District I 1625 N. Franch Dr., Hebbs, NM 68240 District II 611 S. First St., Artacia, NM 68210 District III 1000 Filo Brazon Road, Artac, NM 87410 District IV 1220 S. St. Francis Dr., Santo Fe, NM 87305

Latitude 32.65083

Site Name: Hobbs Tank 5201

Date Release: Discovered July 22, 2004

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Solumit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	Navajo Pipeline	OGRID 15681
Contact Name	Jason Leik	Contact Telephone (214) 871-3408
Contact email	leson Leik@HollyFrontier.com	Incident # (outgood by OCD) nPRS0432052991
Contact mailing address Dallas, Texas 75201	2828 North Harwood, Suite 1300,	

Location of Release Source

(RAD his to decimal degrees to 5 decimal places)

Longitude 103.13347

Site Type TB

API# (if applicable)

Juit Letter	Section	Township	Range	Com	nty:	
	22	198	38E	Lea		
Surface Owner: State Federal Tribal Private (Name: Enterprise, Inc. Nature and Volume of Release						
	Materia	l(s) Released (Select a	il that apply and atta	ch calculations on specific	justification for the volumes provided below)	
Crude Oil		Volume Release	ed (bbls)		Volume Recovered (bbls)	
Produced	Water	Volume Release	ed (bbls)		Volume Recovered (bbls)	
		Is the concentra produced water	tion of dissolved >10,000 mg/l?	chloride in the	Yes No	
Cendensa	te	Volume Release	ed (bbls)		Volume Recovered (bbls)	
Natural G		Volume Release	ed (Mcf)		Volume Recovered (Mcf)	
Other (describe) Volume/Weight Released (provide units)		de units)	Volume/Weight Recovered (provide units)			
Cause of Rele	ease: A leak	at the 6-inch pipe	line from the cro	de oil track unloadir	ng rack at the 5201 storage tank.	

State of New Mexico Oil Conservation Division

Incident ID	1	
District RP		-
Facility ID		
Application ID		d des to restrict the contract of the contract

Was this a major release as defined by 19.15.29.7(A) NMAC? ☐ Yes ☒ No If YES, was immediate no		nsible party consider this a major release? hom? When and by what means (phone, email, etc)?
The spill was discovered of 7/22/04 at 16:45 via teleph	on 7/22/04 at 14:00. Notice was given to 0	Sary Wink of OCD by Johnny Lackey of Holly Energy Partners on
	Initial R	esponse
The responsible p	arty must undertake the following actions immediate	y unless they could create a safety hazard that would result in injury
The source of the release	ase has been stopped.	
∑ The impacted area has	been secured to protect human health and	the environment.
Released materials have	ve been contained via the use of berms or d	likes, absorbent pads, or other containment devices.
All free liquids and re	coverable materials have been removed and	d managed appropriately.
has begun, please attach a	narrative of actions to date. If remedial of	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred
I hereby certify that the information regulations all operators are republic health or the environmental to adequately investigate addition, OCD acceptance of and/or regulations.	nation given above is true and complete to the bouired to report and/or file certain release notifient. The acceptance of a C-141 report by the O e and remediate contamination that pose a threa a C-141 report does not relieve the operator of a	lease attach all information needed for closure evaluation. lest of my knowledge and understand that pursuant to OCD rules and lications and perform corrective actions for releases which may endanger CD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In esponsibility for compliance with any other federal, state, or local laws
Printed Name: Jason L	eik	Title: Environmental Specialist - Remediation
Signature:		Date: 11/13/19
email: dason.Leik@I	HollyFrontier.com	Telephone: 214-871-3408
OCD Only		
Received by:		Date:

State of New Mexico Oil Conservation Division

Incident ID	Ī	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

	P 1 100 1 100 100
What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	☑ Yes □ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☑ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution or church?	, Yes No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	d ☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☑ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☑ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☑ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	vertical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring Field data	wells.
 □ Data table of soil contaminant concentration data □ Depth to water determination □ Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release 	
 ☑ Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release ☑ Boring or excavation logs ☑ Photographs including date and GIS information 	
☐ Thotographs including date and dis information ☐ Topographic/Aerial maps ☐ Laboratory data including chain of custody	Ì
M recovery age moreonic cusing or casing.	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

State of New Mexico
Oil Conservation Division

Incident ID	Proposition of any controlled register understanding of
District RP	
Facility ID	
Application ID	and Julius in the Conference of Confere

	Application ID
regulations all operators are required to report and/or file certain release a public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a	the best of my knowledge and understand that pursuant to OCD rules and notifications and perform corrective actions for releases which may endanger to OCD does not relieve the operator of liability should their operations have threat to groundwater, surface water, human health or the environment. In of responsibility for compliance with any other federal, state, or local laws
Printed Name: Jason Leik	Title: Environmental Specialist - Remediation
Signature:	Date: 11/13/19
email: Jason.Leik@HollyFrontier.com	Telephone: 214-871-3408
OCD Only	
Received by:	Date:

State of New Mexico
Oil Conservation Division

Incident ID	
District RP	/ The American Addition of the Control of the Contr
Facility. ID	
Application ID	

Remediation Plan

SCHOOL SHOWING BOX HAN HOWEVER AT A STATE OF					
Remediation Plan Check	list: Each of the following items mus	t be include	d in	the plan.	· · · · · · · · · · · · · · · · · · ·
□ Detailed description of the last of the las	f proposed remediation technique				
	PS coordinates showing delineation ponaterial to be remediated	oints			
	naterial to be remediated able 1 specifications subject to 19.15.2	9 12((2)(4) 1	NTM A	C	
Proposed schedule for	remediation (note if remediation plan	timeline is n	ore	than 90 days OCD	approval is required)
Deferral Requests Only:	Each of the following items must be o	confirmed a	s par	t of any request fo	r deferral of remediation.
Contamination must be deconstruction.	e in areas immediately under or around	production	equij	pment where reme	diation could cause a major facility
☐ Extents of contamination	on must be fully delineated.				
Contamination does no	et cause an imminent risk to human hea	llth, the envi	romm	ent, or groundwate	er,
rules and regulations all op- which may endanger public liability should their operat- surface water, human health	ormation given above is true and comperators are required to report and/or file health or the environment. The acceptions have failed to adequately investigation the environment. In addition, OCI ce with any other federal, state, or local	e certain rele stance of a C ate and reme D acceptance	ease 1 2-141 ediate e of a	notifications and portent by the OCI contamination that C-141 report does	erform corrective actions for releases O does not relieve the operator of at pose a threat to eroundwater.
Printed Name: Jason L	eik	Title:	En	vironmental S	pecialist - Remediation
Signature:	2	Date:	11/	/13/19	
email:Jasen.Leik@H	lollyFrontier.com	Teleph	one:	214-871-340	08
OCD Only				and, and one of the second second	
Received by:		_ Date:			
Approved	Approved with Attached Conditions of	f Approval		☐ Denied	☐ Deferral Approved
Signature:		Date:			_

State of New Mexico Oil Conservation Division

Incident ID	T	········	***************************************
District RP			
Facility ID			
Application ID	Ĭ		

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Re	ort Attachment Checklist: Each	f the following items must be included in the closure report.			
✓ A scaled	site and sampling diagram as descri	ped in 19.15.29.11 NMAC			
Photogramust be notif	Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)				
1		appropriate ODC District office must be notified 2 days prior to final sampling)			
⊠ Descripti	ion of remediation activities				
and regulations may endanger should their op human health of compliance wit restore, reclaim accordance with Printed Name; Signature:	s all operators are required to report public health or the environment. T perations have failed to adequately in or the environment. In addition, OC th any other federal, state, or local is n, and re-vegetate the impacted surfa-	true and complete to the best of my knowledge and understand that pursuant to OCD rules and/or file certain release notifications and perform corrective actions for releases which he acceptance of a C-141 report by the OCD does not relieve the operator of liability exestigate and remediate contamination that pose a threat to groundwater, surface water, D acceptance of a C-141 report does not relieve the operator of responsibility for ws and/or regulations. The responsible party acknowledges they must substantially be area to the conditions that existed prior to the release or their final land use in fication to the OCD when reclamation and re-vegetation are complete. Title: Environmental Specialist - Remediation Date: 7/18/19 Telephone: (214) 871-3408			
OCD Only					
Received by:	11/4 M	Date:			
remediate contr	al by the OCD does not relieve the maintain that poses a threat to groun ance with any other federal, state, or	sponsible party of liability should their operations have failed to adequately investigate and dwater, surface water, human health, or the environment nor does not relieve the responsible local laws and/or regulations.			
Closure Approv	ved by:	Date:			
Printed Name:		Title:			

C-141

10/11/2004

AP-113.

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised March 17, 1999

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

			17.00	ease Notifi	catior	and Co	rrective A	ction				
					PERAT			🛛 Initi	al Report		Final Repor	
						linny Lackey						
			NM 882	10			No.11505-748-					
Facility Nat	ne Hobbs	Jank Farm				Facility Typ	e Crude Oil	Storage				
Surface Ow	ner			Mineral (Owner				Lease ?	No. 🗆 N/A		
				LOCA	ATIO	ON OF RELEASE 32.6517 103.1421						
Unit Letter	Section NE 1/4 Sec 22	Township 198	Range 38E	Feet from the	North/	South Line	Feet from the	East/W	est Linc	County Les		
				NAT	URE	OF RELI	EASE					
Type of Rele		Dil				Volume of	Release		Volume I	Recovered		
Source of Re Pipeline leak						Date and H 7/22/04, un	our of Occurrent known		Date and 7/22/04, 2	Hour of Dis 2:00pm	covery	
Was Immedia	ate Notice (Yes [No Not R	cquired	If YES, To Gary Wink						
By Whom?			Energy Par	iners		Date and H	our□ 7/22/04, 4:	:45pm				
Was a Water	course Read		Yes 🗵] No		If YES, Vo	lume Impacting	the Water	course.			
depressured a Describe Are. An area appro- disposed of al I hereby certi- regulations al public health	ding line from the ding line fro	om the truck was installed and Cleanup A feet wide and disposal site a information gi are required to comment. The	unloading in at the leaf Action Taked 20 feet 10 and fresh diven above to report are acceptant	rack to Tank 5201 c. Leak was a rest cen.* ung and 18 feet de lirt placed in the c c is true and comp ud/or file certain r ce of a C-141 repo	ep was sexcavated lete to the elease no	tained with c l area. e best of my tifications are NMOCD ma	on. rude oil. There w knowledge and a d perform correc when as "Final R	was no free understand stive actio deport" do	liquid. S that purs ns for rele es not reli	tained soil votant to NMe eases which eve the oper	OCD ri	dug out and ales and adanger liability
should their of or the environ federal, state,	ment. In a	ddition, NMO	CD accep	investigate and rance of a C-141	emediate report do	contamination	the operator of	responsib	ility for c	ompliance w	rith any	man health other
							OIL CON	SERVA	TION	DIVISIO	N	
Signature:					Approved by a District Supervisor:							
Printed Name	Printed Name: Johnny Lackey											
Titte: Safety/I	Environmer	ital Superviso	r			Approval Date	:	Expiration Date:				
Date: 10/11/04 Phone: 505-748-8942 C Attach Additional Sheets If Necessary												

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

Responsible Party

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

OGRID 15681

Navajo Pipeline

Contact Name Jason Leik			ik	Contact Te	Contact Telephone (214) 871-3408		
Contact email Jason.Leik@HollyFrontier.com			eik@HollyFrontier.c	om Incident#	(assigned by OCD) AP-113		
Contact mailing address 2828 North Harwood, Suite 1300, Dallas, Texas 75201							
			Location o	f Release So			
Latitude 32.6	5083		(NAD 83 in decim	Longitude _ nal degrees to 5 decin			
Site Name: H	obbs Tank 5	201		Site Type	ТВ		
Date Release:	Discovered	d July 22, 2004		API# (if app	licable)		
Unit Letter	Section	Township	Range	Coun	ity		
	22	19S	38E 1	Lea			
					justification for the volumes provided below)		
Crude Oi		Volume Release			Volume Recovered (bbls)		
Produced	Water	Volume Release			Volume Recovered (bbls)		
		Is the concentrate produced water	tion of dissolved chle>10,000 mg/l?	oride in the	Yes No		
Condensa	ite	Volume Release			Volume Recovered (bbls)		
☐ Natural C	ias	Volume Release	ed (Mcf)		Volume Recovered (Mcf)		
Other (describe) Volume/Weight Released (provide			Released (provide u	units)	Volume/Weight Recovered (provide units)		
Cause of Release: A leak at the 6-inch pipeline from the crude oil truck unloading rack at the 5201 storage tank.							

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
☐ Yes ☒ No	
	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? on 7/22/04 at 14:00. Notice was given to Gary Wink of OCD by Johnny Lackey of Holly Energy Partners on hone.
	Initial Response
The responsible p	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
☐ The source of the rele	ease has been stopped.
☐ The impacted area ha	s been secured to protect human health and the environment.
Released materials ha	we been contained via the use of berms or dikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed and managed appropriately.
If all the actions described	d above have not been undertaken, explain why:
Per 10 15 20 8 R (4) NM	IAC the responsible party may commence remediation immediately after discovery of a release. If remediation
has begun, please attach	a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred at area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
regulations all operators are public health or the environs failed to adequately investig	rmation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and required to report and/or file certain release notifications and perform corrective actions for releases which may endanger ment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have ate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In f a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	
Did this release impact groundwater or surface water?	Yes No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	⊠ Yes □ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☑ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☒ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☑ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
▼ Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
M District to the state of City of Country
Photographs including date and GIS information
☐ Topographic/Aerial maps
■ Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.				
Printed Name:	Title:			
Signature:	Date:			
email:	Telephone:			
OCD Only				
Received by:	Date:			

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	included in the plan.
 ☑ Detailed description of proposed remediation technique ☑ Scaled sitemap with GPS coordinates showing delineation points ☑ Estimated volume of material to be remediated 	3
Closure criteria is to Table 1 specifications subject to 19.15.29.1	2(C)(4) NMAC
Proposed schedule for remediation (note if remediation plan time	
Deferral Requests Only: Each of the following items must be con-	firmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around predeconstruction.	oduction equipment where remediation could cause a major facility
☐ Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health	the environment, or groundwater.
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.	
Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:
Approved Approved with Attached Conditions of A	Approval Denied Deferral Approved
Signature:	Date:

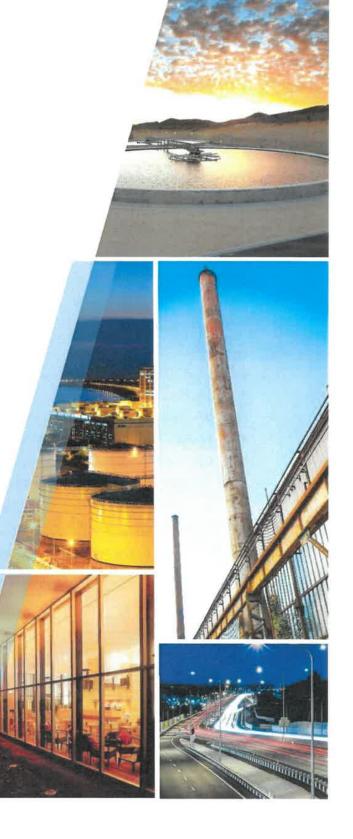
State of New Mexico Oil Conservation Division

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.


A scaled site and sampling diagram as described in 19.15.29.11 NMAC	
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
☐ Laboratory analyses of final sampling (Note: appropriate ODG	C District office must be notified 2 days prior to final sampling)
☑ Description of remediation activities	
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rehuman health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regularestore, reclaim, and re-vegetate the impacted surface area to the coaccordance with 19.15.29.13 NMAC including notification to the Coefficient Name:	ations. The responsible party acknowledges they must substantially anditions that existed prior to the release or their final land use in
OCD Only Received by:	Date:
Toolive by.	2 400/4
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.	
Closure Approved by:	Date:
Printed Name:	Title:

Site Closure Report

Hobbs Tank 5201 Release AP-113 Lea County, New Mexico

HollyFrontier

Table of Contents

1.	Intro	duction	1
	1.1	Site Background	1
	1.2	Site Setting	1
	1.3	Regional Geology and Hydrogeology	1
	1.4	Site Geology and Hydrogeology	2
	1.5	Summary of Previous Investigations	2
	1.6	Site Conceptual Model	3
2.	Site	Activities	4
3.	Grou	ındwater Monitoring Procedures and Results	5
4.	Crud	le Oil Recovery Status	11
5.	QA/0	QC Results	12
6.	Risk Analysis		12
7.	Conclusion		14
1.	Intro	Introduction	
	1.1	Site Background	1
	1.2	Site Setting	1
	1.3	Regional Geology and Hydrogeology	1
	1.4	Site Geology and Hydrogeology	2
	1.5	Summary of Previous Investigations	2
	1.6	Site Conceptual Model	3
2.	Site Activities		4
3.	Groundwater Monitoring Procedures and Results		
4.	Crude Oil Recovery Status1		
5.	QA/QC Results		
6.	Risk	Analysis	12
7.	Con	clusion	14

Figure Index

Figure 1	Site Location Map
Figure 2	Hobbs, NM Area Geologic Map
Figure 3	Wells within One Mile of Hobbs Station Tank 5201

Figure 4	Site Map
Figure 5	Product Thickness Map – June 2017 to March 2019
Figure 6	Groundwater Surface Map – June 2017
Figure 7	Groundwater Surface Map – September 2017
Figure 8	Groundwater Surface Map – December 2017
Figure 9	Groundwater Surface Map – March 2018
Figure 10	Groundwater Surface Map – June 2018
Figure 11	Groundwater Surface Map – September 2018
Figure 12	Groundwater Surface Map – December 2018
Figure 13	Groundwater Surface Map – March 2019
Figure 14	Analytical Map for June 2017 to March 2019
Figure 15	Site Total Accumulated Crude Oil Thickness
Figure 16	Crude Oil Thickness for HTRW-3
Figure 17	Hydrocarbon Concentrations for HTRW-1

Tables

Table 1	Water Well Information for Hobbs Tank Farm Area
Table 2	Summary of Groundwater Hydrocarbon Results for June 2014 to March 2019
Table 3	Summary of Groundwater Inorganic Analytical Results
Table 4	Summary of Groundwater QA/QC Results for December 2017 to March 2019
Table 5	Summary of Groundwater Analytical Results for Water Well L08279, March 2019

Appendices

Appendix A	Summary of Historical Fluid Levels (August 2004 – March 2019)
Appendix B	Summary of Historical Groundwater Analytical Results and Field Parameters
Appendix C	Groundwater Laboratory Reports

1. Introduction

This Site Closure report is submitted by GHD Services, Inc. (GHD), on behalf of HollyFrontier for the Hobbs Tank 5201 Release, AP-113, (Site), located in Lea County, New Mexico (Figure 1). This closure report includes data that shows minimal quantity of oil that is remaining in the area of the release and hydrocarbon concentrations that are below state standards outside the area of the release. The C-141 notification for the release was submitted to the New Mexico Oil Conservation District (NMOCD) on July 22, 2004. Annual Status reports previously submitted have included the March 2013 Annual Status report, the Annual Status report for 2013/2014, the Annual Status report for 2014/2015, the Annual Status report for 2015/2016 and the Annual Status report for 2016/2017. This report includes the status of groundwater monitoring and remediation at the Site for the period from July 2017 to March 2019.

Section 1 of this report presents the site setting and background, previous site investigations, regional and site geology and hydrogeology, and the site conceptual model. Section 2 summarizes the site activities for this reporting period and Section 3 presents a summary of the groundwater monitoring for this reporting period. Section 4 contains the information and status of the crude oil recovery at the Site. Section 5 presents the results of the Quality Assurance and Quality Control (QA/QC) for groundwater sampling. Section 6 contains the results of the risk analysis for the Site. Section 7 presents the conclusions and recommendations for site closure for the Site.

1.1 Site Background

On July 22, 2004, a leak of an unknown volume of crude oil was discovered in a 6-inch pipeline from the crude oil truck unloading rack at the 5201 storage tank. The line was exposed and clamped and the section was replaced, immediately. Petroleum stained soil from the release was immediately excavated in an area that covered approximately 4 feet by 20 feet by 18 feet deep. Additional staining observed close to the tank was not excavated due to the proximity of the tank and fear of compromising the 1930-vintage tank's structural integrity. No fluid was observed during the excavation.

1.2 Site Setting

The Site is located approximately 3.5 miles south of Hobbs, New Mexico on County Road 61 in the NW ¼ of the NW ¼ of Section 22, Township 19 South, and Range 38 East in Lea County, New Mexico (32° 39.079' N, 103°8.530' W). The topography at the Site is relatively flat and the average elevation is 3,595 feet mean sea level (Figure 1). The Site is located on property within the HollyFrontier tank farm, which is on property owned by Enterprise Products. The surrounding area contains crude oil storage tanks, pipelines and open rangeland.

1.3 Regional Geology and Hydrogeology

The Geologic Map of New Mexico (2003) prepared by the New Mexico Bureau of Geology and Mineral Resources, and Geology and Ground-Water Conditions in Southern Lea County, New Mexico (Ground-Water Report 6) prepared on behalf of the USGS was reviewed in association with the evaluation of regional geology and hydrogeology for the Site.

The geologic map for the area of site is shown in Figure 2. The surficial geologic unit (Qep) mapped for the location is described as Quaternary aged "Eolian and piedmont deposits (Holocene to middle Pleistocene) – Interlayered eolian sands and piedmont slope deposits along the eastern flank of the Pecos River Valley. Typically capped by thin eolian deposits." This sediment ranges from zero to 20-feet in thickness in this portion of Lea County. The Quaternary sediment unconformably overlies the Tertiary age Ogallala Formation. The Ogallala Formation is comprised of sands, silts, indurated calcium carbonate, gravel and some clay.

Groundwater in the area of the site is primarily produced from the Ogallala aquifer. The Ogallala Formation unconformably overlies the Triassic age Dockum group. The Dockum group consists of red shale and sandstone and is commonly referred to as "red beds". The red beds can exceed 1,000 feet in thickness in this region and may produce small amounts of poor quality water at the bottom of the formation.

The regional groundwater flow direction in the Ogallala is toward the southeast and follows the Triassic subcrop surface. Groundwater quality is very good with total dissolved solids (TDS) concentrations typically below 1,000 mg/L. Recharge primarily occurs via infiltration from precipitation events.

1.4 Site Geology and Hydrogeology

The surface soils encountered at the Site are silty to fine sands approximately 10-feet thick. This surface soil is consistent with the surface soil description (Quaternary sediment) for this physiographic province. The soil types encountered below this surface layer at the Site are indurated (hardened) calcium carbonate intervals of variable thickness locally referred to as "caliche", fine-grained sand, sandstone with caliche and the saturated zone consisting of fractured sandstone.

Groundwater at the Site is found in fractured sandstone consistent with the Ogallala aquifer. The depth to groundwater at the Site is approximately 50 feet-below ground surface (ft-bgs). The groundwater flow is towards the east-southeast and the groundwater gradient is approximately 0.001ft/ft.

No water wells are known to have been impacted by the leak. An evaluation of water well information obtained from the New Mexico Office of the State Engineer and the USGS indicated that there are domestic, agricultural or public water supply wells within a 1-mile radius of the Site (Figure 3, Table 1).

1.5 Summary of Previous Investigations

Safety and Environmental Solutions Inc. (SES) installed six groundwater monitoring wells, one recovery well and advanced seven boreholes shortly after the release to characterize the release and recover the released crude oil in the area of the tank. Five boreholes and two monitoring wells were installed inside of the berm area in 2004. The first borehole was completed as a 2-inch monitor well (MW-1), adjacent to the leak location. Two monitoring wells, MW-2 and MW-3, were installed outside the bermed area in 2004. A 4-inch recovery well (RW-1) was installed in the area near the tank and MW-1 in 2004. In 2010, two additional monitoring wells were installed, MW-4, outside the bermed area and MW-5, up-gradient and inside the bermed area (Figure 4).

SES monitored groundwater conditions and recovered crude oil from wells MW-1 and RW-1 from 2004 to 2011 and the other monitoring wells. In 2004, crude oil was initially measured in MW-1 at approximately 6 feet thick. In the recovery well, RW-1, the initial product thickness was measured at 2.75 feet. Crude oil was not found in any other areas of the Site. Outside the tank berm area and approximately 200 feet southeast from the release point, benzene was detected in the down-gradient area in monitor well MW-2 at a concentration above the New Mexico Water Quality Control Commission (NMWQCC) standard of 10 μ g/L. Benzene concentrations in this well were 26 μ g/L in 2004 and 72 μ g/L in 2005. Benzene has not been detected in this well or in any other monitoring wells located down-gradient since 2005.

In June 2013, four recovery wells were installed by GHD within the berm area and near the release area to delineate the crude oil and to recover crude oil (Figure 4). In September 2013, a crude oil only recovery system with remote access was installed with skimmer pumps in well RW-1 and recovery wells, HTRW-1 and HTRW-3. This system was used until March 2015 when negligible amounts of recoverable oil were remaining in the area. Enhanced fluid recovery (EFR) using a vacuum truck has been used to recover crude oil from wells MW-1, RW-1, HTRW-1 and HTRW-3. Oil absorbent socks have been used in these wells when EFR was not used during the months between EFR uses and are currently in use in wells MW-1, RW-1 and HTRW-3.

Appendix A contains information on fluid levels and crude oil thickness since 2012. Wells MW-1 and RW-1 contained oil sporadically from 2012 to March 2019. HTRW-1 contained oil sporadically from 2013 to October 2016. Wells HTRW-2 and HTRW-4 have never showed any measurable oil. HTRW-3 has shown oil since 2013 and has contained less than 0.10 feet since February 2018.

1.6 Site Conceptual Model

The Site is located in an area of multiple crude oil gathering lines and storage tanks and 2 miles west of Highway 18 and 3 miles south of Hobbs, New Mexico. The entire site is fenced and access is restricted for people and cattle. The closest residences are approximately 0.5 miles northeast of the Site (Figure 1). The closest drinking water well (L08890) is located approximately 900 feet to the southeast of the Site (Figure 3). This well was sampled for hydrocarbons following the discovery of the release and was not impacted by the release (Stage 1/Stage 2 Abatement Plan, November 2012, CRA). Another well (I08279) located approximately 1900 ft northeast from the site was sampled in March 2019 and showed no detections of any constituents above state standards (Table 5). There are no surface-water bodies within 1,000 feet of the Site. Due to the depth of groundwater (50 ft-bgs), it is unlikely that any perennial stream would exist at any time within 1,000 feet of the Site.

Groundwater at the Site is found at approximately 50 ft-bgs and the groundwater flow direction is towards the southeast at an average gradient of approximately 0.001 feet/foot (ft/ft). One monitoring well (MW-5) is located up-gradient of the release area and four monitoring wells are located down-gradient of the release (Figure 4). The dissolved phase hydrocarbon have shown concentrations in groundwater at these locations that have been below the NMWQCC standards for benzene, toluene, ethylbenzene and total xylenes (BTEX) since 2005. The impacts to groundwater, from the release, appear to be limited to the immediate area of the leak located near the tank. Well HTRW-1 has had detections of benzene above the standard varying from 1.97 µg/L to 1,620 µg/L. In

December 2018, the benzene concentration (the only constituent above state NMWQCC standards) in this well was 377 µg/L and in March 2019 the benzene concentration was 28.8 mg/L (Table 2).

The wells that are located within close proximity to the release have contained crude oil sporadically since 2012 (Appendix A). In December 2012, MW-1 had a measured thickness of 3.23 feet and nearby recovery well RW-1 had a thickness of 3.01 feet. During the most recent sampling event (March 2019), well MW-1 showed an oil thickness of 0.03 feet, well RW-1 showed a thickness of 0.02 feet and well HTRW-3 showed a thickness of 0.06 feet. The site total accumulated thickness (combination of oil thickness for all Site wells) has decreased from 6.57 feet (ft) in 2012 to 0.11 ft in 2019.

The primary chemicals of concern are hydrocarbon constituents that have dissolved from the released crude oil. The NMWQCC standards for hydrocarbons in groundwater for this Site are:

- 10 micrograms per liter (µg/L) for benzene
- 750 µg/L for toluene
- 750 µg/L for ethylbenzene
- 620 µg/L for total xylenes

The polycyclic aromatic hydrocarbons (PAHs) analyses for all sampled wells showed no detections of any PAHs above the lower method reporting limit for five consecutive sampling events conducted from March 2018 to March 2019 (Table 2).

Groundwater samples were analyzed for TDS, chloride and RCRA metals, which included arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver for all sampled wells in 2014, 2016, 2017 and 2019 (Table 3). The analyses showed total dissolved solids (TDS) above the state standard at MW-2 in December 2017, at MW-4 in December 2016 and September 2017 and at HTRW-4 in December 2016 (Table 3). Selenium was detected above the state standard in one well, MW-4, in December 2016 and March 2019 (Table 3).

There appears to be no remaining threat to the environment or to drinking water wells located in the area caused by the release and any remaining impacts. Dissolved phase hydrocarbons have only been detected in the immediate area of the release. Other constituents (PAHs) and RCRA metals that may be associated with the released oil have not been detected consistently within the berm area near the release or outside the berm area and down-gradient of the release.

The crude oil that was released has a very low mobility and does not readily desorb nor dissolve and therefore it has remained in the immediate area of the release. Since 2004, the crude oil has only been measured in wells in the area of the release and has not migrated from the release area. Presently, the crude oil has been measured at a negligible thickness in the area of the release.

2. Site Activities

Groundwater monitoring has been conducted at the Site by GHD on a biannual basis from December 2012 to June 2017 and quarterly basis since September 2017. The groundwater monitoring has included measurement of fluid levels in all monitoring wells and the recovery wells, collection of groundwater samples for laboratory analysis for BTEX and total petroleum

hydrocarbons-gasoline range organics (TPH-GRO) and total petroleum hydrocarbons- diesel range organics (TPH-DRO) analyses since December 2014. RCRA metals, TDS and chloride analyses of groundwater samples was added in December 2016 and sampled again in 2017 and March 2019. Wells were sampled for PAH analyses on 5 occasions in March 2018, June 2018, September 2018, December 2018 and March 2019.

Enhanced Fluid Recovery (EFR) using a vacuum truck to recover crude oil has been used on wells MW-1, RW-1 and HTRW-3, in the release area, since December 2014 on a quarterly basis and from December 2016 to June 2018 on a monthly basis. Oil absorbent socks have been used in these wells since June 2018.

3. Groundwater Monitoring Procedures and Results

For this reporting period, fluid levels were measured in all monitoring wells and recovery wells at the Site in September 2017, December 2017, March 2018, June 2018, September 2018, December 2018 and March 2019. Fluid levels were also measured on a monthly basis, prior to the use of EFR in the wells located near the release. Since June 2017, groundwater samples were collected on a quarterly basis from the monitor wells MW-2, MW-3, MW-4, and MW-5, and from recovery well HTRW-1. The results for this time period are summarized below. In addition, water well L08279 (Figure 3) was sampled in March 2019. Appendix A shows fluid levels from August 2012 to March 2019. Table 2 summarizes hydrocarbon analytical results for June 2014 to March 2019 and PAH analytical results for March 2018 to March 2019. Appendix B summarizes results from August 2004 to March 2019.

Prior to purging of the wells and obtaining groundwater samples, fluid levels were measured in the wells that have contained crude oil, using an oil/water level indicator. The monitor wells were purged prior to sample acquisition at a rate of 160 ml/min or less or with disposable bailers. Groundwater samples were collected following stabilization of the field parameters. The meters used for the field parameters were calibrated prior to use. Field parameters obtained prior to sampling included temperature, specific conductance, pH, dissolved oxygen and oxidation-reduction potential (ORP) and are tabulated in Appendix B. The groundwater samples were analyzed for BTEX by Method 8260 and for TPH-GRO and TPH-DRO by Method 8015. RCRA metals were analyzed by Methods 6020 and 7420, chloride by Method E300 and TDS by Method M2540. PAHs were analyzed by Method 8270. Groundwater samples were immediately placed into the appropriate laboratory provided containers and placed in an ice-chilled cooler for transport to the DHL laboratory, Round Rock, TX under chain-of-custody procedures.

June 2017

In June 2017, crude oil was only measured in well HTRW-3 at 0.04 feet thick. Crude oil was not measured in any of the other wells. The crude oil thicknesses for June 2017 are shown in Figure 5 and detailed in Appendix A.

Water levels measured in June 2017 were generally 0.5 feet lower than water levels measured in June 2016. The groundwater flow in June (Figure 6) was towards the east with a gradient of 0.001 ft/ft (0.001 ft/ft in June 2016).

The June 2017 hydrocarbon concentrations for each sampled well are shown in Table 1, Figure 14 and in Appendix B. The June 2017 laboratory report is contained Appendix C.

The analytical results for this monitoring period are summarized as follows:

- None of the BTEX constituents were detected above the lower laboratory reporting limits in wells MW-2, MW-3, MW-4 (down-gradient wells) and MW-5 (up-gradient well);
- Benzene was detected above the NMWQCC standard in wells HTRW-1 at 774 μg/L, HTRW-2 at 342 μg/L and HTRW-4 at 564 μg/L;
- Toluene, ethyl-benzene and total xylenes were not detected above the NMWQCC standards in any of the Site wells;
- TPH-GRO were detected above the lower laboratory reporting limit in wells HTRW-1 at 1.85 mg/L, HTRW-2 at 0.901 mg/L and in HTRW-4 at 0.197 mg/L; and
- TPH-DRO were detected above the lower laboratory reporting limit in wells MW-2 at 4.98 mg/L, MW-3 at 0.358 mg/L, MW-4 at 1.50 mg/L, MW-5 at 0.162, HTRW-1 at 1.49, HTRW-2 at 0.332 mg/L and HTRW-4 at 0.736 mg/L.

Concentrations of dissolved benzene groundwater during the June 2017 monitoring period were not detected in wells above the NMWQCC standard outside the berm area (Figure 14). Within the berm area for the tank and near the point of the release, only benzene was detected above NMWQCC standard in June 2017 in recovery wells HTRW-1, HTRW-2, and HTRW-4.

A summary of the inorganic analyses results are shown in Table 2. The results of the inorganic analyses for June 2017 showed none of the RCRA metals exceeded the NMWQCC standards in any of the sampled wells (Table 2).

September 2017

In September 2017, crude oil was only measured in well HTRW-3 at 0.05 feet thick. As a result, HTRW-3 was not sampled for water quality. Wells HTRW-2 and HTRW-4 were not sampled as they are in close proximity to well HTRW-1, which was sampled. Crude oil was not measured in any of the other wells. The crude oil thicknesses for September 2017 are shown in Figure 5 and detailed in Appendix A.

The groundwater flow in September was towards the southeast with a gradient of 0.001 ft/ft (Figure 7).

The September 2017 hydrocarbon concentrations for each sampled well are shown in Table 2, Figure 14 and in Appendix B. The September 2017 laboratory report is contained Appendix C.

The analytical results for this monitoring period are summarized as follows:

- None of the BTEX constituents were detected above the lower laboratory reporting limits, as
 previously observed, in wells MW-2, MW-3, MW-4 (down-gradient wells) and MW-5 (up-gradient
 well);
- Benzene was detected above the NMWQCC standard in well HTRW-1 at 1,620 µg/L;
- Toluene, ethyl-benzene and total xylenes were not detected above the NMWQCC standards in any of the Site wells;

- TPH-GRO were detected above the lower laboratory reporting limit in well HTRW-1 at 2.88 mg/L; and
- TPH-DRO were detected above the lower laboratory reporting limit in wells MW-2 at 2.74 mg/L,
 MW-3 at 0.122 mg/L, MW-4 at 1.73 mg/L, MW-5 at 0.132 mg/L, and HTRW-1 at 1.23 mg/L.

Concentrations of dissolved hydrocarbons in groundwater during the September 2017 monitoring period were not detected in wells above the NMWQCC standards outside the berm area (Figure 14). Within the berm area for the tank and near the point of the release, only benzene was detected above NMWQCC standard in September 2017 in recovery well HTRW-1 (Figure 17).

A summary of the inorganic analyses results are shown in Table 3. The results of the inorganic analyses for September 2017 showed none of the RCRA metals exceeded the NMWQCC standards in any of the sampled wells and only TDS was detected above the state standard of 1,000 mg/L at 1,360 mg/L in well MW-4 (Table 3).

December 2017

In December 2017, crude oil was measured in wells MW-1 at 0.20 feet and HTRW-3 at 0.75 feet thick. Crude oil was not measured in any of the other wells. Wells HTRW-2 and HTRW-4 were not sampled as they are in close proximity to well HTRW-1, which was not sampled due to access problems. The crude oil thicknesses for December 2017 are shown in Figure 5 and detailed in Appendix A.

Water levels measured in December 2017 were generally 0.5 feet lower than water levels measured in December 2016. For the December 2017 monitoring period, groundwater flow (Figure 8) was towards the southeast with a gradient of 0.001 ft/ft (0.001 ft/ft in December 2016).

The December 2017 hydrocarbon concentrations for each sampled well are shown in Table 2, Figure 14 and in Appendix B. The December 2017 laboratory report is contained Appendix C.

The analytical results for this monitoring period are summarized as follows:

- None of the BTEX constituents were detected above the lower laboratory reporting limits in sampled wells MW-2, MW-3, MW-4 (down-gradient wells) and MW-5 (up-gradient well);
- Toluene, ethyl-benzene and total xylenes were not detected above the NMWQCC standards in any of the Site wells;
- TPH-GRO were detected above the lower laboratory reporting limit in well MW-3 at 0.073 mg/L;
 and
- TPH-DRO were detected above the lower laboratory reporting limit in wells MW-2 at 0.795 mg/L, MW-3 at 0.668 mg/L, MW-4 at 1.79 mg/L, and MW-5 at 0.425 mg/L.

Concentrations of dissolved hydrocarbons in groundwater during the December 2017 monitoring period continued to not be detected in wells above the NMWQCC standards outside the berm area and down-gradient of the release (Figure 14).

The results of the inorganic analyses for December 2017 showed none of the RCRA metals exceeded the NMWQCC standards in any of the sampled wells and only TDS was detected above the state standard of 1,000 mg/L at 1,440 mg/L in well MW-2 (Table 3).

March 2018

In March 2018, crude oil was not measured in any of the Site wells. The crude oil thicknesses for March 2018 are shown in Figure 5 and detailed in Appendix A. Wells HTRW-2, HTRW-3 and HTRW-4 were not sampled as they are in close proximity to well HTRW-1.

For the March 2018 monitoring period, the depth to groundwater across the Site was similar to the December 2017 sampling event. The groundwater flow in March (Figure 9) was towards the southeast with a gradient of 0.001 ft/ft (0.001 ft/ft in December 2017).

The March 2018 hydrocarbon concentrations for each sampled well are shown in Table 2, Figure 14 and in Appendix B. The March 2018 laboratory report is contained Appendix C.

The analytical results for this monitoring period are summarized as follows:

- None of the BTEX constituents were detected above the lower laboratory reporting limits in down-gradient wells MW-2, MW-3, MW-5 (up-gradient well), but benzene was detected at 3.31 µg/L in MW-4 (down-gradient well);
- Benzene was detected above the NMWQCC standard in well HTRW-1 at 102 μg/L;
- Toluene, ethyl-benzene and total xylenes were not detected above the NMWQCC standards in any of the Site wells;
- TPH-GRO were detected above the lower laboratory reporting limit in only well HTRW-1 at 0.360 mg/L;
- TPH-DRO were detected above the lower laboratory reporting limit in wells MW-2 at 1.91 mg/L, MW-3 at 0.184 mg/L, and MW-4 at 0.357 mg/L; and
- PAHs were not detected above the NMWQCC standards in any of the Site wells.

Concentrations of dissolved hydrocarbons in groundwater during the March 2018 monitoring period were not detected in wells above the NMWQCC standards outside the berm area (Figure 14). Within the berm area for the tank and near the point of the release, only benzene was detected above NMWQCC standard in March 2018 in recovery well HTRW-1 (Figure 17).

June 2018

In June 2018, crude oil was not measured in any of the Site wells. The crude oil thicknesses for June 2018 are shown in Figure 5 and detailed in Appendix A. Wells HTRW-2 and HTRW-4 were not sampled as they are in close proximity to well HTRW-1

Water levels measured in June 2018 were generally 0.5 feet lower than water levels measured in June 2017. For the June 2018 monitoring period, the groundwater flow (Figure 10) was towards the southeast with a gradient of 0.001 ft/ft (0.001 ft/ft in June 2017).

The June 2018 hydrocarbon concentrations for each sampled well are shown in Table 2, Figure 14 and in Appendix B. The June 2018 laboratory report is contained Appendix C.

The analytical results for this monitoring period are summarized as follows:

- None of the BTEX constituents were detected above the lower laboratory reporting limits in wells MW-2, MW-3, MW-4 (down-gradient wells) and MW-5 (up-gradient well);
- Benzene was detected above the NMWQCC standard in well HTRW-1 at 163 µg/L;
- Toluene, ethyl-benzene and total xylenes were not detected above the NMWQCC standards in any of the Site wells;
- TPH-GRO were detected above the lower laboratory reporting limit in wells MW-3 at 0.100 mg/L, MW-4 at 0.092 mg/L, MW-5 at 0.081 mg/L, and HTRW-1 at 1.40 mg/L;
- TPH-DRO were detected above the lower laboratory reporting limit in wells MW-2 at 1.89 mg/L, MW-3 at 0.221 mg/L, MW-4 at 0.329 mg/L, MW-5 at 0.155 mg/L, and HTRW-1 at 2.17 mg/L; and
- PAHs were not detected above the NMWQCC standards in any of the Site wells.

Concentrations of dissolved hydrocarbons in groundwater during the June 2018 monitoring period were not detected in wells above the NMWQCC standards outside the berm area (Figure 14). Within the berm area for the tank and near the point of the release, only benzene was detected above NMWQCC standard in recovery well HTRW-1. The benzene concentration detected in this well has continued to decline since 2014 (Figure 17).

September 2018

In September 2018, crude oil was only measured in well HTRW-3 at 0.10 feet thick. Crude oil was not measured in any of the other wells. The crude oil thicknesses for September 2018 are shown in Figure 5 and detailed in Appendix A.

Water levels measured in September 2018 were approximately 0.75 feet lower than water levels measured in September 2017. For the September 2018 monitoring period, the groundwater flow (Figure 11) was towards the southeast with a gradient of 0.001 ft/ft (0.001 ft/ft in September 2017).

The September 2018 hydrocarbon concentrations for each sampled well are shown in Table 2, Figure 14 and in Appendix B. The September 2018 laboratory report is contained Appendix C.

The analytical results for this monitoring period are summarized as follows:

- None of the BTEX constituents were detected above the lower laboratory reporting limits in wells MW-2, MW-3, MW-4 (down-gradient wells) and MW-5 (up-gradient well);
- Benzene was detected above the NMWQCC standard in well HTRW-1 at 11.4 µg/L;
- Toluene, ethyl-benzene and total xylenes were not detected above the NMWQCC standards in any of the Site wells;
- TPH-GRO were detected above the lower laboratory reporting limit in well HTRW-1 at 0.109 mg/L;
- TPH-DRO were detected above the lower laboratory reporting limit in wells MW-2 at 2.33 mg/L, MW-3 at 0.220 mg/L, MW-4 at 0.200 mg/L, MW-5 at 0.111 mg/L, and HTRW-1 at 0.406 mg/L; and

PAHs were not detected above the NMWQCC standards in any of the Site wells.

Concentrations of dissolved hydrocarbons in groundwater during the September 2018 monitoring period were not detected in wells above the NMWQCC standards outside the berm area (Figure 14). Within the berm area for the tank and near the point of the release, only benzene was detected above NMWQCC standard in September 2018 in recovery well HTRW-1. The benzene concentration and other hydrocarbon constituents detected in this well have continued to decline since 2014 (Figure 17).

December 2018

In December 2018, crude oil was measured in well HTRW-3 at 0.05 feet thick. Crude oil was not measured in any of the other wells. The crude oil thicknesses for December 2018 are shown in Figure 5 and detailed in Appendix A.

Water levels measured in December 2018 were generally 0.25 feet lower than water levels measured in December 2017. For the December 2018 monitoring period, the groundwater flow (Figure 12) was towards the southeast with a gradient of 0.001 ft/ft (0.001 ft/ft in December 2017).

The December 2018 hydrocarbon concentrations for each sampled well are shown in Table 2, Figure 14 and in Appendix B. The December 2018 laboratory report is contained Appendix C.

The analytical results for this monitoring period are summarized as follows:

- None of the BTEX constituents were detected above the lower laboratory reporting limits in wells MW-2, MW-3, MW-4 (down-gradient wells) and MW-5 (up-gradient well);
- Benzene was detected above the NMWQCC standard in well HTRW-1 at 377 μg/L;
- Toluene, ethyl-benzene and total xylenes were not detected above the NMWQCC standards in any of the Site wells;
- TPH-GRO were detected above the lower laboratory reporting limit in only well HTRW-1 at 1.15 mg/L;
- TPH-DRO were detected above the lower laboratory reporting limit in wells MW-2 at 2.56 mg/L, MW-3 at 0.224 mg/L, MW-4 at 0.098 mg/L, MW-5 at 0.148 mg/L, and HTRW-1 at 0.240 mg/L; and
- PAHs were not detected above the NMWQCC standards in any of the Site wells.

Concentrations of dissolved hydrocarbons in groundwater during the December 2018 monitoring period were not detected in wells above the NMWQCC standards outside the berm area (Figure 14). Within the berm area for the tank and near the point of the release, only benzene was detected above NMWQCC standard in recovery well HTRW-1 at a concentration of 377 mg/L (Figure 17).

March 2019

In March 2019, crude oil was measured in wells RW-1 at 0.02 ft, MW-1 at 0.03 ft and HTRW-3 at 0.06 feet thick. Crude oil was not measured in any of the other wells. The crude oil thicknesses for March 2019 are shown in Figure 5 and detailed in Appendix A.

Water levels measured in March 2019 were generally 0.50 feet lower than water levels measured in March 2018. For the March 2019 monitoring period the groundwater flow (Figure 13) was towards the southeast with a gradient of 0.001 ft/ft (0.001 ft/ft in March 2018).

The March 2019 hydrocarbon concentrations for each sampled well are shown in Table 2, Figure 14 and in Appendix B. DRO was not analyzed for well MW-2, due to insufficient water in the well. The March 2019 laboratory report is contained Appendix C.

The analytical results for this monitoring period are summarized as follows:

- None of the BTEX constituents were detected above the lower laboratory reporting limits in wells MW-2, MW-3, MW-4 (down-gradient wells) and MW-5 (up-gradient well);
- Benzene was detected above the NMWQCC standard in well HTRW-1 at 28.8 μg/L;
- Toluene, ethyl-benzene and total xylenes were not detected above the NMWQCC standards in any of the Site wells;
- TPH-GRO were detected above the lower laboratory reporting limit in wells MW-2 at 0.091 mg/L, MW-4 at 0.061 mg/L, and HTRW-1 at 0.139 mg/L;
- TPH-DRO were detected above the lower laboratory reporting limit in wells MW-3 at 0.164 mg/L,
 MW-4 at 0.101 mg/L, MW-5 at 0.157, and HTRW-1 at 0.154 mg/L; and
- PAHs were not detected above the NMWQCC standards in any of the Site wells.

Concentrations of dissolved hydrocarbons in groundwater during the March 2019 monitoring period were not detected in wells above the NMWQCC standards outside the berm area (Figure 14). Within the berm area for the tank and near the point of the release, only benzene was detected above NMWQCC standard in recovery well HTRW-1 at a concentration of 28.8 mg/L (Figure 17).

The results of the inorganic analyses for March 2019 showed selenium exceeded the NMWQCC standard of 0.05 mg/L in well MW-4 at 0.066 mg/L, which also showed detections of selenium above the standard in 2016 (Table 3). No other wells showed any detections of selenium above the standard.

4. Crude Oil Recovery Status

The crude oil from the release has historically been found in the central portion of the Site, in the immediate area of Tank 5201 and inside the tank berm. Crude oil has not been measured in any monitoring wells located outside of this area. Crude oil was recovered from wells using a crude oil only skimmer pump system from September 2013 to December 2015. Since December 2015, EFR has been used to recover the oil and oil absorbent socks have been used for any *de minimus* remaining oil. The crude oil thickness in wells for September 2017 to March 2019 is shown in Figure 5 and detailed in Appendix A.

A *de minimus* amount of crude oil remains in the area near the release and has not recharged at a recoverable rate. The crude oil thickness has been declining in wells near the release since September 2013. The crude oil thickness in well RW-1 was measured at 2.90 feet thick in August 2013, at 0.06 feet in December 2014, at 0.13 feet in March 2015, none in 2016 and 2017,

0.02 feet in March 2019. The crude oil thickness was measured in well MW-1 at 2.57 feet in October 2013, at 1.00 feet in December 2014, at 1.32 feet in March 2015, at 0.53 in August 2015 and was measured in this well at 0.03 feet in March 2019. The crude oil thickness in HTRW-1 was last measured at 0.01 in October 2016. The crude oil thickness in HTRW-3 has declined from a maximum thickness measured at 1.70 feet in December 2015 to 0.06 feet measured in March 2019 (Figure 16). Crude oil has never been measured in wells HTRW-2 and HTRW-4 since installation of the wells in 2013 (Appendix A).

The Site total accumulated thickness of the crude oil as measured in all wells for the Site has declined from 8.50 feet in 2013 to 1.72 feet in December 2015, to 0.03 feet in June 2016, to 0.53 feet in December 2016, to 0.04 feet in June 2017 to 0.05 feet in December 2018 to 0.11 feet in March 2019. The site total accumulated thickness with time is shown in Figure 15.

From September 2013 to December 2015, the system recovered approximately 39 gallons of crude oil. From 2016 to 2018, approximately 34 gallon were recovered using EFR. Currently, there is no recoverable crude oil remaining in any of the wells and oil absorbent socks are being used in wells MW-1, RW-1 and HTRW-3. The use of EFR has been discontinued at the Site since January 2018.

5. QA/QC Results

Quality Assurance/Quality Control (QA/QC) measures were followed according to the abatement plan. A summary of the QA/QC results is presented in Table 4 for this reporting period from December 2017 to March 2019. Prior to sampling, the YSI water quality meter was calibrated with the appropriate standards.

Duplicate groundwater samples were collected in December 2017, June 2018, September 2018, December 2018 and March 2019. The duplicate samples were analyzed for BTEX, TPH-GRO, TPH-DRO, PAHs, RCRA metals, chloride and TDS. There was no difference in the duplicate results for BTEX, TPH-GRO and PAHs in any of the samples and 5 to 11% difference in the results for TPH-DRO for the samples. The RCRA metals, chloride and TDS results varied from no difference to 9%.

Each cooler containing the groundwater samples was shipped to the laboratory with a temperature blank and a laboratory prepared trip blank. The trip blank samples were analyzed for BTEX and TPH-GRO. There were no detections above the lower laboratory reporting limits for BTEX and TPH-DRO in any of the trip blank samples that were submitted (Table 4).

6. Risk Analysis

The Site is characterized as having minimal crude oil and associated hydrocarbon constituents that are confined to a small and limited area within the bermed area and adjacent to the Tank 5201, the source area surrounding the initial release. All adjacent monitoring wells show constituent concentrations below NMWQCC standards. Only recovery well HTRW-1 shows benzene levels at or above NMWQCC standards, and concentrations have declined significantly over time and post-remediation. Other wells, including the down-gradient water well L08279, have concentrations that are non-detect or well below NMWQCC standards (Tables 2 and 5). The multiple removal actions

that were conducted after the release has removed as much of the source area soil as is practical, given the location and age of the adjacent tank. There has been no release to the off-site and drinking water wells have not been impacted or appear to be threatened.

The release was a crude oil mixture whose thickness and lack of mobility limited migration of the material. The Site is located within an active tank farm and industrial area and is completely fenced. The surrounding area contains crude oil storage tanks, pipelines and open rangeland. The impacted source area soil has been removed and there are no opportunities for contact with impacted soil. Groundwater remediation has been conducted to remove and reduce contaminants that migrated to the underlying groundwater.

The Human Health Risk Assessment analysis was conducted to evaluate whether the release poses a risk to human health based on current site conditions. Human exposure potential is limited to the workers at the site. Operating under state and federal health and safety laws, they exercise due care to prevent exposure exceeding the applicable limits. As an industrial site, there are no residents present at or adjacent to the fenced and locked property. The closest residences are approximately 0.5 miles northeast of the Site (Figure 1). The site is off-limits to recreational activities such as camping or hunting.

The nearest drinking water well (L08990) is located approximately 900 feet to the south of the Site (Figure 3, Table 1). This well was sampled for hydrocarbons and was not impacted by the release. The water well (L08279) located north of the Site (Figure 3) was sampled in March 2019 and showed no detections of any constituents above state standards (Table 5).

From a human health perspective, there are no complete or potentially complete exposure pathways whereby any human receptors other than workers would be exposed to the site. The groundwater in the immediate vicinity of the release is not used as a drinking water source, and off-site groundwater as not been impacted. There are no surface water bodies present and therefore no impacts to any human use of surface water.

A weight of evidence approach was used to assess possible risk from the site. Based on:

- 1. A lack of sensitive or residential receptors,
- 2. No complete exposure pathways present for contact with the contamination,
- 3. No exceedances of NMWQCC standards in adjacent water wells, and
- 4. Successful soil and groundwater remediation.

The site poses only negligible risk and is not a threat to human health.

Ecological and environmental risks have also been demonstrated to be negligible. The site is a permitted industrial area, is small in size relative to surrounding available habitat, and there are no sensitive aquatic habitats nearby (Figure 1).

Similar to the human health analysis, the lack of sensitive receptors and incomplete exposure pathways indicate that the release will not pose a significant risk to any ecological populations.

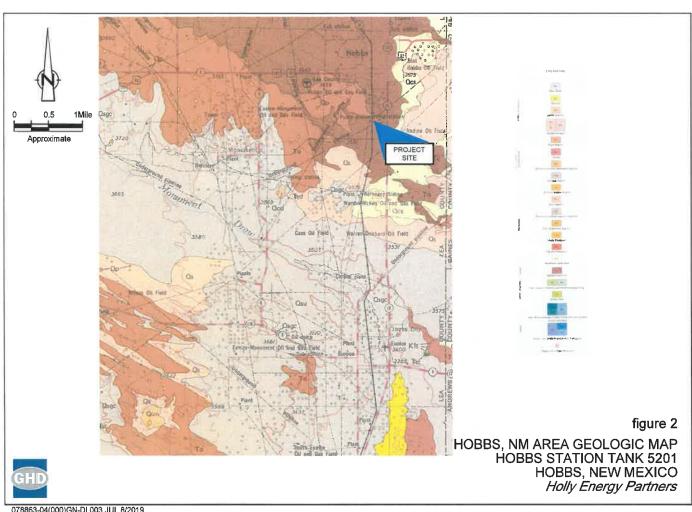
7. Conclusion

The crude oil thickness from the release has declined due to removal of the crude oil by pumping, the use of EFR and oil absorbent socks since 2004. Presently, there is only a *de minimus* amount of oil that remains in three of the Site wells, located in close proximity to the release primarily due to a low groundwater gradient of 0.001 ft/ft and the low mobility of the released oil.

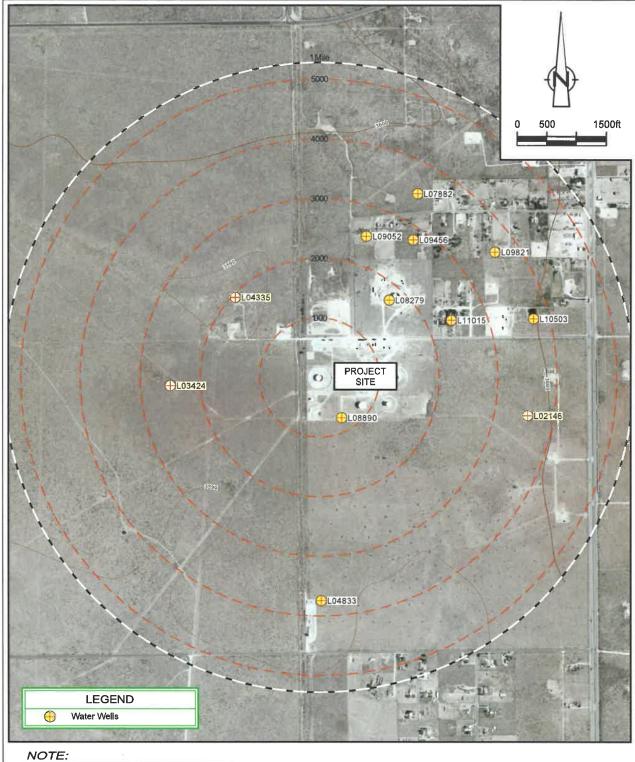
The site can be closed and no further monitoring or remediation activities are necessary for this release based on the following criteria:

- There are no toxins in the area down-gradient of the site, which have impacted drinking water wells in the area (Table 5).
- There have been no detections of BTEX or PAHs above state standards outside the berm area
 or down-gradient of the release for more than 8 quarters and since 2011 (Table 2 and Appendix
 B).
- TDS has not been detected above the standard consistently in down-gradient wells (Table 3).
- Selenium have only been detected on two occasions at a concentration slightly above the standard, but was not detected in wells located near the release (Table 3).
- Other RCRA metals and chloride have not been detected above state standards (Table 3).
- The risk evaluation indicated that the site poses only a negligible risk and is not a threat to human health.
- Ecological and environmental risks have also been demonstrated to be negligible.
- The site has controlled access with fencing surrounding the site with locked gates and access to the public and animals is restricted.

The remedial strategy for site closure is based on the current NMOCD requirements. To close the Site with no further action, the crude oil would first have to be removed separately from groundwater (19.15.17.13 NMAC) to a *de minimus* amount. This requirement has been met and there has been more than 8 successive quarters of hydrocarbon concentrations that have been below state standards. At this time, GHD, on behalf of HollyFrontier, is requesting site closure and no further action at the Site. All wells will be abandoned and plugged and all equipment will be removed in October 2019.

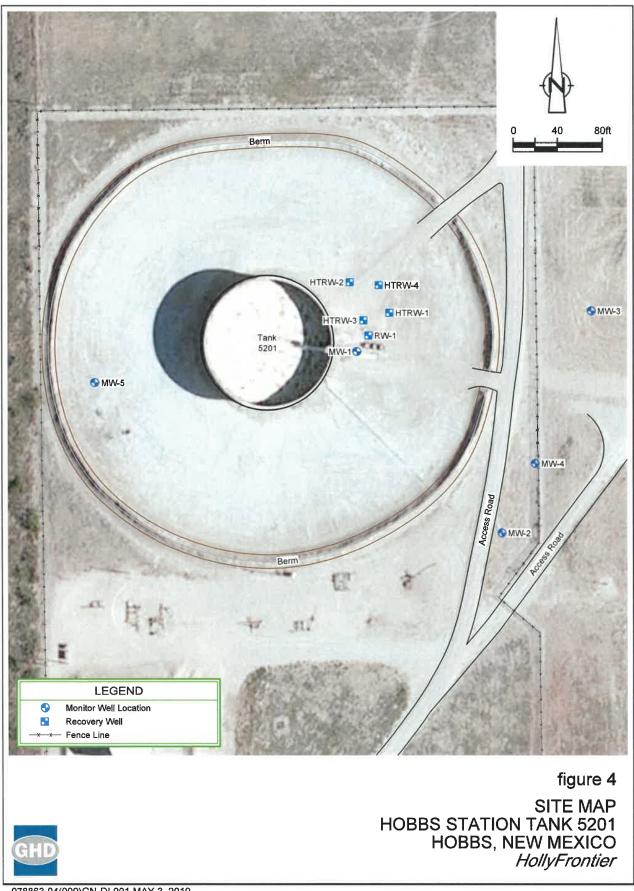

SOURCE: USGS 7.5 MINUTE QUAD
"HOBBS WEST AND HOBBS EAST, NEW MEXICO" DATED 2010

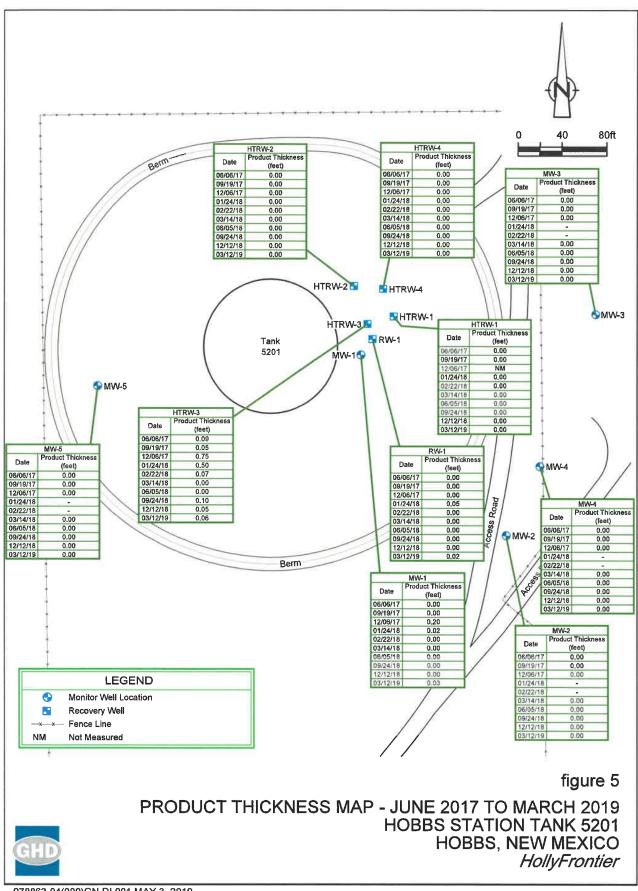
LAT/LONG: 32.6549° NORTH, 103.1382° WEST COORDINATE: NAD83 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO EAST

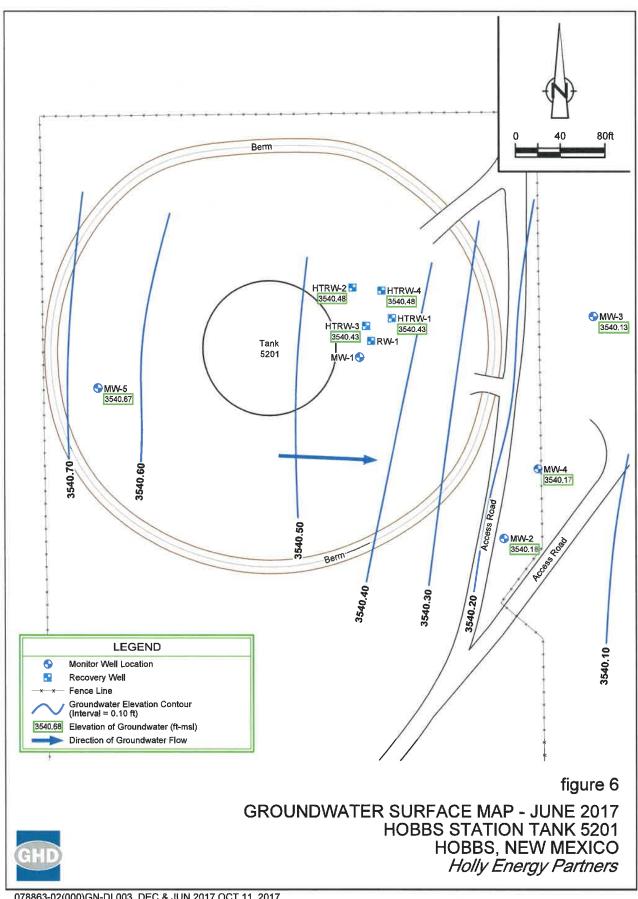

figure 1

SITE LOCATION MAP HOBBS STATION TANK 5201 HOBBS, NEW MEXICO HollyFrontier

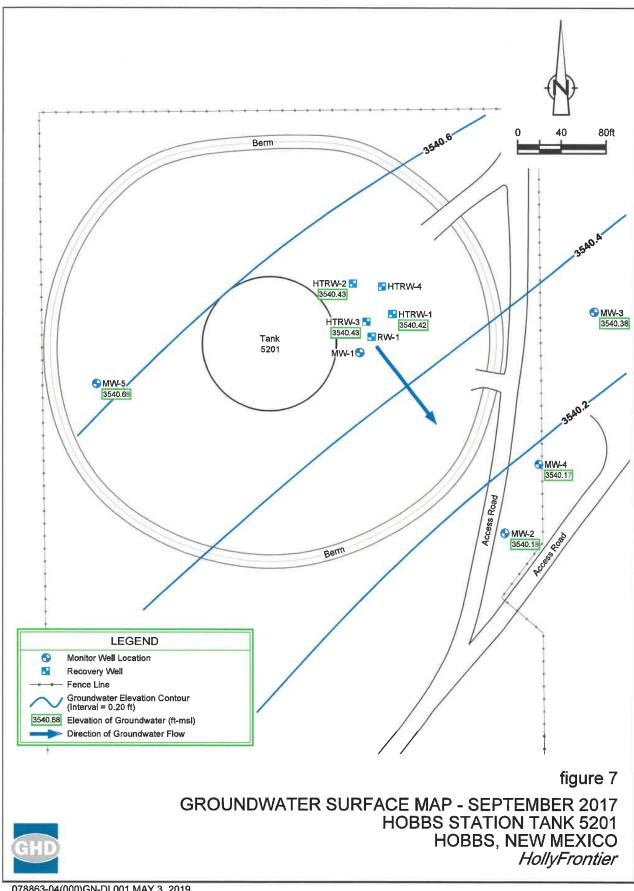
078863-04(000)GN-DL003 JUL 8/2019

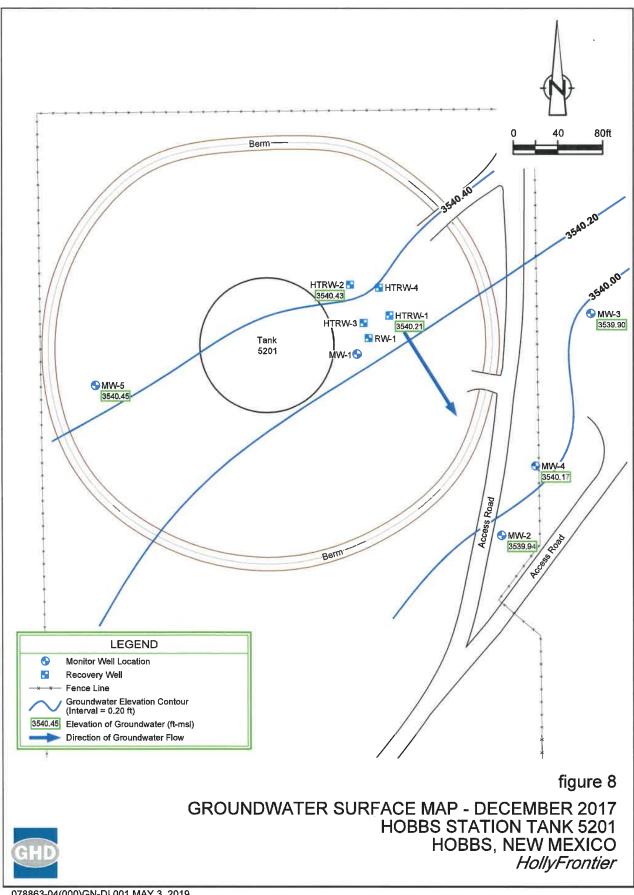


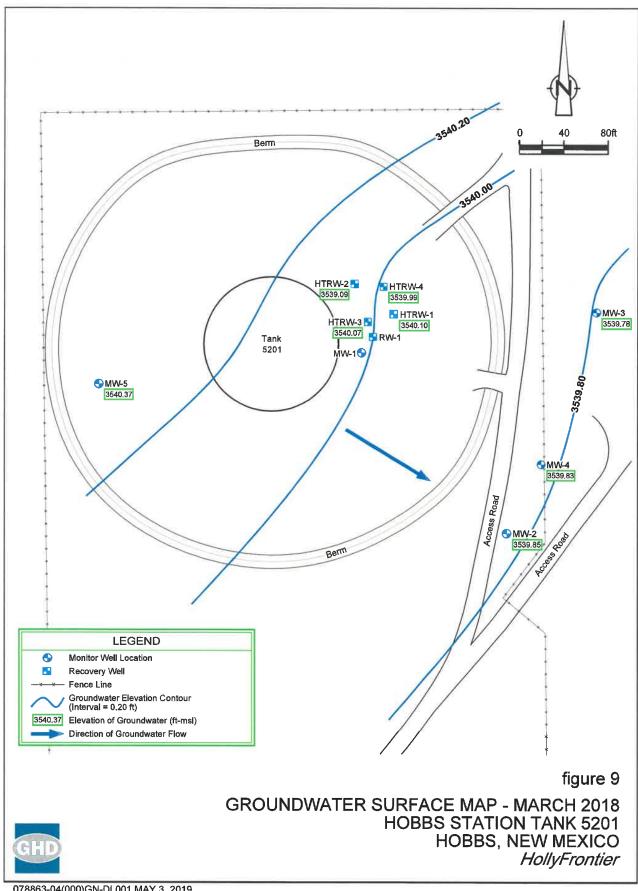

Topographic contours taken from USGS Topo map "Hobbs West, NM" dated 2010.

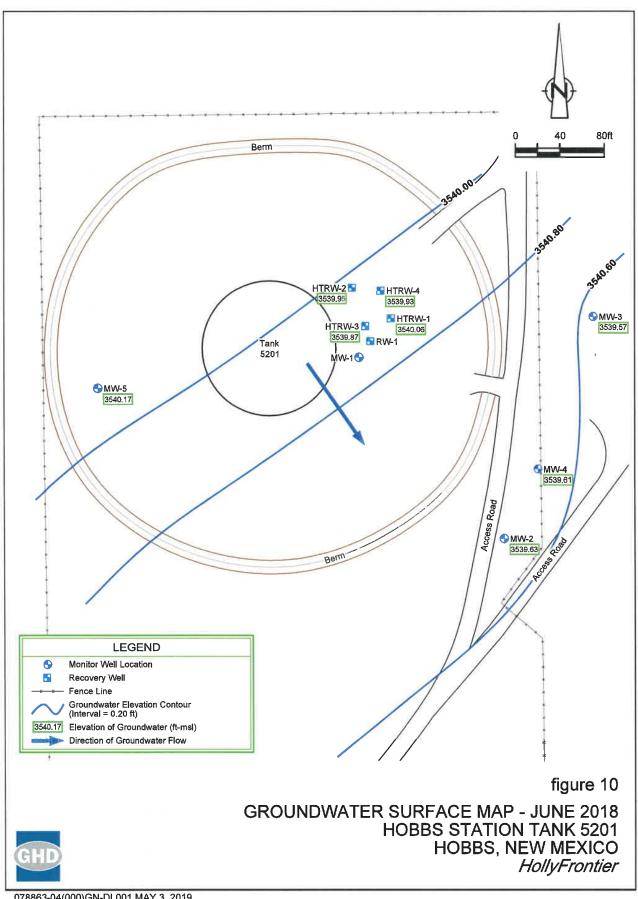

figure 3

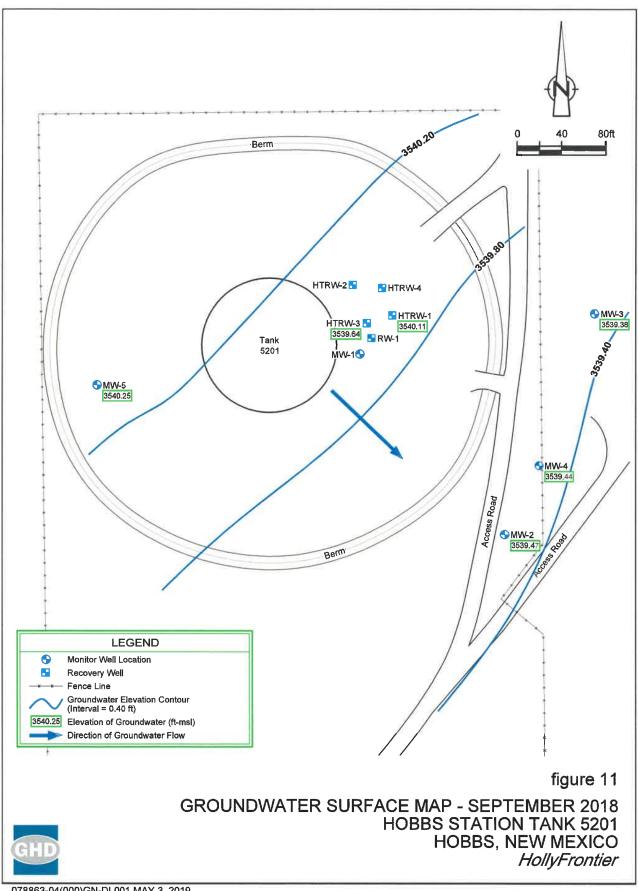
WELLS WITHIN ONE MILE OF HOBBS STATION TANK 5201 HOBBS, NEW MEXICO HollyFrontier

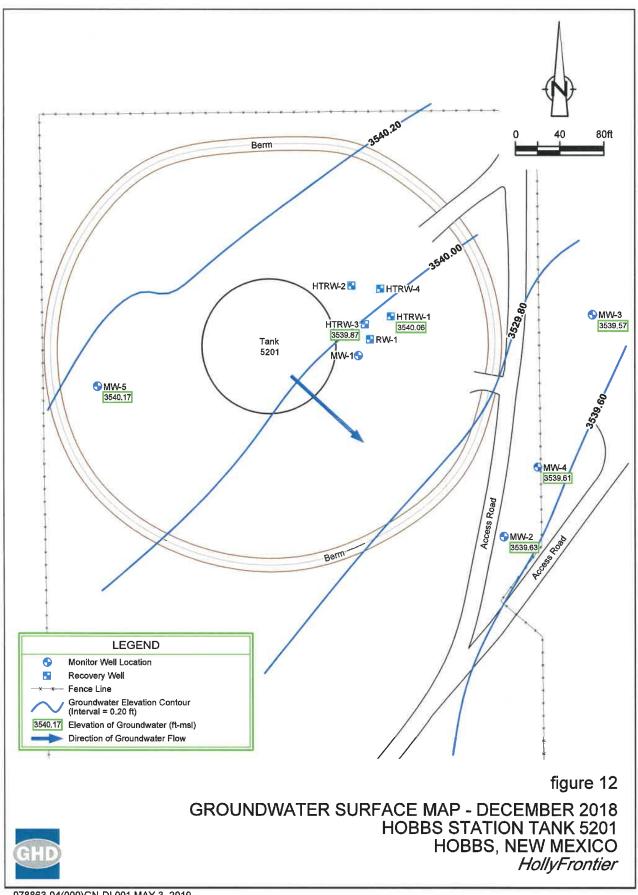


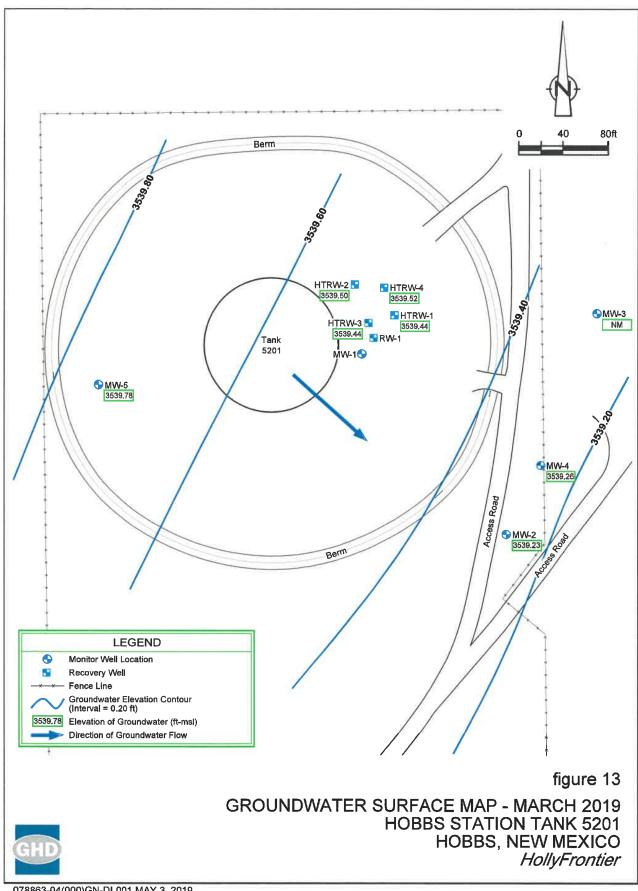


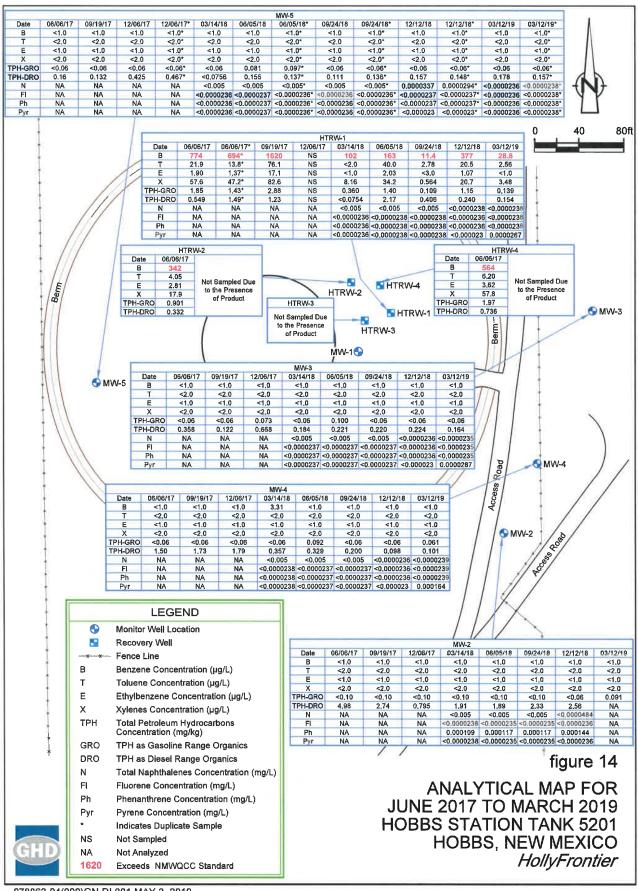





078863-02(000)GN-DL003_DEC & JUN 2017 OCT 11, 2017







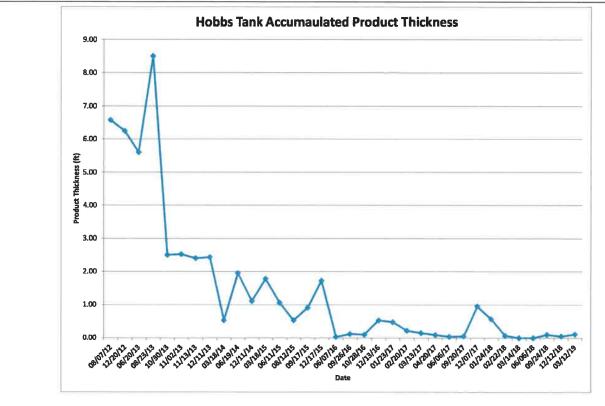
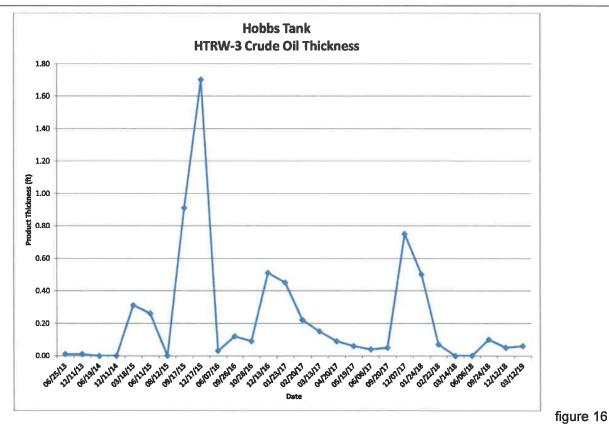



figure 15

SITE TOTAL ACCUMULATED CRUDE OIL THICKNESS HOBBS STATION TANK 5201 HOBBS, NEW MEXICO HollyFrontier

CRUDE OIL THICKNESS FOR HTRW-3 HOBBS STATION TANK 5201 HOBBS, NEW MEXICO HollyFrontier

Table 1
Water Well Information for the Hobbs Tank Farm area

									l ii	Surface	Death to	Distance from	Total Well
Well #	Diversion	Owner	Use	Twsp	Rng	Sec q q q	Latitude	Longitude	Date Installed	Elevation	Water (feet)	Site (feet)	Depth (feet)
L04833		Cactus Drilling Corp.	PRO	195	38E	22 33	32.64	-103.142	3/3/1962		50	3,900	115
L03424		Yates Drilling Co.	PRO	195	38E	21 12	32.651	-103.151	1/26/1957		45	2,500	102
L02146		Coroce Drilling Co.	PRO	195	38E	22 22	32.649	-103.132	1/12/1955		60	3,600	110
L04335		McAllister Fueling Co.	PRO	195	38E	16 44	32.654	-103.147	12/7/1959		35	2,000	110
L10503	3	Augila Oil & Cattle Co.	STK	195	38E	15	32.653	-103.131	7/21/1995		70	3,800	100
L11015	3	Martin Romero	DOM	198	38E	15 34	32.653	-103.135	12/8/1999		45	2,400	120
L09821	3	Benny Boddy	DOM	195	38E	15 4	32.656	-103.132	5/2/1986		51	3,600	100
L08890		unknown		195	38E		32.649	-103.14	7/15/1982		130	900	unknown
L09456		unknown		195	38E		32.657	-103.137	5/24/1984		74	2,900	unknown
L07882		unknown		195	38E		32.659	-103.135	4/18/1979		32	3,500	unknown
L09052		unknown		198	38E		32.657	-103.139	1/25/1983		58	2,600	unknown
L08279		unknown		195	38E		32.654	-103.138	6/9/1980		58	1,900	unknown

Table 2 Summary of Groundwater Hydrocarbon Analytical Results for June 2014 to March 2019 HollyFrontier - Hobbs Tank 5201 - Lea County, New Mexico

Monitor Well ID/ MP Elevation	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total Naphthalenes (mg/L)	Fluorene (mg/L)	Phenanthrene (mg/L)	Pyrene (mg/L)	Product Thickness (ft)	Depth to Water (ft-bmp)	Groundwate Elevation (ft-msl)
MWQCC														
roundwater														
andards		10	750	750	620	NE	NE	0.03	NE	NE	NE			
MW-2	08/25/14	<1.0	<2.0	<1.0	1.43	<0.10	NA						49.19	3,541.66
	12/11/14	<1.0	<2.0	<1.0	<1.0	<0.10	0.534						49.40	3,541.45
	08/11/15 12/16/15	<1.0 <1.0	<2.0 <2.0	<1.0 <1.0	<1.0 <1.0	<0.10 <0.10	0.337 0.678						49.75	3,541.10
	08/09/16	<1.0	<2.0	<1.0	<1.0	<0.10	5.53						49.91 50.32	3,540.94 3,540.53
	12/14/16	<1.0	<2.0	<1.0	<1.0	<0.10	5.53						50.32	3,540.53
	08/08/17	<1.0	<2.0	<1.0	<2.0	<0.10	4.98						50.67	3,540.18
	09/19/17	<1.0	<2.0	<1.0	<2.0	<0.10	2.74						50.67	3,540.18
	12/06/17	<1.0	<2.0	<1.0	<2.0	<0.10	0.795						50.91	3,539.94
	03/14/18	<1.0	<2.0	<1.0	<2.0	<0.10	1.91	<0.005	<0.0000238	0.000109	<0.0000238		51.00	3,539.85
	06/05/18	<1.0	<2.0	<1.0	<2.0	<0.10	1.89	<0.005	<0.0000235	0.000117	<0.0000235		51.22	3,539.63
	09/24/18	<1.0	<2.0	<1.0	<2.0	<0.10	2.33	<0.005	<0.0000235	0.000117	<0.0000235		51.38	3,539.47
	12/12/18	<1.0	<2.0	<1.0	<2.0	<0.08	2,56	<0.0000484	<0.0000236	0.000144	<0.0000236		51.50	3,539.35
	03/12/19	<1.0	<2.0	<1.0	<2.0	0.091	NA	NA	NA	NA	NA		51.82	3,539.23
MW-3	00/04/44	e1.0	40.0	410	1.04	NIA	NIA						40.00	0.544.51
INSWY-3	06/24/14 12/11/14	<1.0 <1.0	<2.0 <2.0	<1.0 <1.0	1,61	NA <0.10	NA 0,135						49.20 49.41	3,541.61
	08/11/15	<1.0	<2.0	<1.0	<1.0	<0.10	<0.10						49.41	3,541.40 3,541.03
	12/16/15	<1.0	<2.0	<1.0	<1.0	<0.10	<0.10						49.78	3,541.03
	06/09/16	<1.0	<2.0	<1.0	<1,0	<0.06	<0.102						50.33	3,540.68
	12/14/16	<1.0	<2.0	<1.0	<1.0	<0.06	0.262				-		50.38	3,540.43
	06/08/17	<1.0	<2.0	<1.0	<2.0	<0.08	0.358						50.68	3,540.13
	09/19/17	<1.0	<2.0	<1.0	<2.0	<0.06	0.122						50.43	3,540.38
	12/06/17	<1.0	<2.0	<1.0	<2.0	0.073	0.668						50.91	3,539.90
	03/14/18	<1.0	<2.0	<1.0	<2.0	<0.06	0.184	<0.005	< 0.0000237	<0.0000237	<0.0000237		51.03	3,539.78
	06/05/18	<1.0	<2.0	<1.0	<2.0	0.100	0.221	<0.005	< 0.0000237	<0.0000237	< 0.0000237		51.24	3,539.57
	09/24/18	<1.0	<2.0	<1.0	<2.0	<0.06	0.220	< 0.005	< 0.0000237	< 0.0000237	<0.0000237		51.43	3,539,38
	12/12/18	<1.0	<2.0	<1.0	<2.0	<0.06	0.224	<0.0000236	< 0.0000236	<0.0000236	<0.0000236		51.55	3,539.26
	03/12/19	<1.0	<2.0	<1.0	<2.0	<0.06	0.164	<0.0000235	<0.0000235	<0.0000235	0.0000287			
MW-4	04/04/44	1.07	-2A	44.0	44.0	814	110						30.40	200000
MAX-4	12/11/14	1:07 <1.0	<2.0	<1.0 <1.0	<1.0 <1.0	<0.10	NA 1.72						49.18	3,541,67 3541,40
	06/11/15	<1.0	<2.0	<1.0	<1.0	<0.10	2.81						49.45	3541.05
duplicate	06/11/15	<1.0	<2.0	<1.0	<1.0	<0.10	2.51						49.80	3541.05
оприсото	12/16/15	<1.0	<2.0	<1.0	<1.0	<0.10	2.66						49.95	3540.90
	06/09/16	<1.0	<2.0	<1,0	<1.0	<0.06	3.22				0		50.32	3540.53
	12/14/16	<1.0	<2.0	<1.0	<1.0	<0.06	2.37						50.38	3540.47
duplicate	12/14/16	<1.0	<2.0	<1.0	<1.0	<0.06	2.02						50.38	3540.47
	06/06/17	<1.0	<2.0	<1.0	<2.0	<0.06	1.50						50.68	3540.17
	09/19/17	<1.0	<2.0	<1.0	<2.0	<0.06	1.73						50.68	3540.17
	12/06/17	<1.0	<2.0	<1.0	<2.0	<0.06	1.79						60.91	3539.94
	03/14/18	3.31	<2.0	<1.0	<2.0	<0.06	0.357	<0.005	<0.0000238	<0.0000238	<0.0000238		51.02	3539.83
	06/05/18	<1.0	<2.0	<1.0	<2.0	0.092	0.329	<0.005	<0.0000237	<0.0000237	<0.0000237		51.24	3539.61
	09/24/18	<1.0 <1.0	<2.0 <2.0	<1.0 <1.0	<2.0	<0.08	0.200	<0.005	<0.0000237	<0.0000237	<0.0000237		51.41	3539.44
	12/12/18	<1.0	<2.0	<1.0	<2.0 <2.0	<0.06	0.098	<0.0000236 <0.0000239	<0.0000236	<0.0000236 <0.0000239	<0.0000238 0.000164		51.44 51.59	3539.41 3539.26
	03/12/19	~1.0	~2.0	V1.0	12.0	0.001	0.101	<0.0000239	<0.0000239	<0.0000239	0.000164		51.09	3039.20
MW-5	06/25/14	<1.0	<2.0	<1.0	1.13	NA.	NA.						50.53	3,542,22
	12/11/14	<1.0	<2.0	<1.0	<1.0	<0.10	<0,102						50.76	3,541.99
	06/11/15	<1.0	<2.0	<1.0	<1.0	<0.10	<0.10						51.12	3,541.63
	12/16/15	<1.0	<2.0	<1.0	<1.0	<0.10	0.115					_	51.33	3,541.42
	06/09/16	<1.0	<2.0	<1.0	<1.0	<0.06	<0.08						51.68	3,541.07
	12/14/16	<1,0	<2.0	<1.0	<1.0	<0.06	0.194						51.76	3,540.99
	06/06/17	<1.0	<2.0	<1.0	<2.0	<0.06	0.162						52.08	3,540.67
	09/19/17	<1.0	<2.0	<1.0	<2.0	<0.06	0.132						52.07	3,540.68
	12/06/17	<1.0	<2.0	<1.0	<2.0	<0.06	0.425						52.30	3,540.45
duplicate	12/06/17	<1.0	<2.0	<1.0	<2.0	<0.06	0.467						52.30	3,540.45
	03/14/18	<1.0	<2.0	<1.0	<2.0	<0.06	<0.0756	<0.005	<0.0000236	<0.0000236	<0.0000236		52.38	3,540.37
dunlingto	06/05/18	<1.0	<2.0	<1.0	<2.0	0.081	0.155	<0.005	<0.0000237	<0.0000237	<0.0000237		52.58	3,540,17
duplicate	06/05/18	<1.0	<2.0	<1.0	<2.0	0.097	0.137	<0.005	<0.0000236	<0.0000236	<0.0000236		52,58	3,540.17
duntiente	09/24/18	<1.0	<2.0	<1.0	<2.0	<0.06	0.111	<0.005	<0.0000236	<0.0000236	<0.0000236	_	52.50	3,540.25
duplicate	09/24/18 12/12/18	<1.0	<2.0 <2.0	<1.0 <1.0	<2.0 <2.0	<0.06	0.138	<0.005 0.0000337	<0.0000236	<0.0000236 <0.0000237	<0.0000236		52.50 52.54	3,540.25 3,540.21
duplicate	12/12/18	<1.0	<2.0	<1.0	<2.0	<0.06	0.157	0.0000337	<0.0000237	<0.0000237	<0.0000237		52.54	3,540.21
aspirate	03/12/19	<1.0	<2.0	<1.0	<2.0	<0.06	0.148	<0.0000294	<0.0000237	<0.0000237	<0.0000237		52.97	3,539.78
duplicate	03/12/19	<1.0	<2.0	<1.0	<2.0	<0.08	0.117	<0.0000238	<0.0000238	<0.0000238	<0.0000238		52.97	3,539.78
passes	501.12.13	- 1.0		- 110	-2.0	-0.00	0.107	0.00D0Ed0	3.00000000	U.UUUULUU	J.4000204		UZ.01	0,000,70

Table 2 Summary of Groundwater Hydrocarbon Analytical Results for June 2014 to March 2019 HollyFrontier - Hobbs Tank 5201 - Lea County, New Mexico

MWQCC roundwater tandards		(µg/L)	(µg/L)	benzene (µg/L)	Xylenes (μg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Naphthalenes (mg/L)	Fluorene (mg/L)	Phenanthrene (mg/L)	Pyrene (mg/L)	Thickness (ft)	Water (ft-bmp)	Groundwate Elevation (ft-msl)
tandards														
		10	750	750	620	NE	NE	0.03	NE	NE	NE			
HTRW-1	6/24/14	910	48.7	89,1	70,0	NA	NA					0.01	46.19	3,541.95
duplicate	6/24/14	922	49.0	88.8	69.2	NA	NA					0.00	46.19	3,541,95
	12/11/14	NSP	NSP	NSP	NSP	NSP	NSP					0.05	45.51	3,542.67
- 1	6/11/15	NSP	NSP	NSP	NSP	NSP	NSP					0.80	47.61	3,541.11
1	12/16/15	NSP	NSP	NSP	NSP	NSP	NSP					0.02	46.95	3,541.20
1	6/9/16	NSP	NSP	NSP	NSP	NSP	NSP					0,00	48,34	3,541.80
- [12/14/16	1.97	<0.6	<0.3	0.943	<0.08	0.432					0.00	47.44	3,540.70
1	6/6/17	774	21.9	1.90	57.6	1.85	0.549					0.00	47.71	3,540.43
duplicate	6/6/17	694	13.8	1.37	47.2	1.43	1.49					0.00	47.71	3,540.43
	9/19/17	1620	76.1	17.1	82.6	2.88	1.23					0.00	47.72	3,540.42
1	12/8/17	NS	N\$	NS	NS	NS	NS					0.00	NM	NM
J.	3/14/18	102	<2.0	<1.0	8,16	0.360	<0.0754	<0.005	<0.0000236	<0.0000238	<0.0000236	0.00	48.03	3,540.10
1	6/5/18	163	40.0	2.03	34.2	1.40	2.17	<0.005	<0.0000238	<0.0000238	<0.0000238	0.00	48.22	3,540.06
1	9/24/18	11.4	2.78	<3.0	0.564	0.109	0.406	<0.005	<0.0000238	<0.0000238	<0.0000238	0.00	48.45	3,540.11
1	12/12/18	377	20.5	1.07	20.7	1.15	0.240	<0.0000238	<0.0000236	<0.0000236	<0.0000236	0.00	48.99	3,539.15
-	03/12/19	28.8	2.56	<1.0	3.48	0.139	0.154	<0.0000238	<0.0000238	<0.0000238	0.0000267	0.00	48.70	3,539.44
HTRW-2	6/24/14	748	47.8	59.2	84.0	NA	NA		_			0.00	45.52	3,541.99
1111111-2	12/11/14	722	135	36.4	129	2.0	0.253				-	0.00	45.79	3,541.72
1	6/11/15	875	28.7	35.3	29.3	1.24	0.354				_	0.00	46.05	3,541.46
1	12/18/15	503	<20.0	18.9	<10.0	1,01	0.144					0.00	46.25	3,541.26
1	6/9/16	863	6.35	60.6	6.87	2.03	1.05					0.00	46.66	3,540.85
1	12/14/18	322	7.32	33.3	5.66	0.128	0.481					0.00	48.74	3,540.77
1	6/6/17	342	4.05	2.81	17.9	0.901	0.332					0.00	47.03	3,540.48
1	9/20/17	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00	47.08	3540.43
1	12/7/17	NS	NS	NS.	NS	NS	NS	NS	NS	NS	NS	0.00	47.25	3540.26
1	1/24/16	NS	NS.	NS:	NS	NS	NS	NS	NS	NS	NS	0.00	48.68	3538.83
1	2/22/18	NS	NS.	NS	NS	NS	NS	NS	NS	NS	NS	0.00	47.38	3540.13
1	3/14/16	NS	NS	NS	NS	NS	NS	NS	NS:	NS	NS:	0.00	48.42	3539.00
1	6/6/18	NS:	NS:	NS	NS	NS	NS	NS	NS	NS	NS	0.00	47.58	3539.95
1	9/24/16	NS	NS	NS	NS	NS	NS	NS	NS.	NS	NS NS	0.00	47.77	3539.74
1	12/12/18	NS	NS:	NS	NS	NS	NS	NS	NS	NS	NS	0.00	47.79	3539.72
1	03/12/19	NS	N5	NS	NS	NS	NS	NS	NS	NS	NS	0.00	48.01	3539.50
LITRIAL D	2004/44	1.000	4 226	all o	620	AIA .			_			0.00	40.70	2.541.06
HTRW-3	6/24/14	3,700	1,750	450 466	520 632	NA 12,2	1.31				-	0.00	48.79	3,541.96
-	6/11/15	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	0.00	47.61	3,541.72
1	12/18/15	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	1.70	49.00	3,540.99
1	6/9/16	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	0.03	47.84	3,540.93
1	12/14/16	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	0.03	48.48	3,540.64
1	8/6/17	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	0.04	48.35	3,540.43
1	9/20/17	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	0.05	48.38	3,540.43
1	12/7/17	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	0.05	49.35	3,539.95
d	1/24/18	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	0.50	49.04	3,540.08
1	2/22/18	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	0.07	48.75	3,540.05
1	3/14/18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00	48.68	3,540.07
1	6/6/18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00	48.88	3,539.87
	9/24/18	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	0.10	49.18	3,539.64
- 1	12/12/18	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	0.05	48.13	3,540.66
1	03/12/19	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	0.06	49.35	3,539.44

Table 2 Summary of Groundwater Hydrocarbon Analytical Results for June 2014 to March 2019 HollyFrontier - Hobbs Tank 5201 - Lea County, New Mexico

Monitor Well ID/ MP Elevation	Sample Date	Benzene (μg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total Naphthalenes (mg/L)	Fluorene (mg/L)	Phenanthrene (mg/L)	Pyrene (mg/L)	Product Thickness (ft)	Depth to Water (ft-bmp)	Groundwater Elevation (ft-msl)
NMWQCC Groundwater Standards		10	750	750	620	NE	NE	0.03	NE	NE	NE			
HTRW-4	8/24/14	1,720	698	253	436	NA	NA				,	0.00	46.59	3,541.98
	12/11/14	1,590	288	126	277	4.03	0.643					0.00	46.85	3541.72
	6/11/15	1,490	29.2	111	29.9	2.16	0.365					0.00	47.11	3541.46
	12/16/15	NS	NS	NS	NS	NS	NS					0.00	47.32	3541.25
	6/9/16	834	11.7	35.9	17.8	1.60	1.10					0.00	47.70	3540.87
	12/14/16	3,800	29.6	16.2	46.1	1.31	0.951					0.00	47.79	3540.78
	6/6/17	564	6.20	3.62	57.8	1.97	0.736					0.00	48.09	3540.48
	9/20/17	NS	NS	NS	NS	NS	NS	NS	N\$	NS	NS	0.00	48.19	3540.38
	12/7/17	NS	NS	NS	NS	NS	N\$	NS	NS	NS	NS	0.00	48.30	3540.27
	1/24/18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00	48.40	3540.17
	2/22/18	NS	NS	NS	NS	NS	NS.	NS	NS	NS	NS	0.00	48.43	3540.14
	3/14/18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00	48.58	3539.99
	6/6/18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00	48.64	3539.93
	9/24/18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00	48.78	3539.79
	12/12/18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00	48.48	3540,09
	03/12/19	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00	49.05	3539.52

Notes:

80LD = Exceeds New Mexico Water Quality Commission (NMWQC) Standard

µg/L = microgram per liter

< = Not detected above indicated level
ft-bmp - feet-below measuring point
ft-msi - feet-mean see level

NSP - Not Sampled
NSP - Not Sampled
NA - Not Analyzed

NA - Not Analyzed

NE - Not Established

BTEX = Benzene, Tollene, Ethytbenzene and Xylenes

TPH-GRO = Total Petroleum Hydrocarbons-Diesel Range Organics

TPH-DRO = Total Petroleum Hydrocarbons-Diesel Range Organics

BTEX enalyzed by Method 8015V

TPH-DRO analyzed by Method 8015V

TPH-DRO analyzed by Method 8015D

Table 3 Summary of Groundwater Inorganic Analytical Results
HollyFrontier - Hobbs Tank 5201 - Lea County, New Mexico

	ionys ronder - riobb	Chloride	TDS	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
Sample ID	Date Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	roundwater Standard	250	1000	0.1	1	0.01	0.05	0.05	0.002	0.05	0.05
MW-2	6/25/2014	30.6	729	0.021	0.447	<0.001	<0.006	0.0003	<0.0002	<0.006	<0.002
-	12/14/2016	91.1	899	0.024	0.574	<0.0003	0.006	0.0006	<0.00008	<0.002	<0.001
	6/6/2017	NA	NA	0.027	0.627	<0.0003	0.027	0.0075	<0.00008	<0.002	<0.001
-	9/19/2017	93.1	910	0.027	0.594	<0.0003	0.023	0.0040	<0.00008	<0.002	<0.001
-	12/6/2017	15.6	1440	0.022	0.258	<0.0003	0.009	0.0114	<0.00008	0.010	<0.001
	3/12/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-3	12/14/2016	105	714	0.004	0.092	<0.0003	<0.002	<0.0003	<0.00008	<0.002	<0.001
10111-0	6/6/2017	NA	NA	0.005	0.155	0.0003	0.029	0.0029	<0.00008	<0.002	<0.001
- 1	9/19/2017	104	793	0.003	0.110	<0.0003	0.002	0.0003	<0.00008	<0.002	<0.001
- 1	12/6/2017	106	782	0.021	0.160	<0.0003	0.005	0.0008	<0.00008	<0.002	<0.001
1	3/12/2019	125	840	0.022	0.222	<0.0003	0.007	0.0016	<0.00008	<0.002	<0.001
1	0/12/2013	120	040	0.022	V.ZZZ	-0.0000	0.007	0.0010	-0.00000	-5.502	-0.001
MW-4	12/14/2016	22.0	1960	0.059	0.990	<0.0003	0.026	0.0140	<0.00008	0.069	<0.001
duplicate	12/14/2016	23.7	1910	0.055	0.769	<0.0003	0.021	0.0114	<0.00008	0.054	<0.001
	6/6/2017	NA	NA	0.010	0.080	<0.0003	<0.002	<0.0003	<0.00008	0.002	<0.001
	9/19/2017	22.3	1360	0.016	0.160	<0.0003	0.005	0.0018	<0.00008	0.006	<0.001
1	12/6/2017	90.6	958	0.023	0.560	0.0006	0.034	0.0480	<0.00008	<0.002	<0.001
1	3/12/2019	17.4	577	0.041	0.464	<0.0003	0.032	0.0114	<0.00008	0.066	<0.001
MW-5	6/25/2014	44.9	545	0.007	0.132	<0.001	0.003	0.0003	<0.0002	0.004	<0.002
11111	12/14/2016	50.2	607	0.007	0.127	<0.0003	0.004	0.0003	<0.00008	0.004	< 0.001
- F	6/6/2017	NA	NA	0.005	0.122	<0.0003	<0.002	<0.00008	<0.00008	0.003	<0.001
-	9/19/2017	53.0	625	0.006	0.165	<0.0003	0.005	0.0013	<0.00008	0.004	<0.001
	12/6/2017	58.5	643	0.007	0.261	<0.0003	0.011	0.0017	<0.00008	0.003	<0.001
duplicate	12/6/2017	56.5	649	0.007	0.218	0.00031	0.008	0.0019	<0.00008	0.004	<0.001
dopilodito	3/12/2019	81.2	694	0.011	0.284	<0.0003	0.009	0.0022	<0.00008	0.005	<0.001
duplicate	3/12/2019	83.8	709	0.008	0.306	0.00038	0.010	0.0021	<0.00008	0.004	<0.001
HTRW-1	12/14/2016	121	667	0.005	0.160	<0.0003	0.003	0.0003	<0.00008	<0.002	<0.001
	6/6/2017	NA	NA	0.004	0.134	<0.0003	<0.002	<0.0003	<0.00008	<0.002	<0.001
duplicate	6/6/2017	NA	NA	0.004	0.138	<0.0003	<0.002	<0.0003	<0.00008	<0.002	<0.001
4	9/19/2017	47.4	597	0.005	0.138	<0.0003	<0.002	<0.0003	<0.00008	<0.002	<0.001
-	3/12/2019	21.3	501	0.007	0.125	<0.0003	<0.002	0.0007	<0.00008	<0.002	<0.001
HTRW-2	12/14/2016	91.0	675	0.008	0.310	<0.0003	0.003	0.0004	<0.00008	<0.002	<0.001
	6/6/2017	NA	NA	0.007	0.326	<0.0003	<0.002	0.0003	<0.00008	<0.002	<0.001
HTRW-3	12/14/2016	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP
HIKW-3		NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP
-	6/6/2017	NOP	NOP	NoP	NoP	Nor	Nor	Nor	NOP	Nor	INOP
HTRW-4	12/14/2016	102	1420	0.038	0.242	<0.0003	<0.002	<0.0003	<0.00008	<0.002	<0.001
	6/6/2017	NA	NA	0.014	0.330	<0.0003	<0.002	<0.0003	<0.00008	< 0.002	<0.001

NOTES:

mg/L = milligrams per liter
<= analyte not detected above indicated value
BOLD = Exceeds NMWQCC Groundwater Cleanup Level

NA - Not Analyzed
TDS = Total Disolved Solids
Mercury analyzed by Method SW7470A
Chloride, Nitrate and Sulfate analyzed by Method E300
Bicarbonate analyzed by Method M2320B
TDS analyzed by Method M2540C
All other metals analyzed by Method SW6020A

Table 4 Summary of Groundwater QA/QC Results for December 2017 to March 2019 HollyFrontier - Hobbs Tank 5201 - Lea County, New Mexico

										Labo	catiry Analyti	cal Results									
		Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH- GRO	TPH- DRO	Total Naphthalenes	Fluorene	Phenanthrene	Pyrene	Chloride	TDS	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Setenium	Silver
Well No.	Date Samuled	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(mpl.)	(mg/L)	(mg/L)	(mg/L)	(mo/L)	(mg/L)	(ma/L)	(mañ.)	(mg/L)	(mg/L)	(Argin)	(ma5.)	(Pom)	(ma/L)	(mail.)
NMWQC Grou	indwater Standards	10	750	750	620	NE	NE	0.03	NE	NE	NE	250	1000	0.1	1	0.01	0.05	0.05	0.002	0.05	0.05
MW-5	12/06/17	<3.0	<6.0	<3.0	<3.0	<0.080	0.425	. NA	NA .	NA	NA.	58.5	643	0.007	0.261	<0.0003	0.011	0.0017	<0,00008	0.003	<0.001
MW-5	12/06/17	<3.0	<6.0	<3.0	<3.0	<0.060	0.467	NA	NA	NA	NA	68.5	649	0.007	0.218	0.00031	0.008	0.0019	<0.00008	0.004	<0.001
MW-5	06/05/18	<3.0	<6.0	<3.0	<3.0	0,081	0.155	<0.006	<0.0000237	<0.0000237	< 0.0000237	NA	NA	0.004	0.134	<0.0003	<0.002	<0,0003	<0.00008	<0.002	< 0.001
MW-6	06/05/18	<3.0	<6.0	<3.0	<3.0	0.097	0.137	<0.006	<0.0000236	<0.0000236	<0.0000236	NA	NA	0.004	0.138	< 0.0003	< 0.002	<0.0003	<0.00008	<0.002	< 0.001
MW-5	09/24/18	<3.0	<6.0	<3.0	<3.0	<0.060	0.111	<0.005	<0.0000236	<0.0000236	< 0.0000236	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-5	09/24/18	<3.0	<6.0	<3.0	<3.0	<0.060	0.136	<0.005	<0.0000236	<0.0000236	< 0.0000236	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.
MW-6	12/12/18	<1.0	+2.0	=1.D	*2.D	*D.06	0.157	0.0000337	< 0.0000237	<0.0000237	+0.0000237	NA:	N/A	NA:	NA:	NA:	NA.	NA.	NA	NA	NA
MW-5	12/12/10	<1.0	<2.0	12.0	*2.0	<0.06	0.148	0.0000294	< 0.0000237	<0.0000237	< 0.0000237	NA.	NA .	. NA	NA.	NA:	NA.	NA	NA	NA	NA
MW-5	03/12/19	<1.0	-2.0	<1.0	+2.0	~0.06	0.178	< 0.0000236	< 0.0000236	+0.0000236	< 0.0000236	81.2	694	0.011	0.264	<0.0003	0:009	0.002	<0.00008	0.005	<0.001
MW-5	03/12/19	<1.0	-20	- +1.0	=2.0	=0.06	0.157	<0.0000238	< 0.0000238	<0.0000238	< 0.0000238	83.8	700	0.008	0.300	0.000079	0.010	0.002	=0 0000ñ	0 004	<0.001
Top Blank	12/00/17	- <3.D	+6.Đ	43.0.	<3.0	~0.00	NA.	NA:	NA	NA NA	NA.	NA.	NA.	NA	NA.	NA:	:NA	NA.	MA	NA.	NA
Trip Blank	03/14/18	=3.0	+6.0	<3.0	×5.0	+0.06	NA.	NA .	-NA	NA	NA.	NA.	NA	NA .	NA.	NA.	NA.	NA.	NA	NA	NA
Trip Black	06/05/18	<3.0	+6.0	×3.0	<3.0	<0.06	. NA	NA.	NA.	NA	NA.	NA.	NA.	MA	NA:	NA:	NA	NA .	NA.	NA.	NA.
Trip Blank.	09/24/18	<3.0	+6.0	+3.0	<3.0	+0.06	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA	NA.	- NA	NA.	NA.	34/0
Frigi Bliania	12/12/18	<1.0	<2.0	< 1.1)	<1.0	=0.06	NA.	NA.	NA:	NA.	N/A	NA.	NA.	NA	NA	NA.	NA NA	164	NA.	NA.	NA.
Trip Blank	03/12/18	41.0	42.0	41.0	<1.0	=8.06	NA.	NA.	NA:	NA	NA	NA.	NA .	NA	NA.	NA.	NA I	NA.	NA.	NA	NA

Table 5 Summary of Groundwater Analytical Results for Water Well L08279, March 2019
HollyFrontier - Hobbs Tank 5201 - Lea County, New Mexico

Well ID	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total Naphthalenes (mg/L)	Fluorene (mg/L)	Phenanthrene (mg/L)	Pyrene (mg/L)
NMWQCC Groundwater				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Standards		10	750	750	620	NE	NE	0.03	NE	NE	NE
L08279	03/12/19	<1.0	<2.0	<1.0	<2.0	<0.06	<0.0788	<0.0000250	<0.0000250	<0.0000250	<0.0000250

Well ID	Sample Date	Chloride (mg/L)	TDS (mg/L)	Arsenic (mg/L)	Barium (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Lead (mg/L)	Mercury (mg/L)	Selenium (mg/L)	Silver (mg/L)
NMWQCC											
Groundwater Standards		250	1000	0.1	1	0.01	0.05	0.05	0.002	0.05	0.05
L08279	03/12/19	48.0	413	0.00977	0.0455	<0.00300	<0.002	<0.00300	<0.00008	0.00339	<0.001

Appendix A Summary of Historical Fluid Levels

Appendix A Summary of Fluid Levels Holly Frontier- Hobbs Tank 5201 - Lea County, New Mexico

Well ID/MP Elevation	Date	DTP	DTW	Prod. Thick	TD	Groundwater Elevation	Groundwater Elevation ¹	Totalize
		(ft-bmp)	(ft-bmp)	(ft)	(ft-bmp)	(ft-msl)	(ft-msl)	(gals)
RW-1	08/07/12	48.06	51.01	2.95	58.19	3538.08	3,540.23	
3589.09	12/20/12	48.47	51.48	3.01		3537.61	3,539.81	
	06/20/13	48.89	51.65	2.76		3537.44	3,539.45	
	08/23/13	49.05	51.95	2.90		3537.14	3,539.26	0
	10/30/13					0.00	3,589.09	
	11/02/13							9.7
	11/13/13							9.9
	12/11/13	49.69	49.70	0.01		3539.39	3,539.40	10.0
	03/18/14		49.92	0.00		3539.17	3,539.17	11.1
	06/19/14	50.19	50.20	0.01		3538.89	3,538.90	13.1
	12/11/14	50.41	50.47	0.06		3538.62	3,538.66	
	03/18/15	50.60	50.73	0.13		3538.36	3,538.45	
	06/11/15	trace	50.75	0.00		3538.34	3538.34	
	08/12/15		50.93	0.00		3538.16	3,538.16	
	09/17/15		51.02	0.00		3538.07	3,538.07	
	12/17/15	trace	50.92	0.00		3538.17	3538.17	
	06/07/16		51.32	0.00		3537.77	3,537.77	
	09/26/16		50.98	0.00		3538.11	3,538.11	
	10/28/16		50.96	0.00		3538.13	3,538.13	
	12/13/16		51.46	0.00		3537.63	3,537.63	
	01/23/17		51.55	0.00		3537.54	3,537.54	
	02/20/17		51.65	0.00		3537.44	3,537.44	
	03/13/17		51.60	0.00		3537.49	3,537.49	
	04/20/17		51.61	0.00		3537.48	3,537.48	
	06/06/17		51.71	0.00		3537.38	3,537.38	
	09/20/17		51.79	0.00		3537.30	3,537.30	
	12/07/17		51.91	0.00		3537.18	3,537.18	
	01/24/18	51.99	52.04	0.05	- 5	3537.05	3,537.09	
	02/22/18	-	52.06	0.00		3537.03	3,537.03	
	03/14/18		52.06	0.00		3537.03	3,537.03	
	06/06/18		51.25	0.00	-	3537.84	3,537.84	
	09/24/18		52.48	0.00		3536.61	3,536.61	
	12/12/18		52.48	0.00		3536.61	3,536.61	
	03/12/19	52.64	52.66	0.02		3536.43	3,536.44	
	GOLIETIO	OZ.04	02.00	0.02		0000.40	0,000.44	
MW-1	08/07/12	47.88	51.50	3.62	52.59	3540.55	3,543.19	
3592.05	12/20/12	48.32	51.55	3.23	OLIGO	3540.50	3,542.86	
5552.55	06/20/13	48.68	51.50	2.82		3540.55	3,542.61	
	10/30/13	48.96	51.53	2.57		3540.52	3,542.40	
	11/02/13	49.04	51.54	2.50		3540.51	3,542.34	
	11/13/13	49.06	51.58	2.52		3540.47	3,542.31	
	12/11/13	49.15	51.55	2.40	_	3540.50	3,542.25	
	06/19/14	49.65 50.26	51.59 51.26	1.94		3540.46 3540.79	3,541.88	
		50.26					3,541.52 3541.30	
	03/18/15	50.39	51.71	1.32		3540.34		
	06/11/15	E0 70	50.66	0.00		3541.39	3541.39	
	08/12/15	50.79	51.32	0.53		3540.73	3541.12	
	09/17/15		51.12	0.00		3540.93	3540.93	
	12/17/15		50.87	0.00		3541.18	3541.18	
	06/07/16		51.22	0.00		3540.83	3540.83	
	09/26/16		50.90	0.00		3541.15	3541.15	
	10/28/16	54.00	50.92	0.00		3541.13	3541.13	
	12/13/16	51.38	51.40	0.02		3540.65	3540.66	
	01/23/17	51.49	51.52	0.03	-	3540.53	3540.55	
	02/20/17	_	51.55	0.00	-	3540.50	3540.50	
	03/13/17		51.58	0.00		3540.47	3540.47	
	04/20/17		51.65	0.00		3540.40	3540.40	
	06/06/17		51.72	0.00		3540.33	3540.33	
	09/20/17		51.73	0.00		3540.32	3540.32	
	12/07/17	51.83	52.03	0.20		3540.02	3540.17	
	01/24/18	51.98	52.00	0.02		3540.05	3540.06	
	02/22/18		52.52	0.00		3539.53	3539.53	
	03/14/18		52.60	0.00		3539.45	3539.45	
	06/06/18		52.20	0.00		3539.85	3539.85	
	09/24/18		52.35	0.00		3539.70	3539.70	
	12/12/18		52.37	0.00		3539.68	3539.68	
	03/12/19	52.65	52.68	0.03		3539.37	3539.39	

Appendix A Summary of Fluid Levels Holly Frontler- Hobbs Tank 5201 - Lea County, New Mexico

Well ID/MP Elevation	Date	DTP	DTW	Prod. Thick	то	Groundwater Elevation	Corrected Groundwater Elevation ¹	Totalizer
		(ft-bmp)	(ft-bmp)	(ft)	(ft-bmp)	(ft-msl)	(ft-msl)	(gals)
MW-2	08/07/12		47.44	0.00	52.42	3543.41		
3590.85	12/20/12		47.90	0.00		3542.95		
	06/25/13		48.27	0.00		3542.58		
	12/11/13		48.74	0.00		3542.11		
	06/19/14		49.19	0.00		3541.66		
	12/11/14		49.40	0.00		3541.45		
	03/18/15	-	49.63 49.75	0.00		3541.22 3541.10		
	12/16/15		49.75	0.00		3540.94		
	06/07/16		50.32	0.00		3540.53	-	
	12/13/16		50.34	0.00		3540.51		
	06/06/17		50.67	0.00		3540.18		
	09/20/17		50.67	0.00		3540.18		
	12/07/17		50.91	0.00		3539.94		
	03/14/18		51.00	0.00		3539.85		
	06/06/18		51.22	0.00		3539.63		
	09/24/18		51.38	0.00		3539.47		
	12/12/18		51.50	0.00		3539.35		
	03/12/19		51.62	0.00		3539.23		
MW-3	08/07/12		47.43	0.00	53.20	3543.38		
3590.81	12/20/12		47.87	0.00		3542.94		
	06/25/13		48.28	0.00		3542.53		
	12/11/13		48.73	0.00		3542.08		
	06/19/14		49.20	0.00		3541.61		
	12/11/14		49.41	0.00		3541.40		
	03/18/15		49.63	0.00		3541.18		
	06/11/15		49.78	0.00		3541.03		
	12/16/15		49.96	0.00		3540.85		
	06/07/16 12/13/16	_	50.33 50.38	0.00		3540.48		
	06/06/17		50.68	0.00		3540.43 3540.13		
	09/20/17		50.43	0.00		3540.38		
	12/07/17		50.91	0.00		3539.90		
	03/14/18		51.03	0.00		3539.78		
	06/06/18		51.24	0.00		3539.57		
	09/24/18		51.43	0.00		3539.38		
	12/12/18		51.55	0.00		3539.26		
	03/12/19		51.62	0.00		3539.19		
			-					
MW-4	08/07/12		47.44	0.00	62.58	3543.41		
3590.85	12/20/12		47.89	0.00		3542.96		
	06/25/13		48.27	0.00		3542.58		
	12/11/13		48.72	0.00		3542.13		
	06/19/14		49.18	0.00		3541.67		
	12/11/14		49.45	0.00		3541.40		
	03/18/15		49.61	0.00		3541.24		
	06/11/15		49.80	0.00		3541.05		
	12/16/15		49.95	0.00		3540.90		
	06/07/16		50.32	0.00		3540.53		
	12/13/16		50.38	0.00		3540.47		
	06/06/17		50.68	0.00		3540.17		
	09/20/17 12/07/17		50.68 50.91	0.00		3540.17 3539.94		
	03/14/18		51.02	0.00		3539.94		
	06/06/18		51.02	0.00		3539.83		
	09/24/18		51.41	0.00		3539.44		
	12/12/18		51.44	0.00		3539.41		
	03/12/19	-	51.59	0.00		3539.26		
	307.12,10	_	0,.00	0.00		OVERI-LV		

Appendix A Summary of Fluid Levels Holly Frontier- Hobbs Tank 5201 - Lea County, New Mexico

Well ID/MP Elevation	Date	DTP	DTW	Prod. Thick	TD	Groundwater Elevation	Corrected Groundwater Elevation ¹	Totalizer
		(ft-bmp)	(ft-bmp)	(ft)	(ft-bmp)	(ft-msl)	(ft-msl)	(gals)
MW-5	08/07/12		48.83	0.00	58.82	3543.92		
3592.75	12/20/12		49.26	0.00		3543.49		
	06/25/13		49.64	0.00		3543.11		
	12/11/13		50.09	0.00	0 0	3542.66		
	06/19/14		50.53	0.00	8	3542.22		
	12/11/14		50.76	0.00		3541.99		
	03/18/15		50.99	0.00		3541.76		
	06/11/15		51.12	0.00		3541.63		
	12/17/15		51.33	0.00	-	3541.42	1	
	06/07/16		51.68	0.00	-	3541.07	1	
	12/13/16		51.76	0.00		3540.99		
	06/06/17		52.08	0.00		3540.67	-	
	09/20/17		52.06	0.00	-	3540.68	-	
					-			
	12/07/17		52.30	0.00		3540.45		
	03/14/18		52.38	0.00		3540.37		
	06/06/18		52.58	0.00		3540.17		
	09/24/18		52.50	0.00		3540.25		
	12/12/18		52.54	0.00		3540.21		
	03/12/19		52.97	0.00		3539.78		
HTRW-1	06/25/13	45.27	45.28	0.01	60.10	3542.86	3,542.87	
3588.14	12/11/13	45.78	45.79	0.01		3542.35	3,542.36	
	06/19/14		46.19	0.00		3541.95	3,541.95	
	12/11/14	45.46	45.51	0.05		3542.63	3,542.67	
	03/18/15	46.64	46.66	0.02		3541.48	3,541.49	
	06/11/15	46.81	47.61	0.80		3540.53	3,541.11	
	08/12/15		46.91	0.00		3541.23	3,541.23	
	09/17/15		46.98	0.00		3541.16	3,541.16	
	12/17/15	46.93	46.95	0.02		3541.19	3,541.20	
	06/07/16	40.93	46.34	0.00		3541.80	3,541.80	
					-			
	09/26/16	40.04	46.97	0.00		3541.17	3,541.17	
	10/28/16	46.94	46:95	0.01		3541.19	3,541.20	
	12/13/16		47.44	0.00		3540.70	3,540.70	
	01/23/17		47.58	0.00		3540.56	3,540.56	
	02/20/17		47.68	0.00		3540.46	3,540.46	
	03/13/17		47.62	0.00		3540.52	3,540.52	
	04/20/17		47.67	0.00		3540.47	3,540.47	
	06/06/17		47.71	0.00		3540.43	3,540.43	
	09/20/17		47.72	0.00		3540.42	3,540.42	
	12/07/17		NM	NM		NM	NM	
	01/24/18		48.04	0.00		3540.10	3,540.10	
	02/22/18		48.08	0.00		3540.06	3,540.06	
	03/14/18		48.03	0.00		3540.11	3,540.11	
	06/06/18		48.22	0.00		3539.92	3,539.92	
	09/24/18	_	48.45	0.00		3539.69	3,539.69	
	12/12/18		48.99	0.00		3539.15	3,539.15	
	03/12/19		48.70	0.00		3539.15	3,539.44	
	03/12/18	4	40.70	0.00		3333.44	3,338.44	
UTDM: 0	00/05/40		44.00	0.00	CO 14	25/2.04	_	
HTRW-2	06/25/13		44.60	0.00	60.14	3542.91		
3587.51	12/11/13		45.05	0.00		3542.46		
	06/19/14		45.52	0.00		3541.99		
	12/11/14		45.79	0.00		3541.72		
	03/18/15		45.95	0.00		3541.56		
	06/11/15		46.05	0.00	-	3541.46	-	
	08/12/15		46.22	0.00		3541.29		
	09/17/15		46.30	0.00		3541.21		
	12/17/15		46.25	0.00		3541.26		
	06/07/16		46.66	0.00		3540.85		
	09/26/16		46.20	0.00		3541.31		
	10/28/16		46.18	0.00		3541.33		
	12/13/16		46.74	0.00		3540.77		
	01/23/17		46.90	0.00		3540.61		
	02/20/17		46.88	0.00		3540.63		
	03/13/17		46.93	0.00		3540.58		
	04/20/17		46.96	0.00		3540.55		
	06/06/17		47.03	0.00		3540.48	1	
	09/20/17	-	47.08	0.00		3540.43	1	
	12/07/17		47.08				_	
				0.00	_	3540.26		
	01/24/18		48.68	0.00		3538.83		
	02/22/18		47.38	0.00		3540.13		
	03/14/18		48.42	0.00		3539.09		
	06/06/18		47.56	0.00		3539.95		
	09/24/18		47.77	0.00		3539.74		
	12/12/18		47.79	0.00		3539.72		
	03/12/19		48.01	0.00		3539.50		

Appendix A Summary of Fluid Levels Holly Frontier- Hobbs Tank 5201 - Lea County, New Mexico

Well ID/MP Elevation	Date	DTP	DTW	Prod. Thick	TD	Groundwater Elevation	Corrected Groundwater Elevation ¹	Totalizer
		(ft-bmp)	(ft-bmp)	(ft)	(ft-bmp)	(ft-msl)	(ft-msl)	(gals)
HTRW-3	06/25/13	45.87	45.88	0.01	60.14	3542.87	3,542.88	10/
3588.75	12/11/13	46.32	46.33	0.01		3542.42	3,542.43	
	06/19/14		46.79	0.00		3541.96	3,541.96	
	12/11/14		47.03	0.00		3541.72	3,541.72	
	03/18/15	47.19	47.50	0.31		3541.25	3,541.48	
	06/11/15	47.35	47.61	0.26		3541.14	3,541.33	
	08/12/15		47.60	0.00		3541.15	3,541.15	
	09/17/15	47.47	48.38	0.91		3540.37	3,541.03	
	12/17/15	47.30	49.00	1.70		3539.75	3,540.99	
	06/07/16	47.81	47.84	0.03		3540.91	3,540.93	
	09/26/16	47.48	47.60	0.12		3541.15	3,541.24	
	10/28/16	47.46	47.55	0.09		3541.20	3,541.27	
	12/13/16	47.97	48.48	0.51		3540.27	3,540.64	
	01/23/17	48.10	48.55	0.45		3540.20	3,540.53	
	02/20/17	48.28	48.50	0.22		3540.25	3,540.41	
	03/13/17	48.20	48.35	0.15		3540.40	3,540.51	
	04/20/17	48.22	48.31	0.09		3540.44	3,540.51	
	05/19/17	48.24	48.30	0.06		3540.45	3,540.49	
	06/06/17	48.31	48.35	0.04		3540.40	3,540.43	
	09/20/17	48.31	48.36	0.05		3540.39	3,540.43	
	12/07/17	48.60	49.35	0.75		3539.40	3,539.95	
	01/24/18	48.54	49.04	0.50		3539.71	3,540.08	
	02/22/18	48.68	48.75	0.07		3540.00	3,540.05	
	03/14/18		48.68	0.00		3540.07	3,540.07	
	06/06/18		48.88	0.00		3539.87	3,539.87	
	09/24/18	49.08	49.18	0.10		3539.57	3,539.64	
	12/12/18	48.08	48.13	0.05		3540.62	3,540.66	
	03/12/19	49.29	49.35	0.06		3539.40	3,539.44	
HTRW-4	06/25/13		45.68	0.00	60.16	3542.89		
3588.57	12/11/13		46.13	0.00		3542.44		
	06/19/14		46,59	0.00		3541.98		
	12/11/14		46.85	0.00		3541.72		
	03/18/15		47.03	0.00		3541.54		
	06/11/15		47.11	0.00		3541.46		
	08/12/15		47.31	0.00		3541.26		
	09/17/15		47.35	0.00	ļ	3541.22		
	12/17/15		47.32	0.00		3541.25		
	06/07/16		47.70	0.00		3540.87		
	09/26/16		47.58	0.00		3540.99		
	10/28/16		47.55	0.00		3541.02		
	12/13/16		47.79	0.00		3540.78		
	01/23/17		47.95	0.00		3540.62		
	02/20/17		47.97	0.00		3540.60		
	03/13/17		47.98	0.00		3540.59		
	04/20/17		48.03	0.00		3540.54		
	06/06/17		48.09	0.00		3540.48		
	09/20/17		48.19	0.00		3540.38		
	12/07/17		48.30	0.00		3540.27		
	01/24/18		48.40	0.00		3540.17		
	02/22/18		48.43	0.00		3540.14		
	03/14/18		48.58	0.00		3539.99		
	00/14/10			0.00		3539.93		
	06/06/18		48.64	0.00		0000,00		
			48.64 48.78	0.00		3539.79		
	06/06/18							

Notes:
DTP - depth to product
DTW - depth to water
TD - total depth
ft - feet
ft-bmp - feet-below measuring point
ft-msl - feet-mean sea level

gals - gallons

1 groundwater elevation corrected for 0.73 specific gavity

Appendix B
Summary of Historical Groundwater
Analytical Results and Field Parameters

Appendix B Summary of Historical Groundwater Analytical Results and Field Parameters Holly Frontier - Hobbs Tank 5201 - Lea County, New Mexico

Monitor Well ID/ MP Elevation	Sample Date	Benzene (µg/L)	Toluens (µg/L)	Ethyl- bonzone (µg/L)	Total Xylones (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Product Thickness (feet)	Depth to Water (ft-bmp)	Groundwater Elevation (ft-mai)	Temperature (deg-C)	Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)
MWQCC Broundwater		10	750	750	620	NE	NE								
MW-2	08/23/04	26	4	5	14	NA.	NA.	_	43,45	3 547.40			_	-	-
3590.85	01/11/05	72	<2	<2	15	NA NA	NA NA		43.45		_		-	$\overline{}$	-
3590.85	03/08/06	<2	<2	<2	<β	NA NA	NA NA		43.44	3,547.83 3.547.41			-	_	-
	07/11/06	7.0	<2	<2	16	NA.	NA NA		43.69	3,547.16		_		_	-
	09/07/06	4.2	1.9	<0.5	3.2	NA NA	NA NA	_	43.64	3.547.21	_		-	-	-
	12/19/06	2,1	1.0	0.9	4.3	NA NA	NA NA		43.83	3,547.02		_	-	-	-
	03/13/07	40.5	0.6	1.2	2.3	NA.	NA NA		44.04	3,540.81	_		-		-
	96/21/07	0.8	0.7	10.5	2.0	NA.	NA NA		44.11	3,546.74					-
	09/21/07	1.4	1.1	<0.5	3.2	NA.	NA NA		43.07	3,546.98	_		_	_	-
	12/07/07	1.4	1.0	0.9	3.5	NA.	NA NA		44.17	3,546.68			-		-
	03/04/08	1.4	0.8	1.6	3.3	NA NA	NA NA		44.17	3,546.58			-		-
	06/03/08	1.7	0.0	1.5	2.1	NA.	NA NA		44.42	3,546.43				-	-
	09/23/06	12	40.5	0.6	31	NA.	NA NA		44.69	3,546,16	_		_		-
	12/18/08	1.0	0.8	10.5	12	NA.	NA NA		45.82	3.545.03	_		-	-	-
	03/16/09	0.9	0.7	<0.5	2.9	NA.	NA.		44.95	3,545.87	_		-		-
	06/23/09	1,2	<1.0	<1.0	<2.0	NA.	NA.		45.12	3.545.73	_		_	_	-
	00/08/00	£1.0	<1.0	<1.0	42.0	NA.	NA NA		45.29	3,545.58			_	_	-
	12/17/09	<1.0	<1.0	<1.0	<2.0	NA.	NA NA		45.50	3.545.35			-	_	-
	03/09/10	<1.0	<1.0	51.0	<1.5	NA.	NA NA		45.70	3.545.15	_		_		-
	06/95/10	<1.0	<1.0	K1.0	2.5	NA.	NA NA		45.85	3,545.00			_	-	-
	09/01/10	1.0	<1.0	<1.0	<2.0	NA.	NA.		45.82	3.545.03			_	-	_
	12/06/10	1,6	<1.0	<1.0	<2.0	NA.	NA		46.05	3,544.80					
	03/18/11	1.3	<1.0	14	2.9	NA.	NA		46.18	2.544.67					
	06/23/11	1.1	<1.0	26	3.2	NA.	NA		46,40	3,544.45					
	10/07/11	1.2	<1.0	14	<2.0	NA	NA		46.75	3.544.10					
	12/08/11	1.4	<1.0	5,7	3.6	NA.	NA		46.91	3,543.94					
	08/07/12	<1.0	< 5.0	< 5.0	< 15	NA	NA		47,44	3.543.41	30.34	1.615	0.05	6.48	-125
	12/20/12	<1.0	<2.0	<1.0	<2.0	NA	NA		47,90	3,542.95	17.51	1.094	0.74	6.85	-254
	08/25/13	<1.0	<2.0	<1.0	<2.0	NA	NA.		48.27	3,542.58	22.10	1.249	0.30	6.76	-60
	12/11/13	1,02	<2.0	<1.0	<2.0	NA	NA.		48,74	3,542,11	21.11	1.27	1.51	7.14	-117
	06/25/14	<1.0	<2.0	<1.0	1.43	NA	NA.		49.19	3,541.06	19.94	1.078	1.19	6.69	-66.
	12/11/14	<1.0	<2.0	<1.0	<1.0	< 0.50	0.534		49.40	3.541.45	18.67	1.192	0,58	6.60	-102
	08/11/15	<1.0	<2.0	<1,0	<1.0	<0.10	0.337		49.75	3,541 10	35,49	1.265	2.20	6.75	-100
	12/16/15	<1.0	<2.0	<1,0	<1.0	0.141	0.678		49.91	3.540.94	18.56	1.274	0.75	6.94	-76.
	08/09/16	<1.0	<2.0	<1.0	<1.0	< 0.06	5.53		50.32	3.540.53	20,52	4.885	2.80	6.63	29.0
	12/14/16	<1.0	<2.0	<1.0	<1.0	0.097	5.53		50.34	3,540.51	18.90	2.171	2.37	7.61	-72.
	06/06/17	<1.0	<2.0	<1.0	<2.0	0.105	4.98		50.67	3,540.18	22.15	1.549	1.85	6.85	-55.
	09/19/17	<1.0	<2.0	<1.0	<2.0	0.093	2.74		50.67	3,540.18	22.80	1.627	0.96	8.71	-71.
	12/06/17	<1.0	<2.0	<1.0	<2,0	<0.08	0,795		50.91	3,539.94	19.01	2.887	1.21	7.01	-44.
	03/14/18	<1.0	<2.0	<1.0	<2,0	0.101	1.91		51.00	3,539.85	21.11	1.403	0.98	6.87	-13.
	06/05/18	<1.0	<2.0	<1.0	<2.0	0.140	1.89		51.22	3,539.63	22.85	1,787	1.07	6.93	-58.
	09/24/18	<1.0	<2.0	<1.0	<2.0	<0.06	2.33		51.38	3.539.47	22.55	2,011	1.57	7.16	-33.
	12/12/18	<1.0	<2.0	<1.0	<2.0	<0.06	2.56		51.50	3,539.35	19.83	2.334	1.33	7.22	-39.
	03/12/19	<1.0	<2.0	<1.0	<2.0	0.091	NA		51.62	3.539.23	20.04	1.906	1,04	7.07	-80.

Appendix B Summary of Historical Groundwater Analytical Results and Field Parameters Holly Frontier - Hobbs Tank 5201 - Lea County, New Mexico

Monitor Well ID/ MP Elevation	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Product Thickness (feet)	Depth to Water (ft-bmp)	Groundwater Elevation (ft-msl)	Temperature (deg-C)	Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)
NMWQCC Groundwater Standard		10	750	750	620	NE	NE								
MW-3	08/23/04	<2	<2	<2	<6	NA.	NA	-	43.50	3 547.31			1	-	
3590.81	01/11/05	<2	<2	<2	<6	NA NA	NA		42.93	3.547.88	_				
	03/08/06	<2	<2	<2	<6	NA.	NA		43.35	3 547.46					
	07/11/06	<2	<2	<2	<6	NA	NA		43.63	3,547,18					
	09/07/06	<0.5	<0.5	<0.5	<1	NA	NA		43.61	3,547.20					
	12/19/06	<0.5	<0.5	<0.5	<1	NA.	NA		43.76	3,547.05					
	03/13/07	<0.5	<0.5	<0.5	<1.0	NA	NA		43.97	3,546.84					
	06/21/07	<0.5	<0.5	40.5	<1.0	NA.	NA		44.03	3.546.78					
	09/21/07	<0.5	<0.5	<0.5	<1.0	NA.	NA		43 B3	3 546 98					
	12/07/07	<0.5	<0.5	=2.5	<1.0	NA.	NA.		44.11	3.546.70					
	03/04/08	<0.5	< 0.5	<0.5	<1.0	NA.	NA		44 32	3 548 49					
	06/03/08	<0.5	<0.5	<0.5	<1.0	NA.	NA.		44.35	3.548.46					
	09/23/08	<0.5	<0.5	<0.6	<1.0	NA.	NA.		44.65	3.546.16					
	12/18/08	≪0.5	<0.5	10.5	<1.0	NA.	NA.		44.77	3 546 04					
duoticate	03/16/09	< 0.5	<0.5	<0.5	<1.0	19A	NA.		44.92	3,545.89					
	06/23/09	<1.0	<1.0	<1.0	<2.0	NA NA	NA.		45.08	3.545.73	_				
	09/06/09	<1.0	<1.0	€1.0	¥2.0	NA.	NA.		45.24	3.545.57					
	12/17/09	<1.D	41.0	<1.0	×2.0	NA.	NA		45.44	3.545.37				_	
	03/09/10	<1.0	<1.0	<1.0	<1.5	NA.	NA		45.66	3.545.15			_		
	06/16/10	<1.0	<1.0	<1.0	<2.0	NA.	NA.		45 B0	3.545.01					
	09/01/10	<1.0	<1.0	<1.0	<2.0	NA.	NA		45.80	3,545.01			-		
	12/06/10	<1.0	<1.0	<1.0	<2.0	NA.	NA.		48.00	3.544.81	_			-	
	03/18/11	<1.0	<1.0	<1.0	<2.0	NA NA	NA		46.14	3 544.67	-				
	06/23/11	<1.0	<1.0	<1.0	<2.0	NA.	NA		45.38	3 544.43					
	10/07/11	<1.0	<1,0	<1,0	<2,0	NA.	NA		48.72	3,544.09			-		_
	12/08/11	<1.0	<1.0	<1.0	<2.0	NA	NA		46.87	3,543.94				-	
	08/07/12	< 5.0	< 5.0	< 5.0	< 15	NA	NA		47,43	3,543.38	30.29	1.875	0.72	5,80	109.3
	12/20/12	<1.0	<2.0	<1.0	<2.0	NA.	NA		47.87	3,542.94	17,39	1,108	1.28	6,87	-269.0
	12/20/12	<1.0	<2.0	<1.0	<2.0	NA.	NA		47.87	3,542.94	17.39	1.108	1.28	6.87	-269.0
поряжи	06/25/13	<1.0	<2.0	<1.0	<2.0	NA.	NA.		48.28	3,542.53	20.80	1,453	1.98	6.60	204.9
	12/11/13	<1.0	<2.0	<1.0	<2.0	NA.	NA NA		48.73	3,542,08	19,80	1,540	4.40	6.76	152,0
duplicato	12/11/13	<1.0	<2.0	<1.0	<2.0	NA.	NA NA		48.73	3,542.08	19.80	1.540	4.40	6.76	152.0
	06/24/14	<1.0	<2.0	<1.0	1.61	NA.	NA NA		49.20	3,541.61	22.28	1.242	2.94	6.78	0.2
	12/11/14	<1.0	<2.0	<1.0	<1.0	<0.10	0,135		49,41	3,541.40	17.74	1,196	2.51	6.66	69.0
	06/11/15	<1.0	<2.0	<1.0	<1.0	<0.10	<0.10		49.78	3.541.03	24.41	1.240	1.10	6.63	27.7
	12/16/15	<1.0	<2.0	<1.0	<1.0	<0.10	<0.102		49.98	3,540.85	16.75	1.229	2.22	8.86	126.0
	06/09/16	<1.0	<2.0	<1.0	<1.0	<0.06	<0.02		50.33	3,540.48	25.68	1.227	2.17	7.79	38.8
	12/14/16	<1.0	<2.0	<1.0	<1.0	<0.06	0.262		50.38	3 540.43	19.92	1.767	2.16	7.61	48.7
	06/06/17	<1.0	<2.0	<1,0	<2.0	<0.00	0.358		50.68	3,540.13	23.66	1.109	3.80	6.93	64.5
	09/19/17	<1.0	<2.0	<1.0	<2.0	<0.06	0.122		50.43	3,540,38	19,70	1.213	1.87	6.66	137.8
	12/06/17	<1.0	<2.0	<1.0	<2.0	0,073	0.668		50.91	3,539.90	17,60	1,102	1.62	6.79	76.5
	03/14/18	<1.0	<2.0	<1.0	<2.0	<0.06	0.184		51.03	3.539.78	20.30	1,206	1.97	7.01	89.3
	06/05/18	<1.0	<2.0	<1.0	<2.0	0,100	0.221		51.24	3,539.57	24.89	1.369	2.69	5.92	111.2
	09/24/18	<1.0	<2.0	<1.0	<2.0	<0.06	0.220		51.43	3,539.38	22.96	1,308	2.07	7.18	102.3
	12/12/18	<1.0	<2.0	<1.0	<2.0	<0.08	0.224		51.55	3,539.26	20.13	1.198	1.85	6.88	91.2
														7.12	
	03/12/19	<1.0	<2.0	<1.0	<2,0	<0.08	0.164		51.52	3,539.19	20.65	1.306	1.98		

Appendix B Summary of Historical Groundwater Analytical Results and Field Parameters Holly Frontier - Hobbs Tank 5201 - Lea County, New Mexico

Monitor Well ID/ MP Elevation	Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	TPH-GRO (mg/L)	TPH+DRO (mg/L)	Product Thickness (feet)	Depth to Water (ft-bmp)	Groundwater Elevation (ft-msl)	Temperature (deg-C)	Conductivity (mS/cm)	DO (mg/L)	pН	ORP (mV)
NMWQCC Groundwater Standard		10	750	750	620	NE	NE								
MW-4	06/16/10	<1.0	<1.0	<1.0	<2.0	NA	NA .		45.82	3,545.03			_	_	-
3590.85	09/01/10	3.3	<1.0	<1.0	<2.0	NA NA	NA NA	_	45.81	3,545.04	_				-
3390.03	12/06/10	<1.0	<1.0	<1.0	<2.0	NA NA	NA NA	_	48.01	3,544.84			_	_	_
	03/18/11	<1.0	<1.0	<1.0	<2.0	NA NA	NA NA		46,16	3,544,69			_	_	-
	08/23/11	<1.0	<1.0	<1.0	<2.0	NA NA	NA NA		46.40	3,544.45	_		_		-
	10/07/11	<1.0	<1.0	<1.0	<2.0	NA NA	NA NA		46.74	3,544.11			_	-	-
	12/08/11	<1.0	<1.0	<1.0	<2.0	NA NA	NA NA		46.88	3,543.97			_	_	_
	08/07/12	<50	<5.0	< 5.0	< 15	NA NA	NA NA		47.44	3,543.41	26.73	1.457	0.12	8.45	1.3
	12/20/12	<1.0	<2.0	<1.0	<20	NA NA	NA NA		47,89	3,542.96	18.18	1.149			-236 0
	06/25/13	<1.0	<2.0	<1.0	<20	NA NA	NA NA		48.27	0.542.58	21.30	1.306	0.61	6.70	129.8
	12/11/13	41.0	42.0	<1.0	<2.0	NA NA	NA	_	48.72	3,542,13	20.75	1.32	1.26		
_	00/24/14	1.07	<2.0 <2.0	<1.0	<1.0	NA NA	NA NA		49.18	3,541.67	22.22	1.32	1.07	7.20 6.25	-2.0 -13.3
	12/11/14	<1.07	<2.0	<1.0	<1.0	<0.10	1.72		49.45	3,541,40	18.59	8 387			
	06/11/15	<1.0	<2.0	<1.0	<1.0	<0.10	2.81		49.80	3.541.05	28.13	8 394	3.14	8.35	64.5
di unha alia		<1.0	<2.0	<1.0	<1.0	<0.10	2.51		49.80		26 13	8.394			44.6
duptoale	12/16/15	<1.0	<2.0	<1.0	<1.0	<0.10	2.66		49.95	3,541.05	18.80	6 176	0.60	8.61	44 6
	06/09/16	<1.0 <1.0	<2.0	<1.0	<1.0 <1.0	<0.10	3.22		50.32		27.40	2.949			85 2
	12/14/16	<1.0	<2.0	<1.0	<1.0		237		50.38	3,540,53		4.317	2.59	6.99	1.6
40.00						<0.08 <0.08				3,540.47	19.14	4.317		7.24	53.1
duplicate	12/14/16	<1.0	<2.0	<1.0	<1.0		2.02		50.38	3 540.47	19.14		2.29	7.74	53.1
	06/06/17	<1.0	<2.0	<1.0	<2.0	<0.06	1.50		50.68	3,540.17	22.60	1.68	0.42	8.98	71.9
	09/19/17	<1.0	<2.0	<1.0	<2.0	<0.06	1.73		60,68	3,540.17	21.70	2.014	1.94	8.01	23.5
	12/06/17	<1.0	<2.0	<1.0	<2.0	<0.06	1.79		50.91	3,539.94	18.10	1.751	0.89	7,16	11.3
	03/14/18	3.31	<2.0	<1.0	<2.0	<0.06	0.357		51.02	3,539.83	20.60	2.342	1,23	6.77	55.4
	06/05/18	<1.0	<2.0	<1.0	<2.0	0.092	0.329		51.24	3,539.61	24.50	2,867	2.65	6.82	68.6
	09/24/18	<1.0	<2.0	<1.0	<2.0	<0.06	0.200		51,41	3 539.44	23.65	2.436	1.86	7.04	75,8
_	12/12/18 03/12/19	<1.0 <1.0	<2.0 <2.0	<1.0 <1.0	<2.0 <2.0	<0.06 0.061	0.098 0.101		51.44 51.59	3,539.41 3,539.26	19.26 20.88	1.982 2.467	1.21	6,94 7.06	29.2 56.0
MW-5	03/18/11	<1.0	<1.0	<1.0	<2.0	NA.	NA		47.61	3,545,14			_		_
3592.75	06/23/11	<1.0	<1.0	<1.0	<2.0	NA.	NA NA		47.83	3,544.92					
	10/07/11	<1.0	<1.0	<1.0	<2.0	NA.	NA		48,17	3,544.58					
	12/06/11	<1.0	<1,0	<1.0	<2.0	NA.	NA NA		48.31	3,544.44					
	08/07/12	< 5.0	< 5.0	< 5.0	< 15	NA.	NA		48.83	3,543.92	27.30	0,775	4.84	6.01	115.9
	12/20/12	<1.0	<2.0	<1.0	<2.0	NA.	NA		49.26	3,543.49	17.49	0.633	4.70	7.04	-187,0
	06/25/13	<1.0	<2.0	<1.0	<2.0	NA.	NA		49,64	3,543.11	22.20	0.848	4.60	6.63	181.1
	12/11/13	<1.0	<2.0	<1.0	<2.0	NA	NA		50,09	3,542.66	19.35	0.801	4.79	7,37	86.0
	06/25/14	<1.0	<2.0	<1.0	1,13	NA.	NA NA		50.53	3,542.22	20.39	0.782	3.54	6,91	39.2
	12/11/14	<1.0	<2.0	<1.0	<1.0	<0.10	<0.102		50.76	3,541.99	18.61	0.888	6,35	6.11	103.6
	08/11/15	<1.0	<2.0	<1.0	<1.0	<0.10	<0.10		51.12	3,541.63	29.58	0.882	6.53	6.72	40.4
	12/16/15	<1.0	<2.0	<1.0	<1.0	<0.10	0.115		51.33	3,541.42	17.09	0.910	5.79	7.16	129.1
	06/09/16	<1.0	<2.0	<1.0	<1.0	<0.06	<0.08		51.68	3,541.07	26.69	1.099	6.03	6.55	59,9
	12/14/16	<1.0	<2.0	<1.0	<1.0	<0.08	0.194		51,76	3,540,99	19.03	1.361	5.93	7.72	79.5
	06/06/17	<1.0	<2.0	<1.0	<2.0	<0.06	0.182		52.08	3,540.67	19.10	0.905	5.75	6.78	127.2
	09/19/17	<1.0	<2.0	<1.0	<2.0	<0.06	0.132		52.07	3,540.68	20.70	1,001	4.04	6.81	59.8
	12/06/17	<1.0	<2.0	<1.0	<2.0	<0.06	0.425		52.30	3,540.45	17.90	0,768	3.92	7.08	33.2
duplicate	12/06/17	<1.0	<2.0	<1.0	<2.0	< 0.06	0.467		52,30	3,540.45	17.90	0.768	3.92	7.0B	33.2
	03/14/18	<1.0	<2.0	<1.0	<2.0	<0.06	< 0.0756		52,38	3 540.37	20.10	0.901	4.11	6.76	65.4
	06/05/18	<1.0	<2.0	<1.0	<2.0	0.081	0.155		52.58	3,540.17	25.60	1.162	4.76	6,96	123.0
duplicate	06/05/18	<1.0	<2.0	<1.0	<2.0	0.097	0.137		52.58	3,540.17	25.60	1.162	4.76	6.96	123.0
-	09/24/18	<1.0	<2.0	<1.0	<2.0	< 0.06	0.111		52.50	3,540.25	24.66	0.913	3.88	7.24	102.2
duplicate	09/24/18	<1.0	<2.0	<1.0	<2.0	<0.06	0.136		52.50	3.540.25	24.66	0.913	3.88	7.24	102.2
- 11	12/12/18	<1.0	<2.0	<1.0	<2.0	<0.06	0.157		52,54	3 540.21	18.87	1,012	4.23	7.11	55.6
duplicate	12/12/18	<1.0	<2.0	<1.0	<2.0	<0.08	0.148		52,54	3,540.21	18.87	1.012	4.23	7.11	55.6
	03/12/19	<1.0	<2.0	<1.0	<2,0	<0.06	0,178		52.97	3,539.78	20.18	1.123	3.65	7.02	88.0
duplicate	03/12/19	<1.0	<2.0	<1.0	<2.0	<0.06	0.157		52.97	3,539.78	20.18	1.123	3.65	7.02	88.0

Appendix B Summary of Historical Groundwater Analytical Results and Field Parameters Holly Frontier - Hobbs Tank 5201 - Lea County, New Mexico

Monitor Well ID/ MP Elevation	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Product Thickness (feet)	Depth to Water (ft-bmp)	Groundwater Elevation (ft-msl)	Temperature (deg-C)	Conductivity (m8/cm)	DO (mg/L)	Нq	ORP (mV)
IMWQCC Broundwater		10	750	750	620	NE	NE								
HTRW-1		NSP	NSP	NSP	NSP		NA.	0.00					_	-	
3588.14	06/25/13	NSP	NSP	NSP	NSP	NA NA	NA NA	0.00	45.28	3,542.87 3,542.36			_	_	-
3588.14	12/11/13	910				NA NA	NA NA		45,79		04.00	4 500	4.07	0.77	400.5
duplicate	6/24/14	922	48.7 49.0	89.1 88.8	70.0 69.2	NA NA	NA NA	0.01	46,19 46,19	3,541.95 3,541.95	21.90 21.90	1.533	1.37	6.77	-108.5 -108.5
dujiocate	12/11/14	NSP	NSP	NSP	NSP	NSP	NSP	0.05	45.51	3,542.67	NSP	NSP	NSP	NSP	NSP
	08/11/15	NSP	NSP	NSP	NSP	NSP	NSP	0.80	47.61	3,541.11	NSP	NSP	NSP	NSP	NSP
	12/16/15	NSP	NSP	Nep	NSP	NSP	NSP	0.02	48,95	3.541.20	NSP	NSP	NSP	NSP	NSP
	06/09/18	NSP	NSP	NSP	NSP	NSP.	NSP	0.00	48.34	3 541 80	NM	NM	NM	NM	NM
	12/14/16	1.97	<0.6	<0.3	0.943	<0.06	0.432	0.00	47.44	3,640.70	19.34	1.72	2.34	7.58	50.8
	06/06/17	774	21.9	1.90	57.6	1.85	0.549	0.00	47.71	3,540,43	21.12	1.014	1.71	6.91	71.7
dupăçate	06/06/17	654	13.8	1.37	47.2	1.43	1.49	0.00	47.71	3,540.43	21.12	1.014	1.71	6.91	71.7
7.04	09/19/17	9620	76.1	17.1	82.6	2.88	1.23	0.00	47.72	3,540.42	21.7	0.093	1.7	8.93	-45.4
	12/06/17	NS	NS	N5	N5	NS	NS	0.00	NM	NM.	18.9	1.001	2.01	6.92	33.2
	03/14/18	100	<2.0	<1.0	8.10	0.360	< 0.0754	0.00	48.03	3,540.10	20.6	0,892	1.92	7.23	-115
	06/05/16	163	40.0	2.03	34.2	1 40	2 17	0.00	48 22	3 540 08	22.1	0.959	1.87	6.89	22.3
	09/24/18	11.4	2.78	<3.8	0.564	0.109	0.405	0.00	48.45	3,540.11	21.6	1.106	1.98	6.92	11.6
	12/12/18	377	20.5	1.07	20,7	1.15	0.240	0.00	48.99	3.539.15	19.03	0.979	2.12	7.01	22.9
	03/12/19	20.6	2.6	<3.0	3.48	0.14	0.154	0.00	48.70	3,530.44	20.8	0.979	2.04	7.18	10.6
HTRW-2	6/25/13	62.3	21.4	4.4	13.0	NA	NA	0.00	44.60	3.542.91	21.70	1.233	2.80	8.81	180.2
3587.51	12/11/13	530	35.9	12.4	33.4	NA	NA	0.00	45.05	3,542.45	20.08	1.43	1.07	7.34	-2.00
	6/24/14	748	47.6	59.2	84.0	NA	NA	0.00	45.52	3,541.99	19.88	1.536	0.68	8.86	-128.9
	12/11/14	722	135	38.4	129	2.0	0.253	00,00	45,79	3,541.72	17.13	1.444	0.41	8.67	-89.1
	06/11/15	875 503	28.7 <20.0	35,3 18,9	29,3 <10.0	1.24	0.354	0.00	46.05	3,541.48	21.95	1.937	2.82	8.08	-43.3
	12/16/15	863	8.35	60.6	6.87	1.01 2.03	0.144 1.05	0.00	46.25 46.66	3,541.26 3,540.85	17.01 NM	1.523 NM	0.69 NM	7.07 NM	-69.4 NM
	12/14/16	322	7.32	33.3	5.66	0.128	0.461	0.00	46.74	3,540,77	18.85	1.732	1.39	7.73	10.1
	06/06/17	342	4.05	2.81	17.9	0.901	0.332	0.00	47.03	3,540.48	18.81	1.035	4.62	6.75	107.4
	09/19/17	NS	NS	NS NS	NS	NS	NS	0.00	47.08	3,540.43	NS NS	NS	NS	NS.	NS
	12/06/17	NS	NS	NS	NS	NS	NS	0.00	47.25	3,540.28	NS	NS	NS	NS	NS
	03/14/18	NS	NS	NS	NS	NS	NS	0.00	48.42	3,639.09	NS	NS	NS	NS	NS
	06/05/18	NS	NS	NS	NS	NS	NS	0.00	47.56	3,539.95	NS NS	NS	NS	NS	NS
	09/24/18	NS	NS	NS	NS	NS	NS	0.00	47.77	3,539.74	NS	NS	NS	NS	NS
	12/12/18	NS	NS	NS	NS	NS	NS	0.00	47.79	3.539.72	NS	NS	NS	NS	NS
	03/12/19	NS	NS	NS	NS	NS	NS	0.00	48.01	3,539.50	NS	NS	NS	NS	NS
HTRW-3	6/25/13	NSP	NSP	NSP	NSP	NA.	NA	0.01	45.88	3,542.88					
3588.75	12/11/13	NSP	NSP	NSP	NSP	NA	NA	0.01	46.33	3,542.43					
	6/24/14	3090	1220	450	520	NA	NA	0.00	46,79	3,541.96	21.17	1.56	0.75	6.70	-160.1
	12/11/14	3760	1750	466	632	12.2	1.31	0.00	47.03	3,541.72	17.26	1.684	0.33	6.59	-209.1
	06/11/15	NSP	NSP	NSP	NSP	NSP	NSP	0.26	47.61	3,541.33	NSP	NSP	NSP	NSP	NSP
	12/16/15	NSP	NSP	NSP	NSP	NSP	NSP	1.70	49.00	3,540.99	NSP	NSP	NSP	NSP	NSP
	06/09/16	NSP	NSP	NSP	NSP	NSP	NSP	0.03	47.84	3,540.93	NSP	NSP	NSP	NSP	NSP
	12/14/16	NSP	NSP	NSP	NSP	NSP	NSP	0.51	48.48	3,540.64	NSP	NSP	NSP	NSP	NSP
	06/06/17	NSP	NSP	NSP	NSP	NSP	NSP	0.04	48.35	3.540.43	NSP	NSP	NSP	NSP	NSP
	09/19/17	NSP	NSP	NSP	NSP	NSP	NSP	0.05	48.36	3,540.43	NSP	NSP	NSP	NSP	NSP
	12/06/17	NSP	NSP	NSP	NSP	NSP	NSP	0,75	49.35	3,539.95	NSP	NSP	NSP	NSP	NSP
	03/14/18	NSP	NSP	NSP	NSP	NSP	NSP	0.00	48.68	3,540.07	NSP	NSP	NSP	NSP	NSP
	06/05/18	NSP	NSP	NSP	NSP	NSP	NSP	0.00	48.88	3 539.87	NSP	NSP	NSP	NSP	NSP
	09/24/18	NSP	NSP	NSP	NSP	NSP	NSP	0.10	49.18	3,539.64	NSP	NSP	NSP	NSP	NSP
	12/12/18	NSP NSP	NSP NSP	NSP NSP	NSP NSP	NSP	NSP NSP	0.05	48.13 49.35	3,540.66 3,539.44	NSP NSP	NSP NSP	NSP	NSP	NSP
	00/12/18	NOF	IYOF	NOF	NOF	1491	IASE	0.00	46.00	3,338.44	INOL	Nor	IAOL	Nor	NSP

Appendix B Summary of Historical Groundwater Analytical Results and Field Parameters Holly Frontier - Hobbs Tank 5201 - Lea County, New Mexico

Monitor Well ID/ MP Elevation	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Product Thickness (feet)	Depth to Water (ft-bmp)	Groundwater Elevation (ft-msl)	Temperature (deg-C)	Conductivity (m8/cm)	DO (mg/L)	рH	ORP (mV)
NMWQCC Groundwater Standard		10	750	750	620	NE	NE								
HTRW-4	6/25/13	87.4	49.4	32.5	52.8	NA.	NA I	0.00	45.68	3,542,89	22.30	0.96	2.04	6.87	190.9
3588.57	12/11/13	951	157	88.1	219	NA	NA NA	0.00	46.13	3,542.44	20.41	1,44	0.95	7.5	-144
	6/24/14	1720	698	253	436	NA NA	NA	0.00	46,59	3,541.98	21.9	1.751	1.16	7.01	-98.1
	12/11/14	1590	288	126	277	4.03	0.643	0.00	46.85	3,541.72	16.54	1.581	0.15	6,81	-190.5
	08/11/15	1490	29.2	111	29.9	2.16	0.365	0.00	47.11	3 541.45	23.87	1.486	0.68	6.92	-183.2
	12/16/15	NS	NS	NS	NS	NS	NS	0.00	47.32	3,541.25	NS	NS	NS	NS	NS
	06/09/16	834	11.7	35.9	17.6	1.60	1.10	0.00	47.70	3,540,87	22.27	1.559	1.93	6.76	-117
	12/14/16	3800	29.6	10.2	46.1	1.31	0.951	0.00	47.79	3.540.78	19.01	1.937	1.48	7:96	-74.01
	06/06/17	564	6.20	3.62	57.8	1.97	0.736	0.00	48.00	3.540.48	18.92	1.092	1.77	6.97	-50 9
	09/19/17	N5.	杨	NS.	NS.	N5	NS	0.00	48.19	3,540.38	NS	N5	N5	N5	145
	12/08/17	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.00	48.30	3 540 27	NS.	NS	NS	NS	NS.
	03/14/18	NS NS	NS NS	NS:	NS:	NS NS	NS NS	0.00	48.58	3 539 99	NS.	NS NS	N5	NS	NS.
	09/24/18	NS NS	NS NS	NS:	NS:	NS NS	NS NS	0.00	48.64 48.78	3 539 79	NS NS	NS NS	N5	N5	NS.
	12/12/18	NS.	NS.	NS.	NS:	NS NS	NS NS	0.00	48.48	3.540.09	NS NS	N5	NS NS	NS NS	NS NS
	03/12/19	NS NS	NS.	NS:	NS:	NS	NS NS	0.00	49.05	3.539.52	NS NS	NS NS	NS	NS.	NS NS
	1907 (47.19)	.5456	190		1962	165	. Chie	9.00	40.02	2,009,02	1946	(9-2)	16-3	145	1942
ug/L = microgram mg/L= microgram < = Not detected fl-bmp - feet-bel fl-msl - feet-mes deg-C - degrees	ns per liter I above laborator ow measuring po n sea level -Celcius mens per centim led Product Point	y reporting l int		ion (NMWQC)	Standard										

Appendix C
Groundwater Laboratory Reports
(on disk)

June 14, 2017

Order No.: 1706060

Justin Covey

GHD

2135 South Loop 250 West

Midland, Texas 79703

TEL: (432) 686-0086

FAX (432) 686-0186

RE: Hobbs Tank

Dear Justin Covey:

DHL Analytical, Inc. received 9 sample(s) on 6/7/2017 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

John DuPont

General Manager

Set Segrock for

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-17-19

Table of Contents

Miscellaneous Documents	. 3
CaseNarrative 1706060	6
Analytical Report 1706060	7
AnalyticalQCSummaryReport 1706060	16

2300 Double Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 ■ FAX (512) 388-8229 Web: www.dhlanalytical.com E-Mail: login@dhlanalytical.com

CLIENT: GHD						_	-	_	_	_	_	•		,					- TELE		_	_	_		_	-	_	11/	71	1.4	_	71		بر	23	IU	וטי
ADDRESS: 14998	i.e	Cash 1	۸	9	# 800	_	_	_	-				_0	ATI	_	0	61	06	1	2	9	7	_		_		_		_		_	PAG	E_	1	_OF	1	
PHONE: 729-97	<i>u</i>	942	FAY/E	MAIL	7 151	. 1				2		٥.	P	O #										ЭНІ	_ W	OR	K (ORC	ER	#:	1	7	ŊΪ	٥C	لعالا	\bar{C}	
DATA REPORTED TO:	Bn	d Stepl	- 2450	ANTICLE .	Dreen. M	Pho	W	ØA.	0	»H	U.C	om	P	RO.	IEC	TL	OC/	TIO	N C	DR N	۱A۱	ΛE:		He	Ы	5	7	- 4.k	k	_						_	
ADDITIONAL REPOR	T COP	ES TO: Ju	H- M	Cove	1 0 94	de	6	-				-					JEC									-				TO	p.	70	3	13.	na:		-
Authorize 5%	T					Г	T		_	-	=	۲		_	_	_	_	_	_	-		-	7	-	7	-	7	7	7	7	n.	-	-	7	ng:	-	_
surcharge for	S=\$0		P=PAIN SL=SLU			1	PI	RES	ERV	ΆΤΙ	40	1						/	6	200	Y,	/	%	/	/	1	(5)	//		6	/	6	/	(0)	//	/	/
TRRP Report?	A=A	IR C	D=OTH	1ER	1	1		Г	Г	Г	I	1					/	18	/	///	16	1	/	1	9/	5	1	6	1	(\$°)	/	9	di	//	//	/	
☐ Yes ☐ No		QUID S EDIMENT	iO=SO	LID		١,,			모		l.	1				/5	%		/0	/3	/<	//	1		3	11.		1		/4,	/	\{\cdot\}	/,	//	//		
					1	# of Containers			NaOH	l	UNPRESERVED		and the	, Eq.	/3	9/			18	16	%	16	1	5/	1/2		35		1	%)	%	O Colored	/,	//			
						la de		Feet	O.		SE	1	4	%	×	1/3	X	/	/3	1	/	X	/	1/3	3	S		()	30	/	/	/	/,	/			
Field Sample I.D.	DHL Lab #	Date	Time	Matrix	Container Type	lê.	모	HNO	8	Щ	뚩	13	1	1	/	/6	8/6	1	//		13	6	/	1	0/	10	(3)	13		/,	/	/	/				
	Lub x				type	_	_	I	Ξ	Ľ	Ľ	1	8/4	\mathbb{Z}	Z	2/		1/2	1	/8	/		/	39/	(3)	23)	Z,	10	/	/,	/	/		FIELE	NO1	ES	
MW-4	D	06/06/17				9	8	1		X				5	3					1				Ī	ĺ	Ť	Ť	Ť	Í	Í	T			_	_	_	
MW-Z	O.F		1120	-		_	4	1		1	L				ı					,				Г	Г	Т	T	T	1	T	7						
MW-3	63		1242			_	Ш	Ш											T	П		П		Г	Г	T	1	1	7	T	7						
Mw-5	of		1303												T			\neg		П		ı		Г	T	T	Ť	1	1	1	\dagger		_		_	_	_
HTRW-2	05		1337				П					T	П	П	T		П	7	T	H				-		t	t	+	+	$^{+}$	+	_	-		_	-	-
HTRW-4	do		1357				T					T		T		П	П	7	7	1	┪	1			1	╁	t	+	+	+	+			_			
HTRW-1	n		1410				T	T		Т		T	T	H		П		\forall	1	H	7	7	П	\vdash	\vdash	t	+	$^{+}$	+	+	+		-		_	_	
DUP-1	98		_		11		V	1	П	1			П	V			\forall	7	7		+	+			Н	╁	+	+	+	╁	+	_	_	_	_	_	_
TRIP BLANK	09	V				2				Ħ		T	9	찟	Tie d			\forall	+	+	+	7		-	-	+	+	+	+	+	+			_	-	-	-
TEMP BLANK		-	_										H	9	-		1	7	+	+	+	7	-	-	-	t	+	+	+	+	+	_	-	_	_	_	
\searrow						Ħ		П		-		\vdash	\vdash			Н	\dashv	\forall	+	+	+	+		-	Н	╁	t	╁	+	+	+	_	-	_	_		-
									\neg		_		Н	1	7		\forall	+	+	+	+	+	-	-	-	┝	╁	╁	+	+	+		_		_	_	
1							T		T	7	_		H	+	\dashv	+	\dashv	+	+	+	+	+	+	-	_	┝	╀	+	+	+	+	_		_		_	-
14							7	7		1		-	Н	+	+	\dashv	\dashv	+	+	+	+	+	\dashv	-	Н	-	₽	+	╀	╀	+	_	_	_	-	_	
14	\neg					\dashv	\dashv	+	\dashv	+		\vdash	Н	+	\dashv	\dashv	+	+	+	+	+	+	4	_	_	H	╄	+	╀	+	+	_	_		_		
CONSTRUCTION NO.	650	9. O. F. W.	HATE:	0,500	uane stat	\dashv	-	+	-	+	-	H	H	+	+	\dashv	+	+	+	+	+	4	-	4	_	_	-	+	╀	_	1			_			
RELIMITUISMED SY (Sugnature)	terio de la		DATE/TI	IME	RECEIVED	BY: (Sign	pture	, 1	_		Ш	Ш	Ц	, !				\perp		+	Ц.				L			L		1						
RELINQUISHED BY: (Signature)	_	- 64	DATE/TI	17 16	RECEIVED	7	ed	E	X								N AF				E	DEC	-EV	WAT	OH.	Y U	ISE	ON)/	LY:	c	۸.,	ERM		10	>		
Jed	4	C	64	7	gist		oiga,	5	1	1			_				(0				1	CLU	-611	, mar	3 10		7 <u>0</u> 2	- 4	~ ~	_0	HI	EKM	#:.	_			
RELINQUISHED BY: (Signature)			DATE/TO		RECEIVED	BY: C	ygn.	scure	1						2	DAY	a l					CAI	RRII	יטי ER:	5E/	ALS LC	:)NF	ST/	KOI VR	KEN "D	FFI	E(IN DEΣ	ITAC	T Hpc	O NO	ᅄᇄ	SED
	Р	DHL DISPOSA	Net	700 00-4						_		3-					AAL.				1	٩c	OL.	RIE	R D	ELI	VE	łΥ		ت			_	5, 3		Jin	LA
		DITE DISPOSE	عد @ ¢2	.vv eacr	n 🗅 Re	CUTT	_		_	_	_		_		lo	IHE	R 🗅		_	_	-1	ПH	IAN	D C	EL	IVE	REC	_									
																															1.1					-	

GOLDEN. CD 80401 UNITED STATES US TO JENNIFER BARKER DHL ANALYTICAL 2300 DOUBLE CREEK DR ROUND ROCK TX 78664 DI AND BURNISH IN DIE IT DIE EN BESTELLE EN IN DESCRIPTION DE SECULO DE SECULO DE SECULO DE SECULO DE SECULO DE FedEx Express WED - 07 JUN 10:30A 3 of 3 PRIORITY OVERNIGHT MP8# 7868 1347 0931 0201 TX-US AUS

CUSTODY SEAL

DATE OC/OC/

SIGNATURE

BILL THIRD PARTY

ORIGIN ID:HOBA (616) 821-1012 DAVID BONGA GHD 14998 W STH AVE STE 8CO

SUA SU-XT

78664

Page 1 of 1

Samı	ple Receipt Chec	cklist
Client Name GHD		Date Received: 6/7/2017
Work Order Number 1706060		Received by JB
Checklist completed by: 6/7/2 Signature D Carrier name	late	Reviewed by 6/7/2017 Initials Date
	_	
Shipping container/cooler in good condition?	Yes 🗹	No Not Present
Custody seals intact on shippping container/cooler?	Yes 🗹	No Not Present
Custody seals intact on sample bottles?	Yes	No ☐ Not Present ☑
Chain of custody present?	Yes 🗹	No 🗀
Chain of custody signed when relinquished and received?	Yes 🔽	No
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌
Samples in proper container/bottle?	Yes 🗹	No 🗌
Sample containers intact?	Yes 🗹	No 🗆 🤼
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌
All samples received within holding time?	Yes 🗹	No 🗆
Container/Temp Blank temperature in compliance?	Yes 🗹	No □ 2.8 °C, 2.4
Water - VOA vials have zero headspace?	Yes 🗌	No ☐ No VOA vials submitted ☑
Water - pH<2 acceptable upon receipt?	Yes 🗹	No □ NA □ LOT# 8086
•	Adjusted? \(\)	Checked by
Water - ph>9 (S) or ph>12 (CN) acceptable upon receipt?	Yes 🗌	No□ NA☑ LOT#
	Adjusted?	Checked by
Any No response must be detailed in the comments section below	<i>i</i> .	
Client contacted Date contacted:	=====	Person contacted
	2	1 03011 0011tables
Contacted by: Regarding:		
Comments:		
•		
		077.72
Corrective Action		
<u> </u>		

Date: 14-Jun-17

CLIENT:

GHD

Project: Lab Order: Hobbs Tank 1706060

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition, M8015D and M8015V.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives except where noted in the following. For Volatiles analysis by method SW8260C the matrix spike recovery was slightly above control limits for all compounds. These are flagged accordingly in the enclosed QC summary report. The "S" flag denotes spike recovery was outside control limits. The LCS was within control limits for these compounds. No further corrective actions were taken.

For DRO analysis by method M8015D the surrogate recoveries for four samples were above control limits for Octacosane. These are flagged accordingly. The remaining surrogate was within control limits. No further corrective actions were taken.

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1706060

Date: 14-Jun-17

Client Sample ID: MW-4

Lab ID: 1706060-01

Collection Date: 06/06/17 10:55 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80	15D				Analyst: DB
TPH-DRO C10-C28	1.50	0.0784	0.0980		mg/L	1	06/12/17 11:35 AM
Surr: Isopropylbenzene	65.4	0	47-142		%REC	1	06/12/17 11:35 AM
Surr: Octacosane	118	0	51-124		%REC	1	06/12/17 11:35 AM
TPH PURGEABLE BY GC - WATER		M80	15V				Analyst: AV
Gasoline Range Organics	<0.0600	0.0600	0.100		mg/L	1	06/08/17 03:32 PM
Surr: Tetrachlorethene	100	0	74-138		%REC	1	06/08/17 03:32 PM
TRACE METALS: ICP-MS - WATER		SW6	020A				Analyst: CVD
Arsenic	0.0101	0.00200	0.00500		mg/L	1	06/08/17 05:08 PM
Barium	0.0803	0.00300	0.0100		mg/L	1	06/08/17 05:08 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	06/08/17 05:08 PM
Chromium	<0.00200	0.00200	0.00500		mg/L	1	06/08/17 05:08 PM
Lead	<0.000300	0.000300	0.00100		mg/L	1	06/08/17 05:08 PM
Selenium	0.00213	0.00200	0.00500	J	mg/L	1	06/08/17 05:08 PM
Silver	<0.00100	0.00100	0.00200		mg/L	1	06/08/17 05:08 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	06/08/17 02:51 PM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: BTJ
Benzene	<0.000300	0.000300	0.00100		mg/L	1	06/07/17 09:08 PM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	06/07/17 09:08 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	06/07/17 09:08 PM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	06/07/17 09:08 PM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	06/07/17 09:08 PM
Surr: 1,2-Dichloroethane-d4	102	0	72-119		%REC	1	06/07/17 09:08 PM
Surr: 4-Bromofluorobenzene	101	0	76-119		%REC	1	06/07/17 09:08 PM
Surr: Dibromofluoromethane	104	0	85-115		%REC	1	06/07/17 09:08 PM
Surr: Toluene-d8	96.2	0	81-120		%REC	1	06/07/17 09:08 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1706060

Date: 14-Jun-17

Client Sample ID: MW-2

Lab ID: 1706060-02

Collection Date: 06/06/17 11:20 AM

Matrix: AQUEOUS

TPH EXTRACTABLE BY GC - WAT TPH-DRO C10-C28 Surr: Isopropylbenzene Surr: Octacosane	4.98 55.8 134	M80 0.811 0 0	15 D 1.01 47-142 51-124		mg/L %REC	10	Analyst: DB 06/12/17 01:32 PM
Surr: Isopropylbenzene	55.8 134	0	47-142		•		06/12/17 01:32 PM
· · ·	134	0			%REC	40	
Surr: Octacosane	2	_	51-124		/01 \LO	10	06/12/17 01:32 PM
		_		S	%REC	10	06/12/17 01:32 PM
TPH PURGEABLE BY GC - WATER		M80	15 V				Analyst: AV
Gasoline Range Organics	0.105	0.0600	0.100		mg/L	1	06/08/17 08:22 PM
Surr: Tetrachlorethene	115	0	74-138		%REC	1	06/08/17 08:22 PM
TRACE METALS: ICP-MS - WATER	R	SW6	020A				Analyst: CVD
Arsenic	0.0274	0.00200	0.00500		mg/L	1	06/08/17 05:10 PM
Barium	0.627	0.00300	0.0100		mg/L	1	06/08/17 05:10 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	06/08/17 05:10 PM
Chromium	0.0269	0.00200	0.00500		mg/L	1	06/08/17 05:10 PM
Lead	0.00753	0.000300	0.00100		mg/L	1	06/08/17 05:10 PM
Selenium	< 0.00200	0.00200	0.00500		mg/L	1	06/08/17 05:10 PM
Silver	<0.00100	0.00100	0.00200		mg/L	1	06/08/17 05:10 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	06/08/17 02:53 PM
8260 WATER VOLATILES BY GC/N	IS	SW8	260C				Analyst: BTJ
Benzene	0.000327	0.000300	0.00100	J	mg/L	1	06/07/17 09:32 PM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	06/07/17 09:32 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	06/07/17 09:32 PM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	06/07/17 09:32 PM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	06/07/17 09:32 PM
Surr: 1,2-Dichloroethane-d4	102	0	72-119		%REC	1	06/07/17 09:32 PM
Surr: 4-Bromofluorobenzene	98.9	0	76-119		%REC	1	06/07/17 09:32 PM
Surr: Dibromofluoromethane	104	0	85-115		%REC	1	06/07/17 09:32 PM
Surr: Toluene-d8	97.0	0	81-120		%REC	1	06/07/17 09:32 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1706060

Date: 14-Jun-17

Client Sample ID: MW-3

Lab ID: 1706060-03

Collection Date: 06/06/17 12:42 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80	15D				Analyst: DB
TPH-DRO C10-C28	0.358	0.0781	0.0977		mg/L	1	06/12/17 11:44 AM
Surr: Isopropylbenzene	48.7	0	47-142		%REC	1	06/12/17 11:44 AM
Surr: Octacosane	136	0	51-124	S	%REC	1	06/12/17 11:44 AM
TPH PURGEABLE BY GC - WATER		M80	15V				Analyst: AV
Gasoline Range Organics	< 0.0600	0.0600	0.100		mg/L	1	06/08/17 03:56 PM
Surr: Tetrachlorethene	111	0	74-138		%REC	1	06/08/17 03:56 PM
TRACE METALS: ICP-MS - WATER		SW6	020A				Analyst: CVD
Arsenic	0.00503	0.00200	0.00500		mg/L	1	06/08/17 05:12 PM
Barium	0.155	0.00300	0.0100		mg/L	1	06/08/17 05:12 PM
Cadmium	0.000325	0.000300	0.00100	J	mg/L	1	06/08/17 05:12 PM
Chromium	0.0292	0.00200	0.00500		mg/L	1	06/08/17 05:12 PM
Lead	0.00286	0.000300	0.00100		mg/L	1	06/08/17 05:12 PM
Selenium	< 0.00200	0.00200	0.00500		mg/L	1	06/08/17 05:12 PM
Silver	<0.00100	0.00100	0.00200		mg/L	1	06/08/17 05:12 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	06/08/17 02:55 PM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: BTJ
Benzene	<0.000300	0.000300	0.00100		mg/L	1	06/07/17 09:56 PM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	06/07/17 09:56 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	06/07/17 09:56 PM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	06/07/17 09:56 PM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	06/07/17 09:56 PM
Surr: 1,2-Dichloroethane-d4	102	0	72-119		%REC	1	06/07/17 09:56 PM
Surr: 4-Bromofluorobenzene	101	0	76-119		%REC	1	06/07/17 09:56 PM
Surr: Dibromofluoromethane	102	0	85-115		%REC	1	06/07/17 09:56 PM
Surr: Toluene-d8	96.7	0	81-120		%REC	1	06/07/17 09:56 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT:

GHD

Project: Hobbs Tank

Project No: 078863 Lab Order: 1706060 Date: 14-Jun-17

Client Sample ID: MW-5

Lab ID: 1706060-04

Collection Date: 06/06/17 01:03 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80	15D				Analyst: DB
TPH-DRO C10-C28	0.162	0.0816	0.102		mg/L	1	06/12/17 11:53 AM
Surr: Isopropylbenzene	56.6	0	47-142		%REC	1	06/12/17 11:53 AM
Surr: Octacosane	114	0	51-124		%REC	1	06/12/17 11:53 AM
TPH PURGEABLE BY GC - WATER		M80	15 V				Analyst: AV
Gasoline Range Organics	<0.0600	0.0600	0.100		mg/L	1	06/08/17 04:20 PM
Surr: Tetrachlorethene	102	0	74-138		%REC	1	06/08/17 04:20 PM
TRACE METALS: ICP-MS - WATER		SW6	020A				Analyst: CVD
Arsenic	0.00507	0.00200	0.00500		mg/L	1	06/08/17 05:13 PM
Barium	0.122	0.00300	0.0100		mg/L	1	06/08/17 05:13 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	06/08/17 05:13 PM
Chromium	< 0.00200	0.00200	0.00500		mg/L	1	06/08/17 05:13 PM
Lead	0.000392	0.000300	0.00100	J	mg/L	1	06/08/17 05:13 PM
Selenium	0.00254	0.00200	0.00500	J	mg/L	1	06/08/17 05:13 PM
Silver	<0.00100	0.00100	0.00200		mg/L	1	06/08/17 05:13 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	06/08/17 03:07 PM
3260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: BTJ
Benzene	<0.000300	0.000300	0.00100		mg/L	1	06/07/17 10:20 PM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	06/07/17 10:20 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	06/07/17 10:20 PM
o-Xylene	< 0.000300	0.000300	0.00100		mg/L	1	06/07/17 10:20 PM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	06/07/17 10:20 PM
Surr: 1,2-Dichloroethane-d4	103	0	72-119		%REC	1	06/07/17 10:20 PM
Surr: 4-Bromofluorobenzene	101	0	76-119		%REC	1	06/07/17 10:20 PM
Surr: Dibromofluoromethane	103	0	85-115		%REC	1	06/07/17 10:20 PM
Surr: Toluene-d8	96.8	0	81-120		%REC	1	06/07/17 10:20 PM

- Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- TPH pattern not Gas or Diesel Range Pattern E
- MDL Method Detection Limit
- Reporting Limit RL
- Parameter not NELAC certified

- Analyte detected in the associated Method Blank В
- DF Dilution Factor
- Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

CLIENT: GHD

Lab Order:

Project: Hobbs Tank

Project No: 078863

1706060

Date: 14-Jun-17

Client Sample ID: HTRW-2

Lab ID: 1706060-05

Collection Date: 06/06/17 01:37 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80	15D				Analyst: DB
TPH-DRO C10-C28	0.332	0.0815	0.102		mg/L	1	06/12/17 12:02 PM
Surr: Isopropylbenzene	54.2	0	47-142		%REC	1	06/12/17 12:02 PM
Surr: Octacosane	116	0	51-124		%REC	1	06/12/17 12:02 PM
TPH PURGEABLE BY GC - WATER		M80	15V				Analyst: AV
Gasoline Range Organics	0.901	0.0600	0.100		mg/L	1	06/08/17 08:47 PM
Surr: Tetrachlorethene	101	0	74-138		%REC	1	06/08/17 08:47 PM
TRACE METALS: ICP-MS - WATER		SW6	020A				Analyst: CVD
Arsenic	0.00656	0.00200	0.00500		mg/L	1	06/08/17 04:15 PM
Barium	0.326	0.00300	0.0100		mg/L	1	06/08/17 04:15 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	06/08/17 04:15 PM
Chromium	< 0.00200	0.00200	0.00500		mg/L	1	06/08/17 04:15 PM
Lead	0.000345	0.000300	0.00100	J	mg/L	1	06/08/17 04:15 PM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	06/08/17 04:15 PM
Silver	<0.00100	0.00100	0.00200		mg/L	1	06/08/17 04:15 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	06/08/17 03:09 PM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
Benzene	0.342	0.00150	0.00500		mg/L	5	06/08/17 03:22 PM
Ethylbenzene	0.00281	0.000300	0.00100		mg/L	1	06/07/17 10:45 PM
m,p-Xylene	0.00850	0.000600	0.00200		mg/L	1	06/07/17 10:45 PM
o-Xylene	0.00935	0.000300	0.00100		mg/L	1	06/07/17 10:45 PM
Toluene	0.00405	0.000600	0.00200		mg/L	1	06/07/17 10:45 PM
Surr: 1,2-Dichloroethane-d4	102	0	72-119		%REC	1	06/07/17 10:45 PM
Surr: 1,2-Dichloroethane-d4	95.5	0	72-119		%REC	5	06/08/17 03:22 PM
Surr: 4-Bromofluorobenzene	101	0	76-119		%REC	1	06/07/17 10:45 PM
Surr: 4-Bromofluorobenzene	116	0	76-119		%REC	5	06/08/17 03:22 PM
Surr: Dibromofluoromethane	103	0	85-115		%REC	1	06/07/17 10:45 PM
Surr: Dibromofluoromethane	96.1	0	85-115		%REC	5	06/08/17 03:22 PM
Surr: Toluene-d8	96.2	0	81-120		%REC	1	06/07/17 10:45 PM
Surr: Toluene-d8	109	0	81-120		%REC	5	06/08/17 03:22 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT:

GHD

Project:

Hobbs Tank

Project No: Lab Order: 078863 1706060 Client Sample ID: HTRW-4

Lab ID: 1706060-06

Date: 14-Jun-17

Collection Date: 06/06/17 01:57 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATE	R	M80	15D			Analyst: DB
TPH-DRO C10-C28	0.736	0.0788	0.0985	mg/L	1	06/12/17 12:11 PM
Surr: Isopropylbenzene	47.5	0	47-142	%REC	1	06/12/17 12:11 PM
Surr: Octacosane	109	0	51-124	%REC	1	06/12/17 12:11 PM
TPH PURGEABLE BY GC - WATER		M80	15V			Analyst: AV
Gasoline Range Organics	1.97	0.0600	0.100	mg/L	1	06/08/17 10:24 PM
Surr: Tetrachlorethene	94.9	0	74-138	%REC	1	06/08/17 10:24 PM
TRACE METALS: ICP-MS - WATER		SW6	020A			Analyst: CVD
Arsenic	0.0136	0.00200	0.00500	mg/L	1	06/08/17 04:56 PM
Barium	0.330	0.00300	0.0100	mg/L	1	06/08/17 04:56 PM
Cadmium	<0.000300	0.000300	0.00100	mg/L	1	06/08/17 04:56 PM
Chromium	<0.00200	0.00200	0.00500	mg/L	1	06/08/17 04:56 PM
Lead	< 0.000300	0.000300	0.00100	mg/L	1	06/08/17 04:56 PM
Selenium	<0.00200	0.00200	0.00500	mg/L	1	06/08/17 04:56 PM
Silver	<0.00100	0.00100	0.00200	mg/L	1	06/08/17 04:56 PM
MERCURY TOTAL: AQUEOUS		SW7	470A			Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200	mg/L	1	06/08/17 03:11 PM
8260 WATER VOLATILES BY GC/M	s	SW8	260C			Analyst: BTJ
Benzene	0.564	0.00300	0.0100	mg/L	10	06/07/17 06:46 PM
Ethylbenzene	0.00362	0.000300	0.00100	mg/L	1	06/08/17 04:39 PM
m,p-Xylene	0.0360	0.000600	0.00200	mg/L	1	06/08/17 04:39 PM
o-Xylene	0.0218	0.000300	0.00100	mg/L	1	06/08/17 04:39 PM
Toluene	0.00620	0.000600	0.00200	mg/L	1	06/08/17 04:39 PM
Surr: 1,2-Dichloroethane-d4	98.9	0	72-119	%REC	1	06/08/17 04:39 PM
Surr: 1,2-Dichloroethane-d4	102	0	72-119	%REC	10	06/07/17 06:46 PM
Surr: 4-Bromofluorobenzene	101	0	76-119	%REC	10	06/07/17 06:46 PM
Surr: 4-Bromofluorobenzene	111	0	76-119	%REC	1	06/08/17 04:39 PM
Surr: Dibromofluoromethane	103	0	85-115	%REC	10	06/07/17 06:46 PM
Surr: Dibromofluoromethane	99.4	0	85-115	%REC	1	06/08/17 04:39 PM
Surr: Toluene-d8	107	0	81-120	%REC	1	06/08/17 04:39 PM
Surr: Toluene-d8	97.8	0	81-120	%REC	10	06/07/17 06:46 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1706060

Date: 14-Jun-17

Client Sample ID: HTRW-1

Lab ID: 1706060-07

Collection Date: 06/06/17 02:10 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATE	R	M80	15D				Analyst: DB
TPH-DRO C10-C28	0.549	0.0802	0.100		mg/L	1	06/12/17 12:20 PM
Surr: Isopropylbenzene	79.4	0	47-142		%REC	1	06/12/17 12:20 PM
Surr: Octacosane	248	0	51-124	s	%REC	1	06/12/17 12:20 PM
TPH PURGEABLE BY GC - WATER		M80	15V				Analyst: AV
Gasoline Range Organics	1.85	0.0600	0.100		mg/L	1	06/08/17 04:44 PM
Surr: Tetrachlorethene	96.8	0	74-138		%REC	1	06/08/17 04:44 PM
TRACE METALS: ICP-MS - WATER		SW6	020A				Analyst: CVD
Arsenic	0.00384	0.00200	0.00500	J	mg/L	1	06/08/17 04:17 PM
Barium	0.134	0.00300	0.0100		mg/L	1	06/08/17 04:17 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	06/08/17 04:17 PM
Chromium	<0.00200	0.00200	0.00500		mg/L	1	06/08/17 04:17 PM
Lead	<0.000300	0.000300	0.00100		mg/L	1	06/08/17 04:17 PM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	06/08/17 04:17 PM
Silver	<0.00100	0.00100	0.00200		mg/L	1	06/08/17 04:17 PM
MERCURY TOTAL: AQUEOUS		SW74	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	06/08/17 03:13 PM
8260 WATER VOLATILES BY GC/MS	3	SW8	260C				Analyst: DEW
Benzene	0.774	0.00300	0.0100		mg/L	10	06/08/17 03:47 PM
Ethylbenzene	0.00190	0.000300	0.00100		mg/L	1	06/07/17 11:09 PM
m,p-Xylene	0.0262	0.000600	0.00200		mg/L	1	06/07/17 11:09 PM
o-Xylene	0.0314	0.000300	0.00100		mg/L	1	06/07/17 11:09 PM
Toluene	0.0219	0.000600	0.00200		mg/L	1	06/07/17 11:09 PM
Surr: 1,2-Dichloroethane-d4	102	0	72-119		%REC	1	06/07/17 11:09 PM
Surr: 1,2-Dichloroethane-d4	97.0	0	72-119		%REC	10	06/08/17 03:47 PM
Surr: 4-Bromofluorobenzene	103	0	76-119		%REC	1	06/07/17 11:09 PM
Surr: 4-Bromofluorobenzene	114	0	76-119		%REC	10	06/08/17 03:47 PM
Surr: Dibromofluoromethane	102	0	85-115		%REC	1	06/07/17 11:09 PM
Surr: Dibromofluoromethane	96.8	0	85-115		%REC	10	06/08/17 03:47 PM
Surr: Toluene-d8	99.2	0	81-120		%REC	1	06/07/17 11:09 PM
Surr: Toluene-d8	108	0	81-120		%REC	10	06/08/17 03:47 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank
Project No: 078863

Lab Order: 1706060

Date: 14-Jun-17

Client Sample ID: DUP-1

Lab ID: 1706060-08 **Collection Date:** 06/06/17

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80	15D				Analyst: DB
TPH-DRO C10-C28	1.49	0.807	1.01		mg/L	10	06/12/17 01:41 PM
Surr: isopropylbenzene	53.2	0	47-142		%REC	10	06/12/17 01:41 PM
Surr: Octacosane	137	0	51-124	S	%REC	10	06/12/17 01:41 PM
TPH PURGEABLE BY GC - WATER		M80	15V				Analyst: AV
Gasoline Range Organics	1.43	0.0600	0.100		mg/L	1	06/08/17 07:58 PM
Surr: Tetrachlorethene	96.7	0	74-138		%REC	1	06/08/17 07:58 PM
TRACE METALS: ICP-MS - WATER		SW6	020A				Analyst: CVD
Arsenic	0.00397	0.00200	0.00500	J	mg/L	1	06/08/17 04:18 PM
Barium	0.138	0.00300	0.0100		mg/L	1	06/08/17 04:18 PM
Cadmium	< 0.000300	0.000300	0.00100		mg/L	1	06/08/17 04:18 PM
Chromium	<0.00200	0.00200	0.00500		mg/L	1	06/08/17 04:18 PM
Lead	< 0.000300	0.000300	0.00100		mg/L	1	06/08/17 04:18 PM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	06/08/17 04:18 PM
Silver	<0.00100	0.00100	0.00200		mg/L	1	06/08/17 04:18 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	06/08/17 03:16 PM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
Benzene	0.694	0.00300	0.0100		mg/L	10	06/08/17 04:13 PM
Ethylbenzene	0.00137	0.000300	0.00100		mg/L	1	06/07/17 11:59 PM
m,p-Xylene	0.0210	0.000600	0.00200		mg/L	1	06/07/17 11:59 PM
o-Xylene	0.0262	0.000300	0.00100		mg/L	1	06/07/17 11:59 PM
Toluene	0.0138	0.000600	0.00200		mg/L	1	06/07/17 11:59 PM
Surr: 1,2-Dichloroethane-d4	103	0	72-119		%REC	1	06/07/17 11:59 PM
Surr: 1,2-Dichloroethane-d4	96.9	0	72-119		%REC	10	06/08/17 04:13 PM
Surr: 4-Bromofluorobenzene	103	0	76-119		%REC	1	06/07/17 11:59 PM
Surr: 4-Bromofluorobenzene	114	0	76-119		%REC	10	06/08/17 04:13 PM
Surr: Dibromofluoromethane	101	0	85-115		%REC	1	06/07/17 11:59 PM
Surr: Dibromofluoromethane	96.5	0	85-115		%REC	10	06/08/17 04:13 PM
Surr: Toluene-d8	96.8	0	81-120		%REC	1	06/07/17 11:59 PM
Surr: Toluene-d8	107	0	81-120		%REC	10	06/08/17 04:13 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order:

1706060

Date: 14-Jun-17

Client Sample ID: TRIP BLANK

Lab ID: 1706060-09

Collection Date: 06/06/17

Matrix: TRIP BLANK

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260C			Analyst: DEW
Benzene	< 0.000300	0.000300	0.00100	mg/L	1	06/08/17 02:56 PM
Ethylbenzene	<0.000300	0.000300	0.00100	mg/L	1	06/07/17 11:34 PM
m,p-Xylene	<0.000600	0.000600	0.00200	mg/L	1	06/07/17 11:34 PM
o-Xylene	<0.000300	0.000300	0.00100	mg/L	1	06/07/17 11:34 PM
Toluene	<0.000600	0.000600	0.00200	mg/L	1	06/07/17 11:34 PM
Surr: 1,2-Dichloroethane-d4	95.8	0	72-119	%REC	1	06/08/17 02:56 PM
Surr: 1,2-Dichloroethane-d4	102	0	72-119	%REC	1	06/07/17 11:34 PM
Surr: 4-Bromofluorobenzene	109	0	76-119	%REC	1	06/08/17 02:56 PM
Surr: 4-Bromofluorobenzene	100	0	76-119	%REC	1	06/07/17 11:34 PM
Surr: Dibromofluoromethane	98.1	0	85-115	%REC	1	06/08/17 02:56 PM
Surr: Dibromofluoromethane	101	0	85-115	%REC	1	06/07/17 11:34 PM
Surr: Toluene-d8	110	0	81-120	%REC	1	06/08/17 02:56 PM
Surr: Toluene-d8	96.6	0	81-120	%REC	1	06/07/17 11:34 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: GHD

ANALYTICAL QC SUMMARY REPORT

Work Order: 1706060
Project: Hobbs Tank

RunID: GC15_170612A

Date: 14-Jun-17

The QC data in batch 80812 applies	to the following samples: 170	6060-01D, 1706060-02D,	, 1706060-03D, 1	1706060-04D, 17	'06060-05D, 1706	060-
06D, 1706060-07D, 1706060-08D						

Sample ID LCS-80812	Batch ID:	80812		TestNo	: M80	015D		Units:	mg/L
SampType: LCS	Run ID:	GC15_	170612A	Analys	is Date: 6/1 2	2/2017 10:08	3:38 AM	Prep Date	6/8/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
TPH-DRO C10-C28		1.02	0.100	1.250	0	81.6	50	114	
Surr: Isopropylbenzene	(0.0877		0.1000		87.7	47	142	
Surr: Octacosane		0.102		0.1000		102	51	124	

Sample ID LCSD-80812	Batch ID:	80812		TestNo	: мвс)15D		Units:	mg/l	_
SampType: LCSD	Run ID:	GC15_	170612A	Analys	is Date: 6/12	2/2017 10:23	:28 AM	Prep Date	6/8/2	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
TPH-DRO C10-C28		1.07	0.100	1.250	0	85.9	50	114	5.09	30
Surr: Isopropylbenzene	(0.0909		0.1000		90.9	47	142	0	0
Surr: Octacosane		0.106		0.1000		106	51	124	0	0

Sample ID MB-80812	Batch ID:	80812		TestNo	М	8015D		Units:	mg/L
SampType: MBLK	Run ID:	GC15_	170612A	Analysi	s Date: 6/	12/2017 10:50	:26 AM	Prep Date	6/8/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
TPH-DRO C10-C28	<	0.0800	0.100						
Surr: Isopropylbenzene	(0.0642		0.1000		64.2	47	142	
Surr: Octacosane		0.104		0.1000		104	51	124	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits
N Parameter not NELAC certified

Page 1 of 8

GHD

Work Order: 1706060

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs Tank

RunID: GC4_170608A

Project: Hobbs Ta	nk					Kunl	D; (GC4_1706	08A	
The QC data in batch 80814 app 06B, 1706060-07B, 1706060-08		ollowing s	amples: 1706	060-01B, 1706	060-02B, 17	06060-03B	1706060	-04B, 170606	60-05B, 1	1706060-
Sample ID LCS-80814	Batch ID:	80814		TestNo	: M80	15V		Units:	mg/L	
SampType: LCS	Run ID:	GC4_1	70608A	Analys	is Date: 6/8/ 2	2017 11:19	02 AM	Prep Date:	6/8/20	17
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Gasoline Range Organics		2.66	0.100	2.500	0	107	67	136		
Surr: Tetrachlorethene		0.377		0.4000		94.2	74	138		
Sample ID MB-80814	Batch ID:	80814		TestNo	: M80	15V		Units:	mg/L	
SampType: MBLK	Run ID:	GC4_1	70608A	Analys	is Date: 6/8 /2	2017 12:30	:54 PM	Prep Date:	6/8/20	17
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Gasoline Range Organics	<	0.0600	0.100							
Surr: Tetrachlorethene		0.418		0.4000		104	74	138		
Sample ID 1706060-06BMS	Batch ID:	80814		TestNo	: M80	15 V		Units:	mg/L	
SampType: MS	Run ID:	GC4_1	70608A	Analys	is Date: 6/8/ 2	2017 10:49	16 PM	Prep Date:	6/8/20	17
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Gasoline Range Organics		4.77	0.100	2.500	1.972	112	67	136		
Surr: Tetrachlorethene		0.373		0.4000		93.2	74	138		
Sample ID 1706060-06BMSD	Batch ID:	80814		TestNo	: M80	15 V		Units:	mg/L	
SampType: MSD	Run ID:	GC4_1	70608A	Analys	is Date: 6/8/	2017 11:13	43 PM	Prep Date:	6/8/20	17
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Gasoline Range Organics		4.57	0.100	2.500	1.972	104	67	136	4.25	30
Surr: Tetrachlorethene		0.362		0.4000		90.6	74	138	0	0

Qualifiers:

Analyte detected in the associated Method Blank

 $\label{eq:J_def} J \qquad \text{Analyte detected between MDL and RL}$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R PD outside accepted control limits
 S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 2 of 8

GHD

Work Order: 1706060

ANALYTICAL QC SUMMARY REPORT

WOIR Older.	1700000								
	Hobbs Tank					RunID			IG_170608C
The QC data in batch 06C, 1706060-07C, 1		ne following sai	mples: 17060	60-01C, 17060	60-02C, 170	6060-03C ,	1706060-	-04C, 170606	60-05C, 1706060-
Sample ID MB-8080	9 Batch	ID: 80809		TestNo:	SW74	170A		Units:	mg/L
SampType: MBLK	Run II	CETAC2	_HG_170608	Analysis	Date: 6/8/20	017 2:38:39	PM	Prep Date:	6/8/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	RPD RPDLimit Qu
Mercury		<0.0000800	0.000200						
Sample ID LCS-808	09 Batch	ID: 80809		TestNo:	SW74	170A		Units:	mg/L
SampType: LCS	Run II	CETAC2	_HG_170608	Analysis	Date: 6/8/20	017 2:40:55	PM	Prep Date:	6/8/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	RPD RPDLimit Qu
Mercury		0.00213	0.000200	0.00200	0	106	85	115	
Sample ID LCSD-80	809 Batch	ID: 80809		TestNo:	SW74	\$70A		Units:	mg/L
SampType: LCSD	Run II	CETAC2	_HG_170608	Analysis	Date: 6/8/20	017 2:43:11	PM	Prep Date:	6/8/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	RPD RPDLimit Qu
Mercury		0.00212	0.000200	0.00200	0	106	85	115	0.471 15
Sample ID 1706060-	-03C SD Batch	ID: 80809		TestNo:	SW74	170A		Units:	mg/L
SampType: SD	Run II	CETAC2	_HG_170608	Analysis	Date: 6/8/20	017 2:58:03	PM	Prep Date:	6/8/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	RPD RPDLimit Qu
Mercury		<0.000400	0.00100	0	0				0 10
Sample ID 1706060-	-03C PDS Batch	ID: 80809		TestNo:	SW74	170A		Units:	mg/L
SampType: PDS	Run II	CETAC2	_HG_170608	Analysis	Date: 6/8/20	017 3:00:19	PM	Prep Date:	6/8/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	RPD RPDLimit Qu
Mercury		0.00234	0.000200	0.00250	0	93.6	85	115	
Sample ID 1706060	-03C MS Batch	ID: 80809		TestNo:	SW74	470A		Units:	mg/L
SampType: MS	Run II	CETAC2	2_HG_170608	Analysis	Date: 6/8/20	017 3:02:35	5 PM	Prep Date:	6/8/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	RPD RPDLimit Qu
Mercury		0.00217	0.000200	0.00200	0	108	80	120	
Sample ID 1706060	-03C MSD Batch	ID: 80809		TestNo:	SW74	470A		Units:	mg/L
SampType: MSD	Run II	D: CETAC2	_HG_170608	Analysis	Date: 6/8/2	017 3:04:51	PM	Prep Date:	6/8/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	RPD RPDLimit Qu
					_				

Qualifiers:

Mercury

B Analyte detected in the associated Method Blank

0.00224

0.000200

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

0

R RPD outside accepted control limits

112

120

Page 3 of 8

S Spike Recovery outside control limits

N Parameter not NELAC certified

0.00200

GHD

Work Order: 1706060

ANALYTICAL QC SUMMARY REPORT

Project:	Hobbs Tank					RunID	: I	CP-MS5_	170608F	r
The QC data in bat 06C, 1706060-07C	ch 80808 applies to the , 1706060-08C	following san	nples: 1706	060-01C, 17060	60-02C, 170	6060-03C,	1706060-	-04C, 170606	60-05C, 17	06060-
Sample ID MB-80	808 Batch ID:	80808		TestNo:	SW60	20A		Units:	mg/L	
SampType: MBLK	Run ID:	ICP-MS5	_170608F	Analysis	Date: 6/8/20	17 4:48:00	PM	Prep Date:	6/8/2017	7
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	6RPD RP	DLimit Qua
Arsenic	•	<0.00200	0.00500							
Barium	•	<0.00300	0.0100							
Cadmium	<	0.000300	0.00100							
Chromium	•	<0.00200	0.00500							
Lead	<	0.000300	0.00100							
Selenium	•	<0.00200	0.00500							
Silver	•	<0.00100	0.00200							
Sample ID LCS-8	0808 Batch ID:	80808		TestNo:	SW60	20A		Units:	mg/L	
SampType: LCS	Run ID:	ICP-MS5	_170608F	Analysis	Date: 6/8/20	17 4:50:00	PM	Prep Date:	6/8/2017	•
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	6RPD RPI	DLimit Qua
Arsenic		0.207	0.00500	0.200	0	104	80	120		
Barium		0.201	0.0100	0.200	0	100	80	120		
Cadmium		0.202	0.00100	0.200	0	101	80	120		
Chromium		0.206	0.00500	0.200	0	103	80	120		
Lead		0.199	0.00100	0.200	0	99.6	80	120		
Selenium		0.209	0.00500	0.200	0	104	80	120		
Silver		0.194	0.00200	0.200	0	97.2	80	120		
Sample ID LCSD-	80808 Batch ID:	80808		TestNo:	SW60	20A		Units:	mg/L	
SampType: LCSD	Run ID:	ICP-MS5	_170608F	Analysis	Date: 6/8/20	17 4:54:00	PM	Prep Date:	6/8/2017	,
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	RPD RP	DLimit Qua
Arsenic		0.206	0.00500	0.200	0	103	80	120	0.657	15
Barium		0.200	0.0100	0.200	0	99.9	80	120	0.424	15
Cadmium		0.201	0.00100	0.200	0	101	80	120	0.347	15
Chromium		0.206	0.00500	0.200	0	103	80	120	0.071	15
Lead		0.201	0.00100	0.200	0	100	80	120	0.781	15
Selenium		0.209	0.00500	0.200	0	105	80	120	0.250	15
Silver.		0.195	0.00200	0.200	0	97.5	80	120	0.310	15
Sample ID 170606	60-06C SD Batch ID:	80808		TestNo:	SW60	20A		Units:	mg/L	
SampType: SD	Run ID:	ICP-MS5	_170608F	Analysis	Date: 6/8/20	17 4:58:00	PM	Prep Date:	6/8/2017	•
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	6RPD RP	DLimit Qua

Qualifiers:

Arsenic

Barium

Cadmium

Analyte detected in the associated Method Blank

0.0139

0.326

<0.00150

0.0250

0.0500

0.00500

- Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- Reporting Limit
- Analyte detected between SDL and RL
- Dilution Factor
- MDL Method Detection Limit

0.0136

0.330

0

RPD outside accepted control limits

2.51

1.22

0

10

10

10

Page 4 of 8

- S Spike Recovery outside control limits
- Parameter not NELAC certified

0

0

0

CLIENT: GHD
Work Order: 1706060
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS5_170608F

Project:	Hobbs Tar	nk 					KunII): 1	CP-MS5_	170608	F
Sample ID	1706060-06C SD	Batch ID:	80808		TestNo	: SW	6020A		Units:	mg/L	
SampType:	SD	Run ID:	ICP-MS	5_170608F	Analys	is Date: 6/8/	2017 4:58:0	0 PM	Prep Date:	6/8/201	17
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qua
Chromium		<	<0.0100	0.0250	0	0				0	10
Lead		<	0.00150	0.00500	0	0				0	10
Selenium		<	<0.0100	0.0250	0	0				0	10
Silver		<	0.00500	0.0100	0	0				0	10
Sample ID	1706060-06C PDS	Batch ID:	80808		TestNo	: SW	6020A		Units:	mg/L	
SampType:	PDS	Run ID:	ICP-MS	5_170608F	Analys	is Date: 6/8/	2017 5:15:0	0 PM	Prep Date:	6/8/201	17
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	&RPD RI	DLimit Qual
Arsenic			0.215	0.00500	0.200	0.0136	101	80	120		
Barium			0.517	0.0100	0.200	0.330	93.4	80	120		
Cadmium			0.204	0.00100	0.200	0	102	80	120		
Chromium			0.212	0.00500	0.200	0	106	80	120		
Lead			0.202	0.00100	0.200	0	101	80	120		
Selenium			0.195	0.00500	0.200	0	97.7	80	120		
Silver			0.198	0.00200	0.200	0	99.0	80	120		
Sample ID	1706060-06C MS	Batch ID:	80808		TestNo): SW (6020A		Units:	mg/L	
SampType:	MS	Run ID:	ICP-MS	5_170608F	Analys	is Date: 6/8/	2017 5:17:0	0 PM	Prep Date:	6/8/201	17
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 🤋	%RPD RI	PDLimit Qua
Arsenic			0.215	0.00500	0.200	0.0136	101	80	120		
Barium			0.526	0.0100	0.200	0.330	98.2	80	120		
Cadmium			0.202	0.00100	0.200	0	101	80	120		
Chromium			0.205	0.00500	0.200	0	102	80	120		
Lead			0.203	0.00100	0.200	0	102	80	120		
Selenium			0.195	0.00500	0.200	0	97.6	80	120		
Silver			0.197	0.00200	0.200	0	98.3	80	120		
Sample ID	1706060-06C MSD	Batch ID:	80808		TestNo	o: SW	6020A		Units:	mg/L	
SampType:	MSD	Run ID:	ICP-MS	5_170608F	Analys	is Date: 6/8/	2017 5:19:0	0 PM	Prep Date:	6/8/201	17
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD RI	PDLimit Qua
Arsenic			0.213	0.00500	0.200	0.0136	100	80	120	0.905	15
Barium			0.522	0.0100	0.200	0.330	96.1	80	120	0.813	15
Cadmium			0.203	0.00100	0.200	0	101	80	120	0.206	15
Chromium			0.205	0.00500	0.200	0	103	80	120	0.164	15
Lead			0.202	0.00100	0.200	0	101	80	120	0.573	15

Qualifiers:

Selenium

Silver

B Analyte detected in the associated Method Blank

0.193

0.198

0.00500

0.00200

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

0

0

R RPD outside accepted control limits

96.6

98.9

80

80

120

120

1.04

0.618

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 5 of 8

15

15

0.200

0.200

Project:

GHD

Hobbs Tank

Work Order: 1706060

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5_170607C

The QC data in batch 80806 applies to the following samples: 1706060-01A, 1706060-02A, 1706060-03A, 1706060-04A, 1706060-05A, 1706060-06A, 1706060-07A, 1706060-08A, 1706060-09A

06A, 1706060-07A, 1706060-08	A, 1706060-0	JSA							
Sample ID LCS-80806	Batch ID:	80806		TestNo:	SW8	3260C		Units:	mg/L
SampType: LCS	Run ID:	GCMS	5_170607C	Analysis	s Date: 6/7/ 2	2017 4:05:0	00 PM	Prep Date:	6/7/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLimit Qual
Benzene	(0.0244	0.00100	0.0232	0	105	81	122	
Ethylbenzene	(0.0240	0.00100	0.0232	0	104	80	120	
m,p-Xylene	(0.0491	0.00200	0.0464	0	106	80	120	
o-Xylene	(0.0237	0.00100	0.0232	0	102	80	120	
Toluene	(0.0249	0.00200	0.0232	0	107	80	120	
Surr: 1,2-Dichloroethane-d4		213		200.0		107	72	119	
Surr: 4-Bromofluorobenzene		203		200.0		101	76	119	
Surr: Dibromofluoromethane		211		200.0		106	85	115	
Surr: Toluene-d8		197		200.0		98.4	81	120	
Sample ID MB-80806	Batch ID:	80806		TestNo:	SW8	3260C		Units:	mg/L
Sample ID MB-80806 SampType: MBLK	Batch ID: Run ID:		5_170607C		SW 8 s Date: 6/7/2		00 PM	Units: Prep Date:	mg/L 6/7/2017
I .	Run ID:		5_17 0607C RL					Prep Date:	_
SampType: MBLK	Run ID:	GCMS	_	Analysis	s Date: 6/7/2	2017 4:50:0		Prep Date:	6/7/2017
SampType: MBLK Analyte	Run ID:	GCMS:	RL	Analysis	s Date: 6/7/2	2017 4:50:0		Prep Date:	6/7/2017
SampType: MBLK Analyte Benzene	Run ID: -0 <0 <0	GCMS:	RL 0.00100	Analysis	s Date: 6/7/2	2017 4:50:0		Prep Date:	6/7/2017
SampType: MBLK Analyte Benzene Ethylbenzene	Run ID:	GCMS: Result .000300 .000300	RL 0.00100 0.00100	Analysis	s Date: 6/7/2	2017 4:50:0		Prep Date:	6/7/2017
SampType: MBLK Analyte Benzene Ethylbenzene m,p-Xylene	Run ID:	GCMS: Result .000300 .000300	RL 0.00100 0.00100 0.00200	Analysis	s Date: 6/7/2	2017 4:50:0		Prep Date:	6/7/2017
SampType: MBLK Analyte Benzene Ethylbenzene m,p-Xylene o-Xylene	Run ID:	GCMS: Result .000300 .000300 .000600	RL 0.00100 0.00100 0.00200 0.00100	Analysis	s Date: 6/7/2	2017 4:50:0		Prep Date:	6/7/2017
SampType: MBLK Analyte Benzene Ethylbenzene m,p-Xylene o-Xylene Toluene	Run ID:	GCMS: Result 000300 000300 000600 000600	RL 0.00100 0.00100 0.00200 0.00100	Analysis	s Date: 6/7/2	%REC	LowLim	Prep Date: it HighLimit %	6/7/2017
SampType: MBLK Analyte Benzene Ethylbenzene m,p-Xylene o-Xylene Toluene Surr: 1,2-Dichloroethane-d4	Run ID:	GCMS: Result .000300 .000300 .000600 .000300 .000600 .000600 206	RL 0.00100 0.00100 0.00200 0.00100	Analysis SPK value	s Date: 6/7/2	%REC	LowLim	Prep Date: it HighLimit %	6/7/2017
SampType: MBLK Analyte Benzene Ethylbenzene m,p-Xylene o-Xylene Toluene Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene	Run ID: <0 <0 <0 <0	Result .000300 .000300 .000300 .000600 .000300 .000600 206 202	RL 0.00100 0.00100 0.00200 0.00100	Analysis SPK value 200.0 200.0	s Date: 6/7/2	%REC	72 76	Prep Date: it HighLimit % 119 119	6/7/2017

Sample ID 1706060-06AMS	Batch ID:	80806		TestNo	: SW8	260C		Units:	mg/L	
SampType: MS	Run ID:	GCMS5	_170607C	Analys	is Date: 6/7/2	017 6:00:0	00 PM	Prep Date	6/7/2017	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLim	it Qual
Benzene		1.14	0.0100	0.464	0.564	123	81	122		S
Ethylbenzene		0.580	0.0100	0.464	0.00347	124	80	120		S
m,p-Xylene		1.21	0.0200	0.928	0.0424	126	80	120		S
o-Xylene		0.612	0.0100	0.464	0.0243	127	80	120		S
Toluene		0.602	0.0200	0.464	0.00952	128	80	120		S
Surr: 1,2-Dichloroethane-d4		2010		2000		101	72	119		
Surr: 4-Bromofluorobenzene		2000		2000		99.8	76	119		
Surr: Dibromofluoromethane		2110		2000		105	85	115		
Surr: Toluene-d8		1980		2000		98.8	81	120		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 6 of 8

GHD

Work Order: 1706060
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS5_170607C

Sample ID 1706060-06AMSD	Batch ID:	80806		TestNo	swa	3260C		Units:	mg/l	L
SampType: MSD	Run ID:	GCMS	5_170607C	Analys	is Date: 6/7/2	2017 6:23:0	0 PM	Prep Date	: 6/7/2	2017
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Benzene		1.09	0.0100	0.464	0.564	114	81	120	4.06	20
Ethylbenzene		0.540	0.0100	0.464	0.00347	116	80	120	7.19	20
m,p-Xylene		1.11	0.0200	0.928	0.0424	115	80	120	8.93	20
o-Xylene		0.565	0.0100	0.464	0.0243	116	80	120	8.03	20
Toluene		0.555	0.0200	0.464	0.00952	118	80	120	8.18	20
Surr: 1,2-Dichloroethane-d4		2010		2000		101	72	119	0	0
Surr: 4-Bromofluorobenzene		2000		2000		100	76	119	0	0
Surr: Dibromofluoromethane		2110		2000		106	85	115	0	0
Surr: Toluene-d8		2000		2000		100	81	120	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 7 of 8

GHD

Work Order: 1706060 **Project:** Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS7_170608A

The QC data in batch 80806 applies to the following samples: 1706060-01A, 1706060-02A, 1706060-03A, 1706060-04A, 1706060-05A, 1706060-09A, 1706060-07A, 1706060-08A, 1706060-09A

	1, 11 00000								
Sample ID SB-170608	Batch ID: 80806		TestNo	: SW8	3260C		Units:	mg/L	
SampType: SBLK	Run ID: GCMS7_	_170608A	Analysi	s Date: 6/8/2	2017 2:31:0	0 PM	Prep Date	:	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLin	nit Qual
Benzene	<0.000300	0.00100	0						
Ethylbenzene	<0.000300	0.00100	0						
m,p-Xylene	<0.000600	0.00200	0						
o-Xylene	< 0.000300	0.00100	0 -						
Toluene	<0.000600	0.00200	0						
Surr: 1,2-Dichloroethane-d4	193		0						
Surr: 4-Bromofluorobenzene	221		0						
Surr: Dibromofluoromethane	194		0						
Surr: Toluene-d8	218		0						

Qualifiers:

В Analyte detected in the associated Method Blank

Analyte detected between MDL and RL $\,$ J

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

Page 8 of 8

Spike Recovery outside control limits

Parameter not NELAC certified

October 02, 2017

Order No.: 1709236

Justin Covey

GHD

2135 South Loop 250 West

Midland, Texas 79703

TEL: 720.974.0943

FAX (432) 686-0186

RE: Hobbs Tank

Dear Justin Covey:

DHL Analytical, Inc. received 6 sample(s) on 9/22/2017 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-17-19

Table of Contents

Miscellaneous Documents	. 3
CaseNarrative 1709236	. 6
Analytical Report 1709236	. 7
AnalyticalQCSummaryReport 1709236	13

2300 Double Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 圖 FAX (512) 388-8229 Web: www.dhlanalytical.com E-Mail: login@dhlanalytical.com

(ela)

CHAIN-OF-CUSTODY

ANAL								maii	. rog	urne	gurm	urku	uyuc	ui.co				200		_	UL COLUMN		-	П.	ΛI	IA.	-U	Γ-	Ų	216	וטכ
CLIENT: House	16	NERGY	LA	PUTA	JERS							D	DATE	:	•	1/2	01	17									PA	GE		OF	
ADDRESS: .											- 1	Р	0 #:								рні	wc	ORK	ORI	DER	#:	7	0	2	36	
PHONE: 305/94/ DATA REPORTED TO:	Bec	200 STE	AX/E-	MAIL:	100 124	~	00	244	_	_	<i>-</i>	PAGE OF POSECT LOCATION OR NAME: HOBBS TWE								_											
ADDITIONAL REPORT	T COPI	IFS TO:	DITE OF		/ G/S n	<u>υ.</u>	رد	78/		_	-	CLENT PROJECT #: / COLLECTOR:								-											
	T	10		_		_			-	_	- 1								,	, ,											
Authorize 5% surcharge for	S=50		=PAIN	IT			PR	ESEI	RVA1	IOI	Ν					1	//	10	%	19	//	5/	/	//	%)	101	16	/		//	//
TRRP Report?	A≃A		L=SLL D=OTH				П		T	T					1	//		3/8	//	/\$]	//	6/5	//	//0	1/		//	/	//	//	
☐ Yes ☐ No		QUID S	0=50				Ш		ا ڥ		1			1	3	W.	37		1/2	/\`\	(0)	3/	//3		10	/2)	15/4	9	//	/	
	2E=2	SEDIMENT				# of Containers		1	H,SO, D NaOH D	15	Numerous N		1.	18	Z ?	Œ,	//	16	175				1/2	1/0	13	%)		/	//		
				1		ata				9	5	4	V	18	64	10/		1/5	1	/1	1/2	X	36	1/0	1	1	//	/			
Field	DHL				Container	Ę,	모	9	ပ္ကုိ	ۋ ر	3	3%	1/3	18	300	30/	5/	1	1/3	1	10%	5/	0/4	%	X	//	//	/			
Sample I.D.	Lab#	Date		Matrix	Type	#	Ĭ	키	표] 일	2 =	5 7	8/	8/3	10	/%	10	40/	3/3		18	13	10%	0/4	3/4	1	//	//		FIELD	NOTES	
mw-3	0	9/19/17	1200	W		10	1	1		I	X	1.	V	T	T	Ť	Î		X	- 1	2	Ī		M	Ť	Ť	Ť				
mw-2	02	1		W		10				T	\triangleright	₹_	X		7	T	Т		X	. (2			×		\top	\top				
mw-4	03	1	1400	W		m		П		Т	X		X			T			X	3	4	Т	П	X		1					
mw-5	04	V	144	W		10			T	T	X	1	X	П		T	T		X	K	1	T		Ź		1					
HTRW-1	05	9/19/17	153		_	10		T	T	T	X		X	\top	1	+	\top		X	13	4			X	\neg	1					
TRIP	06	9/19/10	/			1		T	\top	T	X	1	17	1	#1	¥0			Н	7		1	Н	,	\top	+	+			_	
		111111111111111111111111111111111111111				-		\top	\top	Ť		+	1	7	VO L	7	+	П	\neg	+	+	+	Н	Н	+	+	+				
			-					\forall	+	t	+	H	H	+	+	+	+			+	+	+	Н	\dashv	+	+	+	_			
								+	+	t	+	\vdash	H	+	+	+	+	Н	\dashv	+	+	\vdash	Н	\dashv	+	+	+	-			
			1			\vdash	Н	+	+	H	+	-	H	+	+	+	+	Н	\dashv	-	╁	\vdash	Н	\dashv	-1	+	+-			-	
						Н	Н	+	+	╁	+	-	H	+	+	+	╁	H	-	+	+	+	Н	-	+	+					
			_	-			Н	+	+	╀	+	-	Н	+	+-	+	╁	-	\dashv	+	+	\vdash	Н	\dashv	+	+	+	_	-		
			-				\vdash	+	+	+	+	-	H	+	+	+	+		Н	-	+	-			+	+	+				-
		7.0				H	Н	+	+	+	-	\vdash	Н	+	+	+	+	Ш		4	+	-		Ц	4	+	+				
			-				Ш	1	1	1	1	L	Ш	1	1	1	1		Ц	1					\perp						
David M. Ann Same		1251	1.22																												2
RELINQUISHED BY: (Signature)			11.7	4.											I	L									T						
			DATE	IME	RECEIVE	ιι	x										UNI			LAB	ORA	TOR	Y U	SE O	NLY	ŧ.			7	7	
RELINQUISHED BY: (Signature) トル しょ		9 /20	DATE/I	IME	DECERTAL	BY:	(Sign	ature)									ALL F			REC									7		
F.J. (2 9/22/77 11:20 RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)							_	_)AY)AY		ALL Ì	-tRS	١	CUS	TOD	Y SE/	ALS:		BRO	OKEN	ı de	FINTA	CT :	□ NOT	USED					
recommendation of a second sec											u NLÆ	1			CAR						J2 2	FEDE	×Χ	LL UPS	o	THER					
	C	DHL DISPOS	AL @ \$.	5.00 eac	h 🗆 R	etur	n	-				3			HER				_	OH.									•		
							-					Ť	_	-					_			_									

Page 3 of 4

Ste 800 GOLDEN CO 80401 US TO John DuPont DHL ANALYTICAL (SC) 549JIFF19MMC 2300 DOUBLE CREEK DRIVE **ROUND ROCK TX 78664**

(512) 388-8222 NV: P0: REF:

RMA:

TRK# 7907 1047 6481

RETURN

78664

9622 0137 0 (000 000 0000) 0 00 7907 1047 6481

Sample	Receipt Check	klist			
Client Name GHD		Date Receiv	ved:	9/22/2017	
Work Order Number 1709236		Received by	EL		
Checklist completed by: Signature 9/22/201 Carrier name	17 <u>FedEx 1day</u>	Reviewed by	Initials	9/2:	2/2017 Date
Shipping container/cooler in good condition?	Yes 🗸	No 🗆	Not Present	П	
Custody seals intact on shippping container/cooler?	Yes 🗹	No 🗀	Not Present	_	
Custody seals intact on sample bottles?	Yes	No 🗆	Not Present	_	•
Chain of custody present?	Yes 🗹	No 🗆		_	15
Chain of custody signed when relinquished and received?	Yes 🗌	No 🗹			
Chain of custody agrees with sample labels?	Yes 🗹	No 🔲			
Samples in proper container/bottle?	Yes 🗹	No 🗀			
Sample containers intact?	Yes 🗌	No 🗹			
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌			
All samples received within holding time?	Yes 🗹	No 🗌			
Container/Temp Blank temperature in compliance?	Yes 🗌	No 🗹	22.4 °C		
Water - VOA vials have zero headspace?	Yes 🗌	No 🗹	No VOA viais	submitted [3
Water - pH<2 acceptable upon receipt?	Yes 🗹	No 🔲	NA E	OT# 8086	
	Adjusted? 17	0	Checked b	by EL	
Water - ph>9 (S) or ph>12 (CN) acceptable upon receipt?	Yes	No 🗌	NA 🗹 LO	OT#	(*)
	Adjusted?		Checked to	ру	
Any No response must be detailed in the comments section below.					
Client contacted GHO Date contacted:	9/22/17	Pers	on contacted	Brad	Stephenson
Contacted by: John D. Pont Regarding: Te	mp, no si	snoture,	von he	el space	A Bribye
comments: Samples arind out a	of temp	Col	arrivel	vlo	"Relinguished
by signeture for von for sample	MW-5 a	mul 1	bo lein		
Corrective Action Per Client proceed	v/and	7.57	\$ F	lag a	lata

Page 1 of 1

GHD

CLIENT: Project:

Hobbs Tank

Lab Order:

1709236

CASE NARRATIVE

Date: 02-Oct-17

Samples were analyzed using the methods outlined in the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition, EPA and Standard Methods.

One volatile vial for Sample MW-5 was broken in transit. There was sufficient sample volume to proceed with the requested analysis.

The Chain of Custody was received without a relinquish signature. The client was notified and asked the laboratory to proceed with the requested analysis.

The samples were submitted outside of the method specified temperature for Volatile Organics, DRO, GRO and Total Dissolved Solids Analyses. These results were "C" flagged in the Analytical Data Report.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives except where noted in the following. For DRO Analysis, the recovery of surrogate Octacosane for four samples was above the method control limits. These are flagged accordingly in the Analytical Data Report. The remaining surrogate for these samples was within method control limits. No further corrective action was taken.

For Volatile Organics Analysis, the recovery of Benzene for the Matrix Spike (1709236-05 MS) was slightly below the method control limits. This is flagged accordingly in the QC Summary Report. This analyte was within method control limits in the associated LCS. No further corrective action was taken.

CLIENT:

GHD

Project:

Project No:

Lab Order:

Hobbs Tank

1709236

Date: 02-Oct-17

Client Sample ID: MW-3

Lab ID: 1709236-01

Collection Date: 09/19/17 12:00 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WAT	ER	M80	15D				Analyst: DB
TPH-DRO C10-C28	0.122	0.0771	0.0964	С	mg/L	1	09/27/17 12:02 PM
Surr: Isopropylbenzene	83.7	0	47-142		%REC	1	09/27/17 12:02 PM
Surr: Octacosane	125	0	51-124	s	%REC	1	09/27/17 12:02 PM
TPH PURGEABLE BY GC - WATER	t	M80	15V				Analyst: BTJ
Gasoline Range Organics	<0.0600	0.0600	0.100	С	mg/L	1	09/28/17 01:38 PM
Surr: Tetrachlorethene	113	0	74-138		%REC	1	09/28/17 01:38 PM
TRACE METALS: ICP-MS - WATER	2	SW6	020A				Analyst: SP
Arsenic	0.00342	0.00200	0.00500	J	mg/L	1	09/28/17 01:44 PM
Barium	0.110	0.00300	0.0100		mg/L	1	09/28/17 01:44 PM
Cadmium	< 0.000300	0.000300	0.00100		mg/L	1	09/28/17 01:44 PM
Chromium	0.00235	0.00200	0.00500	J	mg/L	1	09/28/17 01:44 PM
Lead	0.000311	0.000300	0.00100	J	mg/L	1	09/28/17 01:44 PM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	09/28/17 01:44 PM
Silver	<0.00100	0.00100	0.00200		mg/L	1	09/28/17 01:44 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	09/26/17 11:10 AM
8260 WATER VOLATILES BY GC/M	I S	SW8	260C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 02:02 PM
Ethylbenzene	<0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 02:02 PM
m,p-Xylene	<0.000600	0.000600	0.00200	С	mg/L	1	09/25/17 02:02 PM
o-Xylene	< 0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 02:02 PM
Toluene	<0.000600	0.000600	0.00200	С	mg/L	1	09/25/17 02:02 PM
Surr: 1,2-Dichloroethane-d4	109	0	72-119		%REC	1	09/25/17 02:02 PM
Surr: 4-Bromofluorobenzene	99.8	0	76-119		%REC	1	09/25/17 02:02 PM
Surr: Dibromofluoromethane	106	0	85-115		%REC	1	09/25/17 02:02 PM
Surr: Toluene-d8	95.0	0	81-120		%REC	1	09/25/17 02:02 PM
ANIONS BY IC METHOD - WATER		E3	00				Analyst: JL
Chloride	104	3.00	10.0		mg/L	10	09/26/17 02:26 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JW
Total Dissolved Solids (Residue, Filterable)	793	10.0	10.0	С	mg/L	1	09/26/17 09:22 AM

- Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- TPH pattern not Gas or Diesel Range Pattern Ε
- MDL Method Detection Limit
- RL Reporting Limit
- Parameter not NELAC certified

- Analyte detected in the associated Method Blank
- DF Dilution Factor
- Analyte detected between MDL and RL J
- ND Not Detected at the Method Detection Limit
 - Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No:

Lab Order: 1709236

Date: 02-Oct-17

Client Sample ID: MW-2

Lab ID: 1709236-02

Collection Date: 09/19/17 01:00 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER	R	M80	15D				Analyst: DB
TPH-DRO C10-C28	2.74	0.0792	0.0990	С	mg/L	1	09/27/17 12:11 PM
Surr: Isopropylbenzene	81.5	0	47-142		%REC	1	09/27/17 12:11 PM
Surr: Octacosane	74.1	0	51-124		%REC	1	09/27/17 12:11 PM
TPH PURGEABLE BY GC - WATER		M80	15V				Analyst: BTJ
Gasoline Range Organics	0.0929	0.0600	0.100	JC	mg/L	1	09/28/17 02:02 PM
Surr: Tetrachlorethene	120	0	74-138		%REC	1	09/28/17 02:02 PM
TRACE METALS: ICP-MS - WATER		SW6	020A				Analyst: SP
Arsenic	0.0274	0.00200	0.00500		mg/L	1	09/28/17 01:46 PM
Barium	0.594	0.00300	0.0100		mg/L	1	09/28/17 01:46 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	09/28/17 01:46 PM
Chromium	0.0227	0.00200	0.00500		mg/L	1	09/28/17 01:46 PM
Lead	0.00400	0.000300	0.00100		mg/L	1	09/28/17 01:46 PM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	09/28/17 01:46 PM
Silver	<0.00100	0.00100	0.00200		mg/L	1	09/28/17 01:46 PM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	09/26/17 11:12 AM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 02:25 PM
Ethylbenzene	< 0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 02:25 PM
m,p-Xylene	<0.000600	0.000600	0.00200	С	mg/L	1	09/25/17 02:25 PM
o-Xylene	<0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 02:25 PM
Toluene	<0.000600	0.000600	0.00200	С	mg/L	1	09/25/17 02:25 PM
Surr: 1,2-Dichloroethane-d4	109	0	72-119		%REC	1	09/25/17 02:25 PM
Surr: 4-Bromofluorobenzene	98.3	0	76-119		%REC	1	09/25/17 02:25 PM
Surr: Dibromofluoromethane	106	0	85-115		%REC	1	09/25/17 02:25 PM
Surr: Toluene-d8	94.5	0	81-120		%REC	1	09/25/17 02:25 PM
ANIONS BY IC METHOD - WATER		E3	00				Analyst: JL
Chloride	93.1	3.00	10.0		mg/L	10	09/26/17 03:38 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JW
Total Dissolved Solids (Residue, Filterable)	910	50.0	50.0	С	mg/L	1	09/26/17 09:22 AM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT:

GHD

Project:

Hobbs Tank

1709236

Project No: Lab Order:

Client Sample ID: MW-4

Lab ID: 1709236-03

Date: 02-Oct-17

Collection Date: 09/19/17 02:00 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WAT	ER	M80	15D				Analyst: DB
TPH-DRO C10-C28	1.73	0.0780	0.0975	С	mg/L	1	09/27/17 12:20 PM
Surr: Isopropylbenzene	72.2	0	47-142		%REC	1	09/27/17 12:20 PM
Surr: Octacosane	226	0	51-124	S	%REC	1	09/27/17 12:20 PM
TPH PURGEABLE BY GC - WATER	2	M80	15 V				Analyst: BTJ
Gasoline Range Organics	<0.0600	0.0600	0.100	С	mg/L	1	09/28/17 02:26 PM
Surr: Tetrachlorethene	114	0	74-138		%REC	1	09/28/17 02:26 PM
TRACE METALS: ICP-MS - WATER		SW60)20A				Analyst: SP
Arsenic	0.0159	0.00200	0.00500		mg/L	1	09/28/17 01:49 PM
Barium	0.160	0.00300	0.0100		mg/L	1	09/28/17 01:49 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	09/28/17 01:49 PM
Chromium	0.00463	0.00200	0.00500	J	mg/L	1	09/28/17 01:49 PM
Lead	0.00176	0.000300	0.00100		mg/L	1	09/28/17 01:49 PM
Selenium	0.00596	0.00200	0.00500		mg/L	1	09/28/17 01:49 PM
Silver	<0.00100	0.00100	0.00200		mg/L	1	09/28/17 01:49 PM
MERCURY TOTAL: AQUEOUS		SW74	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	09/26/17 11:15 AM
8260 WATER VOLATILES BY GC/N	1S	SW82	260C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 02:49 PM
Ethylbenzene	<0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 02:49 PM
m,p-Xylene	<0.000600	0.000600	0.00200	С	mg/L	1	09/25/17 02:49 PM
o-Xylene	<0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 02:49 PM
Toluene	<0.000600	0.000600	0.00200	С	mg/L	1	09/25/17 02:49 PM
Surr: 1,2-Dichloroethane-d4	110	0	72-119		%REC	1	09/25/17 02:49 PM
Surr: 4-Bromofluorobenzene	98.8	0	76-119		%REC	1	09/25/17 02:49 PM
Surr: Dibromofluoromethane	108	0	85-115		%REC	1	09/25/17 02:49 PM
Surr: Toluene-d8	94.2	0	81-120		%REC	1	09/25/17 02:49 PM
ANIONS BY IC METHOD - WATER		E3	00				Analyst: JL
Chloride	22.3	3.00	10.0		mg/L	10	09/26/17 03:50 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JW
Total Dissolved Solids (Residue, Filterable)	1360	50.0	50.0	С	mg/L	1	09/26/17 09:22 AM

- Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- TPH pattern not Gas or Diesel Range Pattern E
- MDL Method Detection Limit
- RL Reporting Limit
- Parameter not NELAC certified

- Analyte detected in the associated Method Blank В
- Dilution Factor
- Analyte detected between MDL and RL J
- Not Detected at the Method Detection Limit ND
- Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No:

Lab Order: 1709236

Date: 02-Oct-17

Client Sample ID: MW-5

Lab ID: 1709236-04

Collection Date: 09/19/17 02:45 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - V	VATER	M80	15D				Analyst: DB
TPH-DRO C10-C28	0.132	0.0782	0.0978	C	mg/L	1	09/27/17 12:29 PM
Surr: Isopropylbenzene	74.6	0	47-142		%REC	1	09/27/17 12:29 PM
Surr: Octacosane	132	0	51-124	s	%REC	1	09/27/17 12:29 PM
TPH PURGEABLE BY GC - WA	TER	M80	15V				Analyst: BTJ
Gasoline Range Organics	< 0.0600	0.0600	0.100	С	mg/L	1	09/28/17 02:50 PM
Surr: Tetrachlorethene	120	0	74-138		%REC	1	09/28/17 02:50 PM
TRACE METALS: ICP-MS - WA	TER	SW6	020A				Analyst: SP
Arsenic	0.00584	0.00200	0.00500		mg/L	1	09/28/17 01:51 PM
Barium	0.165	0.00300	0.0100		mg/L	1	09/28/17 01:51 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	09/28/17 01:51 PM
Chromium	0.00478	0.00200	0.00500	J	mg/L	1	09/28/17 01:51 PM
Lead	0.00127	0.000300	0.00100		mg/L	1	09/28/17 01:51 PM
Selenium	0.00446	0.00200	0.00500	J	mg/L	1	09/28/17 01:51 PM
Silver	<0.00100	0.00100	0.00200		mg/L	1	09/28/17 01:51 PM
MERCURY TOTAL: AQUEOUS		SW74	470A				Analyst: AH
Mercury	<0.000800	0.0000800	0.000200		mg/L	1	09/26/17 11:17 AM
8260 WATER VOLATILES BY G	GC/MS	SW8	260C				Analyst: DEW
Benzene	< 0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 03:13 PM
Ethylbenzene	<0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 03:13 PM
m,p-Xylene	<0.000600	0.000600	0.00200	С	mg/L	1	09/25/17 03:13 PM
o-Xylene	<0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 03:13 PM
Toluene	<0.000600	0.000600	0.00200	С	mg/L	1	09/25/17 03:13 PM
Surr: 1,2-Dichloroethane-d4	108	0	72-119		%REC	1	09/25/17 03:13 PM
Surr: 4-Bromofluorobenzene	99.6	0	76-119		%REC	1	09/25/17 03:13 PM
Surr: Dibromofluoromethane	107	0	85-115		%REC	1	09/25/17 03:13 PM
Surr: Toluene-d8	94.0	0	81-120		%REC	1	09/25/17 03:13 PM
ANIONS BY IC METHOD - WAT	ER	E3	00				Analyst: JL
Chloride	53.0	3.00	10.0		mg/L	10	09/26/17 04:02 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JW
Total Dissolved Solids (Residue, Filterable)	625	10.0	10.0	С	mg/L	1	09/26/17 09:22 AM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT:

GHD

Project:

Hobbs Tank

Project No:

Lab Order: 1709236

Date: 02-Oct-17

Client Sample ID: HTRW-1

Lab ID: 1709236-05

Collection Date: 09/19/17 03:30 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80	15D				Analyst: DB
TPH-DRO C10-C28	1.23	0.0777	0.0971	С	mg/L	1	09/27/17 12:38 PM
Surr: Isopropylbenzene	83.6	0	47-142		%REC	1	09/27/17 12:38 PM
Surr: Octacosane	135	0	51-124	S	%REC	1	09/27/17 12:38 PM
TPH PURGEABLE BY GC - WATER		M80	15V				Analyst: BTJ
Gasoline Range Organics	2.88	0.0600	0.100	С	mg/L	1	09/28/17 03:13 PM
Surr: Tetrachlorethene	102	0	74-138		%REC	1	09/28/17 03:13 PM
TRACE METALS: ICP-MS - WATER		SW6)20A				Analyst: SP
Arsenic	0.00540	0.00200	0.00500		mg/L	1	09/28/17 01:53 PM
Barium	0.138	0.00300	0.0100		mg/L	1	09/28/17 01:53 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	09/28/17 01:53 PM
Chromium	< 0.00200	0.00200	0.00500		mg/L	1	09/28/17 01:53 PM
Lead	< 0.000300	0.000300	0.00100		mg/L	1	09/28/17 01:53 PM
Selenium	< 0.00200	0.00200	0.00500		mg/L	1	09/28/17 01:53 PM
Silver	<0.00100	0.00100	0.00200		mg/L	1	09/28/17 01:53 PM
MERCURY TOTAL: AQUEOUS		SW74	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	09/26/17 11:19 AM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
Benzene	1.62	0.00300	0.0100	С	mg/L	10	09/25/17 03:36 PM
Ethylbenzene	0.0171	0.00300	0.0100	С	mg/L	10	09/25/17 03:36 PM
m,p-Xylene	0.0473	0.00600	0.0200	С	mg/L	10	09/25/17 03:36 PM
o-Xylene	0.0353	0.00300	0.0100	С	mg/L	10	09/25/17 03:36 PM
Toluene	0.0761	0.00600	0.0200	С	mg/L	10	09/25/17 03:36 PM
Surr: 1,2-Dichloroethane-d4	108	0	72-119		%REC	10	09/25/17 03:36 PM
Surr: 4-Bromofluorobenzene	101	0	76-119		%REC	10	09/25/17 03:36 PM
Surr: Dibromofluoromethane	108	0	85-115		%REC	10	09/25/17 03:36 PM
Surr: Toluene-d8	94.6	0	81-120		%REC	10	09/25/17 03:36 PM
ANIONS BY IC METHOD - WATER		E3	00				Analyst: JL
Chloride	47.4	3.00	10.0		mg/L	10	09/27/17 04:26 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JW
Total Dissolved Solids (Residue, Filterable)	597	10.0	10.0	С	mg/L	1	09/26/17 09:22 AM

- * Value exceeds TCLP Maximum Concentration Level
- ${\bf C} \quad \ \, {\bf Sample \ Result \ or \ QC \ discussed \ in \ the \ Case \ Narrative}$
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No:

Lab Order: 1709236

Date: 02-Oct-17

Client Sample ID: TRIP

Lab ID: 1709236-06

Collection Date: 09/19/17

Matrix: TRIP BLANK

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH PURGEABLE BY GC - WATER		M80	15V				Analyst: BTJ
Gasoline Range Organics	< 0.0600	0.0600	0.100	С	mg/L	1	09/28/17 04:02 PM
Surr: Tetrachlorethene	113	0	74-138		%REC	1	09/28/17 04:02 PM
8260 WATER VOLATILES BY GC/MS		SW82	260C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 01:38 PM
Ethylbenzene	<0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 01:38 PM
m,p-Xylene	<0.000600	0.000600	0.00200	С	mg/L	1	09/25/17 01:38 PM
o-Xylene	<0.000300	0.000300	0.00100	С	mg/L	1	09/25/17 01:38 PM
Toluene	< 0.000600	0.000600	0.00200	С	mg/L	1	09/25/17 01:38 PM
Surr: 1,2-Dichloroethane-d4	110	0	72-119		%REC	1	09/25/17 01:38 PM
Surr: 4-Bromofluorobenzene	99.8	0	76-119		%REC	1	09/25/17 01:38 PM
Surr: Dibromofluoromethane	106	0	85-115		%REC	1	09/25/17 01:38 PM
Surr: Toluene-d8	95.2	0	81-120		%REC	1	09/25/17 01:38 PM

- Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

ANALYTICAL QC SUMMARY REPORT

Date: 02-Oct-17

Work Order:

1709236

Project:	Hobbs Tank					RunII): (GC15_170	927A	
The QC data in batc	h 82539 applies to the	following s	amples: 1709	236-01E, 17092	36-02E, 17	09236-03E,	1709236	-04E, 170923	6-05E	
Sample ID LCS-82	539 Batch ID): 82539		TestNo:	M80)15D		Units:	mg/L	
SampType: LCS	Run ID:	GC15_	170927A	Analysis	Date: 9/27	//2017 11:35	5:26 AM	Prep Date:	9/26/2	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit 🧐	%RPD R	PDLimit Qual
TPH-DRO C10-C28		1.18	0.100	1.250	0	94.4	50	114		
Surr: Isopropylber	nzene	0.0745		0.1000		74.5	47	142		
Surr: Octacosane		0.101		0.1000		101	51	124		
Sample ID LCSD-8	2539 Batch ID): 82539		TestNo:	M80)15D		Units:	mg/L	
SampType: LCSD	Run ID:	GC15_	170927A	Analysis	Date: 9/27	7/2017 11:44	l:26 AM	Prep Date:	9/26/2	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qual
TPH-DRO C10-C28		1.19	0.100	1.250	0	95.0	50	114	0.682	30
Surr: Isopropylber	nzene	0.0728		0.1000		72.8	47	142	0	0
Surr: Octacosane		0.102		0.1000		102	51	124	0	0
Sample ID MB-825	39 Batch ID): 82539		TestNo:	M80)15D		Units:	mg/L	
SampType: MBLK	Run ID:	GC15_	170927A	Analysis	Date: 9/27	7/2017 11:53	3:26 AM	Prep Date:	9/26/2	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qual
TPH-DRO C10-C28		<0.0800	0.100							
Surr: isopropylber	nzene	0.0633		0.1000		63.3	47	142		
Surr: Octacosane		0.0988		0.1000		98.8	51	124		

Qualifiers:

Analyte detected in the associated Method Blank В

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits R

Spike Recovery outside control limits

N Parameter not NELAC certified Page 1 of 10

GHD

Work Order: 1709236
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GC4 170928A

rioject. 110008 1a	IIK					Kullii	. (304_17092	LOAL	
The QC data in batch 82584 app	lies to the f	ollowing s	amples: 1709	236-01B, 1709	236-02B, 17	09236-03B,	1709236	-04B, 170923	6-05B, '	1709236-06B
Sample ID LCS-82584	Batch ID:	82584		TestNo	: M80	15 V		Units:	mg/L	
SampType: LCS	Run ID:	GC4_1	70928A	Analys	is Date: 9/28	/2017 11:24	l:23 AM	Prep Date:	9/28/2	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD F	PDLimit Qual
Gasoline Range Organics		2.15	0.100	2.500	0	86.0	67	136		
Surr: Tetrachlorethene		0.428		0.4000		107	74	138		
Sample ID MB-82584	Batch ID:	82584		TestNo	: M80	15 V		Units:	mg/L	
SampType: MBLK	Run ID:	GC4_1	70928A	Analys	is Date: 9/28	/2017 12:51	:47 PM	Prep Date:	9/28/2	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD R	PDLimit Qual
Gasoline Range Organics		<0.0600	0.100							
Surr: Tetrachlorethene		0.451		0.4000		113	74	138		
Sample ID 1709236-01BMS	Batch ID:	82584		TestNo	: M80	15 V		Units:	mg/L	
SampType: MS	Run ID:	GC4_1	70928A	Analys	is Date: 9/28	/2017 4:26:	35 PM	Prep Date:	9/28/2	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD R	PDLimit Qual
Gasoline Range Organics		2.42	0.100	2.500	0	96.9	67	136		
Surr: Tetrachlorethene		0.463		0.4000		116	74	138		
Sample ID 1709236-01BMSD	Batch ID:	82584		TestNo	: M80	15 V		Units:	mg/L	
SampType: MSD	Run ID:	GC4_1	70928A	Analys	is Date: 9/28	/2017 4:50:	25 PM	Prep Date:	9/28/2	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD R	PDLimit Qual
Gasoline Range Organics		2.24	0.100	2.500	0	89.6	67	136	7.86	30
Surr: Tetrachlorethene		0.455		0.4000		114	74	138	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits
N Parameter not NELAC certified

Page 2 of 10

CLIENT: GHD Work Order: 1709236

ANALYTICAL QC SUMMARY REPORT

Project:

Hobbs Tank

RunID: CETAC2_HG_170926B

Project: Hobbs Tar	1K					RuniD	: C	ETAC2_I	HG_17	0926B
The QC data in batch 82527 app	lies to the fo	llowing sar	nples: 17092	36-01C, 17092	36-02C, 17	709236-03C,	1709236	-04C, 170923	6-05C	
Sample ID MB-82527	Batch ID:	82527		TestNo:	sw	7470A		Units:	mg/L	
SampType: MBLK	Run ID:	CETAC2	_HG_170926	6 Analysis	Date: 9/26	5/2017 10:27	:15 AM	Prep Date:	9/25/20	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RI	PDLimit Qual
Mercury	<0	.0080000	0.000200							
Sample ID LCS-82527	Batch ID:	82527		TestNo:	sw	7470A		Units:	mg/L	
SampType: LCS	Run ID:	CETAC2	_HG_170926	6 Analysis	Date: 9/26	6/2017 10:29	:31 AM	Prep Date:	9/25/20	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Mercury	C	.00204	0.000200	0.00200	0	102	85	115		
Sample ID LCSD-82527	Batch ID:	82527		TestNo:	sw	7470A		Units:	mg/L	
SampType: LCSD	Run ID:	CETAC2	_HG_170926	6 Analysis	Date: 9/26	6/2017 10:31	:47 AM	Prep Date:	9/25/20	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RI	PDLimit Qual
Mercury	C	.00203	0.000200	0.00200	0	102	85	115	0.491	15
Sample ID 1709184-01A SD	Batch ID:	82527		TestNo:	sw	7470A		Units:	mg/L	
SampType: SD	Run ID:	CETAC2	_HG_170926	S Analysis	Date: 9/2 6	6/2017 10:36	:19 AM	Prep Date:	9/25/20	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RI	PDLimit Qual
Mercury	<	0.00200	0.00500	0	0				0	10
Sample ID 1709184-01A PDS	Batch ID:	82527		TestNo:	sw	7470A		Units:	mg/L	
SampType: PDS	Run ID:	CETAC2	_HG_170926	6 Analysis	Date: 9/2 6	6/2017 10:38	:35 AM	Prep Date:	9/25/20	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qual
Mercury		0.0124	0.00100	0.0125	0	99.2	85	115		
Sample ID 1709184-01A MS	Batch ID:	82527		TestNo:	sw	7470A		Units:	mg/L	
SampType: MS	Run ID:	CETAC2	_HG_170926	S Analysis	Date: 9/26	6/2017 10:40	:51 AM	Prep Date:	9/25/20	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RI	PDLimit Qual
Mercury		0.0100	0.00100	0.0100	0	100	80	120		
Sample ID 1709184-01A MSD	Batch ID:	82527		TestNo:	sw	7470A		Units:	mg/L	
SampType: MSD	Run ID:	CETAC2	_HG_170926	6 Analysis	Date: 9/26	6/2017 10:43	:07 AM	Prep Date:	9/25/20	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RI	PDLimit Qual
Mercury	(0.00985	0.00100	0.0100	0	98.5	80	120	1.51	15

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 3 of 10

S Spike Recovery outside control limits

N Parameter not NELAC certified

GHD

1709236

ANALYTICAL QC SUMMARY REPORT

Work Order: Project:

Hobbs Tank

ICP-MS5 170928A RunID: The OC data in batch 82544 applies to the following samples: 1709236-01C, 1709236-02C, 1709236-03C, 1709236-04C, 1709236-05C

Sample ID MB-82544	Batch ID:	82544		TestNo:	swe	020A		Units:	mg/L
SampType: MBLK	Run ID:	ICP-MS5	_170928A	Analysis	Date: 9/28	/2017 12:30	:00 PM	Prep Date:	9/26/2017
Analyte	R	esult	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit '	%RPD RPDLimit Qua
Arsenic	<0.	00200	0.00500						
Barium	<0.	00300	0.0100						
Cadmium	<0.0	00300	0.00100						
Chromium	<0.	00200	0.00500						
Lead	<0.0	00300	0.00100						
Selenium	<0.	00200	0.00500						
Silver	<0.	00100	0.00200						

Sample ID LCS-82544	Batch ID: 8	2544	TestNo	o: SW	6020A		Units:	mg/L
SampType: LCS	Run ID: 10	CP-MS5_170928A	Analys	sis Date: 9/28	3/2017 12:33	:00 PM	Prep Date	9/26/2017
Analyte	Re	sult RL	SPK value	Ref Val	%REC	LowLimit	: HighLimit	%RPD RPDLimit Qual
Arsenic	0.2	204 0.00500	0.200	0	102	80	120	
Barium	0.2	209 0.0100	0.200	0	104	80	120	
Cadmium	0.2	204 0.00100	0.200	0	102	80	120	
Chromium	0.2	200 0.00500	0.200	0	100	80	120	
Lead	0.2	204 0.00100	0.200	0	102	80	120	
Selenium	0.2	211 0.00500	0.200	0	106	80	120	
Silver	0.2	0.00200	0.200	0	100	80	120	

Sample ID LCSD-82544	Batch ID:	82544	•	TestNo	: SW	6020A	·	Units:	mg/l	_
SampType: LCSD	Run ID:	ICP-MS	5_170928A	Analys	is Date: 9/28	/2017 12:3	5:00 PM	Prep Date	: 9/26	/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Arsenic		0.207	0.00500	0.200	0	104	80	120	1.65	15
Barium		0.208	0.0100	0.200	0	104	80	120	0.311	15
Cadmium		0.206	0.00100	0.200	0	103	80	120	1.11	15
Chromium		0.201	0.00500	0.200	0	101	80	120	0.526	15
Lead		0.205	0.00100	0.200	0	103	80	120	0.586	15
Selenium		0.212	0.00500	0.200	0	106	80	120	0.013	15
Silver		0.201	0.00200	0.200	0	101	80	120	0.502	15

Sample ID 1709221-02A SD	Batch ID:	82544		TestNo	: SV	V6020A		Units:	mg/	L
SampType: SD	Run ID:	ICP-MS	5_170928A	Analys	is Date: 9/2	28/2017 1:07:	00 PM	Prep Date	9/26	/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Arsenic	<	0.0100	0.0250	0	0				0	10
Barium	(0.0310	0.0500	0	0.0290				6.68	10
Cadmium	<	0.00150	0.00500	0	0				0	10
Chromium	<	0.0100	0.0250	0	0.00638				0	10

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

Dilution Factor DF

MDL Method Detection Limit

RPD outside accepted control limits

Page 4 of 10

Spike Recovery outside control limits

Parameter not NELAC certified

CLIENT: GHD 1709236 Work Order:

ANALYTICAL QC SUMMARY REPORT

WOLK OLUCI.	1100200									
Project:	Hobbs Tank					RunII): I	CP-MS5_	17092	8A
Sample ID 170922 1	I-02A SD Batch	n ID: 82544		TestNo	o: SW6	6020A		Units:	mg/L	
SampType: SD	Run I	D: ICP-M	S5_170928A	Analys	is Date: 9/28	/2017 1:07:	00 PM	Prep Date:	9/26/	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD I	RPDLimit Qua
Lead		<0.00150	0.00500	0	0				0	10
Selenium		<0.0100	0.0250	0	0.00321				0	10
Silver		<0.00500	0.0100	0	0				0	10
Sample ID 1709221	I-02A PDS Batch	n ID: 82544		TestNo	o: SW6	6020A		Units:	mg/L	
SampType: PDS	Run I	D: ICP-M	S5_170928A	Analys	is Date: 9/28	/2017 1:25:	00 PM	Prep Date:	9/26/	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD I	RPDLimit Qua
Arsenic		0.195	0.00500	0.200	0	97.5	80	120		
Barium		0.221	0.0100	0.200	0.0290	96.1	80	120		
Cadmium		0.191	0.00100	0.200	0	95.6	80	120		
Chromium		0.191	0.00500	0.200	0.00638	92.3	80	120		
Lead		0.205	0.00100	0.200	0	103	80	120		
Selenium		0.191	0.00500	0.200	0.00321	93.8	80	120		
Silver		0.183	0.00200	0.200	0	91.4	80	120		
Sample ID 1709221	I-02A MS Batch	n ID: 82544		TestNo	o: SW6	6020A		Units:	mg/L	
SampType: MS	Run I	D: ICP-M	S5_170928A	Analys	is Date: 9/28	/2017 1:27:	00 PM	Prep Date:	9/26/	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD I	RPDLimit Qua
Arsenic		0.197	0.00500	0.200	0	98.3	80	120		
Barium		0.229	0.0100	0.200	0.0290	100	80	120		
Cadmium		0.194	0.00100	0.200	0	97.2	80	120		
Chromium		0.191	0.00500	0.200	0.00638	92.1	80	120		
Lead		0.207	0.00100	0.200	0	104	80	120		
Selenium		0.196	0.00500	0.200	0.00321	96.4	80	120		
Silver		0.187	0.00200	0.200	0	93.7	80	120		
Sample ID 170922	I-02A MSD Batch	n ID: 82544		TestNo	o: SW6	6020A		Units:	mg/L	
SampType: MSD	Run	D: ICP-N	IS5_170928A	Analys	sis Date: 9/28	/2017 1:30:	00 PM	Prep Date:	9/26/	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD	RPDLimit Qua
Arsenic		0.199	0.00500	0.200	0	99.3	80	120	1.05	15
Barium		0.235	0.0100	0.200	0.0290	103	80	120	2.28	15
Cadmium		0.197	0.00100	0.200	0	98.3	80	120	1.09	15
Chromium		0.197	0.00500	0.200	0.00638	95.1	80	120	3.04	15
Lead		0.208	0.00100	0.200	0	104	80	120	0.092	15
Selenium		0.201	0.00500	0.200	0.00321	98.9	80	120	2.53	15
Silver		0.192	0.00200	0.200	0	96.0	80	120	2.41	15

Qualifiers:

Analyte detected in the associated Method Blank В

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits

N Parameter not NELAC certified Page 5 of 10

CLIENT: Work Order:

Project:

GHD

1709236 Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS5_170925A

The QC data in batch 82533 app	lies to the fo	llowing sa	amples: 1709	236-01A, 1709	9236-02A, 17	'09236-03A,	1709236	-04A, 170923	6-05A, 1709236-06A
Sample ID LCS-82533	Batch ID:	82533		TestNo	o: SW	8260C		Units:	mg/L
SampType: LCS	Run ID:	GCMS	_170925A	Analys	is Date: 9/2	5/2017 12:51	1:00 PM	Prep Date:	9/25/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Benzene	(0.0250	0.00100	0.0232	0	108	81	122	
Ethylbenzene	(0.0240	0.00100	0.0232	0	103	80	120	
m,p-Xylene	(0.0487	0.00200	0.0464	0	105	80	120	
o-Xylene	(0.0244	0.00100	0.0232	0	105	80	120	
Toluene	(0.0252	0.00200	0.0232	0	108	80	120	
Surr: 1,2-Dichloroethane-d4		227		200.0		113	72	119	
Surr: 4-Bromofluorobenzene		201		200.0		101	76	119	
Surr: Dibromofluoromethane		213		200.0		107	85	115	
Surr: Toluene-d8		192		200.0		96.2	81	120	
Sample ID MB-82533	Batch ID:	82533		TestNo	o: SW	8260C		Units:	mg/L
SampType: MBLK	Run ID:	GCMS5	_170925A	Analys	is Date: 9/25	5/2017 1:14:	00 PM	Prep Date:	9/25/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Benzene	<0	.000300	0.00100						
Ethylbenzene	<0	.000300	0.00100						
m,p-Xylene	<0	.000600	0.00200						
o-Xylene	<0	.000300	0.00100						
Toluene	<0	.000600	0.00200						
Surr: 1,2-Dichloroethane-d4		218		200.0		109	72	119	
Surr: 4-Bromofluorobenzene		200		200.0		100	76	119	
Surr: Dibromofluoromethane		211		200.0		105	85	115	
Surr: Toluene-d8		190		200.0		95.0	81	120	
Sample ID 1709236-05AMS	Batch ID:	82533		TestNo	o: SW	8260C		Units:	mg/L
SampType: MS	Run ID:	GCMS5	_170925A	Analys	sis Date: 9/2 5	5/ 2017 4:03:	00 PM	Prep Date:	9/25/2017
Analyte	- 1	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	SRPD RPDLimit Qual
Benzene		1.81	0.0100	0.232	1.62	79.3	81	122	S
Ethylbenzene		0.219	0.0100	0.232	0.0171	87.1	80	120	
m,p-Xylene		0.456	0.0200	0.464	0.0473	88.1	80	120	
o-Xylene		0.242	0.0100	0.232	0.0353	88.9	80	120	
Toluene		0.290	0.0200	0.232	0.0761	92.2	80	120	
Surr: 1,2-Dichloroethane-d4		2260		2000		113	72	119	

Qualifiers:

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

B Analyte detected in the associated Method Blank

2000

2200

1920

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

76

85

81

119

115

120

99.8

110

96.0

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 6 of 10

2000

2000

2000

CLIENT: Work Order:

Project:

GHD 1709236

ANALYTICAL QC SUMMARY REPORT

Hobbs Tank

RunID: GCMS5_170925A

Sample ID 1709236-05AMSD	Batch ID:	82533		TestNo	o: SW	B260C		Units:	mg/L	
SampType: MSD	Run ID:	GCMS	5_170925A	Analys	is Date: 9/25	/2017 4:26:	00 PM	Prep Date	9/25	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Benzene		1.86	0.0100	0.232	1.62	103	81	120	3.00	20
Ethylbenzene		0.264	0.0100	0.232	0.0171	107	80	120	18.7	20
m,p-Xylene		0.541	0.0200	0.464	0.0473	106	80	120	17.1	20
o-Xylene		0.285	0.0100	0.232	0.0353	108	80	120	16.4	20
Toluene		0.340	0.0200	0.232	0.0761	114	80	120	16.0	20
Surr: 1,2-Dichloroethane-d4		2260		2000		113	72	119	0	0
Surr: 4-Bromofluorobenzene		2040		2000		102	76	119	0	0
Surr: Dibromofluoromethane		2220		2000		111	85	115	0	0
Surr: Toluene-d8		1930		2000		96.5	81	120	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 7 of 10

GHD

Work Order: 1709236
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID:

IC4_170926A

Troject. Trobbs ra	IIIK.					Kullii	<i>)</i> . I	C4_1/092	UA	
The QC data in batch 82541 app	olies to the f	ollowing sam	ples: 1709	9236-01D, 1709:	236-02D, 17	09236-03D,	1709236	-04D		
Sample ID MB-82541	Batch ID:	82541		TestNo	E300	0		Units:	mg/L	
SampType: MBLK	Run ID:	IC4_1709	26A	Analysi	s Date: 9/26	/2017 10:24	1:51 AM	Prep Date:	9/26/2	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	RPDLimit Qual
Chloride		<0.300	1.00							
Sample ID LCS-82541	Batch ID:	82541		TestNo	E300)		Units:	mg/L	
SampType: LCS	Run ID:	IC4_1709	26A	Analysi	s Date: 9/26 /	/2017 10:36	5:51 AM	Prep Date:	9/26/2	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qual
Chloride		9.83	1.00	10.00	0	98.3	90	110		
Sample ID LCSD-82541	Batch ID:	82541		TestNo	E300)		Units:	mg/L	
SampType: LCSD	Run ID:	IC4_1709	26A	Analysi	s Date: 9/26 /	/2017 10:48	3:51 AM	Prep Date:	9/26/2	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	%RPD R	PDLimit Qual
Chloride		9.79	1.00	10.00	0	97.9	90	110	0.362	20
Sample ID 1709236-01DMS	Batch ID:	82541		TestNo	E300)		Units:	mg/L	
SampType: MS	Run ID:	IC4_1709	26A	Analysi	s Date: 9/26 /	/2017 2:38:	21 PM	Prep Date:	9/26/2	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Chloride		315	10.0	200.0	104.2	106	90	110		
Sample ID 1709236-01DMSD	Batch ID:	82541		TestNo	E300)		Units:	mg/L	
SampType: MSD	Run ID:	IC4_1709	26A	Analysi	s Date: 9/2 6/	/2017 2:50:	21 PM	Prep Date:	9/26/2	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Chloride		315	10.0	200.0	104.2	105	90	110	0.288	20
Sample ID 1709237-07BMS	Batch ID:	82541		TestNo	E300)		Units:	mg/L	
SampType: MS	Run ID:	IC4_1709	26A	Analysi	s Date: 9/26/	/2017 5:38:	21 PM	Prep Date:	9/26/2	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Chloride		218	10.0	200.0	16.46	101	90	110		
Sample ID 1709237-07BMSD	Batch ID:	82541		TestNo	E300)		Units:	mg/L	
SampType: MSD	Run ID:	IC4_1709	26A	Analysi	s Date: 9/26/	/2017 5:50:	21 PM	Prep Date:	9/26/2	017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Chloride		228	10.0	200.0	16.46	106	90	110	4.30	20

Qualifiers:

B Analyte detected in the associated Method Blank

 $\label{eq:J_def} J \qquad \text{Analyte detected between MDL and RL}$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits
N Parameter not NELAC certified

Page 8 of 10

GHD

Work Order: 1709236
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: I

IC4_170927B

110,000 100										
The QC data in batch 82568 app	lies to the fo	ollowing samp	les: 1709	9236-05D						
Sample ID MB-82568	Batch ID:	82568		TestNo:	E300			Units:	mg/L	
SampType: MBLK	Run ID:	IC4_170927	7B	Analysis	Date: 9/27/	2017 10:28	:51 AM	Prep Date:	9/27/201	7
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit 9	%RPD RPE	DLimit Qual
Chloride		<0.300	1.00							
Sample ID LCS-82568	Batch ID:	82568		TestNo:	E300			Units:	mg/L	
SampType: LCS	Run ID:	IC4_170927	7B	Analysis	s Date: 9/27/	2017 10:40	:51 AM	Prep Date:	9/27/201	7
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit 9	%RPD RPE	DLimit Qual
Chloride		9.78	1.00	10.00	0	97.8	90	110		
Sample ID LCSD-82568	Batch ID:	82568		TestNo:	E300			Units:	mg/L	
SampType: LCSD	Run ID:	IC4_170927	7B	Analysis	Date: 9/27/	2017 10:52	::51 AM	Prep Date:	9/27/201	7
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit 9	%RPD RPD	DLimit Qual
Chloride		9.74	1.00	10.00	0	97.4	90	110	0.413	20
Sample ID 1709205-13BMS	Batch ID:	82568		TestNo:	E300			Units:	mg/L	
SampType: MS	Run ID:	IC4_17092	7B	Analysis	Date: 9/27/	2017 3:26:	28 PM	Prep Date:	9/27/201	7
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit '	%RPD RPI	DLimit Qual
Chloride		22100	1000	20000	929.5	106	90	110		
Sample ID 1709205-13BMSD	Batch ID:	82568		TestNo:	E300			Units:	mg/L	
SampType: MSD	Run ID:	IC4_17092	7B	Analysis	s Date: 9/27/	2017 3:38:	28 PM	Prep Date:	9/27/201	7
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit '	%RPD RPI	DLimit Qual
Chloride		21900	1000	20000	929.5	105	90	110	1.29	20
Sample ID 1709212-01BMS	Batch ID:	82568		TestNo	E300	1		Units:	mg/L	
SampType: MS	Run ID:	IC4_17092	7B	Analysi	s Date: 9/27/	2017 4:02 :	28 PM	Prep Date:	9/27/201	7
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD RPI	DLimit Qual
Chloride		28800	1000	20000	7772	105	90	110		
Sample ID 1709212-01BMSD	Batch ID:	82568		TestNo	E300			Units:	mg/L	
SampType: MSD	Run ID:	IC4_17092	7B	Analysis	s Date: 9/27/	2017 4:14:	28 PM	Prep Date:	9/27/201	7
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD RPI	OLimit Qual
Chloride		29000	1000	20000	7772	106	90	110	0.589	20

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 9 of 10

S Spike Recovery outside control limits

N Parameter not NELAC certified

GHD

Work Order: 1709236
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID:

WC_170925B

The QC data	a in batch 82536 app	lies to the fo	ollowing sampl	es: 17092	236-01D, 17092	36-02D, 1709	9236-03D,	1709236-	04D, 170923	6-05D	
Sample ID	MB-82536	Batch ID:	82536		TestNo:	M 254	0C		Units:	mg/L	
SampType:	MBLK	Run ID:	WC_170925	B	Analysis	Date: 9/26/2	2017 9:22:0	MA 0	Prep Date:	9/25/201	7
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	: HighLimit %	RPD RPD	Limit Qual
Total Dissol	ved Solids (Residue,	Filtera	<10.0	10.0							
Sample ID	LCS-82536	Batch ID:	82536		TestNo:	M2540	0C		Units:	mg/L	
SampType:	LCS	Run ID:	WC_170925	iB	Analysis	Date: 9/26/2	:017 9:22:0	MA 0	Prep Date:	9/25/201	7
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	RPD RPE	Limit Qual
Total Dissol	ved Solids (Residue,	Filtera	780	10.0	745.6	0	105	90	113		
Sample (D	1709205-08B-DUP	Batch ID:	82536		TestNo:	M254	0C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_170925	В	Analysis	Date: 9/26/2	017 9:22:0	MA 0	Prep Date:	9/25/201	7
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	RPD RPD	Limit Qual
Total Dissol	ved Solids (Residue,	Filtera	5310	50.0	0	5525				3.97	5
Sample ID	1709192-03D-DUP	Batch ID:	82536		TestNo:	M254	OC .		Units:	mg/L	
SampType:	DUP	Run ID:	WC_170925	В	Analysis	Date: 9/26/2	017 9:22:0	MA 0	Prep Date:	9/25/201	7
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	RPD RPE	Limit Qual
Total Dissol	ved Solids (Residue,	Filtera	37900	50.0	0	37920				0.119	5

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 10 of 10

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

December 14, 2017

Order No.: 1712081

Brad Stephenson

GHD

2135 South Loop 250 West

Midland, Texas 79703

TEL: (720) 974-0935

FAX (432) 686-0186

RE: Hobbs Tank

Dear Brad Stephenson:

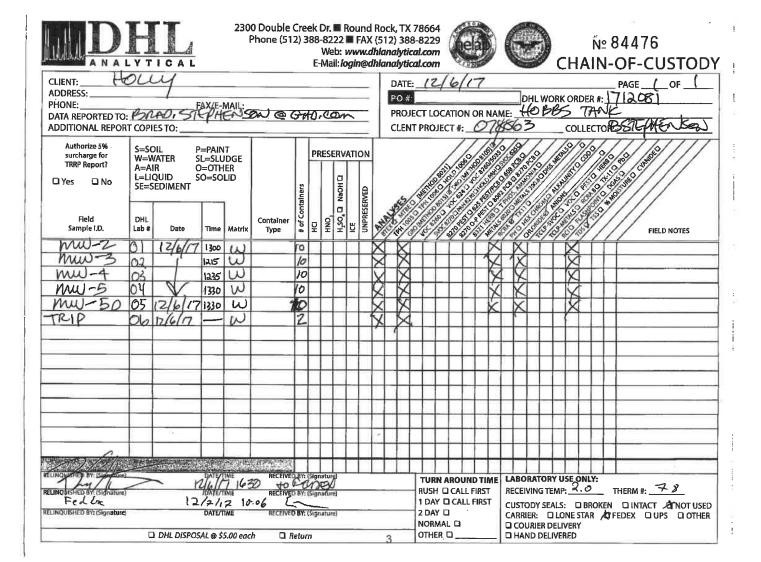
DHL Analytical, Inc. received 6 sample(s) on 12/7/2017 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

John DuPont


General Manager

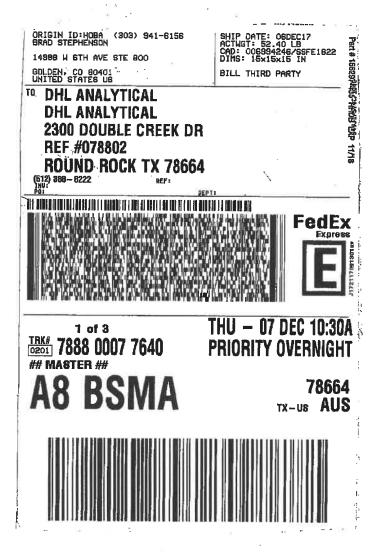

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-17-19

Table of Contents

Miscellaneous Documents	. 3
CaseNarrative 1712081	. 6
Analytical Report 1712081	. 7
AnalyticalQCSummaryReport 1712081	13

	Sample	Receipt Check	list			
Client Name GHD			Date Recei	ived: 12/7/20	117	
Work Order Number 1712081			Received by	y EL		
Checklist completed by:	12/7/2017 Date Carrier name	7 FedEx 1day	Reviewed b	y Initiele	12/7/2017 Date	
Shipping container/cooler in good condition?		Yes 🗹	No 🗀	Not Present		
Custody seals intact on shippping container/cool	er?	Yes 🗌	No 🗆	Not Present		
Custody seals intact on sample bottles?		Yes	No 🗆	Not Present		
Chain of custody present?		Yes 🗹	No 🗌			
Chain of custody signed when relinquished and	received?	Yes 🗹	No 🗆			
Chain of custody agrees with sample labels?		Yes 🗹	No 🗆			
Samples in proper container/bottle?		Yes 🗹	No 🗌			
Sample containers intact?		Yes 🗌	No 🗹			
Sufficient sample volume for indicated test?		Yes 🗹	No 🗀			
All samples received within holding time?		Yes 🗹	No 🗆			
Container/Temp Blank temperature in compliant	æ?	Yes 🗹	No 🗆	2.0 °C		
Water - VOA vials have zero headspace?		Yes 🗹	No 🗆	No VOA vials submitt	ed	
Water - pH<2 acceptable upon receipt?		Yes 🗸	No 🗆	NA ☐ LOT#	11837	
Water - ph>9 (S) or ph>10 (CN) acceptable upo	n recaipt?	Adjusted?Adjusted?	<u>/U</u> 3 №□	Checked by (NA LOT# Checked by	<u>wo_</u> =	
Any No response must be detailed in the comm	ents section below.					
Client contacted	Date contacted:		Pe	rson contacted		
Contacted by:	Regarding:					
For GRO and 2 years	broken voa	s for B	rex. u	Je are usion	y 2 voas	_
URAN MARKANIA CO				INCO WITH	- Daven (7V)	<u>J_</u>
You.						_
Corrective Action						_
				W W	1000	_

Page 1 of 1

GHD

CLIENT: Project:

Hobbs Tank

Lab Order:

1712081

CASE NARRATIVE

Date: 14-Dec-17

Samples were analyzed using the methods outlined in the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition, EPA and Standard Methods.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives except where noted in the following. For DRO Analysis, the recovery of surrogate Octacosane for four Samples was above the method control limits. These are flagged accordingly in the QC Summary Report. The remaining surrogate for these samples was within method control limits. No further corrective action was taken.

For Metals Analysis, the RPD of Barium for the Post Digestion Spike (1712052-04 SD) was marginally above the method control limit. This is flagged accordingly in the QC Summary Report. This analyte was within method control limits in the associated Post Digestion Spike. No further corrective action was taken.

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1712081

Date: 14-Dec-17

Client Sample ID: MW-2

Lab ID: 1712081-01

Collection Date: 12/06/17 01:00 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WA		M80	15D				Analyst: DB
TPH-DRO C10-C28	0.795	0.0762	0.0953		mg/L	1	12/13/17 04:48 PM
Surr: Isopropylbenzene	63.1	0	47-142		%REC	1	12/13/17 04:48 PM
Surr: Octacosane	138	0	51-124	s	%REC	1	12/13/17 04:48 PM
TPH PURGEABLE BY GC - WAT	ER	M80	15V				Analyst: AJH
Gasoline Range Organics	< 0.0600	0.0600	0.100		mg/L	1	12/11/17 04:20 PM
Surr: Tetrachlorethene	93.0	0	74-138		%REC	1	12/11/17 04:20 PM
TRACE METALS: ICP-MS - WATI	ER	SW6	020A				Analyst: SP
Arsenic	0.0221	0.00200	0.00500		mg/L	1	12/11/17 11:07 AM
Barium	0.258	0.00300	0.0100		mg/L	1	12/11/17 11:07 AM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	12/11/17 11:07 AM
Chromium	0.00918	0.00200	0.00500		mg/L	1	12/11/17 11:07 AM
Lead	0.0114	0.000300	0.00100		mg/L	1	12/11/17 11:07 AM
Selenium	0.00973	0.00200	0.00500		mg/L	1	12/11/17 11:07 AM
Silver	<0.00100	0.00100	0.00200		mg/L	1	12/11/17 11:07 AM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	12/12/17 09:58 AM
8260 WATER VOLATILES BY GO	:/MS	SW8	260C				Analyst: DEW
Benzene	< 0.000300	0.000300	0.00100		mg/L	1	12/07/17 05:15 PM
Ethylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	12/07/17 05:15 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	12/07/17 05:15 PM
o-Xylene	< 0.000300	0.000300	0.00100		mg/L	1	12/07/17 05:15 PM
Toluene	< 0.000600	0.000600	0.00200		mg/L	1	12/07/17 05:15 PM
Surr: 1,2-Dichloroethane-d4	106	0	72-119		%REC	1	12/07/17 05:15 PM
Surr: 4-Bromofluorobenzene	97.1	0	76-119		%REC	1	12/07/17 05:15 PM
Surr: Dibromofluoromethane	104	0	85-115		%REC	1	12/07/17 05:15 PM
Surr: Toluene-d8	97.6	0	81-120		%REC	1	12/07/17 05:15 PM
ANIONS BY IC METHOD - WATE	R	E3	00				Analyst: JL
Chloride	15.6	3.00	10.0		mg/L	10	12/08/17 03:49 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JW
Total Dissolved Solids (Residue, Filterable)	1440	50.0	50.0		mg/L	1	12/11/17 09:00 AM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1712081

Date: 14-Dec-17

Client Sample ID: MW-3

Lab ID: 1712081-02

Collection Date: 12/06/17 12:15 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WA	ATER	M80	15D				Analyst: DB
TPH-DRO C10-C28	0.668	0.0755	0.0944		mg/L	1	12/13/17 04:58 PM
Surr: Isopropylbenzene	62.5	0	47-142		%REC	1	12/13/17 04:58 PM
Surr: Octacosane	118	0	51-124		%REC	1	12/13/17 04:58 PM
TPH PURGEABLE BY GC - WAT	ER	M80	15V				Analyst: AJH
Gasoline Range Organics	0.0728	0.0600	0.100	J	mg/L	1	12/11/17 05:32 PM
Surr: Tetrachlorethene	93.6	0	74-138		%REC	1	12/11/17 05:32 PM
TRACE METALS: ICP-MS - WATE	ER	SW6	020A				Analyst: SP
Arsenic	0.0214	0.00200	0.00500		mg/L	1	12/11/17 11:34 AM
Barium	0.160	0.00300	0.0100		mg/L	1	12/11/17 11:34 AM
Cadmium	< 0.000300	0.000300	0.00100		mg/L	1	12/11/17 11:34 AM
Chromium	0.00471	0.00200	0.00500	J	mg/L	1	12/11/17 11:34 AM
Lead	0.000817	0.000300	0.00100	J	mg/L	1	12/11/17 11:34 AM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	12/11/17 11:34 AM
Silver	<0.00100	0.00100	0.00200		mg/L	1	12/11/17 11:34 AM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	12/12/17 10:05 AM
8260 WATER VOLATILES BY GO	:/MS	SW8	260C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100		mg/L	1	12/07/17 05:38 PM
Ethylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	12/07/17 05:38 PM
m,p-Xylene	< 0.000600	0.000600	0.00200		mg/L	1	12/07/17 05:38 PM
o-Xylene	< 0.000300	0.000300	0.00100		mg/L	1	12/07/17 05:38 PM
Toluene	< 0.000600	0.000600	0.00200		mg/L	1	12/07/17 05:38 PM
Surr: 1,2-Dichloroethane-d4	105	0	72-119		%REC	1	12/07/17 05:38 PM
Surr: 4-Bromofluorobenzene	97.1	0	76-119		%REC	1	12/07/17 05:38 PM
Surr: Dibromofluoromethane	104	0	85-115		%REC	1	12/07/17 05:38 PM
Surr: Toluene-d8	97.5	0	81-120		%REC	1	12/07/17 05:38 PM
ANIONS BY IC METHOD - WATE		E3	00				Analyst: JL
Chloride	106	3.00	10.0		mg/L	10	12/08/17 04:01 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JW
Total Dissolved Solids (Residue, Filterable)	782	10.0	10.0		mg/L	1	12/11/17 09:00 AM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT:

GHD

Project:

Hobbs Tank

Project No: Lab Order: 078863 1712081

Client Sample ID: MW-4

Lab ID: 1712081-03

Date: 14-Dec-17

Collection Date: 12/06/17 12:35 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WAT	ER	M80	15D				Analyst: DB
TPH-DRO C10-C28	1.79	0.0770	0.0962		mg/L	1	12/13/17 05:07 PM
Surr: Isopropylbenzene	58.9	0	47-142		%REC	1	12/13/17 05:07 PM
Surr: Octacosane	137	0	51-124	S	%REC	1	12/13/17 05:07 PM
TPH PURGEABLE BY GC - WATER	₹	M80	15V				Analyst: AJH
Gasoline Range Organics	< 0.0600	0.0600	0.100		mg/L	1	12/11/17 05:56 PM
Surr: Tetrachlorethene	97.7	0	74-138		%REC	1	12/11/17 05:56 PM
TRACE METALS: ICP-MS - WATER	2	SW6	020A				Analyst: SP
Arsenic	0.0234	0.00200	0.00500		mg/L	1	12/11/17 11:36 AM
Barium	0.560	0.00300	0.0100		mg/L	1	12/11/17 11:36 AM
Cadmium	0.000570	0.000300	0.00100	J	mg/L	1	12/11/17 11:36 AM
Chromium	0.0343	0.00200	0.00500		mg/L	-1	12/11/17 11:36 AM
Lead	0.0480	0.000300	0.00100		mg/L	1	12/11/17 11:36 AM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	12/11/17 11:36 AM
Silver	<0.00100	0.00100	0.00200		mg/L	1	12/11/17 11:36 AM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	12/12/17 10:07 AM
8260 WATER VOLATILES BY GC/M	MS	SW8	260C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100		mg/L	1	12/07/17 06:02 PM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	12/07/17 06:02 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	12/07/17 06:02 PM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	12/07/17 06:02 PM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	12/07/17 06:02 PM
Surr: 1,2-Dichloroethane-d4	106	0	72-119		%REC	1	12/07/17 06:02 PM
Surr: 4-Bromofluorobenzene	95.9	0	76-119		%REC	1	12/07/17 06:02 PM
Surr: Dibromofluoromethane	104	0	85-115		%REC	1	12/07/17 06:02 PM
Surr: Toluene-d8	96.3	0	81-120		%REC	1	12/07/17 06:02 PM
ANIONS BY IC METHOD - WATER		E3	00				Analyst: JL
Chloride	90.6	3.00	10.0		mg/L	10	12/08/17 04:13 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JW
Total Dissolved Solids (Residue, Filterable)	958	10.0	10.0		mg/L	1	12/11/17 09:00 AM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT:

GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1712081 **Date:** 14-Dec-17

Client Sample ID: MW-5

Lab ID: 1712081-04

Collection Date: 12/06/17 01:30 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WAT	ER	M80	15D				Analyst: DB
TPH-DRO C10-C28	0.425	0.0756	0.0945		mg/L	1	12/13/17 05:16 PM
Surr: Isopropylbenzene	52.4	0	47-142		%REC	1	12/13/17 05:16 PM
Surr: Octacosane	179	0	51-124	s	%REC	1	12/13/17 05:16 PM
TPH PURGEABLE BY GC - WATER	2	M80	15 V				Analyst: AJH
Gasoline Range Organics	<0.0600	0.0600	0.100		mg/L	1	12/11/17 06:20 PM
Surr: Tetrachlorethene	93.9	0	74-138		%REC	1	12/11/17 06:20 PM
TRACE METALS: ICP-MS - WATER	2	SW6	020A				Analyst: SP
Arsenic	0.00706	0.00200	0.00500		mg/L	1	12/11/17 11:38 AM
Barium	0.261	0.00300	0.0100		mg/L	1	12/11/17 11:38 AM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	12/11/17 11:38 AM
Chromium	0.0110	0.00200	0.00500		mg/L	1	12/11/17 11:38 AM
Lead	0.00170	0.000300	0.00100		mg/L	1	12/11/17 11:38 AM
Selenium	0.00341	0.00200	0.00500	J	mg/L	1	12/11/17 11:38 AM
Silver	<0.00100	0.00100	0.00200		mg/L	1	12/11/17 11:38 AM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: AH
Mercury	<0.0000800	0.0000800	0.000200		mg/L	1	12/12/17 10:09 AM
8260 WATER VOLATILES BY GC/M	I IS	SW8	260C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100		mg/L	1	12/07/17 06:26 PM
Ethylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	12/07/17 06:26 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	12/07/17 06:26 PM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	12/07/17 06:26 PM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	12/07/17 06:26 PM
Surr: 1,2-Dichloroethane-d4	106	0	72-119		%REC	1	12/07/17 06:26 PM
Surr: 4-Bromofluorobenzene	98.3	0	76-119		%REC	1	12/07/17 06:26 PM
Surr: Dibromofluoromethane	104	0	85-115		%REC	1	12/07/17 06:26 PM
Surr: Toluene-d8	97.8	0	81-120		%REC	1	12/07/17 06:26 PM
ANIONS BY IC METHOD - WATER		E3	00				Analyst: JL
Chloride	58.5	3.00	10.0		mg/L	10	12/08/17 04:25 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JW
Total Dissolved Solids (Residue, Filterable)	643	10.0	10.0		mg/L	1	12/11/17 09:00 AM

- Value exceeds TCLP Maximum Concentration Level
- С Sample Result or QC discussed in the Case Narrative
- TPH pattern not Gas or Diesel Range Pattern E
- MDL Method Detection Limit
- RL Reporting Limit
- Parameter not NELAC certified

- Analyte detected in the associated Method Blank
- DF Dilution Factor
- Analyte detected between MDL and RL J
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1712081

Date: 14-Dec-17

Client Sample ID: MW-5D

Lab ID: 1712081-05

Collection Date: 12/06/17 01:30 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - W	ATER	M80	15D				Analyst: DB
TPH-DRO C10-C28	0.467	0.0758	0.0947		mg/L	1	12/13/17 05:25 PM
Surr: Isopropylbenzene	62.7	0	47-142		%REC	1	12/13/17 05:25 PM
Surr: Octacosane	183	0	51-124	S	%REC	1	12/13/17 05:25 PM
TPH PURGEABLE BY GC - WAT	ER	M80	15V				Analyst: AJH
Gasoline Range Organics	< 0.0600	0.0600	0.100		mg/L	1	12/11/17 06:43 PM
Surr: Tetrachlorethene	95.6	0	74-138		%REC	1	12/11/17 06:43 PM
TRACE METALS: ICP-MS - WAT	ER	SW6	020A				Analyst: SP
Arsenic	0.00725	0.00200	0.00500		mg/L	1	12/11/17 11:40 AM
Barium	0.218	0.00300	0.0100		mg/L	1	12/11/17 11:40 AM
Cadmium	0.000310	0.000300	0.00100	J	mg/L	1	12/11/17 11:40 AM
Chromium	0.00765	0.00200	0.00500		mg/L	1	12/11/17 11:40 AM
Lead	0.00192	0.000300	0.00100		mg/L	1	12/11/17 11:40 AM
Selenium	0.00367	0.00200	0.00500	J	mg/L	1	12/11/17 11:40 AM
Silver	<0.00100	0.00100	0.00200		mg/L	1	12/11/17 11:40 AM
MERCURY TOTAL: AQUEOUS		SW7	470A				Analyst: AH
Mercury	<0.000800	0.0000800	0.000200		mg/L	1	12/12/17 10:12 AM
8260 WATER VOLATILES BY GO	C/MS	SW8	260C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100		mg/L	1	12/07/17 06:49 PM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	12/07/17 06:49 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	12/07/17 06:49 PM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	12/07/17 06:49 PM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	12/07/17 06:49 PM
Surr: 1,2-Dichloroethane-d4	107	0	72-119		%REC	1	12/07/17 06:49 PM
Surr: 4-Bromofluorobenzene	97.8	0	76-119		%REC	1	12/07/17 06:49 PM
Surr: Dibromofluoromethane	104	0	85-115		%REC	1	12/07/17 06:49 PM
Surr: Toluene-d8	97.3	0	81-120		%REC	1	12/07/17 06:49 PM
ANIONS BY IC METHOD - WATE		E3	00				Analyst: JL
Chloride	56.5	3.00	10.0		mg/L	10	12/08/17 04:37 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JW
Total Dissolved Solids (Residue, Filterable)	649	10.0	10.0		mg/L	1	12/13/17 09:00 AM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1712081

Date: 14-Dec-17

Client Sample ID: TRIP

Lab ID: 1712081-06

Collection Date: 12/06/17

Matrix: TRIP BLANK

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TPH PURGEABLE BY GC - WATER		M80	15V			Analyst: AJH
Gasoline Range Organics	< 0.0600	0.0600	0.100	mg/L	1	12/11/17 07:07 PM
Surr: Tetrachlorethene	107	0	74-138	%REC	1	12/11/17 07:07 PM
8260 WATER VOLATILES BY GC/MS		SW82	60C			Analyst: DEW
Benzene	<0.000300	0.000300	0.00100	mg/L	1	12/07/17 04:05 PM
Ethylbenzene	<0.000300	0.000300	0.00100	mg/L	1	12/07/17 04:05 PM
m,p-Xylene	<0.000600	0.000600	0.00200	mg/L	1	12/07/17 04:05 PM
o-Xylene	<0.000300	0.000300	0.00100	mg/L	1	12/07/17 04:05 PM
Toluene	<0.000600	0.000600	0.00200	mg/L	1.	12/07/17 04:05 PM
Surr: 1,2-Dichloroethane-d4	104	0	72-119	%REC	1	12/07/17 04:05 PM
Surr: 4-Bromofluorobenzene	98.8	0	76-119	%REC	1	12/07/17 04:05 PM
Surr: Dibromofluoromethane	104	0	85-115	%REC	1	12/07/17 04:05 PM
Surr: Toluene-d8	98.3	0	81-120	%REC	1	12/07/17 04:05 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD Work Order: 1712081

ANALYTICAL QC SUMMARY REPORT

Date: 14-Dec-17

Project:	Hobbs Tank					RunII): (GC15_1712	213A	
The QC data in bato	h 83562 applies to the	following s	amples: 1712	081-01E, 1712	081-02E, 17	12081-03E,	1712081	-04E, 171208	1-05E	
Sample ID LCS-83	562 Batch ID:	83562		TestNo	M80	15D		Units:	mg/L	
SampType: LCS	Run ID:	GC15_	171213A	Analysi	s Date: 12/1	3/2017 3:59	:29 PM	Prep Date:	12/12/	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
TPH-DRO C10-C28		0.954	0.100	1.250	0	76.3	50	114		
Surr: Isopropylber	nzene	0.0645		0.1000		64.5	47	142		
Surr: Octacosane		0.0951		0.1000		95.1	51	124		
Sample ID LCSD-8	33562 Batch ID:	83562		TestNo	: M80	15D		Units:	mg/L	
SampType: LCSD	Run ID:	GC15_	171213A	Analysi	s Date: 12/1	3/2017 4:08	3:28 PM	Prep Date:	12/12/	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
TPH-DRO C10-C28		0.974	0.100	1.250	0	77.9	50	114	2.05	30
Surr: Isopropylber	nzene	0.0640		0.1000		64.0	47	142	0	0
Surr: Octacosane		0.0954		0.1000		95.4	51	124	0	0
Sample ID MB-835	62 Batch ID:	83562		TestNo	: M80	15D		Units:	mg/L	
SampType: MBLK	Run ID:	GC15_	171213A	Analysi	s Date: 12/1	3/ 2017 4 :17	:28 PM	Prep Date:	12/12/	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
TPH-DRO C10-C28		<0.0800	0.100							
Surr: Isopropylbei	nzene	0.0557		0.1000		55.7	47	142		
Surr: Octacosane		0.0936		0.1000		93.6	51	124		

Qualifiers:

Analyte detected in the associated Method Blank В

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RLReporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits R

Spike Recovery outside control limits Parameter not NELAC certified

Page 1 of 10

CLIENT: GHD Work Order: 1712081

ANALYTICAL QC SUMMARY REPORT

Project:	Hobbs Tank	RunID:	GC4_171211A
•			_

j							• • •			
The QC data in batch 83544 app	lies to the fo	ollowing	amples: 1712	2081-01B, 17120	081-02B, 1	712081-03B,	1712081	-04B, 171208	1-05B,	1712081-06B
Sample ID MB-83544	Batch ID:	83544		TestNo	: М8	015V		Units:	mg/L	
SampType: MBLK	Run ID:	GC4_1	71211A	Analysi	s Date: 12/	11/2017 2:18	3:36 PM	Prep Date:	12/11	/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD F	RPDLimit Qua
Gasoline Range Organics		<0.0600	0.100							
Surr: Tetrachlorethene		0.371		0.4000		92.8	74	138		
Sample ID LCS-83544	Batch ID:	83544		TestNo	M8	015V		Units:	mg/L	
SampType: LC\$	Run ID:	GC4_1	71211A	Analysi	s Date: 12/	11/2017 2:50):32 PM	Prep Date:	12/11	/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	6RPD F	RPDLimit Qua
Gasoline Range Organics		2.51	0.100	2.500	0	100	67	136		
Surr: Tetrachlorethene		0.391		0.4000		97.8	74	138		
Sample ID 1712081-01BMS	Batch ID:	83544		TestNo	M8	015V		Units:	mg/L	
SampType: MS	Run ID:	GC4_1	71211A	Analysis	s Date: 12/	11/2017 4:44	l:12 PM	Prep Date:	12/11	/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qua
Gasoline Range Organics		2.34	0.100	2.500	0	93.7	67	136		
Surr: Tetrachlorethene		0.375		0.4000		93.8	74	138		
Sample ID 1712081-01BMSD	Batch ID:	83544		TestNo	М8	015V		Units:	mg/L	
SampType: MSD	Run ID:	GC4_1	71211A	Analysis	s Date: 12 /	11/2017 5:08	3:15 PM	Prep Date:	12/11	/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD F	RPDLimit Qua
Gasoline Range Organics		2.66	0.100	2.500	0	106	67	136	12.6	30
Surr: Tetrachlorethene		0.398		0.4000		99.5	74	138	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAC certified

Page 2 of 10

Project:

GHD

Hobbs Tank

Work Order: 1712081

ANALYTICAL QC SUMMARY REPORT

RunID:

CETAC2_HG_171212A

Troject. 110005 Tai	ik.				Kunn	, .	EIACZ_	10_1/121	ZA.
The QC data in batch 83550 app	lies to the following sa	mples: 17120	81-01C, 17120	081-02C, 17	12081-03C,	1712081	-04C, 171208	31-05C	
Sample ID MB-83550	Batch ID: 83550		TestNo:	SW7	470A		Units:	mg/L	
SampType: MBLK	Run ID: CETAC2	P_HG_171212	A Analysis	s Date: 12/1	2/2017 9:22	:11 AM	Prep Date:	12/11/2017	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	%RPD RPDLi	mit Qual
Mercury	<0.0000800	0.000200							
Sample ID LCS-83550	Batch ID: 83550		TestNo:	SW7	470A		Units:	mg/L	
SampType: LCS	Run ID: CETAC2	P_HG_171212	A Analysis	s Date: 12/1	2/2017 9:24	:27 AM	Prep Date:	12/11/2017	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	%RPD RPDLi	mit Qual
Mercury	0.00204	0.000200	0.00200	0	102	85	115		
Sample ID LCSD-83550	Batch ID: 83550		TestNo:	SW7	7470A		Units:	mg/L	
SampType: LCSD	Run ID: CETAC2	2_HG_171212	A Analysis	s Date: 12/1	2/2017 9:26	:43 AM	Prep Date:	12/11/2017	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit 🤊	%RPD RPDLi	mit Qual
Mercury	0.00206	0.000200	0.00200	0	103	85	115	0.976 15	
Sample ID 1712037-01C SD	Batch ID: 83550		TestNo:	sw7	7470A		Units:	mg/L	
SampType: SD	Run ID: CETAC2	2_HG_171212	A Analysis	s Date: 12/1	2/2017 9:31	:16 AM	Prep Date:	12/11/2017	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit 🤋	%RPD RPDLi	mit Qual
Mercury	<0.000400	0.00100	0	0				0 10)
Sample ID 1712037-01C PDS	Batch ID: 83550		TestNo	sw:	7470A		Units:	mg/L	
SampType: PDS	Run ID: CETAC2	2_HG_171212	Analysis	s Date: 12/1	2/2017 9:33	:31 AM	Prep Date:	12/11/2017	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit 9	%RPD RPDLi	mit Qual
Mercury	0.00238	0.000200	0.00250	0	95.2	85	115		
Sample ID 1712037-01C MS	Batch ID: 83550		TestNo	: SW	7470A		Units:	mg/L	7
SampType: MS	Run ID: CETAC2	2_HG_171212	Analysi	s Date: 12/1	2/2017 9:35	:47 AM	Prep Date:	12/11/2017	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit '	%RPD RPDLi	mit Qual
Mercury	0.00203	0.000200	0.00200	0	102	80	120		
Sample ID 1712037-01C MSD	Batch ID: 83550		TestNo	: SW	7470A		Units:	mg/L	
SampType: MSD	Run ID: CETAC2	2_HG_171212	Analysi	s Date: 12/1	2/2017 9:38	:02 AM	Prep Date:	12/11/2017	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit ^o	%RPD RPDLi	mit Qual
Mercury	0.00204	0.000200	0.00200	0	102	80	120	0.491 15	5

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits
 S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 3 of 10

GHD

Work Order: 1712081 ANALYTICAL QC SUMMARY REPORT

work Order.	1/12001										
Project:	Hobbs Tank					RunII): I	ICP-MS4_	171211	ı A	
he QC data in batch	83526 applies to the f	ollowing sar	mples: 1712	081-01C, 1712	081-02C, 17	12081-03C,	1712081	I-04C, 171208	31-05C		
Sample ID MB-8352	6 Batch ID:	83526		TestNo	: SW6	6020A		Units:	mg/L		
SampType: MBLK	Run ID:	ICP-MS4	_171211A	Analysi	s Date: 12/1	1/2017 10:3	39:00 A	Prep Date:	12/8/2	017	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimi	t Qu
Arsenic		0.00200	0.00500								
3arium -	•	<0.00300	0.0100								
Cadmium	<	0.000300	0.00100								
Chromium		0.00200	0.00500								
.ead	<	0.000300	0.00100								
Selenium		0.00200	0.00500								
Silver		0.00100	0.00200								
Sample ID LCS-835	26 Batch ID:	83526		TestNo	: SW	5020A		Units:	mg/L		
SampType: LCS	Run ID:	ICP-MS4	_171211A	Analysi	s Date: 12/1	1/2017 10:4	11:00 A	Prep Date:	12/8/2	017	
\nalyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit	t Qu
Arsenic		0.207	0.00500	0.200	0	104	80	120			
Barium		0.205	0.0100	0.200	0	103	80	120			
Cadmium		0.208	0.00100	0.200	0	104	80	120			
Chromium		0.203	0.00500	0.200	0	102	80	120			
.ead		0.202	0.00100	0.200	0	101	80	120			
Selenium		0.210	0.00500	0.200	0	105	80	120			
Silver		0.205	0.00200	0.200	0	102	80	120			
Sample ID LCSD-83	526 Batch ID:	83526		TestNo	: SW	6020A		Units:	mg/L		
SampType: LCSD	Run ID:	ICP-MS4	_171211A	Analysi	s Date: 12/1	1/2017 10:4	13:00 A	Prep Date:	12/8/2	017	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit	t Qu
Arsenic		0.207	0.00500	0.200	0	103	80	120	0.237	15	
Barium		0.203	0.0100	0.200	0	102	80	120	1.02	15	
Cadmium		0.207	0.00100	0.200	0	103	80	120	0.554	15	
Chromium		0.203	0.00500	0.200	0	101	80	120	0.199	15	
.ead		0.201	0.00100	0.200	0	101	80	120	0.218	15	
Selenium		0.207	0.00500	0.200	0	104	80	120	0.980	15	
Silver		0.204	0.00200	0.200	0	102	80	120	0.432	15	
Sample ID 1712052	-04A SD Batch ID:	83526		TestNo	SWE	5020A		Units:	mg/L		
SampType: SD	Run ID:	ICP-MS4	_171211A	Analysi	s Date: 12/1	1/2017 10:4	19:00 A	Prep Date:	12/8/2	017	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit	t Qu
Arsenic		<0.0100	0.0250	0	0				0	10	
Barium		0.0728	0.0500	0	0.0813				10.9	10	F
Cadmium	<	0.00150	0.00500	0	0				0	10	
Chromium		<0.0100	0.0250	0	0				0	10	
Qualifiers: B	Analyte detected in the	associated Ma	ethod Blank	DF I	Dilution Facto	or .					
-	Analyte detected betwee				Method Detec				D.	va 1 -	£ 1 /
J - —	I mary to do to to to to to to	and 1		MIDE I		con rimit			L9	ige 4 o	1 1

N

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

RL Reporting Limit

RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAC certified

CLIENT: GHD Work Order: 1712081

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs Tank Run

RunID: ICP-MS4_171211A

Sample ID 1712052-04A SD	Batch ID:	83526		TestNo	: SW	6020A		Units:	mg/L	
SampType: SD	Run ID:	ICP-MS	4_171211A	Analys	is Date: 12/1	1/2017 10:4	I9:00 A	Prep Date:	12/8/2	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD F	RPDLimit Qua
Lead	<	0.00150	0.00500	0	0				0	10
Selenium	<	0.0100	0.0250	0	0				0	10
Silver	<	0.00500	0.0100	0	0				0	10
Sample ID 1712052-04A PDS	Batch ID:	83526		TestNo	: SW	6020A		Units:	mg/L	
SampType: PDS	Run ID:	ICP-MS	4_171211A	Analys	is Date: 12/1	1/2017 11:0	9:00 A	Prep Date:	12/8/2	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD F	RPDLimit Qua
Arsenic		0.224	0.00500	0.200	0	112	80	120		
Barium		0.303	0.0100	0.200	0.0813	111	80	120		
Cadmium		0.222	0.00100	0.200	0	111	80	120		
Chromium		0.223	0.00500	0.200	0	112	80	120		
Lead		0.216	0.00100	0.200	0	108	80	120		
Selenium		0.223	0.00500	0.200	0	111	80	120		
Silver		0.215	0.00200	0.200	0	107	80	120		
Sample ID 1712052-04A MS	Batch ID:	83526		TestNo	o: SW	6020A		Units:	mg/L	
SampType: MS	Run ID:	ICP-MS	4_171211A	Analys	is Date: 12/1	1/2017 11:1	11:00 A	Prep Date:	12/8/2	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 🤋	%RPD F	RPDLimit Qua
Arsenic		0.218	0.00500	0.200	0	109	80	120		
Barium		0.297	0.0100	0.200	0.0813	108	80	120		
Cadmium		0.212	0.00100	0.200	0	106	80	120		
Chromium		0.207	0.00500	0.200	0	104	80	120		
Lead		0.209	0.00100	0.200	0	104	80	120		
Selenium		0.214	0.00500	0.200	0	107	80	120		
Silver		0.206	0.00200	0.200	0	103	80	120		
Sample ID 1712052-04A MSD	Batch ID:	83526		TestNo	o: SW (6020A		Units:	mg/L	
SampType: MSD	Run ID:	ICP-MS	4_171211A	Analys	sis Date: 12/1	1/2017 11:1	12:00 A	Prep Date:	12/8/2	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ⁴	%RPD F	RPDLimit Qua
Arsenic		0.216	0.00500	0.200	0	108	80	120	0.583	15
Barium		0.297	0.0100	0.200	0.0813	108	80	120	0.116	15
Cadmium		0.213	0.00100	0.200	0	106	80	120	0.162	15
Chromium		0.209	0.00500	0.200	0	104	80	120	0.828	15
Lead		0.208	0.00100	0.200	0	104	80	120	0.241	15
Selenium		0.212	0.00500	0.200	0	106	80	120	1.04	15
Silver		0.206	0.00200	0.200	0	103	80	120	0.110	15

Qualifiers:

B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 5 of 10

Project:

GHD

Hobbs Tank

Work Order: 1712081

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS5_171207A

The QC data in batch 83518 app	ones to the fo	ollowing sa	impies: 1/12	υδ1-υ1A, 1/120	υστ-02A, 17	12081-03A	1712081	-u4A, 1/1208	1-05A, 1/12081-06A
Sample ID LCS-83518	Batch ID:	83518		TestNo	: SW	8260C		Units:	mg/L
SampType: LCS	Run ID:	GCMS5	_171207A	Analysis	s Date: 12/7	7/2017 3:17	:00 PM	Prep Date:	12/7/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qua
Benzene	(0.0237	0.00100	0.0232	0	102	81	122	
Ethylbenzene	(0.0243	0.00100	0.0232	0	105	80	120	
m,p-Xylene	(0.0486	0.00200	0.0464	0	105	80	120	
o-Xylene	(0.0244	0.00100	0.0232	0	105	80	120	
Toluene	(0.0239	0.00200	0.0232	0	103	80	120	
Surr: 1,2-Dichloroethane-d4		216		200.0		108	72	119	
Surr: 4-Bromofluorobenzene		191		200.0		95.7	76	119	
Surr: Dibromofluoromethane		210		200.0		105	85	115	
Surr: Toluene-d8		195		200.0		97.4	81	120	
Sample ID MB-83518	Batch ID:	83518		TestNo:	SW	8260C		Units:	mg/L
SampType: MBLK	Run ID:	GCMS5	_171207A	Analysis	s Date: 12/ 7	//2017 3:41	:00 PM	Prep Date:	12/7/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qua
Benzene	<0	0.000300	0.00100						
Ethylbenzene	<0	0.000300	0.00100						
m,p-Xylene	<0	0.000600	0.00200						
o-Xylene	<0	0.000300	0.00100						
Toluene	<0	0.000600	0.00200						
Surr: 1,2-Dichloroethane-d4		208		200.0		104	72	119	
Surr: 4-Bromofluorobenzene		195		200.0		97.3	76	119	
Surr: Dibromofluoromethane		207		200.0		103	85	115	
Surr: Toluene-d8	_	196		200.0		97.9	81	120	
Sample ID 1712083-06AMS	Batch ID:	83518		TestNo:	sw	8260C		Units:	mg/L
SampType: MS	Run ID:	GCMS5	_171207A	Analysis	s Date: 12/7	//2017 11:3	4:00 PM	Prep Date:	12/7/2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qua
Benzene		0.0235	0.00100	0.0232	0	101	81	122	
Ethylbenzene	(0.0235	0.00100	0.0232	0	101	80	120	
m,p-Xylene		0.0474	0.00200	0.0464	0	102	80	120	
o-Xylene		0.0236	0.00100	0.0232	0	102	80	120	
Toluene	1	0.0234	0.00200	0.0232	0	101	80	120	
Surr: 1,2-Dichloroethane-d4		214		200.0		107	72	119	
Surr: 4-Bromofluorobenzene		194		200.0		97.2	76	119	
						·-			

Qualifiers:

Surr: Dibromofluoromethane

Surr: Toluene-d8

Analyte detected in the associated Method Blank

211

194

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RLReporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

105

97.0

N Parameter not NELAC certified

Spike Recovery outside control limits

85

81

115

120

Page 6 of 10

200.0

200.0

CLIENT: Work Order:

Project:

GHD 1712081

Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS5_171207A

Sample ID 1712083-06AMSD	Batch ID:	83518		TestNo	: SW	B260C		Units:	mg/L	
SampType: MSD	Run ID:	GCMS	5_171207A	Analys	is Date: 12/7	/2017 11:57	7:00 PM	Prep Date	: 12/7/	2017
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD I	RPDLimit Qual
Benzene		0.0233	0.00100	0.0232	0	100	81	120	0.838	20
Ethylbenzene		0.0237	0.00100	0.0232	0	102	80	120	0.483	20
m,p-Xylene		0.0468	0.00200	0.0464	0	101	80	120	1.31	20
o-Xylene		0.0237	0.00100	0.0232	0	102	80	120	0.317	20
Toluene		0.0232	0.00200	0.0232	0	100	80	120	0.630	20
Surr: 1,2-Dichloroethane-d4		213		200.0		107	72	119	0	0
Surr: 4-Bromofluorobenzene		191		200.0		95.5	76	119	0	0
Surr: Dibromofluoromethane		209		200.0		105	85	115	0	0
Surr: Toluene-d8		195		200.0		97.4	81	120	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 7 of 10

GHD

Work Order: 1712081
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID:

IC4 171208A

The QC data in batch 83524 applies to the following samples: 1712081-01D, 1712081-02D, 1712081-03D, 1712081-04D, 171208 Sample ID MB-83524 TestNo: E300 Units: SampType: MBLK Run ID: IC4_171208A Analysis Date: 12/8/2017 10:26:26 AM Prep Date: Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit % Chloride <0.300 1.00 Units: Sample ID LCS-83524 Batch ID: 83524 TestNo: E300 Units: SampType: LCS Run ID: IC4_171208A Analysis Date: 12/8/2017 10:38:26 AM Prep Date: Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit % Chloride 9.84 1.00 10.00 0 98.4 90 110 Sample ID LCSD-83524 Batch ID: 83524 TestNo: E300 Units:	mg/L 12/8/2017 RPD RPDLimit Qual mg/L 12/8/2017
SampType: MBLK Run ID: IC4_171208A Analysis Date: 12/8/2017 10:26:26 AM Prep Date: Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit % Chloride <0.300 1.00 Sample ID LCS-83524 Batch ID: 83524 TestNo: E300 Units: SampType: LCS Run ID: IC4_171208A Analysis Date: 12/8/2017 10:38:26 AM Prep Date: Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit % Chloride 9.84 1.00 10.00 0 98.4 90 110 Sample ID LCSD-83524 Batch ID: 83524 TestNo: E300 Units:	12/8/2017 RPD RPDLimit Qual mg/L 12/8/2017
Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit % Chloride Sample ID LCS-83524 Batch ID: 83524 TestNo: E300 Units: SampType: LCS Run ID: IC4_171208A Analysis Date: 12/8/2017 10:38:26 AM Prep Date: Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit % Chloride 9.84 1.00 10.00 0 98.4 90 110 Sample ID LCSD-83524 Batch ID: 83524 TestNo: E300 Units:	RPD RPDLimit Qual
Chloride <0.300	mg/L 12/8/2017
Sample ID LCS-83524 Batch ID: 83524 TestNo: E300 Units: SampType: LCS Run ID: IC4_171208A Analysis Date: 12/8/2017 10:38:26 AM Prep Date: Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit % Chloride 9.84 1.00 10.00 0 98.4 90 110 Sample ID LCSD-83524 Batch ID: 83524 TestNo: E300 Units:	12/8/2017
SampType: LCS Run ID: IC4_171208A Analysis Date: 12/8/2017 10:38:26 AM Prep Date: Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit % Chloride 9.84 1.00 10.00 0 98.4 90 110 Sample ID LCSD-83524 Batch ID: 83524 TestNo: E300 Units:	12/8/2017
Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit % Chloride 9.84 1.00 10.00 0 98.4 90 110 Sample ID LCSD-83524 Batch ID: 83524 TestNo: E300 Units:	
Chloride 9.84 1.00 10.00 0 98.4 90 110 Sample ID LCSD-83524 Batch ID: 83524 TestNo: E300 Units:	RPD RPDLimit Qual
Sample ID LCSD-83524 Batch ID: 83524 TestNo: E300 Units:	
	mg/L
SampType: LCSD Run ID: IC4_171208A Analysis Date: 12/8/2017 10:50:26 AM Prep Date:	12/8/2017
Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %	RPD RPDLimit Qual
Chloride 9.96 1.00 10.00 0 99.6 90 110	1.26 20
Sample ID 1712028-21DMS Batch ID: 83524 TestNo: E300 Units:	mg/L
SampType: MS Run ID: IC4_171208A Analysis Date: 12/8/2017 3:13:54 PM Prep Date:	12/8/2017
Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %	RPD RPDLimit Qual
Chloride 4230 100 2000 2211 101 90 110	
Sample ID 1712028-21DMSD Batch ID: 83524 TestNo: E300 Units:	mg/L
Sample ID 1712028-21DMSD Batch ID: 83524 TestNo: E300 Units: SampType: MSD Run ID: IC4_171208A Analysis Date: 12/8/2017 3:25:53 PM Prep Date:	mg/L 12/8/2017
	12/8/2017

Qualifiers:

B Analyte detected in the associated Method Blank

 $J \quad \quad Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits
S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 8 of 10

CLIENT: GHD Work Order: 1712081

Project:

ANALYTICAL QC SUMMARY REPORT

Hobbs Tank RunID: WC_171208D

The QC dat	a in batch 83534 app	lies to the fo	ollowing sam	oles: 171	2081-01D, 17120	81-02D, 1	712081-03D, 1	712081-	-04D		
Sample ID	MB-83534	Batch ID:	83534		TestNo:	M2	540C		Units:	mg/L	
SampType:	MBLK	Run ID:	WC_17120	08D	Analysis	Date: 12/	11/2017 9:00:	00 AM	Prep Date:	12/8/201	7
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	RPD RPI	DLimit Qual
Total Dissol	ved Solids (Residue,	Filtera	<10.0	10.0							
Sample ID	LCS-83534	Batch ID:	83534		TestNo:	M2	540C		Units:	mg/L	
SampType:	LCS	Run ID:	WC_17120	08D	Analysis	Date: 12/	11/2017 9:00:	00 AM	Prep Date:	12/8/201	7
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPI	DLimit Qual
Total Dissol	ved Solids (Residue,	Filtera	734	10.0	745.6	0	98.4	90	113		
Sample ID	1712052-04C-DUP	Batch ID:	83534		TestNo:	М2	540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_17120)8D	Analysis	Date: 12/	11/2017 9:00:	00 AM	Prep Date:	12/8/201	7
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RP	DLimit Qual
Total Dissol	ved Solids (Residue,	Filtera	229	10.0	0	234.0				2.16	5
Sample ID	1712081-01D-DUP	Batch ID:	83534		TestNo:	M2	540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_17120)8D	Analysis	Date: 12/	11/2017 9:00:	00 AM	Prep Date:	12/8/201	7
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RP	DLimit Qual
Total Dissol	lved Solids (Residue,	Filtera	1500	50.0	0	1440				3.75	5

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 9 of 10

GHD

Work Order: 1712081

ANALYTICAL QC SUMMARY REPORT

Project:

Hobbs Tank

RunID:

WC_171212C

The QC data in batch 835	572 applies to the f	ollowing s	amples: 1712	081-05D						
Sample ID MB-83572	Batch ID:	83572		TestNo:	M25	540C		Units:	mg/L	
SampType: MBLK	Run ID:	WC_17	1212C	Analysis	s Date: 12/ 1	3/2017 9:00	MA 00:0	Prep Date:	12/12/2017	7
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	%RPD RPDL	imit Qua
Total Dissolved Solids (R	esidue, Filtera	<10.0	10.0							
Sample ID LCS-83572	Batch ID:	83572		TestNo:	M25	540C		Units:	mg/L	
SampType: LCS	Run ID:	WC_17	1212C	Analysis	s Date: 12/1	3/2017 9:00	MA 00:	Prep Date:	12/12/2017	7
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	: HighLimit %	6RPD RPDL	imit Qua
Total Dissolved Solids (R	esidue, Filtera	733	10.0	745.6	0	98.3	90	113		
Sample ID 1712092-018	3-DUP Batch ID:	83572		TestNo:	M25	540C		Units:	mg/L	
SampType: DUP	Run ID:	WC_17	1212C	Analysis	s Date: 12/1	3/2017 9:00	:00 AM	Prep Date:	12/12/2017	7
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	: HighLimit %	6RPD RPDL	imit Qua
Total Dissolved Solids (R	esidue, Filtera	3560	50.0	0	3535				0.705 5	;

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

Page 10 of 10

S Spike Recovery outside control limits

N Parameter not NELAC certified

May 22, 2018

Order No.: 1803141

Brad Stephenson GHD 14998 W 6th Ave #800 Golden, CO 80401

TEL: (720) 974-0935 FAX (432) 686-0186

RE: Hobbs Tank

Dear Brad Stephenson:

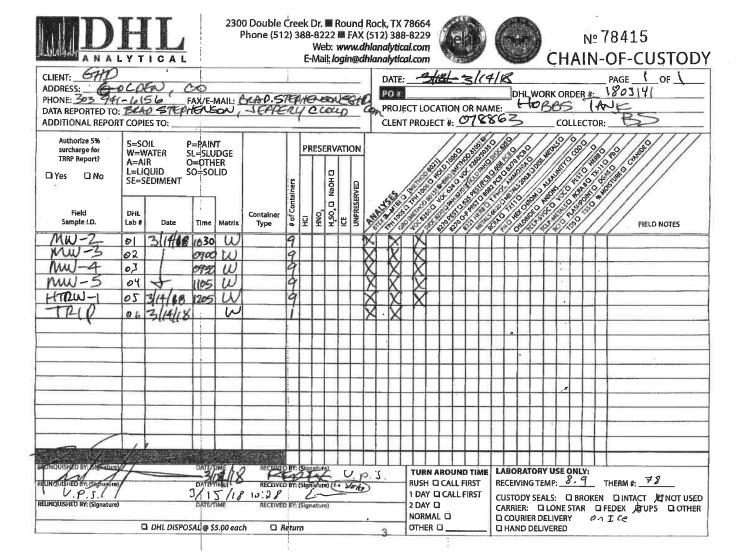
DHL Analytical, Inc. received 6 sample(s) on 3/15/2018 for the analyses presented in the following report.

Revision Number 1 for Work Order 1803141: This revision consists of extending the target analyte list for Volatiles Analysis, per the client's request. Please replace the original Data Report with this revision.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,


John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-18-20

Table of Contents

Miscellaneous Documents	3
CaseNarrative 1803141	6
Analytical Report 1803141	7
AnalyticalQCSummaryReport 1803141	19

Campio	Receipt Che	OKIIOL	
lent Name GHD		Date Received	; 3/15/2018
ork Order Number 1803141		Received by E	L
necklist completed by: 3/15/20 Signeture Date	18	_ Reviewed by _	3/15/2018 trittials Date
Carrier name	UPS Blue		
hipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present
ustody seals intact on shippping container/cooler?	Yes 🗆	No 🗆 💮	Not Present
ustody seals intact on sample bottles?	Yes 🗌	No 🗆 💮	Not Present
hain of custody present?	Yes 🗹	No 🗆	
hain of custody signed when relinquished and received?	Yes 🗹	No 🗆	
hatn of custody agrees with sample labels?	Yes 🗹	No 🗆	
amples in proper container/bottle?	Yes 🗹	No 🗌	
ample containers intact?	Yes 🗹	No 🗀	
ufficient sample volume for indicated test?	Yes 🗹	No 🗆	
Il samples received within holding time?	Yes 🗹	No 🗆 GI	3/15/19
container/Temp Blank temperature in compliance?	Yes 🗹	No 8.	
Vater - VOA vials have zero headspace?	Yes 🗌	No 🗹 N	VOA vials submitted
Vater - pH<2 acceptable upon receipt?	Yes 🗌	No 🗆 N	A V LOT#
	Adjusted?		Checked by
Vater - ph>9 (S) or ph>10 (CN) acceptable upon receipt?	Yes Adjusted?	No□ N	A V LOT# Checked by

Sample "	"MV-2" & "1V-	-y" re	reived w/ o	II VOAs	having
				-	
. ,					
Proceed	w/andssis	\$	flas det	a	
	Samples ' > 6 m.m.	Sample "MV-2" & "NV- > 6 m.m. dianeter.	Sample "MV-2" & "MV-4" re > 6 m.m. diameter.	Sample "MV-2" & "MV-4" received v/ o > 6 m.m. diameter.	Samples "MV-2" & "NV-4" received w/ all VOAs. >6 m.m. diameter. Proceed w/ and six & flag data

Page 1 of 1

Date: 22-May-18

CLIENT:

GHD

Project:

Hobbs Tank

Lab Order:

1803141

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition and Standard Methods.

All of the volatiles vials of two samples were received with observed headspace of >6mm. The results of these samples were "C" flagged in the Analytical Data Report. These are detailed in the Sample Receipt Checklist.

The compound 1-Methylnaphthalene is not NELAC Certified.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives except where noted in the following. For PAH Analysis, the recovery of surrogate 2-Fluorobiphenyl for two samples was below the method control limits. These are flagged accordingly in the Analytical Data Report. The remaining surrogate for these samples was within method control limits. No further corrective action was taken.

CLIENT:

GHD

Project:

Hobbs Tank

Project No:

078863

Lab Order: 1803141 Date: 22-May-18

Client Sample ID: MW-2

Lab ID: 1803141-01

Collection Date: 03/14/18 10:30 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - W	ATER	M80	15D				Analyst: DB
TPH-DRO C10-C28	1.91	0.0759	0.0949		mg/L	1	03/20/18 04:10 PM
Surr: Isopropylbenzene	68.1	0	47-142		%REC	1	03/20/18 04:10 PM
Surr: Octacosane	109	0	51-124		%REC	1	03/20/18 04:10 PM
TPH PURGEABLE BY GC - WAT		M80)15V				Analyst: AJH
Gasoline Range Organics	0.101	0.0600	0.100		mg/L	1	03/16/18 03:32 PM
Surr: Tetrachlorethene	105	0	74-138		%REC	1	03/16/18 03:32 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	<0.0000238	0.0000238	0.0000476	N	mg/L	1	03/19/18 12:14 PM
2-Methylnaphthalene	<0.0000238	0.0000238	0.0000476		mg/L	1	03/19/18 12:14 PM
3,4-Benzofluoranthene	<0.0000238	0.0000238	0.0000476		mg/L	1	03/19/18 12:14 PM
Anthracene	<0.0000238	0.0000238	0.0000476		mg/L	1	03/19/18 12:14 PM
Benzo[a]pyrene	<0.0000238	0.0000238	0.0000476		mg/L	1	03/19/18 12:14 PM
Benzo[k]fluoranthene	<0.0000238	0.0000238	0.0000476		mg/L	1	03/19/18 12:14 PM
Fluoranthene	<0.0000238	0.0000238	0.0000476		mg/L	1	03/19/18 12:14 PM
Fluorene	<0.0000238	0.0000238	0.0000476		mg/L	1	03/19/18 12:14 PM
Naphthalene	0.0000443	0.0000238	0.0000476	J	mg/L	1	03/19/18 12:14 PM
Phenanthrene	0.000109	0.0000238	0.0000476		mg/L	1	03/19/18 12:14 PM
Pyrene	<0.0000238	0.0000238	0.0000476		mg/L	1	03/19/18 12:14 PM
Surr: 2-Fluorobiphenyl	50.0	0	48-120		%REC	1	03/19/18 12:14 PM
Surr: 4-Terphenyl-d14	63.0	0	51-135		%REC	1	03/19/18 12:14 PM
8260 WATER VOLATILES BY G	C/MS	SW8	260C				Analyst: DEW
1,1,1-Trichloroethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
1,1,2,2-Tetrachloroethane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
1,1,2-Trichloroethane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
1,1-Dichloroethane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
1,1-Dichloroethene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
1,1-Dichloropropene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
1,2-Dibromoethane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
1,2-Dichlorobenzene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
1,2-Dichloroethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
1,2-Dichloropropane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
1,3-Dichlorobenzene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
1,3-Dichloropropane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
1,4-Dichlorobenzene	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
2,2-Dichloropropane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Acrolein	<0.00500	0.00500	0.0150	С	mg/L	1	03/15/18 06:46 PM
Acrylonitrile	<0.00100	0.00100	0.00300	С	mg/L	1	03/15/18 06:46 PM

- Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- TPH pattern not Gas or Diesel Range Pattern E
- MDL Method Detection Limit
- RL Reporting Limit
- Parameter not NELAC certified

- Analyte detected in the associated Method Blank
- DF Dilution Factor
- Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1803141

Date: 22-May-18

Client Sample ID: MW-2

Lab ID: 1803141-01

Collection Date: 03/14/18 10:30 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	60C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Bromobenzene	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Bromochloromethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Bromodichloromethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Bromoform	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Bromomethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Carbon tetrachloride	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Chlorobenzene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Chloroethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Chloroform	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Chloromethane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
cis-1,2-Dichloroethene	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
cis-1,3-Dichloropropene	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Dibromochloromethane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Dichlorodifluoromethane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Ethylbenzene	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
m,p-Xylene	<0.000600	0.000600	0.00200	С	mg/L	1	03/15/18 06:46 PM
Methyl tert-butyl ether	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Methylene chloride	< 0.00250	0.00250	0.00250	С	mg/L	1	03/15/18 06:46 PM
Naphthalene	< 0.00500	0.00500	0.0150	С	mg/L	1	03/15/18 06:46 PM
o-Xylene	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Tetrachloroethene	<0.000600	0.000600	0.00200	С	mg/L	1	03/15/18 06:46 PM
Toluene	<0.000600	0.000600	0.00200	С	mg/L	1	03/15/18 06:46 PM
trans-1,2-Dichloroethene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
trans-1,3-Dichloropropene	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Trichloroethene	<0.000600	0.000600	0.00200	С	mg/L	1	03/15/18 06:46 PM
Trichlorofluoromethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Vinyl chloride	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Total Xylenes	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 06:46 PM
Surr: 1,2-Dichloroethane-d4	102	0	72-119		%REC	1	03/15/18 06:46 PM
Surr: 4-Bromofluorobenzene	104	0	76-119		%REC	1	03/15/18 06:46 PM
Surr: Dibromofluoromethane	96.7	0	85-115		%REC	1	03/15/18 06:46 PM
Surr: Toluene-d8	97.6	0	81-120		%REC	1	03/15/18 06:46 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863 **Collection Date:** 03/14/18 09:00 AM

Lab Order: 1803141 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80)15D				Analyst: DB
TPH-DRO C10-C28	0.184	0.0754	0.0942		mg/L	1	03/20/18 12:29 PM
Surr: Isopropyibenzene	62.6	0	47-142		%REC	1	03/20/18 12:29 PM
Surr: Octacosane	90.5	0	51-124		%REC	1	03/20/18 12:29 PM
TPH PURGEABLE BY GC - WATER		M80)15V				Analyst: AJH
Gasoline Range Organics	<0.0600	0.0600	0.100		mg/L	1	03/16/18 03:56 PM
Surr: Tetrachlorethene	87.1	0	74-138		%REC	1	03/16/18 03:56 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	< 0.0000237	0.0000237	0.0000474	N	mg/L	1	03/17/18 01:51 PM
2-Methylnaphthalene	< 0.0000237	0.0000237	0.0000474		mg/L	1	03/17/18 01:51 PM
3,4-Benzofluoranthene	< 0.0000237	0.0000237	0.0000474		mg/L	1	03/17/18 01:51 PM
Anthracene	< 0.0000237	0.0000237	0.0000474		mg/L	1	03/17/18 01:51 PM
Benzo[a]pyrene	< 0.0000237	0.0000237	0.0000474		mg/L	1	03/17/18 01:51 PM
Benzo[k]fluoranthene	< 0.0000237	0.0000237	0.0000474		mg/L	1	03/17/18 01:51 PM
Fluoranthene	<0.0000237	0.0000237	0.0000474		mg/L	1	03/17/18 01:51 PM
Fluorene	<0.0000237	0.0000237	0.0000474		mg/L	1	03/17/18 01:51 PM
Naphthalene	< 0.0000237	0.0000237	0.0000474		mg/L	1	03/17/18 01:51 PM
Phenanthrene	< 0.0000237	0.0000237	0.0000474		mg/L	1	03/17/18 01:51 PM
Pyrene	< 0.0000237	0.0000237	0.0000474		mg/L	1	03/17/18 01:51 PM
Surr: 2-Fluorobiphenyl	42.1	0	48-120	s	%REC	1	03/17/18 01:51 PM
Surr: 4-Terphenyl-d14	54.9	0	51-135		%REC	1	03/17/18 01:51 PM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
1,1,1-Trichloroethane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
1,1,2,2-Tetrachloroethane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
1,1,2-Trichloroethane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
1,1-Dichloroethane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
1,1-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
1,1-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
1,2-Dibromoethane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
1,2-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
1,2-Dichloroethane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
1,2-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
1,3-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
1,3-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
1,4-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
2,2-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:09 PM
Acrolein	<0.00500	0.00500	0.0150		mg/L	1	03/15/18 07:09 PM
Acrylonitrile	<0.00100	0.00100	0.00300		mg/L	1	03/15/18 07:09 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 22-May-18

Lab ID: 1803141-02

Client Sample ID: MW-3

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

Hobbs Tank

Project: Hobbs
Project No: 07886

Lab Order:

078863 1803141 Client Sample ID: MW-3

Lab ID: 1803141-02

Date: 22-May-18

Collection Date: 03/14/18 09:00 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	:60C			Analyst: DEW
Benzene	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Bromobenzene	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Bromochloromethane	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Bromodichloromethane	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Bromoform	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Bromomethane	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Carbon tetrachloride	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Chlorobenzene	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Chloroethane	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Chloroform	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Chloromethane	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
cis-1,2-Dichloroethene	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
cis-1,3-Dichloropropene	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Dibromochloromethane	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Dichlorodifluoromethane	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Ethylbenzene	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
m,p-Xylene	< 0.000600	0.000600	0.00200	mg/L	1	03/15/18 07:09 PM
Methyl tert-butyl ether	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Methylene chloride	< 0.00250	0.00250	0.00250	mg/L	1	03/15/18 07:09 PM
Naphthalene	<0.00500	0.00500	0.0150	mg/L	1	03/15/18 07:09 PM
o-Xylene	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Tetrachloroethene	<0.000600	0.000600	0.00200	mg/L	1	03/15/18 07:09 PM
Toluene	<0.000600	0.000600	0.00200	mg/L	1	03/15/18 07:09 PM
trans-1,2-Dichloroethene	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
trans-1,3-Dichloropropene	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Trichloroethene	<0.000600	0.000600	0.00200	mg/L	1	03/15/18 07:09 PM
Trichlorofluoromethane	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Vinyl chloride	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Total Xylenes	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:09 PM
Surr: 1,2-Dichloroethane-d4	101	0	72-119	%REC	1	03/15/18 07:09 PM
Surr: 4-Bromofluorobenzene	104	0	76-119	%REC	1	03/15/18 07:09 PM
Surr: Dibromofluoromethane	97.7	0	85-115	%REC	1	03/15/18 07:09 PM
Surr: Toluene-d8	97.9	0	81-120	%REC	1	03/15/18 07:09 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT:

GHD

Project:

Project No: Lab Order:

Hobbs Tank

078863

1803141

Date: 22-May-18

Client Sample ID: MW-4

Lab ID: 1803141-03

Collection Date: 03/14/18 09:30 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80)15D				Analyst: DB
TPH-DRO C10-C28	0.357	0.0757	0.0947		mg/L	1	03/20/18 12:38 PM
Surr: Isopropylbenzene	64.8	0	47-142		%REC	1	03/20/18 12:38 PM
Surr: Octacosane	102	0	51-124		%REC	1	03/20/18 12:38 PM
TPH PURGEABLE BY GC - WATER		M80)15V				Analyst: AJH
Gasoline Range Organics	<0.0600	0.0600	0.100		mg/L	1	03/16/18 04:20 PM
Surr: Tetrachlorethene	99.0	0	74-138		%REC	1	03/16/18 04:20 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	<0.0000238	0.0000238	0.0000476	N	mg/L	1	03/17/18 02:20 PM
2-Methylnaphthalene	<0.0000238	0.0000238	0.0000476		mg/L	1	03/17/18 02:20 PM
3,4-Benzofluoranthene	<0.0000238	0.0000238	0.0000476		mg/L	1	03/17/18 02:20 PM
Anthracene	< 0.0000238	0.0000238	0.0000476		mg/L	1	03/17/18 02:20 PM
Benzo[a]pyrene	< 0.0000238	0.0000238	0.0000476		mg/L	1	03/17/18 02:20 PM
Benzo[k]fluoranthene	< 0.0000238	0.0000238	0.0000476		mg/L	1	03/17/18 02:20 PM
Fluoranthene	< 0.0000238	0.0000238	0.0000476		mg/L	1	03/17/18 02:20 PM
Fluorene	< 0.0000238	0.0000238	0.0000476		mg/L	1	03/17/18 02:20 PM
Naphthalene	<0.0000238	0.0000238	0.0000476		mg/L	1	03/17/18 02:20 PM
Phenanthrene	<0.0000238	0.0000238	0.0000476		mg/L	1	03/17/18 02:20 PM
Pyrene	<0.0000238	0.0000238	0.0000476		mg/L	1	03/17/18 02:20 PM
Surr: 2-Fluorobiphenyl	50.4	0	48-120		%REC	1	03/17/18 02:20 PM
Surr: 4-Terphenyl-d14	66.2	0	51-135		%REC	1	03/17/18 02:20 PM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
1,1,1-Trichloroethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
1,1,2,2-Tetrachloroethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
1,1,2-Trichloroethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
1,1-Dichloroethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
1,1-Dichloroethene	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
1,1-Dichloropropene	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
1,2-Dibromoethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
1,2-Dichlorobenzene	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
1,2-Dichloroethane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
1,2-Dichloropropane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
1,3-Dichlorobenzene	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
1,3-Dichloropropane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
1,4-Dichlorobenzene	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
2,2-Dichloropropane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Acrolein	<0.00500	0.00500	0.0150	С	mg/L	1	03/15/18 07:32 PM
Acrylonitrile	<0.00100	0.00100	0.00300	С	mg/L	1	03/15/18 07:32 PM

- Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- Е TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- Parameter not NELAC certified

- В Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1803141

Date: 22-May-18

Client Sample ID: MW-4

Lab ID: 1803141-03

Collection Date: 03/14/18 09:30 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	60C				Analyst: DEW
Benzene	0.000331	0.000300	0.00100	JC	mg/L	1	03/15/18 07:32 PM
Bromobenzene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Bromochloromethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Bromodichloromethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Bromoform	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Bromomethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Carbon tetrachloride	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Chlorobenzene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Chloroethane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Chloroform	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Chloromethane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
cis-1,2-Dichloroethene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
cis-1,3-Dichloropropene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Dibromochloromethane	<0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Dichlorodifluoromethane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Ethylbenzene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
m,p-Xylene	< 0.000600	0.000600	0.00200	С	mg/L	1	03/15/18 07:32 PM
Methyl tert-butyl ether	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Methylene chloride	< 0.00250	0.00250	0.00250	С	mg/L	1	03/15/18 07:32 PM
Naphthalene	< 0.00500	0.00500	0.0150	С	mg/L	1	03/15/18 07:32 PM
o-Xylene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Tetrachloroethene	<0.000600	0.000600	0.00200	С	mg/L	1	03/15/18 07:32 PM
Toluene	< 0.000600	0.000600	0.00200	С	mg/L	1	03/15/18 07:32 PM
trans-1,2-Dichloroethene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
trans-1,3-Dichloropropene	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Trichloroethene	<0.000600	0.000600	0.00200	С	mg/L	1	03/15/18 07:32 PM
Trichlorofluoromethane	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Vinyl chloride	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Total Xylenes	< 0.000300	0.000300	0.00100	С	mg/L	1	03/15/18 07:32 PM
Surr: 1,2-Dichloroethane-d4	99.6	0	72-119		%REC	1	03/15/18 07:32 PM
Surr: 4-Bromofluorobenzene	104	0	76-119		%REC	1	03/15/18 07:32 PM
Surr: Dibromofluoromethane	96.7	0	85-115		%REC	1	03/15/18 07:32 PM
Surr: Toluene-d8	99.5	0	81-120		%REC	1	03/15/18 07:32 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1803141

Date: 22-May-18

Client Sample ID: MW-5

Lab ID: 1803141-04

Collection Date: 03/14/18 11:05 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80)15D				Analyst: DB
TPH-DRO C10-C28	<0.0756	0.0756	0.0944		mg/L	1	03/20/18 12:47 PM
Surr: Isopropylbenzene	63.3	0	47-142		%REC	1	03/20/18 12:47 PM
Surr: Octacosane	112	0	51-124		%REC	1	03/20/18 12:47 PM
TPH PURGEABLE BY GC - WATER		M80)15V				Analyst: AJH
Gasoline Range Organics	<0.0600	0.0600	0.100		mg/L	1	03/16/18 04:44 PM
Surr: Tetrachlorethene	91.9	0	74-138		%REC	1	03/16/18 04:44 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	< 0.0000236	0.0000236	0.0000472	N	mg/L	1	03/17/18 02:50 PM
2-Methylnaphthalene	< 0.0000236	0.0000236	0.0000472		mg/L	1	03/17/18 02:50 PM
3,4-Benzofluoranthene	<0.0000236	0.0000236	0.0000472		mg/L	1	03/17/18 02:50 PM
Anthracene	< 0.0000236	0.0000236	0.0000472		mg/L	1	03/17/18 02:50 PM
Benzo[a]pyrene	< 0.0000236	0.0000236	0.0000472		mg/L	1	03/17/18 02:50 PM
Benzo[k]fluoranthene	<0.0000236	0.0000236	0.0000472		mg/L	1	03/17/18 02:50 PM
Fluoranthene	<0.0000236	0.0000236	0.0000472		mg/L	1	03/17/18 02:50 PM
Fluorene	<0.0000236	0.0000236	0.0000472		mg/L	1	03/17/18 02:50 PM
Naphthalene	<0.0000236	0.0000236	0.0000472		mg/L	1	03/17/18 02:50 PM
Phenanthrene	<0.0000236	0.0000236	0.0000472		mg/L	1	03/17/18 02:50 PM
Pyrene	<0.0000236	0.0000236	0.0000472		mg/L	1	03/17/18 02:50 PM
Surr: 2-Fluorobiphenyl	55.8	0	48-120		%REC	1	03/17/18 02:50 PM
Surr: 4-Terphenyl-d14	70.0	0	51-135		%REC	1	03/17/18 02:50 PM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
1,1,1-Trichloroethane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
1,1,2,2-Tetrachloroethane	< 0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
1,1,2-Trichloroethane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
1,1-Dichloroethane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
1,1-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
1,1-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
1,2-Dibromoethane	< 0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
1,2-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
1,2-Dichloroethane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
1,2-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
1,3-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
1,3-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
1,4-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
2,2-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 07:55 PM
Acrolein	<0.00500	0.00500	0.0150		mg/L	1	03/15/18 07:55 PM
Acrylonitrile	<0.00100	0.00100	0.00300		mg/L	1	03/15/18 07:55 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1803141

Date: 22-May-18

Client Sample ID: MW-5

Lab ID: 1803141-04

Collection Date: 03/14/18 11:05 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	:60C			Analyst: DEW
Benzene	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Bromobenzene	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Bromochloromethane	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Bromodichloromethane	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Bromoform	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Bromomethane	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Carbon tetrachloride	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Chlorobenzene	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Chloroethane	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Chloroform	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Chloromethane	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
cis-1,2-Dichloroethene	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
cis-1,3-Dichloropropene	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Dibromochloromethane	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PN
Dichlorodifluoromethane	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PN
Ethylbenzene	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PN
m,p-Xylene	<0.000600	0.000600	0.00200	mg/L	1	03/15/18 07:55 PN
Methyl tert-butyl ether	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PN
Methylene chloride	< 0.00250	0.00250	0.00250	mg/L	1	03/15/18 07:55 PN
Naphthalene	<0.00500	0.00500	0.0150	mg/L	1	03/15/18 07:55 PN
o-Xylene	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Tetrachloroethene	<0.000600	0.000600	0.00200	mg/L	1	03/15/18 07:55 PM
Toluene	<0.000600	0.000600	0.00200	mg/L	1	03/15/18 07:55 PM
trans-1,2-Dichloroethene	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
trans-1,3-Dichloropropene	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Trichloroethene	<0.000600	0.000600	0.00200	mg/L	1	03/15/18 07:55 PN
Trichlorofluoromethane	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Vinyl chloride	<0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Total Xylenes	< 0.000300	0.000300	0.00100	mg/L	1	03/15/18 07:55 PM
Surr: 1,2-Dichloroethane-d4	100	0	72-119	%REC	1.	03/15/18 07:55 PM
Surr: 4-Bromofluorobenzene	107	0	76-119	%REC	1	03/15/18 07:55 PM
Surr: Dibromofluoromethane	96.1	0	85-115	%REC	1	03/15/18 07:55 PN
Surr: Toluene-d8	98.6	0	81-120	%REC	1	03/15/18 07:55 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1803141

Date: 22-May-18

Client Sample ID: HTRW-1

Lab ID: 1803141-05

Collection Date: 03/14/18 12:05 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER	R	M80)15D				Analyst: DB
TPH-DRO C10-C28	<0.0754	0.0754	0.0943		mg/L	1	03/20/18 12:56 PM
Surr: Isopropylbenzene	61.6	0	47-142		%REC	1	03/20/18 12:56 PM
Surr: Octacosane	101	0	51-124		%REC	1	03/20/18 12:56 PM
TPH PURGEABLE BY GC - WATER		M80)15V				Analyst: AJH
Gasoline Range Organics	0.360	0.0600	0.100		mg/L	1	03/16/18 05:08 PM
Surr: Tetrachlorethene	99.2	0	74-138		%REC	1	03/16/18 05:08 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	< 0.0000236	0.0000236	0.0000473	N	mg/L	1	03/17/18 03:20 PM
2-Methylnaphthalene	< 0.0000236	0.0000236	0.0000473		mg/L	1	03/17/18 03:20 PM
3,4-Benzofluoranthene	< 0.0000236	0.0000236	0.0000473		mg/L	1	03/17/18 03:20 PM
Anthracene	< 0.0000236	0.0000236	0.0000473		mg/L	1	03/17/18 03:20 PM
Benzo[a]pyrene	< 0.0000236	0.0000236	0.0000473		mg/L	1	03/17/18 03:20 PM
Benzo[k]fluoranthene	<0.0000236	0.0000236	0.0000473		mg/L	1	03/17/18 03:20 PM
Fluoranthene	< 0.0000236	0.0000236	0.0000473		mg/L	1	03/17/18 03:20 PM
Fluorene	< 0.0000236	0.0000236	0.0000473		mg/L	1	03/17/18 03:20 PM
Naphthalene	< 0.0000236	0.0000236	0.0000473		mg/L	1	03/17/18 03:20 PM
Phenanthrene	< 0.0000236	0.0000236	0.0000473		mg/L	1	03/17/18 03:20 PM
Pyrene	<0.0000236	0.0000236	0.0000473		mg/L	1	03/17/18 03:20 PM
Surr: 2-Fluorobiphenyl	47.1	0	48-120	S	%REC	1	03/17/18 03:20 PM
Surr: 4-Terphenyl-d14	62.4	0	51-135		%REC	1	03/17/18 03:20 PM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
1,1,1-Trichloroethane	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
1,1,2,2-Tetrachloroethane	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
1,1,2-Trichloroethane	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
1,1-Dichloroethane	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
1,1-Dichloroethene	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
1,1-Dichloropropene	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
1,2-Dibromoethane	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
1,2-Dichlorobenzene	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
1,2-Dichloroethane	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
1,2-Dichloropropane	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
1,3-Dichlorobenzene	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
1,3-Dichloropropane	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
1,4-Dichlorobenzene	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
2,2-Dichloropropane	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Acrolein	<0.0500	0.0500	0.150		mg/L	10	03/15/18 08:42 PM
Acrylonitrile	<0.0100	0.0100	0.0300		mg/L	10	03/15/18 08:42 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1803141

Date: 22-May-18

Client Sample ID: HTRW-1

Lab ID: 1803141-05

Collection Date: 03/14/18 12:05 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/N	NS	SW82	60C				Analyst: DEW
Benzene	0.102	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Bromobenzene	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Bromochloromethane	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Bromodichloromethane	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Bromoform	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Bromomethane	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Carbon tetrachloride	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Chlorobenzene	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Chloroethane	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Chloroform	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Chloromethane	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
cis-1,2-Dichloroethene	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
cis-1,3-Dichloropropene	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Dibromochloromethane	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Dichlorodifluoromethane	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Ethylbenzene	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
m,p-Xylene	< 0.00600	0.00600	0.0200		mg/L	10	03/15/18 08:42 PM
Methyl tert-butyl ether	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Methylene chloride	< 0.0250	0.0250	0.0250		mg/L	10	03/15/18 08:42 PM
Naphthalene	< 0.0500	0.0500	0.150		mg/L	10	03/15/18 08:42 PM
o-Xylene	0.00816	0.00300	0.0100	J	mg/L	10	03/15/18 08:42 PM
Tetrachloroethene	<0.00600	0.00600	0.0200		mg/L	10	03/15/18 08:42 PM
Toluene	< 0.00600	0.00600	0.0200		mg/L	10	03/15/18 08:42 PM
trans-1,2-Dichloroethene	<0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
trans-1,3-Dichloropropene	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Trichloroethene	< 0.00600	0.00600	0.0200		mg/L	10	03/15/18 08:42 PM
Trichlorofluoromethane	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Vinyl chloride	< 0.00300	0.00300	0.0100		mg/L	10	03/15/18 08:42 PM
Total Xylenes	0.00816	0.00300	0.0100	J	mg/L	10	03/15/18 08:42 PM
Surr: 1,2-Dichloroethane-d4	100	0	72-119		%REC	10	03/15/18 08:42 PM
Surr: 4-Bromofluorobenzene	106	0	76-119		%REC	10	03/15/18 08:42 PM
Surr: Dibromofluoromethane	96.4	0	85-115		%REC	10	03/15/18 08:42 PM
Surr: Toluene-d8	98.0	0	81-120		%REC	10	03/15/18 08:42 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1803141

Date: 22-May-18

Client Sample ID: Trip

Lab ID: 1803141-06

Collection Date: 03/14/18

Matrix: TRIP BLANK

Analyses	Result	MDL	RL	Qual Un	its DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	60C			Analyst: DEW
1,1,1-Trichloroethane	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
1,1,2,2-Tetrachloroethane	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
1,1,2-Trichloroethane	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
1,1-Dichloroethane	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
1,1-Dichloroethene	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
1,1-Dichloropropene	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
1,2-Dibromoethane	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
1,2-Dichlorobenzene	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
1,2-Dichloroethane	<0.000300	0.000300	0.00100	mg/i	_ 1	03/15/18 06:23 PM
1,2-Dichloropropane	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
1,3-Dichlorobenzene	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
1,3-Dichloropropane	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
1,4-Dichlorobenzene	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
2,2-Dichloropropane	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
Acrolein	<0.00500	0.00500	0.0150	mg/l	_ 1	03/15/18 06:23 PM
Acrylonitrile	<0.00100	0.00100	0.00300	mg/l	_ 1	03/15/18 06:23 PM
Benzene	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
Bromobenzene	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
Bromochloromethane	< 0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
Bromodichloromethane	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
Bromoform	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
Bromomethane	< 0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
Carbon tetrachloride	< 0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
Chlorobenzene	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
Chloroethane	<0.000300	0.000300	0.00100	mg/l	_ 1	03/15/18 06:23 PM
Chloroform	<0.000300	0.000300	0.00100	mg/	L 1	03/15/18 06:23 PM
Chloromethane	<0.000300	0.000300	0.00100	mg/l	L 1	03/15/18 06:23 PM
cis-1,2-Dichloroethene	<0.000300	0.000300	0.00100	mg/	L 1	03/15/18 06:23 PM
cis-1,3-Dichloropropene	<0.000300	0.000300	0.00100	mg/	L 1	03/15/18 06:23 PM
Dibromochloromethane	< 0.000300	0.000300	0.00100	mg/	L 1	03/15/18 06:23 PM
Dichlorodifluoromethane	<0.000300	0.000300	0.00100	mg/		03/15/18 06:23 PM
Ethylbenzene	<0.000300	0.000300	0.00100	mg/	L 1	03/15/18 06:23 PM
m,p-Xylene	<0.000600	0.000600	0.00200	mg/	L 1	03/15/18 06:23 PM
Methyl tert-butyl ether	<0.000300	0.000300	0.00100	mg/	L 1	03/15/18 06:23 PM
Methylene chloride	<0.00250	0.00250	0.00250	mg/	L 1	03/15/18 06:23 PM
Naphthalene	<0.00500	0.00500	0.0150	mg/		03/15/18 06:23 PM
o-Xylene	<0.000300	0.000300	0.00100	mg/		03/15/18 06:23 PM
Tetrachloroethene	<0.000600	0.000600	0.00200	mg/		03/15/18 06:23 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1803141

Date: 22-May-18

Client Sample ID: Trip

Lab ID: 1803141-06

Collection Date: 03/14/18

Matrix: TRIP BLANK

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260C				Analyst: DEW
Toluene	<0.000600	0.000600	0.00200		mg/L	1	03/15/18 06:23 PM
trans-1,2-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 06:23 PM
trans-1,3-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 06:23 PM
Trichloroethene	<0.000600	0.000600	0.00200		mg/L	1	03/15/18 06:23 PM
Trichlorofluoromethane	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 06:23 PM
Vinyl chloride	<0.000300	0.000300	0.00100		mg/L	1	03/15/18 06:23 PM
Total Xylenes	< 0.000300	0.000300	0.00100		mg/L	1	03/15/18 06:23 PM
Surr: 1,2-Dichloroethane-d4	101	0	72-119		%REC	1	03/15/18 06:23 PM
Surr: 4-Bromofluorobenzene	106	0	76-119		%REC	1	03/15/18 06:23 PM
Surr: Dibromofluoromethane	97.2	0	85-115		%REC	1	03/15/18 06:23 PM
Surr: Toluene-d8	98.0	0	81-120		%REC	1	03/15/18 06:23 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT:

GHD

Work Order: 1803141

ANALYTICAL QC SUMMARY REPORT

Date: 22-May-18

PupID: CC15 1903

Project: Ho	bbs Tank					RunII): (GC15_180	320B	
The QC data in batch 84	774 applies to the f	ollowing s	amples: 1803	141-01C, 1803	141-02C, 18	03141-03C,	1803141	-04C, 180314	41-05C	
Sample ID LCS-84774	Batch ID:	84774		TestNo	: M80	15D		Units:	mg/L	
SampType: LCS	Run ID:	GC15_	180320B	Analysi	s Date: 3/20	/2018 11:52	2:49 AM	Prep Date:	3/19/2	018
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qual
TPH-DRO C10-C28		1.02	0.100	1.250	0	81.9	50	114		
Surr: Isopropylbenzen	e	0.0668		0.1000		66.8	47	142		
Surr: Octacosane		0.0897		0.1000		89.7	51	124		
Sample ID LCSD-8477	4 Batch ID:	84774		TestNo	: M80	15D		Units:	mg/L	
SampType: LCSD	Run ID:	GC15_	18032 0B	Analysi	s Date: 3/20	/2018 12:01	1:48 PM	Prep Date:	3/19/2	018
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qual
TPH-DRO C10-C28		0.976	0.100	1.250	0	78.1	50	114	4.78	30
Surr: Isopropylbenzen	е	0.0622		0.1000		62.2	47	142	0	0
Surr: Octacosane		0.0863		0.1000		86.3	51	124	0	0
Sample ID MB-84774	Batch ID:	84774		TestNo	: М80	15D		Units:	mg/L	
SampType: MBLK	Run ID:	GC15_	180320B	Analysi	s Date: 3/20	/2018 12:10):47 PM	Prep Date:	3/19/2	018
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 🤋	%RPD R	PDLimit Qual
TPH-DRO C10-C28		<0.0800	0.100							
Surr: Isopropylbenzer	е	0.0563		0.1000		56.3	47	142		
Surr: Octacosane		0.0813		0.1000		81.3	51	124		

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 1 of 9

CLIENT:

 $G\!H\!D$

Work Order: 1803141

Project:

Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GC4_180316A

1100005 14						Itulii	•	304_1003.	LUZI	
The QC data in batch 84735 app	lies to the fo	ollowing	samples: 1803	141-01B, 1803	141-02B, 1	803141-03B,	1803141	-04B, 180314	1-05B	
Sample ID MB-84735	Batch ID:	84735		TestNo	M8	015V		Units:	mg/L	
SampType: MBLK	Run ID:	GC4_1	180316A	Analysi	s Date: 3/1	6/2018 12:58	3:33 PM	Prep Date:	3/16/2	018
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Gasoline Range Organics	<	0.0600	0.100							
Surr: Tetrachlorethene		0.367		0.4000		91.8	74	138		
Sample ID LCS-84735	Batch ID:	84735		TestNo	M8	015V		Units:	mg/L	
SampType: LCS	Run ID:	GC4_1	80316A	Analysi	s Date: 3/1	6/2018 1:41:	54 PM	Prep Date:	3/16/2	018
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Gasoline Range Organics		2.24	0.100	2.500	0	89.7	67	136		
Surr: Tetrachlorethene		0.354		0.4000		88.5	74	138		
Sample ID 1803141-01BMS	Batch ID:	84735		TestNo:	M8	015V		Units:	mg/L	
SampType: MS	Run ID:	GC4_1	80316A	Analysis	s Date: 3/1	6/2018 5:47:	02 PM	Prep Date:	3/16/2	018
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Gasoline Range Organics		2.53	0.100	2.500	0.1013	97.0	67	136		
Surr: Tetrachlorethene		0.328		0.4000		82.0	74	138		
Sample ID 1803141-01BMSD	Batch ID:	84735		TestNo:	M8	015 V		Units:	mg/L	
SampType: MSD	Run ID:	GC4_1	80316A	Analysis	s Date: 3/1	6/ 20 18 6:10:	45 PM	Prep Date:	3/16/2	018
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Gasoline Range Organics		2.72	0.100	2.500	0.1013	105	67	136	7.22	30
Surr: Tetrachlorethene		0.341		0.4000		85.2	74	138	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 2 of 9

CLIENT: GHDWork Order: 1803141

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs 7		moles: 1802	IA1-01D 1803	81 <u>41</u> -02D 19	RunII		GCMS6_18		
Sample ID LCS-84753	Batch ID: 84753	трез. 1003	TestNo		3270D-LL	1003141	Units:	mg/L	
		4000474						_	
SampType: LCS	Run ID: GCMS6	_180317A	Analys	is Date: 3/17	/2018 11:53	3:00 AM	Prep Date:	3/17/20	18
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RP	DLimit Qu
1-Methylnaphthalene	0.00231	0.0000500	0.00400	0	57.7	46	120		N
2-Methylnaphthalene	0.00231	0.0000500	0.00400	0	57.6	46	120		
3,4-Benzofluoranthene	0.00286	0.0000500	0.00400	0	71.4	45	124		
Anthracene	0.00257	0.0000500	0.00400	0	64.2	54	120		
Benzo[a]pyrene	0.00296	0.0000500	0.00400	0	73.9	53	120		
Benzo[k]fluoranthene	0.00278	0.0000500	0.00400	0	69.6	45	124		
Fluoranthene	0.00274	0.0000500	0.00400	0	68.6	54	120		
Fluorene	0.00254	0.0000500	0.00400	0	63.6	50	120		
Naphthalene	0.00222	0.0000500	0.00400	0	55.6	39	120		
Phenanthrene	0.00266	0.0000500	0.00400	0	66.5	51	120		
Pyrene	0.00263	0.0000500	0.00400	0	65.8	49	128		
Surr: 2-Fluorobiphenyl	4.64		8.000		58.0	48	120		
Surr: 4-Terphenyl-d14	5.87		8.000		73.4	51	135		
Sample ID LCSD-84753	Batch ID: 84753		TestNo	o: SW8	3270D-LL		Units:	mg/L	
SampType: LCSD	Run ID: GCMS6	_180317A	Analys	is Date: 3/17	/2018 12:23	3:00 PM	Prep Date:	3/17/20	18
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RP	DLimit Qu
1-Methylnaphthalene	0.00231	0.0000500	0.00400	0	57.7	46	120	0.004	20 N
2-Methylnaphthalene	0.00231	0.0000500	0.00400	0	57.9	46	120	0.382	20
3,4-Benzofluoranthene	0.00255	0.0000500	0.00400	0	63.7	45	124	11.4	20
Anthracene	0.00247	0.0000500	0.00400	0	61.8	54	120	3.84	20
Benzo[a]pyrene	0.00276	0.0000500	0.00400	0	69.0	53	120	6.93	20
Benzo[k]fluoranthene	0.00254	0.0000500	0.00400	0	63.4	45	124	9.26	20
Fluoranthene	0.00261	0.0000500	0.00400	0	65.2	54	120	5.04	20
Fluorene	0.00249	0.0000500	0.00400	0	62.2	50	120	2.21	20
Naphthalene	0.00219	0.0000500	0.00400	0	54.8	39	120	1.38	20
Phenanthrene	0.00258	0.0000500	0.00400	0	64.4	51	120	3.22	20
Pyrene	0.00255	0.0000500	0.00400	0	63.7	49	128	3.29	20
Surr: 2-Fluorobiphenyl	4.44		8.000		55.5	48	120	0	0
Surr: 4-Terphenyl-d14	5.55		8.000		69.4	51	135	0	0
Sample ID MB-84753	Batch ID: 84753		TestNo	o: SW8	8270D-LL		Units:	mg/L	
SampType: MBLK	Run ID: GCMS6	_180317A	Analys	sis Date: 3/17	/2018 1:21:	00 PM	Prep Date:	3/17/20	18
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RP	DLimit Qu
1-Methylnaphthalene	<0.0000250	0.0000500							N
2-Methylnaphthalene	<0.0000250	0.0000500							
3,4-Benzofluoranthene	<0.0000250	0.0000500							
Anthracene	<0.0000250	0.0000500							
Qualifiers: B Analyte	detected in the associated M	lethod Blank	DF	Dilution Facto)r				
-	detected in the associated will detected between MDL and			Method Detec				л.	nga 2 of C
J Analyte	uciecieu beiween MDL and		MIDL	PDD 1	CON LIMIT	1 . 11 . 11 . 11		Pa	age 3 of 9

RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAC certified

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

RL Reporting Limit

CLIENT: Work Order: **GHD** 1803141

Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS6_180317A

Sample ID MB-84753	Batch ID: 84753		TestNo	SW8	3270D-LL		Units:	mg/L
SampType: MBLK	Run ID: GCMS6	3_180317A	Analysis	s Date: 3/17	/2018 1:21:	00 PM	Prep Date:	3/17/2018
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD RPDLimit Qual
Benzo[a]pyrene	<0.0000250	0.0000500						
Benzo[k]fluoranthene	< 0.0000250	0.0000500						
Fluoranthene	< 0.0000250	0.0000500						
Fluorene	< 0.0000250	0.0000500						
Naphthalene	<0.0000250	0.0000500						
Phenanthrene	< 0.0000250	0.0000500						
Pyrene	< 0.0000250	0.0000500						
Surr: 2-Fluorobiphenyl	4.54		8.000		56.7	48	120	
Surr: 4-Terphenyl-d14	6.52		8.000		81.5	51	135	

Sample ID SB-180319	Batch ID: 84753		TestNo:	SW8270D-LL	. Units:	mg/L
SampType: SBLK	Run ID: GCMS6	_180317A	A Analysis Date: 3/19/2018 11:44:00 AM Prep Date:			ate:
Analyte	Result	RL	SPK value	Ref Val %REG	C LowLimit HighLir	nit %RPD RPDLimit Qual
1-Methylnaphthalene	<0.0125	0.0250	0			N
2-Methylnaphthalene	<0.0125	0.0250	0			
3,4-Benzofluoranthene	<0.0125	0.0250	0			
Anthracene	<0.0125	0.0250	0			
Benzo[a]pyrene	<0.0125	0.0250	0			
Benzo[k]fluoranthene	<0.0125	0.0250	0			
Fluoranthene	<0.0125	0.0250	0			
Fluorene	<0.0125	0.0250	0			
Naphthalene	<0.0125	0.0250	0			
Phenanthrene	<0.0125	0.0250	0			
Pyrene	<0.0125	0.0250	0			
Surr: 2-Fluorobiphenyl	0.350		0			
Surr: 4-Terphenyl-d14	6.10		0			

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

Dilution Factor

MDL Method Detection Limit

R

Spike Recovery outside control limits

Parameter not NELAC certified

RPD outside accepted control limits

Page 4 of 9

CLIENT: GHD Work Order: 1803141

Hobbs Tank

Project:

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS5_180315C

Sample ID LCS-84749 SampType: LCS Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane		84749 GCMS5 Result	_180315C	TestNo	SW8	3260C		Units:	mg/L
Analyte 1,1,1-Trichloroethane			_180315C	Analysi					
1,1,1-Trichloroethane		Regult		Allalys	is Date: 3/15	/2018 3:41:	00 PM	Prep Date:	3/15/2018
	(result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
1,1,2,2-Tetrachloroethane		0.0227	0.00100	0.0232	0	97.7	67	132	
	(0.0208	0.00100	0.0232	0	89.8	63	128	
1,1,2-Trichloroethane	(0.0225	0.00100	0.0232	0	96.8	75	125	
1,1-Dichloroethane	(0.0222	0.00100	0.0232	0	95.8	69	133	
1,1-Dichloroethene	(0.0206	0.00100	0.0232	0	88.8	68	130	
1,1-Dichloropropene	(0.0219	0.00100	0.0232	0	94.5	73	132	
1,2-Dibromoethane	(0.0212	0.00100	0.0232	0	91.4	80	121	
1,2-Dichlorobenzene	(0.0218	0.00100	0.0232	0	94.2	75	122	
1,2-Dichloroethane	(0.0225	0.00100	0.0232	0	96.8	69	132	
1,2-Dichloropropane	(0.0230	0.00100	0.0232	0	99.1	75	125	
1,3-Dichlorobenzene	(0.0215	0.00100	0.0232	0	92.6	75	124	
1,3-Dichloropropane	(0.0218	0.00100	0.0232	0	93.9	73	126	
1,4-Dichlorobenzene	(0.0209	0.00100	0.0232	0	89.9	74	123	
2,2-Dichloropropane	(0.0220	0.00100	0.0232	0	94.8	69	137	
Acrolein	(0.0589	0.0150	0.0580	0	102	40	160	
Acrylonitrile	(0.0427	0.00300	0.0464	0	92.0	50	150	
Benzene	(0.0216	0.00100	0.0232	0	93.1	81	122	
Bromobenzene	(0.0211	0.00100	0.0232	0	90.7	76	124	
Bromochloromethane	(0.0225	0.00100	0.0232	0	97.1	65	129	
Bromodichloromethane	(0.0233	0.00100	0.0232	0	100	76	121	
Bromoform	(0.0214	0.00100	0.0232	0	92.2	69	128	
Bromomethane	(0.0199	0.00100	0.0232	0	85.7	53	141	
Carbon tetrachloride	(0.0234	0.00100	0.0232	0	101	66	138	
Chlorobenzene	(0.0210	0.00100	0.0232	0	90.5	81	122	
Chloroethane	(0.0183	0.00100	0.0232	0	79.0	58	133	
Chloroform	(0.0226	0.00100	0.0232	0	97.6	69	128	
Chloromethane	(0.0219	0.00100	0.0232	0	94.2	56	131	
cis-1,2-Dichloroethene	(0.0222	0.00100	0.0232	0	95.5	72	126	
cis-1,3-Dichloropropene	(0.0217	0.00100	0.0232	0	93.5	69	131	
Dibromochloromethane		0.0215	0.00100	0.0232	0	92.6	66	133	
Dichlorodifluoromethane		0.0224	0.00100	0.0232	0	96.4	53	153	
Ethylbenzene		0.0212	0.00100	0.0232	0	91.3	80	120	
m,p-Xylene	(0.0426	0.00200	0.0464	0	91.7	80	120	
Methyl tert-butyl ether	(0.0232	0.00100	0.0232	0	99.9	68	123	
Methylene chloride		0.0220	0.00250	0.0232	0	94.7	63	137	
Naphthalene		0.0237	0.0150	0.0232	0	102	54	138	
o-Xylene		0.0232	0.00100	0.0232	0	100	80	120	
Tetrachloroethene		0.0212	0.00200	0.0232	0	91.5	66	128	
Toluene		0.0216	0.00200	0.0232	0	93.0	80	120	
trans-1,2-Dichloroethene		0.0232	0.00100	0.0232	0	100	63	137	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 5 of 9

CLIENT:

GHD

Work Order: 1803141 Hobbs Tank Project:

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS5_180315C

Sample ID LCS-84749	Batch ID:	84749		TestNo	o: SV	V8260C		Units:	mg/L
SampType: LCS	Run ID:	GCMS	5_180315C	Analys	is Date: 3/1	15/2018 3:41:	00 PM	Prep Date	e: 3/15/2018
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
trans-1,3-Dichloropropene		0.0215	0.00100	0.0232	0	92.8	59	135	
Trichloroethene		0.0219	0.00100	0.0232	0	94.2	70	127	
Trichlorofluoromethane		0.0226	0.00100	0.0232	0	97.4	57	129	
Vinyl chloride		0.0193	0.00100	0.0232	0	83.2	50	134	
Total Xylenes		0.0658	0.00100	0.0696	0	94.5	80	120	
Surr: 1,2-Dichloroethane-d4		198		200.0		99.1	72	119	
Surr: 4-Bromofluorobenzene		210		200.0		105	76	119	
Surr: Dibromofluoromethane		198		200.0		99.0	85	115	
Surr: Toluene-d8		195		200.0		97.3	81	120	

Sample ID MB-84749	Batch ID:	84749		TestNo	: SW	8260C		Units:	mg/L
SampType: MBLK	Run ID:	GCMS5_	180315C	Analysi	is Date: 3/15	/2018 4:27:0	00 PM	Prep Date:	3/15/2018
Analyte	-	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit 9	%RPD RPDLimit Qu

1,1,1-Trichloroethane	< 0.000300	0.00100
1,1,2,2-Tetrachloroethane	<0.000300	0.00100
1,1,2-Trichforoethane	<0.000300	0.00100
1,1-Dichloroethane	<0.000300	0.00100
1,1-Dichloroethene	<0.000300	0.00100
1,1-Dichloropropene	<0.000300	0.00100
1,2-Dibromoethane	<0.000300	0.00100
1,2-Dichlorobenzene	<0.000300	0.00100
1,2-Dichloroethane	<0.000300	0.00100
1,2-Dichloropropane	<0.000300	0.00100
1,3-Dichlorobenzene	<0.000300	0.00100
1,3-Dichloropropane	<0.000300	0.00100
1,4-Dichlorobenzene	<0.000300	0.00100
2,2-Dichloropropane	<0.000300	0.00100
Acrolein	<0.00500	0.0150
Acrylonitrile	<0.00100	0.00300
Benzene	<0.000300	0.00100
Bromobenzene	<0.000300	0.00100
Bromochloromethane	<0.000300	0.00100
Bromodichloromethane	<0.000300	0.00100
Bromoform	<0.000300	0.00100
Bromomethane	<0.000300	0.00100
Carbon tetrachloride	<0.000300	0.00100
Chlorobenzene	<0.000300	0.00100
Chloroethane	<0.000300	0.00100
Chloroform	<0.000300	0.00100
Chloromethane	<0.000300	0.00100

Qualifiers:

- Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- Reporting Limit
- Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
- RPD outside accepted control limits
- Spike Recovery outside control limits
- N Parameter not NELAC certified

Page 6 of 9

CLIENT: GHD
Work Order: 1803141
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS5_180315C

Result <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00060 <0.00030 <0.00030	00 0.00100 00 0.00100 00 0.00100 00 0.00100 00 0.00200 00 0.00100 00 0.00250	Analy SPK value	Ref Val	5/2018 4:27: %REC		Prep Date:	3/15/2018 %RPD RPDLimit	Qual
<0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00060 <0.00030 <0.00250	0 0.00100 0 0.00100 0 0.00100 0 0.00100 0 0.00100 0 0.00200 0 0.00200 0 0.00250	SPK value	Ref Val	%REC	LowLimi	t HighLimit 🤋	%RPD RPDLimit	Qual
<0.00030 <0.00030 <0.00030 <0.00030 <0.00060 <0.00030 <0.00250	00 0.00100 00 0.00100 00 0.00100 00 0.00100 00 0.00200 00 0.00100 00 0.00250							
<0.00030 <0.00030 <0.00030 <0.00060 <0.00030 <0.00250	0.00100 0.00100 0.00100 0.00100 0.00200 0.00100 0.00250							
<0.00030 <0.00030 <0.00060 <0.00030 <0.00250	0.00100 0.00100 0.00200 0.00200 0.00100 0.00250							
<0.00030 <0.00060 <0.00030 <0.00250	0.00100 0.00200 0.00100 0.00250							
<0.00060 <0.00030 <0.00250	0.00200 0.00100 0.00250							
<0.00030 <0.00250	0.00100 0.00250							
<0.00250	0.00250							
	0.0450							
< 0.00500	0.0150							
<0.00030	0.00100							
<0.00060	0.00200							
<0.00060	0.00200							
<0.00030	0.00100							
<0.00030	0.00100							
<0.00060	0.00100							
<0.00030	0.00100							
<0.00030	0.00100							
<0.00030	0.00100							
198		200.0		99.2	72	119		
		200.0		105	76	119		
209		200.0		96.1	85	115		
209 192				98.7	81	120		
	<0.00030 198 209	<0.000300 0.00100 198 209 192	<0.000300 0.00100 198 200.0 209 200.0 192 200.0	<0.000300 0.00100 198 200.0 209 200.0	<0.000300	<0.000300	<0.000300	<0.000300

Sample ID 1803141-05AMS	Batch ID:	84749		TestNo	: SW	8260C		Units:	mg/L
SampType: MS	Run ID:	GCMS5	_180315C	Analysi	s Date: 3/15	/2018 9:05:0	00 PM	Prep Date:	3/15/2018
Analyte	[Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit '	%RPD RPDLimit Qual
1,1,1-Trichloroethane		0.225	0.0100	0.232	0	97.0	67	132	
1,1,2,2-Tetrachloroethane		0.205	0.0100	0.232	0	88.5	63	128	
1,1,2-Trichloroethane		0.225	0.0100	0.232	0	96.8	75	125	
1,1-Dichloroethane		0.226	0.0100	0.232	0	97.2	69	133	
1,1-Dichloroethene		0.205	0.0100	0.232	0	88.3	68	130	
1,1-Dichloropropene		0.218	0.0100	0.232	0	93.9	73	132	
1,2-Dibromoethane		0.213	0.0100	0.232	0	91.9	80	121	
1,2-Dichlorobenzene		0.215	0.0100	0.232	0	92.5	75	122	
1,2-Dichloroethane		0.228	0.0100	0.232	0	98.5	69	132	
1,2-Dichloropropane		0.228	0.0100	0.232	0	98.3	75	125	
1,3-Dichlorobenzene		0.209	0.0100	0.232	0	89.9	75	124	
1,3-Dichloropropane		0.217	0.0100	0.232	0	93.3	73	126	
1,4-Dichlorobenzene		0.202	0.0100	0.232	0	87.2	74	123	
2,2-Dichloropropane		0.202	0.0100	0.232	0	86.9	69	137	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 7 of 9

CLIENT:

GHD

Work Order: 1803141
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS5_180315C

Sample ID 1803141-05AMS	Batch ID: 84749		TestNo	: SW 8	260C		Units:	mg/L
SampType: MS	Run ID: GCMS5_1	180315C	Analys	is Date: 3/15 /	2018 9:05:	00 PM	Prep Date:	3/15/2018
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Acrylonitrile	0.413	0.0300	0.464	0	89.0	50	150	
Benzene	0.326	0.0100	0.232	0.102	96.7	81	122	
Bromobenzene	0.207	0.0100	0.232	0	89.2	76	124	
Bromochloromethane	0.218	0.0100	0.232	0	94.1	65	129	
Bromodichloromethane	0.235	0.0100	0.232	0	101	76	121	
Bromoform	0.207	0.0100	0.232	0	89.2	69	128	
Carbon tetrachloride	0.226	0.0100	0.232	0	97.4	66	138	
Chlorobenzene	0.209	0.0100	0.232	0	89.9	81	122	
Chloroform	0.220	0.0100	0.232	0	94.7	69	128	
cis-1,2-Dichloroethene	0.220	0.0100	0.232	0	94.8	72	126	
cis-1,3-Dichtoropropene	0.206	0.0100	0.232	0	88.7	69	131	
Dibromochloromethane	0.212	0.0100	0.232	0	91.3	66	133	
Ethylbenzene	0.212	0.0100	0.232	0	91.3	80	120	
m,p-Xylene	0.430	0.0200	0.464	0	92.6	80	120	
Methyl tert-butyl ether	0.221	0.0100	0.232	0	95.1	68	123	
Methylene chloride	0.221	0.0250	0.232	0	95.2	63	137	
Naphthalene	0.215	0.150	0.232	0	92.5	54	138	
o-Xylene	0.245	0.0100	0.232	0.00816	102	80	120	
Tetrachloroethene	0.208	0.0200	0.232	0	89.5	66	128	
Toluene	0.222	0.0200	0.232	0	95.6	80	120	
trans-1,2-Dichloroethene	0.231	0.0100	0.232	0	99.5	63	137	
trans-1,3-Dichloropropene	0.207	0.0100	0.232	0	89.4	59	135	
Trichloroethene	0.214	0.0100	0.232	0	92.1	70	127	
Total Xylenes	0.675	0.0100	0.696	0.00816	95.8	80	120	
Surr: 1,2-Dichloroethane-d4	2130		2000		106	72	119	
Surr: 4-Bromofluorobenzene	2080		2000		104	76	119	
Surr: Dibromofluoromethane	2010		2000		100	85	115	
Surr: Toluene-d8	1970		2000		98.3	81	120	

Sample ID 1803141-05AMSD	Batch ID:	84749		TestNo	: SW8	3260C		Units:	mg/l	_
SampType: MSD	Run ID:	GCMS:	5_180315C	Analys	is Date: 3/15	/2018 9:28:	00 PM	Prep Date	3/15	/2018
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
1,1,1-Trichloroethane		0.227	0.0100	0.232	0	97.8	67	132	0.818	20
1,1,2,2-Tetrachioroethane		0.216	0.0100	0.232	0	93.0	63	128	4.87	20
1,1,2-Trichloroethane		0.233	0.0100	0.232	0	100	75	125	3.56	20
1,1-Dichloroethane		0.227	0.0100	0.232	0	97.7	69	133	0.482	20
1,1-Dichloroethene		0.213	0.0100	0.232	0	91.6	68	130	3.66	20
1,1-Dichloropropene		0.218	0.0100	0.232	0	93.9	73	132	0.059	20
1,2-Dibromoethane		0.221	0.0100	0.232	0	95.3	80	121	3.67	20
1,2-Dichlorobenzene		0.219	0.0100	0.232	0	94.4	75	125	2.03	20

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

 $J \quad \ \ Analyte \ detected \ between \ SDL \ and \ RL$

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 8 of 9

CLIENT: GHD
Work Order: 1803141
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS5_180315C

Sample ID 1803141-05AMSD	Batch ID: 84749		TestNo	: SW 8	260C		Units:	mg/l	-
SampType: MSD	Run ID: GCMS5	_180315C	Analys	is Date: 3/15 /	2018 9:28:	00 PM	Prep Date	3/15	/2018
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
1,2-Dichloroethane	0.232	0.0100	0.232	0	99.9	68	132	1.43	20
1,2-Dichloropropane	0.232	0.0100	0.232	0	100	75	125	1.85	20
1,3-Dichlorobenzene	0.214	0.0100	0.232	0	92.2	75	124	2.55	20
1,3-Dichloropropane	0.227	0.0100	0.232	0	97.9	73	126	4.81	20
1,4-Dichlorobenzene	0.208	0.0100	0.232	0	89.8	74	123	2.93	20
2,2-Dichloropropane	0.203	0.0100	0.232	0	87.3	69	137	0.435	20
Acrylonitrile	0.426	0.0300	0.464	0	91.9	50	150	3.21	20
Benzene	0.331	0.0100	0.232	0.102	98.8	81	120	1.52	20
Bromobenzene	0.211	0.0100	0.232	0	90.8	76	124	1.83	20
Bromochloromethane	0.229	0.0100	0.232	0	98.5	65	129	4.56	20
Bromodichloromethane	0.240	0.0100	0.232	0	103	76	121	2.13	20
Bromoform	0.220	0.0100	0.232	0	94.9	69	128	6.26	20
Carbon tetrachloride	0.233	0.0100	0.232	0	100	66	138	2.86	20
Chlorobenzene	0.216	0.0100	0.232	0	93.3	81	122	3.67	20
Chloroform	0.225	0.0100	0.232	0	97.2	69	128	2.62	20
cis-1,2-Dichloroethene	0.223	0.0100	0.232	0	95.9	72	126	1.21	20
cis-1,3-Dichloropropene	0.214	0.0100	0.232	0	92.1	69	131	3.78	20
Dibromochloromethane	0.224	0.0100	0.232	0	96.5	66	133	5.55	20
Ethylbenzene	0.217	0.0100	0.232	0	93.5	80	120	2.39	20
m,p-Xylene	0.439	0.0200	0.464	0	94.7	80	120	2.22	20
Methyl tert-butyl ether	0.236	0.0100	0.232	0	102	68	123	6.87	20
Methylene chloride	0.227	0.0250	0.232	0	98.0	63	137	2.84	20
Naphthalene	0.235	0.150	0.232	0	101	54	138	8.99	20
o-Xylene	0.252	0.0100	0.232	0.00816	105	80	120	2.91	20
Tetrachloroethene	0.215	0.0200	0.232	0	92.6	66	128	3.46	20
Toluene	0.227	0.0200	0.232	0	97.9	80	120	2.35	20
trans-1,2-Dichloroethene	0.235	0.0100	0.232	0	101	63	137	1.89	20
trans-1,3-Dichloropropene	0.218	0.0100	0.232	0	93.9	59	135	4.94	20
Trichloroethene	0.218	0.0100	0.232	0	93.9	70	127	1.95	20
Total Xylenes	0.692	0.0100	0.696	0.00816	98.2	80	120	2.47	20
Surr: 1,2-Dichloroethane-d4	2120		2000		106	72	119	0	0
Surr: 4-Bromofluorobenzene	2050		2000		103	76	119	0	0
Surr: Dibromofluoromethane	1990		2000		99.7	85	115	0	0
Surr: Toluene-d8	1990		2000		99.6	81	120	0	0

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 9 of 9

October 02, 2018

Order No.: 1809184

Brad Stephenson GHD 14998 W 6th Ave #800 Golden, CO 80401

TEL: (720) 974-0935 FAX (432) 686-0186

RE: Hobbs Tank

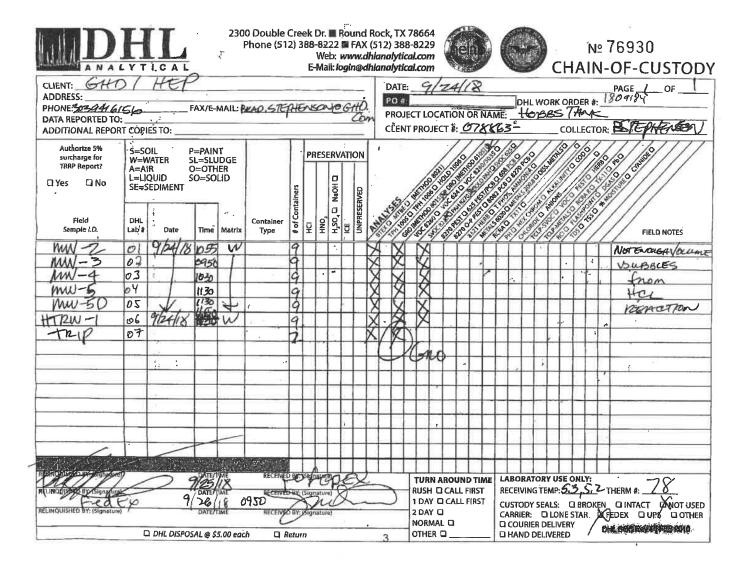
Dear Brad Stephenson:

DHL Analytical, Inc. received 7 sample(s) on 9/26/2018 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,


John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-18-21

Table of Contents

Miscellaneous Documents	, 3
CaseNarrative 1809184	. 7
Analytical Report 1809184	. 8
AnalyticalQCSummaryReport 1809184	22

ORIGIN ID:HOBA (303) 841-6156

GHD 14898 W BTH AVE STE 600

GOLDEN, CO 80401 UNITED STATES US SHIP DATE: 255EF18
ACTWGT: 46.20 LB
CAD: 006884248/SSFE190
DIMS: 24x14x14 IN
BILL THIRD PARTY

TO MISTY WEHLER
DHL ANALYTICAL
2300 DOUBLE CREEK DR

ROUND ROCK TX 78664

(612) 288 - 882

V 10004

FedEx Express

6 of 6 MPS# 7829 3765 7810 Metr# 7829 3765 7761 WED - 26 SEP 10:30A PRIORITY OVERNIGHT

78664 TX-US AUS

ORIGIN ID:HORA (303) 941-6156

14898 W 6TH AVE STE 800

BOLDEN, CO 80401 UNITED STATES US SHIP DATE: 255EP18 ACTWET: 44.30 LB CAD: 0065954648SFE1904 DIMS: 24x14x14 IN BLK THIRD PARTY

MISTY WEHLER
DHL ANALYTICAL
2300 DOUBLE CREEK DR

ROUND ROCK TX 78664

(612) 288 - 882

EF:

FedEx Express

1 of 6 18K# 7829 3765 7761 ## MASTER ##

A8 BSMA

WED - 26 SEP 10:30A PRIORITY OVERNIGHT

> 78664 TX-UB AUS

Attack Received: 9/26/2018 Reviewed by JMW Reviewed by 9/26/2018 Initials Date No Not Present V No No Not Present V No No Not Present V
Not Present No
Initials Date Not Present Not
Initials Date Not Present Not
Initials Date Not Present Not
No Not Present Not Present Not Present No Not Present No N
No Not Present Not Present Not Present No Not Present No N
Not Present
NO
No
40
No []
40 <u> </u>
No .
_
No 🗔
40 □ 5.3 °C / 5.2°C
No VOA vials submitted
No 🗌 NA 🗹 LOT#
Checked by
No □ NA ☑ LOT#
Checked by
Person contacted
a a
bbles

Page 1 of 1

Date: 02-Oct-18

CLIENT:

GHD

Project: Lab Order: Hobbs Tank 1809184

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition and Standard Methods.

For PAH analysis an MS/MSD was not performed due to insufficient sample volume. An LCS/LCSD was performed instead.

For DRO analysis an MS/MSD was not performed due to insufficient sample volume. An LCS/LCSD was performed instead.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives except where noted in the following. For Volatiles analysis by method SW8260C the matrix spike duplicate recovery was slightly below control limits for Bromomethane. In addition, the matrix spike and matrix spike duplicate had the RPD above control limits for Bromomethane. This is flagged accordingly in the enclosed QC summary report. The "S" flag denotes spike recovery was outside control limits and the "R" flag denotes the RPD was outside control limits. The LCS was within control limits for this compound. No further corrective actions were taken.

For PAH analysis by method SW8270D-LL the surrogate recoveries for four samples were slightly below control limits for 2-Fluorobiphenyl. These are flagged accordingly. The remaining surrogate was within control limits. No further corrective actions were taken.

For DRO analysis by method M8015D the surrogate recovery for sample MW-3 was above control limits for Octacosane. This is flagged accordingly. The remaining surrogate was within control limits. No further corrective actions were taken.

CLIENT:

GHD

Project: Hobbs Tank

Project No: Lab Order: 078863

1809184

Date: 02-Oct-18

Client Sample ID: MW-2

Lab ID: 1809184-01

Collection Date: 09/24/18 10:55 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WAT		M80	15D				Analyst: BTJ
TPH-DRO C10-C28	2.33	0.314	0.392		mg/L	1	10/01/18 02:47 PM
Surr: Isopropylbenzene	75.7	0	47-142		%REC	1	10/01/18 02:47 PM
Surr: Octacosane	84.4	0	51-124		%REC	1	10/01/18 02:47 PM
TPH PURGEABLE BY GC - WATER	₹	M80)15V				Analyst: BTJ
Gasoline Range Organics	<0.0600	0.0600	0.100		mg/L	1	09/27/18 04:33 PM
Surr: Tetrachlorethene	96.6	0	74-138		%REC	1	09/27/18 04:33 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	< 0.0000236	0.0000236	0.0000473	N	mg/L	1	09/27/18 10:02 PM
2-Methylnaphthalene	< 0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 10:02 PM
3,4-Benzofluoranthene	< 0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 10:02 PM
Anthracene	< 0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 10:02 PM
Benzo[a]pyrene	< 0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 10:02 PM
Benzo[k]fluoranthene	< 0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 10:02 PM
Fluoranthene	< 0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 10:02 PM
Fluorene	<0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 10:02 PM
Naphthalene	<0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 10:02 PM
Phenanthrene	0.0000713	0.0000236	0.0000473		mg/L	1	09/27/18 10:02 PM
Pyrene	<0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 10:02 PM
Surr: 2-Fluorobiphenyl	57.9	0	48-120		%REC	1	09/27/18 10:02 PM
Surr: 4-Terphenyl-d14	70.4	0	51-135		%REC	1	09/27/18 10:02 PM
8260 WATER VOLATILES BY GC/I	MS	SW8	260C				Analyst: DEW
1,1,1-Trichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
1,1,2,2-Tetrachloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
1,1,2-Trichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
1,1-Dichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
1,1-Dichloroethene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
1,1-Dichloropropene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
1,2-Dibromoethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
1,2-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
1,2-Dichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
1,2-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
1,3-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
1,3-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
1,4-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
2,2-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:34 PM
Acrolein	<0.00500	0.00500	0.0150		mg/L	1	09/26/18 05:34 PM
Acrylonitrile	< 0.00100	0.00100	0.00300		mg/L	1	09/26/18 05:34 PM

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

- Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- Reporting Limit RL
- Parameter not NELAC certified

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1809184

Date: 02-Oct-18

Client Sample ID: MW-2

Lab ID: 1809184-01

Collection Date: 09/24/18 10:55 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual U	nits DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82		Analyst: DEW		
Benzene	<0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
Bromobenzene	<0.000300	0.000300	0.00100	mg/	′L 1	09/26/18 05:34 PM
Bromochloromethane	<0.000300	0.000300	0.00100	mg,	′L 1	09/26/18 05:34 PM
Bromodichloromethane	<0.000300	0.000300	0.00100	mg/	′L 1	09/26/18 05:34 PM
Bromoform	<0.000300	0.000300	0.00100	mg,	′L 1	09/26/18 05:34 PM
Bromomethane	<0.000300	0.000300	0.00100	mg,	′L 1	09/26/18 05:34 PM
Carbon tetrachloride	<0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
Chlorobenzene	<0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
Chloroethane	<0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
Chloroform	<0.000300	0.000300	0.00100	mg/	′L 1	09/26/18 05:34 PM
Chloromethane	<0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
cis-1,2-Dichloroethene	<0.000300	0.000300	0.00100	mg	'L 1	09/26/18 05:34 PM
cis-1,3-Dichloropropene	<0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
Dibromochloromethane	<0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
Dichlorodifluoromethane	<0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
Ethylbenzene	< 0.000300	0.000300	0.00100	mg	'L 1	09/26/18 05:34 PM
m,p-Xylene	<0.000600	0.000600	0.00200	mg/	'L 1	09/26/18 05:34 PM
Methyl tert-butyl ether	<0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
Methylene chloride	< 0.00250	0.00250	0.00250	mg	′L 1	09/26/18 05:34 PM
Naphthalene	< 0.00500	0.00500	0.0150	mg	′L 1	09/26/18 05:34 PM
o-Xylene	<0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
Tetrachloroethene	<0.000600	0.000600	0.00200	mg	′L 1	09/26/18 05:34 PM
Toluene	<0.000600	0.000600	0.00200	mg	′L 1	09/26/18 05:34 PM
trans-1,2-Dichloroethene	< 0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
trans-1,3-Dichloropropene	< 0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
Trichloroethene	<0.000600	0.000600	0.00200	mg	′L 1	09/26/18 05:34 PM
Trichlorofluoromethane	< 0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
Vinyl chloride	< 0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
Total Xylenes	<0.000300	0.000300	0.00100	mg	′L 1	09/26/18 05:34 PM
Surr: 1,2-Dichloroethane-d4	86.4	0	72-119	%R	EC 1	09/26/18 05:34 PM
Surr: 4-Bromofluorobenzene	102	0	76-119	%R	EC 1	09/26/18 05:34 PM
Surr: Dibromofluoromethane	93.7	0	85-115	%R	EC 1	09/26/18 05:34 PM
Surr: Toluene-d8	96.0	0	81-120	%R	EC 1	09/26/18 05:34 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

CLIENT: GHD

Hobbs Tank

Project: Project No: 078863

Lab Order: 1809184 Date: 02-Oct-18

Client Sample ID: MW-3

Lab ID: 1809184-02

Collection Date: 09/24/18 09:50 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80	015D				Analyst: BTJ
TPH-DRO C10-C28	0.220	0.0753	0.0942		mg/L	1	10/01/18 02:56 PM
Surr: Isopropylbenzene	68.0	0	47-142		%REC	1	10/01/18 02:56 PM
Surr: Octacosane	159	0	51-124	s	%REC	1	10/01/18 02:56 PM
TPH PURGEABLE BY GC - WATER		M80	015V				Analyst: BTJ
Gasoline Range Organics	< 0.0600	0.0600	0.100		mg/L	1	09/27/18 04:57 PM
Surr: Tetrachlorethene	90.5	0	74-138		%REC	1	09/27/18 04:57 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	< 0.0000236	0.0000236	0.0000471	N	mg/L	1	09/27/18 03:08 PM
2-Methylnaphthalene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 03:08 PM
3,4-Benzofluoranthene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 03:08 PM
Anthracene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 03:08 PM
Benzo[a]pyrene	<0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 03:08 PM
Benzo[k]fluoranthene	<0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 03:08 PM
Fluoranthene	<0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 03:08 PM
Fluorene	<0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 03:08 PM
Naphthalene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 03:08 PM
Phenanthrene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 03:08 PM
Pyrene	<0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 03:08 PM
Surr: 2-Fluorobiphenyl	56.5	0	48-120		%REC	1	09/27/18 03:08 PM
Surr: 4-Terphenyl-d14	73.3	0	51-135		%REC	1	09/27/18 03:08 PM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
1,1,1-Trichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
1,1,2,2-Tetrachloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
1,1,2-Trichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
1,1-Dichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
1,1-Dichloroethene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
1,1-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
1,2-Dibromoethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
1,2-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
1,2-Dichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
1,2-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
1,3-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
1,3-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
1,4-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
2,2-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:58 PM
Acrolein	<0.00500	0.00500	0.0150		mg/L	1	09/26/18 05:58 PM
Acrylonitrile	< 0.00100	0.00100	0.00300		mg/L	1	09/26/18 05:58 PM

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

- Sample Result or QC discussed in the Case Narrative
- TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- Parameter not NELAC certified

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1809184

Date: 02-Oct-18

Client Sample ID: MW-3

Lab ID: 1809184-02

Collection Date: 09/24/18 09:50 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed			
8260 WATER VOLATILES BY GC/MS		SW82	260C		Analyst: DEW				
Benzene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Bromobenzene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Bromochloromethane	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Bromodichloromethane	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Bromoform	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Bromomethane	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Carbon tetrachloride	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Chlorobenzene	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Chloroethane	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Chloroform	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Chloromethane	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
cis-1,2-Dichloroethene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
cis-1,3-Dichloropropene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Dibromochloromethane	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Dichlorodifluoromethane	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Ethylbenzene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
m,p-Xylene	<0.000600	0.000600	0.00200	mg/L	1	09/26/18 05:58 PM			
Methyl tert-butyl ether	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Methylene chloride	< 0.00250	0.00250	0.00250	mg/L	1	09/26/18 05:58 PM			
Naphthalene	< 0.00500	0.00500	0.0150	mg/L	1	09/26/18 05:58 PM			
o-Xylene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Tetrachloroethene	<0.000600	0.000600	0.00200	mg/L	1	09/26/18 05:58 PM			
Toluene	<0.000600	0.000600	0.00200	mg/L	1	09/26/18 05:58 PM			
trans-1,2-Dichloroethene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
trans-1,3-Dichloropropene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Trichloroethene	<0.000600	0.000600	0.00200	mg/L	1	09/26/18 05:58 PM			
Trichlorofluoromethane	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Vinyl chloride	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Total Xylenes	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 05:58 PM			
Surr: 1,2-Dichloroethane-d4	86.1	0	72-119	%REC	1	09/26/18 05:58 PM			
Surr: 4-Bromofluorobenzene	101	0	76-119	%REC	1	09/26/18 05:58 PN			
Surr: Dibromofluoromethane	94.5	0	85-115	%REC	1	09/26/18 05:58 PM			
Surr: Toluene-d8	96.5	0	81-120	%REC	1	09/26/18 05:58 PM			

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1809184

Date: 02-Oct-18

Client Sample ID: MW-4

Lab ID: 1809184-03

Collection Date: 09/24/18 10:30 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80)15D				Analyst: BTJ
TPH-DRO C10-C28	0.200	0.0756	0.0945		mg/L	1	10/01/18 03:05 PM
Surr: Isopropylbenzene	64.7	0	47-142		%REC	1	10/01/18 03:05 PM
Surr: Octacosane	87.9	0	51-124		%REC	1	10/01/18 03:05 PM
TPH PURGEABLE BY GC - WATER		M80)15V				Analyst: BTJ
Gasoline Range Organics	< 0.0600	0.0600	0.100		mg/L	1	09/28/18 11:35 AM
Surr: Tetrachlorethene	121	0	74-138		%REC	1	09/28/18 11:35 AM
PAHS: GC/MS		SW8270D-LL			Analyst: LG		
1-Methylnaphthalene	< 0.0000235	0.0000235	0.0000470	N	mg/L	1	09/27/18 03:38 PM
2-Methylnaphthalene	< 0.0000235	0.0000235	0.0000470		mg/L	1	09/27/18 03:38 PM
3,4-Benzofluoranthene	< 0.0000235	0.0000235	0.0000470		mg/L	1	09/27/18 03:38 PM
Anthracene	< 0.0000235	0.0000235	0.0000470		mg/L	1	09/27/18 03:38 PM
Benzo[a]pyrene	< 0.0000235	0.0000235	0.0000470		mg/L	1	09/27/18 03:38 PM
Benzo[k]fluoranthene	<0.0000235	0.0000235	0.0000470		mg/L	1	09/27/18 03:38 PM
Fluoranthene	< 0.0000235	0.0000235	0.0000470		mg/L	1	09/27/18 03:38 PM
Fluorene	< 0.0000235	0.0000235	0.0000470		mg/L	1	09/27/18 03:38 PM
Naphthalene	< 0.0000235	0.0000235	0.0000470		mg/L	1	09/27/18 03:38 PM
Phenanthrene	< 0.0000235	0.0000235	0.0000470		mg/L	1	09/27/18 03:38 PM
Pyrene	< 0.0000235	0.0000235	0.0000470		mg/L	1	09/27/18 03:38 PM
Surr: 2-Fluorobiphenyl	42.1	0	48-120	s	%REC	1	09/27/18 03:38 PM
Surr: 4-Terphenyl-d14	54.0	0	51-135		%REC	1	09/27/18 03:38 PM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
1,1,1-Trichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
1,1,2,2-Tetrachloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
1,1,2-Trichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
1,1-Dichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
1,1-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
1,1-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
1,2-Dibromoethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
1,2-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
1,2-Dichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
1,2-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
1,3-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
1,3-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
1,4-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
2,2-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:23 PM
Acrolein	< 0.00500	0.00500	0.0150		mg/L	1	09/26/18 06:23 PM
Acrylonitrile	<0.00100	0.00100	0.00300		mg/L	1	09/26/18 06:23 PM

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
 - N Parameter not NELAC certified

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1809184

Date: 02-Oct-18

Client Sample ID: MW-4

Lab ID: 1809184-03

Collection Date: 09/24/18 10:30 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260C			Analyst: DEW
Benzene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Bromobenzene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Bromochloromethane	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Bromodichloromethane	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Bromoform	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Bromomethane	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Carbon tetrachloride	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Chlorobenzene	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Chioroethane	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Chloroform	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Chloromethane	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
cis-1,2-Dichloroethene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
cis-1,3-Dichloropropene	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Dibromochloromethane	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Dichlorodifluoromethane	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Ethylbenzene	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
m,p-Xylene	<0.000600	0.000600	0.00200	mg/L	1	09/26/18 06:23 PM
Methyl tert-butyl ether	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Methylene chloride	< 0.00250	0.00250	0.00250	mg/L	1	09/26/18 06:23 PM
Naphthalene	< 0.00500	0.00500	0.0150	mg/L	1	09/26/18 06:23 PM
o-Xylene	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Tetrachloroethene	< 0.000600	0.000600	0.00200	mg/L	1	09/26/18 06:23 PM
Toluene	<0.000600	0.000600	0.00200	mg/L	1	09/26/18 06:23 PM
trans-1,2-Dichloroethene	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
trans-1,3-Dichloropropene	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Trichloroethene	<0.000600	0.000600	0.00200	mg/L	1	09/26/18 06:23 PM
Trichlorofluoromethane	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Vinyl chloride	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Total Xylenes	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 06:23 PM
Surr: 1,2-Dichloroethane-d4	86.5	0	72-119	%REC	1	09/26/18 06:23 PM
Surr: 4-Bromofluorobenzene	102	0	76-119	%REC	1	09/26/18 06:23 PM
Surr: Dibromofluoromethane	94.8	0	85-115	%REC	1	09/26/18 06:23 PM
Surr: Toluene-d8	95.9	0	81-120	%REC	1	09/26/18 06:23 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

CLIENT:

GHD

Project:

Hobbs Tank

Project No: Lab Order: 078863

1809184

Date: 02-Oct-18

Client Sample ID: MW-5

Lab ID: 1809184-04

Collection Date: 09/24/18 11:30 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80)15D				Analyst: BTJ
TPH-DRO C10-C28	0.111	0.0757	0.0946		mg/L	1	10/01/18 03:14 PM
Surr: Isopropylbenzene	62.5	0	47-142		%REC	1	10/01/18 03:14 PM
Surr: Octacosane	95.7	0	51-124		%REC	1	10/01/18 03:14 PM
TPH PURGEABLE BY GC - WATER		M8()15V				Analyst: BTJ
Gasoline Range Organics	<0.0600	0.0600	0.100		mg/L	1	09/27/18 05:45 PM
Surr: Tetrachlorethene	76.3	0	74-138		%REC	1	09/27/18 05:45 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	< 0.0000236	0.0000236	0.0000471	N	mg/L	1	09/27/18 04:07 PM
2-Methylnaphthalene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 04:07 PM
3,4-Benzofluoranthene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 04:07 PM
Anthracene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 04:07 PM
Benzo[a]pyrene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 04:07 PM
Benzo[k]fluoranthene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 04:07 PM
Fluoranthene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 04:07 PM
Fluorene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 04:07 PM
Naphthalene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 04:07 PM
Phenanthrene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 04:07 PM
Pyrene	< 0.0000236	0.0000236	0.0000471		mg/L	1	09/27/18 04:07 PM
Surr: 2-Fluorobiphenyl	42.3	0	48-120	s	%REC	1	09/27/18 04:07 PM
Surr: 4-Terphenyl-d14	53.9	0	51-135		%REC	1	09/27/18 04:07 PM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
1,1,1-Trichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
1,1,2,2-Tetrachloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
1,1,2-Trichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
1,1-Dichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
1,1-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
1,1-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
1,2-Dibromoethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
1,2-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
1,2-Dichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
1,2-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
1,3-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
1,3-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
1,4-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
2,2-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 06:47 PM
Acrolein	<0.00500	0.00500	0.0150		mg/L	1	09/26/18 06:47 PM
Acrylonitrile	< 0.00100	0.00100	0.00300		mg/L	1	09/26/18 06:47 PM

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- Analyte detected between MDL and RL J
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

- Sample Result or QC discussed in the Case Narrative
- TPH pattern not Gas or Diesel Range Pattern E
- MDL Method Detection Limit
- RL Reporting Limit
- Parameter not NELAC certified

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1809184

Date: 02-Oct-18

Client Sample ID: MW-5

Lab ID: 1809184-04

Collection Date: 09/24/18 11:30 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual 1	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82			Analyst: DEW		
Benzene	<0.000300	0.000300	0.00100	rr	ıg/L	1	09/26/18 06:47 PM
Bromobenzene	<0.000300	0.000300	0.00100	rr	ıg/L	1	09/26/18 06:47 PM
Bromochloromethane	<0.000300	0.000300	0.00100	m	ıg/L	1	09/26/18 06:47 PM
Bromodichloromethane	<0.000300	0.000300	0.00100	m	ıg/L	1	09/26/18 06:47 PM
Bromoform	<0.000300	0.000300	0.00100	rr	ıg/L	1	09/26/18 06:47 PM
Bromomethane	<0.000300	0.000300	0.00100	m	ıg/L	1	09/26/18 06:47 PM
Carbon tetrachloride	< 0.000300	0.000300	0.00100	m	ng/L	1	09/26/18 06:47 PM
Chlorobenzene	<0.000300	0.000300	0.00100	m	ng/L	1	09/26/18 06:47 PM
Chloroethane	<0.000300	0.000300	0.00100	m	ng/L	1	09/26/18 06:47 PM
Chloroform	< 0.000300	0.000300	0.00100	m	ng/L	1	09/26/18 06:47 PM
Chloromethane	< 0.000300	0.000300	0.00100	m	ng/L	1	09/26/18 06:47 PM
cis-1,2-Dichloroethene	< 0.000300	0.000300	0.00100	m	ng/L	1	09/26/18 06:47 PM
cis-1,3-Dichloropropene	< 0.000300	0.000300	0.00100	r	ng/L	1	09/26/18 06:47 PM
Dibromochloromethane	< 0.000300	0.000300	0.00100	m	ng/L	1	09/26/18 06:47 PM
Dichlorodifluoromethane	< 0.000300	0.000300	0.00100	rr	rg/L	1	09/26/18 06:47 PM
Ethylbenzene	<0.000300	0.000300	0.00100	m	ng/L	1	09/26/18 06:47 PM
m,p-Xylene	<0.000600	0.000600	0.00200	m	ng/L	1	09/26/18 06:47 PM
Methyl tert-butyl ether	< 0.000300	0.000300	0.00100	m	ng/L	1	09/26/18 06:47 PM
Methylene chloride	< 0.00250	0.00250	0.00250	m	ıg/L	1	09/26/18 06:47 PM
Naphthalene	<0.00500	0.00500	0.0150	m	ıg/L	1	09/26/18 06:47 PM
o-Xylene	< 0.000300	0.000300	0.00100	m	ng/L	1	09/26/18 06:47 PM
Tetrachloroethene	<0.000600	0.000600	0.00200		ng/L	1	09/26/18 06:47 PM
Toluene	<0.000600	0.000600	0.00200	rr	ng/L	1	09/26/18 06:47 PM
trans-1,2-Dichloroethene	< 0.000300	0.000300	0.00100	m	ng/L	1	09/26/18 06:47 PM
trans-1,3-Dichloropropene	<0.000300	0.000300	0.00100	rr	ıg/L	1	09/26/18 06:47 PM
Trichloroethene	<0.000600	0.000600	0.00200	m	ıg/L	1	09/26/18 06:47 PM
Trichlorofluoromethane	<0.000300	0.000300	0.00100	rr	ng/L	1	09/26/18 06:47 PM
Vinyl chloride	< 0.000300	0.000300	0.00100	m	ng/L	1	09/26/18 06:47 PM
Total Xylenes	<0.000300	0.000300	0.00100	m	ıg/L	1	09/26/18 06:47 PM
Surr: 1,2-Dichloroethane-d4	86.4	0	72-119		REC	1	09/26/18 06:47 PM
Surr: 4-Bromofluorobenzene	103	0	76-119	%	REC	1	09/26/18 06:47 PM
Surr: Dibromofluoromethane	94.1	0	85-115	%	REC	1	09/26/18 06:47 PM
Surr: Toluene-d8	96.6	0	81-120		REC	1	09/26/18 06:47 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863 **Collection Date:** 09/24/18 11:30 AM

Lab Order: 1809184 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80)15D				Analyst: BTJ
TPH-DRO C10-C28	0.136	0.0757	0.0946		mg/L	1	10/01/18 03:23 PM
Surr: Isopropylbenzene	64.3	0	47-142		%REC	1	10/01/18 03:23 PM
Surr: Octacosane	99.4	0	51-124		%REC	1	10/01/18 03:23 PM
TPH PURGEABLE BY GC - WATER		M80)15V				Analyst: BTJ
Gasoline Range Organics	<0.0600	0.0600	0.100		mg/L	1	09/27/18 06:09 PM
Surr: Tetrachlorethene	125	0	74-138		%REC	1	09/27/18 06:09 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	< 0.0000236	0.0000236	0.0000473	N	mg/L	1	09/27/18 04:37 PM
2-Methylnaphthalene	< 0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 04:37 PM
3,4-Benzofluoranthene	<0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 04:37 PM
Anthracene	<0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 04:37 PM
Benzo[a]pyrene	<0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 04:37 PM
Benzo[k]fluoranthene	<0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 04:37 PM
Fluoranthene	<0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 04:37 PM
Fluorene	<0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 04:37 PM
Naphthalene	<0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 04:37 PM
Phenanthrene	<0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 04:37 PM
Pyrene	<0.0000236	0.0000236	0.0000473		mg/L	1	09/27/18 04:37 PM
Surr: 2-Fluorobiphenyl	46.8	0	48-120	s	%REC	1	09/27/18 04:37 PM
Surr: 4-Terphenyl-d14	59.6	0	51-135		%REC	1	09/27/18 04:37 PM
8260 WATER VOLATILES BY GC/MS		SW8	SW8260C				Analyst: DEW
1,1,1-Trichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
1,1,2,2-Tetrachloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
1,1,2-Trichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
1,1-Dichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
1,1-Dichloroethene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
1,1-Dichloropropene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
1,2-Dibromoethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
1,2-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
1,2-Dichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
1,2-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
1,3-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
1,3-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
1,4-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
2,2-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Acrolein	< 0.00500	0.00500	0.0150		mg/L	1	09/26/18 07:12 PM
Acrylonitrile	<0.00100	0.00100	0.00300		mg/L	1	09/26/18 07:12 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 02-Oct-18

Lab ID: 1809184-05

Client Sample ID: MW-5D

- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
 - RL Reporting Limit
 - N Parameter not NELAC certified

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1809184

Date: 02-Oct-18

Client Sample ID: MW-5D

Lab ID: 1809184-05

Collection Date: 09/24/18 11:30 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	:60C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Bromobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Bromochloromethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Bromodichloromethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Bromoform	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Bromomethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Carbon tetrachloride	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Chlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Chloroethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Chloroform	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Chloromethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
cis-1,2-Dichloroethene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
cis-1,3-Dichloropropene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Dibromochloromethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Dichlorodifluoromethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Ethylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	09/26/18 07:12 PM
Methyl tert-butyl ether	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Methylene chloride	<0.00250	0.00250	0.00250		mg/L	1	09/26/18 07:12 PM
Naphthalene	<0.00500	0.00500	0.0150		mg/L	1	09/26/18 07:12 PM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Tetrachloroethene	<0.000600	0.000600	0.00200		mg/L	1	09/26/18 07:12 PM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	09/26/18 07:12 PM
trans-1,2-Dichloroethene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
trans-1,3-Dichloropropene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Trichloroethene	<0.000600	0.000600	0.00200		mg/L	1	09/26/18 07:12 PM
Trichlorofluoromethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Vinyl chloride	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Total Xylenes	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:12 PM
Surr: 1,2-Dichloroethane-d4	85.1	0	72-119		%REC	1	09/26/18 07:12 PM
Surr: 4-Bromofluorobenzene	104	0	76-119		%REC	1	09/26/18 07:12 PM
Surr: Dibromofluoromethane	94.2	0	85-115		%REC	1	09/26/18 07:12 PM
Surr: Toluene-d8	97.7	0	81-120		%REC	1	09/26/18 07:12 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1809184

Date: 02-Oct-18

Client Sample ID: HTRW-1

Lab ID: 1809184-06

Collection Date: 09/24/18 11:50 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER	₹	M8()15D				Analyst: BTJ
TPH-DRO C10-C28	0.406	0.0766	0.0957		mg/L	1	10/01/18 03:32 PM
Surr: Isopropylbenzene	64.5	0	47-142		%REC	1	10/01/18 03:32 PM
Surr: Octacosane	104	0	51-124		%REC	1	10/01/18 03:32 PM
TPH PURGEABLE BY GC - WATER		M80)15V				Analyst: BTJ
Gasoline Range Organics	0.109	0.0600	0.100		mg/L	1	09/28/18 11:59 AM
Surr: Tetrachlorethene	115	0	74-138		%REC	1	09/28/18 11:59 AM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	<0.0000238	0.0000238	0.0000476	N	mg/L	1	09/27/18 10:31 PM
2-Methylnaphthalene	<0.0000238	0.0000238	0.0000476		mg/L	1	09/27/18 10:31 PM
3,4-Benzofluoranthene	<0.0000238	0.0000238	0.0000476		mg/L	1	09/27/18 10:31 PM
Anthracene	<0.0000238	0.0000238	0.0000476		mg/L	1	09/27/18 10:31 PM
Benzo[a]pyrene	<0.0000238	0.0000238	0.0000476		mg/L	1	09/27/18 10:31 PM
Benzo[k]fluoranthene	<0.0000238	0.0000238	0.0000476		mg/L	1	09/27/18 10:31 PM
Fluoranthene	<0.0000238	0.0000238	0.0000476		mg/L	1	09/27/18 10:31 PM
Fluorene	<0.0000238	0.0000238	0.0000476		mg/L	1	09/27/18 10:31 PM
Naphthalene	<0.0000238	0.0000238	0.0000476		mg/L	1	09/27/18 10:31 PM
Phenanthrene	<0.0000238	0.0000238	0.0000476		mg/L	1	09/27/18 10:31 PM
Pyrene	<0.0000238	0.0000238	0.0000476		mg/L	1	09/27/18 10:31 PM
Surr: 2-Fluorobiphenyl	44.0	0	48-120	s	%REC	1	09/27/18 10:31 PM
Surr: 4-Terphenyl-d14	66.0	0	51-135		%REC	1	09/27/18 10:31 PM
3260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
1,1,1-Trichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
1,1,2,2-Tetrachloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
1,1,2-Trichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
1,1-Dichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
1,1-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
1,1-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
1,2-Dibromoethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
1,2-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
1,2-Dichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
1,2-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
1,3-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
1,3-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
1,4-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
2,2-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Acrolein	<0.00500	0.00500	0.0150		mg/L	1	09/26/18 05:09 PM
Acrylonitrile	< 0.00100	0.00100	0.00300		mg/L	1	09/26/18 05:09 PM

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
 - N Parameter not NELAC certified

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1809184

Date: 02-Oct-18

Client Sample ID: HTRW-1

Lab ID: 1809184-06

Collection Date: 09/24/18 11:50 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	60C				Analyst: DEW
Benzene	0.0114	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Bromobenzene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Bromochloromethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Bromodichloromethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Bromoform	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Bromomethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Carbon tetrachloride	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Chlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Chloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Chloroform	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Chloromethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
cis-1,2-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
cis-1,3-Dichloropropene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Dibromochloromethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Dichlorodifluoromethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	09/26/18 05:09 PM
Methyl tert-butyl ether	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Methylene chloride	< 0.00250	0.00250	0.00250		mg/L	1	09/26/18 05:09 PM
Naphthalene	< 0.00500	0.00500	0.0150		mg/L	1	09/26/18 05:09 PM
o-Xylene	0.000564	0.000300	0.00100	J	mg/L	1	09/26/18 05:09 PM
Tetrachloroethene	<0.000600	0.000600	0.00200		mg/L	1	09/26/18 05:09 PM
Toluene	0.00278	0.000600	0.00200		mg/L	1	09/26/18 05:09 PM
trans-1,2-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
trans-1,3-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Trichloroethene	<0.000600	0.000600	0.00200		mg/L	1	09/26/18 05:09 PM
Trichlorofluoromethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Vinyl chloride	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 05:09 PM
Total Xylenes	0.000564	0.000300	0.00100	J	mg/L	1	09/26/18 05:09 PM
Surr: 1,2-Dichloroethane-d4	88.4	0	72-119		%REC	1	09/26/18 05:09 PM
Surr: 4-Bromofluorobenzene	105	0	76-119		%REC	1	09/26/18 05:09 PM
Surr: Dibromofluoromethane	95.6	0	85-115		%REC	1	09/26/18 05:09 PM
Surr: Toluene-d8	97.2	0	81-120		%REC	1	09/26/18 05:09 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

CLIENT:

GHD

Project:

Hobbs Tank

Project No:

078863

Lab Order:

1809184

Date: 02-Oct-18

Client Sample ID: Trip

Lab ID: 1809184-07

Collection Date: 09/24/18

Matrix: TRIP BLANK

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH PURGEABLE BY GC - WATER		M801	15V				Analyst: BTJ
Gasoline Range Organics	<0.0600	0.0600	0.100		mg/L	1	09/27/18 02:56 PM
Surr: Tetrachlorethene	114	0	74-138		%REC	1	09/27/18 02:56 PM
8260 WATER VOLATILES BY GC/MS		SW82	60C				Analyst: DEW
1,1,1-Trichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
1,1,2,2-Tetrachloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
1,1,2-Trichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
1,1-Dichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
1,1-Dichloroethene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
1,1-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
1,2-Dibromoethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
1,2-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
1,2-Dichloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
1,2-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
1,3-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
1,3-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
1,4-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
2,2-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Acrolein	< 0.00500	0.00500	0.0150		mg/L	1	09/26/18 07:37 PM
Acrylonitrile	<0.00100	0.00100	0.00300		mg/L	1	09/26/18 07:37 PM
Benzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Bromobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Bromochloromethane	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Bromodichloromethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Bromoform	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Bromomethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Carbon tetrachloride	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Chlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Chloroethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Chloroform	< 0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Chloromethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
cis-1,2-Dichloroethene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
cis-1,3-Dichloropropene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Dibromochloromethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Dichlorodifluoromethane	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	09/26/18 07:37 PM
Methyl tert-butyl ether	<0.000300	0.000300	0.00100		mg/L	1	09/26/18 07:37 PM
Methylene chloride	<0.00250	0.00250	0.00250		mg/L	1	09/26/18 07:37 PM

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
 - RL Reporting Limit
 - N Parameter not NELAC certified

CLIENT:

GHD

Project: Hobbs Tank

Project No: Lab Order: 078863 1809184 Date: 02-Oct-18

Client Sample ID: Trip

Lab ID: 1809184-07

Collection Date: 09/24/18

Matrix: TRIP BLANK

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82		Analyst: DEW		
Naphthalene	<0.00500	0.00500	0.0150	mg/L	1	09/26/18 07:37 PM
o-Xylene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 07:37 PM
Tetrachloroethene	<0.000600	0.000600	0.00200	mg/L	1	09/26/18 07:37 PM
Toluene	<0.000600	0.000600	0.00200	mg/L	1	09/26/18 07:37 PM
trans-1,2-Dichloroethene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 07:37 PM
trans-1,3-Dichloropropene	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 07:37 PM
Trichloroethene	<0.000600	0.000600	0.00200	mg/L	1	09/26/18 07:37 PM
Trichlorofluoromethane	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 07:37 PM
Vinyl chloride	< 0.000300	0.000300	0.00100	mg/L	1	09/26/18 07:37 PM
Total Xylenes	<0.000300	0.000300	0.00100	mg/L	1	09/26/18 07:37 PM
Surr: 1,2-Dichloroethane-d4	86.1	0	72-119	%REC	1	09/26/18 07:37 PM
Surr: 4-Bromofluorobenzene	104	0	76-119	%REC	1	09/26/18 07:37 PM
Surr: Dibromofluoromethane	94.2	0	85-115	%REC	1	09/26/18 07:37 PM
Surr: Toluene-d8	97.0	0	81-120	%REC	1	09/26/18 07:37 PM

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

CLIENT: GHD Work Order: 1809184

ANALYTICAL QC SUMMARY REPORT

Date: 02-Oct-18

Project: Hob	bs Tank				RunII	D: (GC15_181	001A	
The QC data in batch 875	90 applies to the following sa	mples: 1809	9184-01C, 1809	184-02C, 18	09184-03C	, 1809184	-04C, 18091	84-05C,	1809184-06C
Sample ID LCS-87590	Batch ID: 87590		TestNo	: M80	15D		Units:	mg/L	
SampType: LCS	Run ID: GC15_1	81001A	Analysi	s Date: 10/1	/2018 1:25:	:13 PM	Prep Date:	9/28/2	2018
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD F	RPDLimit Qual
TPH-DRO C10-C28	0.988	0.100	1.250	0	79.0	50	114		
Surr: Isopropylbenzene	0.0677		0.1000		67.7	47	142		
Surr: Octacosane	0.0793		0.1000		79.3	51	124		
Sample ID LCSD-87590	Batch ID: 87590		TestNo	: M80	15D		Units:	mg/L	
SampType: LCSD	Run ID: GC15_1	81001A	Analysi	s Date: 10/1	/2018 1:34:	17 PM	Prep Date:	9/28/2	2018
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD F	RPDLimit Qual
TPH-DRO C10-C28	1.01	0.100	1.250	0	80.7	50	114	2.08	30
Surr: Isopropylbenzene	0.0718		0.1000		71.8	47	142	0	0
Surr: Octacosane	0.0785		0.1000		78.5	_ 51	124	0	0
Sample ID MB-87590	Batch ID: 87590		TestNo	: M80	15D		Units:	mg/L	
SampType: MBLK	Run ID: GC15_1	81001A	Analysi	s Date: 10/1	/2018 2:10:	:33 PM	Prep Date:	9/28/2	2018
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD F	RPDLimit Qual
TPH-DRO C10-C28	<0.0800	0.100							
Surr: Isopropylbenzene	0.0643		0.1000		64.3	47	142		
Surr: Octacosane	0.0680		0.1000		68.0	51	124		

Sample ID MB-87590	Batch ID:	87590		TestNo): M80	15D		Units:	mg/L
SampType: MBLK	Run ID:	GC15_1	81001A	Analys	is Date: 10/1	/2018 2:10:	:33 PM	Prep Date	9/28/2018
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
TPH-DRO C10-C28	<	:0.0800	0.100						
Surr: Isopropylbenzene	(0.0643		0.1000		64.3	47	142	
Surr: Octacosane	(0.0680		0.1000		68.0	51	124	

Qualifiers:

В Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAC certified

Page 1 of 10

CLIENT: GHD Work Order: 18091

ANALYTICAL QC SUMMARY REPORT

Project:

1809184

Hobbs Tank RunID: GC4_180927A

							364_1002		
lies to the fo	llowing sa	mples: 1809	9184-01B, 18091	184-02B, 18	09184-03B,	1809184	-04B, 18091	34-05B,	1809184-
Batch ID:	87578		TestNo:	M80	15V		Units:	mg/L	
Run ID:	GC4_18	0927A	Analysis	s Date: 9/27	/2018 12:5	7:56 PM	Prep Date:	9/27/2	2018
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD F	RPDLimit Qua
	2.46 0.382	0.100	2.500	0	98.6 95.4	67 74	136 138		
				Man				ma/l	
Run ID:		0927A				48 PM		•	2018
ı	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD F	RPDLimit Qua
	2.44	0.100	2.500	0	97.6	67	136	0.971	30
	0.393		0.4000		98.4	74	138	0	0
Batch ID:	87578		TestNo:	M 80	15 V		Units:	mg/L	
Run ID:	GC4_18	0927A	Analysis	s Date: 9/27	/2018 2:32:	59 PM	Prep Date:	9/27/2	2018
Г	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD F	RPDLimit Qual
		0.100	0.4000		105	74	138		
Batch ID:	87578		TestNo:	M80	15V		Units:	mg/L	
Run ID:	GC4_18	0927A	Analysis	s Date: 9/28	/2018 12:09	9:38 AM	Prep Date:	9/27/2	2018
F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD F	RPDLimit Qual
	2.06	0.100	2.500	0.06966	79.5	67	136		
	0.377		0.4000		94.4	74	138		
Batch ID:	87578		TestNo:	M80	15 V		Units:	mg/L	
Run ID:	GC4_18	0927A	Analysis	s Date: 9/28	/2018 12:33	3:39 AM	Prep Date:	9/27/2	2018
F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD F	RPDLimit Qual
	2.64	0.100	2.500	0.06966	103	67	136	24.9	30
	0.431		0.4000		108	74	138	0	0
Detail ID	87578		TestNo:	M80	15V		Units:	mg/L	
Batch ID:									
Run ID:	GC4_18	0927A	Analysis	s Date: 9/28	/2018 10:47	7:35 AM	Prep Date:		
Run ID:	GC4_18 Result	0927A RL	Analysis SPK value	s Date: 9/28 Ref Val	%REC			%RPD F	RPDLimit Qual
Run ID:								%RPD F	RPDLimit Qual
	Batch ID: Run ID: Batch ID: Run ID: Batch ID: Run ID: Batch ID: Run ID:	Batch ID: Result 2.46 0.382 Batch ID: 87578 Run ID: 87578 Result <0.0600 0.420 Batch ID: 87578 Run ID: GC4_180 Result 2.06 0.377 Batch ID: 87578 Run ID: 87578 Result 2.06 0.377	Batch ID:	Batch ID: 87578 TestNo: 2000 Run ID: GC4_180927A Result RL SPK value SPK value 2.46 0.100 0.382 0.4000 2.500 0.4000 Batch ID: 87578 TestNo: 300 0.4000 TestNo: 300 0.4000 Result RL SPK value 2.44 0.100 2.500 0.4000 2.500 0.4000 Batch ID: 87578 TestNo: 300 0.4000 TestNo: 300 0.4000 Result RL SPK value <0.0600 0.100 0.400	Batch ID: 87578 TestNo: M80 Run ID: GC4_180927A Analysis Date: 9/27 Result RL SPK value Ref Value 2.46 0.100 2.500 0 0.382 0.4000 0 Batch ID: 87578 TestNo: M80 Run ID: GC4_180927A Analysis Date: 9/27 Result RL SPK value Ref Val 2.44 0.100 2.500 0 0.393 0.4000 0 0 Batch ID: 87578 TestNo: M80 Run ID: GC4_180927A Analysis Date: 9/28 Result RL SPK value Ref Val 2.06 0.100 2.500 0.06966 0.377 0.4000 0.06966 0.377 0.4000 Date: 9/28 Result RL SPK value Ref Val Batch ID: 87578 TestNo: M80 Run ID: 87578 TestNo: M80 Run ID: 87578 TestNo: M80 Run ID: 87578 TestNo: M80 </td <td>Batch ID: 87578 TestNo: M8015V Run ID: GC4_180927A Analysis Date: 9/27/2018 12:57 Result RL SPK value Ref Val %REC 2.46 0.100 2.500 0 98.6 0.382 0.4000 95.4 Batch ID: 87578 TestNo: M8015V Run ID: GC4_180927A Analysis Date: 9/27/2018 1:21: Result RL SPK value Ref Val %REC 2.44 0.100 2.500 0 97.6 0.393 0.4000 98.4 Batch ID: 87578 TestNo: M8015V Result RL SPK value Ref Val %REC <0.0600</td> 0.100 0.4000 105 Batch ID: 87578 TestNo: M8015V Run ID: GC4_180927A Analysis Date: 9/28/2018 12:05 Result RL SPK value Ref Val %REC 2.06 0.100 2.500 0.06966 79.5 0.377 <td< td=""><td>Batch ID: 87578 TestNo: M8015V Result RL SPK value Ref Val %REC LowLim 2.46 0.100 2.500 0 98.6 67 0.382 0.4000 95.4 74 Batch ID: 87578 TestNo: M8015V Result RL SPK value Ref Val %REC LowLim 2.44 0.100 2.500 0 97.6 67 0.393 0.4000 98.4 74 Batch ID: 87578 TestNo: M8015V Result RL SPK value Ref Val %REC LowLim <0.0600</td> 0.100 0.4000 105 74 Batch ID: 87578 TestNo: M8015V Run ID: GC4_180927A Analysis Date: 9/28/2018 12:09:38 AM Result RL SPK value Ref Val %REC LowLim</td<>	Batch ID: 87578 TestNo: M8015V Run ID: GC4_180927A Analysis Date: 9/27/2018 12:57 Result RL SPK value Ref Val %REC 2.46 0.100 2.500 0 98.6 0.382 0.4000 95.4 Batch ID: 87578 TestNo: M8015V Run ID: GC4_180927A Analysis Date: 9/27/2018 1:21: Result RL SPK value Ref Val %REC 2.44 0.100 2.500 0 97.6 0.393 0.4000 98.4 Batch ID: 87578 TestNo: M8015V Result RL SPK value Ref Val %REC <0.0600	Batch ID: 87578 TestNo: M8015V Result RL SPK value Ref Val %REC LowLim 2.46 0.100 2.500 0 98.6 67 0.382 0.4000 95.4 74 Batch ID: 87578 TestNo: M8015V Result RL SPK value Ref Val %REC LowLim 2.44 0.100 2.500 0 97.6 67 0.393 0.4000 98.4 74 Batch ID: 87578 TestNo: M8015V Result RL SPK value Ref Val %REC LowLim <0.0600	Batch ID: 87578 TestNo: M8015V Units: Result RL SPK value Ref Val %REC LowLimit HighLimit of Prep Date: 2.46 0.100 2.500 0 98.6 67 136<	Run ID: GC4_180927A Analysis Date: 9/27/2018 12:57:56 PM Prep Date: 9/27/2018 PM Prep Date: 9/27/2

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits
N Parameter not NELAC certified

Page 2 of 10

CLIENT: GHD
Work Order: 1809184
Project: Hobbs Ta

ANALYTICAL QC SUMMARY REPORT

Hobbs Tank RunID: GCMS6_180927A

Project: Hobbs Ta	alik					KunII	<i>)</i>	3CMS6_1	009411	`	
The QC data in batch 87560 ap	plies to the fo	llowing sa	mples: 18091	184-01D, 18091	184-02D, 18	309184-03D,	1809184	-04D, 18091	34-05D,	809184	-06E
Sample ID LCS-87560	Batch ID:	87560		TestNo:	sw	8270D-LL		Units:	mg/L		
SampType: LCS	Run ID:	GCMS6	_180927A	Analysis	s Date: 9/27	7/2018 1:11:	00 PM	Prep Date:	9/27/2	018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit	Qua
1-Methylnaphthalene	0	.00210	0.0000500	0.00400	0	52.5	46	120			N
2-Methylnaphthalene	0	.00206	0.0000500	0.00400	0	51.5	46	120			
3,4-Benzofluoranthene	0	.00301	0.0000500	0.00400	0	75.4	45	124			
Anthracene	0	.00266	0.0000500	0.00400	0	66.4	54	120			
Benzo[a]pyrene	0	.00306	0.0000500	0.00400	0	76.6	53	120			
Benzo[k]fluoranthene	0	.00315	0.0000500	0.00400	0	78.7	45	124			
Fluoranthene	0	.00294	0.0000500	0.00400	0	73.4	54	120			
Fluorene	0	.00237	0.0000500	0.00400	0	59.3	50	120			
Naphthalene	0	.00200	0.0000500	0.00400	0	50.1	39	120			
Phenanthrene	0	.00270	0.0000500	0.00400	0	67.5	51	120			
Pyrene		.00293	0.0000500	0.00400	0	73.3	49	128			
Surr: 2-Fluorobiphenyl		4.13		8.000	-	51.6	48	120			
Surr: 4-Terphenyl-d14		5.55		8.000		69.4	51	135			
Sample ID LCSD-87560	Batch ID:	87560		TestNo:	SW	8270D-LL		Units:	mg/L		
SampType: LCSD	Run ID:	GCMS6	_180927A	Analysis		7/2018 1:40:	00 PM	Prep Date:	9/27/2	018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ⁴	%RPD R	PDLimit	Qua
1-Methylnaphthalene	0	.00223	0.0000500	0.00400	0	55.9	46	120	6.29	20	N
2-Methylnaphthalene		.00219	0.0000500	0.00400	0	54.9	46	120	6.38	20	.,
3,4-Benzofluoranthene		.00303	0.0000500	0.00400	0	75.8	45	124	0.556	20	
Anthracene		.00261	0.0000500	0.00400	0	65.3	54	120	1.63	20	
Benzo[a]pyrene		.00305	0.0000500	0.00400	0	76.3	53	120	0.431	20	
Benzo[k]fluoranthene		.00319	0.0000500	0.00400	0	79.8	45	124	1.36	20	
Fluoranthene		.00291	0.0000500	0.00400	0	72.7	54	120	1.04	20	
Fluorene		.00243	0.0000500	0.00400	0	60.9	50	120	2.67	20	
Naphthalene		.00215	0.0000500	0.00400	0	53.7	39	120	7.00	20	
Phenanthrene		.00270	0.0000500	0.00400	0	67.7	51	120	0.230	20	
Pyrene		.00290	0.0000500	0.00400	0	72.5	49	128	1.10	20	
Surr: 2-Fluorobiphenyl	•	5.09	0.0000000	8.000	v	63.6	48	120	0	0	
Surr: 4-Terphenyl-d14		6.58		8.000		82.2	51	135	0	0	
Sample ID MB-87560	Batch ID:	87560		TestNo	SW	8270D-LL		Units:	mg/L		_
SampType: MBLK	Run ID:		_180927A			7/2018 2:39:	00 PM	Prep Date:	-	018	
Analyte				SPK value							0
		Result	RL	Sr N value	Ref Val	%REC	LOWLINI	it HighLimit '	MRFD K	PULIIIII	_
1-Methylnaphthalene		0000250	0.0000500								N
2-Methylnaphthalene		0000250	0.0000500								
3,4-Benzofluoranthene		0000250	0.0000500								
Anthracene	<0.	0000250	0.0000500								
Qualifiers: B Analyte de	etected in the as	ssociated M	Iethod Blank	DF I	Dilution Fact	or					
-	etected between				Method Dete				D.	age 3 of	f 10

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

MDL Method Detection Limit

R RPD outside accepted control limitsS Spike Recovery outside control limits

N Parameter not NELAC certified

Page 3 of 10

CLIENT:

GHD

Work Order: Project:

1809184 Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS6_180927A

Sample ID MB-87560	Batch ID: 87560		TestNo	SW8	3270D-LL		Units:	mg/L
SampType: MBLK	Run ID: GCMS	6_180927A	Analysi	s Date: 9/27	/2018 2:39:	00 PM	Prep Date	e: 9/27/2018
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	t HighLimit	%RPD RPDLimit Qua
Benzo[a]pyrene	<0.0000250	0.0000500						
Benzo[k]fluoranthene	<0.0000250	0.0000500						
Fluoranthene	< 0.0000250	0.0000500						
Fluorene	< 0.0000250	0.0000500						
Naphthalene	<0.0000250	0.0000500						
Phenanthrene	< 0.0000250	0.0000500						
Pyrene	< 0.0000250	0.0000500						
Surr: 2-Fluorobiphenyl	4.55		8.000		56.9	48	120	
Surr: 4-Terphenyl-d14	6.19		8.000		77.4	51	135	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 4 of 10

CLIENT: GHD Work Order: 1809184

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs Tank

RunID: GCMS5_180926B

The QC data in batch 87553 applies to the following samples: 1809184-01A, 1809184-02A, 1809184-03A, 1809184-04A, 1809184-05A, 1809184-06A, 1809184-07A

Sample ID LCS-87553	Batch ID: 87553		TestNo	: SW8	3260C		Units:	mg/L
SampType: LCS	Run ID: GCMS:	5_180926B	Analys	is Date: 9/26	/2018 3:07:	00 PM	Prep Date:	9/26/2018
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qua
1,1,1-Trichloroethane	0.0259	0.00100	0.0232	0	112	67	132	
1,1,2,2-Tetrachloroethane	0.0222	0.00100	0.0232	0	95.8	63	128	
1,1,2-Trichloroethane	0.0261	0.00100	0.0232	0	113	75	125	
1,1-Dichloroethane	0.0257	0.00100	0.0232	0	111	69	133	
1,1-Dichloroethene	0.0257	0.00100	0.0232	0	111	68	130	
1,1-Dichloropropene	0.0263	0.00100	0.0232	0	113	73	132	
1,2-Dibromoethane	0.0245	0.00100	0.0232	0	106	80	121	
1,2-Dichlorobenzene	0.0240	0.00100	0.0232	0	104	75	122	
1,2-Dichloroethane	0.0233	0.00100	0.0232	0	100	69	132	
1,2-Dichloropropane	0.0261	0.00100	0.0232	0	112	75	125	
1,3-Dichlorobenzene	0.0247	0.00100	0.0232	0	106	75	124	
1,3-Dichloropropane	0.0237	0.00100	0.0232	0	102	73	126	
1,4-Dichlorobenzene	0.0239	0.00100	0.0232	0	103	74	123	
2,2-Dichloropropane	0.0271	0.00100	0.0232	0	117	69	137	
Acrolein	0.0553	0.0150	0.0580	0	95.3	40	160	
Acrylonitrile	0.0507	0.00300	0.0464	0	109	50	150	
Benzene	0.0262	0.00100	0.0232	0	113	81	122	
Bromobenzene	0.0247	0.00100	0.0232	0	107	76	124	
Bromochloromethane	0.0247	0.00100	0.0232	0	114	65	129	
Bromodichloromethane	0.0250	0.00100	0.0232	0	108	76	129	
Bromoform	0.0232	0.00100	0.0232	0	100	69	128	
	0.0232							
Bromomethane		0.00100	0.0232	0	125	53	141	
Carbon tetrachloride	0.0256	0.00100	0.0232	0	110	66	138	
Chlorobenzene	0.0244	0.00100	0.0232	0	105	81	122	
Chloroethane	0.0262	0.00100	0.0232	0	113	58	133	
Chloroform	0.0253	0.00100	0.0232	0	109	69	128	
Chloromethane	0.0285	0.00100	0.0232	0	123	56	131	
cis-1,2-Dichloroethene	0.0255	0.00100	0.0232	0	110	72	126	
cis-1,3-Dichloropropene	0.0258	0.00100	0.0232	0	111	69	131	
Dibromochloromethane	0.0241	0.00100	0.0232	0	104	66	133	
Dichlorodifluoromethane	0.0303	0.00100	0.0232	0	131	53	153	
Ethylbenzene	0.0256	0.00100	0.0232	0	111	80	120	
m,p-Xylene	0.0515	0.00200	0.0464	0	111	80	120	
Methyl tert-butyl ether	0.0242	0.00100	0.0232	0	104	68	123	
Methylene chloride	0.0259	0.00250	0.0232	0	112	63	137	
Naphthalene	0.0237	0.0150	0.0232	0	102	54	138	
o-Xylene	0.0260	0.00100	0.0232	0	112	80	120	
Tetrachloroethene	0.0259	0.00200	0.0232	0	111	66	128	
Toluene	0.0268	0.00200	0.0232	0	115	80	120	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 5 of 10

CLIENT:

GHD

Work Order: 1809184
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5_180926B

Sample ID LCS-87553	Batch ID:	87553		TestNo	: S1	W8260C		Units:	mg/L
SampType: LCS	Run ID:	GCM\$5	_180926B	Analysi	s Date: 9/	26/2018 3:07:	00 PM	Prep Date:	9/26/2018
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 🤋	%RPD RPDLimit Qua
trans-1,2-Dichloroethene		0.0258	0.00100	0.0232	0	111	63	137	
trans-1,3-Dichloropropene	(0.0255	0.00100	0.0232	0	110	59	135	
Trichloroethene	(0.0285	0.00100	0.0232	0	123	70	127	
Trichlorofluoromethane	(0.0276	0.00100	0.0232	0	119	57	129	
Vinyl chloride	(0.0280	0.00100	0.0232	0	121	50	134	
Total Xylenes	(0.0775	0.00100	0.0696	0	111	80	120	
Surr: 1,2-Dichloroethane-d4		176		200.0		88.2	72	119	
Surr: 4-Bromofluorobenzene		200		200.0		100	76	119	
Surr: Dibromofluoromethane		198		200.0		99.2	85	115	
Surr: Toluene-d8		193		200.0		96.3	81	120	
Sample ID 1809184-01AMS	Batch ID:	87553		TestNo	: SI	W8260C		Units:	mg/L

Sample ID 1809184-01AMS	Batch ID: 87553		TestNo	: SW	8260C		Units:	mg/L
SampType: MS	Run ID: GCMS5_18	80926B	Analysi	is Date: 9/26	/2018 3:31:0	00 PM	Prep Date:	9/26/2018
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	t HighLimit %	RPD RPDLimit Qual
1,1,1-Trichloroethane	0.0227	0.00100	0.0232	0	97.9	67	132	
1,1,2,2-Tetrachloroethane	0.0214	0.00100	0.0232	0	92.3	63	128	
1,1,2-Trichloroethane	0.0232	0.00100	0.0232	0	99.9	75	125	
1,1-Dichloroethane	0.0223	0.00100	0.0232	0	95.9	69	133	
1,1-Dichloroethene	0.0232	0.00100	0.0232	0	99.9	68	130	
1,1-Dichloropropene	0.0231	0.00100	0.0232	0	99.6	73	132	
1,2-Dibromoethane	0.0215	0.00100	0.0232	0	92.7	80	121	
1,2-Dichlorobenzene	0.0218	0.00100	0.0232	0	93.8	75	122	
1,2-Dichloroethane	0.0203	0.00100	0.0232	0	87.6	69	132	
1,2-Dichloropropane	0.0225	0.00100	0.0232	0	97.1	75	125	
1,3-Dichlorobenzene	0.0217	0.00100	0.0232	0	93.6	75	124	
1,3-Dichloropropane	0.0210	0.00100	0.0232	0	90.7	73	126	
1,4-Dichlorobenzene	0.0212	0.00100	0.0232	0	91.4	74	123	
2,2-Dichloropropane	0.0242	0.00100	0.0232	0	104	69	137	
Acrolein	0.0537	0.0150	0.0580	0	92.6	40	160	
Acrylonitrile	0.0437	0.00300	0.0464	0	94.2	50	150	
Benzene	0.0232	0.00100	0.0232	0	100	81	122	
Bromobenzene	0.0217	0.00100	0.0232	0	93.4	76	124	
Bromochloromethane	0.0234	0.00100	0.0232	0	101	65	129	
Bromodichloromethane	0.0217	0.00100	0.0232	0	93.7	76	121	
Bromoform	0.0200	0.00100	0.0232	0	86.2	69	128	
Bromomethane	0.0197	0.00100	0.0232	0	84.8	53	141	
Carbon tetrachloride	0.0226	0.00100	0.0232	0	97.3	66	138	
Chlorobenzene	0.0216	0.00100	0.0232	0	92.9	81	122	
Chloroethane	0.0226	0.00100	0.0232	0	97.2	58	133	
Chloroform	0.0215	0.00100	0.0232	0	92.8	69	128	

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAC certified

Page 6 of 10

CLIENT: GHD
Work Order: 1809184
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS5_180926B

	Batch ID: 87553		TestNo	: SW8	3260C		Units:	mg/L
SampType: MS	Run ID: GCMS5	_180926B	Analys	is Date: 9/26	/2018 3:31:	00 PM	Prep Date:	9/26/2018
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Chloromethane	0.0242	0.00100	0.0232	0	104	56	131	
cis-1,2-Dichloroethene	0.0221	0.00100	0.0232	0	95.3	72	126	
cis-1,3-Dichloropropene	0.0225	0.00100	0.0232	0	97.1	69	131	
Dibromochloromethane	0.0208	0.00100	0.0232	0	89.7	66	133	
Dichlorodifluoromethane	0.0271	0.00100	0.0232	0	117	53	153	
Ethylbenzene	0.0224	0.00100	0.0232	0	96.5	80	120	
n,p-Xylene	0.0449	0.00200	0.0464	0	96.7	80	120	
Methyl tert-butyl ether	0.0221	0.00100	0.0232	0	95.1	68	123	
Methylene chloride	0.0224	0.00250	0.0232	0	96.3	63	137	
Naphthalene	0.0238	0.0150	0.0232	0	103	54	138	
o-Xylene	0.0227	0.00100	0.0232	0	97.8	80	120	
letrachloroethene	0.0227	0.00200	0.0232	0	97.8	66	128	
Toluene	0.0233	0.00200	0.0232	0	101	80	120	
rans-1,2-Dichloroethene	0.0231	0.00100	0.0232	0	99.7	63	137	
rans-1,3-Dichloropropene	0.0231	0.00100	0.0232	0	99.5	59	135	
Trichloroethene	0.0241	0.00100	0.0232	0	104	70	127	
Trichlorofluoromethane	0.0244	0.00100	0.0232	0	105	57	129	
√inyl chloride	0.0250	0.00100	0.0232	0	108	50	134	
Total Xylenes	0.0676	0.00100	0.0696	0	97.1	80	120	
Surr: 1,2-Dichloroethane-d4	177		200.0		88.3	72	119	
Surr: 4-Bromofluorobenzene	203		200.0		101	76	119	
Surr: Dibromofluoromethane	197		200.0		98.4	85	115	
Surr: Toluene-d8	191		200.0		95.4	81	120	

Sample ID 1809184-01AMSD	Batch ID: 87553		TestNo	: SW8	260C		Units:	mg/l	_
SampType: MSD	Run ID: GCMS5	_180926B	Analys	is Date: 9/26	/2018 3:56:	00 PM	Prep Date	9/26	/2018
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
1,1,1-Trichloroethane	0.0219	0.00100	0.0232	0	94.3	67	132	3.68	20
1,1,2,2-Tetrachloroethane	0.0211	0.00100	0.0232	0	91.2	63	128	1.22	20
1,1,2-Trichloroethane	0.0228	0.00100	0.0232	0	98.2	75	125	1.71	20
1,1-Dichloroethane	0.0218	0.00100	0.0232	0	94.1	69	133	1.90	20
1,1-Dichloroethene	0.0222	0.00100	0.0232	0	95.8	68	130	4.13	20
1,1-Dichloropropene	0.0226	0.00100	0.0232	0	97.6	73	132	2.03	20
1,2-Dibromoethane	0.0213	0.00100	0.0232	0	91.8	80	121	0.958	20
1,2-Dichlorobenzene	0.0213	0.00100	0.0232	0	91.9	75	125	2.11	20
1,2-Dichloroethane	0.0196	0.00100	0.0232	0	84.5	68	132	3.52	20
1,2-Dichloropropane	0.0223	0.00100	0.0232	0	96.2	75	125	0.932	20
1,3-Dichlorobenzene	0.0212	0.00100	0.0232	0	91.3	75	124	2.54	20
1,3-Dichloropropane	0.0207	0.00100	0.0232	0	89.0	73	126	1.83	20
1,4-Dichlorobenzene	0.0208	0.00100	0.0232	0	89.8	74	123	1.68	20

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAC certified

Page 7 of 10

CLIENT:

GHD 1809184

Work Order: Project:

Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5_180926B

Sample ID 1809184-01AMSD	Batch ID: 87553		TestNo): SW 8	3260C		Units:	mg/l	-	
SampType: MSD	Run ID: GCMS5	_180926B	Analys	is Date: 9/26	/2018 3:56:	00 PM	Prep Date	9/26	/2018	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit	t Qual
2,2-Dichloropropane	0.0234	0.00100	0.0232	0	101	69	137	3.58	20	
Acrolein	0.0544	0.0150	0.0580	0	93.8	40	160	1.31	20	
Acrylonitrile	0.0440	0.00300	0.0464	0	94.9	50	150	0.759	20	
Benzene	0.0230	0.00100	0.0232	0	98.9	81	120	1.07	20	
Bromobenzene	0.0215	0.00100	0.0232	0	92.5	76	124	1.02	20	
Bromochloromethane	0.0234	0.00100	0.0232	0	101	65	129	0.209	20	
Bromodichloromethane	0.0212	0.00100	0.0232	0	91.2	76	121	2.64	20	
Bromoform	0.0196	0.00100	0.0232	0	84.6	69	128	1.88	20	
Bromomethane	0.0113	0.00100	0.0232	0	48.8	53	141	53.8	20	SR
Carbon tetrachloride	0.0210	0.00100	0.0232	0	90.4	66	138	7.31	20	
Chlorobenzene	0.0211	0.00100	0.0232	0	91.1	81	122	1.91	20	
Chloroethane	0.0210	0.00100	0.0232	0	90.4	58	133	7.27	20	
Chloroform	0.0212	0.00100	0.0232	0	91.2	69	128	1.68	20	
Chloromethane	0.0228	0.00100	0.0232	0	98.4	56	131	5.83	20	
cis-1,2-Dichloroethene	0.0222	0.00100	0.0232	0	95.7	72	126	0.438	20	
cis-1,3-Dichloropropene	0.0219	0.00100	0.0232	0	94.3	69	131	2.93	20	
Dibromochloromethane	0.0204	0.00100	0.0232	0	88.0	66	133	1.93	20	
Dichlorodifluoromethane	0.0259	0.00100	0.0232	0	112	53	153	4.63	20	
Ethylbenzene	0.0218	0.00100	0.0232	0	94.0	80	120	2.68	20	
m,p-Xylene	0.0440	0.00200	0.0464	0	94.8	80	120	2.01	20	
Methyl tert-butyl ether	0.0218	0.00100	0.0232	0	94.1	68	123	1.05	20	
Methylene chloride	0.0220	0.00250	0.0232	0	94.6	63	137	1.77	20	
Naphthalene	0.0248	0.0150	0.0232	0	107	54	138	3.80	20	
o-Xylene	0.0226	0.00100	0.0232	0	97.6	80	120	0.190	20	
Tetrachloroethene	0.0223	0.00200	0.0232	0	96.2	66	128	1.66	20	
Toluene	0.0232	0.00200	0.0232	0	99.9	80	120	0.615	20	
trans-1,2-Dichloroethene	0.0225	0.00100	0.0232	0	96.8	63	137	2.86	20	
trans-1,3-Dichloropropene	0.0227	0.00100	0.0232	0	97.8	59	135	1.76	20	
Trichloroethene	0.0240	0.00100	0.0232	0	103	70	127	0.724	20	
Trichlorofluoromethane	0.0231	0.00100	0.0232	0	99.6	57	129	5.25	20	
Vinyl chloride	0.0239	0.00100	0.0232	0	103	50	134	4.52	20	
Total Xylenes	0.0666	0.00100	0.0696	0	95.7	80	120	1.39	20	
Surr: 1,2-Dichloroethane-d4	181	0.00.00	200.0	Ū	90.7	72	119	0	0	
Surr: 4-Bromofluorobenzene	201		200.0		101	76	119	0	0	
Surr: Dibromofluoromethane	197		200.0		98.4	85	115	0	0	
Surr: Toluene-d8	189		200.0		94.7	81	120	0	0	
Sample ID MB-87553	Batch ID: 87553		TestNo): SW8	260C		Units:	mg/l		
								•		

SampType: MBLK Run ID: GCMS5 180926B Analysis Date: 9/26/2018 4:45:00 PM Prep Date: 9/26/2018	aivsis Date, 9/20/2016 4:45:00 PM Prep Date: 9/26/2018	Analysis	IDD IOUYZOD	ID. I	∟n. ru	Sampiye.	
Sample ID MB-87553 Batch ID: 87553 TestNo: SW8260C Units: mg/L	alysis Date: 9/26/2018 4:45;00 PM Prep Date: 9/26/2018		IS5 180926B			SampType:	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 8 of 10

CLIENT: GHD
Work Order: 1809184
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS5_180926B

Sample ID MB-87553	Batch ID:	87553		TestNo		SW8260C		Units:	mg/L	_
SampType: MBLK	Run ID:	GCMS5	_180926B	Analysi	s Date:	9/26/2018 4:45	00 PM	Prep Date	9/26	/2018
Analyte	F	Result	RL	SPK value	Ref V	al %REC	LowLimi	t HighLimit	%RPD	RPDLimit Qua
1,1,1-Trichloroethane	<0.	.000300	0.00100							
1,1,2,2-Tetrachloroethane	<0.	.000300	0.00100							
1,1,2-Trichloroethane	<0.	.000300	0.00100							
1,1-Dichloroethane	<0.	.000300	0.00100							
1,1-Dichloroethene	<0.	.000300	0.00100							
1,1-Dichloropropene	<0.	.000300	0.00100							
1,2-Dibromoethane	<0.	.000300	0.00100							
1,2-Dichlorobenzene		.000300	0.00100							
1,2-Dichloroethane	<0.	.000300	0.00100							
1,2-Dichloropropane		.000300	0.00100							
1,3-Dichlorobenzene		.000300	0.00100							
1,3-Dichloropropane		.000300	0.00100							
1,4-Dichlorobenzene		.000300	0.00100							
2,2-Dichloropropane		.000300	0.00100							
Acrolein		.00500	0.0150							
Acrylonitrile		.00100	0.00300							
Benzene		.000300	0.00100							
Bromobenzene		.000300	0.00100							
Bromochloromethane		.000300	0.00100							
Bromodichloromethane		.000300	0.00100							
Bromoform		.000300	0.00100							
Bromomethane		.000300	0.00100							
Carbon tetrachloride		.000300	0.00100							
Chlorobenzene		.000300	0.00100							
Chloroethane		.000300	0.00100							
Chloroform		.000300	0.00100							
Chloromethane		.000300	0.00100							
cis-1,2-Dichloroethene		.000300	0.00100							
cis-1,3-Dichloropropene Dibromochloromethane		.000300	0.00100							
Dichlorodifluoromethane		.000300	0.00100							
Ethylbenzene		.000300	0.00100							
•			0.00100							
m,p-Xylene		000000	0.00200							
Methyl tert-butyl ether Methylene chloride		.000300).00250	0.00100 0.00250							
Naphthalene		0.00500								
o-Xylene		.000300	0.0150 0.00100							
Tetrachloroethene		.000600	0.00100							
Toluene		.000600								
trans-1,2-Dichloroethene		.000300	0.00200 0.00100							
trans-1,3-Dichloropropene		.000300								
uans-1,3-Dichloropropene	<0	.000300	0.00100							

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 9 of 10

CLIENT:

GHD

Work Order: Project:

1809184 Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5_180926B

Sample ID MB-87553	Batch ID: 87553		TestNo	o: SW 8	3260C		Units:	mg/L
SampType: MBLK	Run ID: GCMS	5_180926B	Analys	is Date: 9/26	/2018 4:45	:00 PM	Prep Date	9/26/2018
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Trichloroethene	<0.000600	0.00100						
Trichlorofluoromethane	<0.000300	0.00100						
Vinyl chloride	<0.000300	0.00100						
Total Xylenes	<0.000300	0.00100						
Surr: 1,2-Dichloroethane-d4	170		200.0		85.2	72	119	
Surr: 4-Bromofluorobenzene	208		200.0		104	76	119	
Surr: Dibromofluoromethane	188		200.0		93.8	85	115	
Surr: Toluene-d8	193		200.0		96.7	81	120	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 10 of 10

S Spike Recovery outside control limits

N Parameter not NELAC certified

December 21, 2018

Order No.: 1812145

Brad Stephenson GHD

14998 W 6th Ave #800

Golden, CO 80401

TEL: (720) 974-0935

FAX (432) 686-0186

RE: Hobbs Tank

Dear Brad Stephenson:

DHL Analytical, Inc. received 7 sample(s) on 12/14/2018 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

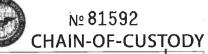
If you have any questions regarding these tests results, please feel free to call.

Sincerely,

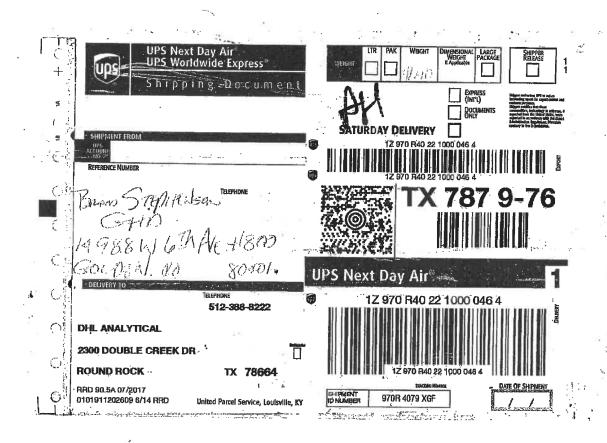
John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-18-21


Table of Contents

Miscellaneous Documents	. 3
CaseNarrative 1812145	. 7
Analytical Report 1812145	. 8
AnalyticalQCSummaryReport 1812145	15



2300 Double Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 题 FAX (512) 388-8229 Web: www.dhlanalytical.com E-Mail: login@dhlanalytical.com

CLIENT: ADDRESS: PHONE: 303 941 DATA REPORTED TO: ADDITIONAL REPOR	T COPIES TO:	10.576HG 80 CGHP.		DHL WORK ORDER #: 18/2 45 ME: 10085 (AND COLLECTOR: 1887(ARC SO)
Authorize 5% surcharge for TRRP Report? Yes No Field Sample I.D.		# of Containers HCI HNO, HySo, CI NaOH CI CE UNIPRESERVED UNIPRESERVED		FIELD NOTES
MW-2 MW-4 MW-5 MW-5 MW-50	01 12/12/18 990 W, 02 045 W 07 0930 W 07	X X X X		
RELINQUISHED BY: (Signature	12/14/18 (01	RECEIVED BY: Kignature) RECEIVED BY: Kignature) RECEIVED BY: (Signature) RECEIVED BY: (Signature)	TURN AROUND TIME RUSH □ CALL FIRST 1 DAY □ CALL FIRST 2 DAY □ NORMAL □ OTHER □	LABORATORY USE ONLY: RECEIVING TEMP: 137.1 CTHERM #: 28 CUSTODY SEALS: DEROKEN DINTACT ATNOT USED CARRIER: DLONE STAR FEDEX QUPS DOTHER D COURIER DELIVERY HAND DELIVERED DIRLCOC Row 1 FEB 2010

5 🚉

Client Name GHD			Date Recei	ved: 12	/14/2018
Work Order Number 1812145			Received by	/ EL	
Checklist completed by: Signature	12/14/20 Date		Reviewed by	y	12/14/2018 Date
	Carrier name	UPS Blue			
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present	٥
Custody seals intact on shippping container/coo	ler?	Yes 🗌	No □	Not Present	✓
Custody seals intact on sample bottles?		Yes	No 🗆	Not Present	✓
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished and	received?	Yes 🗹	No 🗀		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗔		
Sufficient sample volume for indicated test?	5	Yes 🗹	No 🗆		
All samples received within holding time?		Yes 🗹	No 🗀		
Container/Temp Blank temperature in compliane	ce?	Yes 🗹	No 🗌	1.3 °C	
Water - VOA vials have zero headspace?		Yes 🗹	No 🗆	No VOA vials su	ibmitted
Water - pH<2 acceptable upon receipt?		Yes 🗌	No 🗆	NA ✓ LOT	Γ#
		Adjusted?		Checked by	
Water - ph>9 (S) or ph>10 (CN) acceptable upo	n receipt?	Yes 🗌	No 🗌	NA 🗹 LOT	Γ#
*		Adjusted?		Checked by	
Any No response must be detailed in the comm	ents section below.				=======
Client contacted	Date contacted:		Per	rson contacted	
Contacted by:	Regarding:				
Comments:					
			•		
				-	
Corrective Action		***************************************			
					- 11

Sample Receipt Checklist

CLIENT:

GHD

Project: Lab Order: Hobbs Tank

1812145

CASE NARRATIVE

Date: 21-Dec-18

Samples were analyzed using the methods outlined in the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition and Standard Methods.

The compound 1-Methylnaphthalene is not NELAC Certified.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives except where noted in the following. For Volatile Organics Analysis, the recovery of Toluene for the Matrix Spike (1812144-01 MS) was above the method control limits. This is flagged accordingly in the QC Summary Report. This compound was within method control limits in the associated LCS/MSD. No further corrective action was taken.

For PAH Analysis, the recovery of surrogate 2-Fluorobiphenyl for Method Blank-88638 was below the method control limits. These are flagged accordingly in the QC Summary Report. The remaining surrogate for these samples was within method control limits. No further corrective action was taken.

For PAH Analysis, the RPD(s) of three compounds for the Laboratory Control Spike Duplicate (LCSD-88638) were above the method control limit. These are flagged accordingly in the QC Summary Report. The recoveries of these compounds were within method control limits in the associated ICV/LCS/LCSD. No further corrective action was taken.

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1812145

Date: 21-Dec-18

Client Sample ID: MW-2

Lab ID: 1812145-01

Collection Date: 12/12/18 09:10 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WAT	ER	M80)15D				Analyst: BTJ
TPH-DRO C10-C28	2.56	0.151	0.189		mg/L	1	12/19/18 10:37 AM
Surr: Isopropylbenzene	88.7	0	47-142		%REC	10	12/19/18 01:12 PM
Surr: Octacosane	90.7	0	51-124		%REC	10	12/19/18 01:12 PM
TPH PURGEABLE BY GC - WATER	2	M80)15V				Analyst: BTJ
Gasoline Range Organics	<0.0600	0.0600	0.100		mg/L	1	12/18/18 05:01 PM
Surr: Tetrachlorethene	105	0	74-138		%REC	1	12/18/18 05:01 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	<0.0000484	0.0000484	0.0000969	N	mg/L	1	12/18/18 03:24 PM
2-Methylnaphthalene	<0.0000484	0.0000484	0.0000969		mg/L	1	12/18/18 03:24 PM
3,4-Benzofluoranthene	<0.0000484	0.0000484	0.0000969		mg/L	1	12/18/18 03:24 PM
Anthracene	<0.0000484	0.0000484	0.0000969		mg/L	1	12/18/18 03:24 PM
Benzo[a]pyrene	<0.0000484	0.0000484	0.0000969		mg/L	1	12/18/18 03:24 PM
Benzo[k]fluoranthene	<0.0000484	0.0000484	0.0000969		mg/L	1	12/18/18 03:24 PM
Fluoranthene	<0.0000484	0.0000484	0.0000969		mg/L	1	12/18/18 03:24 PM
Fluorene	<0.0000484	0.0000484	0.0000969		mg/L	1	12/18/18 03:24 PM
Naphthalene	<0.0000484	0.0000484	0.0000969		mg/L	1	12/18/18 03:24 PM
Phenanthrene	0.000144	0.0000484	0.0000969		mg/L	1	12/18/18 03:24 PM
Pyrene	<0.0000484	0.0000484	0.0000969		mg/L	1	12/18/18 03:24 PM
Surr: 2-Fluorobiphenyl	65.1	0	48-120		%REC	1	12/18/18 03:24 PM
Surr: 4-Terphenyl-d14	63.6	0	51-135		%REC	1	12/18/18 03:24 PM
8260 WATER VOLATILES BY GC/N	I S	SW8	260C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 08:49 PM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 08:49 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	12/14/18 08:49 PM
o-Xylene	< 0.000300	0.000300	0.00100		mg/L	1	12/14/18 08:49 PM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	12/14/18 08:49 PM
Surr: 1,2-Dichloroethane-d4	84.5	0	72-119		%REC	1	12/14/18 08:49 PM
Surr: 4-Bromofluorobenzene	95.1	0	76-119		%REC	1	12/14/18 08:49 PM
Surr: Dibromofluoromethane	93.4	0	85-115		%REC	1	12/14/18 08:49 PM
Surr: Toluene-d8	92.5	0	81-120		%REC	1	12/14/18 08:49 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1812145

Date: 21-Dec-18

Client Sample ID: MW-3

Lab ID: 1812145-02

Collection Date: 12/12/18 10:40 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATER		M80)15D				Analyst: BTJ
TPH-DRO C10-C28	0.224	0.0755	0.0944		mg/L	1	12/19/18 10:46 AM
Surr: Isopropylbenzene	74.9	0	47-142		%REC	10	12/19/18 01:21 PM
Surr: Octacosane	87.7	0	51-124		%REC	10	12/19/18 01:21 PM
TPH PURGEABLE BY GC - WATER		M80	015V				Analyst: BTJ
Gasoline Range Organics	<0.0600	0.0600	0.100		mg/L	1	12/18/18 05:25 PM
Surr: Tetrachlorethene	107	0	74-138		%REC	1	12/18/18 05:25 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	< 0.0000236	0.0000236	0.0000473	N	mg/L	1	12/18/18 03:53 PM
2-Methylnaphthalene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 03:53 PM
3,4-Benzofluoranthene	< 0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 03:53 PM
Anthracene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 03:53 PM
Benzo[a]pyrene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 03:53 PM
Benzo[k]fluoranthene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 03:53 PM
Fluoranthene	< 0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 03:53 PM
Fluorene	< 0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 03:53 PM
Naphthalene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 03:53 PM
Phenanthrene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 03:53 PM
Pyrene	< 0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 03:53 PM
Surr: 2-Fluorobiphenyl	62.0	0	48-120		%REC	1	12/18/18 03:53 PM
Surr: 4-Terphenyl-d14	59.0	0	51-135		%REC	1	12/18/18 03:53 PM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 09:14 PM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 09:14 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	12/14/18 09:14 PM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 09:14 PM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	12/14/18 09:14 PM
Surr: 1,2-Dichloroethane-d4	82.0	0	72-119		%REC	1	12/14/18 09:14 PM
Surr: 4-Bromofluorobenzene	96.9	0	76-119		%REC	1	12/14/18 09:14 PM
Surr: Dibromofluoromethane	94.4	0	85-115		%REC	1	12/14/18 09:14 PM
Surr: Toluene-d8	93.9	0	81-120		%REC	1	12/14/18 09:14 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
 - RL Reporting Limit
 - N Parameter not NELAC certified

CLIENT: GHD

Project: Hobbs Tank

Project No: 078863

Lab Order: 1812145

Date: 21-Dec-18

Client Sample ID: MW-4

Lab ID: 1812145-03

Collection Date: 12/12/18 08:45 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATE	R	M8	015D				Analyst: BTJ
TPH-DRO C10-C28	0.0980	0.0762	0.0952		mg/L	1	12/19/18 10:55 AM
Surr: Isopropylbenzene	78.6	0	47-142		%REC	10	12/19/18 01:30 PM
Surr: Octacosane	86.9	0	51-124		%REC	10	12/19/18 01:30 PM
TPH PURGEABLE BY GC - WATER		M8	015V				Analyst: BTJ
Gasoline Range Organics	< 0.0600	0.0600	0.100		mg/L	1	12/18/18 05:49 PM
Surr: Tetrachlorethene	114	0	74-138		%REC	1	12/18/18 05:49 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	<0.0000236	0.0000236	0.0000473	N	mg/L	1	12/18/18 04:22 PM
2-Methylnaphthalene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 04:22 PM
3,4-Benzofluoranthene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 04:22 PM
Anthracene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 04:22 PM
Benzo[a]pyrene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 04:22 PM
Benzo[k]fluoranthene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 04:22 PM
Fluoranthene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 04:22 PM
Fluorene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 04:22 PM
Naphthalene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 04:22 PM
Phenanthrene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 04:22 PM
Pyrene	<0.0000236	0.0000236	0.0000473		mg/L	1	12/18/18 04:22 PM
Surr: 2-Fluorobiphenyl	65.3	0	48-120		%REC	1	12/18/18 04:22 PM
Surr: 4-Terphenyl-d14	64.3	0	51-135		%REC	1	12/18/18 04:22 PM
8260 WATER VOLATILES BY GC/MS		SW8	260C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 09:38 PM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 09:38 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	12/14/18 09:38 PM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 09:38 PM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	12/14/18 09:38 PM
Surr: 1,2-Dichloroethane-d4	85.4	0	72-119		%REC	1	12/14/18 09:38 PM
Surr: 4-Bromofluorobenzene	97.0	0	76-119		%REC	1	12/14/18 09:38 PM
Surr: Dibromofluoromethane	94.5	0	85-115		%REC	1	12/14/18 09:38 PM
Surr: Toluene-d8	93.4	0	81-120		%REC	1	12/14/18 09:38 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

CLIENT:

GHD

Project:

Hobbs Tank

Project No:

078863

Lab Order:

1812145

Date: 21-Dec-18

Client Sample ID: MW-5

Lab ID: 1812145-04

Collection Date: 12/12/18 09:30 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WATI		M80)15D				Analyst: BTJ
TPH-DRO C10-C28	0.157	0.0761	0.0951		mg/L	1	12/19/18 11:04 AM
Surr: Isopropylbenzene	79.9	0	47-142		%REC	10	12/19/18 01:39 PM
Surr: Octacosane	88.0	0	51-124		%REC	10	12/19/18 01:39 PM
TPH PURGEABLE BY GC - WATER		M86	015V				Analyst: BTJ
Gasoline Range Organics	< 0.0600	0.0600	0.100		mg/L	1	12/18/18 07:02 PM
Surr: Tetrachlorethene	93.5	0	74-138		%REC	1	12/18/18 07:02 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	< 0.0000237	0.0000237	0.0000474	N	mg/L	1	12/18/18 04:52 PM
2-Methylnaphthalene	<0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 04:52 PM
3,4-Benzofluoranthene	< 0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 04:52 PM
Anthracene	< 0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 04:52 PM
Benzo[a]pyrene	< 0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 04:52 PM
Benzo[k]fluoranthene	<0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 04:52 PM
Fluoranthene	<0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 04:52 PM
Fluorene	<0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 04:52 PM
Naphthalene	0.0000337	0.0000237	0.0000474	J	mg/L	1	12/18/18 04:52 PM
Phenanthrene	<0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 04:52 PM
Pyrene	< 0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 04:52 PM
Surr: 2-Fluorobiphenyl	60.3	0	48-120		%REC	1	12/18/18 04:52 PM
Surr: 4-Terphenyl-d14	59.7	0	51-135		%REC	1	12/18/18 04:52 PM
8260 WATER VOLATILES BY GC/M	IS	SW8	260C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 10:02 PM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 10:02 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	12/14/18 10:02 PM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 10:02 PM
Toluene	< 0.000600	0.000600	0.00200		mg/L	1	12/14/18 10:02 PM
Surr: 1,2-Dichloroethane-d4	85.5	0	72-119		%REC	1	12/14/18 10:02 PM
Surr: 4-Bromofluorobenzene	95.7	0	76-119		%REC	1	12/14/18 10:02 PM
Surr: Dibromofluoromethane	95.7	0	85-115		%REC	1	12/14/18 10:02 PM
Surr: Toluene-d8	93.1	0	81-120		%REC	1	12/14/18 10:02 PM

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- Analyte detected between MDL and RL J
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

- Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
 - Reporting Limit
 - Parameter not NELAC certified

CLIENT:

GHD

Project: Hobbs Tank

Project No:

Lab Order:

078863 1812145 Date: 21-Dec-18

Client Sample ID: MW-5D

Lab ID: 1812145-05

Collection Date: 12/12/18 09:30 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WA	TER	M80	015D				Analyst: BTJ
TPH-DRO C10-C28	0.148	0.0756	0.0946		mg/L	1	12/19/18 11:14 AM
Surr: Isopropylbenzene	80.6	0	47-142		%REC	10	12/19/18 01:48 PM
Surr: Octacosane	86.4	0	51-124		%REC	10	12/19/18 01:48 PM
TPH PURGEABLE BY GC - WATE	ER .	M80)15V				Analyst: BTJ
Gasoline Range Organics	<0.0600	0.0600	0.100		mg/L	1	12/18/18 07:26 PM
Surr: Tetrachlorethene	75.9	0	74-138		%REC	1	12/18/18 07:26 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	<0.0000237	0.0000237	0.0000474	N	mg/L	1	12/18/18 05:21 PM
2-Methylnaphthalene	<0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 05:21 PM
3,4-Benzofluoranthene	< 0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 05:21 PM
Anthracene	< 0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 05:21 PM
Benzo[a]pyrene	< 0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 05:21 PM
Benzo[k]fluoranthene	< 0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 05:21 PM
Fluoranthene	< 0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 05:21 PM
Fluorene	< 0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 05:21 PM
Naphthalene	0.0000294	0.0000237	0.0000474	J	mg/L	1	12/18/18 05:21 PM
Phenanthrene	< 0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 05:21 PM
Pyrene	<0.0000237	0.0000237	0.0000474		mg/L	1	12/18/18 05:21 PM
Surr: 2-Fluorobiphenyl	64.9	0	48-120		%REC	1	12/18/18 05:21 PM
Surr: 4-Terphenyl-d14	61.9	0	51-135		%REC	1	12/18/18 05:21 PM
8260 WATER VOLATILES BY GC	/MS	SW8	260C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 10:27 PM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 10:27 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	12/14/18 10:27 PM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 10:27 PM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	12/14/18 10:27 PM
Surr: 1,2-Dichloroethane-d4	84.0	0	72-119		%REC	1	12/14/18 10:27 PM
Surr: 4-Bromofluorobenzene	94.6	0	76-119		%REC	1	12/14/18 10:27 PM
Surr: Dibromofluoromethane	93.1	0	85-115		%REC	1	12/14/18 10:27 PM
Surr: Toluene-d8	93.3	0	81-120		%REC	1	12/14/18 10:27 PM

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- Analyte detected between MDL and RL J
- Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

- Sample Result or QC discussed in the Case Narrative
- TPH pattern not Gas or Diesel Range Pattern E
- MDL Method Detection Limit
- Reporting Limit
 - Parameter not NELAC certified

CLIENT:

GHD

Project:

Hobbs Tank

Project No: Lab Order: 078863 1812145 Client Sample ID: HTRW-1

Lab ID: 1812145-06

Date: 21-Dec-18

Collection Date: 12/12/18 10:00 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - WA		M80	015D				Analyst: BTJ
TPH-DRO C10-C28	0.240	0.0759	0.0949		mg/L	1	12/19/18 11:23 AM
Surr: Isopropylbenzene	80.7	0	47-142		%REC	10	12/19/18 01:57 PM
Surr: Octacosane	90.0	0	51-124		%REC	10	12/19/18 01:57 PM
TPH PURGEABLE BY GC - WATE		M8(015V				Analyst: BTJ
Gasoline Range Organics	1.15	0.0600	0.100		mg/L	1	12/18/18 07:50 PM
Surr: Tetrachlorethene	87.2	0	74-138		%REC	1	12/18/18 07:50 PM
PAHS: GC/MS		SW82	70D-LL				Analyst: LG
1-Methylnaphthalene	< 0.0000236	0.0000236	0.0000472	N	mg/L	1	12/18/18 05:50 PM
2-Methylnaphthalene	< 0.0000236	0.0000236	0.0000472		mg/L	1	12/18/18 05:50 PM
3,4-Benzofluoranthene	< 0.0000236	0.0000236	0.0000472		mg/L	1	12/18/18 05:50 PM
Anthracene	< 0.0000236	0.0000236	0.0000472		mg/L	1	12/18/18 05:50 PM
Benzo[a]pyrene	< 0.0000236	0.0000236	0.0000472		mg/L	1	12/18/18 05:50 PM
Benzo[k]fluoranthene	< 0.0000236	0.0000236	0.0000472		mg/L	1	12/18/18 05:50 PM
Fluoranthene	< 0.0000236	0.0000236	0.0000472		mg/L	1	12/18/18 05:50 PM
Fluorene	< 0.0000236	0.0000236	0.0000472		mg/L	1	12/18/18 05:50 PM
Naphthalene	< 0.0000236	0.0000236	0.0000472		mg/L	1	12/18/18 05:50 PM
Phenanthrene	< 0.0000236	0.0000236	0.0000472		mg/L	1	12/18/18 05:50 PM
Pyrene	< 0.0000236	0.0000236	0.0000472		mg/L	1	12/18/18 05:50 PM
Surr: 2-Fluorobiphenyl	56.2	0	48-120		%REC	1	12/18/18 05:50 PM
Surr: 4-Terphenyl-d14	59.4	0	51-135		%REC	1	12/18/18 05:50 PM
8260 WATER VOLATILES BY GC/	/MS	SW8	260C				Analyst: DEW
Benzene	0.377	0.00300	0.0100		mg/L	10	12/17/18 11:24 AM
Ethylbenzene	0.00107	0.000300	0.00100		mg/L	1	12/14/18 10:51 PM
m,p-Xylene	0.00892	0.000600	0.00200		mg/L	1	12/14/18 10:51 PM
o-Xylene	0.0118	0.000300	0.00100		mg/L	1	12/14/18 10:51 PM
Toluene	0.0205	0.000600	0.00200		mg/L	1	12/14/18 10:51 PM
Surr: 1,2-Dichloroethane-d4	86.7	0	72-119		%REC	10	12/17/18 11:24 AM
Surr: 1,2-Dichloroethane-d4	86.2	0	72-119		%REC	1	12/14/18 10:51 PM
Surr: 4-Bromofluorobenzene	98.7	0	76-119		%REC	10	12/17/18 11:24 AM
Surr: 4-Bromofluorobenzene	97.1	0	76-119		%REC	1	12/14/18 10:51 PM
Surr: Dibromofluoromethane	94.9	0	85-115		%REC	10	12/17/18 11:24 AM
Surr: Dibromofluoromethane	94.8	0	85-115		%REC	1	12/14/18 10:51 PM
Surr: Toluene-d8	94.4	0	81-120		%REC	1	12/14/18 10:51 PM
Surr: Toluene-d8	94.2	0	81-120		%REC	10	12/17/18 11:24 AM

- Value exceeds TCLP Maximum Concentration Level
- Dilution Factor DF
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

- Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
 - Reporting Limit
 - Parameter not NELAC certified

CLIENT:

GHD

Project:

Hobbs Tank

Project No: Lab Order: 078863 1812145 Date: 21-Dec-18

Client Sample ID: Trip

Lab ID: 1812145-07

Collection Date: 12/12/18

Matrix: TRIP BLANK

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH PURGEABLE BY GC - WATER		M80		Analyst: BTJ			
Gasoline Range Organics	< 0.0600	0.0600	0.100		mg/L	1	12/18/18 01:23 PM
Surr: Tetrachlorethene	109	0	74-138		%REC	1	12/18/18 01:23 PM
8260 WATER VOLATILES BY GC/MS		SW82	60C				Analyst: DEW
Benzene	<0.000300	0.000300	0.00100		mg/L	1	12/17/18 11:00 AM
Ethylbenzene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 11:16 PM
m,p-Xylene	<0.000600	0.000600	0.00200		mg/L	1	12/14/18 11:16 PM
o-Xylene	<0.000300	0.000300	0.00100		mg/L	1	12/14/18 11:16 PM
Toluene	<0.000600	0.000600	0.00200		mg/L	1	12/14/18 11:16 PM
Surr: 1,2-Dichloroethane-d4	85.6	0	72-119		%REC	1	12/17/18 11:00 AM
Surr: 1,2-Dichloroethane-d4	85.1	0	72-119		%REC	1	12/14/18 11:16 PM
Surr: 4-Bromofluorobenzene	97.9	0	76-119		%REC	1	12/17/18 11:00 AM
Surr: 4-Bromofluorobenzene	96.2	0	76-119		%REC	1	12/14/18 11:16 PM
Surr: Dibromofluoromethane	93.9	0	85-115		%REC	1	12/17/18 11:00 AM
Surr: Dibromofluoromethane	92.5	0	85-115		%REC	1	12/14/18 11:16 PM
Surr: Toluene-d8	93.2	0	81-120		%REC	1	12/17/18 11:00 AM
Surr: Toluene-d8	92.4	0	81-120		%REC	1	12/14/18 11:16 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

Date: 21-Dec-18

CLIENT:

GHD

Work Order: 1812145 ANALYTICAL QC SUMMARY REPORT

Project:

Hobbs Tank

GC15 181219A RunID:

Project: Hobb	os Tank	RunH	D: GC15_181219A
The QC data in batch 8868	36 applies to the following samples: 181	2145-01C, 1812145-02C, 1812145-03C	, 1812145-04C, 1812145-05C, 1812145-06C
Sample ID MB-88686	Batch ID: 88686	TestNo: M8015D	Units: mg/L
SampType: MBLK	Run ID: GC15_181219A	Analysis Date: 12/19/2018 9:2	1:53 AM Prep Date: 12/18/2018
Analyte	Result RL	SPK value Ref Val %REC	LowLimit HighLimit %RPD RPDLimit Qual
TPH-DRO C10-C28	<0.0800 0.100		
Sample ID LCS-88686	Batch ID: 88686	TestNo: M8015D	Units: mg/L
SampType: LCS	Run ID: GC15_181219A	Analysis Date: 12/19/2018 9:30	0:56 AM Prep Date: 12/18/2018
Analyte	Result RL	SPK value Ref Val %REC	LowLimit HighLimit %RPD RPDLimit Qual
TPH-DRO C10-C28	1.03 0.100	1.250 0 82.5	50 114
Sample ID LCSD-88686	Batch ID: 88686	TestNo: M8015D	Units: mg/L
SampType: LCSD	Run ID: GC15_181219A	Analysis Date: 12/19/2018 9:40	0:00 AM Prep Date: 12/18/2018
Analyte	Result RL	SPK value Ref Val %REC	LowLimit HighLimit %RPD RPDLimit Qual
TPH-DRO C10-C28	1.01 0.100	1.250 0 80.8	50 114 2.15 30
Sample ID MB-88686	Batch ID: 88686	TestNo: M8015D	Units: %REC
SampType: MBLK	Run ID: GC15_181219A	Analysis Date: 12/19/2018 11:	50:02 A Prep Date: 12/18/2018
Analyte	Result RL	SPK value Ref Val %REC	LowLimit HighLimit %RPD RPDLimit Qual
Surr: Isopropylbenzene	0.491	1.000 49.1	47 142
Surr: Octacosane	0.661	1.000 66.1	51 124
Sample ID LCS-88686	Batch ID: 88686	TestNo: M8015D	Units: %REC
SampType: LCS	Run ID: GC15_181219A	Analysis Date: 12/19/2018 12:	08:53 P Prep Date: 12/18/2018
Analyte	Result RL	SPK value Ref Val %REC	LowLimit HighLimit %RPD RPDLimit Qual
Surr: Isopropylbenzene	0.704	1.000 70.4	47 142
Surr: Octacosane	0.863	1.000 86.3	51 124
Sample ID LCSD-88686	Batch ID: 88686	TestNo: M8015D	Units: %REC
SampType: LCSD	Run ID: GC15_181219A	Analysis Date: 12/19/2018 12:	17:56 P Prep Date: 12/18/2018
Analyte	Result RL	SPK value Ref Val %REC	LowLimit HighLimit %RPD RPDLimit Qual
Surr: Isopropylbenzene	0.679	1.000 67.9	47 142 0 0
Surr: Octacosane	0.859	1.000 85.9	51 124 0 0

Qualifiers:

В Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits Spike Recovery outside control limits

Parameter not NELAC certified

Page 1 of 7

CLIENT:

GHD

Work Order: Project:

1812145 Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GC4_181218A

Project: Hobbs	s Tank				RunII): (GC4_1812	18A	
The QC data in batch 88641 06B, 1812145-07B	1 applies to the following	ng samples: 18°	12145-01B, 1812 ⁻	145-02B, 18	12145-03B,	1812145	-04B, 181214	l5-05B, 1	812145-
Sample ID LCS-88641	Batch ID: 886	41	TestNo	: M80	15V		Units:	mg/L	
SampType: LCS	Run ID: GC	4_181218A	Analysi	s Date: 12/1	8/2018 10:5	8:13 A	Prep Date:	12/18/	2018
Analyte	Resu	lt RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 🤋	%RPD R	PDLimit Qual
Gasoline Range Organics	2.31	0.100	2.500	0	92.3	67	136		
Surr: Tetrachlorethene	0.404	1	0.4000		101	74	138		
Sample ID LCSD-88641	Batch ID: 886	41	TestNo	: M80	15 V		Units:	mg/L	
SampType: LCSD	Run ID: GC	4_181218A	Analysi	s Date: 12/1	8/2018 11:2	2:26 A	Prep Date:	12/18/	2018
Analyte	Resu	t RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 🤋	%RPD R	PDLimit Qual
Gasoline Range Organics	2.58	0.100	2.500	0	103	67	136	11.2	30
Surr: Tetrachlorethene	0.396	3	0.4000		98.9	74	138	0	0
Sample ID MB-88641	Batch ID: 886	41	TestNo	: M80	15V		Units:	mg/L	
SampType: MBLK	Run ID: GC	4_18121 8A	Analysis	s Date: 12/1	8/2018 12:3	4:51 P	Prep Date:	12/18/	2018
Analyte	Resu	t RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Gasoline Range Organics	<0.060	0.100	0						
Surr: Tetrachlorethene	0.423	3	0.4000		106	74	138		
Sample ID 1812144-02BM	S Batch ID: 886	41	TestNo	M80	15V		Units:	mg/L	
SampType: MS	Run ID: GC	4_181218A	Analysis	s Date: 12/1	8/2018 2:35	:47 PM	Prep Date:	12/18/	2018
Analyte	Resu	t RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Gasoline Range Organics	2.54	0.100	2.500	0	102	67	136		
Surr: Tetrachlorethene	0.410)	0.4000		102	74	138		
Sample ID 1812144-02BM	SD Batch ID: 886	41	TestNo:	. M80	15V		Units:	mg/L	
SampType: MSD	Run ID: GC	4_181218A	Analysis	s Date: 12/1	8/2018 3:00	:06 PM	Prep Date:	12/18/	2018
Analyte	Resu	t RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Gasoline Range Organics	2.51	0.100	2.500	0	101	67	136	0.954	30
Surr: Tetrachlorethene	0.410)	0.4000		102	74	138	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits
 S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 2 of 7

CLIENT: GHD Work Order: 1812145 Project. Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

GCMS6 181218A RunID.

Project: Hol	bbs Tank					RunII); (GCMS6_18	81 2 18 <i>A</i>	\	
The QC data in batch 886	638 applies to the f	ollowing sa	mples: 18121	45-01C, 1812	145-02D, 18	12145-03D,	1812145	-04D, 181214	15-05D, 1	1812145	-06D
Sample ID LCS-88638	Batch ID:	88638		TestNo	: SW	8270D-LL		Units:	mg/L		
SampType: LCS	Run ID:	GCMS6	_181218A	Analys	is Date: 12/1	8/2018 9:29	MA 00:	Prep Date:	12/17/	2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit	Qual
1-Methylnaphthalene	(0.00233	0.0000500	0.00400	0	58.2	46	120			N
2-Methylnaphthalene	(0.00234	0.0000500	0.00400	0	58.4	46	120			
3,4-Benzofluoranthene	(0.00392	0.0000500	0.00400	0	98.1	45	124			
Anthracene	(0.00323	0.0000500	0.00400	0	80.7	54	120			
Benzo[a]pyrene	(0.00396	0.0000500	0.00400	0	99.0	53	120			
Benzo[k]fluoranthene	(0.00384	0.0000500	0.00400	0	95.9	45	124			
Fluoranthene	(0.00346	0.0000500	0.00400	0	86.5	54	120			
Fluorene	(0.00304	0.0000500	0.00400	0	76.1	50	120			
Naphthalene	(0.00227	0.0000500	0.00400	0	56.8	39	120			
Phenanthrene	(0.00291	0.0000500	0.00400	0	72.8	51	120			
Pyrene	(0.00331	0.0000500	0.00400	0	82.8	49	128			
Surr: 2-Fluorobiphenyl		4.64		8.000		58.0	48	120			
Surr: 4-Terphenyl-d14		5.43		8.000		67.9	51	135			
Sample ID LCSD-88638	Batch ID:	88638		TestNo	: SW	8270D-LL		Units:	mg/L		
SampType: LCSD	Run ID:	GCMS6	_181218A	Analys	is Date: 12/1	8/2018 9:58	3:00 AM	Prep Date:	12/17/	2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit	Qual
1-Methylnaphthalene	(0.00198	0.0000500	0.00400	0	49.4	46	120	16.3	20	N
2-Methylnaphthalene		0.00197	0.0000500	0.00400	0	49.2	46	120	17.2	20	
3,4-Benzofluoranthene	(0.00319	0.0000500	0.00400	0	79.8	45	124	20.6	20	R
Anthracene		0.00264	0.0000500	0.00400	0	66.0	54	120	20.1	20	
Benzo[a]pyrene	(0.00319	0.0000500	0.00400	0	79.7	53	120	21.5	20	R
Benzo[k]fluoranthene		0.00307	0.0000500	0.00400	0	76.7	45	124	22.3	20	R
Fluoranthene		0.00282	0.0000500	0.00400	0	70.4	54	120	20.4	20	
Fluorene	1	0.00259	0.0000500	0.00400	0	64.9	50	120	15.9	20	
Naphthalene	ı	0.00199	0.0000500	0.00400	0	49.9	39	120	13.1	20	
Phenanthrene	1	0.00238	0.0000500	0.00400	0	59.4	51	120	20.2	20	
Pyrene		0.00270	0.0000500	0.00400	0	67.5	49	128	20.4	20	
Surr: 2-Fluorobiphenyl		3.97		8.000		49.6	48	120	0	0	
Surr: 4-Terphenyl-d14		4.30		8.000		53.8	51	135	0	0	
Sample ID MB-88638	Batch ID:	88638		TestNo	: SW	8270D-LL		Units:	mg/L		
SampType: MBLK	Run ID:	GCMS6	_181218A	Analys	is Date: 12/ 1	8/2018 10:	58:00 A	Prep Date:	12/17/	2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit	Qual
1-Methylnaphthalene	<(0.0000250	0.0000500								N
2-Methylnaphthalene	<(0.0000250	0.0000500								
3,4-Benzofluoranthene	<(0.0000250	0.0000500								
Anthracene	<(0.0000250	0.0000500								
Qualifiers: B Ana	alyte detected in the	ssociated M	Iethod Blank	DF	Dilution Fact	or					
-	alyte detected betwee				Method Detec				ī	Page 3 o	of 7
	t Detected at the Met				PPD outside		tral limita		1	ugo J () I /

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL

RPD outside accepted control limits R

Spike Recovery outside control limits

N Parameter not NELAC certified

17

CLIENT: Work Order:

GHD 1812145

Project:

Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS6_181218A

Sample ID MB-88638	Batch ID: 88638	·	TestNo	: SW8	270D-LL		Units:	mg/L	
SampType: MBLK	Run ID: GCMS6	_181218A	Analys	is Date: 12/1	8/2018 10:	58:00 A	Prep Date	: 12/17/2018	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit (Qual
Benzo[a]pyrene	<0.0000250	0.0000500							
Benzo[k]fluoranthene	< 0.0000250	0.0000500							
Fluoranthene	<0.0000250	0.0000500							
Fluorene	<0.0000250	0.0000500							
Naphthalene	<0.0000250	0.0000500							
Phenanthrene	<0.0000250	0.0000500							
Pyrene	< 0.0000250	0.0000500							
Surr: 2-Fluorobiphenyl	3.59		8.000		44.8	48	120		S
Surr: 4-Terphenyl-d14	4.21		8.000		52.7	51	135		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 4 of 7

CLIENT:

GHD

Work Order: 1812145
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS5_181214A

The QC data in batch 88636 applies to the following samples: 1812145-01A, 1812145-02A, 1812145-03A, 1812145-04A, 1812145-05A, 1812145-06A, 1812145-07A

00A, 1812143-07A									
Sample ID LCS-88636	Batch ID:	88636		TestNo	: SV	V8260C		Units:	mg/L
SampType: LCS	Run ID:	GCMS5	_181214A	Analysi	s Date: 12	/14/2018 3:54	1:00 PM	Prep Date:	12/14/2018
Analyte		Result	·RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Benzene		0.0238	0.00100	0.0232	0	103	81	122	
Ethylbenzene		0.0235	0.00100	0.0232	0	101	80	120	
m,p-Xylene		0.0478	0.00200	0.0464	0	103	80	120	
o-Xylene		0.0238	0.00100	0.0232	0	103	80	120	
Toluene		0.0247	0.00200	0.0232	0	107	80	120	
Surr: 1,2-Dichloroethane-d4		184		200.0		91.8	72	119	
Surr: 4-Bromofluorobenzene		199		200.0		99.7	76	119	
Surr: Dibromofluoromethane		191		200.0		95.4	85	115	
Surr: Toluene-d8		192		200.0		95.9	81	120	
Comple ID MD 00000	Detek ID:	00000		Tanthia		1/00000		I India.	

Sample ID MB-88636	Batch ID:	88636		TestNo	: SW	8260C		Units:	mg/L
SampType: MBLK	Run ID:	GCMS5_	181214A	Analys	is Date: 12/1	4/2018 4:43	3:00 PM	Prep Date	e: 12/14/2018
Analyte	R	Result	RL	SPK value	Ref Val	%REC	LowLim	t HighLimit	%RPD RPDLimit Qua
Benzene	<0.	000300	0.00100						
Ethylbenzene	<0.	000300	0.00100						
m,p-Xylene	<0.	000600	0.00200						
o-Xylene	<0.	000300	0.00100						
Toluene	<0.	000600	0.00200						
Surr: 1,2-Dichloroethane-d4		178		200.0		89.1	72	119	
Surr: 4-Bromofluorobenzene		204		200.0		102	76	119	
Surr: Dibromofluoromethane		183		200.0		91.6	85	115	
Surr: Toluene-d8		197		200.0		98.3	81	120	

Sample ID 1812144-01AMS	Batch ID:	88636		TestNo	o: SV	V8260C		Units:	mg/L	
SampType: MS	Run ID:	GCMS5	_181214A	Analys	is Date: 12	/14/2018 5:33	:00 PM	Prep Date	12/14/2018	
Analyte	R	Result	RL	SPK value	Ref Val	%REC	LowLim	t HighLimit	%RPD RPDLimit Q	lual
Benzene	0.	.0281	0.00100	0.0232	0	121	81	122		
Ethylbenzene	0.	.0270	0.00100	0.0232	0	117	80	120		
m,p-Xylene	0.	.0546	0.00200	0.0464	0	118	80	120		
o-Xylene	0.	.0272	0.00100	0.0232	0	117	80	120		
Toluene	0.	.0287	0.00200	0.0232	0	124	80	120		S
Surr: 1,2-Dichloroethane-d4		176		200.0		87.9	72	119		
Surr: 4-Bromofluorobenzene		199		200.0		99.6	76	119		
Surr: Dibromofluoromethane		192		200.0		96.0	85	115		
Surr: Toluene-d8		193		200.0		96.4	81	120		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 5 of 7

CLIENT:
Work Order:

GHD 1812145

Project:

Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: (

GCMS5_181214A

Sample ID 1812144-01AMSD	Batch ID:	88636		TestNo	o: SW	/8260C		Units:	mg/l	L
SampType: MSD	Run ID:	GCMS	5_181214A	Analys	is Date: 12/	14/2018 5:57	':00 PM	Prep Date	: 12/1	4/2018
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD	RPDLimit Qual
Benzene	C	0.0255	0.00100	0.0232	0	110	81	120	9.41	20
Ethylbenzene	C	0.0244	0.00100	0.0232	0	105	80	120	10.3	20
m,p-Xylene	C	0.0490	0.00200	0.0464	0	106	80	120	11.0	20
o-Xylene	C	0.0250	0.00100	0.0232	0	108	80	120	8.40	20
Toluene	C	0.0259	0.00200	0.0232	0	112	80	120	10.4	20
Surr: 1,2-Dichloroethane-d4		176		200.0		88.2	72	119	0	0
Surr: 4-Bromofluorobenzene		201		200.0		100	76	119	0	0
Surr: Dibromofluoromethane		192		200.0		96.1	85	115	0	0
Surr: Toluene-d8		192		200.0		95.8	81	120	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 6 of 7

CLIENT: GHD Work Order: 1812145

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs Tank RunID: GCMS5_181217A

Sample ID LCS-88655	Batch ID:	88655		TestNo:	SW8	260C		Units:	mg/L
SampType: LCS	Run ID:	GCMS5	_181217A	Analysis	Date: 12/1	7/2018 10:1	11:00 A	Prep Date:	12/17/2018
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	GRPD RPDLimit Qua
Benzene		0.0235	0.00100	0.0232	0	101	81	122	
Surr: 1,2-Dichloroethane-d4		166		200.0		83.2	72	119	
Surr: 4-Bromofluorobenzene		193		200.0		96.4	76	119	
Surr: Dibromofluoromethane		190		200.0		94.9	85	115	
Surr: Toluene-d8		187		200.0		93.4	81	120	
Comple ID MR 99655									
Sample ID MB-88655	Batch ID:	88655		TestNo:	SW8	3260C		Units:	mg/L
Sample ID MB-88655 SampType: MBLK	Batch ID: Run ID:		_181217A		SW 8 Date: 12/1		35:00 A	Units: Prep Date:	mg/L 12/17/2018
SampType: MBLK			_ 181217A RL					Prep Date:	
SampType: MBLK	Run ID:	GCMS5		Analysis	Date: 12/1	7/ 2018 10:3		Prep Date:	12/17/2018
SampType: MBLK Analyte	Run ID:	GCMS5	RL	Analysis	Date: 12/1	7/ 2018 10:3		Prep Date:	12/17/2018
SampType: MBLK Analyte Benzene	Run ID:	GCMS5 Result 0.000300	RL	Analysis SPK value	Date: 12/1	7/2018 10:3 %REC	LowLimi	Prep Date: t HighLimit %	12/17/2018
SampType: MBLK Analyte Benzene Surr: 1,2-Dichloroethane-d4	Run ID:	GCMS5 Result 0.000300 171	RL	Analysis SPK value 200.0	Date: 12/1	7/2018 10:3 %REC 85.6	LowLimi	Prep Date: t HighLimit %	12/17/2018
SampType: MBLK Analyte Benzene	Run ID:	GCMS5 Result 0.000300	RL	Analysis SPK value	Date: 12/1	7/2018 10:3 %REC	LowLimi	Prep Date: t HighLimit %	12/1

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 7 of 7