chain-of-Custody Record	Millennium Labs - Pr	oject Number Page of	
		A PINCER (NIZORIAN PICON		20 LAB USE O	NLY Dang ther Each Chain	
Houston Attn:	PO No.:	070005537-1	14 Number 07 CO05531	10000	PER PROJECT ONLY	
Arlington Attn:		INRCC.Re-Imbursement Site: Invoid Meridian-Alilance agreement	ce per Site Name Ilimited to 20 characters!	PAH-Soil: If, C ₆ -C ₂₈ to	tal >100 ppm; Analyze one sample with the	T
Midland Attn: Last Henriecsen		Non-Funded Project/Site: Involce as agreement/quote		PAH-Water: If, C6-C28 tot	al > 5.0 ppm; highest C ₁₀ -C ₂₈ concentration	
Tyler Attn:		Direct Billing To Cilent: Attach sheet Remarks section for details	It or use Sampled by: Meridian-Alliance Person Print Normets Balow CSC D	anel TDS: Analyze the cleanest select sample with lo	sampling point based on TPH-total; if TPH is non-detect; west aromatic content [total BTEX]	2
Austin Attn:		Priority Project - Lab is Authorized to invoice for RUSH FEES	1. A. Hal	TCLP-Metals: Based on T parameters	otal Metals results; run TCLP Extraction on samples with i which exceed 20 times the TCLP Limits	Ē
New Location: Contact Lab To Set-up Account	Send Invoice To:	Manager See Rem	narks 2. M. Ehrlich	TCLP-Volatiles: Based on V	rOC results; run TCLP Extraction on samples with s which exceed: [attach sheet or use remarks section]	
Bemarks:		Inmerchine time B X Standard TAT	 	Additional Parameters List by EPA Method	I	1
		Rush-results by:	8 <i>1</i> 1,	-9		
		Σ 		יייק <i>ר</i> יייקר	COMMENLS 0 Lotal Number of	ě
Lab Sample (dentification Date No.	olisisted to a	Matrix Method E W S X G C	H H 4 S X H H Goundwater Son) <u>1</u> ,7	Please use space below or L Bottles attach additional sheet(s) per D Incration	
1 mw-1 C 25 27 3-14	1230	XX	× ×	X		
2 mw 202527 3-14	1550	XX	+	×		1
> mw-3 C 20-22 3.14	040)1	×	× ×	×		T
4 mm.3 C 25-27 3-14	21201 1	XX	XX	7	-	T
5 mu.4 e 25.27 3-15	5 0920	X X	XX	X		T
6 Drum Lemp 3-15	5 1000	XXX	X X			<u> </u>
		•				<u></u>
						1
Relinquished by M. Chille	Date: 3 -	16-01 Time:0830	Received by:	Date: Time:	Condition of Sample(s) Rec'd <u>At</u> Lab	-
Relinquished by	Date:	Time:	Received by:	Date: Time:	Custody Seal Intact	
Relinquished by	Date:	Time:	Received At Millennium Labs by	· Date: Time:	Sample(s) Rec'd	
Method of Shipment: [see back copy for : Methound Next-day Air Contract Express FedEx-UPS Contract	: shipping add	ress & instructions] pratory OTC-Delivery sonnel From Client		m:)//	Log-in encountered problems with this sample set. A Variance Log-in Form was completed identifying the type of problemits & corrective action taken. Copy be mailed with the final Report.	4:00 8
					lec J Crr	٦

		GAN	DY•MARLEY, I P.O. Box 1658 Roswell, NM 88202 (505) 625-9206 Fax (505) 625-9706	NC.	3249
	PERATOR/SH	IPPER/COM	PANY: America	to Hess	
		ed less	P		
TRANSP	ORTER COMP	ANY:	Mailer	TIME: 4	30AM/EM
DATE: ⁽	1/17/1	VEHIC	LE NO.: /	DRIVER	NO.:
CHARGE	TO: MAG	s ≠ 07	005537		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	TY	PE OF MATERIAL		
	n an the second se	· .	OCD	. · · ·	
Descripti	on: S_{O_1} (C	[] Contamina [] BS&W cont 		No.	cter to 7
OLUME		L[]:XABOS	4 0/115 CE	LL# <u>/3</u>	[]
AS A CON	VDITION TO GANDY SHIPPER REPRESE	•MARLEY, INC.'S ENTS AND WARR E, CONSERVATIC I HEALTH AND SA	ACCEPTANCE OF THE MA ANTS THAT THE WASTE M N AND RECOVERY ACT C F. CODE, §361.001, et seq. MINATED SOILS AND OTH	ATERIALS SHIPPED WI IATERIAL SHIPPED HEP OF 1976, AS AMENDED AND REGULATIONS RE	TH THIS JOB TICKET, REWITH IS MATERIAL FROM TIME TO TIME, LATED THERETO, BY
EXEMPT FR 10 U.S.C. §69 /IRTUE OF T RATION, DE	901, et seq., THE NM THE EXEMPTION AF VELOPMENT OR PF	FORDED CONTA	CRUDE OIL OR NATURAL	GAS OR GEOTHERMAL	D WITH THE EXPLO- ENERGY.
EXEMPT FR 10 U.S.C. §69 /IRTUE OF 1 RATION, DE ALSO AS FICKET, TRA PER TO TRA	901, et seq., THE NM THE EXEMPTION AF VELOPMENT OR PF A CONDITION TO (NSPORTER REPRE NSPORTER IS NOW	FORDED CONTA RODUCTION OF (GANDY•MARLEY, ESENTS AND WAR / DELIVERED BY	CRUDE OIL OR NATURAL INC.'S ACCEPTANCE OF RRANTS THAT ONLY THE M TRANSPORTER TO GAND	GAS OR GEOTHERMAI THE MATERIALS SHIP MATERIAL DELIVERED Y+MARLEY, INC 'S FACI	D WITH THE EXPLO- ENERGY. PED WITH THIS JOB BY OPERATOR/SHIP- LITY FOR DISPOSAL.
EXEMPT FR IO U.S.C. §63 /IRTUE OF 1 RATION, DE ALSO AS FICKET, TRA PER TO TRA THIS WIL described loc added to this	901, et seq., THE NM THE EXEMPTION AF VELOPMENT OR PF A CONDITION TO (INSPORTER REPRE INSPORTER IS NOW L CERTIFY that the a sation, and that it was load, and that the m	FORDED CONTA RODUCTION OF (GANDY•MARLEY, SENTS AND WAF / DELIVERED BY above Transporter s tendered by the a aterial was deliver	CRUDE OIL OR NATURAL	GAS OR GEOTHERMAI THE MATERIALS SHIP MATERIAL DELIVERED Y•MARLEY, INC.'S FACI nted by this Transporter S his will certify that no ad	D WITH THE EXPLO- ENERGY. PED WITH THIS JOB BY OPERATOR/SHIP- LITY FOR DISPOSAL. Statement at the above ditional materials were
EXEMPT FR IO U.S.C. §69 /IRTUE OF 1 RATION, DE ALSO AS FICKET, TRA PER TO TRA THIS WIL described loc added to this DRIVER:	901, et seq., THE NM THE EXEMPTION AF VELOPMENT OR PF A CONDITION TO (NNSPORTER REPRE NSPORTER IS NOW L CERTIFY that the a cation, and that it was load, and that the m	FORDED CONTA RODUCTION OF (GANDY•MARLEY, ESENTS AND WAF V DELIVERED BY above Transporter s tendered by the a vaterial was deliver	CRUDE OIL OR NATURAL	GAS OR GEOTHERMAI THE MATERIALS SHIP MATERIAL DELIVERED Y•MARLEY, INC.'S FACI Inted by this Transporter S his will certify that no ad	D WITH THE EXPLO- ENERGY. PED WITH THIS JOB BY OPERATOR/SHIP- LITY FOR DISPOSAL. Statement at the above ditional materials were
EXEMPT FR 10 U.S.C. §63 VIRTUE OF 1 RATION, DE' ALSO AS FICKET, TRA PER TO TRA THIS WIL described loc added to this DRIVER:	901, et seq., THE NM THE EXEMPTION AF VELOPMENT OR PF A CONDITION TO (INSPORTER REPRE INSPORTER IS NOW L CERTIFY that the a sation, and that it was load, and that the m	FORDED CONTA RODUCTION OF (GANDY•MARLEY, ESENTS AND WAF V DELIVERED BY above Transporter is tendered by the a vaterial was deliver	CRUDE OIL OR NATURAL	GAS OR GEOTHERMAI THE MATERIALS SHIP MATERIAL DELIVERED Y+MARLEY, INC.'S FACI Inted by this Transporter S This will certify that no ad	D WITH THE EXPLO- ENERGY. PED WITH THIS JOB BY OPERATOR/SHIP- LITY FOR DISPOSAL. Statement at the above ditional materials were
EXEMPT FR 10 U.S.C. §63 VIRTUE OF 1 RATION, DE ALSO AS FICKET, TRA PER TO TRA THIS WILL described loc added to this DRIVER:	901, et seq., THE NM THE EXEMPTION AF VELOPMENT OR PF A CONDITION TO (INSPORTER REPRE INSPORTER IS NOW L CERTIFY that the a cation, and that it was load, and that the m	FORDED CONTA RODUCTION OF (GANDY•MARLEY, ESENTS AND WAF V DELIVERED BY above Transporter is tendered by the a vaterial was deliver	CRUDE OIL OR NATURAL	GAS OR GEOTHERMAI THE MATERIALS SHIP MATERIAL DELIVERED Y•MARLEY, INC.'S FACI Inted by this Transporter S This will certify that no ad	D WITH THE EXPLO- ENERGY. PED WITH THIS JOB BY OPERATOR/SHIP- LITY FOR DISPOSAL. Statement at the above ditional materials were

EXEMPT OCD

Origin: 07005537

P.O. Box 1658 Roswell, NM 88202 Phone 505-625-9206 Fax 505-625-9706 Meridian Alliance Group LLC 306 W. Wallstreet Suite 600 Midland, TX 79701

Detailed Report of material for Invoices 3037 thru 3037

Date:	Ticket No:	Discription:	Transporter:	Cell:	Units	Unit Type:
4/17/01	3249	OCD EXEMPT SOILS	Bill Marley	13	4	BBLS
		07005537	′ Total BBLS.		4 BE	BLS
		E	EXEMPT OCD Total BBL	.S.	4 BE	BLS
Origin:	07005537					
Date:	Ticket No:	Discription:	Transporter:	Cell:	Units	Unit Type:
4/17/01	3249	OCD EXEMPT LIQUIDS	Bill Marley		55	GAL
		07005537	Total GAL.		55 GA	4L
		E	EXEMPT OCD Total GAL		55 G/	٩L
		E	XEMPT OCD Total Unit	S.	59 Ur	nits
Meridiar	n Alliance	Group LLC Total L	Inits.		59 Un	its

1

4/18/01

1

PHASE II SITE ASSESSMENT REPORT

Amerada Hess Corporation Project No.: OPF00ES004 Meridian Alliance Group, LLC. Project No.: 07F005537

> Amerada Hess Corporation W.P. Byrd Lease SECTION 12, T-20-S, R-36-E, LEA COUNTY, NEW MEXICO

> > August 29, 2001

Prepared for:

Amerada Hess Corporation

Prepared by:

Meridian Alliance Group, L.L.C.306 W. Wall, Suite 600 Midland, Texas 79701

> District Manager - J. Curtis Henderson Project Manager - Mark A. Ehrlich

Table of Contains	۲ ۲	 1.0 Site Assessment Scope of Services Soils Investigation Groundwater Investigation Waste Management & Disposition Limitations
	2	Attachments Attachment 1 – Site Map Attachment 2 – Subsurface Soil Contaminant Map Attachment 3 – Groundwater Contaminant Map Attachment 4 – Groundwater Gradient Map
	3	Figures Figure 1 - Soil Laboratory Analytical Results Figure 2 – Fluid Level Measurements Figure 3 – Groundwater Laboratory Analytical Results
	4	Soil Boring Logs Monitor Well Completion Details Monitor Well Driller's Reports
	5	Photographs
	6	Laboratory Analytical Results & Associated QA/QC Data
	7	Waste Disposal Manifests
	8	
	A Carlos and a c	

L

Ľ

Page 1

1.0 SITE ASSESSMENT

1.1 Scope of Services

Meridian Alliance Group, LLC (MAG) has completed the approved Site Assessment Reporting activities for the Amerada Hess Corporation (Amerada Hess), Byrd Lease, located in Section 12, T-20-S, R-36-E, Lea County New Mexico. After consultation with Amerada Hess personnel, it was agreed that four (4) additional soil borings would be drilled at predetermined locations around the Byrd tank battery. Soil samples were collected from the appropriate intervals to assist with the definition of any potential vertical hydrocarbon or produced water contamination associated with the area. These soil borings were completed as groundwater monitor wells. The site monitor wells were gauged, purged of appropriate volumes of groundwater and sampled for various constituents according to the current United States Environmental Protection Agency (EPA) guidelines, to determine the possible horizontal extent of hydrocarbon and produced water contamination. Solid and liquid wastes produced during these assessment activities were disposed of at an NMOCD approved facility.

1.2 Soils Investigation

The subject area is situated on the High Plains of Eastern New Mexico and is associated with the Ogallala Formation. Pleistocene and recent soils form a thin mantle over the Ogallala Formation. Topsoils consist of three major textural types: fine sandy and silty loams, clay and clay loams, and fine sandy loams.

The investigation site encircles the Byrd tank battery. High chloride concentrations have been found in the previous four (4) monitor wells drilled during this project. Total Petroleum Hydrocarbons (TPH) and Benzene, Toluene, Ethyl benzene and Xylene (BTEX) have also been found during this investigation.

MAG and Amerada Hess agreed upon the placement of the additional four soil boring/monitor wells. Monitor Well No. 5 (MW-5) was predetermined to be drilled northwest of MW-4. MW-6 would be drilled in an approximate center of an old pit area northeast of the tank battery. MW-7 would be drilled south of MW-1 and MW-8 would be drilled east of MW-7.

On June 25, 2001, MAG Personnel and White Drilling Company (White) drilled four (4) soil boring/monitor wells in an attempt to further delineate the site. During the drilling, MAG Personnel collected soil samples at five (5) foot intervals to maximum depths of forty (40) feet. The collected soil samples were field screened using an Organic Vapor Monitor (OVM) to determine which soil samples to submit for laboratory analytical analysis. It was determined that in all of the soil borings, the 25-31 foot sample directly above the groundwater interface would be submitted. These samples were submitted to Millennium Laboratories, Inc. (Millennium) for analytical testing. In addition, in each

soil boring, the sample containing the highest OVM reading was submitted for analytical testing.

The lithology of the soil borings is silty-sand and sand from the surface to the maximum depths of forty (40) feet. In Monitor Well No. 6 a hydrocarbon odor was noted in the samples from 5 - 12 feet.

Soil samples collected from the soil borings submitted to Millennium were analyzed for BTEX (Benzene, Toluene, Ethyl benzene and Xylene, Method SW-846 5030B/8021B), Chloride (Method EPA 300.0) and Total Petroleum Hydrocarbons (Method 418.1).

Soil samples analyzed in boring/MW-5 were from the 10-12 foot and 27-28.5 foot intervals. The reports from Millennium documented that MW-5 BTEX levels were <0.125 mg/kg in both samples. Chloride values were tested at 500 mg/kg and 1,403 mg/kg, respectively. Total Petroleum Hydrocarbons (TPH) were documented as <10.0 mg/kg in each interval sampled.

The interval from 5-7 feet in boring/MW-6 was contained <0.125 mg/kg Benzene, 1.04 mg/kg Toluene, 0.995 mg/kg Ethyl benzene and 2.23 mg/kg total Xylene (4.265 mg/kg Total BTEX). Chloride values were 229.0 mg/kg and TPH values were 51,500.0 mg/kg in this soil-boring sample. The sample gathered from the 25-27 foot interval contained hydrocarbon constituents in the following concentrations: Benzene <0.125 mg/kg, Toluene <0.125 mg/kg, Ethyl benzene <0.125 mg/kg, total Xylenes <0.125 mg/kg. Chlorides and TPH were found to be 314.0 mg/kg and 414.0 mg/kg, respectively.

Soil boring/MW-7 samples were taken from 5-7 feet and 30-32 feet. In both sampled intervals Benzene, Toluene, Ethyl benzene and Xylene were recorded <0.125 mg/kg. Chloride values were found as 102.0 mg/kg and 3,797.0 mg/kg, respectively. In addition, TPH was <10.0 mg/kg in each sample

In soil boring/MW-8 samples were gathered from 5-7 feet and 29-31 feet. BTEX were documented to be <0.125 mg/kg in each sample. Chloride values were 126 mg/kg and 719.0 mg/kg, respectively. TPH was <10.0 mg/kg in each sample interval.

Soil cuttings were disposed by Gandy Marley in their approved NMOCD facility near Tatum, New Mexico.

Figure 1 contains Soil Laboratory Analytical Results.

1.3 Groundwater Investigation

Groundwater at the site is associated with the Ogallala (High Plains) Aquifer. The Ogallala Formation of late Miocene to Pliocene age uncomfortably overlies Cretaceous, Jurassic, Triassic, and Permian rocks and consists primarily of sand, silt, clay, and gravel

derived from the southern Rocky Mountains to the west. The Ogallala is the major water-bearing unit of the High Plains of Eastern New Mexico. Hydraulic continuity occurs between the Ogallala Formation and both the underlying Cretaceous, Jurassic, and Triassic rocks in many areas of the High Plains, and the Quaternary deposits, where present. The High Plains Aquifer consists of the saturated sediments of the Ogallala Formation and those geologic units that contain potable water and are in hydraulic continuity with the Ogallala.

Subsequent to the completion of drilling activities for the four (4) additional soil borings, were completed as monitor wells as requested by Amerada Hess. The monitor wells are constructed of 2.0-inch diameter poly vinyl chloride (PVC) and completed to total depths of forty (40) feet below the ground surface (BGS). From forty (40) feet BGS to twenty (20) feet BGS, White Drilling installed 2.0-inch diameter, Schedule 40, threaded, slotted 0.010 PVC well screen. From twenty (20) feet BGS to approximately thirty-two (32) inches above the ground surface (AGS), White installed 2.0-inch diameter, Schedule 40, threaded, PVC riser pipe. From forty (40) feet BGS to eighteen (18) feet BGS, 8/16 sand was poured down the 5.0-inch diameter soil boring around the PVC pipe. From eighteen (18) feet BGS to sixteen (16) feet BGS, a Bentonite Pellet Seal was put in place to seal off the boring from possible surface contamination. From sixteen (16) feet BGS to the ground surface, a non-shrink grout was poured to further to seal off the boring from possible surface contamination and to set the monitor well. On the surface, a 2 x 2 foot concrete pad was installed with an upright metal vault to protect the PVC Riser Pipe from damage. A locking sealed well cap was placed on the PVC pipe and a lock was placed on the upright vault.

A surveyor registered in the State of New Mexico surveyed the newly installed monitor wells. Ground surface, top of casing elevations, and monitor well locations were provided by Topographic of Midland, Texas.

On July 3, 2001, and July 24, 2001, MAG Personnel gauged each of the eight monitoring wells at the site and then manually purged each monitoring well of three well volumes using new, dedicated 1.5-inch diameter disposable polyethylene bailers. Groundwater samples were collected after purging. This evacuation procedure allows representative groundwater to enter the well. Samples collected for the laboratory analysis were placed in proper containers with Teflon®-lined lids. All groundwater samples were stored on ice and shipped to Millennium Laboratories, Inc. following strict chain-of-custody procedures.

All reusable equipment was thoroughly cleaned with an Alconox® wash and rinsed with distilled water between each well sampling.

During the groundwater-monitoring event, depth to groundwater in MW-1, MW-2, MW-3 and MW-4 was gauged at 32.97 feet, 32.40 feet, 33.98 feet, and 33.73 feet below the top of casing (TOC), respectively. Monitor wells MW-5, MW-6, MW-7 and MW-8 were gauged at 33.96 feet, 33.51 feet, 32.49 feet and 32.43 feet, respectively. The site-specific groundwater gradient for the site is 0.0016 ft/ft (1.5×10^{-3} ft/ft), trending to the Southeast.

Phase-separated hydrocarbon was noted in monitor well MW-1 (sheen) and MW-3 (2.74 feet). Groundwater analyzed in Monitor Well No. 1 found <0.010 mg/L Benzene, <0.002 mg/L Toluene, <0.005 mg/L Ethyl benzene and <0.005 mg/L Xylene (ND for BTEX). Chloride values were 16,971.0 mg/L and TPH was <1.0 mg/L.

Monitor Well No. 2 found the following values for BTEX: Benzene 0.025 mg/L, Toluene <0.005 mg/L, Ethyl benzene <0.005 mg/L, and total Xylene <0.005 mg/L. Total BTEX values were 0.025 mg/L. Chloride values were tested 19,108.0 mg/L while TPH, was confirmed as 69.8 mg/L.

Monitor Well No. 3 found the following values for BTEX constituents: <0.113 mg/LBenzene, <0.005 mg/L Toluene, 0.016 mg/L Ethyl benzene, and $0.034^{\circ} \text{ mg/L}$ total Xylene. Total BTEX was 0.163 mg/L. Chloride values were found to be 11,865.0 mg/L and the TPH analysis was 1,960.0 mg/L.

In Monitor Well No. 4 BTEX was 0.038 mg/L and summarizes as follows: 0.038 mg/L Benzene, <0.005 mg/L Toluene, <0.005-mg/L Ethyl benzene and <0.005 Xylene. Chloride values were determined to be 11,865.0 mg/L and TPH were 11.1 mg/L.

Monitor Well No. 5 tested Non-detect (ND) for BTEX. Chloride values were found to be 14,334.0 mg/L and TPH was <1.0 mg/L.

Water in Monitor Well No. 6 was found to contain 0.015 mg/L Benzene, <0.005 mg/L Toluene, <0.005 mg/L Ethyl benzene and <0.005 mg/L Xylene. Total BTEX was 0.015 mg/L. Chloride values were tested at 12,015.0 mg/L and TPH was found to be <1.0 mg/L in this monitor well.

Monitor Well MW-7 was Non-detect (ND) for BTEX. Chloride values were 16,669.0 mg/L and TPH was <1.0 mg/L.

Monitor Well No. 8 was also Non-detect (ND) for BTEX. Chloride values were tested at 7,875.0 mg/L. TPH values were found to be <1.0 mg/L.

Please refer to Figure 3 for Groundwater Laboratory Analytical Results and Attachments 1, 2 and 3.

1.4 Waste Management and Disposition

Soil cuttings generated from the drilling activities on June 25, 2001, and purged ground water on July 3 and 24, 2001, was contained within 55-gallon sealed drums on location. Disposal of the drums has been completed, however, this office is awaiting confirmation paperwork from Gandy-Marley, Inc. This information will be forwarded when it arrives.

1.5 Limitations

It should be noted that all environmental investigations are inherently limited in the sense that conclusions are drawn from observations and conversations only at specific locations and times designated in the report. Also, the passage of time may result in a change of conditions.

Our professional services have been performed in accordance with generally accepted environmental principals and practices. Meridian Alliance Group, LLC is not responsible for independent conclusions, opinions or recommendations made by others based on the information contained herein. Should any new information regarding the site become available during future investigations, we request that this information be presented to us so that we can review this data and make any necessary modification to this report in a timely and professional manner.

J. Curtis Henderson District Manager

Mark A. Ehrlich Project Manager

		Amer	Soil Labora ada Hess Co SECTION LEA COU	Figure 1 ntory Analy orporation V 12, T-20-4 JNTY, NEW	tical Resul - W.P. Byr S, R-36-E, V MEXICO	tts d Lease			
Location	Date	Depth	Benzene	Toluene	Ethyl- benzene	Total Xylenes	втех	Chloride	TPH 418.1
MW-1	03/14/01	25-27	<0.125	<0.125	<0.125	<0.125	<0.125	1,045.00	<10.0
MW-2	×	25-27	<0.125	<0.125	<0.125	<0.125	<0.125	90.30	<10.0
MW-3	н	20-22	<0.125	<0.125	0.109	2.440	2.549	29.20	1,530.00
		25-27	<0.125	<0.125	0.228	3.140	3.368	36.20	2,020.00
MW-4		25-27	<0.125	<0.125	<0.125	<0.125	<0.125	666.00	<10.0
Drum Composite	03/14/01		<0.125	<0.125	<0.125	<0.125	<0.125		<50.0
MW-5	06/25/01	10-12	<0.125	<.0125	<0.125	<0.125	<0.125	500.00	<10.0
	z	27-28.5	<0.125	<0.125	<0.125	<0.125	<0.125	1,403.00	<10.0
MW-6		5-7	<0.125	1.0400	0.9950	2.2300	4.2650	229.00	51,500.00
	-	25-27	<0.125	<0.125	<0.125	<0.125	<0.125	314.00	414.00
MW-7		5-7	<0.125	<0.125	<0.125	<0.125	<0.125	102.00	<10.0
		30-32	<0.125	<0.125	<0.125	<0.125	<0.125	3,797.00	<10.0
MW-8	:	5-7	<0.125	<0.125	<0.125	<0.125	<0.125	126.00	<10.0
	=	29-31	<0.125	<0.125	<0.125	<0.125	<0.125	719.00	<10.0
Drum Composite	06/25/01		<0.125	<0.125	<0.125	<0.125	<0.125		<10.0
IOTES: I values reported in I	mg/ka.							2	
								4	Meridian
									Alliance Group, LLC
								1	

Location	Date	TOC Elev. Feet	Depth to Water Feet	PSH Thickness Feet	Corrected GW Elev Feet	Screened Interval
MW-1	07/03/01	3559.30	32.97	0.00	3526.33	20-40'
MW-2	07/03/01	3558.40	32.40	0.00	3526.00	20-40'
MW-3	07/03/01	3558.20	33.98	2.74	3526.63	20-40'
MW-4	07/03/01	3560.70	33.73	0.00	3526.97	20-40'
MW-5	07/03/01	3561.10	33.95	0.00	3527.15	20-40'
MW-6	07/03/01	3560.30	33.51	0.00	3526.79	20-40'
MW-7	07/03/01	3558.00	32.49	0.00	3525.51	20-40'
MW-8	07/03/01	3557.60	32.43	0.00	3525.17	20-40'

			Groundwa Amerada H SE LE	Figures Corporation 12, 7 COTION 12, 7 A COUNTY,	re 3 sry Analytica tion - W.P. B -20-S, R-364 NEW MEXIC	al Results yrd Lease			
Location	Dete	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xvienes	Total BTEX	Chloride	TPH (418.1)
I-WW	03/19/01 07/07/01	<0.010	<0.002	\$00.05 \$00.05	<0.005 <0.005	\$0.00 \$0.005	99	18,971.0	4.0
MW-2	03/19/01 07/07/01	<0.010 <0.010	0.097	<0.005	40.005	\$00.05 ≤0.005	0.097	19,108.0 8,513.0	8.89
S-WM	03/19/01 07/07/01	<0.010	0.054	<0.005	<0.005 0.0180	<0.005	0.054	14,623.0 11,865.0	1,960.0
MW4	03/19/01	<0.010	0.018	40.005 40.005	€0.00 2000	<0.005	0.018 0.038	15,209.0	1.11
S-WM	07/07/01	<0.010	<0.002	<0.005	<0.005	\$00.00	Q	14,334.0	<1.0
8-WW	10/20/20	<0.010	0.015	<0.005	<0.005	<0.005	0.015	12,015.0	<1.0
7-WM	07/07/01	<0.010	<0.002	<0.005	40.005	<0.005	R	16,669.0	410
8-MW	07/07/01	<0.010	<0.002	<0.005	<0.005	<0.005	Q	7,875.0	<1.0
NOTES: All concentri ND - Not Der TDS - Total I * - % Recove	titions presented tected Dissolved Solids ny Petroleum Hydro	in mg/l. carbons						Aendian Alliance Sroup, LLC	_

~	Q N	leridia	m				Project Number: 07C005537	Monito	or Well: MW-5	Sheet 1 of	1
		lliance roup,		4			Contractor: White Drilling Company		Drilling Mo Air Coring	ethod:	
Project	t Name/L	ocation:					Driller: Bo		Location: Northwest	of MW-4	
Amera W.P. H SECTI	ida Hess (Byrd Leas ION 12, T	Corpora e '-20-S, F	tion 2-36-H	E,			Date Start: 6/25/01		Date Comp 6/25/01	leted:	
LEAC	JUNIT,	, INEW I	VIEAI	CO			Top of Casing Elevation: 3561.1'		Logged By: Mark Ehrli	ich	
	rval	Śravo	æ	ication					N Con	Monitor Well struction Detail	1
Dept	sample Inte FT)	kample Rec FT)	Sample Tyj	soil Classif	ELD SCREENING STRUMENT: D/OVM UNITS: p		Sample Description and Conditions	Lithology	32"		Locking Top Cup
	S C	S C							0'		Ground Surface
	5-7'	ľ	ST	SM	2.5	SILTY SAN nodules; vei	ND: Fine to v. fine grained; 20% caliche y pale orange (10YR8/2).		2.0" ID-Schadela 46		
10'	*10-12	0.5	SS	SM	4.3	SILTY SA	ND: Fine to v. fine grained; caliche very pale orange (10YR8/2).		Threaded PVC Riser Pipe		
	15-17	ľ	SS	SM	1.6	SILTY SAI	ND: Fine to v. fine grained; caliche very pale orange (10YR8/2)		16'		Restantio Palles Cod
20'	20-22	1.0	22	Sb	1.4	SILTY SA	NID: Fine to y, fine grained:	STAL ST	18' 20'		franting f part dea
		1.5				caliche ind light brown	urated; very pale orange to 1 (SYR5/6)		-		
	25-27' *27-28.5'	1.0' 1.0'	SS SS	SM SM	1.4	SILTY SA light brown SILTY SA indurated,	ND: Fine to v. fine grained; moist; 1 (5YR6/4). ND: Fine to v. fine grained; caliche orange to light brown with .5" LS				Threaded, Slotted 0.010 PVC Well Screen
30'						nodules; ve	ry moist (5YR5/6)		-		
						_					
40'									40'		Kod Cap
						-					
						-					
Si	umple Typ	pes	NOT	TES:	10	2 9900					
SS - split SB - split ST - shel RC - roc	spoon t barrel by tube k core		* - si Bott Bott	ample om of om of	e subm Borin Monit	itted for g @ 40.0 tor Well	analytical analysis @ 40.0'				

Γ	~		Meridis	an			Project Number: 07C005537	Monit	or Well: MW-6	Sheet 1 of 1
	2	D	Alliance Group,	e LLC			Contractor: White Drilling Company	2	Drilling Me Air Coring	thod:
ľ	Projec	t Name/I	_ocation:				Driller: Bo		Location: Northeast o	f Tank Battery
1 2 2 1	Mera W.P. I SECT LEA (ada Hess Byrd Lea ION 12, ' COUNTY	Corpora se T-20-S, I , NEW 1	tion R-36-1 MEXI	E, ICO		Date Start: 6/25/01		Date Comp 6/25/01	leted:
							Top of Casing Elevation: 3560.3"		Logged By: Mark Ehrli	ch
	đ	erval	covery	be	fication	C) mild	Sevenie Description		N Con	Aonitor Well struction Detail
	Dept	Sample Int (FT)	Sample Re (FT)	Sample Ty	Soil Classi	FIELD SCREENIN INSTRUMENT: FILOUM UNITS:	and Conditions	Lithology	32"	Lacking Top Cap Upright Vanit Ground Surface
Γ									0'	New Skrink Grout
		*5-7	ľ	ST	SM	2600	SILTY SAND: Fine to v. fine grained; caliche indurated; pale yellowish brown; slight hydrocarbon odor (10YR6/2).		2.0" LD, Schedule 40 Threaded PVC Riser	5.6" Dimeter Hale
	10'	10-12	0.5	SS	SM	2406	SILTY SAND: Fine to v. fine grained, 10% chert nodules, Yellowish gray, light hydrocarbon odor (5Y7/2).			
þ)	15-17	1.5'	SS	SM	21.3	SILTY SAND: Fine sand, light bluish gray, (SB7/1)		16'	Benfaulte Pellet Seal
	20'	20-22	1.5	SS	SM	18.4	SILTY SAND: Fine sand; light bluish gray; (5B7/1)		20'	b/15 Sand
		*25-27'	.5'	SS	SM	48.2	SILTY SAND: Fine sand with 1/4° gravel, pale yellow brown, moist @ 26' (10YR6/2)			2.0" I.D. Schedale 40 Threaded, Shetrad 0.010 PVC Well Screen
	30'	30-32	1.0'	SS	SC	30.6	SILTY CLAY: clay and silt mixture; moist, light blue to gray (5B/7/1)			
		35-37'	1.0'	SS	SC	1.2	SILTY CLAY: clay, sand and silt mixture, moist, light blue to gray, 1/4* limestone nodules (5B/7/1)			
	40'						-		40'	Fad Cap
SSSES	Sa S - split B - split T - shel C - roc H - sho	ample Ty spoon t barrel by tube k core vel (surface)	pes	NOT * - s Bott Bott Gro	FES: ample om of om of undw	e subm Boring Monit ater @	itted for analytical analysis g @ 40.0' or Well @ 40.0' ~ 29.0			

~	a,	/leridia	m			Project Number: 07C005537	Monit	or Well: MW-7	Sheet 1 of 1
	Da	lliance Froup,		2		Contractor: White Drilling Company		Drilling Me Air Coring	thod:
Projec	t Name/L	ocation:				Driller: Bo		Location: South, south	heast of MW-1
Amer W.P. SECT	ada Hess Byrd Lea TON 12, 7	Corpora se F-20-S, F	tion R-36-I	E,		Date Start: 6/25/01		Date Comp 6/25/01	leted:
LEA	COUNTY	, 142.00 1	VIEAI			Top of Casing Elevation: 3558.0'		Logged By: Mark Ehrli	ch
	erval	covery	pe	fication		Sample Description		N Con	Aonitor Well struction Detail
Dept	Sample Int (FT)	Sample Re (FT)	Sample Ty	Soil Classi	FILLD SCREENIN INSTRUMENT: FILLOVM UNITS:	and Conditions	Lithology	32"	Locking Top Cup Upright Vanit Ground Surface
								0'	Nuu-Shrink Grunt
	*5-7'	1.5'	ST	SM	7.9	SILTY SAND: Fine to v. fine grained; grayish orange (10YR7/4).		2.8" LD. Schedule 48	
10'	10-12	1.5	SS	SM	1.1	SILTY SAND: Fine to v. fine grained, gray to very pale orange; (10YR8/2).		Fige	5.4" Diameter Hole
	15- <u>17</u> '	1.5	SS	SM	1.3	SILTY SAND: Fine to v. fine grained, gray to very pale orange; (10YR8/2).		16'	Restants Fellet Real
20'	20-22	1.0'	SS	SM	1.3	SILTY SAND: Fine to v. fine; pale to medium yellowish grange (10YR8/6)		18' 20'	
	25-27	1.5'	SS	SM	0.9	SILTY SAND: Fine to v. fine grained with 1/4* limestone nodules, very pale orange, moist (10YR8/2)			2.6" LD. Schodule 40 Threaded, Shatad 5.010 PVC Well Screen
	27-28.5	1.5'	SS	SM	0.7	SILTY SAND: Fine to v. fine grained with 1/4" imestone nodules, very pale orange, moist (10YR8/2)			
30'	*30-32'	1.0'	SS	SM	0.9	SILTY SAND: Fine to v. fine grained with 1/4" limestone nodules, very pale orange, moist (10YR8/2)			
						-			
40'								40'	End Cap
SS - spli SB - spli ST - she RC - roc	ample Ty t spoon it barrel lby tube ck core wel (surface)	pes	NOT * - s Bott Bott	TES: ample om of om of	subm Borin Monit	itted for analytical analysis g @ 40.0' or Well @ 40.0' ~ 32.0'			

-		Aeridia	m			Proj 07C	ect Number: 005537	Moni	tor Well: MW-8	Sheet 1 of 1
	D	Alliance Group,				Con Whi	tractor: te Drilling Company		Drilling Me Air Coring	ethod:
Projec	ct Name/I	ocation:				Drill Bo	ler:		Location: East of MW	/-7
Amer W.P. SECI	ada Hess Byrd Lea TON 12, 7	Corpora se F-20-S, I	tion R-36-1	E,		Date 6/25	Start: /01		Date Comp 6/25/01	leted:
LEA	COUNTY	, NEW	MEXI	ico		Тор 3557	of Casing Elevation: 7.6'		Logged By: Mark Ehrli	ch
bepth	Interval	Recovery	Type	assification	ENTING TI: BUTS: peer	Sam	ple Description)gy	N Con: 32" [Aonitor Well struction Detail
Д	Sample (FT)	Sample (FT)	Sample	Soil Cla	FIELD SCRE PUSTRUMEN	41	a contractions	Litholc		Upright V solt Ground Surface
									0*	Non-Shrink Grout
	*5-7'	1.0'	ST	SM	2.2	SILTY SAND: Fine t pale yellowish brown	o v. fine grained; (10YR6/2).		2.0° LD. Scheduln 40 Throndod PVC Blaor Fijo	
10'	10-12	1.0	SS	SM	0.9	SILTY SAND: Fine calliche indurated; w	to v. fine grained; ery pale orange; (10YR8/2).			
¢	15-17	1.0'	SS	SM	0.7	SILTY SAND: Fine t calliche indurated, ve	o v. fine grained; ry pale orange; (10YR8/2).		16'	Bostachte Pellet Keul
20'	20-22'	1.5'	SS	SM	1.1	SILTY SAND: Fine orange (10YR8/6)	to v. fine; pale to medium		20'	5/16 Sand
	25-27	1.5'	SS	SM	1.1	SILTY SAND: Fine pale to medium oran	to v. fine grained, caliche indurated, age, moist (10YR8/6) to v. fine grained with 1/4" limestone			2.6" LD. Schodulo 48 Threaded, Slotted 0.018 PVC Well Screen
30'	27-29 *29-31'	1.5'	SS SS	SM SM	0.5	nodules, pale orange SILTY SAND: Fine nodules, pale orange	to v. fine grained; 1* linestone brown, moist (5YR 6/4)			
40'									40'	End Cap
SS - spli SB - spli ST - she RC - roo SH - she	ample Ty t spoon it barrel lby tube ck core ovel (surface)	pes	NOT * - si Botti Grou	TES: ample om of om of undwa	e subm Boring Monit	itted for analy g @ 40.0' or Well @ 40.0 ~ 30.0'	tical analysis 0'			

Well	Northing	Easting	Top of Ground	Top of Casing	Depth to	Water Elev.	HSd
lentification			(feet)	(feet)	Groundwater (feet)	(feet)	Thicknes (feet)
MW-1	580176	816099	3556.90	3559.30	32.97	3526.33	0.00
MW-2	580091	816331	3555.80	3558.40	32.40	3526.00	00'0
MW-3	580302	816257	3555.70	3558.20	33.98	3526.63	2.74
MW-4	580586	815899	3558.10	3560.70	33.73	3526.97	00'0
MW-5	580677	815573	3558.50	3561.10	33.95	3527.15	0.00
MW-6	580518	816178	3557.70	3560.30	33.51	3526.79	00.0
7-WM	579793	816230	3555.50	3558.00	32.49	3525.51	0.00
MW-8	579801	816448	3552.20	3557.60	32.43	3525.17	0.00

		$\mathcal{D}_{\mathcal{D}} = \{ \mathcal{D}_{\mathcal{D}} : \mathcal{D}_{\mathcal{D}} \}$	Revised June 1972
$W_{ij} = M_{ij} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left($	STATE ENGINEER OFFICE	· ·	
· · ·	WELL RECORD		
		(James	
	Section 1. GENERAL INFORMATION		
(A) Owner of well Amerada Hess	Corporation(Byrd Lease)	Owner's Well N	10. <u>MW-5</u>
Street or Post Office Address P.O.	Box 840	· · · · · · · · · · · · · · · · · · ·	
City and State Semi	GPS:1	N-32-35-27-8	
Well was drilled under Permit No.	and is located i	in the: W-103-18-24	8.3
a	¼ of Section Township	-20-5 Range R-3	6-EN.M.P.M.
b. Tract No of Map No.	of the		
c. Lot No of Block No	of the		
Subdivision, recorded in	County.		· .
d V- feat V-	feet N.M. Coordinate S	uctem	Zone in
the	reet, iv.m. Coordinate 3	ystem	Crant.
(B) Drilling Contractor White Dri	11ing Company	License No. WD-1	456
Address P.O. Box 906, Cly	de, TX 79510		
Drilling Began 6/25/01 Comp	leted6/25/01Type tools	Size	of hole 5.0 in.
Elevation of land surface or top of "Ca	sing elevation _{ell is} 3561.1'	_ ft. Total depth of well_	40.0 ft.
Completed well is Shallow . a	tesian Monitor Weldepth to water	upon completion of well.	28.5ft.
Sect	ion 2. PRINCIPAL WATER-BEARING ST	RATA	
Depth in Feet Thickness	Description of Water Bearing F	E	stimated Yield
From To in Feet		Amation (gal	lons per minute)
28.5	Orange to Lt. brown si	lty sand/w/cal	iche
			···
· · ·			
	- <u>I</u>	<u> </u>	

Section	2	DECODD	OF	C	CINIC
Section	3.	RECORD	UF	CA:	SING

		•	Sectio	n 3. RECORD (JF CASING					
Diameter	Pounds	Threads	Depth	in Feet	Length	Turne of Chee	Perforations			
(inches)	per foot	per in.	Тор	Bottom	(feet)	(feet)	(feet)	Type of Shoe	From	То
2.0		- 4	0.0	40.0	20.0	point	20.0	40.0		
						· · · · · · · · · · · · · · · · · · ·				
						· · · · · · · · · · · · · · · · · · ·				
							·			

Section 4. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet		Matheast of Discourses
From	То	Diameter	of Mud	of Cement		Method of Placement
40.0	18.0	5.0	5.5	gravel pa	ckeđ	poured
18.0	16.0	5.0	1.0	Bent. pel	lets	poured
16.0	0.0	5.0	6.5	cement		poured

Section 5. PLUGGING RECORD

Plugging ContractorAddress	- 	Depth	in Feet	Cubic Feet
Plugging Method	NO.	Тор	Bottom	of Cement
Date Well Plugged	- 1		1	
Plugging approved by:	2			
State Engineer Representative	- 3 4			

_ Use .

١

Date Received

File No.

.

FOR USE OF STATE ENGINEER ONLY Quad ____

____ FWL ____

__ Location No._

·. r

_____ FSL__

•

	1 22644514T	40071 49	
Color and Type of Material Encountered	in Feet	To	From
Pale orange silty sand w/ caliche	0.05	20.0	0.0
Very pale orange to it. brown silty sand w/callch	0.2	25.0	50.0
bres vills nword .il	5.0	0-75	0.25
Orange to it. brown silty sand w/caliche	13.0	0°0Þ	27.0
and a second sec			
	ļ		
		. 	
	ļ		
	<u> </u>		
	·	•	
	<u> </u>		
e	ļ		
	·	. 	
ALAY Selection			
	· .		
	1		
<u> </u>			
and the second			<u> </u>
•			

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

J IIHa

. .

.

......

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is defined, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed.

Revised June 1972

STATE ENGINEER OFFICE WELL RECORD

Section 1. GENERAL INFORMATION

- Owner's Well No. MW-6 Amerada Hess Corporation(Byrd Lease) (A) Owner of well _____ Street or Post Office Address P.O. Box 840 Seminole, TX 79360 City and State _

GPS:N-32-35-27.8 _ and is located in the: W-103-18-28.3

___ ¼ _____ ¼ _____¼ of Section <u>12</u> Township <u>T-20-S</u> Range <u>R-36-E</u> N.M.P.M. a. __

_____ of Map No. ____ _____ of the ____ b. Tract No.____

Well was drilled under Permit No.____

c. Lot No. _____ of Block No. _____ of the Subdivision, recorded in . ___ County.

_____ feet, N.M. Coordinate System_ ____ feet, Y=__ Zone in d. X= ____ Grant. the.

(B) Drilling Contractor _____ White Drilling Company License No. WD-1456

Address P.O. Box 906, Clyde, TX 79510

Drilling Began ______ Completed ______ Type tools _____ ____ Size of hole _____ in. Elevation of land surface or top of casing elevation and surface or top of casing elevation of land surface or top of casing elevation of the surface of the Completed well is, is shallow artesian. Monitor Welbepth to water upon completion of well 29.0 ft.

		Sectio	on 2. PRINCIPAL WATER-BEARING STRATA	
Depth	in Feet	Thickness		Estimated Yield
From	То	in Feet	Description of Water-Bearing Formation	(gallons per minute)
29.0			Pale yellow brown silty sand &	gravel
				•••••
• •				
		· · · · · · · · · · · · · · · · · · ·		

Section 3. RECORD OF CASING

Diameter	Pounds	Threads	Depth	in Feet	Length	Turns of Shop	Perfor	ations
(inches)	per foot	per in.	Тор	Bottom	(feet)	Type of Shoe	From	To
2.0	. , .	- 4_	0.0	40.0	20.0	point	20.0	40.0
		,				м		

Section 4. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	-	Math ad af Blasses
From	To	Diameter	of Mud	of Cement		Method of Placement
40.0	18.0	5.0	5.5	gravel pac	ked	poured
18.0	16.0°	5.0	1.0	Bent. pell	ets	poured
16.0	0.0	5.0	6.5	cement		poured

Section 5. PLUGGING RECORD

Address	· · · · · · · · · · · · · · · · · · ·	-	Depth	in Feet	Cubic Feet
Plugging Method	······································	- <u>NO.</u>	Тор	Bottom	of Cement
Date Well Plugged	· · · · · · · · · · · · · · · · · · ·	- 1		· ·	-
Plugging approved by:	1 · · · · ·	2	101 A		
		- 3			
	State Engineer Representative	4	1 - 35	1 1 1 1 1 1 1 1 1	

Date Received

.

FOR USE OF STATE ENGINEER ONLY

Quad _____

File No ...

Use Location No._

__ FWL _

_ FSL_

			Section 6. LOG OF HOLE			
Depth	in Feet	Thickness	Color and Type of Material Encountered			
From	To	in Feet				
0.0	10.0	10	Pale yellowish brown silty sand w/caliche			
10.0	15.0	5	Yellowish gray silty sand w/chert nodules			
15.0	25.0	10	Lt: bluish gray silty/sand			
25.0	30.0	5	Pale yellow brown silty sand w/gravel			
30.0	35.0	5	Lt. blue to gray silty clay			
35.0	40.0	5	Lt. blue to gray silty clay w/limestone nodules			
······						
· · · · · · · · · · · · · · · · · · ·						
	•					
<u> </u>						
		•				

J

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned here by certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed

Driller

۲.,

Revised June 1972

4

STATE ENGINEER OFFICE

Section	1.	GENERAL	INFORMATION
---------	----	---------	-------------

(A) Owner of	well Am	erada Hess	Corporat:	ion(Byrd Le	<u>ase)</u> c	wner's Well NoM	W-7
Street or	Post Office Ad	dress P.U.	BOX 840	70260			
City and	State	Semin	loie, ix	/9300			
					GPS:N-	32-35-27.8	
Well was drilled	under Permit	No	·····	and is loca	ited in the: W_{-}	103-18-28.3	
a	¼ ¼	¼	_ ¼ of Section	12 Townshij	p_T-20-S_	Range <u>R-36-E</u>	N.M.P.W.
b. Tract	No	of Map No		of the			
c. Lot N	0	of Block No		of the	······································	· · · · · · · · · · · · · · · · · · ·	
Subdi	vision, recorded	l ín		County.			
d. X=		_ feet, Y=	I	feet, N.M. Coordina	ate System		Zone in
the		······································					Grant.
(B) Drilling (Contractor <u>W</u>	hite Drill	ing Compa	ny	License N	o. WD-1456	·
Address	P.O. B	ox 906, C1	yde, TX	79510			
Drilling Began	6/25/01	Complet	ed 6/25/01	Type tools	s	Size of hole	<u>5.0</u> in.
Elevation of la	nd surface or t	op of casi	lng elevat	ignell is_3558	3.0' ft. Total d	epth of well4	0.0ft.
Completed wel	lis, 🗖 st	allow 🔲 arte	_{sian.} Monito	r Weblpth to wa	ater upon compl	etion of well <u>3</u>	2.0 ft.
		Section	n 2. PRINCIPAL	WATER-BEARING	STRATA		
Depth	in Feet	Thickness				Estimate	d Yield
From	То	in Feet	Descript	ion of Water-Bearin	ng Formation	(gallons pe	r minute)
32.0			Very pale	orange sil	Lty sand w	/limestone	
			T				
			† · · ·	· · · · · · · · · · · · · · · · · · ·			
	 	· · · · · · · · · · · · · · · · · · ·	·····				<u> </u>

Section 3. RECORD OF CASING

Diameter Pounds		Threads Depth in Feet		Length	Trues of Shas	Perforations		
(inches)	per foot	per in.	Тор	Bottom	(feet)	Type of Shoe	From	To
2.0		• 4	0.0	40.0	20.0	point	20.0	40.0

Section 4. RECORD OF MUDDING AND CEMENTING

Depth	Depth in Feet		Sacks	Cubic Feet	Martha de Ciblera and
From	То	Diameter	of Mud	of Cement	Method of Placement
40.0	18.0	5.0	5.5	gravel packed	poured
18.0	16.0	5.0	1.0	Bent. pellets	poured
16.0	0.0	5.0	6.5	cement	poured

Section 5. PLUGGING RECORD

Address		- No	1	Depth i	Cubic Feet	
Plugging Method		10.		Тор	Bottom	of Cement
Date Well Plugged	·	- 1				· · · · ·
Plugging approved by:		2	1			
· · · · · · · · · · · · · · · · · · ·		- 3			· · · ·	
State Eng	ineer Representative	4			4.5	

FOR USE OF STATE ENGINEER ONLY

Use

Date Received

Quad _____

_ FWL _____

_ FSL_

;

File No._

.

_____ Location No.

			Section 6. LOG OF HOLE
Depth	in Feet	Thickness	Color and Type of Material Encountered
From	To	III Feet	
0.0	10.0	10.0	Gravish orange silty sand
10.0	20.0	10.0	Gray ot very pale orange silty sand
20.0	25.0	5.0	Pale to med. yellowish orange silty sand
25.0	40.0	15.0	Very pale orange silty sand w/limestone nodules
	· · · · ·		
·····			
	,		
		. <u> </u>	
		· · · · · · · · · · · · · · · · · · ·	
		N	
<u> </u>		L	

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Sar Are

Driller

۲.

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed

STATE ENGINEER OFFICE

Revised June 1972

Section 1. GENERAL INFORMATION

 (A) Owner of well <u>Amerada Hess Corporation(Byrd Lease)</u> Owner's Well No. <u>MW-8</u>

 Street or Post Office Address <u>P.O. Box 840</u>

 City and State <u>Seminole, TX 79360</u>

GPS: N-32-35-27.8 Well was drilled under Permit No.______ and is located in the: W-103-18-28.3

a. _____ ¼ ____ ¼ ____ ¼ of Section <u>12</u> Township <u>T-20-S</u> Range <u>R-36-E</u> N.M.P.M.

b. Tract No,______ of Map No, ______ of the ______

Subdivision, recorded in _____ County.

d. X=______feet, Y=_____feet, N.M. Coordinate System_____Zone in the ______Grant.

(B) Drilling Contractor _____ White Drilling Company _____ License No. WD-1456

Address P.O. Box 906, Clyde, TX 79510

Drilling Began <u>6/25/01</u> Completed <u>6/25/01</u> Type tools <u>Size of hole 5.0</u> in. Elevation of land surface or top of casing elevating well is <u>3557.6'</u> ft. Total depth of well <u>40.0</u> ft. Completed well is <u>shallow</u> artesian. Monitor well bepth to water upon completion of well <u>30.0</u> ft.

Section 2. PRINCIPAL WATER-BEARING STRATA

Depth in Feet Thickness			Description of Water-Bearing Formation	Estimated Yield				
From	To	in Feet		(gailons per minute)				
30.0			Pale orange brown silty sand	· · · · · · · · ·				
			w/limestone nodules					
				-				

Section 3. RECORD OF CASING

Diameter Pounds		Threads Depth in Feet			Length	Tune of Shee	Perforations		
(inches)	per foot	per in.	Тор	p Bottom (feet)		Type of Shoe	From	To	
2.0		4	0.0	40.0	20.0	point	20.0	40.0	

Section 4. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	Mathed of Blassmant
From	То	Diameter	of Mud	of Cement	Metilod of Placement
40.0	18.0	5.0	5.5	gravel packed	poured
18.0	16.0	5.0	1.0	Bent. pellets	poured
16.0	0.0	5.0	6.5	cement	poured

Section 5. PLUGGING RECORD

Address Depth in Feet Cubic Feet Plugging Method Top Bottom of Cement Date Well Plugged 1 2 2 Plugging approved by: 2 0	Plugging Contractor				,		
Plugging Method No. Top Bottom of Cement Date Well Plugged 1 1 1 1 Plugging approved by: 2 1 1	Address		Dept	Depth in Feet			
Date Well Plugged 1 Plugging approved by: 2	Plugging Method	No.	Тор	Bottom	of Cement		
Plugging approved by:	Date Well Plugged	<u>1</u>			-		
	Plugging approved by:	2			1		
3	· · · · · · · · · · · · · · · · · · ·	3		1			
State Engineer Representative	State Engineer Representative	4					

FOR USE OF STATE ENGINEER ONLY

_ Use _

Date Received

File No.

Quad _____

_____ FWL ____

_ FSL_

			Section 6. LOG OF HOLE
Depth	in Feet	Thickness in Feet	Color and Type of Material Encountered
0.0	10.0	10	Pale yellowish brown silty sand
10.0	20.0	10	Very pale orange silty sand w/caliche
20.0	25.0	5	Pale to Med. orange silty sand
25.0	27.0	2	Pale to Med. orange silty sand w/caliche
27.0	40.0	13	Pale orange to; lt. brown silty sand w/limestone
	· .		
	· · · · · · · · · · · · · · · · · · ·		
<u></u>			
		,	
·		· .	
		۱	

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

3~14

Driller

~

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed

Amerada Hess Corporation W. P. Byrd Lease Section 12, T-20-S, R-36-E Lea County, New Mexico

Drilling Monitor Well No. 5, June 25, 2001

Drilling Monitor Well No. 6, June 25, 2001

Meridian Alliance Group, LLC

Amerada Hess Corporation W. P. Byrd Lease Section 12, T-20-S, R-36-E Lea County, New Mexico

Drilling Monitor Well No. 7, June 25, 2001

Drilling Monitor Well No. 8, June 25, 2001

MILLENNIUM LABORATORIES, INC. 1544 Sawdust Road, Suite 402. The Woodlands, Texas 77380. ph. 281-362-8490. fax 281-362-8491.

Report No: 2001070089

Client: Meridian Alliance Group Project Name: Byrd Tank Project Number:07C005537

MBTEX/TPH Water Summary Report

Sample Number	Sample Description	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Total Xylenes (mg/L)	Total BTEX* (mg/L)	MtBE (mg/L)	TPH C6-C12 (mg/L)	TPH C12-C28 (mg/L)	TPH C6-C28 (mg/L)
1	MW-1	<0.002	<0.005	<0.005	<0.005	ND	<0.010	N/A	N/A	N/A
2	MW-2	0.025	<0.005	<0.005	<0.005	0.025	<0.010	N/A	N/A	N/A
3	MW-3	0.113	<0.005	0.016	0.034	0.163	<0.010	N/A	N/A	N/A
4	MW-4	0.038	<0.005	<0.005	<0.005	0.038	<0.010	N/A	N/A	N/A
5	MW-5	<0.002	<0.005	<0.005	<0.005	ND	<0.010	N/A	N/A	N/A
6	MW-6	0.015	<0.005	<0.005	<0.005	0.015	<0.010	N/A	N/A	N/A
7	MW-7	<0.002	<0.005	<0.005	<0.005	ND	<0.010	N/A	N/A	N/A
8	MW-8	<0.002	<0.005	<0.005	<0.005	ND	<0.010	N/A	N/A	N/A

* = Total BTEX calculation does not include MtBE ND = Not Detected N/A = Analysis not requested

Report Date: 07/17/2001

			\frown	ŀ																																						
			units	mg/Kg	mg/Kg																																					
13	e Group 05537		Lead	N/A	N/A																																					
20010602	ridian Allianc ne: Byrd nber: 07C0		TPH C6-C28	N/A	N/A																																					
Report No:	Client: Me Project Nan Project Nun	Project Nar Project Nur															TPH C12-C28	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A																
			TPH C6-C12							N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A																								
			MtBE	N/A	N/A																																					
LENNIUM LABORATORIES, INC.	port	Total BTEX*	QN	QN	4.265	QN	QN	QN	QN	QN	QN																															
	Summary Re	Xylenes, total	<0.125	<0.125	2.23	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125																															
	MBTEX/TPH 5	MBTEX/TPH	Ethylbenzene	<0.125	<0.125	0.995	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125																														
																		Ł	[4									~	Σ	MBT	Toluene	<0.125	<0.125	1.04	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	
																		Benzene	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125															
		Samp le Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil																															
		Sample Description	MW-5	MW-5	MW-6	MW-6	7-WM	7-WM	MW-8	MW-8	Composite																															
I544 Saw			Sample Number	-	7	ო	4	5	9	7	œ	6																														

Ì

* Total BTEX calculation does not include MtBE ND = Not Detected N/A = Analysis not requested

Report Date 07/18/2001

ł T

ļ

-	Page of the second seco			r each chain project	ample with	10-C28	If TPH is non- ((Tatal)	(100)			8	awb	s to 1	admı.	otal Nu Sontair	° ^	m	M	m	M	m	m	m					s) Rec'd At			es no l		
			Number		nalyze one s	ie highest C ₁ oncentratior	in TPH (Total) - ontent on RTF)		TRPP		<u>م</u> .	- 0	v 0		> 0 T	' 					 				 		 	of Sample(s Lab			۔ ۲		
	ject Numbe		۲۲	r V	0 ppm		mpling point based o Ith lowest aromatic c	No	Level III				Comments															Condition o	Custody Seaf Intact	Sample(s) Rec'i Iced/Cool	in the second		
	-abs - Pro		AB USE ON	700	Co-C28 total > 10	Se ⁻ C₂8 total >5.0	the cleanest sar elect sample w	Yes	el: Level II					_														Time:	Time:	Time:			
	nnium L		1	<u>, 0</u>	VH-Solt: If, C	NH-Water: If, C	TDS: Analyze detect, s	Results:	ting Leve						Othe																		
	Mille			200				Fax F	Repor			ր	puic	ээТо	ъЭ													Date:	Date:	Date:			
		Fax	TION	537	¥	Below	くらくつ		Innel		(8310	/ 0/	78 H	Vd S			 												<u>Labs:</u>			
102	80	-8491	FORMA	80		t Name(s)	14		lian-Alliance Perso 'esX No	vesX No	1.814 \		LLH 1002 / 		TTP TTP						╉			┝─┼		╀				<u>nnium</u>			
Suite 4	s 773	362 (11)	PROJECT IN	Per C J	BYRI	by: Print	5.12							S	IL					1										Miller			
ġ	s, Texi	ŝ		oject Num	te Name	Sampler	5		Merio			4 831	OS / 0/3	/ £C														by:	by:	'ed <u>b</u> y			
wdust	odland	Phone		<u>*</u>	S N		n with	ized to 2		ſ	(1.8	17	50	01 H	ar P		~	~	~	1	-		/		_			Received	Received	Receiv			
544 Se	The Wo	31) 362-8490	IATION	37	- Invoice pe	oice per	le informatio	Labs is autho	Refer to Remark	Remar	>	BE	WLBE	I - XHI	LEI C	\cap	5	2	2	7	3	2	2					38		[s]	-		
-			NFORM	555,	rsement Site agreement	ect Site - Inv	lient - Includ	Villennium I. tees	Aanager [nd Time	king Day	king Day		Metho									Τ				nei 7.	ne:	truction			
		<u>8</u>	I DNIC	ğ	CC Re-Imbu ian-Ailiance	Funded Proj nent/quote	t Billing to C of Custody	ty Project - I te for Rush F	Project A		Inmaroui	10 Wor	5 Wor	Other:	Matrix													1 1 1 0	Ē	ss & ins			
			INVOI	0	TNR(Merid	Non-	Direc Chain	Priori	1 <u>1</u>						≥ 	X	S K	V o	× 8	blx	X Q	א 8	0 X	<u>.</u>				7-7.) addre:			
IES				P.O.#	অ				Send Inve to:						ected Tim	12:0	1:11	12.3	12:0	l0′3	13:30	10:4	9.2	n. ;		-		Date:	Date:	shipping			
TOR																Col Date	7.7	7-7	セ・モ	7-7	7-7	7-7	f-f	t-t							opy for s		
ORA	ORD	OUP	хт то:	Т ТО:	т то:			202									ud													}		back c	
LAB	Y RECC	CE GRO				т то:			NDER									tificatio								~				\mathbb{N}	7)	t: [see
MD	STODY	TIANC	REPOR			er He									le Iden	5	ער-2	5-1	7-1	14-5	10.6	1 - 1	3-20							pmen	ſ		
EN	OF CU	AN-AL		uc	ton	10) pr		ion:	ion:						Sampl	S	ξ	A	æ	Ś	٤	X	٤					J Aq P	d by:	of Shi			
ILLL	HAIN	ERIDI		Houst	☐ Arling	Midlar Nidlar] Tyler	her Locati	her Locati	marks:					ab o.	$\left - \right $						N.Y	~		\neg			linquishe	linquishe	ethod	ł		

I

h i

Report No.: 2001070089 07/17/2001

Client: Meridian Alliance Group

TEST RESULTS BY SAMPLE

Sample No.:	1	Date Collected: 07/07/2	2001	Time Collect	ted: 12:00:00	Matrix: Groundwater			
Description:	MW-1	Projec	t Name: By	rd Tank					
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst		
MtBE		SW-846 5030B/8021B	<0.010	mg/L	0.010	07/14/2001	TRE		
Benzene		SW-846 5030B/8021B	<0.002	mg/L	0.002	07/14/2001	TRE		
Toluene		SW-846 5030B/8021B	<0.005	mg/L	0.005	07/14/2001	TRE		
Ethylbenzene		SW-846 5030B/8021B	< 0.005	mg/L	0.005	07/14/2001	TRE		
Xylenes, total		SW-846 5030B/8021B	< 0.005	mg/L	0.005	07/14/2001	TRE		
TPH (418.1)		418.1	<1.0	mg/L	1.000	07/17/2001	MAT		
Sample No.:	2	Date Collected: 07/07/2	2001	Time Collect	ted: 11:15:00	Matrix: Groun	ndwater		
Description:	MW-2	Projec	t Name: By	rd Tank					
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst		
MtBE		SW-846 5030B/8021B	<0.010	mg/L	0.010	07/14/2001	TRE		
Benzene		SW-846 5030B/8021B	0.025	mg/L	0.002	07/14/2001	TRE		
Toluene		SW-846 5030B/8021B	< 0.005	mg/L	0.005	07/14/2001	TRE		
Ethylbenzene	0,358	SW-846 5030B/8021B	< 0.005	mg/L	0.005	07/14/2001	TRE		
Xylenes, total		SW-846 5030B/8021B	< 0.005	mg/L	0.005	07/14/2001	TRE		
TPH (418.1)		418.1	69.8	mg/L	1.000	07/17/2001	MAT		
Sample No.: Description:	3 MW-3	Date Collected: 07/07/2 Projec	2001 t Name: By	Time Collect rd Tank	ted: 12:30:00	Matrix: Grour	ndwater		
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst		
MtBE		SW-846 5030B/8021B	<0.010	mg/L	0.010	07/14/2001	TRE		
Benzene		SW-846 5030B/8021B	0.113	mg/L	0.002	07/14/2001	TRE		
Toluene	0.057	SW-846 5030B/8021B	< 0.005	mg/L	0.005	07/14/2001	TRE		
Ethylbenzene		SW-846 5030B/8021B	0.016	mg/L	0.005	07/14/2001	TRE		
Xylenes, total		SW-846 5030B/8021B	0.034	mg/L	0.005	07/14/2001	TRE		
TPH (418.1)		418.1	1960	mg/L	100.000	07/17/2001	MAT		
Sample No.:	4	Date Collected: 07/07/2	2001	Time Collect	ted: 13:00:00	Matrix: Grour	ndwater		
Description:	MW-4	Project	t Name: By	rd Tank					
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst		
MtBE		SW-846 5030B/8021B	<0.010	mg/L	0.010	07/14/2001	TRE		
Benzene		SW-846 5030B/8021B	0.038	mg/L	0.002	07/14/2001	TRE		
Report No.: 2001070089 07/17/2001 Client: Meridian Alliance Group

Sample No.:	4	Date Collected: 07/07/2001 Time Collected: 13:00:00				Matrix: Groundwater		
Description:	MW-4	Projec	t Name: By	vrd Tank				
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst	
Toluene		SW-846 5030B/8021B	<0.005	mg/L	0.005	07/14/2001	TRE	
Ethylbenzene	347	SW-846 5030B/8021B	< 0.005	mg/L	0.005	07/14/2001	TRE	
Xylenes, total		SW-846 5030B/8021B	<0.005	mg/L	0.005	07/14/2001	TRE	
ГРН (418.1)		418.1	11.1	mg/L	1.000	07/17/2001	MAT	
Sample No.:	5	Date Collected: 07/07/2	Date Collected: 07/07/2001 Time Collected: 10:30:00				ndwater	
Description:	MW-5	Projec						
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst	
MtBE		SW-846 5030B/8021B	<0.010	mg/L	0.010	07/14/2001	TRE	
Benzene		SW-846 5030B/8021B	< 0.002	mg/L	0.002	07/14/2001	TRE	
Foluene		SW-846 5030B/8021B	< 0.005	mg/L	0.005	07/14/2001	TRE	
Ethylbenzene		SW-846 5030B/8021B	<0.005	mg/L	0.005	07/14/2001	TRE	
Xylenes, total		SW-846 5030B/8021B	< 0.005	mg/L	0.005	07/14/2001	TRE	
ГРН (418.1)		418.1	<1.0	mg/L	1.000	07/17/2001	MAT	
Sample No.:	6	Date Collected: 07/07/2	2001	Time Collect	ed: 13:30:00	Matrix: Groun	idwater	
Description:	MW-6	Projec	t Name: By	rd Tank				
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst	
MtBE		SW-846 5030B/8021B	<0.010	mg/L	0.010	07/14/2001	TRE	
Benzene		SW-846 5030B/8021B	0.015	mg/L	0.002	07/14/2001	TRE	
ſoluene		SW-846 5030B/8021B	< 0.005	mg/L	0.005	07/14/2001	TRE	
Ethylbenzene		SW-846 5030B/8021B	< 0.005	mg/L	0.005	07/14/2001	TRE	
Xylenes, total		SW-846 5030B/8021B	<0.005	mg/L	0.005	07/14/2001	TRE	
FPH (418.1)		418.1	<1.0	mg/L	1.000	07/17/2001	MAT	
Sample No.:	7	Date Collected: 07/07/2	2001	Time Collect	ed: 10:00:00	Matrix: Groun	Idwater	
Description:	MW-7	Project	t Name: By	rd Tank				
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst	
MtBE		SW-846 5030B/8021B	<0.010	mg/L	0.010	07/14/2001	TRE	
Benzene		SW-846 5030B/8021B	<0.002	mg/L	0.002	07/14/2001	TRE	
Foluene		SW-846 5030B/8021B	< 0.005	mg/L	0.005	07/14/2001	TRE	
Ethylbenzene		SW-846 5030B/8021B	< 0.005	mg/L	0.005	07/14/2001	TRE	

Report No.: 2001070089 07/17/2001 Client: Meridian Alliance Group

Sample No.: Description:	7 MW-7	Date Collected: 07/07/2 Projec	Date Collected: 07/07/2001 Project Name: By			Matrix: Groundwater		
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst	
Xylenes, total		SW-846 5030B/8021B	SW-846 5030B/8021B <0.005		0.005	07/14/2001	TRE	
ГРН (418.1)		418.1	<1.0	mg/L	1.000	07/17/2001	MAT	
Sample No.: Description:	8 MW-8	Date Collected: 07/07/2 Projec	2001 t Name: By	Time Collecte rd Tank	ed: 09:30:00	Matrix: Groundwater		
		5	•					
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst	
Test MtBE		Method SW-846 5030B/8021B	Results <0.010	Units mg/L	Detection Limit	Date Analyzed 07/14/2001	Analyst TRE	
Test MtBE Benzene		Method SW-846 5030B/8021B SW-846 5030B/8021B	Results <0.010 <0.002	Units mg/L mg/L	Detection Limit 0.010 0.002	Date Analyzed 07/14/2001 07/14/2001	Analyst TRE TRE	
Test MtBE Benzene Foluene		Method SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B	Results <0.010 <0.002 <0.005	Units mg/L mg/L mg/L	Detection Limit 0.010 0.002 0.005	Date Analyzed 07/14/2001 07/14/2001 07/14/2001	Analyst TRE TRE TRE	
Test MtBE Benzene Foluene Ethylbenzene		Method SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B	Results <0.010 <0.002 <0.005 <0.005	Units mg/L mg/L mg/L mg/L	Detection Limit 0.010 0.002 0.005 0.005	Date Analyzed 07/14/2001 07/14/2001 07/14/2001 07/14/2001	Analyst TRE TRE TRE TRE TRE	
Test MtBE Benzene Foluene Ethylbenzene Kylenes, total		Method SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B SW-846 5030B/8021B	Results <0.010 <0.002 <0.005 <0.005 <0.005	Units mg/L mg/L mg/L mg/L mg/L	Detection Limit 0.010 0.002 0.005 0.005 0.005	Date Analyzed 07/14/2001 07/14/2001 07/14/2001 07/14/2001 07/14/2001	Analyst TRE TRE TRE TRE TRE TRE	

QC Batch ID: 0170281

QC SUMMARY REPORT

BTEX by EPA Method 8021B - Water

Laboratory Control Sample (LCS/LCSD) Method Blank Results

	Method Spike LCS		CS	LC	CSD	LCS/D	QC	Acceptance Criteria	
CONSTITUENT	Blank	Added	Result	Recovery	Result	Recovery	RPD	RPD	Spike % Recovery
	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(%)	(%)	(%)	(Low - High Limit)
MtBE	<0.010	0.100	0.110	109.6%	0.117	117.2%	7%	<u>+</u> 30	70 - 130
Benzene	<0.002	0.100	0.099	98.8%	0.103	103.0%	4%	<u>+</u> 30	70 - 130
Toluene	<0.005	0.100	0.105	105.0%	0.109	109.1%	4%	<u>+</u> 30	70 - 130
Ethylbenzene	<0.005	0.100	0.104	103.9%	0.110	109.6%	5%	<u>+</u> 30	70 - 130
Xylenes, total	<0.005	0.300	0.320	106.6%	0.341	113.5%	6%	<u>+</u> 30	70 - 130

Sample/Sample Duplicate

	Sample	Sample Dup.	Dup.	QC Acceptance Criteria
CONSTITUENT	Result	Result	RPD	RPD
	(ppm)	om) (ppm)		(%)
MtBE	0.667	0.683	2%	<u>+</u> 30
Benzene	<0.002	<0.002	N/A	<u>+</u> 30
Toluene	<0.005	<0.005	N/A	<u>+</u> 30
Ethylbenzene	<0.005	<0.005	N/A	<u>+</u> 30
Xylenes, Total	<0.005	<0.005	N/A	<u>+</u> 30

Sample Matrix Spike (MS)

	Sample	Spike		NS	QC Acceptance Criteria
CONSTITUENT	Result (ppm)	Added (ppm)	Result (ppm)	Recovery (%)	Spike % Recovery (Low - High Limit)
MtBE	<0.010	0.100	0.124	124.0%	70 - 130
Benzene	0.0383	0.100	0.152	113.6%	70 - 130
Toluene	<0.005	0.100	0.121	121.1%	70 - 130
Ethylbenzene	<0.005	0.100	0.123	122.8%	70 - 130
Xylenes, Total	<0.005	0.300	0.371	123.5%	70 - 130

Sequence Date(s):	7/13/01
Sample ID - MS:	2001070089-4
Sample ID - Duplicate:	2001070086-1

Project(s) In Batch: 2001070082 (3-5) 2001070085 (1) 2001070086 (1) 2001070087 (1-2) 2001070088 (1-3) 2001070089 (1-8) 200170090 (1-2)

QC Batch ID: 071701W

QC SUMMARY REPORT

TPH by 418.1 Method

Laboratory Control Sample (LCS/LCSD) Method Blank Results

	Method	Spike	L	LCS		LCSD		QC	Acceptance Criteria
CONSTITUENT	Blank	Added	Result	Recovery	Result	Recovery	RPD	RPD	Spike % Recovery
	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(%)	(%)	(%)	(Low - High Limit)
ТРН - 418.1	<1.0	50.0	43.1	86.2%	44.2	88.4%	3%	<u>+</u> 30	70 - 130

Sample Matrix Spikes (MS/MSD)

	Sample	Spike	MS		MSD		MS/D	QC Acceptance Criteria	
CONSTITUENT	Result	Added	Result	Recovery	Result	Recovery	RPD	RPD	Spike % Recovery
	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(%)	(%)	(%)	(Low - High Limit)
ТРН - 418.1	<1.0	50.0	43.6	87.2%	44.5	89.0%	2%	<u>+</u> 30	70 - 130

Sample Used for MS/MSD: 2001050211-1

Sequence Date(s): 7/17/2001

Batch Extraction/Prep Date: 7/17/2001

Data Qualifiers: NONE - associated with this batch of samples.

Project(s) In Batch:

2001070084 2001070089 2001070090 2001070097 Report No.: 2001060213 07/17/2001

Client: Meridian Alliance Group

Date Analyzed

07/03/2001

07/03/2001

Analyst

MEP

MEP

	<u>TI</u>	EST RESU	JLTS BY SAN	APLE			
Sample No.: 1 Description: MW-5	Date Collected: 06/25/2 Projec	Matrix: Soil	Matrix: Soil				
Test	Method	Results	Units	Detection Limit	Date Analyzed	Analyst	
Benzene	SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP	
Toluene	SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP	
Ethylbenzene	SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP	
Xylenes, total	SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP	
ГРН (418.1)	418.1	<10.0	mg/Kg	10.000	07/09/2001	MAT	
Chloride	EPA 300.0	1,403	mg/Kg	0.100	07/14/2001	KF	
Sample No.: 2	Date Collected: 06/25/2	2001	Time Collecte	d: 13:25:00	Matrix: Soil	· · · · · · · · · · · · · · · · · · ·	
Description: MW-5	Project	t Name: By	٧rd				
Test	Method	Method Results Units		Detection Limit	Date Analyzed	Analyst	
Benzene	SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP	
Toluene	SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP	
Ethylbenzene	SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP	
Kylenes, total	SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP	
ГРН (418.1)	418.1	<10.0	mg/Kg	10.000	07/09/2001	MAT	
Chloride	EPA 300.0	500	mg/Kg	0.100	07/14/2001	KF	
Sample No.: 3	Date Collected: 06/25/2	2001	Time Collecte	d: 10:07:00	Matrix: Soil	· · · · · · · · · · · · · · · · · · ·	
Description: MW-6	Project	t Name: By	rd				
Test	Method	Results	Units	Detection Limit	Date Analyzed	Analyst	
Benzene	SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP	
Toluene	SW-846 5030B/8021B	1.04	mg/Kg	0.125	07/03/2001	MEP	
Ethylbenzene	SW-846 5030B/8021B	0.995	mg/Kg	0.125	07/03/2001	MEP	
Vylenes, total	SW-846 5030B/8021B	2.23	mg/Kg	0.125	07/03/2001	MEP	
ЪН (418.1)	418.1	51500	mg/Kg	1000.000	07/09/2001	MAT	
Chloride	EPA 300.0	229	mg/Kg	0.100	07/14/2001	KF	
Sample No.: 4	Date Collected: 06/25/2	.001	Time Collecte	d: 10:30:00	Matrix: Soil		
	Project	. name: By	iu				

Test

Benzene

Toluene

Method Units Results SW-846 5030B/8021B mg/Kg

< 0.125 SW-846 5030B/8021B < 0.125 mg/Kg

Limit

0.125

0.125

Report No.: 2001060213 07/17/2001

Client: Meridian Alliance Group

TEST RESULTS BY SAMPLE

Sample No.:	4	Date Collected: 06/25/2	Date Collected: 06/25/2001 Time Collected: 10:30:00				
Description:	MW-6	Project	t Name: By	vrd			
					Detection		
Test		Method	Results	Units	Limit	Date Analyzed	Analyst
Ethylbenzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP
Xylenes, total		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP
TPH (418.1)		418.1	414	mg/Kg	10.000	07/09/2001	MAT
Chloride		EPA 300.0	314	mg/Kg	0.100	07/14/2001	KF
Sample No.:	5	Date Collected: 06/25/2	Date Collected: 06/25/2001 Time Collected: 15:13:00		ed: 15:13:00	Matrix: Soil	
Description:	MW-7	Project	t Name: By	vrd			
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst
Benzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP
Toluene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP
Ethylbenzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP
Xylenes, total		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/03/2001	MEP
TPH (418.1)		418.1	<10.0	mg/Kg	10.000	07/09/2001	MAT
Chloride		EPA 300.0	102	mg/Kg	0.100	07/14/2001	KF
Sample No.:	6	Date Collected: 06/25/2	001	Time Collecte	ed: 15:39:00	Matrix: Soil	
Description:	MW-7	Project	Name: By	rd			
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst
Benzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP
Toluene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP
Ethylbenzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP
Xylenes, total		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP
TPH (418.1)		418.1	<10.0	mg/Kg	10.000	07/09/2001	MAT
Chloride		EPA 300.0	3,797	mg/Kg	0.100	07/14/2001	KF
Sample No.:	7	Date Collected: 06/25/2	001	Time Collecte	ed: 16:25:00	Matrix: Soil	
Description:	MW-8	Project	Name: By	rd			
Test		Method 1	Results	Units	Detection Limit	Date Analyzed	Analyst
Benzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP
Toluene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP
Ethylbenzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP
Xylenes, total		SW-846 5030B/8021B	< 0.125	mg/Kg	0.125	07/04/2001	MEP

Report No.: 2001060213 07/17/2001

TPH (418.1)

Client: Meridian Alliance Group

TEST RESULTS BY SAMPLE

Sample No.:	7	Date Collected: 06/25/	2001	Time Collecte	ed: 16:25:00	Matrix: Soil			
Description:	MW-8	Projec	t Name: B	yrd					
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst		
ГРН (418.1)		418.1	<10.0	mg/Kg	10.000	07/09/2001	MAT		
Chloride		EPA 300.0	126	mg/Kg	0.100	07/14/2001	KF		
Sample No.:	8	Date Collected: 06/25/	2001	Time Collecte	ed: 16:53:00	Matrix: Soil			
Description:	MW-8	Projec	Project Name: Byrd						
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst		
Benzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP		
Toluene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP		
thylbenzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP		
Kylenes, total		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP		
TPH (418.1)		418.1	<10.0	mg/Kg	10.000	07/09/2001	MAT		
Chloride		EPA 300.0	719	mg/Kg	0.100	07/14/2001	KF		
Sample No.:	9	Date Collected: 06/25/	2001	Time Collecte	:d: 10:00:00	Matrix: Soil			
Description:	Composite	Projec	t Name: By	vrd					
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst		
Benzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP		
oluene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP		
Sthylbenzene		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP		
Kylenes, total		SW-846 5030B/8021B	<0.125	mg/Kg	0.125	07/04/2001	MEP		

<10.0

mg/Kg

10.000

07/09/2001

MAT

418.1

QC Batch ID: 0120099C

QC SUMMARY REPORT

BTEX by EPA Method 8021B - Soil

Laboratory Control Sample (LCS/LCSD) Method Blank Results

	Method	Spike	LCS		LCSD		LCS/D	QC Acceptance Criteria	
CONSTITUENT	Blank (ppm)	Added (ppm)	Result (ppm)	Recovery (%)	Result (ppm)	Recovery (%)	RPD (%)	RPD (%)	Spike % Recovery (Low - High Limit)
Benzene	<0.125	2.50	2.32	92.8%	2.03	81.1%	13%	<u>+</u> 30	70 - 130
Toluene	<0.125	2.50	3.01	120.2%	2.70	108.0%	11%	<u>+</u> 30	70 - 130
Ethylbenzene	<0.125	2.50	3.02	120.9%	2.75	109.8%	10%	<u>+</u> 30	70 - 130
Xylenes, total	<0.125	7.50	8.93	119.0%	8.12	108.3%	9%	<u>+</u> 30	70 - 130

Sample Matrix Spikes (MS/MSD)

	Sample	Spike	1	NS	M	ISD	MS/D	QC.	Acceptance Criteria
CONSTITUENT	Result (ppm)	Added (ppm)	Result (ppm)	Recovery (%)	Result (ppm)	Recovery (%)	RPD (%)	RPD (%)	Spike % Recovery (Low - High Limit)
Benzene	<0.125	2.50	2.17	86.7%	2.23	89.0%	3%	<u>+</u> 30	65 - 135
Toluene	<0.125	2.50	2.68	107.2%	2.73	109.2%	2%	<u>+</u> 30	65 - 135
Ethylbenzene	<0.125	2.50	2.64	105.6%	2.69	107.6%	2%	<u>+</u> 30	65 - 135
Xylenes, Total	<0.125	7.50	7.50	100.0%	7.75	103.4%	3%	<u>+</u> 30	65 - 135

Sequence Date(s):

7/3/01

2001060213-1

Batch Extraction/Prep Date:

7/1/01

Sample ID - MS/MSD:

Data Qualifiers:

Project(s) In Batch: 2001060204 (4) 2001060213 (1-9) 2001060214 (1-6) .2001060225 (1-4)

QC Batch ID: 070901S

QC SUMMARY REPORT

TPH by 418.1 Method

Laboratory Control Sample (LCS/LCSD) Method Blank Results

	Method	Spike	L	CS	LCSD		LCS/D	QC Acceptance Criteria		
CONSTITUENT	Blank	Added	Result	Recovery	Result	Recovery	RPD	RPD	Spike % Recovery	
	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(%)	(%)	(%)	(Low - High Limit)	
TPH - 418.1	<10.0	500.0	421	84.2%	436	87.2%	4%	<u>+</u> 30	70 - 130	

Sample Matrix Spikes (MS/MSD)

	Sample	Spike	N	IS	MSD		MS/D	QC	Acceptance Criteria
CONSTITUENT	Result	Added	Result	Recovery	Result	Recovery	RPD	RPD	Spike % Recovery
	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(%)	(%)	(%)	(Low - High Limit)
TPH - 418.1	<10.0	500.0	441	88.2%	449	89.8%	2%	<u>+</u> 30	70 - 130

Sample Used for MS/MSD: 2001060213-9

Sequence Date(s):

Batch Extraction/Prep Date: 7/9/2001

Data Qualifiers: NONE - associated with this batch of samples.

7/9/2001

Project(s) In Batch:

2001060213 2001060214

QC SUMMARY REPORT

QC Batch ID: 71401

Anions by EPA Method 300.0

Laboratory Control Sample (LCS)

	Method	Spike	L	CS	QC Acceptance Criteria
CONSTITUENT	Blank	Added	Result	Recovery	Spike % Recovery
	(ppm)	(ppm)	(ppm)	(%)	(Low - High Limit)
Chloride	<dl< td=""><td>50.00</td><td>45.556</td><td>91.0%</td><td>85 - 115</td></dl<>	50.00	45.556	91.0%	85 - 115

Sample Matrix Spikes (MS)

	Sample	Sample Dup	Spike	A	//S	QC Acceptance Criteria
CONSTITUENT	Result (ppm)	Result (ppm)	Added (ppm)	Result (ppm)	Recovery (%)	Spike % Recovery (Low - High Limit)
Chloride	3,797	3,633	10.00	3808.7	117.0%	75 - 125
Sequence Date(s): Sample ID - MS/DUP:	7/14/01 2001060213-6		Batch Extra	ction/Prep I	Date:	7/14/01
Data Qualifiers:	NONE - associated	l with this batch o	f samples.			
Project(s) In Batch:	2001060213					
	2001060214					

t Number		Number each chain	Analyze one sample with	the highest C ₁₀ -C ₂₈ concentration	<pre>3 point based on TPH (fotal) - If TPH is non- test aromatic content on BIFX (fotal)</pre>	No	Level III TRPP		e)(c o	iments •		a a <	Ice Z	2 0	~ ~	2 ~	2 1	2 1	2 "	1 2	(, ,		Condition of Sample(s) Rec'd At	Lab	ustody SealYesNo	ustody Seal Lab Intact No amount of Action No Action No Action Control International I
Labs - Project	AB USE ONLY	2070	C6-C28 total > 100 ppm	Co-C26 total >5.0 ppm	the cleanest sampling select sample with lowe	Yes X	vel: Level II				Com													Time:		Time:	Time: Time: Sa
Millennium		200 / - 2	PAH-Solt: If,	PAH-Water: If.	TDS: Andiyze	Fax Results:	Reporting Lev) 	ć	la d	puice:	9/9 ээдс	Gew Othe	×	×	×	X	X	×	×	X		 	Date:		Date:	Date: Date:
ie 402 17380 162 8401 Eou	1052-8491 Fax	905537	BVED	rint Name(s) Below	Ehrlick		diance Personnel No		0	1158	/ 0/3	H 85 H 10 K		××	X X	××	X X	XX	XX	XX	XX	XX					lennium Labs:
dust ad, Suit llands, Texas 7		Project Number	Site Name	Sampled by: 1	the Mark	to 5	Meridian-A Yes		0	t 158	OS / 0/2	S / £(Z8 H	DUndwater											 eived by:		elved by:	ceived by: ceived by Mil
1544 Saw The Wood	PORMATION		ment Site - Invoice per cement	Site - Invoice per	ıt - Include information wi	ennium Labs is authorized	lager		Time α	g Days	g Days	EX -	Method BT	×	×	X	×		×	×	×	×		 " 1/:00an		::	:: Kec uctions]
	NI DICING IN		TNRCC Re-Imburse Meridian-Alliance agn	Non-Funded Project agreement/quote	Direct Billing to Clier Chain of Custody	Priority Project - Mille invoice for Rush Fees	Project Mar		Turnaround	10 Workin	5 Workin		Matrix WSX	X	X	X	又	×	X	ر ا الا	×	×		.2701 Time	F		ddress & instra
IES	II	P.O. #:					Send Invoice to:						ected Time	1343	1325	1007	1030	1513	1539	1625	1653	000/		Date: 6		uate:	bate:
LATOR													Coll Date	6.250	6.250	(0,X.9)	6.250	6.25.01	6.22.0	6:52:0)	6.250)	6-26-01	 	 hil			k copy for s
ILLEN UM LABOR IAIN OF CUSTODY RECORD SRIDIAN-ALLIANCE GROUP	REPORT TO:	Houston	Arlington	Midland] Tyler	er Location:	sr Location:	narks:					Sample Identification	MW-5	mw-5	MW-6	mu-6	- MW-7	MU-7	7 M/2-8	mw-8	Composite		nquished by: Mark Par	southead hus	iquisned by:	iquisitieu uy. sthod of Shipment: [see back

l

ł

l

Report No.: 2001070199 07/30/2001 Client: Meridian Alliance Group Ì

Sample No.:	1	Date Collected: 07/2	24/2001	Time Collect	ed: 15:30:00	Matrix: Groun	ndwater
Description:	MW-1	Pro	ject Name: Ar	narada Hess			
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst
Chloride		EPA 300.0	11,517	mg/L	0.100	07/27/2001	KF
Sample No.:	2	Date Collected: 07/2	24/2001	Time Collect	ed: 15:45:00	Matrix: Grou	ndwater
Description:	MW-2	Pro	ject Name: Ar	narada Hess			
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst
Chloride		EPA 300.0	9,513	mg/L	0.100	07/27/2001	KF
Sample No.:	3	Date Collected: 07/2	24/2001	Time Collect	ed: 16:30:00	Matrix: Groun	ndwater
Description:	MW-3	Pro	ject Name: An	narada Hess			
Test	<u></u>	Method	Results	Units	Detection Limit	Date Analyzed	Analyst
Chloride		EPA 300.0	11,865	mg/L	0.100	07/27/2001	KF
Sample No.:	4	Date Collected: 07/2	4/2001	Time Collect	ed: 16:45:00	Matrix: Groun	ndwater
Description:	MW-4	Pro	ject Name: An	narada Hess			
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst
hloride		EPA 300.0	11,589	mg/L	0.100	07/27/2001	KF
Sample No.:	5	Date Collected: 07/2	4/2001	Time Collect	ed: 16:00:00	Matrix: Grour	ndwater
Description:	MW-5	Pro	ject Name: An	narada Hess			
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst
Chloride		EPA 300.0	14,334	mg/L	0.100	07/27/2001	KF
Sample No.:	6	Date Collected: 07/2	4/2001	Time Collect	ed: 17:00:00	Matrix: Grour	ndwater
Description:	MW-6	Pro	ject Name: An	narada Hess			
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst
Chloride		EPA 300.0	12,015	mg/L	0.100	07/27/2001	KF

Sample No.:	7	Date Collected: 07/2	4/2001	Time Collecte	ed: 15:15:00	Matrix: Groun	ndwater
Description:	MW-7	Pro	ject Name: Ai	narada Hess			
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst
Chloride		EPA 300.0	16,669	mg/L	0.100	07/27/2001	KF
Sample No.:	8	Date Collected: 07/2	4/2001	Time Collecte	ed: 15:00:00	Matrix: Groun	ndwater
Description:	MW-8	Proj	ject Name: Ar	narada Hess			
Test		Method	Results	Units	Detection Limit	Date Analyzed	Analyst
Chloride		EPA 300.0	7,875	mg/L	0.100	07/27/2001	KF

QC SUMMARY REPORT

QC Batch ID: 72701

Anions by EPA Method 300.0

Laboratory Control Sample (LCS)

	Method	Spike	Spike LCS		QC Acceptance Criteria
CONSTITUENT	Blank	Added	Result	Recovery	Spike % Recovery
Chloride		50.00	46 448	93.0%	90 - 110
Chionde	-06		-10,710	30.0 %	30-110

Sample Matrix Spikes (MS)

	Sample	Sample Dup	Spike	1	VIS	QC Acceptance Criteria		
CONSTITUENT	Result (ppm)	Result (ppm)	Added (ppm)	Result (ppm)	Recovery (%)	Spike % Recovery (Low - High Limit)		
Chloride	73.8	72.7	10.00	83.260	95.0%	75 - 125		
Sequence Date(s):	7/30/01		Batch Extra	ction/Prep I	Date:	7/27/01		
Sample ID - MS/DUP:	2001070200-4							
Data Qualifiers:	NONE - associated	l with this batch o	of samples.					
Project(s) In Batch:	2001070199							
	2001070200							

QC SUMMARY REPORT

QC Batch ID: 72701

Anions by EPA Method 300.0

<u></u>	Method	Spike	L	.cs	QC Acceptance Criteria
CONSTITUENT	Blank (ppm)	Added (ppm)	Result (ppm)	Recovery (%)	Spike % Recovery (Low - High Limit)
Phosphate	<dl< td=""><td>15.00</td><td>14.017</td><td>93.0%</td><td>90 - 110</td></dl<>	15.00	14.017	93.0%	90 - 110
Chloride	<dl< td=""><td>50.00</td><td>46.283</td><td>93.0%</td><td>90 - 110</td></dl<>	50.00	46.283	93.0%	90 - 110
Nitrate	<dl< td=""><td>10.00</td><td>8.975</td><td>90.0%</td><td>90 - 110</td></dl<>	10.00	8.975	90.0%	90 - 110
Nitrite	<dl< td=""><td>10.00</td><td>NC</td><td>NC</td><td>90 - 110</td></dl<>	10.00	NC	NC	90 - 110
Sulfate	<dl< td=""><td>50.00</td><td>47.440</td><td>95.0%</td><td>90 - 110</td></dl<>	50.00	47.440	95.0%	90 - 110

Laboratory Control Sample (LCS)

Sample Matrix Spikes (MS)

	Sample	Sample Dup	Spike	1	//S	QC Acceptance Criteri		
CONSTITUENT	Result (ppm)	Result (ppm)	Added (ppm)	Result (ppm)	Recovery (%)	Spike % Recovery (Low - High_Limit)		
Phoshate	<1.00	<1.00	10.00	9.421	94.0%	75 - 125		
Chloride	4.84	4.83	10.00	12.370	75.0%	75 - 125		
Nitrate	0.385	0.422	10.00	9.414	90.0%	75 - 125		
Nitrite	<0.100	<0.100	10.00	10.154	102.0%	75 - 125		
Sulfate	7.20	7.30	10.00	16.408	92.0%	75 - 125		

Sequence Date(s):

Batch Extraction/Prep Date:

7/27/01

Sample ID - MS/DUP: 2001070193-1

Data Qualifiers: NONE - associated with this batch of samples.

7/27/01

Project(s) In Batch:

2001070193 2001070198 2001070199

age -		ber each chain per project	te sample with	t C ₁₀ -C ₂₈ tion	al) - If TPH is non- BTEX (Total)		PP		eic	samt	∾ ¢	ners unbe innbe	c a < Contai Ni		\ 	-	\ 	\ 						e(s) Rec'd At	Yes No		102
ct Number		Nun Nun	m Analyze or	n concentro	ng point based on TPH (Tot west aromatic content on	No	Level III TR	 			mments													Condition of Sampl Lab	Custody Seal	Sample(s) Rec'd	Temnerature
Labs - Proje	AB USE ONLY	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C ₆ -C ₂₈ total >100 pp	C ₆ -C ₂₈ total >5.0 ppn	e the cleanest samplir select sample with lo	Yes	vel: Level II				Ĉ													Time:	Time:	Time:	
dillennium	- -	200 / <	PAH-Soil: If,	PAH-water: If.	TDS: Analyze detect,	ax Results:	eporting Lev		290	Ð	07	PH 5	Othe	1.	~		/	/						 te:	te:	ate:	
402 380	NFORMATION	70005537 2	RADA HESS C	nt Name(s) Behwr	CHANNON [Ë	ance Personnel R.		1.8	1831 1831	/ 0/2	H 85 H 10	TB TP AT Sol											D	2 <u>0</u>	ennium Labs: D	
dust ad, Suite	TORE (281) 36		Site Name AmA	Sampled by: Dri	* 1 <i>SR</i> zc13	2	Meridian-Alli		0	Þ 1 £ 8 ,	OS , / 0/2	S0 / SC 28 H	TE roundwater											eived by:	eived by:	ceived <u>by Mill</u>	
1544 Sawo The Wood	(281) 362-8490 PT	05537-13	mbursement Site - Invoice per ance agreement	Project Site - Invoice per lote	to Client - Include information wit tody	ct - Millennium Labs is authorized t ush Fees	ect Manager		ound Time	Vorking Days BE	Vorking Days	EX IS HIS	x Method BT												Time: Rec	instructions] Re	
ES	INVOICING	P.O. #: 07CC	TNRCC Re-1 Meridian-Allia	X Non-Funded	Direct Billing Chain of Cust	Priority Proje	Send Invoice R Proje		Turnar			đ X	cted Matri Time W S	15:30 X	15:45 X	16:30 X	16:45 🔪	16:00 X	17:00 × 1	15:15 X	15:00 X			 Date: 7-2501	Date:	ipping address &	
ORATORI IRD MUB							<i>,, ,</i>)n Colle Date	7-20	H2.4	hčt	/hcz	1224	1/7-24	12-4	k-2(L		back copy for sh	
UM LAB STODY RECO	REPORT TO:												ole Identificatio	Mw-1	MW-2	MM- 3	MW-4	mu-5	mw -6	mw-7	mu-8	>		2 1 Se		ipment: [see	
MILLEN CHAIN OF CU		Houston	Arlington	Midland	Tyler	Other Location:	Other Location:	Remarks:					Lab Samp No.		N N	1	4 4	S.	6	7	- Solution		 	 Relinquished by	Relinquished by:	Method of Sh	Ę

I

l

EXEMPT OCD

Origin: 07C005537

Amerada Hess Corp. Box 840 Seminole, TX 79360

Detailed Report of material for Invoices 3382 thru 3383

P.O. Box 1658 Roswell, NM 88202 Phone 505-347-0434 Fax 505-347-0435

Date:	Ticket No:	Discription:	Transporter:	Cell:	Units	Unit Type:
8/15/01	3360	OCD EXEMPT SOILS	Bill Marley	14	4	BBLS
		07C0055	37 Total BBLS.		4 BI	BLS
Origin:	07C005537A					
Date:	Ticket No:	Discription:	Transporter:	Cell:	Units	Unit Type:
8/20/01	3359	OCD EXEMPT SOILS	Bill Marley	14	4	BBLS
		07C0055	37A Total BBLS.		4 BI	BLS
		E	EXEMPT OCD Total BB	LS.	8 BI	BLS
Origin:	07C005537					
Date:	Ticket No:	Discription:	Transporter:	Cell:	Units	Unit Type:
8/15/01	3360	OCD EXEMPT LIQUIDS	Bill Marley		55	GAL
		07C0055	37 Total GAL.		55 G/	۹L
Origin:	07C005537A					
Date:	Ticket No:	Discription:	Transporter:	Cell:	Units	Unit Type:
8/20/01	3359	OCD EXEMPT LIQUIDS	Bill Marley		55	GAL
		07C0055	37A Total GAL.		55 G/	AL.
		E	EXEMPT OCD Total GA	L.	110 G/	۹L
		E	EXEMPT OCD Total Unit	ts.	118 Ur	nits
Amerad	a Hess C	orp. Total Units.			118 Un	its

1

8/29/01

	GANDY•MARLEY, P.O. Box 1658 Roswell, NM 88202 (505) 625-9206 Fax (505) 625-9706	INC. Nº 336
LEASE OPERATOR	SHIPPER/COMPANY: Amerca	de Hess
LEASE NAME:	Byrd Leuse	
TRANSPORTER CC	MPANY: Mulley	TIME: 3:00 AMPM
DATE: 8/15/1	VÉHICLE NO:	DRIVER NO.:
CHARGE TO:	076005537	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	TYPE OF MATERIAL	
[] Other Material:	OCD [] Contaminated soil [] Contaminated soil [] BS&W content:	
Description: Soil C	uttings of ID	rum Purge In
VOLUME OF MATE	RIAL []:YARDS <u>4 Orums</u> : C	ELL#_ <u>/</u> 4:[]
AS A CONDITION TO GA OPERATOR/SHIPPER REPI EXEMPT FROM THE RESO 40 U.S.C. §6901, et seq., THE VIRTUE OF THE EXEMPTIC RATION, DEVELOPMENT C	NDY•MARLEY, INC.'S ACCEPTANCE OF THE RESENTS AND WARRANTS THAT THE WASTE URCE, CONSERVATION AND RECOVERY ACT E NM HEALTH AND SAF. CODE, §361.001, et sec IN AFFORDED CONTAMINATED SOILS AND OT OR PRODUCTION OF CRUDE OIL OR NATURA	MATERIALS SHIPPED WITH THIS JOB TICKI MATERIAL SHIPPED HEREWITH IS MATERI OF 1976, AS AMENDED FROM TIME TO TIM q. AND REGULATIONS RELATED THERETO, THER WASTE ASSOCIATED WITH THE EXPL LL GAS OR GEOTHERMAL ENERGY.
ALSO AS A CONDITION TICKET, TRANSPORTER RE PER TO TRANSPORTER IS	TO GANDY-MARLEY, INC.'S ACCEPTANCE C EPRESENTS AND WARRANTS THAT ONLY THE NOW DELIVERED BY TRANSPORTER TO GAN	DF THE MATERIALS SHIPPED WITH THIS JO E MATERIAL DELIVERED BY OPERATOR/SH IDY•MARLEY, INC.'S FACILITY FOR DISPOS/
THIS WILL CERTIFY that	the above Transporter loaded the material repre- it was tendered by the above described shipper.	sented by this Transporter Statement at the abo This will certify that no additional materials we
described location, and that i added to this load, and that t	he material was delivered without incident.	
DRIVER:	he material was delivered without incident.	
described location, and that added to this load, and that t DRIVER:	he material was delivered without incident.	

I

Ì