AP - <u>45</u>

STAGE 1 & 2 WORKPLANS

DATE: $J_4 N_1 J_2, 2005$

1909 Brunson Avenue 🔳 Midland, Texas 79701-6924 🔳 432.638.8740 📕 Fax: 413.403.9968

CERTIFIED MAIL RETURN RECIEPT NO. 7099 3400 0017 1737 2114

July 13, 2005

Mr. Daniel Sanchez New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

> RE: Stage 1 and 2 Abatement Plan EME P-6 LINE LEAK T20S-R37E-Section 6, Unit Letter P NMOCD CASE # 1R0422

Dear Mr. Sanchez

In your letter of May 5, 2005, NMOCD required Rice Operating Company (ROC) to submit an abatement plan for the above-referenced site on or before July 15, 2005. Enclosed is the Stage 1 and 2 Abatement Plan for this site.

If you have any questions please call me at 432-638-8740 or Kristin Farris Pope at 505-393-9174.

Sincerely,

Gilbert Van Deventer R.T. Hicks Consultants, Ltd.

cc: Kristin Pope, Rice Operating Company Carolyn Haynes, Rice Operating Company Randy Hicks, R. T. Hicks Consultants, Ltd.

July 12, 2005

STAGE 1 AND 2 ABATEMENT PLAN

EME P-6 LINE LEAK SITE T20S, R37E, SECTION 6, UNIT LETTER P LEA COUNTY, NEW MEXICO

Prepared for:

RICE Operating Company 122 West Taylor Hobbs, New Mexico 88240

R. T. HICKS CONSULTANTS, LTD.

1909 Brunson Ave. 🛦 Midland, TX 79701-6924 🛦 432.638.8740 🛦 Fax: 413.403.9968

STAGE 1 AND 2 ABATEMENT PLAN

EME P-6 LINE LEAK SITE T20S, R37E, SECTION 6, UNIT LETTER P LEA COUNTY, NEW MEXICO

Prepared for:

RICE Operating Company 122 West Taylor Hobbs, New Mexico 88240

SUBMITTED BY:

Gilbert O. Van Deventes

GILBERT J. VAN DEVENTER R. T. HICKS CONSULTANTS, LTD.

DATE:

quey 12,2005

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY
2.0	CHRONOLOGY OF EVENTS2
3.0	BACKGROUND
	3.1 SITE LOCATION AND LAND USE
	3.2 NATURE OF RELEASE AND SUMMARY OF PREVIOUS WORK
4.0	GEOLOGY AND HYDROGEOLOGY4
	4.1 REGIONAL AND LOCAL GEOLOGY
	4.2 REGIONAL AND LOCAL HYDROGEOLOGY
	4.3 WATER WELL INVENTORY
5.0	SUBSURFACE SOILS7
6.0	GROUNDWATER QUALITY
	6.1 Monitoring Program
	6.2 Hydrocarbons in Groundwater
	6.3 OTHER CONSTITUENTS OF CONCERN
7.0	STAGE 2 ABATEMENT PLAN9
8.0	QUALITY ASSURANCE / QUALITY CONTROL
9.0	PROPOSED SCHEDULE OF ACTIVITIES12

APPENDICES

FIGURES

FIGURE 1......SITE LOCATION MAP

FIGURE 4.1.....GROUNDWATER GRADIENT MAP

FIGURE 4.3..... WATER WELL SURVEY MAP

FIGURE 5.1.... PRELIMINARY SOIL SAMPLE RESULTS

FIGURE 5.2....ADDITIONAL SOIL SAMPLE RESULTS

FIGURE 6.1.....CHLORIDE, SULFATE, TDS, & BTEX GROUNDWATER CONCENTRATION MAP FIGURE 6.2.....CHLORIDE, SULFATE, TDS, & GROUNDWATER ELEVATION VS. TIME (P6-1) FIGURE 6.3.....CHLORIDE, SULFATE, TDS, & GROUNDWATER ELEVATION VS. TIME (P6-2) FIGURE 6.4.....CHLORIDE, SULFATE, TDS, & GROUNDWATER ELEVATION VS. TIME (M5-1)

TABLES

TABLE 4.1 SUMMARY OF GROUNDWATER MONITORING RESULTSTABLE 5.1 PRELIMINARY SOIL SAMPLE RESULTSTABLE 5.2 ADDITIONAL SOIL SAMPLE RESULTS

PHOTODOCUMENTATION

LABORATORY ANALYSIS AND CHAIN OF CUSTODY DOCUMENTATION

QUALITY CONTROL PROCEDURES

EME P-6 Line Leak Site T20S-R37E-Sec 6-Unit P NMOCD CASE # 1R0422

1.0 EXECUTIVE SUMMARY

The P-6 line leak site is located on land owned by ChevronTexaco in township 20 south, range 37 east, section 6, unit letter P approximately 4 miles west-southwest of Monument, NM as shown on the attached site location map (Figure 1). This project has been ongoing since a leak of produced water was discovered on November 29, 2000.

This work plan incorporates the required elements for both Stage 1 and 2 Abatement Plans. Several investigations have been performed as of this date with the results included in this report thus satisfying the required elements of the Stage 1 Abatement Plan. Section 7.0 of this report describes the abatement options that were evaluated and proposed selective remedy to further satisfy the Stage 2 elements. Quality assurance protocols and the proposed schedule of activities are included in sections 8.0 and 9.0, respectively.

Based on the evaluation of soil and groundwater sampling data and communication with the New Mexico Oil Conservation Division (NMOCD), as described herein, the following corrective actions are proposed:

- Excavation, lining, backfilling, and reseeding with native vegetation are proposed as engineering controls for site remediation of the vadose zone.
- Continued monitoring of groundwater quality (major ions and TDS) is recommended at a reduced frequency (semi-annually). The next two years of groundwater monitoring will be compared to the three-year trend already documented in which the chloride and TDS levels have not increased as a result of a line leak at this site. Analysis for BTEX concentrations should be suspended, as there has been no indication of dissolved hydrocarbons since the groundwater monitoring program began in January 2002 (13 consecutive quarters).

When implementing any proposed remedy or investigative work, ROC will confirm that there is a reasonable relationship between the benefits created by the proposed remedy or assessment and the economic and social costs.

ROC is the service provider (operator) for the EME SWD System and has no ownership of any portion of the pipeline, well, or facility. The System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis. Environmental projects of this magnitude require System Partner AFE approval and work begins as funds are received. In general, project funding is not forthcoming until NMOCD approves the work plan.

2.0 CHRONOLOGY OF EVENTS

November 29, 2000 Initial leak discovered. C-141 form submitted to NMOCD. Twenty feet of 10-inch pipe was replaced with 10-inch PVC.

November 14, 2001 Soil boring sampling conducted. Samples were field-tested for chloride.

November 29, 2001 Additional soil sampling with backhoe. Field-tested for chloride and TPH..

January 9, 2002 Monitoring well P6-1 was installed at line leak.

January 18, 2002 ROC submitted Notification of Groundwater Impact to Roger Anderson, NMOCD office in Santa Fe, NM.

April 29, 2003 Hand augered boring sampling conducted. Samples were field-tested for chloride and TPH. Samples also submitted to lab for BTEX (8021B), GRO/DRO (8015M), and TPH fractions (TX1006).

July 31, 2003 Work plan submitted to NMOCD office in Santa Fe, NM, which included results from all subsurface soil investigations conducted to date and recommendation for additional monitoring wells (P6-2 and M5-1).

August 26, 2003 Work plan approved by Wayne Price, NMOCD office in Santa Fe, NM.

November 16, 2003 Monitoring well M5-1 was installed on adjacent downgradient site.

February 17, 2004 Monitoring well P6-2 installed upgradient to line leak.

September 20, 2004 Corrective Action Plan (CAP) submitted to Wayne Price, NMOCD office in Santa Fe, NM

December 10, 2004 CAP denied by Wayne Price, NMOCD office in Santa Fe, NM

January 21, 2005 Additional soil sampling was conducted with a backhoe for further delineation of vertical and horizontal extent of hydrocarbon- and chlorideimpacted soil. Soil samples were field-tested for chloride (QP-01) and organic vapor headspace. Samples were also submitted to the laboratory for BTEX (8260) and GRO/DRO (8015M) analysis.

March 16, 2005 Corrective Action Plan submitted to Wayne Price, NMOCD office in Santa Fe, NM

May 5, 2005 Daniel Sanchez, NMOCD office in Santa Fe, NM, requested an Abatement Plan to be submitted by July 15, 2005.

ÈME P-6 Line Leak Site T20S-R37E-Sec 6-Unit P NMOCD CASE # 1R0422

3.0 BACKGROUND

3.1 SITE LOCATION AND LAND USE

The P-6 line leak site is located on land owned by ChevronTexaco in township 20 south, range 37 east, section 6, unit letter P approximately 4 miles west-southwest of Monument, NM as shown on the attached site location map (Figure 1). Land in the site area is primarily utilized for crude oil and gas production and cattle ranching. Area crude oil and gas production is operated by Amerada Hess Corp., ChevronTexaco Inc., Doyle Hartman, Marathon Oil Co., Chesapeake Operating Inc., XTO Energy Inc., and BP America Production Co.

3.2 NATURE OF RELEASE AND SUMMARY OF PREVIOUS WORK

This project has been ongoing since a leak of produced water was discovered on November 29, 2000. So far work has included replacement of a 20-foot section of the 10-inch broken pipeline, extensive site assessment sampling, installation and sampling of three groundwater monitoring wells (P6-1, P6-2, and M5-1), and notification to the NMOCD of all critical junctures related to the project (work plans, C-141 forms, Notification of Groundwater Impact, Disclosure Reports, etc).

Previous investigation reports are briefly identified in Section 2.0. Results of these investigations are described in more detail in Sections 4.0, 5.0, and 6.0

Produced water gathered by the EME SWD System in the site area is sent to the M-5 SWD well, which is located adjacent to the P-6 line leak site. The M-5 SWD well has been in operation since approximately 1952. During the latter part of 2003 ROC began upgrading the M-5 SWD facility by removing the redwood tanks and installing a new tank system approximately 500 feet west in section 6 unit letter P. The upgrade was completed on February 11, 2004.

EME P-6 Line Leak Site T20S-R37E-Sec 6-Unit P NMOCD CASE # 1R0422

4.0 GEOLOGY AND HYDROGEOLOGY

4.1 **REGIONAL AND LOCAL GEOLOGY**

According to published information (Nicholson and Clebsch, 1961 and Barnes, 1976) the site is underlain by Quaternary colluvial deposits composed of sand, silt, and gravel deposited by slopewash, and talus from the Ogallala Formation. The colluvial deposits are often calichified (indurated with cemented calcium carbonate) with caliche layers from 1 to 20 feet thick. The lithology of the colluvial deposits is very similar to that of the Ogallala since the Ogallala is the source of the re-deposited colluvial sediments. The nearest outcropping of the Ogallala Formation occurs approximately one mile north of Monument along what is known as the Llano Estacado (caprock). The thickness of the colluvium deposits and Ogallala Formation is approximately 75 feet, however it varies locally as a result of significant paleo-topography at the top of the underlying Triassic Dockum Group. Since Cretaceous Age rocks in the region have been removed by pre-Tertiary erosion, the colluvial deposits and Ogallala Formation rest unconformably on the Triassic Dockum Group. The uppermost unit of the Dockum Group is the Chinle Formation, which primarily consists of micaceous red clay and shale but also contains thin interbeds of fine-grained sandstone and siltstone. The red clays and shale of the Chinle Formation act as an aquitard beneath the water bearing colluvial deposits and therefore limit the amount of recharge to the underlying Dockum Group. The thickness of the Dockum Group is estimated at approximately 300 feet in the site area although its thickness in southern Lea County varies from 0 to 1,270 feet thick (Nicholson and Clebsch, 1961).

The first few feet from ground surface is dominated by fine to medium-grained dune sand. Based on the descriptions provided in lithologic logs the subsurface soils are composed of silty fine-grained sand and caliche. Well-indurated sand and calcite/caliche veins were also observed and clay was present in small amounts. The red clay of the Dockum Group was encountered at a depth of 67 feet below ground surface at the P6-2 monitoring well location. At the M5-1 monitoring well location the red clay of the Dockum Group was observed at only 55 feet below ground surface. The lithologic logs are included in the Appendices.

4.2 REGIONAL AND LOCAL HYDROGEOLOGY

Potable groundwater used in southern Lea County is derived primarily from the Ogallala Formation (including the colluvial deposits) and the Quaternary alluvium. Lower yields have also been provided by water bearing zones within the Triassic Dockum Group in a few scattered areas within southern Lea County. No potable water is known to be derived below the Triassic Dockum Group. Water from the Ogallala and alluvium aquifers in southern Lea County is used for irrigation, stock, domestic, industrial, and public supply purposes.

The regional gradient of the Ogallala aquifer in the site area generally flows toward the southeast and the hydraulic gradient varies from approximately 0.001 to 0.01 feet/feet. Recharge to the Ogallala aquifer occurs primarily by infiltration of precipitation at a slow rate (typically one quarter to one half inch of water per year) due to the characteristically arid

climate of southern Lea County (Nicholson and Clebsch, 1961). Hydraulic conductivity values are estimated between 26 and 50 feet per day and specific yields of 0.23 for the Ogallala aquifer near the site area based on limited published information (McAda, 1984). There are no surface water bodies located within a mile of the site.

The water table elevations and direction of groundwater flow for the June 10, 2005 gauging event at the P-6 Line Leak site are shown on the groundwater gradient map (Figure 4.1). Depth to groundwater beneath the site area is approximately 30 feet below ground surface. The direction of groundwater flow is to the south-southeast with a relatively flat hydraulic gradient of approximately 0.0015 feet/foot. Groundwater elevation data for the current and all previous monitoring events is summarized in Table 4.1.

4.3 WATER WELL INVENTORY

The purpose of a water well inventory is two-fold. First and foremost is to identify the location of potential water supply receptors (domestic, irrigation, or livestock wells). Secondly, it can assist in defining the regional groundwater gradient and establishing background water quality conditions. A field survey was conducted on June 10, 2005, to verify the existence of the wells identified from the sources specified in the following sections. Figure 4.3 depicts the approximate location of the wells identified in this section.

4.3.1 USGS MONUMENT SW TOPOGRAPHIC MAP

According to the USGS Monument SW topographic map, there is one windmill located approximately 0.7 miles south-southwest of the site in section 7, unit letter H. Information regarding this windmill was not found in the other databases used for this inventory. This out of service windmill was verified during the field. During the field survey an unmapped active water supply well was located in section 8, unit letter J.

4.3.2 NMOCD OFFICE IN HOBBS

Based on records at the NMOCD office in Hobbs, the five sites listed below are being investigated for groundwater impairment.

Site Name	Site Operator	No. of MWs	Distance from Site
Bertha Barber Site	Marathon Oil Co.	~ Fifteen	~1/3 mi. NE
JR Phillips #2 Tank Battery Site	ChevronTexaco	Nine	~0.9 mi. NW
M-5 SWD Site	Rice Operating Co.	One	~500 ft ESE
N-5 Junction Box Site	Rice Operating Co.	One	~1/3 mi. ESE
K-6 Junction Box Site	Rice Operating Co.	One	~2/3 mi. WNW

PAGE 5 OF 12

4.3.3 USGS NATIONAL WATER INFORMATION SYSTEM (NWISWS) WEBSITE

One water well designated with the site name 20S.37E.05.13440 has been monitored by the USGS since 1968. The well is located approximately 2/5 miles northwest of the site. This well has been used for livestock watering however it was not in use during the field survey.

4.3.4 NMSEO IW.A.T.E.R.S. WEBSITE

According to the iW.A.T.E.R.S. website of the New Mexico Office of the State Engineer, 19 water wells have been identified within a 1-mile radius of the site as listed below.

File	T20S	Well	Permit Date	Original Owner	Distance from
L1145	6.414	PRO	06/22/1951	Gulf Oil Co.	~1/3 mi. NW
L1253	8.231	PRO	08/26/1953	Gulf Oil Co.	~3/4 mi. SE
L1450	5.130	PRO	05/29/1952	Marathon Oil Co.	~1/2 mi. NNE
L1487	6.414	PRO	07/15/1952	Gulf Oil Co.	~1/3 mi. NW
L1572	5.331	PRO	09/15/1952	Exploration Drilling Co.	~500 ft ESE
L2102	5.340	PRO	03/30/1953	E. F. Moran Inc.	~1/3 mi. SE
L2139	8.222	PRO	04/15/1953	Gackle Drilling Co.	~ 1 mi. ESE
L2274	8.130	PRO	07/14/1953	Sinclair Oil Co.	~3/5 mi. SSE
L2278	5.430	DOM	09/28/1987	Laughlin Estate	~3/5 mi. ESE
L2460	7.210	PRO	01/25/1954	Moran Drilling Co.	~1/2 mi. SW
L2463	8.321	PRO	02/01/1954	Amerada Petroleum Co.	~4/5 mi. SSE
L2483	8.144	PRO	03/08/1954	Moran Drilling Co.	~4/5 mi. SE
L2488	5.230	PRO	02/24/1954	The Texas Co.	~3/4 mi. NE
L2497	5.333	PRO	04/01/1954	Amerada Petroleum Co.	~800 ft SSE
L2533	7.230	PRO	05/12/1954	Moran Drilling Co.	~2/3 mi. SW
L2553	6.434	PRO	06/01/1954	Gulf Oil Co.	~1/3 mi. SW
L2801	6.233	PRO	03/22/1955	Amerada Petroleum Co.	~3/5 mi. NE
L3810	6.144	PRO	05/10/1962	Texaco Inc.	~2/3 mi. NW
L4619	6.423	PRO	03/29/1961	Gulf Oil Co.	~1/5 mi. NW

PRO - Prospecting for oil &d gas production. Water supply for oil & gas drilling

Eighteen of the permitted wells above were constructed for temporary water supply for oil well drilling. In accordance with requirements of the NMSEO, these wells permitted for prospecting were to be plugged upon completion of the permitted use; therefore it is presumed that they no longer exist, with the exception of well no. L3810, which was located during the field survey. Well no. L3810 is located approximately 2/3 mile northwest of the site and has been abandoned. Well no. L2278 is located approximately 3/5 mile east-southeast of the site. This well has been used for livestock watering however it was not in use during the field survey.

EME P-6 Line Leak Site T20S-R37E-Sec 6-Unit P NMOCD CASE # 1R0422

5.0 SUBSURFACE SOILS

On November 14, 2001, a preliminary evaluation and delineation of the hydrocarbons at the EME P-6 Line Leak site was performed using the "MEGA" TPH method (QP-03) to determine field total hydrocarbon concentrations. In addition, soil samples were field-tested for chloride content using the titration method (QP-01).

While the Mega-TPH assessment was useful for screening purposes in assessing the relative extent of the hydrocarbon-impacted soil, it cannot be used to interpret potential risks to human health and the environment. Therefore, for a more quantitative assessment, additional soil samples were recovered on April 29, 2003, from the location and depth of the greatest subsurface Mega-TPH concentration observed and sent to the laboratory for analysis of benzene, toluene, ethylbenzene, total xylenes (BTEX) using EPA Method 8021B, gas and diesel range organics (GRO/DRO) using EPA Method 8015M, and total petroleum hydrocarbon (TPH) fractions using Texas Method 1006. A summary of the preliminary soil sample results is provided in Table 5.1 and depicted on a site map in Figure 5.1.

On January 21, 2005, a backhoe was mobilized on site to facilitate the collection of soil samples for further delineation of the vertical and horizontal extent of hydrocarbon- and chloride-impacted soil. Soil samples were field-tested for chloride content using the titration method (QP-01). Soil samples submitted to the laboratory were analyzed for GRO and DRO using EPA Method 8015M to determine TPH concentrations. Samples were also collected for headspace analysis using an organic vapor meter (OVM), which was calibrated to assume a benzene response factor. Samples with headspace readings or GRO levels above 100 ppm were also analyzed for BTEX using EPA Method 8260B. The following concentrations of analytes were used to delineate the lateral and vertical extent of impact to the vadose zone:

- o 100 mg/kg TPH (GRO/DRO)
- o 100 ppm OVM, and/or 10 mg/kg benzene and 50 mg/kg BTEX
- o 250 ppm chloride

The results of the soil sampling and analysis are summarized in Table 5.2 and depicted on a site map in Figure 5.2.

Based on all of the sampling results to date the area of impacted soil is no more than 30 feet in diameter near the surface. The impacted soil decreases in magnitude and lateral extent with depth to a maximum depth of approximately 19 feet directly below the line leak. The lab reports, chain of custody, and photographic documentation for the January 21, 2005, soil sampling activities are attached in the appendices.

EME P-6 Line Leak Site T20S-R37E-Sec 6-Unit P NMOCD CASE # 1R0422

6.0 **GROUNDWATER QUALITY**

6.1 **MONITORING PROGRAM**

Each monitoring well (P6-1, P6-2, and M5-1) has been sampled on a quarterly basis for major ions, TDS, and BTEX. A summary of historical analytical results and groundwater elevations is listed in Table 4.1. Analytical results for the most recent sampling event conducted on May 3, 2005, are also depicted on the groundwater sampling map in Figure 6.1 and in graphical format in Figures 6.2, 6.3, and 6.4.

6.2 HYDROCARBONS IN GROUNDWATER

BTEX concentrations in monitoring wells P6-1, P6-2, and M5-1 have been below the laboratory detection limit of 0.001 mg/L for each constituent and for every sampling event taken place.

6.3 OTHER CONSTITUENTS OF CONCERN

Chloride concentrations in monitoring wells P6-1 (7,090 mg/L), P6-2 (6,050 mg/L), and M5-1 (6,560 mg/L) exceed the WQCC standard of 250 mg/L.

Monitoring wells P6-1 (1,050 mg/L) and P6-2 (885 mg/L) exceed the WQCC standard of 600 mg/L for sulfate. Monitoring well M5-1 (595 mg/L) was below the WQCC standard for sulfate.

TDS concentrations in monitoring wells P6-1 (19,300 mg/L), P6-2 (14,100 mg/L), and M5-1 (16,500 mg/L) exceed the WQCC standard of 1,000 mg/L.

Chloride, sulfate, and TDS concentrations in monitoring wells P6-1, P6-2, and M5-1 have remained relatively stable although some minor fluctuations have occurred. No correlations between chloride/sulfate/TDS concentrations and changes in groundwater levels are evident.

EME P-6 Line Leak Site T20S-R37E-Sec 6-Unit P NMOCD CASE # 1R0422

7.0 STAGE 2 ABATEMENT PLAN

The following abatement options were evaluated:

• Option 1: Minimize disturbance of surface soil by not excavating. Re-establish native vegetation and continue groundwater monitoring semi-annually

• Option 2: Excavate, backfill, and install liner. Re-establish with native vegetation and continue groundwater monitoring semi-annually

A quantitative risk assessment was performed in July 2003, to establish remediation action levels with respect to the receptor pathways of concern. The primary pathway of concern at this site is the protection of the groundwater due to leaching of the remaining regulated constituents (BTEX) in the soil. Fate and transport modeling demonstrated that the remaining hydrocarbons in the soil at the P-6 Line Leak site would not present a human health risk for current or future commercial receptors who may ingest the groundwater. This result supports Option 1.

In the corrective action plan submitted to the NMOCD on September 20, 2004, excavation, backfilling, and lining was not recommended based on a re-evaluation of data at this site, additional groundwater monitoring data provided by newly installed monitoring wells, and the obvious improvement of surface vegetation on the area affected by the original line leak. The CAP also presented several lines of evidence that the minimal release of chlorides and TDS from the P-6 line leak will not contribute to the degradation of groundwater quality that has already taken place as a result of upgradient and off site sources. However, Mr. Wayne Price of the NMOCD office in Santa Fe denied the recommendation to leave soils in place in his email dated December 10, 2004. Therefore, ROC proposes implementation of the NMOCD-preferred abatement Option 2 as described below.

7.1 EXCAVATION, LINING, BACKFILLING, AND RESEEDING WITH NATIVE VEGETATION

Appropriate excavation, lining, backfilling, and reseeding with native vegetation, as described herein, are proposed as engineering controls for site remediation. The excavation contractor will be responsible for contacting the New Mexico One Call for all line location requests. During excavation operations, subsurface soil samples will be collected and field screened with an organic vapor analyzer (OVM). Soil samples will also be field-tested for chloride f content using the titration method in accordance with procedures explained in QP-01 CL3 (attached).

It is proposed that using conventional backhoe equipment, the excavation shall not exceed 16 feet below ground surface (bgs). Soil with GRO or DRO levels above 1,000 mg/kg shall be hauled to an NMOCD-approved facility or remediated on site. Upon completion of

PAGE 9 OF 12

1?

EME P-6 Line Leak Site T20S-R37E-Sec 6-Unit P NMOCD CASE # 1R0422

excavation activities, closure samples will be collected in accordance with the procedures explained in <u>QP-06</u>, <u>QP-07</u>, and <u>QP-08</u> (attached). Closure soil samples submitted to the laboratory shall be analyzed for gas and diesel range organics (GRO and DRO) using EPA Method 8015 to determine TPH concentrations. Samples with headspace readings or GRO levels above 100 ppm will also be analyzed for BTEX using EPA Method 8021B.

A minimum 10-12 inch thick clay liner, compacted to meet or exceed 95 percent of a Proctor Test (ASTM-D-698) with a permeability less than or equal to 10-7 cm/sec or a 40 mil poly liner, will be installed three to five feet below ground surface. The clay liner will be sloped to the southeast and shall extend laterally to insure sufficient deflection of any potential infiltrating water originating from the surface. The backfill (above and below the clay liner) will be composed of blended or remediated soil that will support vegetation. The surface will be contoured and shall be reseeded with native vegetation to eliminate any ponding of precipitation and promote evapotranspiration, thereby minimizing natural infiltration. Vegetation will be monitored for growth.

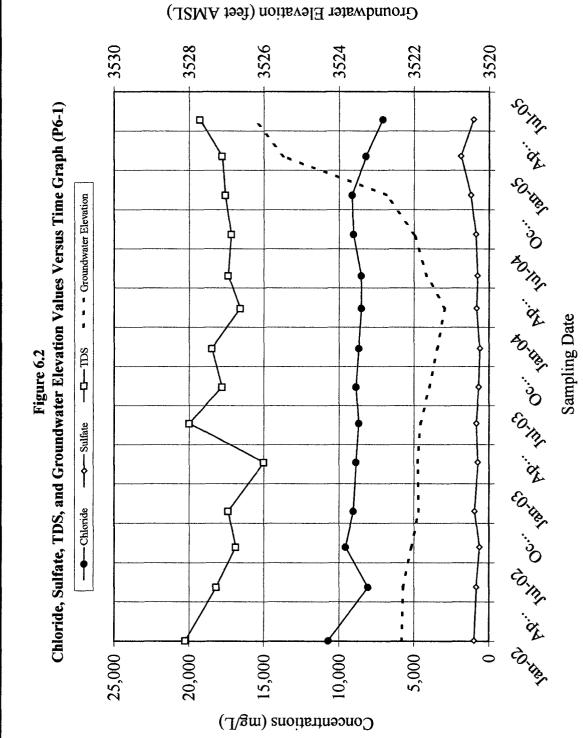
7.2 GROUNDWATER MONITORING

Continued monitoring of groundwater quality (major ions and TDS) is recommended at a reduced frequency (semi-annually). The next two years of groundwater monitoring will be compared to the three-year trend already documented in which the chloride and TDS levels have not increased as a result of a line leak at this site. Analysis for BTEX concentrations should be suspended, as there has been no indication of dissolved hydrocarbons since the groundwater monitoring program began in January 2002 (13 consecutive quarters).

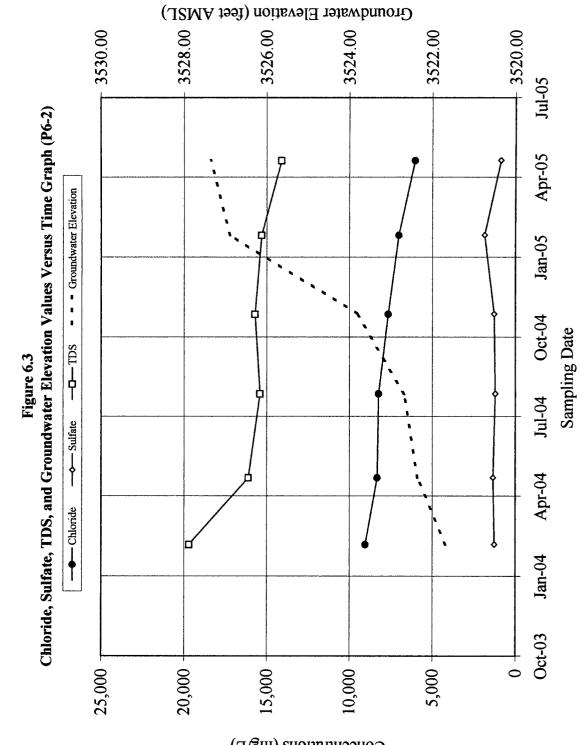
EME P-6 Line Leak Site T20S-R37E-Sec 6-Unit P NMOCD CASE # 1R0422

8.0 QUALITY ASSURANCE / QUALITY CONTROL

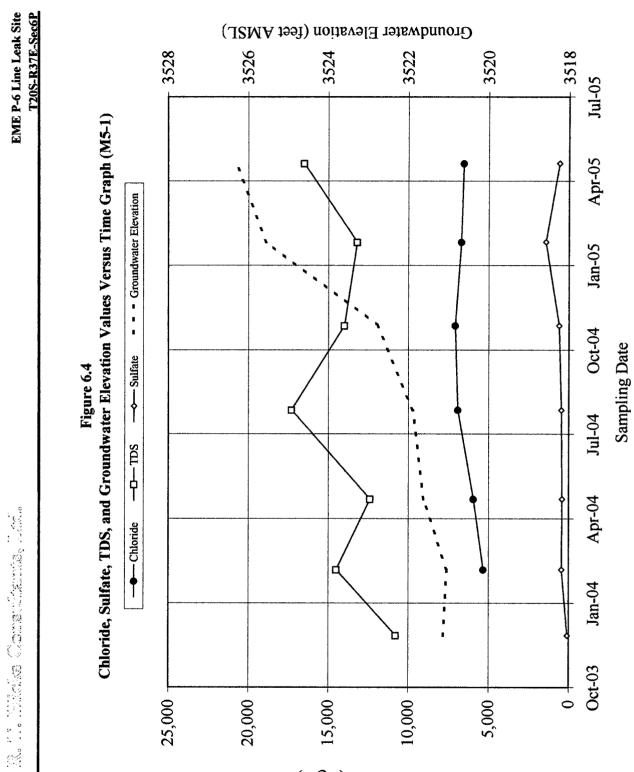
Sampling and analytical procedures shall be performed consistent with the techniques listed in 20 NMAC 6.3107.B and with Section 103 of the Water Quality Standards for Interstate and Intrastate Streams in New Mexico (20 NMAC 6.1). The quality procedures for collecting and analyzing soil and groundwater samples are included in the appendix.


9.0 **PROPOSED SCHEDULE OF ACTIVITIES**

Task	Date of Task Completion
Submission of Progress Reports to	Quarterly beginning 30 days hence approval of
NMOCD	Stage 1 and 2 Abatement Plan by NMOCD
Excavation, lining, backfilling, and reseeding with native vegetation	Within 60 days of Stage 1 and 2 Abatement Plan approval by NMOCD
Groundwater Monitoring	Within 60 days of Stage 1 and 2 Abatement Plan approval by NMOCD
Submission of final site remediation	Within 30 days after completion of tasks
report to NMOCD	summarized in the Stage 1 and 2 Abatement Plan


It may be necessary to extend the completion dates for the tasks outlined above dependent on contractor availability and whether the NMOCD gives bulk approval of other Stage I and 2 Abatement Plans. For example, if five or more Stage I and 2 Abatement Plans are given the notice to proceed by the NMOCD at the same time it may overly burden the assigned consultant to perform the required tasks therein within the timeframe outlined above.

FIGURES


EME P-6 Line Leak Site T20S-R37E-Sec6P

EME P-6 Line Leak Site T20S-R37E-Sec6P

Concentrations (mg/L)

Concentrations (mg/L)

TABLES

1

EME P-6 Line Leak Site T20S-R37E-Sec6P

			Sur	mmary of Gro EME	Summary of Groundwater Monitoring Results EME P-6 Line Leak Site	nitoring Resul c Site	ts				
Monitoring Well	Sample Date	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)	Depth to Groundwater	Groundwater Elevation	
			, , ,						(teet B1UU)	(feet AIMSL)	
	01/10/02	10,700	666	20,248	< 0.002	< 0.002	< 0.002	< 0.006	36.70	3522.32	
	05/14/02	8,060	852	18,200	< 0.001	< 0.001	< 0.001	< 0.001	36.73	3522.29	
	08/15/02	9,570	646	16,900	< 0.001	< 0.001	< 0.001	< 0.001	36.95	3522.07	
	11/06/02	9,040	952	17,400	< 0.001	< 0.001	< 0.001	< 0.001	37.15	3521.87	
	02/27/03	8,860	741	15,000	< 0.001	< 0.001	< 0.001	< 0.001	37.12	3521.90	
	05/29/03	8,680	858	20,000	< 0.001	< 0.001	< 0.001	< 0.001	37.19	3521.83	
DK 1	08/21/03	8,860	683	17,800	< 0.001	< 0.001	< 0.001	< 0.001	37.43	3521.59	
1-0-1	11/19/03	8,690	619	18,500	< 0.001	< 0.001	< 0.001	< 0.001	37.64	3521.38	
	02/20/04	8,510	830	16,600	< 0.001	< 0.001	< 0.001	< 0.001	37.84	3521.18	
	05/06/04	8,510	756	17,400	< 0.001	< 0.001	< 0.001	<` 0.001	37.36	3521.66	
	08/10/04	9,040	889	17,200	< 0.001	< 0.001	< 0.001	< 0.001	37.03	3521.99	
	11/09/04	9,130	1,220	17,600	< 0.001	< 0.001	< 0.001	< 0.001	36.28	3522.74	
	02/07/05	8,210	1,870	17,800	< 0.001	< 0.001	< 0.001	< 0.001	33.54	3525.48	
	05/03/05	7,090	1,050	19,300	< 0.001	< 0.001	< 0.001	< 0.001	32.76	3526.26	
	02/20/04	9,040	1,260	19,700	< 0.001	< 0.001	< 0.001	< 0.001	37.97	3521.68	
	05/06/04	8,330	1,340	16,100	< 0.001	< 0.001	< 0.001	< 0.001	37.29	3522.36	
С УQ	08/10/04	8,240	1,220	15,400	< 0.001	< 0.001	< 0.001	< 0.001	36.97	3522.68	
7-01	11/09/04	7,670	1,280	15,700	< 0.001	< 0.001	< 0.001	< 0.001	35.83	3523.82	
	02/07/05	7,030	1,860	15,300	< 0.001	< 0.001	< 0.001	\$ 0.001	32.76	3526.89	
	05/03/05	6,050	885	14,100	< 0.001	< 0.001	< 0.001	< 0.001	32.29	3527.36	
	12/11/03	6,198	100	10,784	< 0.002	< 0.002	< 0.002	< 0.006	33.28	3521.13	
	02/20/04	5,320	454	14,500	< 0.002	< 0.002	< 0.002	< 0.006	33.37	3521.04	
	05/06/04	5,940	420	12,400	< 0.002	< 0.002	< 0.002	< 0.006	32.79	3521.62	
M5-1	08/10/04	6,910	470	17,300	< 0.001	< 0.001	< 0.001	< 0.001	32.52	3521.89	
	11/09/04	2,090	614	14,000	< 0.001	< 0.001	< 0.001	< 0.001	31.63	3522.78	
	02/07/05	6,710	1,450	13,200	< 0.001	< 0.001	< 0.001	< 0.001	28.85	3525.56	
	05/03/05	6,560	595	16,500	< 0.001	< 0.001	< 0.001	< 0.001	28.10	3526.31	
WQCC Standards	tandards	250	600	1,000	0.01	0.75	0.75	/ 0.62			
				1 1 1					_		

Summary of Groundwater Monitoring Results Table 4.1

/

Total Dissolved Solids (TDS), chlonide, sulfate, and BTEX concentrations listed in milligrams per liter (mg/L) Analyses performed by Environmental Lab of Tezas, Odessa, TX. Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards. AMSL - Above Mean Sea Level, BTOC - Below Top of Casing Elevations and state plane coordinates surveyed by Basin Surveys, Hobbs, NM.

|

!

i

1

No vio martina Computizzatione 1460

EME P-6 Line Leak Site T20S-R37E-Sec6P

		Id	Table 5.1 PRELIMINARY SOIL SAMPLE RESULTS	Table 5.1 SOIL SAM	PLE RESULT	S						
Sample		Sampling	Sample Depth	Chloride	Chloride MEGA TPH	GRO	DRO	B	Т	Э	x	
Ð	Sample Location	Date	(Ft bgs)	(mqq)	(mqq)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
			5	525	4,380	NA	NA	NA		ΝA	NA	
			10	275	11,000	NA	NA	NA	NA	NA	NA	
A	off countheast of line leafs counted	11/11/01	15	600	879	NA	NA	NA	NA	NA	NA	
17	2 11 SOULTEAST OF THIS ICAN SOULCE	10/11/11	20	400	122	NA	NA	NA	NA	NA	NA	
			25	500	441	NA	NA	NA	NA	NA	NA	
			30	275	166	NA	NA	NA	NA	NA	NA	
			3	200	23,510	NA	NA	NA	NA	NA	NA	
			S	500	11,950	NA	NA	NA	NA	NA	NA	
			7	950	006,6	NA	NA	NA	NA	NA	NA	
В	4 ft east of line leak source	04/29/03	64	700	18,560	YN	NA	NA	AN	NA	NA	
			(11)	(500	20,060	654	1940	0.212	0.633	3.62	4.42	\cap
		·	£	750	7,550	NA	NA	NA	NA	NA	NA	١
			15	750	6,270	142	579	0.044	0.133	0.578	1.43	
ပ	23 ft west of line leak source	04/29/03	0	50	88	NA	NA	NA	NA	NA	NA	
	38 ft and of line lade courses	04 / 20 / 03	0	50	67	NA	ΝA	NA	NA	NA	NA	
2	JO IL CASL OF THE ICAR SOULCE	CU/KZ/+U	2	50	74	NA	NA	NA	NA	NA	NA	
<u>تا</u>	18 5 ft couth of line leafs course	04 / 20 / 03	0	100	964	NA	NA	NA	NA	NA	NA	
1		CN / C7 / LD	2	100	67	NA	NA	NA	NA	NA	NA	
Ĺ	18 ft north of line leads source	04 / 70 / 02	0	200	3710	NA	NA	NA	NA	NA	NA	
4	TO IL HOLDI OF HILL LCAN SOULCE	CD 1/2 120	2	200	67	NA	NA	NA	NA	NA	NA	
G	25 ft north of line leak source	04/29/03	0	50	88	NA	NA	NA	NA	NA	NA	
Chloride a	Chloride analysis performed on site using chloride titration method (QP-03)	ation method	(OP-03)									

Chloride analysis performed on site using chloride titration method (QP-03)

Mega TPH readings obtained in the field using a GAC Mega TPH Infrared Spectrophotometer by RE Environmental (Hobbs NM) for screening purposes only. Gas Range Organics (GRO) and Diesel Range Organics (DRO) analyzed using EPA Method 8015M by Environmental Lab of Texas (Odessa TX). Benzene, toluene, ethylbenzene, and xylenes (BTEX) analyzed using EPA Method 8021B by Environmental Lab of Texas (Odessa TX).. . . .

|

EME P-6 Line Leak Sue T20S-R37E-Sec6P

Table 5.2

17.170 13.120 0.894 NA NA NA NA NA NA NA NA NA (mg/kg AN NAN 1.241 AN NA AN NA NΛ NA NA X mg/kg) 0.375 9.850 9.790 0.737 AN AN AN AN AN NA NA AN NA NA NA AN AN AN AN AN Щ <0.025 mg/kg) <0.025 2.510 0.030 NA NA NA NA AN NA NA AN NAN AN NA NA NA <0.025 me/ke) <0.025 0.669 0.651 AN NA ΝA AN AN AN AN NA NA NA NA AN NA AN NA AN NA NΑ NA B mg/kg) DRO NA NA < 10 6950 5450 828 < 10 NA 117 NA < 10 NΑ < 10 NA < 10 < 10 404 NA 126 NA mg/kg) GRO < 10 NA NA < 10 < 10 < 10 < 10 < 10 < 10 1450 2020 < 10 < 10 472 116 ΝA NΑ NΑ NΛ NΑ NA NA ΥZ ADDITIONAL SOIL SAMPLE RESULTS MVO (mqq) 169 425 0 2.5 71 309 000 6 0 0 0 0 0 0 0 0 0 2 Chloride (ppm) **(**‡ 118 145 551 871 813 165 116 144 146 52 580 306 174 138 153 594 986 115 85 262 259 453 Depth (Ft 16 19 4 8 1 4∞[2] 4 ∞ 12 16 12 12 4 8 [] 8 80 16 4 4 Sampling 1/21/2005 1/21/2005 1/21/2005 01/24/05 01/24/05 01/24/05 Date 12 ft south of line leak source 20 ft west of line leak source 13 ft east of line leak source 4 ft north of line leak source 30 ft east of line leak source Directly beneath line leak Sample Location Sample ID Σ Н \mathbf{X} Ч

Chloride analysis performed on site using chloride titration method (QP-03)

Organic Vapor Analyzer (OVM) readings obtained using Thermal Instruments Model 51B calibrated for benzene.

Gas Range Organics (GRO) and Diesel Range Organics (DRO) analyzed using EPA Method 8015M.

Benzene, toluene, ethylbenzene, and xylenes (BTEX) analyzed using EPA Method 8060B.

I Y D AYVA

a service and a service service and a servic

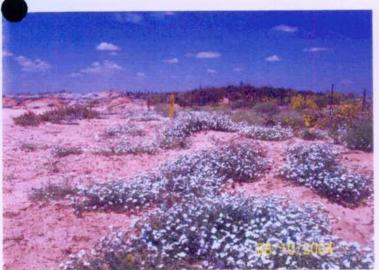
I

PHOTODOCUMENTATION

Photos of EME P-6 Line Leak Site (T20S, R37E, Section 6, Unit Letter P)

Above: View of MW-1 facing north. The former line leak (excavated area in background) was behind MW-1. Photo to Right: View facing NW showing excavated area.►

MW-1 facing north (7/14/04)


MW-1 facing east (7/14/04)

View of MW-1 facing north (7/14/04)

Shinnery oak becoming well established south of MW-1 (7/14/04)

View of MW-1 facing north (08/10/04)

Closer view of MW-1 facing north (08/10/04)

View facing east along ROC pipeline ROW (08/10/04)

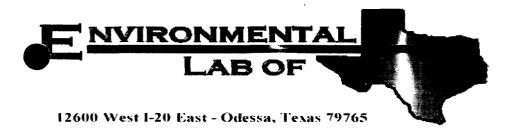
View of MW-1 facing north (08/10/04)

View of native plants nearby (09/09/04)

View of native plants nearby (09/09/04)

Sampling activity at location "H" approximately 12 feet east of former leak point (center of photo).

Sample location "J" at 16 ft depth directly below former leak point.


View of P-6 Line Leak Site facing north after completion of backhoe sampling activities.

LABORATORY ANALYTICAL REPORTS

AND

CHAIN OF CUSTODY DOCUMENTATION

Analytical Report

Prepared for:

Kristin Farris Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME System P-6 Line Leak Site Project Number: None Given Location: T20S, R37E, Sec 6, Unit Letter P

Lab Order Number: 5A25025

Report Date: 02/07/05

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240	Project: EME Syste Project Number: None Give Project Manager: Kristin Far			Fax: (505) 397-1471 Reported: 02/07/05 10:12
	ANALYTICAL REPORT FOR SAM	MPLES		
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Н (12')	5A25025-01	Soil	01/21/05 09:45	01/25/05 16:20
I (12')	5A25025-02	Soil	01/21/05 10:15	01/25/05 16:20
J (4')	5A25025-03	Soil	01/21/05 11:05	01/25/05 16:20

5A25025-04

5A25025-05

5A25025-06

5A25025-07

5A25025-08

5A25025-09

5A25025-10

5A25025-11

5A25025-12

5A25025-13

Soil

01/21/05 11:10

01/21/05 11:15

01/21/05 11:30

01/24/05 09:00

01/24/05 10:05

01/24/05 10:15

01/24/05 10:40

01/24/05 10:55

01/24/05 11:30

01/24/05 12:30

01/25/05 16:20

01/25/05 16:20

01/25/05 16:20

01/25/05 16:20

01/25/05 16:20

01/25/05 16:20

01/25/05 16:20

01/25/05 16:20

01/25/05 16:20

01/25/05 16:20

J (8')

J (12')

J (16')

J (19')

K (8')

K (16')

L (8')

L (16')

M (8')

M (16')

i.

Rice Operating Co.			Project: EM		P-6 Line Le	ak Site		Fax: (505) 3	397-1471
122 W. Taylor			lumber: Nor					Repor	ted:
Hobbs NM, 88240		Project M	lanager: Kri	stin Farris				02/07/05	10:12
		O	rganics b	y GC					
		Environ	mental L	ab of To	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
H (12') (5A25025-01) Soil						-			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/30/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0		"	"	"	"	"	
Total Hydrocarbon C6-C35	ND	10.0	u	"	n	w	'n	w	
Surrogate: 1-Chlorooctane		90.6 %	70-1	30	"	"	"		
Surrogate: 1-Chlorooctadecane		97.6 %	70-1	30	n	"	11	"	
I (12') (5A25025-02) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0			"			"	
Total Hydrocarbon C6-C35	ND	10.0	*	"		"	"		
Surrogate: 1-Chlorooctane		93.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		101 %	70-1	30	"	"	"	"	
J (4') (5A25025-03) Soil									
Gasoline Range Organics C6-C12	1450	50.0	mg/kg dry	5	EA52802	01/28/05	01/29/05	EPA 8015M	
iesel Range Organics >C12-C35	6950	50.0	*	"	н	"	*	u	
Total Hydrocarbon C6-C35	8400	50.0	"	"	"))	"	"	
Surrogate: 1-Chlorooctane		21.8 %	70-1.	30	"	"	"	"	S-0
Surrogate: 1-Chlorooctadecane		23.0 %	70-1	30	"	"	"	"	S-0
J (8') (5A25025-04) Soil									
Gasoline Range Organics C6-C12	2020	50.0	mg/kg dry	5	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	5450	50.0	"			n	н		
Fotal Hydrocarbon C6-C35	7470	50.0	"	"	"	*	"		
Surrogate: 1-Chlorooctane		24.6 %	70-1.	30	"	"	"	"	S-0
Surrogate: 1-Chlorooctadecane		25.2 %	70-1.	30	"	"	"	n	S-0
J (12') (5A25025-05) Soil									
Gasoline Range Organics C6-C12	472	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	828	10.0	"	"				"	
Fotal Hydrocarbon C6-C35	1300	10.0	"	"	"	"	"	#	
Surrogate: 1-Chlorooctane		97.6 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		98.4 %	7 0-1 .	30	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.			Project: EMI	E System	P-6 Line Lea	k Site		Fax: (50	5) 397-1471
122 W. Taylor		Project N	umber: Non	e Given				Re	ported:
Hobbs NM, 88240		Project M	anager: Kris	tin Farris				02/07	/05 10:12
		O	rganics by	y GC					
Like Manager Project Number: Reported: 0.207/03 10:12 Organics by GC Environmental Lab of Texas Reported: 0.207/03 10:12 Analyte Resoluting Limit Units Diation Back Prepared Analyzed Method None Attable MM, \$82:00 Result Earning Diation Back Prepared Analyzed Method None Attable State Result Limit Units Diation Back Prepared Analyzed Method None Attable State Result Limit Units Diation Back Prepared Analyzed Method None Attable State State 1 EA32802 01/28/05 01/28/05 None None									
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
J (16') (5A25025-06) Soil					-				
Gasoline Range Organics C6-C12	116	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	404	10.0	*	"	n	*	"	*	
Fotal Hydrocarbon C6-C35	520	10.0	*	"	"	"	"	"	
Surrogate: 1-Chlorooctane		87.6 %	70-12	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		84.6 %	70-1	30	"	"	"	"	
J (19') (5A25025-07) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	"	"		*	"	
Fotal Hydrocarbon C6-C35	ND	10.0	"	"	"	"	**	*	
Surrogate: 1-Chlorooctane		82.0 %	70-13	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		84.6 %	70-13	30	"	"	"	"	
K (8') (5A25025-08) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
iesel Range Organics >C12-C35	117	10.0	Ħ			"	**	"	
Fotal Hydrocarbon C6-C35	117	10.0	u	**	"	"	u	"	
Surrogate: 1-Chlorooctane		78.2 %	70-13	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		82.0 %	70-13	80	"	"	"	"	
K (16') (5A25025-09) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	126	10.0	**	"	**	"	"	п	
Total Hydrocarbon C6-C35	126	10.0	"	"	u	u	"	"	
Surrogate: 1-Chlorooctane		84.6 %	70-13	80	"	"	"	"	
Surrogate: 1-Chlorooctadecane		89.0 %	70-13	30	"	"	"	"	
L (8') (5A25025-10) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	a	"	*	"	"	*	
Fotal Hydrocarbon C6-C35	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		85.4 %	70-13	80	"	"	"	"	
Surrogate: 1-Chlorooctadecane		89.8 %	70-13	80	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 17

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project N	Project: EMI lumber: Non lanager: Krist	e Given	P-6 Line Le	ak Site		Fax: (505) (Repor 02/07/05	ted:
		O	rganics by	GC					
		Environ	mental La	b of T	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
L (16') (5A25025-11) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	"	п	"	"		
Total Hydrocarbon C6-C35	ND	10.0	"	"		"	n	17	
Surrogate: 1-Chlorooctane		84.6 %	70-13	10	"	"	"	<i>n</i>	
Surrogate: 1-Chlorooctadecane		87.8 %	70-13	80	"	"	"	"	
M (8') (5A25025-12) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0		"		"		**	
Total Hydrocarbon C6-C35	NĎ	10.0	n	"		*	п		
Surrogate: 1-Chlorooctane		101 %	70-13	10	"	"	n	"	
Surrogate: 1-Chlorooctadecane		107 %	70-13	0	"	"	"	"	
M (16') (5A25025-13) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
iesel Range Organics >C12-C35	ND	10.0	u	"	"	"	"	**	
Total Hydrocarbon C6-C35	ND	10.0	"	"	"	n 	"		
Surrogate: 1-Chlorooctane		78.0 %	70-13	0	"	"		"	
Surrogate: 1-Chlorooctadecane		80.8 %	70-13	0	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 17

Rice Operating Co.	Project: EME System P-6 Line Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris	02/07/05 10:12

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
H (12') (5A25025-01) Soil										
% Moisture	15.4		%	1	EA52605	01/26/05	01/27/05	% calculation		
I (12') (5A25025-02) Soil										
% Moisture	2.5		%	1	EA52605	01/26/05	01/27/05	% calculation	_	
J (4') (5A25025-03) Soil				a						
% Moisture	14.4		%	1	EA52605	01/26/05	01/27/05	% calculation		
J (8') (5A25025-04) Soil										
% Moisture	16.2		%	1	EA52605	01/26/05	01/27/05	% calculation		
J (12') (5A25025-05) Soil										
% Moisture	19.3		%	1	EA52605	01/26/05	01/27/05	% calculation		
J (16') (5A25025-06) Soil										
. Moisture	14.7		%	1	EA52605	01/26/05	01/27/05	% calculation		
J (19') (5A25025-07) Soil										
% Moisture	3.2		%	1	EA52605	01/26/05	01/27/05	% calculation		
K (8') (5A25025-08) Soil										
% Moisture	9.9		%	1	EA52605	01/26/05	01/27/05	% calculation		
K (16') (5A25025-09) Soil										
% Moisture	7.0		%	1	EA52605	01/26/05	01/27/05	% calculation		
L (8') (5A25025-10) Soil										
% Moisture	14.9		%	1	EA52605	01/26/05	01/27/05	% calculation		
L (16') (5A25025-11) Soil								<u> </u>		
% Moisture	12.7		%	1	EA52605	01/26/05	01/27/05	% calculation		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

[Rice Operating Co.	Project:	EME System P-6 Line Leak Site	Fax: (505) 397-1471
	122 W. Taylor	Project Number:	None Given	Reported:
	Hobbs NM, 88240	Project Manager:	Kristin Farris	02/07/05 10:12

General Chemistry Parameters by EPA / Standard Methods

	Environmental Lab of Texas									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
M (8') (5A25025-12) Soil					·					
% Moisture	15.4		%	1	EA52605	01/26/05	01/27/05	% calculation		
M (16') (5A25025-13) Soil										
% Moisture	9.5		%	1	EA52605	01/26/05	01/27/05	% calculation		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 17

Project: EME System P-6 Line Leak	c Site Fax: (505) 397-1471
Project Number: None Given	Reported:
Project Manager: Kristin Farris	02/07/05 10:12
	Project Number: None Given

SPLP Volatile Organic Compounds by EPA Method 1312/8260B

Environmental Lab of TexasAnalyteResultReporting LimitUnitsDilutionBatchExtractedPreparedAnalyzedMethodH (12') (5A25025-01) SoilBenzeneND1.00ug/l1EB5040101/31/05 SPLP02/01/0502/01/05EPA 8260BTolueneND1.00""""""""EthylbenzeneJ [0.680]1.00""""""""Xylene (p/m)1.061.00"""""""""Naphthalene1.051.00"""""""""Surrogate: 1,2-Dichloroethane-d487.0 %52-149"""""""""										
Analyte	Result		Units	Dilution	Batch	Extracted	Prepared	Analyzed	Method	Notes
H (12') (5A25025-01) Soil										
Benzene	ND	1.00	ug/l	1	EB50401	01/31/05 SPLP	02/01/05	02/01/05	EPA 8260B	
Toluene	ND	1.00			"	۳.	*1	•		
Ethylbenzene	J [0.680]	1.00	н	"		н		"	"	J
Xylene (p/m)	1.06	1.00	"			0	**	"	"	
Xylene (o)	ND	1.00	"		"	"	"	n	"	
Naphthalene	1.05	1.00	"	"	u	"	"	"	"	
Surrogate: Dibromofluoromethane		97.6%	70	-139	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		87.0 %	52	?-149	"	"	"	"	"	
Surrogate: Toluene-d8		97.2 %	76	5-125	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	66	5-145	"	"	"	"	"	

Environmental Lab of Texas

Rice Operating Co.	Project:	EME System P-6 Line Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris	02/07/05 10:12

Volatile Organic Compounds by EPA Method 8260B

		Environ	mental L	ab of To	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
J (4') (5A25025-03) Soil									
Benzene	ND	25.0	ug/kg dry	25	EA53105	01/28/05	01/31/05	EPA 8260B	
Toluene	J [14.8]	25.0	"			"	"	"	
Ethylbenzene	375	25.0	"		"		"	"	
Xylene (p/m)	131	25.0	"		"	u	"	"	
Xylene (o)	1110	25.0	"	**	"	"	"	"	
Naphthalene	42.3	25.0	"	"		"	"	"	
Surrogate: Dibromofluoromethane		90.4 %	70-1	39	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		80.4 %	52-1	49	"	μ	"	"	
Surrogate: Toluene-d8		92.6 %	76-1	25	"	"	n	**	
Surrogate: 4-Bromofluorobenzene		112 %	66-1	45	"	"	"	. 11	
J (8') (5A25025-04) Soil									
Benzene	651	100	ug/kg dry	100	EA53105	01/28/05	01/28/05	EPA 8260B	
Toluene	2510	100	"		"	*	"		
Ethylbenzene	9850	100		н	"	"	"		
ylene (p/m)	12500	100	"		"			"	
Xylene (o)	4670	100	"	"		н		"	
Naphthalene	2800	100	"	"	n	"	"		
Surrogate: Dibromofluoromethane		100 %	70-1	39	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		92.8 %	52-1	49	"	"	"	"	
Surrogate: Toluene-d8		96.6 %	76-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.2 %	66-1	45	"	"	"	"	
J (12') (5A25025-05) Soil									<u> </u>
Benzene	669	100	ug/kg dry	100	EA53105	01/28/05	01/28/05	EPA 8260B	
Toluene	J [73.6]	100	н	"	"	n	"	11	J
Ethylbenzene	9790	100	u	"	"	"	"		
Xylene (p/m)	11300	100	n	"	"	"	"	11	
Xylene (o)	1820	100	n		"	"	"	"	
Naphthalene	3100	100	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	70-1	39	n	"	н	n	
Surrogate: 1,2-Dichloroethane-d4		<i>95.2 %</i>	52-1	49	"	"	"	**	
Surrogate: Toluene-d8		97.8 %	76-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.8 %	66-1	45	"	"	"	"	

Environmental Lab of Texas

Rice C	Operating Co.	Project:	EME System P-6 Line Leak Site	Fax: (505) 397-1471
122 W	7. Taylor	Project Number:	None Given	Reported:
Hobbs	NM, 88240	Project Manager:	Kristin Farris	02/07/05 10:12

Volatile Organic Compounds by EPA Method 8260B

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
J (16') (5A25025-06) Soil									
Benzene	ND	25.0	ug/kg dry	25	EA53105	01/28/05	01/28/05	EPA 8260B	
Toluene	29.7	25.0	"		17	**	*	0	
Ethylbenzene	737	25.0	*	"	"	"	"	n	
Xylene (p/m)	807	25.0	"		"	*	*		
Xylene (o)	87.1	25.0	*		"	"	n	"	
Naphthalene	246	25.0	"	"			"		
Surrogate: Dibromofluoromethane		98.2 %	70-13	19	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		91.2 %	52-14	19	"	n	"	**	
Surrogate: Toluene-d8		96.0 %	76-12	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.0 %	66-14	15	"	"	"	"	

Environmental Lab of Texas

Rice Operating Co.	Project: EME System P-6 Line Leak Site									Fax: (505) 397-1471		
122 W. Taylor		Project N	umber: Noi	ne Given					Repo	orted:		
Hobbs NM, 88240			02/07/0	5 10:12								
	0	rganics by	g GC - Q	uality Co	ontrol							
		Environ	nental L	ab of Te	xas							
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch EA52802 - Solvent Extraction (GC)												
Blank (EA52802-BLK1)			<u> </u>	Prepared: (01/28/05 A	nalyzed: 01	/29/05					
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet									
Diesel Range Organics >C12-C35	ND	10.0							•			
Fotal Hydrocarbon C6-C35	ND	10.0										
Surrogate: 1-Chlorooctane	39.2		mg/kg	50.0		78.4	70-130					
Surrogate: 1-Chlorooctadecane	36.4		"	50.0		72.8	70-130					
Blank (EA52802-BLK2)				Prepared: ()1/28/05 A	nalyzed: 01	/29/05					
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet									
Diesel Range Organics >C12-C35	ND	10.0	"									
Fotal Hydrocarbon C6-C35	ND	10.0										
Surrogate: 1-Chlorooctane	35.8		mg/kg	50.0		71.6	70-130			- · · ·		
Surrogate: 1-Chlorooctadecane	39.7		"	50.0		79.4	70-130					
LCS (EA52802-BS1)				Prepared: 0)1/28/05 Ai	nalyzed: 01	/29/05					
Gasoline Range Organics C6-C12	433	10.0	mg/kg wet	500		86.6	75-125					
Diesel Range Organics >C12-C35	481	10.0		500		96.2	75-125					
Total Hydrocarbon C6-C35	914	10.0	"	1000		91.4	75-125					
rrogate: 1-Chlorooctane	37.4		mg/kg	50.0		74.8	70-130					
Surrogate: 1-Chlorooctadecane	37.1		"	50.0		74.2	70-130					
LCS (EA52802-BS2)				Prepared: 0)1/28/05 A	nalyzed: 01	/29/05					
Gasoline Range Organics C6-C12	450	10.0	mg/kg wet	500		90.0	75-125					
Diesel Range Organics >C12-C35	458	10.0	"	500		91.6	75-125					
Total Hydrocarbon C6-C35	908	10.0	"	1000		90.8	75-125					
Surrogate: 1-Chlorooctane	38.2		mg/kg	50.0		76.4	70-130					
Surrogate: 1-Chlorooctadecane	36.4		"	50.0		72.8	70-130					
Calibration Check (EA52802-CCV1)				Prepared: 0)1/28/05 Ai	nalyzed: 01	/29/05					
Gasoline Range Organics C6-C12	445		mg/kg	500		89.0	80-120					
Diesel Range Organics >C12-C35	541		"	500		108	80-120					
Total Hydrocarbon C6-C35	986		"	1000		98.6	80-120					
Surrogate: 1-Chlorooctane	50.9		"	50.0		102	70-130					
Surrogate: 1-Chlorooctadecane	46.5		"	50.0		93.0	70-130					

Environmental Lab of Texas

Rice Operating Co.		H	Project: EM	IE System P-	-6 Line Lea	k Site			Fax: (505)	397-1471
122 W. Taylor			umber: No						Repo	rted:
Hobbs NM, 88240			anager: Kri						02/07/0	5 10:12
	0	rganics by	y GC - Q	uality Co	ontrol					
		Environ	nental L	ab of Te	kas					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA52802 - Solvent Extraction (GC)										
Calibration Check (EA52802-CCV2)				Prepared: (01/28/05 A	nalyzed: 01	/29/05			
Gasoline Range Organics C6-C12	471		mg/kg	500		94.2	80-120			
Diesel Range Organics >C12-C35	520			500		104	80-120			
Total Hydrocarbon C6-C35	991		n	1000		99.1	80-120			
Surrogate: 1-Chlorooctane	43.8		"	50.0		87.6	70-130			
Surrogate: 1-Chlorooctadecane	47.7		"	50.0		95.4	70-130			
Matrix Spike (EA52802-MS1)	Sou	rce: 5A25025	5-01	Prepared: ()1/28/05 Ai	nalyzed: 01	/29/05			
Gasoline Range Organics C6-C12	551	10.0	mg/kg dry	591	ND	93.2	75-125			
Diesel Range Organics >C12-C35	593	10.0	"	591	ND	100	75-125			
Fotal Hydrocarbon C6-C35	1140	10.0	н	1180	ND	96.6	75-125			
Surrogate: 1-Chlorooctane	46.6		mg/kg	50.0		93.2	70-130			
Surrogate: 1-Chlorooctadecane	49.5		n	50.0		99.0	70-130			
Matrix Spike (EA52802-MS2)	Sou	rce: 5A26005	5-02	Prepared: 0)1/28/05 Ai					
Gasoline Range Organics C6-C12	497	10.0	mg/kg dry	544	ND	91.4	75-125			
Diesel Range Organics >C12-C35	575	10.0	"	544	ND	106	75-125			
Total Hydrocarbon C6-C35	1070	10.0	n	1090	ND	98.2	75-125			
rrogate: 1-Chlorooctane	48.5		mg/kg	50.0		97.0	70-130			
Surrogate: 1-Chlorooctadecane	53.6		"	50.0		107	70-130			
Matrix Spike Dup (EA52802-MSD1)	Sou	rce: 5A25025	5-01	Prepared: 0	1/28/05 Ai	nalyzed: 01	/29/05			
Gasoline Range Organics C6-C12	533	10.0	mg/kg dry	591	ND	90.2	75-125	3.32	20	
Diesel Range Organics >C12-C35	624	10.0		591	ND	106	75-125	5.09	20	
Total Hydrocarbon C6-C35	1160	10.0	n	1180	ND	98.3	75-125	1.74	20	
Surrogate: 1-Chlorooctane	52.6		mg/kg	50.0		105	70-130			
Surrogate: 1-Chlorooctadecane	50.2		"	50.0		100	70-130			
Matrix Spike Dup (EA52802-MSD2)	Sou	rce: 5A26005	5-02	Prepared: 0	1/28/05 A	nalyzed: 01	/29/05			
Gasoline Range Organics C6-C12	493	10.0	mg/kg dry	544	ND	90.6	75-125	0.808	20	
Diesel Range Organics >C12-C35	570	10.0	**	544	ND	105	75-125	0.873	20	
Fotal Hydrocarbon C6-C35	1060	10.0	**	1090	ND	97.2	75-125	0.939	20	
Surrogate: 1-Chlorooctane	46.1		mg/kg	50.0		92.2	70-130			
Surrogate: 1-Chlorooctadecane	49.4		"	50.0		98.8	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 11 of 17

Rice Operating Co.	Project:	EME System P-6 Line Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris	02/07/05 10:12

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA52605 - General Preparation	(Prep)									
Blank (EA52605-BLK1)				Prepared: (1/26/05 A	nalyzed: 01	/27/05			
% Moisture	0.004		%				·			-
Duplicate (EA52605-DUP1)	Sou	Source: 5A25021-01		Prepared: 01/26/05 Analyzed: 01/27/05						
% Moisture	1.8		%	-	1.6			11.8	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

R	Rice Operating Co.	Project:	EME System P-6 Line Leak Site	Fax: (505) 397-1471
1	22 W. Taylor	Project Number:	None Given	Reported:
	Hobbs NM, 88240	Project Manager:	Kristin Farris	02/07/05 10:12

SPLP Volatile Organic Compounds by EPA Method 1312/8260B - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB50401 - EPA 1312/ZHE									·	
Blank (EB50401-BLK1)				Prepared &	z Analyzed:	02/01/05				
Benzene	ND	1.00	ug/l							
Toluene	ND	1.00	"							
Ethylbenzene	ND	1.00	"							
Xylene (p/m)	ND	1.00	"							
Xylene (0)	ND	1.00	"							
Naphthalene	0.740	1.00	"							
Surrogate: Dibromofluoromethane	48.8		"	50.0		97.6	70-139			
Surrogate: 1,2-Dichloroethane-d4	41.3		"	50.0		82.6	52-149			
Surrogate: Toluene-d8	48.6		"	50.0		97.2	76-125			
Surrogate: 4-Bromofluorobenzene	51.8		"	50.0		104	66-145			
LCS (EB50401-BS1)	Prepared & Analyzed: 02/01/05									
Benzene	56.5		ug/l	50.0		113	70-130			
Toluene	56.4			50.0		113	70-130			
Ethylbenzene	51.9		"	50.0		104	70-130			
Xylene (p/m)	90.4		"	100		90.4	70-130			
Xylene (o)	57.2		"	50.0		114	70-130			
aphthalene	57.0		"	50.0		114	70-130			
Surrogate: Dibromofluoromethane	48.6		"	50.0		97.2	70-139			
Surrogate: 1,2-Dichloroethane-d4	48.8		n	50.0		97.6	52-149			
Surrogate: Toluene-d8	49.8		"	50.0		99.6	76-125			
Surrogate: 4-Bromofluorobenzene	51.6		"	50.0		103	66-145			
Calibration Check (EB50401-CCV1)				Prepared &	Analyzed:	02/01/05				
Toluene	55.5		ug/l	50.0		111	70-130			
Ethylbenzene	51.3		"	50.0		103	70-130			
Surrogate: Dibromofluoromethane	49.3		"	50.0		98.6	70-139			
Surrogate: 1,2-Dichloroethane-d4	45.5		"	50.0		91.0	52-149			
Surrogate: Toluene-d8	49.7		n	50.0		99.4	76-125			
Surrogate: 4-Bromofluorobenzene	49.2		"	50.0		98.4	66-145			

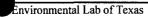
Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 13 of 17

Rice Operating Co.	Project:	EME System P-6 Line Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris	02/07/05 10:12

SPLP Volatile Organic Compounds by EPA Method 1312/8260B - Quality Control


Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EB50401 - EPA 1312/ZHE

Matrix Spike (EB50401-MS1)	Source: 5A	425025-01	Prepared:	02/01/05 A	nalyzed: 0	2/02/05
Benzene	56.5	ug/l	50.0	ND	113	70-130
Toluene	57.6	"	50.0	ND	115	70-130
Ethylbenzene	54.3		50.0	0.680	107	70-130
Xylene (p/m)	98.5	"	100	1.06	97.4	70-130
Xylene (0)	58.0	"	50.0	ND	116	70-130
Naphthalene	53.8	"	50.0	1.05	106	70-130
urrogate: Dibromofluoromethane	49.3	"	50.0		98.6	70-139
urrogate: 1,2-Dichloroethane-d4	50.5	"	50.0		101	52-149
Surrogate: Toluene-d8	49.3	"	50.0		98.6	76-125
Surrogate: 4-Bromofluorobenzene	50.6	"	50.0		101	66-145

Matrix Spike Dup (EB50401-MSD1)	Source: 54	A25025-01	Prepared:	02/01/05 A	nalyzed: 02	2/02/05		
Benzene	55.7	ug/l	50.0	ND	111	70-130	1.79	20
Toluene	56.3	"	50.0	ND	113	70-130	1.75	20
Ethylbenzene	54.1	"	50.0	0.680	107	70-130	0.00	20
Xylene (p/m)	96.8	"	100	1.06	95 .7	70-130	1.76	20
Xylene (o)	57.8	"	50.0	ND	116	70-130	0.00	20
uphthalene	56.1	"	50.0	1.05	110	70-130	3.70	20
Surrogate: Dibromofluoromethane	47.7	"	50.0		95.4	70-139		
Surrogate: 1,2-Dichloroethane-d4	48.6	"	50.0		97.2	52-149		
Surrogate: Toluene-d8	49 .7	"	50.0		99 .4	76-125		
Surrogate: 4-Bromofluorobenzene	51.6	#	50.0		103	66-145		

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project:	EME System P-6 Line Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris	02/07/05 10:12

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA53105 - EPA 5030C (GCMS)										
Blank (EA53105-BLK1)				Prepared &	Analyzed:	01/28/05				
Benzene	ND	25.0	ug/kg wet							
Foluene	ND	25.0	"							
Ethylbenzene	ND	25.0	*							
Xylene (p/m)	ND	25.0	**							
Xylene (o)	ND	25.0								
Naphthalene	ND	25.0								
Surrogate: Dibromofluoromethane	45.1		ug/l	50.0		90.2	70-139			
Surrogate: 1,2-Dichloroethane-d4	41.2		"	50.0		82.4	52-149			
Surrogate: Toluene-d8	48.1		"	50.0		96.2	76-125			
Surrogate: 4-Bromofluorobenzene	47.1		n	50.0		94.2	66-145			
LCS (EA53105-BS1)				Prepared &	z Analyzed:	01/28/05				
Benzene	52.5		ug/l	50.0		105	70-130			-
Toluene	55.2		"	50.0		110	70-130			
Ethylbenzene	54.2			50.0		108	70-130			
Xylene (p/m)	99.2		"	100		99.2	70-130			
Xylene (0)	59.4		"	50.0		119	70-130			
iphthalene	49.6			50.0		99.2	70-130			
Surrogate: Dibromofluoromethane	45.2		n	50.0	·	90.4	70-139			
Surrogate: 1,2-Dichloroethane-d4	46.2		"	50.0		92.4	52-149			
Surrogate: Toluene-d8	49.5		"	50.0		99.0	76-125			
Surrogate: 4-Bromofluorobenzene	48.7		"	50.0		97.4	66-145			
Calibration Check (EA53105-CCV1)				Prepared &	: Analyzed:	01/28/05				
Benzene	54.4		ug/l	50.0		109	70-130			
Toluene	55.4			50.0		111	70-130			
Ethylbenzene	53.4			50.0		107	70-130			
Kylene (p/m)	98.0			100		98.0	70-130			
(ylene (o)	57.3		n	50.0		115	70-130			
Naphthalene	49.5		"	50.0		99.0	70-130			
urrogate: Dibromofluoromethane	46.7		"	50.0		93.4	70-139			• -
urrogate: 1,2-Dichloroethane-d4	48.7		"	50.0		97.4	52-149			
Surrogate: Toluene-d8	49.2		"	50.0		98.4	76-125			

Environmental Lab of Texas

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

101

66-145

50.0

50.5

ſ	Rice Operating Co.	Project:	EME System P-6 Line Leak Site	Fax: (505) 397-1471
	122 W. Taylor	Project Number:	None Given	Reported:
ļ	Hobbs NM, 88240	Project Manager:	Kristin Farris	02/07/05 10:12

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EA53105 - EPA 5030C (GCMS)

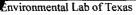
Matrix Spike (EA53105-MS1)	Source: 5A	Prepared &	Analyzed:			
Benzene	1390	ug/l	1250	ND	111	70-130
Toluene	1430		1250	ND	114	70-130
Ethylbenzene	1390	"	1250	ND	111	70-130
Xylene (p/m)	2470	"	2500	30.7	97.6	70-130
Xylene (o)	1480	"	1250	15.3	117	70-130
Naphthalene	1210	"	1250	47.7	93.0	70-130
Surrogate: Dibromofluoromethane	45.4	"	50.0		90.8	70-139
Surrogate: 1,2-Dichloroethane-d4	46.3	"	50.0		92.6	52-149
Surrogate: Toluene-d8	49.6	"	50.0		99.2	76-125
Surrogate: 4-Bromofluorobenzene	49.8	"	50.0		99.6	66-145

Matrix Spike Dup (EA53105-MSD1)	Source: 5.	A27003-03	Prepared &	Analyzed:	01/28/05				
Benzene	1370	ug/l	1250	ND	110	70-130	0.905	20	
Toluene	1410	"	1250	ND	113	70-130	0.881	20	
Ethylbenzene	1360	"	1250	ND	109	70-130	1.82	20	
Xylene (p/m)	2460	"	2500	30.7	97.2	70-130	0.411	20	
Xylene (o)	1460		1250	15.3	116	70-130	0,858	20	
aphthalene	1240		1250	47.7	95.4	70-130	2.55	20	
Surrogate: Dibromofluoromethane	47.9	"	50.0		95.8	70-139			
Surrogate: 1,2-Dichloroethane-d4	47.9	11	50.0		95.8	52-149			
Surrogate: Toluene-d8	49.2	"	50.0		98.4	76-125			
Surrogate: 4-Bromofluorobenzene	50.2	"	50.0		100	66-145			

Environmental Lab of Texas

Rice Operating Co.	Project:	EME System P-6 Line Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris	02/07/05 10:12

Notes and Definitions


- S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Raland K Juli 2/7/2005 Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Report Approved By:

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	Project Name: EME System P-6 Line Leak Site	Project #:	Project Location: T20S, R37E, Sec 6, Unit Letter P	coc #: <u>V117P6-0105-1</u>	Page 1 of 2 cent	12	928 NX	이대는 (Specify): 17번: 세요.1 (9015년) 54월 1312 (51년 월 1005 54월 1559 / CEC 55월 1559 / CEC 55월 1559 / CEC 64월 1559 / CEC 74월 1312 (51년 월 1 740 원 월 740 원 월 740 원 월 740 원 월 740 년 월 750 년 80 년											Sample Containers Intact? O Temperature Upon Receipt: 2, 0 Laboratory Comments: 2, 0	toz glass orice	
СНАІ	ł						Matrix	2011 2)nqğe Matel Odher (2060(J))											net		1-25-05
					Fax No: 505-397-1471		Preservative	No. of Containers Ice Hyos Hgod H ₂ SO ₄	$ \dot{A} $										n and to enviro@leaco.nel (パイク・ハン) 日本市		- enter
					Fax No			bəiqms2 əseD Dəlqms2 əmiT	01-21-05 0945	210120-1210	01-21-05 1105	01-25-25 1110	21-21-05/11/5	01-21-25 1130	<u>0</u>	01-27-05 100S	24-05 1015	01-24-05 1040	t-environmental.com	Described by El Mr.	Kanne MCMunu
ENVIRONMENTAI LAD OF TEXAS 12600 West I-20 East Phone: 432-563-1800 Odessa, Texas 79765 Fax: 432-563-1713	Project Manager: Kristin Farris	company Name Rice Operating Company	Company Address: 122 West Taylor	city/state/zip: Hobbs, New Mexico 88240	Telephone No: 505-393-9174			SA25025 FIELD CODE	H (12')	202 I (12/)	J (4)	T(8')	T (121)	J (16)	T (197)	K (8')	K(16)	L(3')	Spectal Instructions: Please email results to both gil@trident-environmental Reling() and the final of the total Strenger 13/17 Reling() field by: / / / / Date / Time Received by:	ZPUR A.A. 12/05 4.200	

of custody record and analysis request Project name: EME System P-6 Line Leak Site		37E, Sec 6, Unit Letter P	-0105-2	2 302	Analyze For:		Voletijes Semivolačijes BTEXN(80218/2030 or BTEXN Rci D.S.R.M. D.S.R.M. Total Dissolved Solids SPLP 1312 SPLP 1312 TAT HZU RUSH TAT (Pre-Schedi RUSH TAT (TAT HZU AT TAT HZU STBRD457							Х О	yoz glass on ice	
CHAIN DF CUSTODY RECORD AND ANALYSIS REQUEST Project Name: EME System P-6 Line Leak S	Project #:	Project Location: T205, R37E,	coc #: V117P6-0105-2	Page	TOTAL		Other (506ctrb): Definer (506ctrb): Definers (25, Mg, Na, K) Definers (25, Mg, Na, K) Definers (26, Mg, Na, K) Definer (506ctrb): Definer (506ctrb): Definer (506ctrb):							Date Time	Time	1-25-05 1620
			وموادعها المراجع المراجع المراجع والمراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع والمراجع	Fax No: 505-397-1471		Preservative	Time Sampled No. of Containers Loe	1 1 1 1 201 So-2	120 130 1	H-65 1230			Please email results to both gil@trident-environmental.com and to enviro@leaco.net	þy:		Jame mermung li
Entrommental Lab of Texas 12600 West 1-20 East Phone: 432-563-1713 Odessa, Texas 79765 Project Manager: Kristin Farris	Company Name Rice Operating Company	Company Address: 122 West Taylor	city/state/zip: Hobbs, New Mexico 88240	Tetephone No: 505-393-9174			Date Sampled	(10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	101-24- 01-24-				Special Instructions: Please email results to both gil@trident-en	Relinquishing by Received by Received by	Lime	

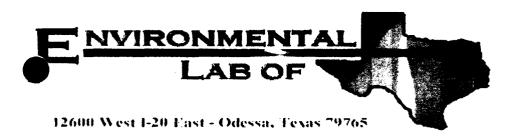
Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: <u>Rice Operating</u>
Date/Time: 1/25/05 16:58
Order #: <u>5A25025</u>
Initials: JZH

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	2.0° C	
Shipping container/cooler in good condition?	(Yes)	No		
Custody Seals intact on shipping container/cooler?	Yes	No	Not present	
Custody Seals intact on sample bottles?	Yes	No	Not present	
Chain of custody present?	(Yes	No		
Sample Instructions complete on Chain of Custody?	Yes	No		
Chain of Custody signed when relinquished and received?	Yes	No		
Chain of custody agrees with sample label(s)	Yes	No		
Container labels legible and intact?	Yes	(No)	No lobds-inte	y ritter on hol
Sample Matrix and properties same as on chain of custody?	(Yes)	No		v
Samples in proper container/bottle?	(es)	No		
Samples properly preserved?	Yes.	No		
Sample bottles intact?	(Yes	No		
Preservations documented on Chain of Custody?	Yes	No		
Containers documented on Chain of Custody?	(es)	No		
Sufficient sample amount for indicated test?	Yes?	No		
All samples received within sufficient hold time?	Yes,	No		
VOC samples have zero headspace?	Kes	No	Not Applicable	

Other observations:


Variance Documentation:

Contact Person: - Kristin Date/Time: 1-27-05 1435 Contacted by:

8260 BTEX-N are ok toron Rather than BORIB DT.

Corrective Action Taken:

Regarding:

Analytical Report

Prepared for:

Kristin Farris Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME System P-6 Line Leak Site Project Number: V117P6 Location: T20S, R36E, Sec 6, Unit Letter P

Lab Order Number: 5E09006

Report Date: 05/19/05

Rice Operating Co.	Project:	EME System P-6 Line Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number:	V117P6	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris	05/19/05 11:54

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
P6-1	5E09006-01	Water	05/03/05 13:30	05/06/05 16:40
P6-2	5E09006-02	Water	05/03/05 14:30	05/06/05 16:40

Rice Operating Co.	Project: EM	E System P-6 Line Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number: V11	7P6	Reported:
Hobbs NM, 88240	Project Manager: Kris	stin Farris	05/19/05 11:54

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
P6-1 (5E09006-01) Water									_
Benzene	ND	0.00100	mg/L	1	EE51006	05/10/05	05/11/05	EPA 8021B	
Toluene	ND	0.00100	**	**	N	"	"	".	
Ethylbenzene	ND	0.00100	"	*	•	H	"	*	
Xylene (p/m)	ND	0.00100	"	'n		*	н	"	
Xylene (o)	ND	0.00100		**		"	"		
Surrogate: a,a,a-Trifluorotoluene	<u> </u>	104 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.0 %	80-12	0	a	"	п	и	
P6-2 (5E09006-02) Water									
Benzene	ND	0.00100	mg/L	1	EE51006	05/10/05	05/11/05	EPA 8021B	
Toluene	ND	0.00100	н			"	n		
Ethylbenzene	ND	0.00100	n	"		"	*7	"	
Xylene (p/m)	ND	0.00100			"		11		
Xylene (o)	ND	0.00100	н	н	"				
Surrogate: a,a,a-Trifluorotoluene	······	102 %	80-12	0	"	H	"	"	······
rogate: 4-Bromofluorobenzene		112 %	80-120	0	"	"	"	"	

nvironmental Lab of Texas

ſ	Rice Operating Co.	Project:	EME System P-6 Line Leak Site	Fax: (505) 397-1471
	122 W. Taylor	Project Number:	V117P6	Reported:
	Hobbs NM, 88240	Project Manager:	Kristin Farris	05/19/05 11:54

General Chemistry Parameters by EPA / Standard Methods

		Environn	nental I	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
P6-1 (5E09006-01) Water									
Total Alkalinity	220	2.00	mg/L	1	EE51104	05/09/05	05/09/05	EPA 310.2M	
Chloride	7090	50.0		100	EE51001	05/09/05	05/09/05	EPA 300.0	
Total Dissolved Solids	19300	20.0	11	4	EE51105	05/09/05	05/10/05	EPA 160.1	
Sulfate	1050	50.0	*	·100	EE51001	05/09/05	05/09/05	EPA 300.0	
P6-2 (5E09006-02) Water									
Total Alkalinity	220	2.00	mg/L	1	EE51104	05/09/05	05/09/05	EPA 310.2M	
Chloride	6050	50.0	"	100	EE51001	05/09/05	05/09/05	EPA 300.0	
Total Dissolved Solids	14100	20.0	•	4	EE51105	05/09/05	05/10/05	EPA 160.1	
Sulfate	885	50.0	**	100	EE51001	05/09/05	05/09/05	EPA 300.0	

Invironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Ric	e Operating Co.	Project:	EME System P-6 Line Leak Site	Fax: (505) 397-1471
122	2 W. Taylor	Project Number:	V117P6	Reported:
Hol	bbs NM, 88240	Project Manager:	Kristin Farris	05/19/05 11:54

Total Metals by EPA / Standard Methods

Environmental	Lab of Texas
---------------	--------------

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
P6-1 (5E09006-01) Water								· · · ·	
Calcium	1280	10.0	mg/L	1000	EE50905	05/09/05	05/09/05	EPA 6010B	
Magnesium	546	0.100	11	100	"	•	"	"	
Potassium	59.3	0.500		10	"	"			
Sodium	3720	10.0		1000	"	"		n	
P6-2 (5E09006-02) Water									
Calcium	670	1.00	mg/L	100	EE50905	05/09/05	05/09/05	EPA 6010B	
Magnesium	275	0.100	"	"		"			
Potassium	49.9	0.500		10	н	"	**		
Sodium	2470	10.0	"	1000	"		"	н	

nvironmental Lab of Texas

122 W. Taylor Hobbs NM, 88240		Project Nu Project Mar		17P6					Rеро 05/19/0	
		ganics by Environm		-						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE51006 - EPA 5030C (GC)										
Blank (EE51006-BLK1)				Prepared &	Analyzed:	05/10/05				
Benzene	ND	0.00100	mg/L	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
Toluene	ND	0.00100	*							
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00100								
Xylene (0)	ND	0.00100								
Surrogate: a,a,a-Trifluorotoluene	23.1	····	ug/l	20.0		116	80-120			
Surrogate: 4-Bromofluorobenzene	18.8		"	20.0		94.0	80-120			
LCS (EE51006-BS1)				Prepared &	Analyzed:	05/10/05				
Benzene	94.7		ug/l	100		94.7	80-120			
Toluene	107		"	100		107	80-120			
Ethylbenzene	110			100		110	80-120			
Xylene (p/m)	226			200		113	80-120			
Xylene (o)	109		**	100		109	80-120			
Surrogate: a,a,a-Trifluorotoluene	20.2		"	20.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.2		"	20.0		111	80-120			
S Dup (EE51006-BSD1)				Prepared &	Analyzed:	05/10/05				
Jenzene	105		ug/l	100		105	80-120	10.3	20	
Toluene	110		**	100		110	80-120	2.76	20	
Ethylbenzene	108			100		108	80-120	1.83	20	
Xylene (p/m)	212		*	200		106	80-120	6.39	20	
Xylene (0)	98.7		"	100		98.7	80-120	9.92	20	
Surrogate: a,a,a-Trifluorotoluene	19.5		"	20.0		97.5	80-120			
Surrogate: 4-Bromofluorobenzene	20.2		"	20.0		101	80-120			
Calibration Check (EE51006-CCV1)				Prepared: 0	5/10/05 Ar	nalyzed: 05	/11/05			
Benzene	104		ug/l	100		104	80-120			
Foluene	107			100		107	80-120			
Ethylbenzene	106			100		106	80-120			
Xylene (p/m)	214			200		107	80-120			
Kylene (o)	102		и	100		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	22.1		"	20.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	23.3		"	20.0		116	80-120			

Project: EME System P-6 Line Leak Site

nvironmental Lab of Texas

Rice Operating Co.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 5 of 10

Fax: (505) 397-1471

Rice Operating Co.	Project:	EME System P-6 Line Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number:	V117P6	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris	05/19/05 11:54

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE51006 - EPA 5030C (GC)

Matrix Spike (EE51006-MS1)	Source: 5	E06003-16	Prepared:	05/10/05 Ai	nalyzed: 0	5/11/05	
Benzene	115	ug/l	100	0.658	114	80-120	
Toluene	120		100	1.02	119	80-120	
Ethylbenzene	115		100	1.03	114	80-120	
Xylene (p/m)	242	**	200	2.17	120	80-120	
Xylene (o)	113		100	1.99	111	80-120	
Surrogate: a,a,a-Trifluorotoluene	26.6	"	20.0		133	80-120	S-04
Surrogate: 4-Bromofluorobenzene	26.2	"	20.0		131	80-120	S-04

nvironmental Lab of Texas

Rice Operating Co.		Pr	oject: El	ME System P	6 Line Lea	k Site			Fax: (505)	397-1471
122 W. Taylor		Project Nu							Repo	rted:
Hobbs NM, 88240		Project Ma							05/19/0	
	• ·									
General Cl	emistry Para	•				is - Qua	lity Con	trol		
		Environm	iental I	Lab of Te	(as					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE51001 - General Preparation (VetChem)									
Blank (EE51001-BLK1)				Prepared &	Analyzed:	05/09/05				
Sulfate	ND	0.500	mg/L							
Chloride	ND	0.500	н							
LCS (EE51001-BS1)				Prepared &	Analyzed:	05/09/05				
Chloride	10.5		mg/L	10.0		105	80-120			
Sulfate	10.9		"	10.0		109	80-120			
Calibration Check (EE51001-CCV1)				Prepared &	Analyzed:	05/09/05				
Sulfate	11.2		mg/L	10.0		112	80-120	·		
Chloride	11.0		"	10.0		110	80-120			
Duplicate (EE51001-DUP1)	Sou	rce: 5E09002-	01	Prepared &	Analyzed:	05/09/05				
Sulfate	263	10.0	mg/L		264			0.380	20	
Chloride	178	10.0	"		179			0.560	20	
Batch EE51104 - General Preparation (V	WetChem)									
Blank (EE51104-BLK1)				Prepared &	Analyzed:	05/09/05				
Total Alkalinity	ND	2.00	mg/L							
aplicate (EE51104-DUP1)	Sou	rce: 5E09002-	01	Prepared &	Analyzed:	05/09/05				
Total Alkalinity	191	2.00	mg/L		190			0.525	20	
Reference (EE51104-SRM1)				Prepared &	Analyzed:	05/09/05				
Bicarbonate Alkalinity	231		mg/L	200		116	80-120			

nvironmental Lab of Texas

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project: EM oject Number: V1 oject Manager: Kri	17P6	6 Line Leal	c Site			Fax: (505) Repo 05/19/0	rted:
Gener	al Chemistry Paramet	ers by EPA /	Standard	Method	ls - Qual	ity Cont	rol		
	Env	vironmental L	ab of Te	as					
		vironmental L	ab of Tex	Source		%REĊ		RPD	

Duplicate (EE51105-DUP1)	Sourc	e: 5E09002-6	01	Prepared: 05/09/05 Analyzed: 05/10/05			
Total Dissolved Solids	1030	5.00	mg/L	1060	2.87	20	

mg/L

5.00

ND

Total Dissolved Solids

Rice Operating (). Proje	ct: EME System P-6 Line Leak Site	Fax: (505) 397-1471
22 W. Taylor	Project Numb	er: V117P6	Reported:
lobbs NM, 882) Project Manag	er: Kristin Farris	05/19/05 11:54

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE50905 - 6010B/No Digestion

Blank (EE50905-BLK1)				Prepared & Analy	zed: 05/09/05				
Calcium	ND	0.0100	mg/L						
Magnesium	ND	0.00100							
Potassium	ND	0.0500	स						
Sodium	ND	0.0100	u						
Calibration Check (EE50905-CCV1)				Prepared & Analy:	zed: 05/09/05				
Calcium	1.87		mg/L	2.00	93.5	85-115			
Magnesium	2.17			2.00	108	85-115			
Potassium	1.77		"	2.00	88.5	85-115			
Sodium	1.71		*	2.00	85.5	85-115			
Duplicate (EE50905-DUP1)	Sour	Source: 5E09002-01		Prepared & Analy:	zed: 05/09/05				
Calcium	30.2	0.100	mg/L	32.4	l .		7.03	20	
Magnesium	9.97	0.0100	"	9.90)		0.705	20	
Potassium	24.4	0.500		24.9)		2.03	20	
Sodium	262	0.500	"	293			11.2	20	

avironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 10

Rice Operating Co.	Project: E	ME System P-6 Line Leak Site	Fax: (505) 397-1471
122 W. Taylor	Project Number: V	11 7 P6	Reported:
Hobbs NM, 88240	Project Manager: K	ristin Farris	05/19/05 11:54

Notes and Definitions

- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- DET
 Analyte DETECTED

 ND
 Analyte NOT DETECTED at or above the reporting limit

 NR
 Not Reported

 dry
 Sample results reported on a dry weight basis

 RPD
 Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Julies Date: 5/19/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

nvironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

Lab of Texas	Phone: 432-563-1800 Fax: 432-563-1713	
Environmental Lab of Texas	1260 pat 1-20 East Odesar, Texas 79765	

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Texas 79765	Fax: 432-563-1713		·						4			•	
Project Manager:	Project Manager: Kristin Farris			£	Project Name: EME System P-6 Line Leak Site	EME	Sys	tem	18-0	ne	eak	Site	
Company Name	company Name RICE Operating Company		-	1	Project #, U11 7 P6	>	E	2					
Company Address:	Company Address: 122 West Taylor	و و و و و و و و و و و و و و و و و و و	و میں اور	bud	Project Location: T20S, R36E, Sec 6, Unit Letter P	1205	R3	ы К	ŝ	Chit	etter		
City/State/Zip:	cityrstate/Zip: Hobbs, New Mexico 88240			-	COC #: V117P6-0505	VIIV	0-9d	505					
Telephone No:	Telephone No: 505-393-9174	Fax No:	Fax No: 505-397-1471										
Samuler Stonature:	Ella Dont												
]			Į	Analyze For	ü			Γ	
5					-	TCLP:							
					P L	TOTAL:							
		G	Preservative	Matrix	9								
A COLOR AND USE ONLY)	FIELD CODE	Date Sampled	OBJEL (2660)A) NOC OL CONTRIPERS NOCH HCI AS AS A AN HCO HCO HCO HCO HCO HCO HCO HCO	Ogret (sbecg/): Son Srndbe Matei	TPH: 418.1 8015/K 1005 100 Cations (Ca. Mg, Na. K) Anions (Ci. 504, CO3, HCO3)	SAR / ESP / CEC Metata: As Ag Bs Cd Cr Ph Hg S	Volatiles	Semivolstiles Semivolstiles Semivolstiles Semivolstiles Semivolstiles Semivolstiles	RCI	M.C.W. Totel Dissolved Solids			eluberts-erg) TAT H2UR TAT brebnet2

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		·····	<b>r</b>	·	<b></b>	<b>1</b>	r			r		
TAT brebnets	7			ļ			ļ						
etuberto2-eng) TAT H2UR			ļ	<b></b>	<b> </b>		ļ						
			<b></b>			<u> </u>		ļ			z		
			ļ	L	ļ		<b> </b>			_	[		
											<b>\$</b>	.)	
sbilo2 baylossiCi latoT	3	)								L		G.02	
.M.A.O.N				Í									
RCI											Sample Containers Intact? Temperature Upon Receipt Laboratory Comments:	Q	
BTEX 80218/5030 or BTEX 826	Υ	2									Sample Containers Intact? Temperature Upon Recelp Laboratory Comments:		1.
eelitekovimes											Sa vo a	j. a	E T
2010 Selitistov											Sample Containers Inti Temperature Upon Rei Laboratory Comments		
Netata: As Ag Ba Cd Cr Pb Hg S				<u> </u>				<u> </u>				1 <del>9</del>	281
SAR / ESP / CEC					<u> </u>			<b>—</b>			per per		72
Anions (Cl. 504, CO3, HCO3)	N	5		<b>{</b>				<b> </b>			e en de		- 12
Cations (Ca, Mg, Na, K)	5	5	<b> </b>	<del> </del>	t						<u> </u>	<u></u>	
	ļ-				┝		<b> </b>	<b> </b>	┝			Time	
001 5001 WS108 1'817:Hd1	<b> </b>	<b> </b>		<u> </u>				ļ				1ª	A.do
Ogyet (sheciji):	Ļ		L		ļ	ļ	}		——			<u> </u>	
lios			ļ	<b> </b>	ļ			<b></b>				}	10 1
aßpnys												Date	Deute Lef 05
Water	5	5									Б	ă	<u>n</u>
Officer ( Specify)											vironmental com and to enviro@leaco.net	{	N
600N											ŭ		
'05 ^c H		<b> </b>	<u> </u>	<u> </u>			1	<b>†</b>			e l		
HOBN					<u> </u>		<del> </del>				ğ	ł	
HOI 1948	5	5					┣				ž	ļ	
			ļ	<u> </u>	<b> </b>		ļ		<b>  </b>		6	}	
⁶ ONH	-		ļ	ļ	<b> </b>	ļ	ļ	ļ			2		
	>			<u> </u>							g	ł	
No. of Containers	m	$\sim$									ä		$\left  \right $
							<u>†</u>	<u> </u>			ho		-
	0	0					Į	]			0	]	3
Deliqme2 amiT	m	430			[		ļ	{			nta	[	No and a second
	85	1 2			'						ne	ł	
				<b> </b> -	<u> </u>		<b> </b>	<b> </b>			E S	{	5
- in the termine (and in)	5	1		ļ				ļ			Ę	ä	W ELOT
Date Sampted	Š	Ĩ		{				}			G	De l	8
Dette Sampled	5-2%	540-		]			1				귿	Received	Received
12 32 32 M	1.0	11	È_	L	<b></b>	L	<u> </u>	L			de l	a la	æ
				]	{						i i i	2	
							]	1			B	S in	
			1	ł		}	1	1			1 D	l 🔨	
				1			{	[			to to		<u> </u> ]
				1	}						Please email results to both gil@trident-en	0 50ate	
빙 병		}	1					]			s	18.31	Date
FIELD CODE								[			Ing	01	
			{				1				ē		<b> </b>
변					1		1	]				1	
				Į	l	[		ł			E E		
				l				!			Se	M	
	1	p6-2	1	]	1	1					ea	ス	
	1-9d	2	ł	1	l		1	l			ā	10	
	5											X	
												k i	
A A A A A A A A A A A A A A A A A A A					:		1 ·	ł			Special Instructions:	14	
22 .	أخبا	0		1	1		}	1			and	A	A I
	Ō	6		ļ.	· ·	ļ					2	拨入	sher
	V						1				G	Me l	Relinquished by:
×04				1		: .	1.				8	E State	١ ټ
		لسسيا	شنشة	L	ł	نى نەر <u>ا</u>	L	<b>1</b>	أسحمه	L		1	Net

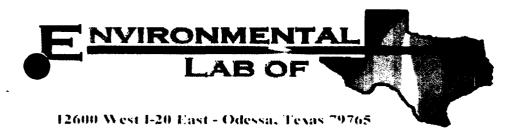
. •

# Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: <u><u><u>Ri</u></u></u>	ce operating
Date/Time:	5/10/05 5:00
Order #:	SE09006
Initials:	· CK

# Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	4.0 C
Shipping container/cooler in good condition?	XES,	No	·
Custody Seals intact on shipping container/cooler?	Yes	No I	Not present
Custody Seals intact on sample bottles?	123	No I	Not present
Chain of custody present?	Pes 1	No i	
Sample Instructions complete on Chain of Custody?	1	No 1	
Chain of Custody signed when relinquished and received?	1 Mes 1	No	
Chain of custody agrees with sample label(s)	CS !	No	
Container labels legible and intact?	( Pes 1	No	
Sample Matrix and properties same as on chain of custody?		No 1	
Samples in proper container/bottle?	रिका	No	
Samples properly preserved?	(Fes	No i	
Sample bottles intact?	Yes !	No :	ł
Preservations documented on Chain of Custody?	YES	No 1	i
Containers documented on Chain of Custody?	1 Jes 1	No :	1
Sufficient sample amount for indicated test?	(eg)	No	
All samples received within sufficient hold time?	(B)	No	
VCC samples have zero headspace?	I YES	No	Not Applicable


Other observations:

# Variance Documentation:

Contact Person:	Date/Time:	Co	ontacted by:
Regarding:			

Corrective Action Taken:

* Sample date changed as per attached fax ( Jasen



# Analytical Report

# **Prepared for:**

Kristin Farris Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME System M-5 SWD Site Project Number: V117M5 Location: T20S, R36E, Sec 5, Unit Letter M

Lab Order Number: 5E09007

Report Date: 05/19/05

ſ	Rice Operating Co.	Project: EME System M-5 SWD Site	Fax: (505) 397-1471
	122 W. Taylor	Project Number: V117M5	Reported:
	Hobbs NM, 88240	Project Manager: Kristin Farris	05/19/05 11:52

#### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
M5-1	5E09007-01	Water	05/03/05 16:10	05/06/05 16:40

ſ	Rice Operating Co.	Project:	EME System M-5 SWD Site	Fax: (505) 397-1471	
	122 W. Taylor	Project Number:	V117M5	Reported:	
ŀ	Hobbs NM, 88240	Project Manager:	Kristin Farris	05/19/05 11:52	

# Organics by GC

## **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
M5-1 (5E09007-01) Water	<u> </u>								
Benzene	ND	0.00100	mg/L	1	EE51006	05/10/05	05/11/05	EPA 8021B	
Toluene	ND	0.00100	"	"	"		n	u	
Ethylbenzene	ND	0.00100		"	*				
Xylene (p/m)	ND	0.00100		н			"	"	
Xylene (o)	ND	0.00100		"	"		*	"	
Surrogate: a,a,a-Trifluorotoluene		104 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.5 %	80-12	0		"	"	"	

Invironmental Lab of Texas

Γ	Rice Operating Co.	Project:	EME System M-5 SWD Site	Fax: (505) 397-1471
ł	122 W. Taylor	Project Number:	V117M5	Reported:
	Hobbs NM, 88240	Project Manager:	Kristin Farris	05/19/05 11:52

#### General Chemistry Parameters by EPA / Standard Methods . . .

		Environn	nental I	Lab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
M5-1 (5E09007-01) Water									
Total Alkalinity	214	2.00	mg/L	1	EE51104	05/09/05	05/09/05	EPA 310.2M	
Chloride	6560	50.0	н	100	EE51001	05/09/05	05/09/05	EPA 300.0	
Total Dissolved Solids	16500	20.0	"	4	EE51105	05/09/05	05/10/05	EPA 160.1	
Sulfate	595	50.0	"	100	EE51001	05/09/05	05/09/05	EPA 300.0	

nvironmental Lab of Texas

ſ	Rice Operating Co.	Project:	EME System M-5 SWD Site	Fax: (505) 397-1471
	122 W. Taylor	Project Number:	V117M5	Reported:
	Hobbs NM, 88240	Project Manager:	Kristin Farris	05/19/05 11:52

#### **Total Metals by EPA / Standard Methods**

#### **Environmental Lab of Texas**

Analyte M5-1 (5E09007-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Calcium	1460	10.0	mg/L	1000	EE50905	05/09/05	05/09/05	EPA 6010B	
Magnesium	446	0.100	п	100	"	"	**	"	
Potassium	46.9	0.500		10			"	*	
Sodium	2560	10.0	"	1000	"	н		"	

nvironmental Lab of Texas

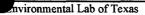
The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor		Pr Project Nu		E System M 17M5	1-5 SWD Si	te			Fax: (505) <b>Repo</b>	
Hobbs NM, 88240		Project Mar							05/19/0	
	0	rganics by	GC - Q	uality Co	ontrol					
		Environm	ental L	ab of Te	xas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE51006 - EPA 5030C (GC)										
Blank (EE51006-BLK1)				Prepared &	z Analyzed:	05/10/05				
Benzene	ND	0.00100	mg/L	·····						
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00100								
Xylene (o)	ND	0.00100								
Surrogate: a,a,a-Trifluorotoluene	23.1		ug/l	20.0		116	80-120			
Surrogate: 4-Bromofluorobenzene	18.8		«	20.0		94.0	80-120			
LCS (EE51006-BS1)				Prepared &	Analyzed:	05/10/05				
Benzene	94.7		ug/l	100		94.7	80-120			·
Foluene	107			100		107	80-120			
Ethylbenzene	110		"	100		110	80-120			
Xylene (p/m)	226		*	200		113	80-120			
Xylene (o)	109		"	100		109	80-120			
Surrogate: a,a,a-Trifluorotoluene	20.2	· · · · · · · · · · · · · · · · · · ·	"	20.0		101	80-120		······	·····
Surrogate: 4-Bromofluorobenzene	22.2		"	20.0		111	80-120			
CS Dup (EE51006-BSD1)				Prepared &	z Analyzed:	05/10/05				
senzene	105		ug/l	100		105	80-120	10.3	20	
Toluene	110			100		110	80-120	2.76	20	
Ethylbenzene	108		"	100		108	80-120	1.83	20	
Xylene (p/m)	212		"	200		106	80-120	6.39	20	
Xylene (0)	98.7			100		98.7	80-120	9.92	20	
Surrogate: a,a,a-Trifluorotoluene	19.5		"	20.0		97.5	80-120			
Surrogate: 4-Bromofluorobenzene	20.2		"	20.0		101	80-120			
Calibration Check (EE51006-CCV1)				Prepared: (	)5/10/05 A	nalyzed: 05	/11/05			
Benzene	104		ug/l	100		104	80-120			
Toluene	107			100		107	80-120			
Ethylbenzene	106			100		106	80-120			
Xylene (p/m)	214		"	200		107	80-120			
Xylene (o)	102			100		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	22.1		"	20.0		110	80-120	· · · · · · · · · · · · · · · · · · ·		
Surrogate: 4-Bromofluorobenzene	23.3		#	20.0		116	80-120			

nvironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice	e Operating Co.	Project:	EME System M-5 SWD Site	Fax: (505) 397-1471
122	W. Taylor	Project Number:	V117M5	Reported:
Hob	obs NM, 88240	Project Manager:	Kristin Farris	05/19/05 11:52


#### **Organics by GC - Quality Control**

<b>Environmental La</b>	b of Texas
-------------------------	------------

										·
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

#### Batch EE51006 - EPA 5030C (GC)

Matrix Spike (EE51006-MS1)	Source: 5	Source: 5E06003-16			nalyzed; 0	5/11/05	
Benzene	115	ug/l	100	0.658	114	80-120	
Toluene	120		100	1.02	119	80-120	
Ethylbenzene	115		100	1.03	114	80-120	
Xylene (p/m)	242	•	200	2.17	120	80-120	
Xylene (o)	113	н	100	1.99	111	80-120	
Surrogate: a,a,a-Trifluorotoluene	26.6	<i>"</i>	20.0		133	80-120	S-0
Surrogate: 4-Bromofluorobenzene	26.2	"	20.0		131	80-120	S-0



The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		Pr	oiect: El	ME System M	1-5 SWD Si	te			Fax: (505)	397-1471	
122 W. Taylor		Project Nu	5						Repo	rted:	
Hobbs NM, 88240		Project Mar							05/19/05 11:52		
General (	Chemistry Para	ameters by Environm				ls - Qua	lity Con	trol		,	
		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch EE51001 - General Preparation	(WetChem)										
Blank (EE51001-BLK1)				Prepared &	Analyzed:	05/09/05					
Sulfate	ND	0.500	mg/L								
Chloride	ND	0.500	u								
LCS (EE51001-BS1)	: Analyzed:	05/09/05									
Chloride	10.5		mg/L	10.0		105	80-120				
Sulfate	10.9		"	10.0		109	80-120				
Calibration Check (EE51001-CCV1)				Prepared &	Analyzed:	05/09/05					
Sulfate	11.2		mg/L	10.0		112	80-120				
Chloride	11.0		**	10.0		110	80-120				
Duplicate (EE51001-DUP1)	Sou	rce: 5E09002-	01	Prepared &	Analyzed:	05/09/05					
Sulfate	263	10.0	mg/L	** ** * * * * * * * *	264			0.380	20		
Chloride	178	10.0	u		179			0.560	20		
Batch EE51104 - General Preparation	(WetChem)	<u> </u>									
Blank (EE51104-BLK1)				Prepared &	Analyzed:	05/09/05					
Total Alkalinity	ND	2.00	mg/L								
uplicate (EE51104-DUP1)	Sou	rce: 5E09002-	01	Prepared &	Analyzed:	05/09/05					
Fotal Alkalinity	191	2.00	mg/L		190			0.525	20	· · · · · · · · · · · · · · · · · · ·	
Reference (EE51104-SRM1)				Prepared &	Analyzed:	05/09/05					
Bicarbonate Alkalinity	231		mg/L	200		116	80-120		·		

nvironmental Lab of Texas

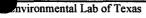
The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: EME System	n M-5 SWD Site	Fax: (505) 397-1471
122 W. Taylor	Project Number: V117M5		Reported:
Hobbs NM, 88240	Project Manager: Kristin Farrie	is	05/19/05 11:52

# General Chemistry Parameters by EPA / Standard Methods - Quality Control

**Environmental Lab of Texas** 

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE51105 - Filtration Preparation								· · · · · · · · · · · · · · · · · · ·		
Blank (EE51105-BLK1)	Prepared: 05/09/05 Analyzed: 05/10/05									
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EE51105-DUP1)	Sou	rce: 5E09002	-01	Prepared: (	)5/09/05 A	nalyzed: 05	/10/05			
Total Dissolved Solids	1030	5.00	mg/L		1060			2.87	20	


nvironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Pr Project Nu Project Mar	mber: V		1-5 SWD Si	ite			Fax: (505) <b>Repo</b> 05/19/0	rted:
Т	otal Metals b		andard	I Methods	-	ty Contr	ol			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE50905 - 6010B/No Digestion										
Blank (EE50905-BLK1)				Prepared &	Analyzed:	05/09/05				
Calcium	ND	0.0100	mg/L							
Magnesium	ND	0.00100								
Potassium	ND	0.0500	"							
Sodium	ND	0.0100	11							
Calibration Check (EE50905-CCV1)				Prepared &	Analyzed:	05/09/05				
Calcium	1.87		mg/L	2.00		93.5	85-115			
Magnesium	2.17		"	2.00		108	85-115			
Potassium	1.77			2.00		88.5	85-115			
Sodium	1.71		"	2.00		85.5	85-115			
Duplicate (EE50905-DUP1)	Sou	irce: 5E09002-	01	Prepared &	Analyzed:	05/09/05				
Calcium	30.2	0.100	ma/I		32.4			7.03	20	

Dubucate (FF20202-DOLI)	Sourc	e: 3£09002-0	J1	Prepared & Analyzed: 05/09/05			
Calcium	30.2	0.100	mg/L	32.4	7.03	20	
Magnesium	9.97	0.0100	"	9.90	0.705	20	
Potassium	24.4	0.500	۳.	24.9	2.03	20	
Sodium	262	0.500	H	293	11.2	20	



The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

R	Rice Operating Co.	Project:	EME System M-5 SWD Site	Fax: (505) 397-1471
1	122 W. Taylor	Project Number:	V117M5	Reported:
N.	Hobbs NM, 88240	Project Manager:	Kristin Farris	05/19/05 11:52

#### **Notes and Definitions**

- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Raland K Julis Report Approved By:

Date: 5/19/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.



The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

						<b></b>	eluberto2-an9) TA TAT	T HSUR Disbrist	2									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
F			Z						_	-					$\vdash$		z			
DEST	꾏		Project Location: T20S, R36E, Sec 5, Unit Letter M				**********						+	+	┝─┽		B		}	
	Project Name: EME System M-5 SWD Site		Le Le				spilos penk	Datal DistoT	-2				-†-	-					- 	
CHAIN OF CUSTODY RECORD AND ANALYSIS F	NS I		5					WUNO'N									1.	Š	k seals front	
ALY	F5		5. S			Lio		BCI	_								Sample Containers Intact? Temperature Upon Receipt: Laboratory Comments:	HOPE WON	Ę	
A.	E	5	ŝ	y y		8	18/6030 or BTEX 9260		-								The state	1	30	
ANI	/ste	Project # VII7MS	36E	COC #: V117M5-0505		Anathza For	163	uekovime2							┝──┼		Sample Containers Intact? Temperature Upon Receip! Laboratory Comments:	S	E	
<i>DRD</i>	ର୍ଦ୍ଧ	_	άč και	W2		$\Gamma +$	Ag Ba Cd Cr Pb Hg Sa	MOIBING 2										سلس	<u>P</u>	
JEC(	×.	2	ន្ត័	E		44		RAPISE A			$\rightarrow$				┝─┼			4	7.3	
07.6	un ≣	- *				TCLP: TOTAL:	. 504, CO3, HCO3)		5			-+-						ميرمند. _{دو}	64	
101	Nam	ject	cetto	ğ			(), 'BN , QM , B		-2		-+							T		
ŝ	ect	bud	5	0			8001 2001 MS108 1	1914 Hal				1		1		1	1	1 me	Time Time	
QF.	Pro		<u>Sé</u>			Samularooforuu	eci(A):	Other (ap									]	[	T à	
NN			2				Matrix	Rod									]			
చ్							Ma	adonis	$\mathbf{x}$					_			]	Date	S ate	
	{	{	1					Water	3					4			ğ	۵ ا	2/10	
			1	1				Other ( Sr						<u> </u>			8		5	
		[	1		1		s	None H2SQ4							┝━╍┟╸		lea			
					_			HOPN		{	-+				┝━╌┼╸		<u>®</u>			
		1			47		Tax and the		7		-+		1	+			Ξ			
		]	Ì		2			FONH			-		-	1			1 2			
		- [			ဗို			901	2					T			u de l			
_			1		202		stantiatino	No. of C	3								le		1 SP	
					ğ						$\neg \uparrow$		-	+			L N			
•					Fax No: 505-397-1471		peidme	i2 emiT	1610								nental.c			
								C. C. Date Se	5-2-05								ant-environmental.com and to enviro@leaco.net	Received by:	Recorded by ELQT	
			1		He he	1		36			-+						lig	<u>a</u>	æ	
. 8 <del>1</del>		7		9		) I			1								Ø	Time	Time	
Environmental Lab of Texas 1260 at 1-20 East Phone: 432-563-1713 Percentaria Phone: 432-563-1713		company Name RICE Operating Company		city/state/Zip: Hobbs, New Mexico 88240	D							-					Please email results to both gil@trident	Time Y:41 P	F	
288 <b>X</b>		E		8													pod	15		
H 44		0 0	ъ	ež.				B									50		Date	
<b>f</b>	s	ig.	A	X	4	¥		FIELD CODE									ang l	5		
	ari	ie ie	21	ş	5	4		ELO								ļ	e e			
3	비	õ	Š	S,	ŝŃ	4		μ. Γ								1	mai	VA		
	risti	빙	2	췽	Ś	X			-							1	6	B		
a	2	اي ا	- <del>2</del> ]	Ĩ	ୁ (ଯ	$\mathcal{N}^{-}$			ີ່								eas	2		
Ç	agei	Ĕ	8\$QJ	dIZ/a	oN e				Z								٩	N)		
	Man	any h	Pbd.	Stat	naho					<u></u>					┝╌┥╋	<del>.  </del>				
Ironme at I-20 East exas 79765	Project Manager: Kristin Farris	ompe	Company Address: 122 West Taylor	CIFY	Telephone No: 505-393,9174	5	Sal	(Aluo								-	Special Instructions:	1/4		
	đ	đ	line of	-	, Surger		0	(leb use only)									ituci	1ª	ja p	
ĭ <b>≥</b>			-			•	1 50	es Se	4							1		感ろ	etter in the second sec	
									5		1						beck	Relinge	Kelinguished by	
							and the second	ا د د	<u>.</u>		2.44	<u>.  </u>		<u>نىڭ ا</u>			In	<u>1</u> 2	195	
																			<b>۱</b>	

ì

. . . .

ere type t

Į

# Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

)	Client:	Rice operat	inaz
	Date/Time:	5/6/05	5:00
	Order #: _	SE0900	)7
	Initials:	· CK	

# Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	<u>4.0 CI</u>
Shipping container/cooler in good condition?	XES	No	
Custody Seals intact on shipping container/cooler?	· Yes	No ;	Not present-
Custody Seals intact on sample bottles?	Yes	No I	-Net-present
Chain of custody present?	1000	No I	
Sample Instructions complete on Chain of Custody?	YES	No	
Chain of Custody signed when relinquished and received?	Tes	No	
Chain of custody agrees with sample label(s)		No	
Container labels legible and intact?	(Fes)	No	
Sample Matrix and properties same as on chain of custody?		No	
Samples in proper container/bottle?	1 700 1	No	ŝ
Samples properly preserved?		No I	
Sample bottles intact?	Peg !	No	1
Preservations documented on Chain of Custody?	YES	No I	[
Containers documented on Chain of Custody?	123	No	
Sufficient sample amount for indicated test?	l Yes I	No	į
All samples received within sufficient hold time?		No	
VCC samples have zero headspace?	Yes)	No	Not Applicable

Other observations:

	Variance	Documentation:		
Contact Person: -	Date/Time		Contacted by:	

· · .

Regarding:

Corrective Action Taken:

Doil fax * sample date changed as per attached e

# **QUALITY PROCEDURES**

# Quality Procedure Soil Samples for Transportation to a Laboratory

# 1.0 Purpose

This procedure outlines the methods to be employed when obtaining soil samples to be taken to a laboratory for analysis.

#### 2.0 Scope

This procedure is to be used when collecting soil samples intended for ultimate transfer to a testing laboratory.

## **3.0 Preliminary**

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the soil. The shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.
- 3.2 If collecting TPH, BTEX, RCRA 8 metals, cation /anions or O&G, the sample jar may be a clear 4 oz. container with Teflon lid. If collecting PAH's, use an amber 4 oz. container.

# 4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the number, location and designation of each planned sample and the individual tests to be performed on the sample. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label.) Affix the labels to the jars.

## 5.0 Sampling Procedure

5.1.Do not touch the soil with your bare hands. Use new latex gloves with each sample to help minimize any cross-contamination.

- 5.2.Go to the sampling point with the sample container. If not analyzing for ions or metals, use a trowel to obtain the soil.
- 5.3.Pack the soil tightly into the container leaving the top slightly domed. Screw the lid down tightly. Enter the time of collection onto the sample collection jar label.
- 5.4.Place the sample directly on ice for transport to the laboratory if required.
- 5.5.Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

## 6.0 Documentation

- 6.1 The testing laboratory shall provide the following minimum information:
  - a. Project and sample name.
  - b. Signed copy of the original Chain of Custody Form including the time the sample was received by the lab.

- c. Results of the requested analyses
- d. Test Methods employed
- e. Quality Control methods and results

# QUALITY PROCEDURE Chloride Titration Using 0.282 Normal Silver Nitrate Solution

## 1.0 Purpose

This procedure is to be used to determine the concentration of chloride in soil.

#### 2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

## **3.0 Sample Collection and Preparation**

- 3.1 Collect at least 80 grams of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample for soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
- 3.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag. Care should be taken to insure that no cross-contamination occurs between the soil sample and the collection tools or sample processing equipment.
- 3.3 The sealed sample bag should be massaged to break up any clods.

#### **4.0 Sample Preparation**

- 4.1 Tare a clean glass vial having a minimum 40 ml capacity. Add at least 10 grams of the soil sample and record the weight.
- 4.2 Add at least 10 grams of reverse osmosis water to the soil sample and shake for 20 seconds.
- 4.3 Allow the sample to set for a period of 5 minutes or until the separation of soil and water.
- 4.4 Carefully pour the free liquid extract from the sample through a paper filter into a clean plastic cup if necessary.

# **5.0 Titration Procedure**

- 5.1 Using a graduated pipette, remove 10 ml extract and dispense into a clean plastic cup.
- 5.2 Add 2-3 drops potassium chromate (K₂CrO₄) to mixture.
- 5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (H₂O₂) to mixture.
- 5.4 Using a 1 ml pipette, carefully add .282 normal silver nitrate (one drop at a time) to the sample while constantly agitating it. Stop adding silver nitrate when the solution begins to change from yellow to red. Be consistent with endpoint recognition.
- 5.5 Record the ml of silver nitrate used.

#### 6.0 Calculation

To obtain the chloride concentration, insert measured data into the following formula:

<u>.282 X 35,450 X ml AgNO₃</u>	Х	grams of water in mixture
ml water extract		grams of soil in mixture

Using Step 5.0, determine the chloride concentration of the RO water used to mix with the soil sample. Record this concentration and subtract it from the formula results to find the net chloride in the soil sample.

Record all results on the delineation form.

Quality Procedure

Procedure for Developing Cased Water Monitoring Wells

#### 1.0 Purpose

This procedure outlines the methods to be employed to develop cased monitoring wells.

## 2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

# **3.0 Sample Collection and Preparation**

- 3.1 Prior to development, the static water level and height of the water column within the well casing will be measured with the use of an electric D.C. probe or a steel engineer's tape and water sensitive paste.
- 3.2 All measurements will be recorded within a field log notebook.
- 3.3 All equipment used to measure the static water level will be decontaminated after each use by means of Liquinox, a phosphate free laboratory detergent, and water to reduce the possibility of crosscontamination. The volume of water in each well casing will be calculated.

## 4.0 Purging

- 4.1 Wells will be purged by using a 2" decontaminated submersible pump or dedicated one liter Teflon bailer. Wells should be purged until the pH and conductivity are stabilized and the turbidity has been reduced to the greatest extent possible.
- 4.2 If a submersible is used the pump will be decontaminated prior to use by scrubbing the outside surface of tubing and wiring with a Liquinox water mixture, pumping a Liquinox-water mixture through the pump, and a final flush with fresh water.

# 5.0 Water Disposal

5.1 All purge and decontamination water will be temporarily stored within a portable tank to be later disposed of in an appropriate manner.

# 6.0 Records

6.1 Rice Operating Company will record the amount of water removed from the well during development procedures. The purge volume will be reported to the appropriate regulatory authority when filing the closure report.

Quality Procedure Sampling of Cased Water-Monitoring Well Using One-Liter Bailer

# 1.0 Purpose

This procedure outlines the methods to be employed in obtaining water samples from cased monitoring wells.

# 2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

# 3.0 Preliminary

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the water. The shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.
- 3.2 The following table shall be used to select the appropriate sampling container, preservative method and holding times for the various elements and compounds to be analyzed.

Compound to be Analyzed	Sample Container Size	Sample Container Description	Cap Requirements	Preservative	Maximum Hold Time
BTEX	40 ml	VOA Container	Teflon Lined	HCI	7 days
TPH	l liter	clear glass	Teflon Lined	HCI	28 days
PAH	1 liter	amber glass	Teflon Lined	Ice	. 7 days
Cation/Anion	1 liter	clear glass	Teflon Lined	None	48 Hrs
Metals	1 liter	HD polyethylene	Any Plastic	Ice/HNO ₃	28 Days
TDS	300 ml	clear glass	Any Plastic	Ice	7 Days

# 4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the well identification and the individual tests to be performed at that location. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label). Affix the labels to the jars.

## 5.0 Bailing Procedure

- 5.1 Identify the well from the sites schematics. Place pre-labeled jar(s) next to the well. Remove the plastic cap from the well bore by first lifting the metal lever and then unscrewing the entire assembly.
- 5.2 Using a dedicated one liter Teflon bailer, purge a minimum of three well volumes. Place the water in storage container for transport to a ROC disposal facility.
- 5.3 Take care to insure that the bailing device and string do not become cross-contaminated. A clean pair of rubber gloves should be used when handling either the retrieval string or bailer. The retrieval string should not be allowed to come into contact with the ground.

## 6.0 Sampling Procedure

- 6.1 Once the well has been bailed in accordance with 5.2 of this procedure, a sample may be decanted into the appropriate sample collection jar directly from the bailer. The collection jar should be filled to the brim. Once the jar is sealed, turn the jar over to detect any bubbles that may be present. Add additional water to remove all bubbles from the sample container.
- 6.2 Note the time of collection on the sample jar with a fine Sharpie.
- 6.3 Place the sample directly on ice for transport to the laboratory. The preceding table shows the maximum hold times between collection and testing for the various analyses.

6.4 Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

# 7.0 Documentation

- 7.1 The testing laboratory shall provide the following minimum information:
  - A. Project and sample name.
  - B. Signed copy of the original Chain of Custody Form including the time the sample was received by the lab.
  - C. Results of the requested analyses
  - D. Test Methods employed
  - E. Quality Control methods and results

Calculation for Determining the Minimum Bailing Volume for Monitor Wells Formula V= (πr²h) 2" well [V/231=gal] X 3 = Purge Volume

V=Volume

π=pi

r=inside radius of the well bore

h=maximum height of well bore in water table

Example:

;	π	r ²	h(in)	V(cu.in)	V(gal)	X 3 Volumes	Actual
	3.1416	1	180	565.488	2.448	7.34 gal	>10 gal

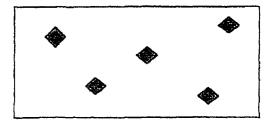
Quality Procedure Composite Sampling of Excavation Sidewalls and Bottoms For TPH and Chloride Analysis

#### 1.0 Purpose

This procedure outlines the methods to be employed when obtaining final composite soil samples for TPH and Chloride analysis.

#### 2.0 Scope

This procedure is to be used in conjunction with *Quality Procedure - 02:* Soil Samples for Transportation to a Laboratory and will be inserted at subparagraph 5.2 of Section 5.0: Sampling Procedure.


#### 3.0 Sampling Procedure

Follow Quality Procedure – 02: Soil Samples for Transportation to a Laboratory for all Sections and subparagraphs until subparagraph 5.2 of Section 5.0: Sampling Procedure. Instead of 5.2 instructions, perform the composite sample collection procedure as follows:

3.1 Go to the excavation with a clean large blending bowl or new plastic baggie. If not analyzing for ions or metals, use a trowel to obtain the soil. If the excavation is deeper than 6' BGS, do not enter the pit, but use a backhoe to assist in procurement of the sample. (If a backhoe is used, the backhoe will obtain an amount of soil from each composite point, bring the purchase to the surface staging area where a sample-portion of soil will be extracted from the backhoe purchase. The remainder of the backhoe purchase will be staged on the surface with other staged soils.)

3.2 Sidewall samples

3.2.1 On each sidewall, procure a 5oz sample from each of five distinct points on the sidewall with distinct points resembling the "W" pattern:



- 3.2.2 Thoroughly blend these five samples in the blending bowl.
- 3.2.3 Pour blended sample into sifter and sift into labeled baggie.
- 3.2.4 Repeat steps 3.2.1 through 3.2.4 for each remaining sidewall, using a clean blending bowl for each sidewall.
- 3.2.5 From each labeled baggie, procure a 5 oz portion and pour into a baggie labeled "Sidewall Composite". Blend this soil mixture completely.
- 3.2.6 Obtain proper laboratory sample container for "Sidewall Composite" and continue with subparagraph 5.3 of QP 02.
- 3.3 Bottom Sample
  - 3.3.1 From bottom of excavation, procure a 5oz sample from each of five distinct points with distinct points resembling the "W" pattern as illustrated above.
  - 3.3.2 Thoroughly blend these five samples in a clean blending bowl.
  - 3.2.3 Pour blended sample into sifter and sift into baggie labeled "Bottom Composite".
  - 3.2.6 Obtain proper laboratory sample container for "Bottom Composite" and continue with subparagraph 5.3 of QP 02.

# QUALITY PROCEDURE Sampling and Testing Protocol for VOC in Soil

# 1.0 Purpose

This procedure is to be used to determine the concentrations of Volatile Organic Compounds in soils.

#### 2.0 Scope

This procedure is to be used as the standard field measurement for soil VOC concentrations. It is not to be used as a substitute for full spectrographic speciation of organic compounds.

#### **3.0 Procedure**

- 3.1 Sample Collection and Preparation
  - 3.1.1 Collect at least 500 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
  - 3.1.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag and sealed. When sealed, the bag should contain a nearly equal space between the soil sample and trapped air. Record the sample name and the time that the sample was collected on the Field Analytical Report Form.
  - 3.1.3 The sealed samples shall be allowed to set for a minimum of five minutes at a temperature of between 10-15 Celsius, (59-77°F). The sample temperatures may be adjusted by cooling the sample in ice, or by heating the sample within a generally controlled environment such as the inside of a vehicle. The samples should not be placed directly on heated surfaces or placed in direct heat sources such as lamps or heater vents.
  - 3.1.4 The sealed sample bag should be massaged to break up any clods, and to provide the soil sample with as much exposed surface area as practically possible.

- 3.2 Sampling Procedure
  - 3.2.1 The instrument to be used in conducting VOC concentration testing shall be an Environmental Instruments 13471 OVM / Datalogger or a similar PID-type instrument. (Device will be identified on VOC Field Test Report Form.) Prior to use, the instrument shall be zeroed-out in accordance with the appropriate maintenance and calibration procedure outlined in the instrument operation manual. The PID device will be calibrated each day it's used.
  - 3.2.2 Carefully open one end of the collection bag and insert the probe tip into the bag taking care that the probe tip not touch the soil sample or the sidewalls of the bag.
  - 3.2.3 Set the instrument to retain the highest result reading value. Record the reading onto the Field Test Report Form.
  - 3.2.4 If the instrument provides a reading exceeding 100 ppm, proceed to conduct BTEX Speciation in accordance with QP-02 and QP-06. If the reading is 100 ppm or less, NMOCD BTEX guideline has been met and no further testing for BTEX is necessary. File the Field Test Report Form in the project file.

4.0 Clean-up

After testing, the soil samples shall be returned to the sampling location, and the bags collected for off-site disposal. IN NO CASE SHALL THE SAME BAG BE USED TWICE. EACH SAMPLE CONTAINER MUST BE DISCARDED AFTER EACH USE.

# Quality Procedure Composite Sampling of Excavation Sidewalls and Bottoms For BTEX Analysis

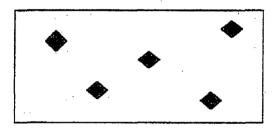
#### 1.0 Purpose

This procedure outlines the methods to be employed when obtaining final composite soil samples for BTEX analysis.

#### 2.0 Scope

This procedure is to be used when collecting soil samples intended for ultimate transfer to a testing laboratory for BTEX analysis. This procedure is to be used only when the PID field-test results for OVM exceeds 100 ppm.

## 3.0 Preliminary


- 3.1 Obtain sterile, clear, 2 oz. glass containers with Teflon lid from a laboratory supply company or the testing laboratory designated to conduct analyses of the soil.
- 3.2 The container shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.

## 4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the number, location and designation of each planned sample and the individual tests to be performed on the sample. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label.) Affix the labels to the jars.

## 5.0 Sampling Procedure

- 5.1.Do not touch the soil with your bare hands. Use new latex gloves with each sample to help minimize any cross-contamination.
- 5.2.If safe and within OSHA regulations, go to the sampling point with the sample container. If not analyzing for ions or metals, use a trowel to obtain the soil. If the excavation is deeper than 6' BGS, do not enter the pit, but use a backhoe to assist in procurement of the sample. (If a backhoe is used, the backhoe will obtain an amount of soil from each composite point, bring the purchase to the surface staging area where a sample-portion of soil will be extracted from the backhoe purchase. The remainder of the backhoe purchase will be staged on the surface with other staged soils.)
- 5.3.Sidewall Samples
  - 5.3.1.On each sidewall, procure a 2oz sample from each of five distinct points on the sidewall with distinct points resembling the "W" pattern:



- 5.4.Pack the soil tightly into the container leaving the top slightly domed. Screw the lid down tightly. Enter the time of collection onto the sample collection jar label. Repeat for each sampling point.
- 5.5.Place the samples directly on ice for transport to the laboratory if required.
- 5.6.Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

#### **6.0 Documentation**

- 6.1 The testing laboratory shall provide the following minimum information:
  - a. Project and sample name.
  - b. Signed copy of the original Chain of Custody Form including the time the sample was received by the lab.
  - c. Results of the requested analyses
  - d. Test Methods employed
  - e. Quality Control methods and results