AP - 47

STAGE 1 & 2 WORKPLANS

DATE:
Aug. 10, 2006

Highlander Environmental Corp.

Midland, Texas

CERTIFIED MAIL RETURN RECIEPT NO. 7005 1160 0005 3780 7150

August 10, 2006

Mr. Wayne Price New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

RE: Results of Stage 1 Abatement Plan Implementation and Request for Release From Rule 19, at the Blinebry Drinkard (BD) SWD System Junction Box F-17, Unit F, Section 17, T-21-S, R-37-E, Lea County, New Mexico, NMOCD CASE #1R0426-14 (AP-47).

Mr. Price:

RICE Operating Company (ROC) has retained Highlander Environmental Corp (Highlander) to address potential environmental concerns at the above-referenced site. ROC is the service provider (agent) for the Blinebry Drinkard (BD) SWD System (System) and has no ownership of any portion of the pipeline, well, or facility. The System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis.

1.0 EXECUTIVE SUMMARY

As part of the ROC Junction Box Upgrade Workplan, starting on September 17, 2002, the junction box was removed and the Site was delineated vertically and horizontally with a backhoe. The Site was excavated to the approximate dimensions of 20 feet x 20 feet x 12 feet. Chloride impact was consistent vertically. No TPH impact was indicated.

During the excavation, an older junction box was discovered approximately 10 feet south of the existing location. On November 18, 2002, a soil boring was placed near this old box location and advanced to a depth of 75 feet. Chloride concentrations declined with depth, however, chloride impact to groundwater was observed. The soil boring was converted to a 2 inch diameter monitor well completed to a total depth of 85 feet.

1.

On December 13, 2002, ROC notified the NMOCD of groundwater impact, and on November 7, 2003 ROC submitted a Junction Box Disclosure Form to the NMOCD. Groundwater has been sampled and analyzed on a quarterly basis since June 2003. The quarterly sampling has confirmed that there is no hydrocarbon impact to groundwater at this Site. The excavation was backfilled and the junction moved 45 feet south of the original site. The Site location is shown on Figure 1.

On March 17, 2005 an Investigation and Characterization Plan (ICP) was submitted to the NMOCD. On May 5, 2005, Daniel Sanchez with the NMOCD requested a Rule 19, Stage I Abatement Plan for this site. A Stage 1 Abatement Plan was submitted on July 12, 2005 and approved on February 23, 2006. As part of the Stage 1 Abatement Plan two additional monitor wells were proposed for the site. These two monitor wells (MW-2 and MW-3) were installed on March 22-23, 2006. The well locations are shown on Figure 2. MW-2 was placed downgradient of MW-1 and MW-3 was placed up-gradient. The wells were developed and sampled on March 27, 2006, April 11, 2006 and July 11, 2006.

Monitor well MW-2, down-gradient, has shown consistently low chloride concentrations ranging from 50.8 mg/L to 60.5 mg/L. The up-gradient well, MW-3 is showing an increase in chloride concentration from 901 mg/L to 1,680 mg/L and appears to indicate an up-gradient source of groundwater impact. In reviewing the historical data for MW-1, for the first 18 months of sampling, the chloride concentrations fluctuated between 177 mg/L and 886 mg/L. Then in January 2005, the chloride concentration jumped to 2,790 mg/L and has since ranged from 1,890 mg/L to 2,510 mg/L. Considering the concentration found in the upgradient monitor well, it appears that the impact to MW-1 may be at least somewhat affected by an up-gradient source of contamination.

Also as part of the Stage I Abatement Plan, a water well database search was performed to encompass a ½ mile radius around the site.

2.0 CHRONOLOGY OF EVENTS

September 17, 2002	The junction box was removed and the Site was delineated
	vertically and horizontally with a backhoe. The Site was
	excavated to the approximate dimensions of 20' x 20' x 12'.
November 18, 2002	A soil boring was placed near the old box location and advanced to
	a depth of 75'. The soil boring was converted to a monitor well
	with a total depth of 85'.
December 13, 2002	NMOCD director notified of groundwater impact.
November 7, 2003	ROC submitted a Junction Box Disclosure Form to the NMOCD.
June 5, 2003	Monitor Well (MW-1) was purged and sampled.
August 22, 2003	Monitor Well (MW-1) was purged and sampled.
November 20, 2003	Monitor Well (MW-1) was purged and sampled.
February 25, 2004	Monitor Well (MW-1) was purged and sampled.
May 27, 2004	Monitor Well (MW-1) was purged and sampled.
September 2, 2004	Monitor Well (MW-1) was purged and sampled.
December 21, 2004	Monitor Well (MW-1) was purged and sampled.
January 21, 2005	2004 Monitor Well Report/Sampling Summary was submitted to
	the NMOCD.

January 26, 2005	Monitor Well (MW-1) was purged and sampled.
March 17, 2005	Investigation & Characterization Plan (ICP) submitted to the
Watch 17, 2003	· · · · · · · · · · · · · · · · · · ·
	NMOCD.
April 28, 2005	Monitor Well (MW-1) was purged and sampled.
May 5, 2005	Daniel Sanchez (NMOCD) requested a Rule 19 Stage I Abatement
	Plan for this site.
June 21, 2005	Monitor Well (MW-1) was purged and sampled.
July 12, 2005	Stage 1 Abatement Plan submitted to NMOCD.
September 19, 2005	Monitor Well (MW-1) was purged and sampled.
October 17, 2005	Monitor Well (MW-1) was purged and sampled.
November 18, 2005	Stage 1 Abatement Plan certified "Administratively Complete" by
	NMOCD.
January 16, 2006	Monitor Well (MW-1) was purged and sampled.
February 23, 2006	Stage 1 Abatement Plan approved by NMOCD.
March 22-23, 2006	Monitor Wells MW-2 and MW-3 installed.
March 27, 2006	Monitor Wells MW-2 and MW-3 were purged and sampled.
April 11, 2006	Monitor Wells MW-1, MW-2 and MW-3 were purged and
_	sampled.
July 11, 2006	Monitor Wells MW-1, MW-2 and MW-3 were purged and sampled.

3.0 BACKGROUND & PREVIOUS WORK

As part of the ROC Junction Box Upgrade Workplan, starting on September 17, 2002, the junction box was removed and the Site was delineated vertically and horizontally with a backhoe. The Site was excavated to the approximate dimensions of 20 feet x 20 feet x 12 feet. Chloride impact was consistent vertically. No TPH impact was indicated.

During the excavation, an older junction box was discovered approximately 10 feet south of the existing location. On November 18, 2002, a soil boring was placed near this old box location and advanced to a depth of 75 feet. Chloride concentrations declined with depth, however, chloride impact to groundwater was observed. The soil boring was converted to a 2 inch diameter monitor well completed to a total depth of 85 feet. A copy of the soil boring and completion log is included in Appendix B.

On December 13, 2002, ROC notified the NMOCD of groundwater impact, and on November 7, 2003 ROC submitted a Junction Box Disclosure Form to the NMOCD. Groundwater has been sampled and analyzed on a quarterly basis since June 2003. The quarterly sampling has confirmed that there is no hydrocarbon impact to groundwater at this Site. The excavation was backfilled and the junction moved 45 feet south of the original site.

On March 17, 2005 an Investigation and Characterization Plan (ICP) was submitted to the NMOCD. On May 5, 2005, Daniel Sanchez with the NMOCD requested a Rule 19, Stage I Abatement Plan for this site. A Stage 1 Abatement Plan was submitted on July 12, 2005 and approved on February 23, 2006.

4.0 GEOLOGY & HYDROGEOLOGY

4.1 Regional and Local Geology

This site is located in the Eunice Plain physiographic subdivision of southern Lea County. The Eunice Plain is bounded on the north by the Llano Estacado, and on the southwest by San Simon Ridge and Antelope Ridge. The Eunice Plain is underlain by a hard caliche surface and is almost entirely covered by a reddish-brown dune sand. Tertiary rocks in this area are represented by the Ogallala formation of Pliocene age. The Ogallala underlies most of the Eunice Plain. It is a heterogeneous complex of terrestrial sediments, which mantles an irregular erosion surface cut into the Triassic rocks.

4.2 Regional and Local Hydrogeology

Groundwater occurs under unconfined conditions in the Ogallala Formation. The Ogallala Formation is regionally known as the High Plains Aquifer. Recharge to the Ogallala Formation occurs through infiltration of rainfall and snowmelt. Discharge occurs principally through pumping from wells.

The regional flow direction for groundwater in the High Plains aquifer is primarily to the south-southeast. The depth to water in monitor well MW-1 is approximately 75' (TOC).

4.3 Water Well Inventory

In accordance with the Stage 1 Abatement Plan submitted by Highlander Environmental, ROC performed an internet search of the New Mexico Office of the State Engineer (OSE) and the United States Geologic Survey (USGS) databases for water wells within a ½ mile radius of the subject site.

One water well record was found in the OSE database for the prescribed radius. This record is listed as a permit request for a domestic well by "Right Reverend Sidney Meizger." The permit status is shown to be expired. This record is located in Unit 'C', Section 17, T21S, R37E.

One water well record was found in the USGS database for the prescribed radius. This well is located in Unit 'H', Section 17, T21S, R37E and the total depth of the well is 96 ft below land surface. The groundwater level has been measured from this well on 8 occasions since 1996. The most recent groundwater measurement was in 1997 when a measurement of 71.95 ft was recorded. The purposed of this well is unknown.

Midland, Texas

A search of a database supported by New Mexico Institute of Mining and Technology (New Mexico Tech) called New Mexico Water and Infrastructure Data System (WAIDS), yielded 3 well records in Section 17, T21S, R37E, however, the WAIDS database only provides the Section of the well location, not a quarter or unit letter. Two wells are listed as irrigation wells and the other is used for livestock watering. All three wells have the same GPS coordinates and given that the three measurement/sampling records are several years apart, these records may represent only one actual well.

The southernmost portions of Unit Letters 'O', 'N', and 'M' of Section 8 and Unit Letters 'A', 'H', and 'I' of Section 18 are also included in our search radius but the search of these databases did not yield any well records.

These reported wells, as well as any non-reported wells within the ½ mile radius of the site, were inspected in the field by Melanie Franks (RICE Operating Company). The domestic well listed in Unit C could not be located. Two stock wells were found located in Unit Letters L and G. Both of these wells were sampled on March 8, 2006. The chloride concentrations ranged from 52.5 mg/L in the Unit letter C well to 413 mg/L in the Unit letter G well. The water well inventory data is included in Appendix A.

5.0 SUBSURFACE SOILS

The soils in the vicinity of this site are of the Pyote soils and Dune land association, and soils of the Simona Series. In Pyote soils, typically, the surface layer is light-brown fine sand about 30 inches thick. The subsoil is fine sandy loam approximately 18 inches thick. The subsoil, to a depth of approximately 60 inches is pink fine sandy loam.

The Simona Series soil is represented by the Simona fine sandy loam, 0 to 3 percent slopes (SE). The Simona fine sandy loam has a surface layer consisting of grayish-brown fine sandy loam, approximately 8 inches thick. The surface layer is underlain by subsoil consisting of pale brown fine sandy loam, approximately 8 inches thick. The subsoil is underlain by a dense layer of white indurated caliche. The caliche is typically about 16 inches thick and strongly cemented.

The soil boring performed at this site indicated sand, with intermittent caliche layers and sandstone stringers to 75'.

6.0 GROUNDWATER QUALITY

6.1 <u>Installation of Additional Monitor Wells</u>

As approved in the Stage I Abatement Plan, two additional monitor wells were installed at the site. Monitor well MW-2 was installed down-gradient and MW-3 was installed up-gradient. Both monitor wells were constructed according to EPA and industry standards to total depths of 40' (MW-2) and 43' (MW-3).

Both wells were properly developed. Copies of the boring and completion logs are included in Appendix B. A water table map was generated for the most recent sampling event and is shown as Figure 3.

6.2 <u>Monitoring Program</u>

The original monitoring well (MW-1) has been sampled on a quarterly basis since June 2003. Monitor wells MW-2 and MW-3 were added to the quarterly sampling program in March, 2006. Analytical data for all monitoring events are summarized in the tables in Appendix C.

6.3 <u>Hydrocarbons in Groundwater</u>

With the exception of a trace of benzene (0.004 mg/L) in the first sampling event, no hydrocarbon impact has been detected in any of the monitor wells and as such is not considered a Constituent of Concern at this site.

6.4 Other Constituents of Concern

In the quarterly sampling events to date, the only constituent of concern observed was chloride. In the first 18 months of sampling, the chloride concentrations in MW-1 fluctuated between 177 mg/L and 886 mg/L. Then in January 2005, the chloride concentration jumped to 2,790 mg/L and has since ranged from 1,890 mg/L to 2,510 mg/L.

7.0 RULE 19 RELEASE REQUEST and SOIL WORK PLAN

Monitor well MW-2, down-gradient, has shown consistently low chloride concentrations ranging from 50.8 mg/L to 60.5 mg/L. The up-gradient well, MW-3 is showing an increase in chloride concentration from 901 mg/L to 1,680 mg/L and appears to indicate an up-gradient source of groundwater impact. In reviewing the historical data for MW-1, for the first 18 months of sampling, the chloride concentrations fluctuated between 177 mg/L and 886 mg/L. Then in January 2005, the chloride concentration jumped to 2,790 mg/L and has since ranged from 1,890 mg/L to 2,510 mg/L. Considering the concentration found in the up-gradient monitor well, it appears that the impact to MW-1 may be at least somewhat affected by an up-gradient source of contamination. As a result of these findings, ROC requests a release from additional Stage 1 and Stage 2 requirements and proposes to continue monitoring of the site.

Additionally, ROC will complete assessment and remediation of chloride impacted soils for closure under NMOCD approval. The horizontal extent of chloride impact to soils will be evaluated with a backhoe. Once evaluated, the soils will be excavated down below the root zone (minimum of 3.0' below ground surface) and an evapotranspiration barrier (non-compacted clay cap) will be placed into the excavation. The excavated soils will be evaluated for placement back into the excavation to ensure that it will sustain vegetative cover. Once completed, a closure report will be prepared and submitted for the soils portion of this investigation.

8.0 QUALITY ASSURANCE/ QUALITY CONTROL

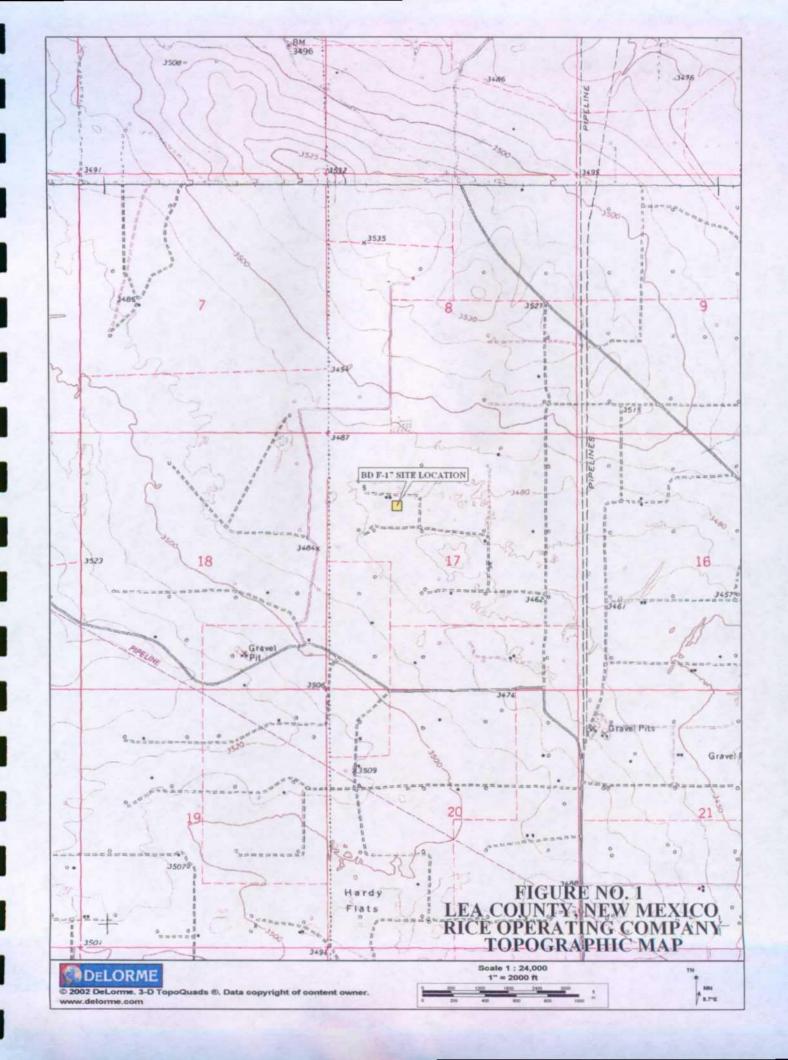
All monitor wells were constructed to EPA and industry standards. All downhole equipment (i.e., drill rods, drill bits, etc.) was thoroughly decontaminated between each use with a steam cleaner.

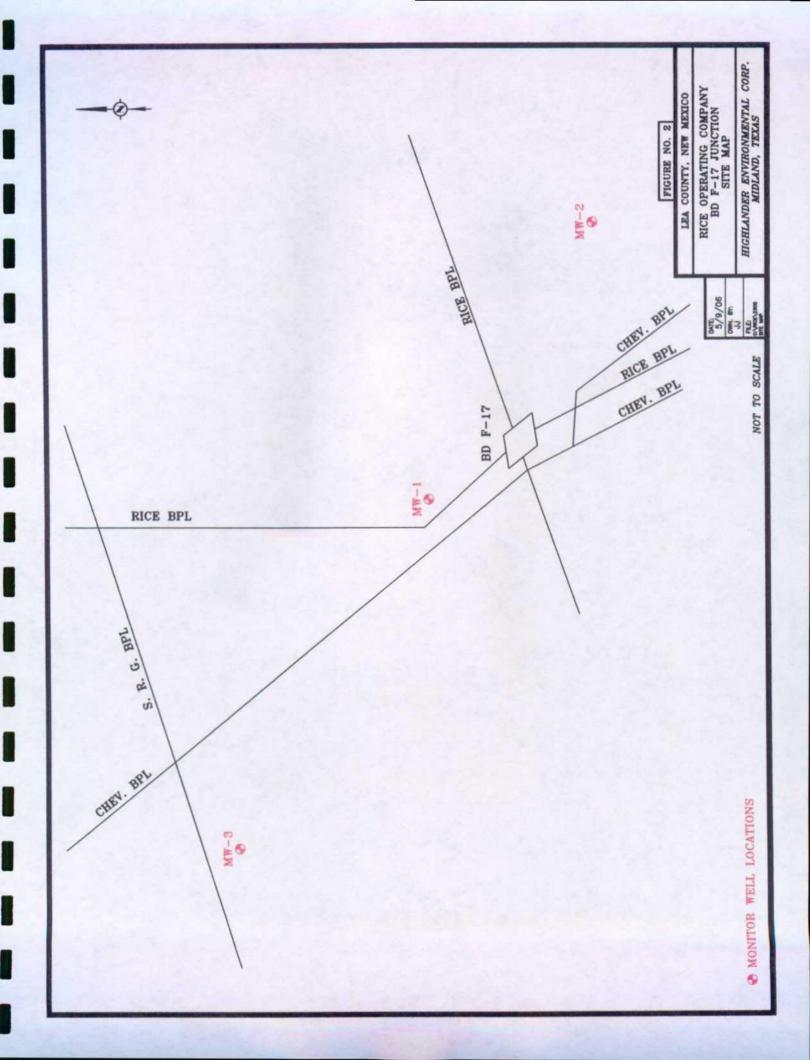
The wells were inspected for the presence of phase-separated hydrocarbons (PSH) and none was detected. The wells were properly purged and sampled with clean, dedicated, polyethylene bailers and disposable line. The groundwater samples were submitted to a laboratory for analysis of Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) by method EPA 8021B, and chloride by method 300.0.

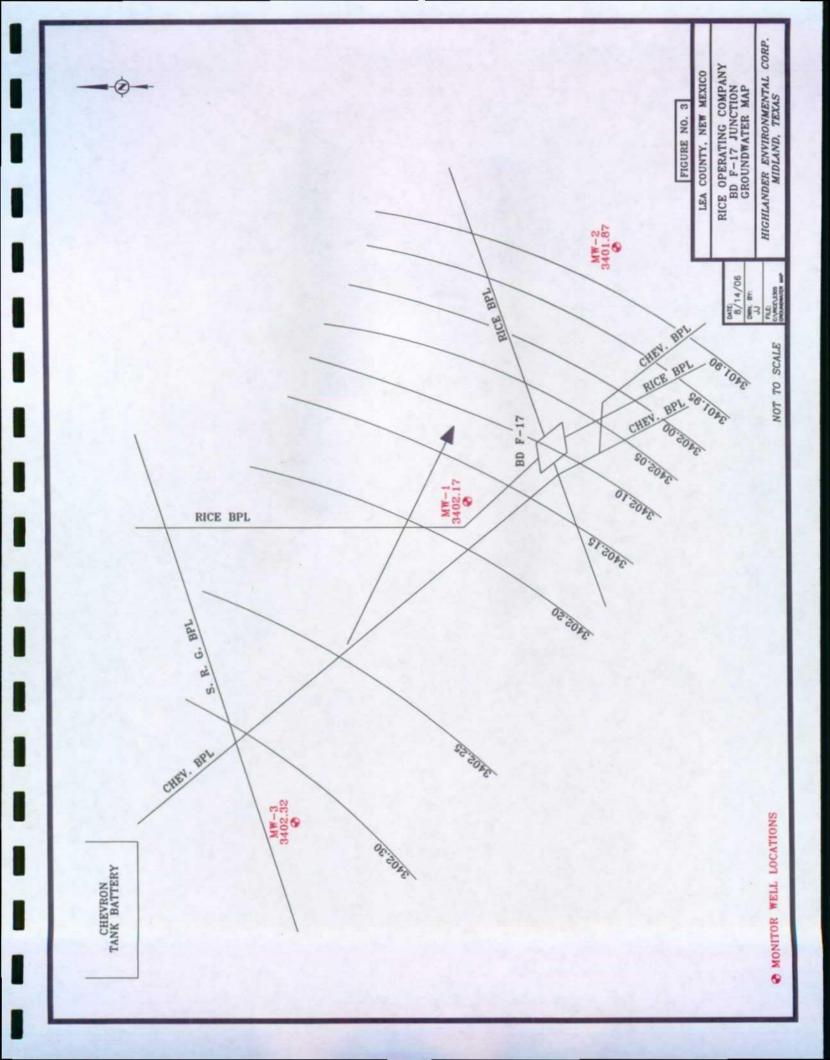
9.0 PROPOSED SCHEDULE OF ACTIVITIES

Upon approval, the horizontal soil delineation outlined above will be implemented in a timely manner, dependent upon availability of local contractors. The NMOCD will be notified at least 48 hours in advance of sampling or construction activities. Quarterly sampling of the existing monitor wells will be continued. All results of activities for 2006 will be submitted in an annual summary report within the first quarter of 2007.

Respectfully submitted,
Highlander Environmental Corp.

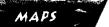

Respectfully submitted,
Highlander Environmental Corp.


Timothy M. Reed, P.G.
Vice President


cc: ROC, Daniel Sanchez-NMOCD

enclosures: figures, water well information, boring and completion logs, tables

FIGURES



Appendix A Water Well Database Records

NM WAIDS

DATA

SCALE

General Information About: Sample 11364								
Section/ Township/Range	17/21 S/37 E	Lat/Long	32.4797 / -103.1841					
Elevation	3469	Depth	120					
Date Collected	10/7/1976	Chlorides	242					
Collector / Point of Collection	SEO / DP	Use	Irrigation Water					
Formation	OAL	TDS	0					

Section 17

) acitor ()	General Inforn	General Information About: Sample 10688	10688
Section/ Township/Range	17/21S/37E	Lat/Long	32.4797 / -103.1841
Elevation	3469	Depth	120
Date Collected	12/20/1979	Chlorides	208
Collector / Point of Collection	SEO / DP	Use	Stock
Formation	OAL	TDS	
	General Inform	General Information About: Sample 11364	11364
Section/ Township/Range	17/21S/37E	Lat/Long	32.4797 / -103.1841
Elevation	3469	Depth	120
Date Collected	10/7/1976	Chlorides	242
Collector / Point of Collection	SEO / DP	Use	Irrigation Water
Formation	OAL	TDS	0
	General Inform	General Information About: Sample 12299	12299
Section/ Township/Range	17/21S/37E	Lat/Long	32.4797 / -103.1841
Elevation	3469	Depth	120
Date Collected	12/2/1965	Chlorides	299
Collector / Point of Collection	SEO / DP	Use	Irrigation Water
Formation	OAL	TDS	0

Water Passurces

l aus Categorys

Geographic / rea:

Ground Water

New Mexico

go

Ground-water levels for New Mexico

Search Results -- 1 sites found

Search Criteria

site_no list = • 322838103111201

Save file of selected sites to local disk for future upload

11.95 {+

USGS 322838103111201 21S.37E.17.144111

H

Combine detertor this six

Ground-water: Levels

GO

Lea County, New Mexico

Hydrologic Unit Code 13070007

Latitude 32°28'38", Longitude 103°11'12" NAD27

Land-surface elevation 3,472.30 feet above sea level NGVD29

The depth of the well is 96 feet below land surface.

This well is completed in the ALLUVIUM, BOLSON DEPOSITS AND OTHER SURFACE DEPOSITS (110AVMB) local aquifer.

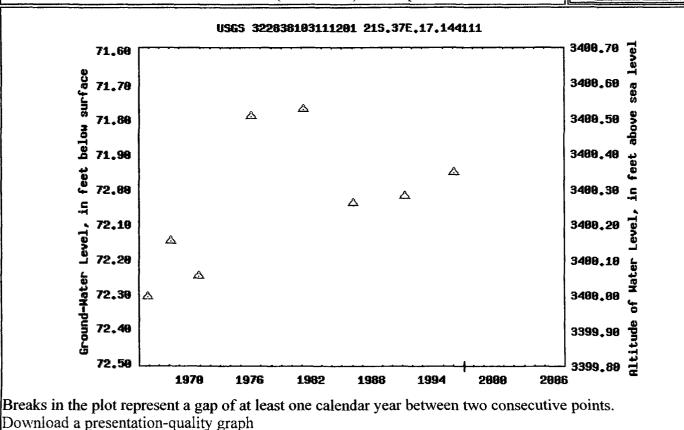

Output formats

Table of data

Tab-separated data

Graph of data

Reselect period

Questions about data

New Mexico NWISWeb Data Inquiries

Top

New Mexico Office of the State Engineer

New Mexico Office of the State Engineer Water Right Summary

age 1

Inhabited housing

Back

72-12-1 DOMESTIC ONE HOUSEHOLD Expired CP 00676 DB File Nbr: Primary Purpose: Primary Status:

Primary Purpose: DOM 72-12-1 DOMESTIC ONE HOUSE Primary Status: EXP Expired Total Acres: 0

Total Diversion: 0

Owner: JOE E. SIMS

Documents on File

Doc File/Act Status 1 2 3 Trans Desc Fr 72121 04/11/1995 EXP EXP CNV CONVERSION CP 00

UTM are in Meters)
UTM Zone Easting Northing
13 659876 3594085
13 669602 3594146 Acres Diversion Consumptive 0 × X Y are in Feet From/To CP 006 T Zone 9 (qtr are l=NW 2=NE 3=SW 4=SE)
(qtr are biggest to smallest
Source Tws Rng Sec q q q
Shallow 21S 36E 18 4 4 1
21S 37E 18 4 4 Point of Diversion POD Number CP 00676 CP 00676 EXP

Latitude
32 28 17.46
32 28 17.52

http://164.64.58.140:7001/iWATERS/WaterAdditionalReportsDispatcher?email_address=kpriceswd@valornet.com&basin=CP&nbr=00... 3/2/2006

New Mexico Office of the State Engineer Water Right Summary

unable to locate

ge 1

Back

CP 00063 72-12-1 DOMESTIC ONE HOUSEHOLD Expired DOM DB File Nbr: Primary Purpose:

Primary Status:

Acres Diversion Consumptive 0From/To 000 T CP OWNER: RIGHT REVEREND SIDNEY MEIZGER Documents on File

Doc File/Act Status 1 2 3 Trans_Desc


APPRO 10/22/1959 EXP EXP CNV CONVERSION Total Acres: Total Diversion:

X Y are in Feet Zone (qtr are 1≈NW 2=NE 3=SW 4=SE) (qtr are biggest to smallest Tws Rng Sec q q q q 21S 37E 17 1 2 2 O Source Point of Diversion POD Number CP 00063 EXP

Latitude 32 28 56.7

UTM are in Meters)
UTM Zone Easting Northing
13 670483 3595465

http://164.64.58.140:7001/iWATERS/WaterAdditionalReportsDispatcher?email_address=kpriceswd@valornet.com&basin=CP&nbr=00... 3/2/2006

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Stock Well SE of BD F-17 UL/G Project Number: None Given

Location: None Given

Lab Order Number: 6C09005

Report Date: 03/16/06

Project: Stock Well SE of BD F-17 UL/G

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 03/16/06 09:57

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
UL/G Stock Well	6C09005-01	Water	03/08/06 13:30	03/09/06 07:00

Project: Stock Well SE of BD F-17 UL/G

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported:
03/16/06 09:57

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
UL/G Stock Well (6C09005-01) Water									
Total Alkalinity	212	2.00	mg/L	1	EC60905	03/09/06	03/09/06	EPA 310.1M	
Chloride	413	10.0	D	20	EC61306	03/10/06	03/13/06	EPA 300.0	
Total Dissolved Solids	1480	5.00	ıı	1	EC61011	03/09/06	03/10/06	EPA 160.1	
Sulfate	286	10.0	n	20	EC61306	03/10/06	03/13/06	EPA 300.0	

Project: Stock Well SE of BD F-17 UL/G

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 03/17/06 16:32

Total Metals by EPA / Standard Methods Environmental Lab of Texas

Analyte UL/G Stock Well (6C09005-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Calcium	226	0.500	mg/L	50	EC61608	03/16/06	03/16/06	EPA 6010B	
Magnesium	75.2	0.0500	н	n	II	H .	0	II	
Potassium	9.76	0.500	u	10	u	"	11	n	
Sodium	176	0.500	n	50	**	n n	n	O	

Rice Operating Co. 122 W. Taylor

Hobbs NM, 88240

Project: Stock Well SE of BD F-17 UL/G

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 03/16/06 09:57

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC60905 - General Preparation	on (WetChem)		·						
Blank (EC60905-BLK1)				Prepared &	& Analyze	d: 03/09/0	06			
Total Alkalinity	ND	2.00	mg/L							
LCS (EC60905-BS1)			·····	Prepared &	& Analyze	d: 03/09/0	06			
Bicarbonate Alkalinity	216	2.00	mg/L	200		108	85-115			
Duplicate (EC60905-DUP1)	Sou	rce: 6C0202	0-01	Prepared a	& Analyze	ed: 03/09/0	06			
Total Alkalinity	195	2.00	mg/L		194			0.514	20	
Reference (EC60905-SRM1)				Prepared &	& Analyze	d: 03/09/0	06			
Total Alkalinity	97.0		mg/L	100		97.0	90-110			
Batch EC61011 - General Preparation	on (WetChem)								
Blank (EC61011-BLK1)				Prepared:	03/09/06	Analyzed	: 03/10/06			
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EC61011-DUP1)	Sou	rce: 6C0800	2-01	Prepared:	03/09/06	Analyzed	: 03/10/06			
Total Dissolved Solids	3780	5.00	mg/L		3810			0.791	5	
Batch EC61306 - General Preparation	on (WetChem)								
Blank (EC61306-BLK1)				Prepared:	03/10/06	Analyzed	1: 03/13/06			
Chloride	ND	0.500	mg/L							
Sulfate	ND	0.500	If							
LCS (EC61306-BS1)				Prepared:	03/10/06	Analyzed	l: 03/13/06			
Chloride	9.48		mg/L	10.0		94.8	80-120			
Sulfate	9.55		H	10.0		95.5	80-120			

Project: Stock Well SE of BD F-17 UL/G

Spike

Source

%REC

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

RPD

Reported: 03/16/06 09:57

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC61306 - General Preparation	n (WetChem)									
Calibration Check (EC61306-CCV1)				Prepared:	03/10/06	Analyzed	: 03/13/06			
Sulfate	9.79		mg/L	10.0		97.9	80-120			
Chloride	9.64		It	10.0		96.4	80-120			
Duplicate (EC61306-DUP1)	Source	e: 6C0701	1-01	Prepared:	03/10/06	Analyzed	: 03/13/06			
Sulfate	753	250	mg/L		812			7.54	20	
Chloride	11500	250	tt		11300			1.75	20	

Project: Stock Well SE of BD F-17 UL/G

Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Reported: 03/16/06 09:57

Total Metals by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC61608 - 6010B/No Digestion										
Blank (EC61608-BLK1)				Prepared	& Analyze	d: 03/16/0	06			
Calcium	ND	0.0100	mg/L		V-1724					
Magnesium	ND	0.00100	u							
Potassium	ND	0.0500	11							
Sodium	ND	0.0100	u							
Calibration Check (EC61608-CCV1)				Prepared	& Analyze	d: 03/16/0	06			_
Calcium	2.13		mg/L	2.00		106	85-115			
Magnesium	2.12		41	2.00		106	85-115			
Potassium	1.86		11	2.00		93.0	85-115			
Sodium	1.80		н	2.00		90.0	85-115			
Duplicate (EC61608-DUP1)	So	urce: 6C0800	2-01	Prepared	& Analyze	ed: 03/16/0	06			
Calcium	230	0.500	mg/L		226	,		1.75	20	
Magnesium	140	0.0500	11		144		•	2.82	20	
Potassium	32.3	0.500	H		32.0			0.933	20	
Sodium	974	2.00	41		965			0.928	20	

Project: Stock Well SE of BD F-17 UL/G

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 03/16/06 09:57

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

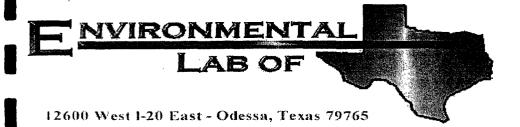
Report Approved By:

RalandkJul

Date: 3-17-06

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.


This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

(alubado2-a19) TAT HZUR 5 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Nr/ (S Water Dinous Certung Temperature Upon Recept Sample Containers Intact? Laboratory Comments: BTEX 80216/5030 Analyze Semivolatiles Stock 60 Metala: As Ag Ba Cd Cr Pb Hg Se TCLP: TOTAL: TPH 8015M GRO/DRO Project Name: PO #: Project Loc: Project #: 8001/2001 XT H9T 1.814 HqT 758 Time TOS/I CL / SAR / EC Other (specify): lios Sindge Water Other (Specify) euoN Preservative os^zH HOBN HCI нио; aoi . No. of Containers Fax No: Dalqma2 amiT HE28 Received by: Date Sampled Environmental Lab of Texas, Inc. 00.7 738 Time Fax: 915-563-1713 Phone: 915-563-1800 3 MND/3/8/06 FIELD CODE Telephone No: 🔾 Company Address: Project Manager: Company Name City/State/Zip: Sampler Signature: Odessa, Texas 79763 12600 West I-20 East Special Instructions: Relinquished by: Relinquished

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

\circ	-		Tiple Log-III
ient: UCO DD			·
ate/Time: 3/9/06 8:45			
rder#: 60005	,		
(de) π. <u>ΨΟΟ Λ</u> Ο			
itials:			
Sample Receipt	Checkli	st	
emperature of container/cooler?	Yes	No I	4.0 CI
hipping container/cooler in good condition?	res	No	
ustody Seals intact on shipping container/cooler?	725	No	Not present
ustody Seals intact on sample bottles?	Yes	No	Not present
hain of custody present?	703	No	1
ample Instructions complete on Chain of Custody?	(Es)	No	
hain of Custody signed when relinquished and received?	(P)	No	ı
hain of custody agrees with sample label(s)	A S	No	;
ontainer labels legible and intact?	(83)	No	
sample Matrix and properties same as on chain of custody?	Yes	No	
amples in proper container/bottle?	(3)	No	•
amples properly preserved?	YES	No	
ample bottles intact?	Ves	No	1
Preservations documented on Chain of Custody?	l Es	No	:
Containers documented on Chain of Custody?	E3	No	
Sufficient sample amount for indicated test?	Ses .	No	,
All samples received within sufficient hold time?	(Yes	No	,
VOC samples have zero headspace?	Yes	No	Not Applicable 1
Other observations:			
Other observations:			
Other observations: Variance Docu Contact Person: Date/Time: Regarding:			Contacted by:
Variance Docu Contact Person: Date/Time:			Contacted by:
Variance Docu Contact Person: Date/Time: Regarding:			Contacted by:
Variance Docu Contact Person: Date/Time: Regarding:			Contacted by:
Variance Docu Contact Person: Date/Time: Regarding:			Contacted by:
Variance Docu Contact Person: Date/Time: Regarding:			Contacted by:
Variance Docu Contact Person: Date/Time: Regarding:			Contacted by:

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Stock Well SW of BD F-17 UL/L
Project Number: None Given

Location: None Given

Lab Order Number: 6C09006

Report Date: 03/16/06

Project: Stock Well SW of BD F-17 UL/L

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 03/16/06 09:57

ANALYTICAL REPORT FOR SAMPLES

Sample 1D	Laboratory ID	Matrix	Date Sampled	Date Received
UL/L Stock Well	6C09006-01	Water	03/08/06 14:00	03/09/06 07:00

Project: Stock Well SW of BD F-17 UL/L

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 03/16/06 09:57

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
UL/L Stock Well (6C09006-01) W	ater								
Total Alkalinity	162	2.00	mg/L	1	EC60905	03/09/06	03/09/06	EPA 310.1M	
Chloride	52.5	5.00	11	10	EC61306	03/10/06	03/13/06	EPA 300.0	
Total Dissolved Solids	376	5.00	O	1	EC61011	03/09/06	03/10/06	EPA 160.1	
Sulfate	68.7	5.00	H	10	EC61306	03/10/06	03/13/06	EPA 300.0	

Project: Stock Well SW of BD F-17 UL/L

Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Reported: 03/17/06 16:31

Total Metals by EPA / Standard Methods **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
UL/L Stock Well (6C09006-01) Water									
Calcium	13.1	0.100	mg/L	10	EC61608	03/16/06	03/16/06	EPA 6010B	
Magnesium	17.9	0.0100	44	II	17	U	ti.	11	
Potassium	8.18	0.500	n	11	и	#	u	u	
Sodium	70.2	0.500	. 0	50	11	n	11	"	

Project: Stock Well SW of BD F-17 UL/L

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 03/16/06 09:57

Ge meral Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
nalyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch EC60905 - Gen eral Prepara	tion (WetChem	1)								
ank (EC60905-BLK1)				Prepared a	& Analyze	d: 03/09/	06			
tal Alkalinity	ND	2.00	mg/L							
CS (EC60905-BS1)				Prepared	& Analyze	d: 03/09/	06			
carbonate Alkalinity	216	2.00	mg/L	200		108	85-115			
Ouplicate (EC60905-DUP1)	Sou	rce: 6C0202	0-01	Prepared	& Analyze	d: 03/09/	06			
otal Alkalinity	195	2.00	mg/L		194			0.514	20	
eference (EC60905-SR M1)				Prepared of	& Analyze	d: 03/09/	06			
'otal Alkalinity	97.0		mg/L	100		97.0	90-110			
Batch EC61011 - General Prepara	tion (WetChem	ı)								
				Prepared:	03/09/06	Analyzed	l: 03/10/06			
Blank (EC61011-BLK1) Total Dissolved Solids	ND	5.00	mg/L	Troparou.	03/03/00	111111111111111111111111111111111111111	1. 03/10/00			
	Sou	ırce: 6C0800	2.01	Prepared:	03/09/06	Analyzed	l: 03/10/06			
Duplicate (EC61011-DUP1) Fotal Dissolved Solids	3780	5.00	mg/L	Troparcu.	3810	Miaryzeo	1. 03/10/00	0.791	5	
			_							
Batch EC61306 - General Prepara	tion (WetChem	1)	 							*******
Blank (EC61306-BLK1)	•			Prepared:	03/10/06	Analyzed	1: 03/13/06			
Chloride	ND	0.500	mg/L							
Sulfate	ND	0.500	II					,		
LCS (EC61306-BS1)				Prepared:	03/10/06	Analyzed	1: 03/13/06			
	9.48		mg/L	10.0		94.8	80-120			
Chloride										

RUSH TAT (Pre-Schedule) CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST للعن Sample Contamers Intact Temperature Upon Rece BTEX 8021B/5030 Analyze SelilulovimaS Laboratory Comm Metals: As Ag Ba Cd Cr Pb Hg Se Project Name: Of TOLP: ORGIORD Matos H9T TOTAL Project Loc: PO #: Project #: 8001/2001 XT H9T 1.814 HQT 7.8 Time (103) CL I SAR I EC Other (specify): Matrix lios Sludge Water Other (Specify) anoM Preservative 'OS^tH HOBN HCI ·ОИН aoi No. of Containers Fax No: Time Sampled Ö Received by: Environmental Lab of Texas, Inc. Date Sampled W Phone: 915-563-1800 Fax: 915-563-1713 FIELD CODE Company Name Telephone No: Project Manager: Company Address: City/State/Zip: Sampler Signature: Odessa, Texas 79763 12600 West I-20 East Special Instructions: Relinquished by: Relinquished by

Environmental Lab of Texas Variance / Corrective Action Report — Sample Log-In

lient: Lice DD,				
ate/Time: 3/9/06 8:45				
order#: 609000	,			
nder #.				
nitials:				
Sample Receipt	Checkli	st		
emperature of container/cooler?	Yes	No	4.6	C
hipping container/cooler in good condition?	(ES	No		
ustody Seals intact on shipping container/cooler?	B	No	Not presen	
ustody Seals intact on sample bottles?	Yes	No	Not presen	it !
Chain of custody present?	800	No 1		i
Sample Instructions complete on Chain of Custody?	100	No		
Chain of Custody signed when relinquished and received?		No	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Chain of custody agrees with sample label(s)		No		 į
Container labels legible and intact?	Yes	No		!
Sample Matrix and properties same as on chain of custody? Samples in proper container/bottle?	1 25	No I		<u> </u>
Samples in proper container/bottle?		No		·
Sample bottles intact?	YES:	No No		i
Preservations documented on Chain of Custody?	l es	No		
Containers documented on Chain of Custody?	1	No		
Sufficient sample amount for indicated test?	2 es	No		
All samples received within sufficient hold time?	Feis .	No		7
VOC samples have zero headspace?	Yes	No	Not Applica	ible
Other observations: Variance Docu Contact Person: Date/Time:			Contacted	by: _
Regarding:				
Corrective Action Taken:				
Corrective Action Taken:				
Corrective Action Taken:				
Corrective Action Taken:				
Corrective Action Taken:				
Corrective Action Taken:				
Corrective Action Taken:				

Appendix B Boring and Completion Logs

RICE OPERATING COMPANY JUNCTION BOX DISCLOSURE FORM *

BOX LOCATION									
SWD SYSTEM JUNCTION UNIT SECTION TOWNSHIP RANGE COUN		IMENSIONS - FE							
BD F-17 F 17 21S 37E Les	Length	Width peen moved 45 ft	Depth						
	Box has t	been moved 45 ft	south						
LAND TYPE: BLMSTATEFEE LANDOWNERMillard Deck E	state OTHER								
Depth to Groundwater 72 feet NMOCD SITE ASSESSME	ENT RANKING S	CORE:	10						
Date Started 9/17/2002 Date Completed not complete OCD Witness No									
Soil Excavated 175 cubic yards Excavation Length 20	Width 20	Depth	feet feet						
Soil Disposed 0 cubic yards Offsite Facility n/a	Location	n/a	<u> </u>						
FINAL ANALYTICAL RESULTS: Sample Date			n/a						
Procure 5-point composite sample of bottom and 4-point composite BTEX and Chloride laboratory test results completed by using an procedures pursuant to NMOCD guideline	approved lab ands.	d testing							
Sample Benzene Toluene Ethyl Benzene Total Xylenes Location mg/kg mg/kg mg/kg mg/kg	GRO mg/kg	DRO mg/kg	Chlorides mg/kg						
Vertical @ 12 ft	<10.0	724	1040						
General Description of Remedial Action: Site was delineated vertically and laterally with a backhoe. Chloride impact was consistent vertically, while TPH was visible to 11' bgs.	CHLOR	RIDE FIELD TE	STS						
The site was bored on 11/18/02 and chloride was found to impact groundwater with no	LOCATION	DEPTH (ft)	ppm						
indications of TPH. A cased monitor well was installed and the groundwater has been sampled	Vertical	3	6001						
and analyzed quarterty (see annual groundwater report for results). ROC has contracted a		5	1591						
hydrologic consultant to assist ROC in developing a remediation plan for the vadose zone at		11	1749						
groundwater-impacted sites with the ultimate objective being final closure. The excavation		13	3273						
has been backfilled and the junction moved 45 ft south of this site.	10' S **	7	2401						
		_11	4278						
ADDITIONAL EVALUATION IS <u>MEDIUM</u> PRIORITY.	Soil Bore	20	5197						
		50	2133						
enclosures: chloride curve, well log, photos, lab results		70	1209						
		75	425						
** During excavation of this site, an older box was found; The bore was conducted close to this box	·								
I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND C KNOWLEDGE AND BELIEF.	COMPLETE TO T	HE BEST OF	MY						
DATE 11/7/2003 PRINTED NAME	TE 11/7/2003 PRINTED NAME Kristin Farris								
SIGNATURE <u>Anthin Janua</u> TITLE		21.7.1 21.1.0							

^{*} This site is a "DISCLOSURE." It will be placed on a prioritized list of similar sites for further consideration.

DRILLING LOG	Site Name/Location	BOR	Logged by: Eades		
RICE Operarting Company	Jct. F-17	Well No. M W 1	Date Orifled: 11-18-02	Orifler: Eades	Completion:
122 West Taylor	17-T21S-R37E	Well Depth 85'	Bonng Depth: 85'	Well Material: PVC	Packed with
Hobbs, New Mexico 88240	BD SWD System	Casing Length: 881	Bonng Diameter 2"	Casing Size: 2"	bentonite; grouted
(505) 393-9174	Lea County, NM	Screen Length: 20'	Drilling Method: Air Rotary	Siot Size: N/A	at surface.

Test Results (ppm)

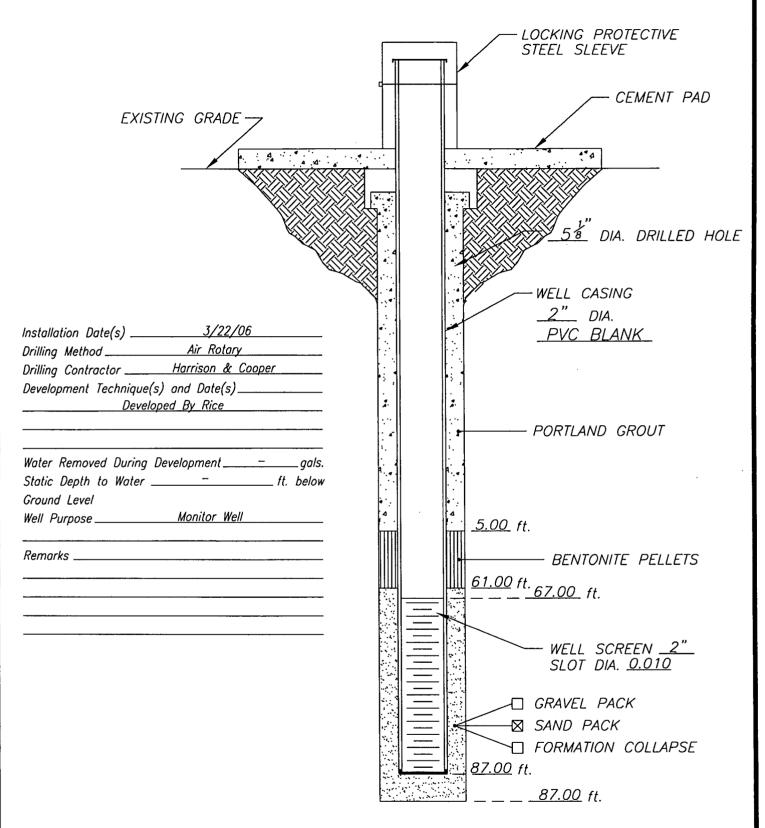
			Test Res	ults (ppm)				
DEPTH	SUBSURFACE LITHOLOGY	SAMPLE TYPE	Cl ⁻	TPH	REMARKS	£	loring	
0	Ground surface		Titrate	EPA 418.1				L
	Top Soil							
	Caliche	Grab	2,212		grout			
	Danosio	O.U.D	**,** '**		9,000		l	
10	Tan caliche and loam chunks	Grab	492					
							ĺ	
15	Sand	Grab	2,412			`		l
20	Red sand	Grab	5,197				1	1
20	Ned salid	Grau	3,131				2"	1
			}				1	
21	Sand and Sandstone Stringers			į			Р	1
					•	1	v	ĺ
25	Red Sand	Grab	3,152	ļ		1	Č	
30	Tan caliche powder	Grab	4,628	1				
	ran Galiche powder	Grab	4,020					
								}
34	Sand					į.	1	e Club
						1	1	1
35	Tan sand	Grab	2,508	Ì		}	4	2
filmes maines vivo es moi vivo					bentonite		3	
36	Sand and Sandstone Stringers					1		
.,,,,	Sand and Sandstone Stringers							
						l		I
40	Tan Sand	Grab	352				1	
·····							Ì	
45	Tan Sand	Grab	2,420			1		
							1	Ì
50	Reddish-brown sand	Grab	2,133					
	Treadistrojowii sains	Ciab	2,100	}		Ì	1	1
			2				1	
55	Sandy Graves	Grab	2.665	1				1
-	1	•					1	
- 60	Reddish-prown sand	Grab	1.905	1		i	1	
							1	1
S.	 Sand and Sandstone Stringer			1		1	1	
	The series can be seen that the series of th						1	7
· · · · · · · · · · · · · · · · · · ·	1		1 000					=
გ:	Tan sand and Caliche	Grab	1.800			i		=
·	-		:					
7(Tan sand and caliche moist	Grab	1.209		screen	-		
		1	:	i 1		1		
77.8	Tan sand with rocks, moist	Grab	425	1				3
***************************************	Tan land with rooms, motor	1						
-	-							=
3(- 4	; ;	1 5		water			
	· 		1					\equiv
Q i	Sand and Sandstone Stringers	1	1 :	1				

SAMPLE LOG

Boring/Well: BH-2 Project Number: 2305 Client: Rice Site Location: F-17

Location:

Lea County, New Mexico


87'

Total Depth
Date Installed:

3/22/2006

DEPTH (Ft)	OVM	SAMPLE DESCRIPTION
0-3	-	Lt. brown, fine grain sand, some traces of caliche
3-5	_	White, caliche and tan, fine grain sand
5.0		Tan, fine grain sand and some white caliche, sandy with depth
10.0	-	Tan, fine grain sand, trace of white caliche
15.0		Tan, fine grain sand, trace of white caliche
20	-	White, caliche, dense, some layers of fine grain sand
25	_	White, caliche, dense, some layers of fine grain sand
30.0	-	White, caliche, dense, some layers of fine grain sand
35.0	-	Tan, fine grain sand, trace of white caliche
40.0	-	Tan/lt. red, fine grain sand, loose
45.0	-	Tan/lt. red, fine grain sand, loose
50.0	-	Tan/lt. red, fine grain sand, some loose with compacted layers sand
55.0	-	Tan, gravel and fine grain sand, loose
60.0	-	Tan, gravel and fine grain sand, loose
65.0	-	Tan, gravel and fine grain sand, some broken caliche
70.0		Tan, limestone, dense layer, some sand stringers
75.0	-	Tan, fine grain sand, compacted with some cemented sandstone
80.0	-	Tan, fine grain sand, compacted with some cemented sandstone
87.0	-	Tan, fine grain sand, compacted with some cemented sandstone
		Total Depth - 87'

WELL CONSTRUCTION LOG

DATE: 3/22/06

Highlander Environmental CLIENT: Rice Operating Company

PROJECT: F-17

LOCATION: Lea County, New Mexico

WELL NO.

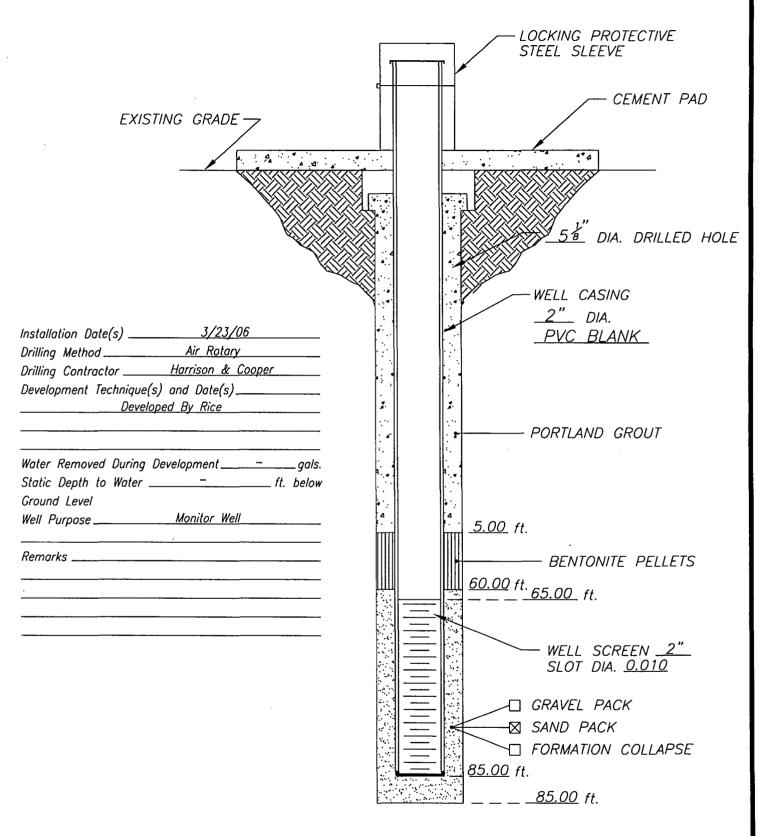
MW-2

SAMPLE LOG

Boring/Well: BH-3
Project Number: 2305
Client: Rice
Site Location: F-17

Location:

Lea County, New Mexico


Total Depth

85'

Date Installed: 3/23/2006

DEPTH (Ft)	OVM	SAMPLE DESCRIPTION
0-3	-	Lt. brown, fine grain sand, some traces of caliche
3-5	<u> </u>	White, caliche and tan, fine grain sand
5.0		Tan, fine grain sand and some white caliche, sandy with depth
10.0	-	Tan, fine grain sand, trace of white caliche
15.0	-	Tan, fine grain sand, trace of white caliche
20		White, caliche, dense, some layers of fine grain sand
25	-	White, caliche, dense, some layers of fine grain sand
30.0	-	White, caliche, dense, some layers of fine grain sand
35.0	-	Tan, fine grain sand, trace of white caliche
40.0	<u> </u>	Tan/lt. red, fine grain sand, loose
45.0	<u>-</u>	Tan/lt. red, fine grain sand, loose
50.0	<u>-</u>	Tan/lt. red, fine grain sand, some loose with compacted layers sand
55.0		Tan, gravel and fine grain sand, loose
60.0		Tan, gravel and fine grain sand, loose
65.0	-	Tan, gravel and fine grain sand, some broken caliche
70.0	<u> </u>	Tan, limestone, dense layer, some sand stringers
75.0	-	Tan, fine grain sand, compacted with some cemented sandstone
80.0		Tan, fine grain sand, compacted with some cemented sandstone
85.0	<u>-</u>	Tan, fine grain sand, compacted with some cemented sandstone
		Total Depth - 85'

WELL CONSTRUCTION LOG

DATE: 3,

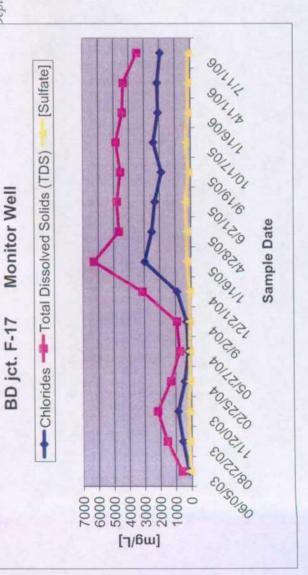
3/23/06

Highlander Environmental CLIENT: Rice Operating Company

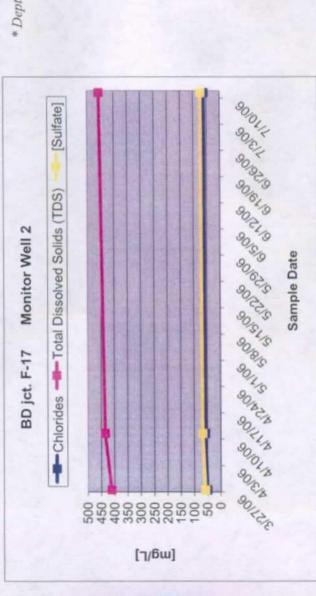
PROJECT: F-17

LOCATION: Lea County, New Mexico

WELL NO.

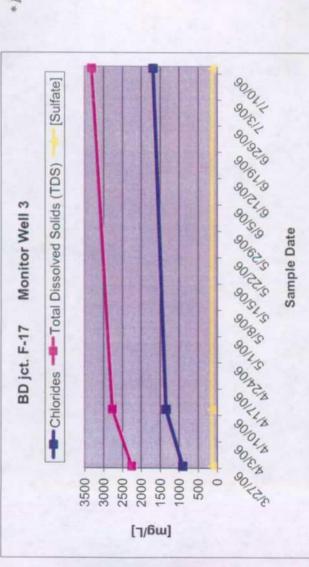

MW-3

Appendix C


Analytical Data Tables

	COMMENTS							It. brown; cloudy		re-sample					Silt to Clear	no odor	Silt to Clear	no odor	Clear no odor
	SULFATE		9.76	112	132	8.96	87.6	9.06	96.2	257	259	339	147	319		154		167	126
	TOTAL	BENZENE ATLENES	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001		<0.001	<0.001
ng/L	ETHYL	BENZENE	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001		<0.001	<0.001
tions are in n	TOLUENE		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001		<0.001	<0.001
All concentrations are in mg/L	BENZENE TOLUENE		0.004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001		<0.001	<0.001
	TDS		589	1540	2160	1300	726	968	3120	6280	4640	4770	4540	4830		4410		4340	3440
	-IO		177	549	851	415	195	284	988	2970	2510	2310	1890	2400		2090		2130	1930
	SAMPLE	DATE	06/05/03	08/22/03	11/20/03	02/25/04	05/27/04	9/2/04	12/21/04	1/16/05	4/28/05	6/21/05	9/19/05	10/11/05		1/16/06		4/11/06	7/11/06
0	_	-	4.50	4.50	4.30	4.20	6.40	4.40	4.50	4.26	5.00	10.00	XXX	5		00		00	10
(gal)	WELL	VOLUME PURGED	1.524	1.500	1.456	1.400	2.130	1.46	1.42	1.42	1.44	1.43	XXX	1.4		1.4		1.4	1.4
		DEPTH	85.20	85.12	84.85	84.48	85.12	84.60	84.00	84.07	84.2	84.15	XXX	84.2		84.2		84.2	84.2
(ft)	DEPTH TO	WATER *	75.67	75.73	75.75	75.73	71.75	75.48	75.10	75.18	75.21	75.2	XXX	75.2		85.15		75.2	75.22
	MW #		1	1	-	1	1	1	-	-	-	-	-	-		_		-	1

Depth to water is measured from top of casing Casing is 3.104 ft


	COMMENTS				
	SULFATE	58.4	68.2	73.3	
	TOTAL	<0.001	<0.001	<0.001	
mg/L	BENZENE	<0.001	<0.001	<0.001	The state of the s
rations are in mg/L	TOLUENE	<0.001	<0.001	<0.001	
All concentr	BENZENE	<0.001	<0.001	<0.001	
	SQL	412	436	456	
	-IO	50.8	57.9	60.5	
	SAMPLE	3/27/06	4/11/06	7/11/06	
1)	L VOLUME	10.00	10.00	10.00	
(gal	VOLUME	2.300	2.300	2.300	
(1	DEPTH	90.00	90.00	90.00	
(f)	DEPTH TO	75.55	75.90	75.60	
	MW#	2	2	2	

* Depth to water is measured from top of casing Casing is 3.104 ft

	R37F
F-17	T21S
BD jct.	Sec. 17.
_	mit 'F'

	COMMENTS				
All concentrations are in mg/L	SULFATE	126	138	125	
	TOTAL	<0.001	<0.001	<0.001	
	BENZENE	<0.001	<0.001	<0.001	
	TOLUENE	<0.001	<0.001	<0.001	
	BENZENE	<0.001	<0.001	<0.001	
	TDS	2240	2750	3300	
	CI-	106	1340	1680	
	SAMPLE	3/27/06	4/11/06	7/11/06	
(gal)	VOLUME PURGED	10.00	10.00	10.00	
	VOLUME PUR	2.300	2.300	2.300	
(ft)	TOTAL	88.00	88.00	88.00	
	DEPTH TO WATER *	73.91	73.93	73.91	
	MW#	3	3	3	

* Depth to water is measured from top of casing Casing is 3.104 ft