

August 5, 2020

Vertex Project #: 20E-00141-013

Spill Closure Report:	Todd 13 Battery
	Unit P, Section 17, Township 23 South, Range 32 East
	County: Lea
	API: N/A
	Tracking Number: NRM2003154559
Prepared For:	Devon Energy Production Company
	6488 Seven Rivers Highway

Artesia, New Mexico 88210

New Mexico Oil Conservation Division – District 1 – Hobbs 1625 North French Drive Hobbs, New Mexico 88240

Devon Energy Production Company (Devon) retained Vertex Resource Services Inc. (Vertex) to conduct a spill assessment and remediation following a produced water release on November 5, 2019, at Todd 13 Battery (hereafter referred to as "Todd"). Devon provided notification of the spill to New Mexico Oil Conservation Division (NM OCD) District 1 and the Bureau of Land Management (BLM), who owns the property, on December 6, 2019, via submission of an initial C-141 Release Notification (Attachment 1). The NM OCD tracking number assigned to this incident is NRM2003154559.

This letter provides a description of the spill assessment and remediation activities and demonstrates that closure criteria established in 19.15.29.12 *New Mexico Administrative Code* (NMAC; New Mexico Oil Conservation Division, 2018) have been met and all applicable regulations are being followed. This document is intended to serve as a final report to obtain approval from NM OCD for closure of this release.

Incident Description

On November 5, 2019, a release occurred at Devon's Todd site when a water line developed a leak. This incident resulted in the release of approximately six barrels (bbls) of produced water onto the wellpad. No free liquids were recovered. The spill was contained on-lease and no produced water was released into undisturbed areas or waterways.

Site Characterization

The release at Todd occurred on federally owned land, N 32.297371, W 103.689202, approximately 30 miles east of Carlsbad, New Mexico. The legal description for the site is Unit P, Section 17, Township 23 South, Range 32 East, Lea County, New Mexico. This location is within the Permian Basin in southeast New Mexico and has historically been used for oil and gas exploration and production, and rangeland. An aerial photograph and site schematic are included in Attachment 2.

Todd is typical of oil and gas exploration and production sites in the western portion of the Permian Basin, and is currently used for oil and gas production, and storage. The following sections specifically describe the area where Todd is located.

vertex.ca

The surrounding landscape is associated with sandy dunes and plains typical of elevations between 3,000 and 4,400 feet above sea level. The climate is semi-arid, with average annual precipitation ranging between 10 and 12 inches. Historically, the plant community has been dominated by grasses, with scattered shinnery oak and sand sage; perennial and annual forb abundance are dependent on precipitation. The dominant grass species are black grama, dropseeds and bluestems. Litter and, to a lesser extent, bare ground are a significant proportion of ground cover (United States Department of Agriculture, Natural Resources Conservation Service, 2020).

The Geological Map of New Mexico indicates the surface geology at Todd is comprised of Qep – eolian and piedmont deposits, that include eolian sands interlaid with piedmont-slope deposits (New Mexico Bureau of Geology and Mineral Resources, 2020). The Natural Resources Conservation Service *Web Soil Survey* characterizes the soil at the site as on the cusp of Pyote and maljamar fine sands and Kermit-Palomas fine sands. These types of soils typically consist of deep layers of fine sand and sandy clay loam over cemented material. It tends to be well-drained with very low runoff and moderate available moisture levels in the soil profile (United States Department of Agriculture, Natural Resources Conservation Service, 2020). There is low potential for karst geology to be present near Todd, though some erosional karst is possible (United States Department of the Interior, United States Geological Survey, 2020a).

There is no surface water located on-site. The nearest significant watercourse, as defined in Subsection P of 19.15.17.7 NMAC, is an intermittent stream located approximately 12 miles southwest of Todd (United States Department of the Interior, United States Geological Survey, 2020b). A freshwater stock pond is located approximately 5.5 miles west-northwest of the release site (United States Fish and Wildlife Service, 2020). At Todd, there are no continuously flowing watercourses, lakebeds, sinkholes, playa lakes, or other critical water or community features as outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

The nearest groundwater well to the site is a New Mexico Office of the State Engineer-identified well, located approximately one mile south of Todd, with a depth to groundwater of 713 feet below ground surface (bgs; New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System, 2020). Documentation pertaining to site characterization and depth to groundwater determination is included in Attachment 3.

Closure Criteria Determination

Using site characterization information, a closure criteria determination worksheet (Attachment 3) was completed to determine if the release was subject to any of the special case scenarios outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

Based on data included in the closure criteria determination worksheet, the release at Todd is not subject to the requirements of Paragraph (4) of Subsection C of 19.15.29.12 NMAC. As the nearest groundwater well is farther than a $\frac{1}{2}$ mile from the release site, the depth to groundwater at Todd cannot be accurately determined and the closure criteria for the site are determined to be associated with the following constituent concentration limits.

vertex.ca

Table 1. Closure Criteria for Soils Impacted by a Release		
Depth to Groundwater	Constituent	Limit
	Chloride 600 mg/kg	600 mg/kg
< 50 feet	TPH ¹	100 mg/kg
	(GRO + DRO + MRO)	100 mg/kg
	BTEX ²	50 mg/kg
	Benzene	10 mg/kg

¹Total petroleum hydrocarbons (TPH) = gasoline range organics (GRO) + diesel range organics (DRO) + motor oil range organics (MRO) ²Benzene, toluene, ethylbenzene and xylenes (BTEX)

Remedial Actions

An initial spill inspection, completed on January 30, 2020, identified and mapped the boundaries of the release using field screening methods, including a photoionization detector (PID) to determine the presence of volatile organics, the Petroflag system to estimate the level of hydrocarbons and an electroconductivity (EC) meter to approximate chloride levels in the soil. The release area was determined to be approximately 42 feet long and 20 feet wide; the total affected area was determined to be 476 square feet, including the heater treater and existing infrastructure. The Daily Field Report associated with the initial spill inspection and release characterization is included in Attachment 4.

On February 18, 2020, Vertex provided 48-hour notification of confirmation sampling to NM OCD, as required by Subparagraph (a) of Paragraph (1) of Subsection D 19.15.29.12 NMAC (Attachment 5). Remediation via excavation of contaminated materials was conducted between February 21 and 24, 2020, to a depth of approximately 1 foot bgs. Following completion of remediation activities on February 24, 2020, one five-point confirmatory sample was collected from the base of the excavation. The composite sample was placed into a laboratory-provided container, preserved on ice and submitted to a National Environmental Laboratory Accreditation Program (NELAP)-approved laboratory for chemical analysis.

Laboratory analyses included Method 300.0 for chlorides, Method 8021B for volatile organics, including BTEX, and EPA Method 8015 for TPH, including MRO, DRO and GRO. Confirmatory sample analytical data are summarized in Attachment 6. Laboratory data reports and chain of custody forms are included in Attachment 7.

A GeoExplorer 7000 Series Trimble global positioning system (GPS) unit, or equivalent, was used to map the approximate center of the five-point composite sample. The confirmatory sample location is presented on Figure 2 (Attachment 2).

The laboratory results for the initial confirmatory sample failed to meet NM OCD closure criteria as shown in Table 1. Vertex returned to Todd to conduct additional remediation and re-collect the confirmatory sample. At that time, an additional two confirmatory samples were collected from the base and sidewall of the excavation to meet the requirements of the alternate sampling method outlined in Subparagraph (c) of Paragraph (1) of Subsection D 19.15.29.12 NMAC, which states that each composite sample can be representative of no more than 200 square feet. The samples were placed into laboratory-provided containers, preserved on ice and submitted to a NELAP laboratory for analysis.

vertex.ca

The additional confirmatory sample locations were marked using GPS and are shown on Figure 2 (Attachment 2). The final laboratory results for the confirmatory samples are presented in Table 2 (Attachment 6). Laboratory data reports and chain of custody forms are included in Attachment 7.

Closure Request

Vertex recommends no additional remediation action necessary to address the release at Todd. Laboratory analyses of the final confirmatory samples showed constituent of concern concentration levels below NM OCD closure criteria as shown in Table 1. There are no anticipated risks to human, ecological or hydrological receptors associated with the release site.

Vertex requests that this incident (NRM2003154559) be closed as all closure requirements set forth in Subsection E of 19.15.29.12 NMAC have been met. Devon certifies that all information in this report and the attachments is correct, and that they have complied with all applicable closure requirements and conditions specified in Division rules and directives to meet NM OCD requirements to obtain closure on the November 5, 2019, release at Todd.

Should you have any questions or concerns, please do not hesitate to contact the undersigned at 505.506.0040 or ngordon@vertex.ca.

Sincerely,

atalie Jordon

Natalie Gordon PROJECT MANAGER

Attachments

- Attachment 1. NM OCD C-141 Report
- Attachment 2. Figures
- Attachment 3. Closure Criteria for Soils Impacted by a Release Research Determination Documentation
- Attachment 4. Daily Field Report(s) with Photographs
- Attachment 5. Required 48-hr Notification of Confirmation Sampling to Regulatory Agencies
- Attachment 6. Laboratory Data Tables
- Attachment 7. Laboratory Data Reports/Chain of Custody Forms

References

- New Mexico Bureau of Geology and Mineral Resources. (2020). *Interactive Geologic Map.* Retrieved from http://geoinfo.nmt.edu.
- New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System. (2020). *Water Column/Average* Depth to Water Report. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html.
- New Mexico Oil Conservation Division. (2018). *New Mexico Administrative Code Natural Resources and Wildlife Oil and Gas Releases*. Santa Fe, New Mexico.
- United States Department of Agriculture, Natural Resources Conservation Service. (2020). *Web Soil Survey*. Retrieved from https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx.
- United States Department of the Interior, United States Geological Survey. (2020a). *Caves and Karst in the U.S. National Park Service*. Retrieved from https://www.arcgis.com/home/webmap/viewer.html?webmap=14675403c3794 8129acb758138f2dd1e
- United States Department of the Interior, United States Geological Survey. (2020b). *The National Map: National Hydrography Dataset*. Retrieved from https://www.arcgis.com/home/webmap/viewer.html?url=https%3A%2F %2Fbasemap.nationalmap.gov%2Farcgis%2Frest%2Fservices%2FUSGSHydroCached%2FMapServer&source=sd.
- United States Fish and Wildlife Service. (2020). *National Wetlands Inventory*. Retrieved from https://www.fws.gov /wetlands/data/Mapper.html.

Limitations

This report has been prepared for the sole benefit of Devon Energy Production Company (Devon). This document may not be used by any other person or entity, with the exception of the New Mexico Oil Conservation Division, without the express written consent of Vertex Resource Services Inc. (Vertex) and Devon. Any use of this report by a third party, or any reliance on decisions made based on it, or damages suffered as a result of the use of this report are the sole responsibility of the user.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgement of Vertex based on the data collected during the assessment. Due to the nature of the assessment and the data available, Vertex cannot warrant against undiscovered environmental liabilities. Conclusions and recommendations presented in this report should not be considered legal advice.

ATTACHMENT 1

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 8 of 107

Incident ID	NRM2003154559
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

X95D8-191206-C-1410

Responsible Party Devon Energy Production Company	OGRID ₆₁₃₇
Contact Name Amanda T. Davis	Contact Telephone 575-748-0176
Contact email amanda.davis@dvn.com	Incident # (assigned by OCD)
Contact mailing address 6488 Seven Rivers HWY	

Location of Release Source

Latitude 32.297371

Longitude -103.689202

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Todd 13 Battery	Site Type Oil
Date Release Discovered 11/5/2019	API# (if applicable)

Unit Letter	Section	Township	Range	County
Р	17	23S	32E	Lea

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Volume Released (bbls)	Volume Recovered (bbls)
Volume Released (bbls) 5.8	Volume Recovered (bbls) 0
Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Volume Released (bbls)	Volume Recovered (bbls)
Volume Released (Mcf)	Volume Recovered (Mcf)
Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
er line leak causing fluid release. Spill calcu	lations 3'x54'x12".
	Volume Released (bbls) 5.8 Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l? Volume Released (bbls) Volume Released (bbls) Volume Released (Mcf) Volume/Weight Released (provide units)

()il Con	servatio	n Div	vision

Incident ID	NRM2003154559
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	
19.15.29.7(A) NMAC?	
🗌 Yes 🔳 No	
If YES, was immediate ne	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Spill was not in containment.

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Kendra DeHoyos
Signature: Kendra DeHoyos

_{email:} kendra.dehoyos@dvn.com

OCD	Only

Received by: Ramona Marcus

Date: 1/31/2020

Title: EHS Associate

Telephone: 575-748-3371

Date: 11/18/2019

Received by OCD: 8/6/2020 8:43:41 AM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 10 of 10
Incident ID	NRM2003154559
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u><50</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗴 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗶 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗶 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗶 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗶 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗶 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗶 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗶 No
Are the lateral extents of the release within a 100-year floodplain?	Yes X No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗶 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- X Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- X Field data
- X Data table of soil contaminant concentration data
- X Depth to water determination
- X Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- NA Boring or excavation logs
- X Photographs including date and GIS information
- X Topographic/Aerial maps
- X Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: Form C-141 Page 4	8/6/2020 8:43:41 AM State of New Mexi Oil Conservation Div		Incident ID District RP	Page 11 of 10 NRM2003154559
			Facility ID Application ID	
regulations all ope public health or th failed to adequatel		ease notifications and perform co by the OCD does not relieve the se a threat to groundwater, surfa	prrective actions for rele operator of liability sh ce water, human health iance with any other fee	eases which may endanger ould their operations have or the environment. In
Signature:	Tom Bynum	Date: <u>8/5/2020</u>		
email: <u>tom.by</u> r	U	Telephone: _575-748-0	0176	
OCD Only Received by:	Cristina Eads	Date: 08/0	6/2020	
	Cristina Eads	Date:08/0	6/2020	

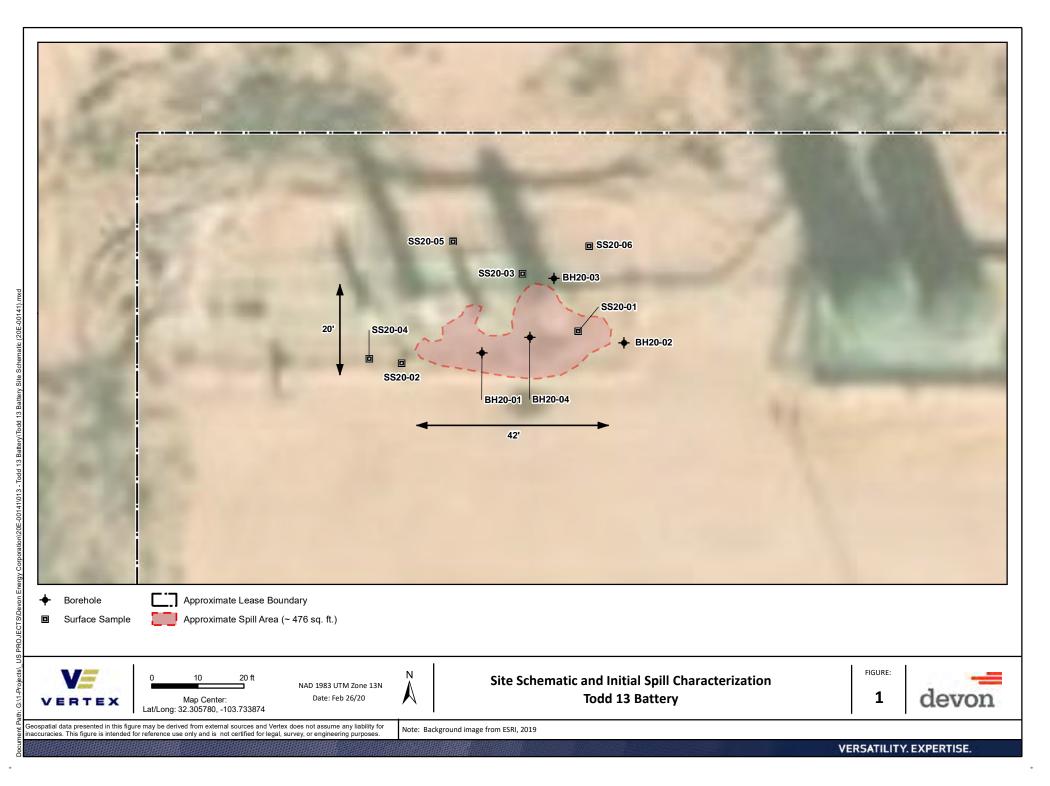
Page 6

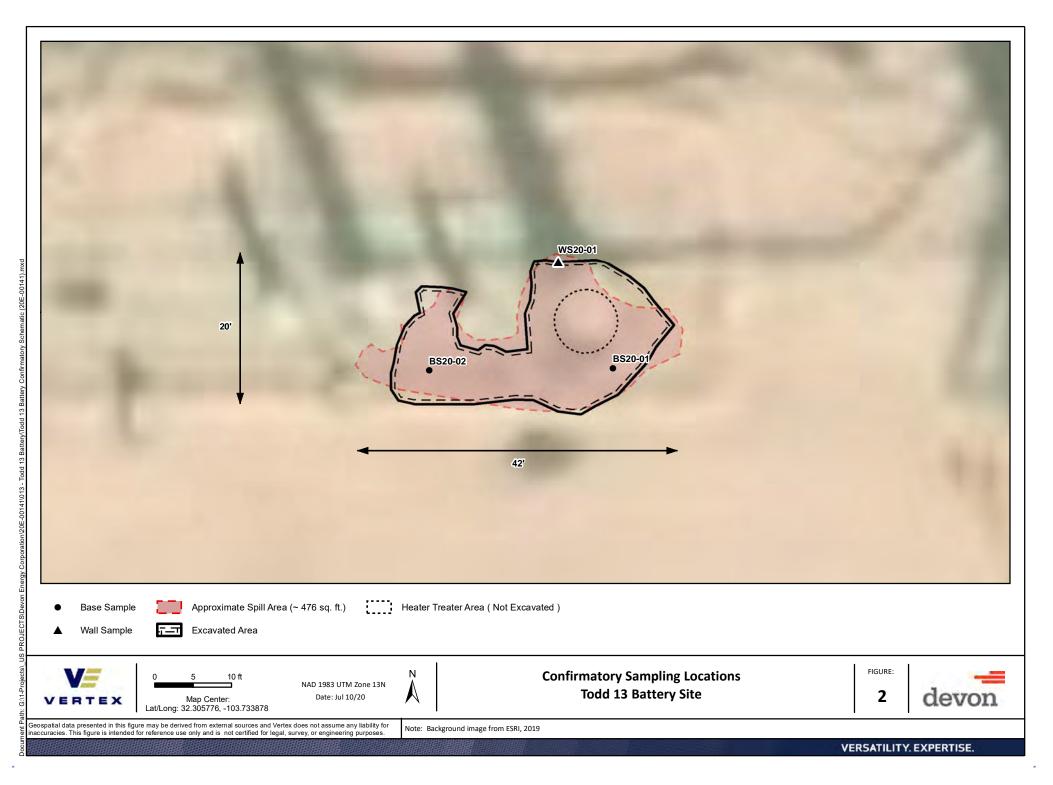
Oil Conservation Division

	Page 12 of 10
Incident ID	NRM2003154559
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.


Closure Report Attachment Checklist: Each of the following items must be included in the closure report. X A scaled site and sampling diagram as described in 19.15.29.11 NMAC X Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) X Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: Tom Bynum Title: EHS Consultant Tom Bynum Date: 8/5/2020 Signature: email: tom.bynum@dvn.com Telephone: 575-748-0176 **OCD Only** Received by: Cristina Eads 08/06/2020 Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.


Closure Approved by	:D	Ε	Ν	I	E	D	Date: 10/15/2020	
Printed Name: C	ristina	a Ea	ads				Title: Environmental Specialist	_

.

•

ATTACHMENT 2

Client Name: Devon Energy Production Company Site Name: Todd 13 Battery NM OCD Tracking #: NRM2003154559 Project #: 20E-00141-013 Lab Report: 2002001

	Tab	ole 2. Release Charac	terization S	Sampling Fi	eld Screen	ing and Lak	oratory Da	ata - Depth	to Ground	water < 50	feet		
	Sample Descrip	tion	F	ield Screenir	ng			Petrol	eum Hydroc	arbons			Inorganic
				g)	5	Vol	atile			Extractable			Inorganic
Sample ID	Depth (ft)	Sample Date	Volatile Organic Compounds (PID)	Extractable Organic Compounds (Petro Flag)	Inorganics (Electrical Conductivity)	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride
			(ppm)	(ppm)	(+/-)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SS20-01	0	January 30, 2020	0.6	>2,500	415	<0.024	<0.213	<4.7	2,900	4,200	2,900	4,200	720
SS20-02	0	January 30, 2020	0.6	>2,500	218	-	-	-	-	-	-	-	-
SS20-03	0	January 30, 2020	0.5	>2,500	120	-	-	-	-	-	-	-	-
SS20-04	0	January 30, 2020	0.1	617	135	-	-	-	-	-	-	-	-
SS20-05	0	January 30, 2020	0.0	55	103	-	-	-	-	-	-	-	-
SS20-06	0	January 30, 2020	0.2	7	1,698	-	-	-	-	-	-	-	-
BH20-01	0	January 30, 2020	12.5	1,148	90	-	-	-	-	-	-	-	-
BH20-01	1	January 30, 2020	20.1	-	105	-	-	-	-	-	-	-	-
BH20-01	2	January 30, 2020	3.1	-	202	-	-	-	-	-	-	-	-
BH20-01	3	January 30, 2020	1.1	62	75	-	-	-	-	-	-	-	-
BH20-01	4	January 30, 2020	1.4	-	85	-	-	-	-	-	-	-	-
BH20-02	0	January 30, 2020	0.5	1,115	130	-	-	-	-	-	-	-	-
BH20-02	1	January 30, 2020	0.7	1,028	183	-	-	-	-	-	-	-	-
BH20-02	2	January 30, 2020	0.8	-	65	-	-	-	-	-	-	-	-
BH20-02	3	January 30, 2020	0.8	-	153	-	-	-	-	-	-	-	-
BH20-02	4	January 30, 2020	0.4	-	515	-	-	-	-	-	-	-	-
BH20-02	5	January 30, 2020	0.4	-	585	-	-	-	-	-	-	-	-
BH20-03	0	January 30, 2020	1.2	1,057	2,680	-	-	-	-	-	-	-	-
BH20-03	1	January 30, 2020	0.9	-	2,035	-	-	-	-	-	-	-	-
BH20-03	2	January 30, 2020	0.7	926	318	-	-	-	-	-	-	-	-
BH20-03	3	January 30, 2020	0.6	786	340	-	-	-	-	-	-	-	-
BH20-03	4	January 30, 2020	0.6	977	358	-	-	-	-	-	-	-	-
BH20-03	5	January 30, 2020	0.2	562	553	<0.024	<0.215	<4.8	170	240	170	410	590
BH20-04	0	January 30, 2020	0.5	-	90	-	-	-	-	-	-	-	-
BH20-04	1	January 30, 2020	0.5	-	120	-	-	-	-	-	-	-	-
BH20-04	2	January 30, 2020	0.5	-	75	-	-	-	-	-	-	-	-

"-" indicates not analyzed/assessed

.

Bold and shaded indicates exceedance outside of applied action level

.

Client Name: Devon Energy Production Company Site Name: Todd 13 Battery NM OCD Tracking #: NRM2003154559 Project #: 20E-00141-013 Lab Report: 2002A66, 2006A28

	Table 3. Confirma		ory Sampling	Laboratory R	esults -Depth	to Groundwa	ter < 50 feet			
	Sample Description				Petro	oleum Hydroca	rbons			Inorganic
			Vol	atile			Extractable			morganic
Sample ID	Depth (ft)	Sample Date	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BS 20-01	0.5	February 24, 2020	<0.023	<0.208	<4.6	<9.0	<45	<13.6	<58.6	2,100
BS 20-01	1	June 17, 2020	<0.025	<0.224	<5.0	<9.2	<46	<14.2	<60.2	<60
BS 20-02	1	June 17, 2020	<0.025	<0.221	<4.9	<9.6	<48	<14.5	<62.5	<60
WS 20-01	0-1	June 17, 2020	<0.025	<0.221	<4.9	<9.2	<46	<14.1	<60.1	<60

"-" - Not applicable/Not assessed

Bold and grey shaded indicates exceedance outside of NM OCD Closure Criteria

Bold and green shaded indicates a re-sample of areas previously exceeding closure criteria

.

.

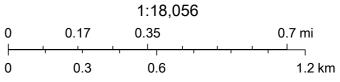
•

ATTACHMENT 3

•

•

Closure C	Criteria Worksheet		
Site Nam	e: Todd 13 Battery		
Spill Coo		X: 32.297371	Y: -103.689202
Site Spec	ific Conditions	Value	Unit
1	Depth to Groundwater	713	feet
2	Within 300 feet of any continuously flowing watercourse or any other significant watercourse	95,383	feet
3	Within 200 feet of any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark)	29,706	feet
4	Within 300 feet from an occupied residence, school, hospital, institution or church	27,424	feet
5	 i) Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 	5,200	feet
	ii) Within 1000 feet of any fresh water well or spring	5,200	feet
6	Within incorporated municipal boundaries or within a defined municipal fresh water field covered under a municipal ordinance adopted pursuant to Section 3-27-3 NMSA 1978 as amended, unless the municipality specifically approves	No	(Y/N)
7	Within 300 feet of a wetland	17,914	feet
8	Within the area overlying a subsurface mine	No	(Y/N)
9	Within an unstable area (Karst Map)		Critical High Medium Low
10	Within a 100-year Floodplain	Undetermined	year
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	>100'	<50' 51-100' >100'


Todd 13 Battery - 1 mile to OSE Well

7/29/2020, 3:48:27 PM

OSE District Boundary	— Acequia Tunnel	- Connector	- Feeder	- Other
GIS WATERS PODs	— Canal	— Culvert	Interior Drain	— Unknown
 Active 	- Channel	— Ditch	Lateral	
Conveyances	Closed Drain	— Diversion Weir	— Pipe	
— Acequia	- Community Ditch	- Drain	- Wasteway	

The New Mexico Office of the State Engineer (OSE) provides this geographic data and any associated metadata "as is" without warranty of any kind, including but not limited to its completeness, fitness for a particular use, or accuracy of its content, positional or otherwise. It is the sole responsibility of the user to

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community, Esri, HERE, Garmin, (c) OpenStreetMap contributors, Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user

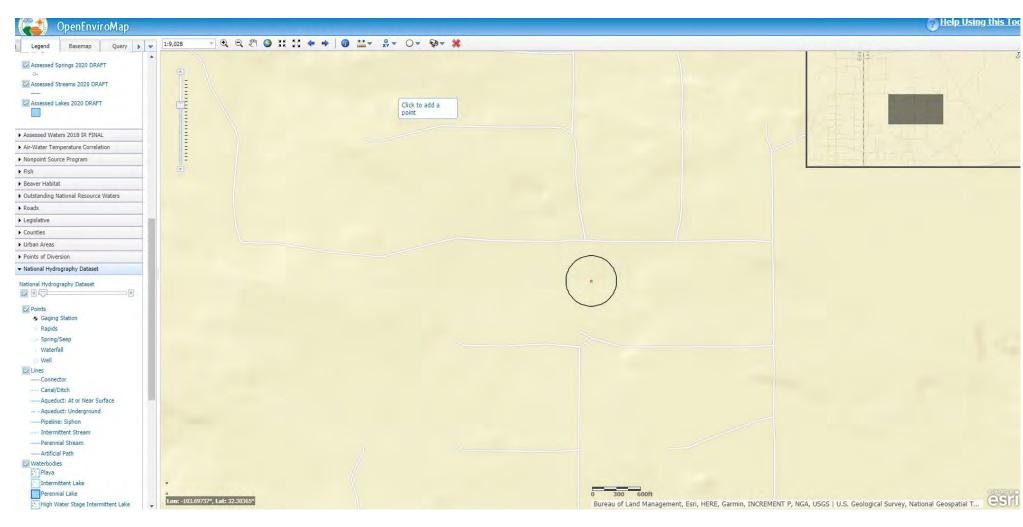
New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)	(quarters are 1=NW 2=NE 3- (quarters are smallest to larg	,	ters) (In	feet)
POD Number	POD Sub- Code basin Cou	QQQ unty 64 16 4 Sec Tws Rng	ХY		Depth Water Water Column
C 03851 POD1	CUB L	E 3 3 4 20 23S 32E	622880 3572660 🌍	1585 1392	713 679
			Averag	ge Depth to Water:	713 feet
				Minimum Depth:	713 feet
				Maximum Depth:	713 feet
Record Count: 1					

UTMNAD83 Radius Search (in meters):

Easting (X): 623415.26

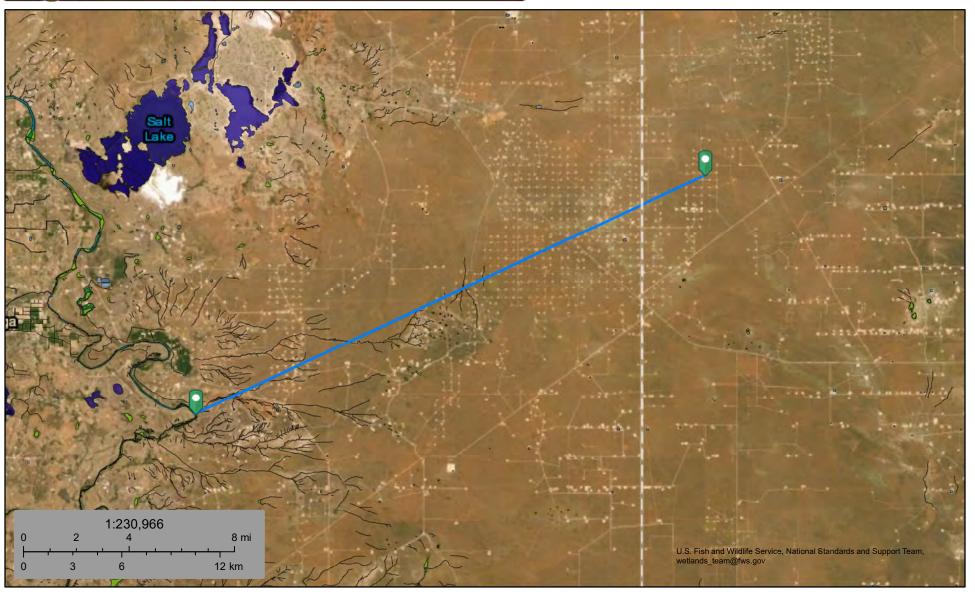
Northing (Y): 3574152.19


Radius: 1610

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Point of Diversion Summary

			(quart	ers are 1=	=NW 2=	=NE 3=	=SW 4=SE))			
			(qua	rters are s	malles	t to lar	gest)	(NAD83 UT	M in meters	5)	
Well Tag	P	OD Number	Q64	Q16 Q4	Sec	Tws	Rng	Х	١	ſ	
	С	03851 POD1	3	34	20	23S	32E	622880	3572660	D 🥌	
Driller Licer	nse:	1723	Driller Co	ompany			LLC DBA	A STEWAR	RT BROTI	HERS DRILL	ING
Driller Name	e:	STEWART, RAN	DAL P.		C).					
Drill Start D	ate:	08/19/2015	Drill Fini	sh Date	:	10/	02/2015	Plug	Date:		
Log File Dat	te:	11/10/2015	PCW Rc	v Date:				Sour	ce:	Artesian	
Pump Type:	:		Pipe Dis	charge	Size:			Estir	nated Yie	ld: 3 GPM	
Casing Size	:	5.00	Depth W	ell:		139	92 feet	Dept	h Water:	713 feet	
	Nate	er Bearing Stratific	cations:	Тор	Bott	om	Descrip	tion			
				1354	1	380	Limestor	ne/Dolomi	te/Chalk		
		Casing Perfo	orations:	Тор	Bott	om					
				1354	1	383					


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

U.S. Fish and Wildlife Service

National Wetlands Inventory

Todd 13 Watercourse 95,383 ft.

January 28, 2020

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

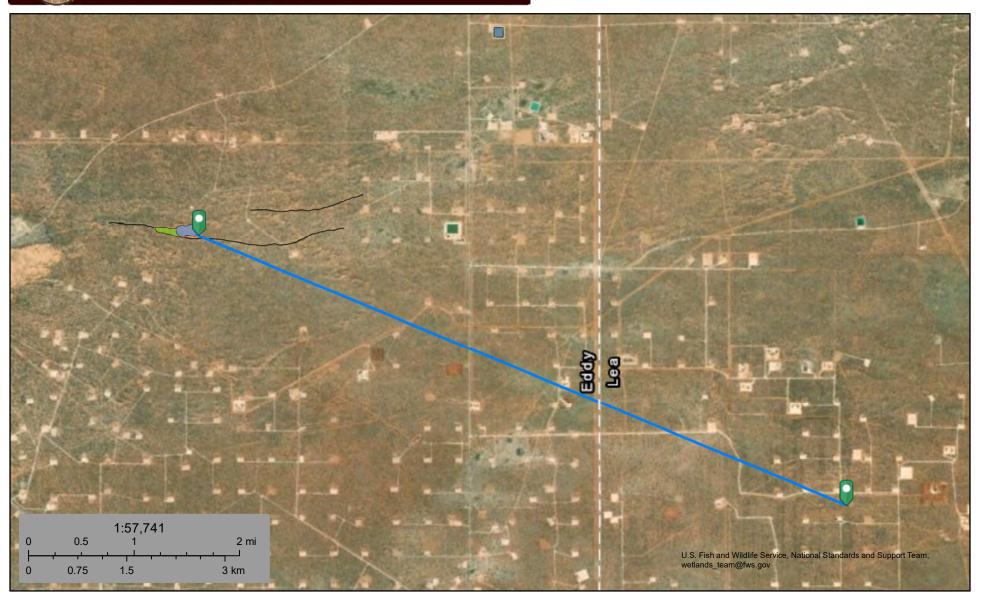
Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Freshwater Pond

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Му Мар



USGS The National Map: National Hydrography Dataset. Data refreshed March, 2020. | USDA FSA, GeoEye, Earthstar Geographics

U.S. Fish and Wildlife Service

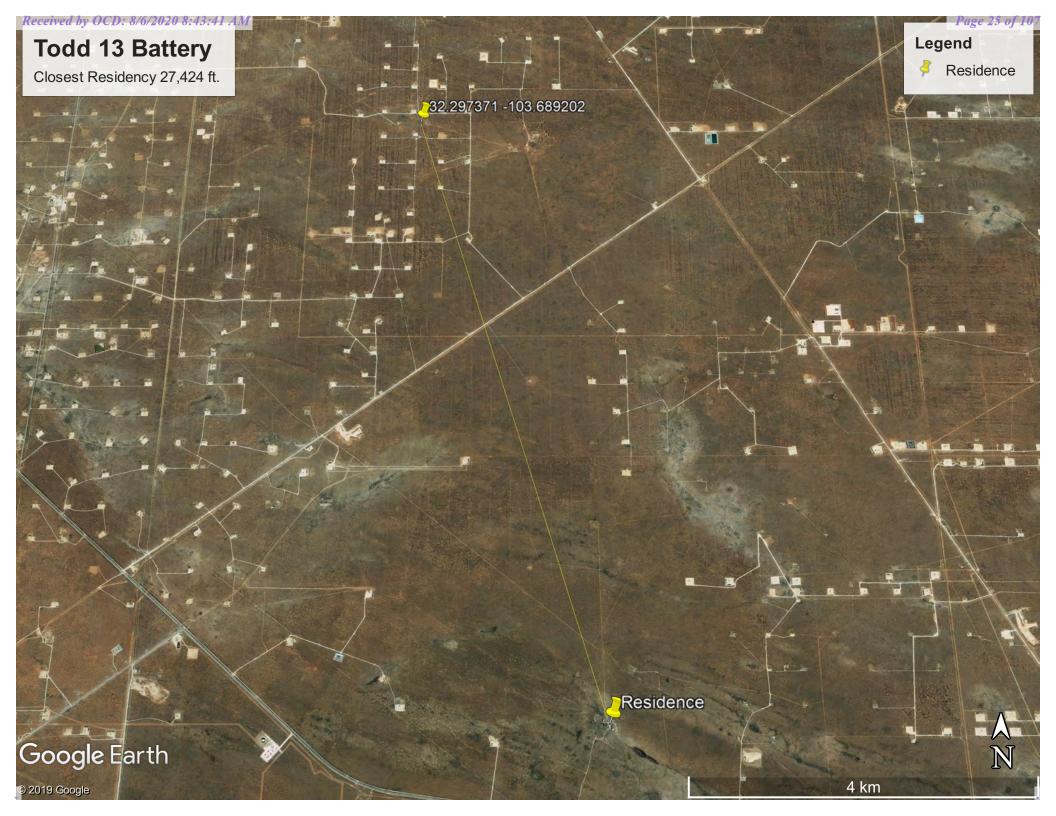
National Wetlands Inventory

Todd 13 Lake 29,706 ft.

January 28, 2020

Wetlands

Estuarine and Marine Deepwater


Estuarine and Marine Wetland

- etland 🗖
 - Freshwater Pond

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

New Mexico Office of the State Engineer Active & Inactive Points of Diversion

(with Ownership Information)

					(R=POD has been and no longer serve	•	I=NW 2=NE 3=SW	4=SE)		
	(acre ft	per annum)			C=the file is closed)) (quarters are s	smallest to largest)	(NAD83	UTM in meters)	
	Sub			Well		q q q				
WR File Nbr	basin Use Div	ersion Owner	County POD N	mber Tag	Code Grant	Source 6416 4 \$	Sec Tws Rng	Х	Y	Distance
<u>C 03851</u>	CUB MON	0 US DEPARTMENT OF ENERGY	LE <u>C 0385</u>	POD1	NON	Artesian 3 3 4	20 23S 32E	622879	3572660 🌍	1585
<u>C 02216</u>	CUB PLS	11.3 BRININSTOOL XL RANCH LLC	LE <u>C 0221</u>			224	21 23S 32E	625035	3573261* 🌍	1848
<u>C 02520</u>	C PRO	0 PENWELL ENERGY	LE <u>C 0252</u>			1 4	15 23S 32E	626122	3574791* 🌍	2781
<u>C 03529</u>	C STK	0 MARK MCCLOY	LE <u>C 0352</u>	POD1		243	29 23S 32E	622651	3571212 🌍	3037
<u>C 02349</u>	CUB STK	3 CHARLES F. JAMES	ED <u>C 0234</u>			2 3	03 23S 32E	625678	3578004* 🌍	4467
<u>C 03555</u>	C STK	3 NGL WATER SOLUTIONS PERMIAN	LE <u>C 0355</u>	POD1		Shallow 2 2 1	05 24S 32E	622709	3569231 🤤	4971

Record Count: 6

UTMNAD83 Radius Search (in meters):

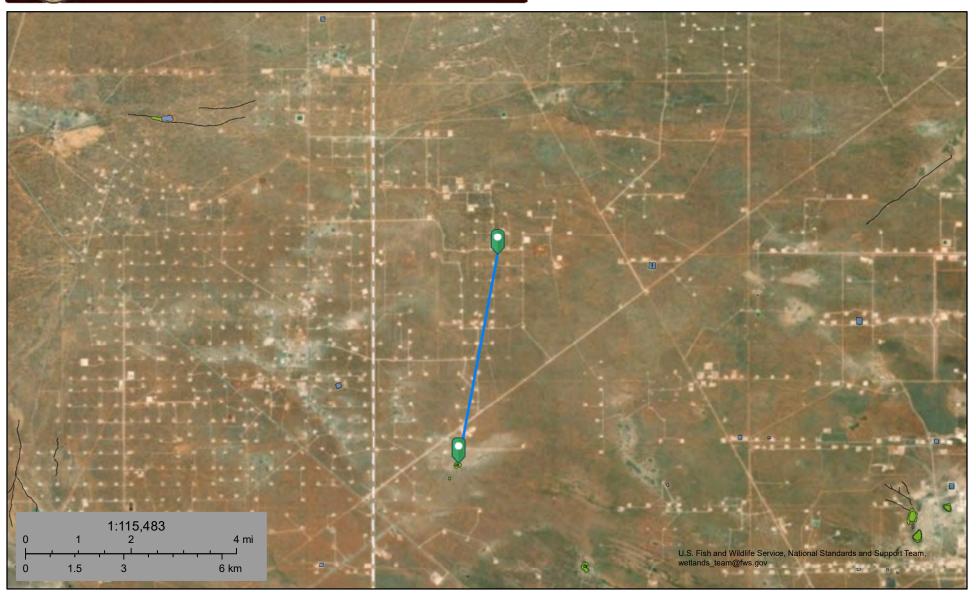
Easting (X): 623415.26

Northing (Y): 3574152.19

Radius: 5000

Sorted by: Distance

*UTM location was derived from PLSS - see Help


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

			-				er Ri				Engineer ary	
7	WR F	ile Nun	nber:	C 038	351		Subbasin	: CUB	Cross F	Reference): -	
	Prima	ry Pur	pose:	MON	MON	ITOR	ING WELL					
image list	Prima	ry Stat	us:	РМТ	PER	ЛТ						
	Total Acres: Total Diversion:						Subfile:	-		He	eader: -	
	Total	Divers	ion:	0			Cause/Ca	se: -				
		Ow Cont			EPARTN RGE BAS		OF ENERGY VAZO	,				
cument	s on F	ile										
-					Sta	atus	-	-	From/	•	5	
	rn # 64731	Doc EXPL	File/Ac		1 PMT	2 LOG	Transaction C 03851 POD		То Т	Acres 0	Diversion Consun 0	iptive
rrent Po	oints o	f Diver	sion					()	/ in meters)			

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

National Wetlands Inventory

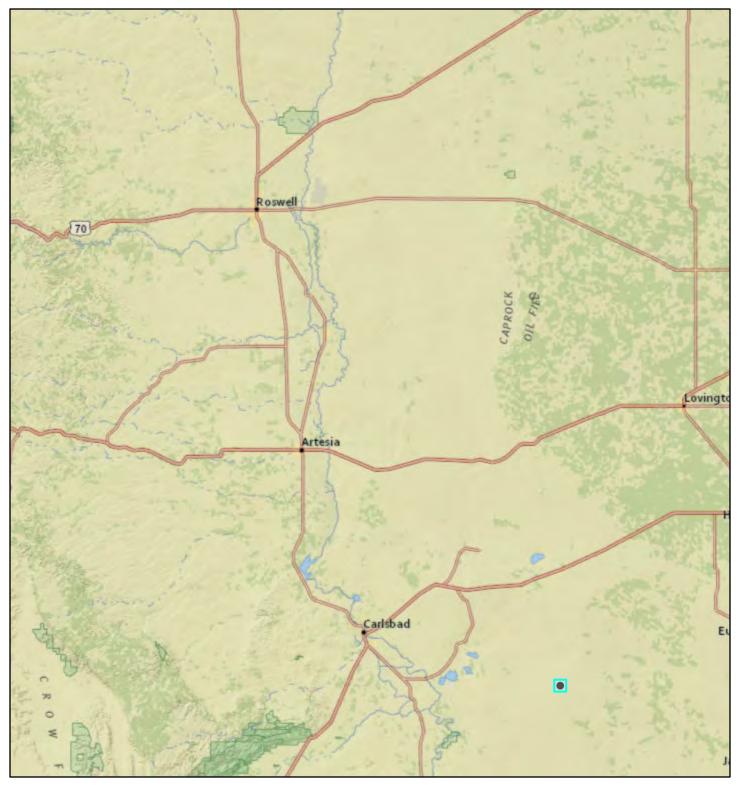
Todd 13 Wetland 17,914 ft.

January 28, 2020

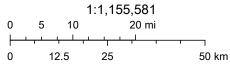
Wetlands

- Estuarine and Marine Wetland

Estuarine and Marine Deepwater


- **Freshwater Pond**

Freshwater Emergent Wetland

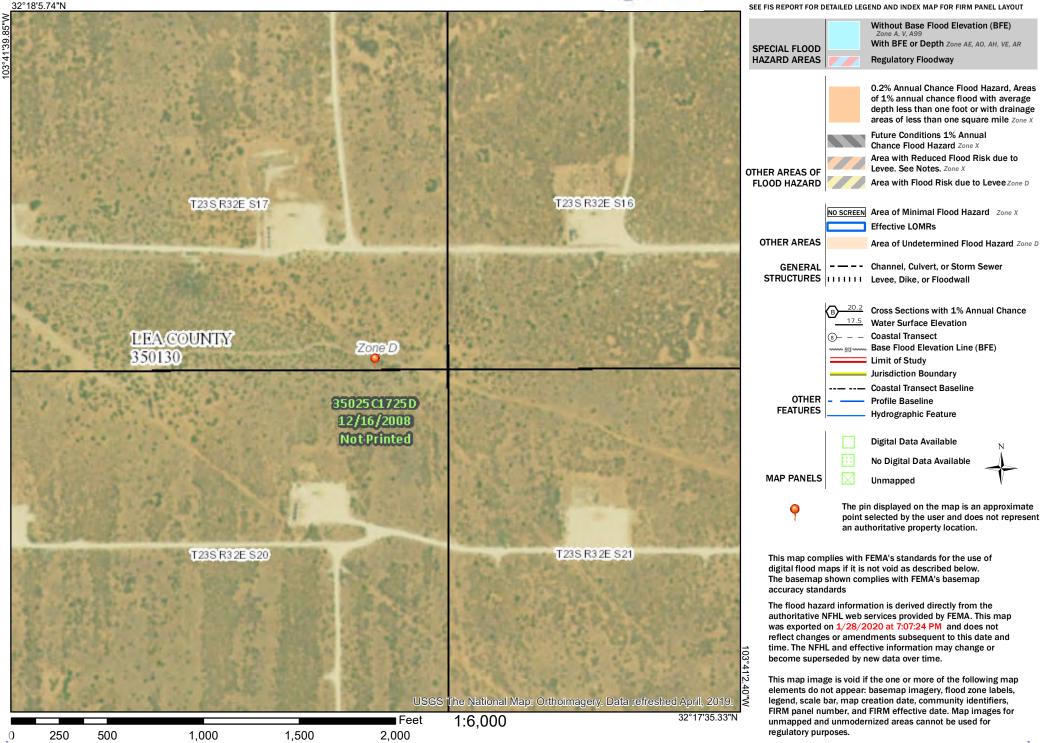

Freshwater Forested/Shrub Wetland

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Coal Mines in New Mexico

1/28/2020, 5:02:29 PM

National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.


Received by OCD: 846/2020 8:43:41 AM National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

Page 30 of 107

USDA United States Department of Agriculture

> Natural Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New **Mexico**

January 28, 2020

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

.

•

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	11
Lea County, New Mexico	
KD—Kermit-Palomas fine sands, 0 to 12 percent slopes	13
PU—Pyote and maljamar fine sands	15
References	17

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

.

.

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

.

•

Custom Soil Resource Report

MAP L	EGEND	MAP INFORMATION		
Area of Interest (AOI) △ Area of Interest (AOI) Soils Soil Map Unit Polygons △ Soil Map Unit Polygons △ Soil Map Unit Polygons △ Soil Map Unit Polygons ○ Borout ☑ Borow Pit ☑ Clay Spot ☑ Clavel Pit ☑ Clavel Pit <th>Spoil Area Spoil Area Stony Spot Yery Stony Spot Yery Stony Spot Yet Spot Yet Spot Other Special Line Features Streams and Canals Transport= Rails Interstate Highways Interstate Highways Yet Routes Yet Routes Interstate Highways Interstate Highways <</th> <th> The soil surveys that comprise your AOI were mapped at 1:20,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts </th>	Spoil Area Spoil Area Stony Spot Yery Stony Spot Yery Stony Spot Yet Spot Yet Spot Other Special Line Features Streams and Canals Transport= Rails Interstate Highways Interstate Highways Yet Routes Yet Routes Interstate Highways Interstate Highways <	 The soil surveys that comprise your AOI were mapped at 1:20,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts 		
▲ Marsh or swamp ▲ Mine or Quarry ④ Miscellaneous Water ● Perennial Water ● Rock Outcrop ↓ Saline Spot こ Sandy Spot ● Severely Eroded Spot ♦ Sinkhole ♦ Slide or Slip	Aerial Photography	 distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 16, Sep 15, 2019 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Dec 31, 2009—Sep 17, 2017 		
💋 Sodic Spot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		

Map Unit Legend

Map Unit Symbol Map Unit Name		Acres in AOI	Percent of AOI	
KD	Kermit-Palomas fine sands, 0 to 12 percent slopes	1.3	40.2%	
PU	Pyote and maljamar fine sands	2.0	59.8%	
Totals for Area of Interest		3.3	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KD—Kermit-Palomas fine sands, 0 to 12 percent slopes

Map Unit Setting

National map unit symbol: dmpv Elevation: 3,000 to 4,400 feet Mean annual precipitation: 10 to 12 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Kermit and similar soils: 70 percent *Palomas and similar soils:* 20 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kermit

Setting

Landform: Dunes Landform position (two-dimensional): Shoulder, backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear, concave Across-slope shape: Convex Parent material: Calcareous sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sand C - 8 to 60 inches: fine sand

Properties and qualities

Slope: 3 to 12 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat): Very high (20.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Salinity, maximum in profile: Nonsaline (0.0 to 1.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 2.0 Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: Deep Sand (R042XC005NM) Hydric soil rating: No

Description of Palomas

Setting

Landform: Dunes

Custom Soil Resource Report

Landform position (two-dimensional): Shoulder, backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear, concave Across-slope shape: Convex Parent material: Alluvium derived from sandstone

Typical profile

A - 0 to 16 inches: fine sand Bt - 16 to 60 inches: sandy clay loam Bk - 60 to 66 inches: sandy loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 50 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

Minor Components

Maljamar

Percent of map unit: 4 percent Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

Pyote

Percent of map unit: 4 percent Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

Dune land

Percent of map unit: 1 percent Hydric soil rating: No

Palomas

Percent of map unit: 1 percent Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

PU—Pyote and maljamar fine sands

Map Unit Setting

National map unit symbol: dmqq Elevation: 3,000 to 3,900 feet Mean annual precipitation: 10 to 12 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Maljamar and similar soils: 45 percent Pyote and similar soils: 45 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Maljamar

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 24 inches: fine sand Bt - 24 to 50 inches: sandy clay loam Bkm - 50 to 60 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 40 to 60 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): 6e

Custom Soil Resource Report

Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

Description of Pyote

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 30 inches: fine sand Bt - 30 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

Minor Components

Kermit

Percent of map unit: 10 percent Ecological site: Sandhills (R042XC022NM) Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

.

•

ATTACHMENT 4

Client:	Devon Energy Corporation	Inspection Date:	1/29/2020
Site Location Name:	Todd 13 Battery	- Report Run Date:	2/1/2020 8:27 PM
Project Owner:	Amanda Davis	File (Project) #:	20E-00141
Project Manager:	Natalie Gordon	API #:	
Client Contact Name:	Amanda Davis	Reference	11/05/2019 - 6bbls PW
Client Contact Phone #:	(575) 748-0176	- -	
		Summary of	Times
Left Office	1/29/2020 10:15 AM		
Arrived at Site	1/29/2020 11:30 AM		
Departed Site			
Returned to Office			

.

.

Site Sketch 15 Todd 13 Federal BC Battery 01/29/2020 Initial Visit B.Schafer Fonce -Bunning 5520-0 X Bern -20-0255 K Heatur Treater Gate-* Berm goes around BUTO 3 whole area, very near 5520-05 the fence. Took initial X samples 3 field screened wy what I had available.] A stss took more samples after WWWWW screens for teh. Did Heater field Treater 249 One chloride titration bloce it got dock. Likely 4911 will need more delineation ess stairs \$520-06 Check SS 20-04 + w/ SS 20-05 -> Petroflag SS 20-06 BH 20-03 4' BH 20-03 5 55 20-01 BH To lab - 20-03 -3' 2 F5 results -4' Hoto

Run on 2/1/2020 8:27 PM UTC

Summary of Daily Operations

13:07 Initial characterization and field screening

Next Steps & Recommendations

1

					Sam	pling			
BH2	0-01								
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
							<	32.305, -103.733	Yes
BH2	0-02								
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	3 ft.						<	32.30575, - 103.73380	Yes
3H2	0-03								
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	5 ft.						<	32.30578, - 103.73387	Yes

.

.

VOC PID

VOC PID

0.6 ppm

Petro Flag

TPH ppm

Petro Flag TPH ppm

Quantab

Range ppm

Quantab

Range ppm

			VERTEX
Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
		32.30577, - 103.73389	Yes
			Marked On
Lab Analysis	Picture	Trimble Location	Site Sketch?
	\checkmark	32.30576, - 103.73385	Yes

Depth ft

SS20-01

BH20-04

Depth ft

2 ft.

0 ft.

							100.10000	
0-02 Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
O ft.	6 ppm	160 ppm		217.5 ppm		\checkmark	32.30575, - 103.73397	Yes
0-03								

Quantab

Reading ppm

Quantab

Reading ppm

415 ppm

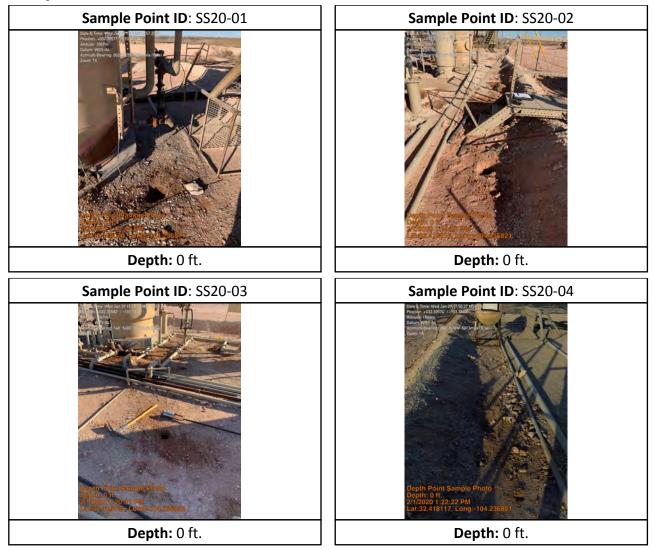
Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
0 ft.	0.5 ppm	891 ppm		120 ppm		$\boldsymbol{<}$	32.30579, - 103.73389	Yes

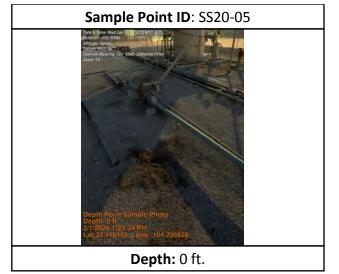
.

V

Daily Site Visit Report

S20-04								VERTEX
Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
0 ft.	0.1 ppm	617 ppm		135 ppm		<	32.30575, - 103.73400	Yes
\$20-05	1							
Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
O ft.	0 ppm	55 ppm				<	32.30581, - 103.73391	Yes


.


.

Depth Sample Photos Sample Point ID: BH20-01 Sample Point ID: BH20-02 Depth: Depth: 3 ft. Sample Point ID: BH20-03 Sample Point ID: BH20-04 Depth: 2 ft. Depth: 5 ft.

Daily Site Visit Signature

Inspector: Brandon Schafer

Signature:

.

Client:	Devon Energy Corporation	Inspection Date:	2/21/2020		
Site Location Name:	Todd 13 Battery	– Report Run Date:	2/21/2020 11:31 PM		
Project Owner:	Amanda Davis	File (Project) #:	20E-00141		
Project Manager:	Natalie Gordon				
Client Contact Name:	Amanda Davis	– Reference	11/05/2019 - 6bbls PW		
Client Contact Phone #:	(575) 748-0176	_			
		Summary of	Times		
Left Office	2/21/2020 7:30 AM				
Arrived at Site	2/21/2020 8:30 AM				
Departed Site	2/21/2020 2:46 PM				
Returned to Office					

Summary of Daily Operations

9:01 Hand excavation for confirmatory sampling

Next Steps & Recommendations

1 Return to finish excavation

Site Photos				
Viewing Direction: East	Viewing Direction: West			
Overview of site	Overview of site			
Viewing Direction: Northwest	Viewing Direction: East			
Antice 2.00752 plangs 102 (7876)				
Day's end excavation	Days end excavation			

•

Daily Site Visit Signature

Inspector: Brandon Schafer

Signature:

.

Client:	Devon Energy Corporation	Inspection Date:	2/24/2020
Site Location Name:	Todd 13 Battery	Report Run Date:	2/25/2020 2:03 AM
Project Owner:	Amanda Davis	File (Project) #:	20E-00141
Project Manager:	Natalie Gordon	API #:	
Client Contact Name:	Amanda Davis	Reference	11/05/2019 - 6bbls PW
Client Contact Phone #:	(575) 748-0176	_	
		Summary of	Times
Left Office	2/24/2020 7:20 AM		
Arrived at Site	2/24/2020 8:11 AM		
Departed Site	2/24/2020 2:02 PM		
Returned to Office			

.

Page 63 of 107

Site Sketch

	Todd 13 Sketch - Day 2 2/24/2026
	*First days excavation was 4-6". Samples still errored out on the Retroflag. Am having the crew take out roughly another 6"-10" around the heater treater on the East end of the containment. *Escavation finished and samples came back very clean
Gale / Steps =	tor contirmation. 1100/101400 03x=5 sample pts for continue of the start of the s
0 kim/	this line is nothing) drub by escient drub by escient Fence

.

Summary of Daily Operations

8:11 Continue hand excavation and obtain confirmatory samples

Next Steps & Recommendations

1 Send in samples and await lab results

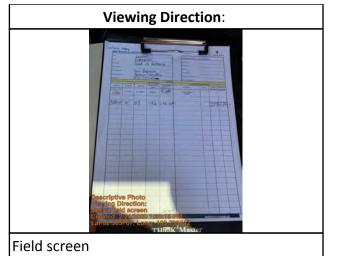
Sampling									
ES-Base20-01									
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	0 ft.					BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.30575480, - 103.73389144	Yes

Site Photos			
Viewing Direction: East	Viewing Direction: South Image: Constraint of the second secon		
Beginning of excavation	Beginning of day 2 excavation		
Viewing Direction: Southwest	Viewing Direction: North		
	As results by result As results by results As result		
Beginning of day 2 excavation	Petroflags result		

.

Viewing Direction: East	Viewing Direction: West		
Description in Prove Contract for a statement Contract for a stateme			
End of excavation	End of excavation		
Viewing Direction: Northwest	Viewing Direction: West		
Excavation	End of Excavation		

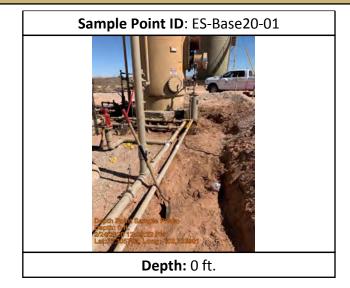
.


.

Viewing Direction: South	Viewing Direction: West		
Excavation	Excavation		
Viewing Direction: East	Viewing Direction: South		
Excavation	Excavation		

.

.



.

Depth Sample Photos

Daily Site Visit Signature

Inspector: Brandon Schafer

Signature:

.

Daily Site Visit Report

Client:	Devon Energy Corporation	Inspection Date:	6/17/2020
Site Location Name:	Todd 13 Battery	Report Run Date:	6/19/2020 5:08 PM
Client Contact Name:	Amanda Davis	API #:	
Client Contact Phone #:	(575) 748-0176		
Unique Project ID	-Todd 13 Battery	Project Owner:	Amanda Davis
Project Reference #	11/05/2019 - 6bbls PW	Project Manager:	Natalie Gordon
		Summary of	Times
Arrived at Site	6/17/2020 12:45 PM		
Departed Site	6/17/2020 2:44 PM		

Field Notes

9:14 Resamples collected for BS20-01. BS20-02 sample point added to sample schematic due to excavation being approximately 400 square feet. Wall sample (WS20-01) collected.

Next Steps & Recommendations

1 Submit confirmation samples for laboratory analysis.

2 Complete closure report.

Daily Site Visit Report

Daily Site Visit Signature

Inspector: Kevin Smith

Signature: MM DM

.

•

.

•

ATTACHMENT 5

Natalie Gordon

From:	Natalie Gordon
Sent:	Tuesday, February 18, 2020 4:40 PM
То:	emnrd-ocd-district1spills@state.nm.us; Mike Bratcher (mike.bratcher@state.nm.us);
	ramona.marcus@state.nm.us; blm_nm_cfo_spill@blm.gov; Wade , Kelsey;
	jamos@blm.gov
Cc:	Bynum, Tom (Contract); Wesley. Mathews@dvn. com (Wesley.Mathews@dvn.com)
Subject:	Todd 13 Battery, DOR: 11/05/2019, Inc. # TBD - 48-hr Notice of Confirmatory Sampling
	(Devon Energy)

All:

Please accept this email as 48-hour notification that Vertex Resource Services has scheduled final confirmatory sampling to be conducted at Todd 13 Battery (Devon Energy) for the release that occurred on November 5, 2019. Incident #: to be assigned.

On Thursday afternoon, February 20, 2020, and Friday morning, February 21, 2020, Monica Peppin of Vertex will be onsite to perform confirmation sampling. She can be reached at (575) 361-9880. If you need directions to the site, please do not hesitate to contact her.

If you have any questions or concerns regarding this notification, please give me a call at (505) 506-0040.

Thank you, Natalie

Natalie Gordon

From:	Natalie Gordon
Sent:	Tuesday, January 28, 2020 12:48 PM
То:	emnrd-ocd-district1spills@state.nm.us; Mike Bratcher (mike.bratcher@state.nm.us);
	ramona.marcus@state.nm.us
Cc:	Bynum, Tom (Contract); Wesley. Mathews@dvn. com (Wesley.Mathews@dvn.com)
Subject:	Extension Request - Todd 13 Battery - DOR: 11/5/2019; No Incident # assigned
Attachments:	Lea_Devon_Todd 13 Battery_11.5.19.pdf

All:

Please accept this 30-day extension request for the November 5, 2019 produced water release at Todd 13 Battery per the attached initial C-141.

Remediation is in progress for this incident.

If you need any more information regarding this extension request, contact me at 505-506-0040.

Thank you, Natalie Gordon

.

•

ATTACHMENT 6

.

•

ATTACHMENT 8

February 06, 2020

Natalie Gordon Vertex Resource Group Ltd. 213 S. Mesa St Carlsbad, NM 88220 TEL: FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 2002001

RE: Todd 13 Battery

Dear Natalie Gordon:

Hall Environmental Analysis Laboratory received 2 sample(s) on 2/1/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Project:

Lab ID:

CLIENT: Vertex Resource Group Ltd.

Todd 13 Battery

2002001-001

Analytical Report Lab Order 2002001

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/6/2020 Client Sample ID: SS20-01 0' Collection Date: 1/30/2020 3:05:00 PM

Received Date: 2/1/2020 10:00:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS					Analyst: BRM
Diesel Range Organics (DRO)	2900	490		mg/Kg	50	2/5/2020 10:48:36 AM
Motor Oil Range Organics (MRO)	4200	2500		mg/Kg	50	2/5/2020 10:48:36 AM
Surr: DNOP	0	55.1-146	S	%Rec	50	2/5/2020 10:48:36 AM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.7		mg/Kg	1	2/5/2020 12:42:11 AM
Surr: BFB	69.7	66.6-105		%Rec	1	2/5/2020 12:42:11 AM
EPA METHOD 8021B: VOLATILES						Analyst: RAA
Benzene	ND	0.024		mg/Kg	1	2/5/2020 4:51:24 PM
Toluene	ND	0.047		mg/Kg	1	2/5/2020 4:51:24 PM
Ethylbenzene	ND	0.047		mg/Kg	1	2/5/2020 4:51:24 PM
Xylenes, Total	ND	0.095		mg/Kg	1	2/5/2020 4:51:24 PM
Surr: 4-Bromofluorobenzene	88.1	80-120		%Rec	1	2/5/2020 4:51:24 PM
EPA METHOD 300.0: ANIONS						Analyst: MRA
Chloride	720	60		mg/Kg	20	2/5/2020 2:40:44 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix

D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 1 of 7

Project:

Lab ID:

CLIENT: Vertex Resource Group Ltd.

Todd 13 Battery

2002001-002

Analytical Report Lab Order 2002001

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/6/2020 Client Sample ID: BH20-03 5' Collection Date: 1/30/2020 5:15:00 PM

Received Date: 2/1/2020 10:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: BRM
Diesel Range Organics (DRO)	170	9.4	mg/Kg	1	2/5/2020 11:10:21 AM
Motor Oil Range Organics (MRO)	240	47	mg/Kg	1	2/5/2020 11:10:21 AM
Surr: DNOP	109	55.1-146	%Rec	1	2/5/2020 11:10:21 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	2/5/2020 1:05:11 AM
Surr: BFB	72.8	66.6-105	%Rec	1	2/5/2020 1:05:11 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.024	mg/Kg	1	2/5/2020 1:05:11 AM
Toluene	ND	0.048	mg/Kg	1	2/5/2020 1:05:11 AM
Ethylbenzene	ND	0.048	mg/Kg	1	2/5/2020 1:05:11 AM
Xylenes, Total	ND	0.095	mg/Kg	1	2/5/2020 1:05:11 AM
Surr: 4-Bromofluorobenzene	82.8	80-120	%Rec	1	2/5/2020 1:05:11 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	590	60	mg/Kg	20	2/5/2020 3:17:57 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix

D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 2 of 7

Client: Project:	Vertex Reso Todd 13 Ba		oup Lto	1.							
Sample ID: MB-5	0258	SampTy	vpe: mk	olk	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID: PBS		Batch	ID: 50	258	F	RunNo: 66	6340				
Prep Date: 2/4/	2020 A	nalysis Da	ate: 2/	5/2020	5	SeqNo: 22	278649	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID: LCS-	50258	SampTy	vpe: Ics	;	Tes	tCode: EF	A Method	300.0: Anion	s		
Client ID: LCS	6	Batch	ID: 50	258	F	RunNo: 66	6340				
Prep Date: 2/4/	2020 A	nalysis Da	ate: 2/	5/2020	5	SeqNo: 22	278650	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	90.8	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client:Vertex FProject:Todd 13	Resource Group Ltd. Battery	
Sample ID: MB-50229	SampType: MBLK	TestCode: EPA Method 8015M/D: Diesel Range Organics
Client ID: PBS	Batch ID: 50229	RunNo: 66269
Prep Date: 2/3/2020	Analysis Date: 2/4/2020	SeqNo: 2276519 Units: mg/Kg
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Diesel Range Organics (DRO)	ND 10	
Motor Oil Range Organics (MRO) Surr: DNOP	ND 50 12 10.00	115 55.1 146
Sample ID: LCS-50229	SampType: LCS	TestCode: EPA Method 8015M/D: Diesel Range Organics
Client ID: LCSS	Batch ID: 50229	RunNo: 66269
Prep Date: 2/3/2020	Analysis Date: 2/4/2020	SeqNo: 2276520 Units: mg/Kg
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Diesel Range Organics (DRO)	60 10 50.00	0 119 63.9 124
Surr: DNOP	5.3 5.000	106 55.1 146
Sample ID: MB-50216	SampType: MBLK	TestCode: EPA Method 8015M/D: Diesel Range Organics
Client ID: PBS	Batch ID: 50216	RunNo: 66269
Prep Date: 2/3/2020	Analysis Date: 2/4/2020	SeqNo: 2277503 Units: %Rec
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Surr: DNOP	11 10.00	113 55.1 146
Sample ID: LCS-50216	SampType: LCS	TestCode: EPA Method 8015M/D: Diesel Range Organics
Client ID: LCSS	Batch ID: 50216	RunNo: 66269
Prep Date: 2/3/2020	Analysis Date: 2/4/2020	SeqNo: 2277504 Units: %Rec
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Surr: DNOP	5.2 5.000	104 55.1 146

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 7

	Resource Group L B Battery	td.							
Sample ID: mb-50185	SampType: N	IBLK	Test	Code: EP	PA Method	8015D: Gaso	line Rang	9	
Client ID: PBS	Batch ID: 5	0185	R	unNo: 66	6278				
Prep Date: 1/31/2020	Analysis Date:	2/4/2020	S	eqNo: 22	277391	Units: %Rec	:		
Analyte	Result PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB	790	1000		79.4	66.6	105			
Sample ID: Ics-50185	SampType: L	cs	Test	Code: EP	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Batch ID: 5	0185	R	unNo: 66	6278				
Prep Date: 1/31/2020	Analysis Date:	2/4/2020	S	eqNo: 22	277393	Units: %Rec	;		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB	910	1000		91.2	66.6	105			
Sample ID: mb-50219	SampType: N	IBLK	Test	Code: EP	PA Method	8015D: Gaso	line Rang	e	
			_						
Client ID: PBS	Batch ID: 5	0219	R	unNo: 66	6278				
Client ID: PBS Prep Date: 2/3/2020	Batch ID: 5 Analysis Date: 2			unNo: 66 eqNo: 22		Units: mg/K	g		
		2/5/2020		eqNo: 22		Units: mg/K HighLimit	g %RPD	RPDLimit	Qual
Prep Date: 2/3/2020	Analysis Date:	2/5/2020 SPK value	S	eqNo: 22	277403	•	•	RPDLimit	Qual
Prep Date: 2/3/2020 Analyte Gasoline Range Organics (GRO)	Analysis Date: 2 Result PQL ND 5.0	2/5/2020 SPK value) 1000	SPK Ref Val	eqNo: 22 %REC 75.4	277403 LowLimit 66.6	HighLimit	%RPD		Qual
Prep Date: 2/3/2020 Analyte Gasoline Range Organics (GRO) Surr: BFB	Analysis Date: 2 Result PQL ND 5.0 750	2/5/2020 SPK value 1000 CS	S SPK Ref Val Test	eqNo: 22 %REC 75.4	277403 LowLimit 66.6 PA Method	HighLimit	%RPD		Qual
Prep Date: 2/3/2020 Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID: Ics-50219	Analysis Date: 2 Result PQL ND 5.0 750 SampType: L	2/5/2020 SPK value) 1000 CS 0219	S SPK Ref Val Test R	eqNo: 22 %REC 75.4	277403 LowLimit 66.6 24 Method 5278	HighLimit	%RPD		Qual
Prep Date: 2/3/2020 Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID: Ics-50219 Client ID: LCSS	Analysis Date: 2 Result PQL ND 5.0 750 SampType: L Batch ID: 5	2/5/2020 SPK value 0 1000 CS 0219 2/4/2020	S SPK Ref Val Test R	SeqNo: 22 %REC 75.4 Code: EP Scode: EP SeqNo: 22	277403 LowLimit 66.6 24 Method 5278	HighLimit 105 8015D: Gaso	%RPD		Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client: Vertex R Project: Todd 13	esource Gr	oup Ltc	1.								
Froject: 1000 15	Dattery										
Sample ID: mb-50185	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles			
Client ID: PBS	Batch	n ID: 501	185	RunNo: 66278							
Prep Date: 1/31/2020	Analysis D	ate: 2/	4/2020	S	SeqNo: 2	277424	Units: %Rec	:			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 4-Bromofluorobenzene	0.87		1.000		86.5	80	120				
Sample ID: Ics-50185	SampT	ype: LC	S	Tes	tCode: El	PA Method	8021B: Volat	iles			
Client ID: LCSS		n ID: 501		F	RunNo: 6	6278					
Prep Date: 1/31/2020	Analysis D	ate: 2/	4/2020	S	SeqNo: 2	277425	Units: %Red	;			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 4-Bromofluorobenzene	0.90		1.000		89.7	80	120			Quai	
Sample ID: mb-50219	Samet	уре: МЕ		Too	tCode: E	DA Method	8021B: Volat	ilos			
Client ID: PBS		n ID: 502			RunNo: 6			lies			
Prep Date: 2/3/2020	Analysis D		-		SeqNo: 2		Units: mg/K	a			
	-				•		•	•			
Analyte	Result ND	PQL 0.025	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene Toluene	ND	0.025									
Ethylbenzene	ND	0.050									
Xylenes, Total	ND	0.10									
Surr: 4-Bromofluorobenzene	0.85		1.000		85.3	80	120				
Sample ID: Ics-50219	SampT	ype: LC	S	Tes	tCode: El	PA Method	8021B: Volat	iles			
Client ID: LCSS	Batch	D: 502	219	F	RunNo: 6	6278					
Prep Date: 2/3/2020	Analysis D	ate: 2/	4/2020	S	SeqNo: 2	277436	Units: mg/K	g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.93	0.025	1.000	0	92.7	80	120				
Toluene	0.95	0.050	1.000	0	95.4	80	120				
Ethylbenzene	0.95	0.050	1.000	0	94.8	80	120				
Xylenes, Total	2.9	0.10	3.000	0	96.2	80	120				
Surr: 4-Bromofluorobenzene	0.92		1.000		91.9	80	120				
Sample ID: 2002001-001ams	SampT	ype: MS	;	Tes	tCode: El	PA Method	8021B: Volat	iles			
Client ID: SS20-01 0'	Batch	n ID: 502	219	F	RunNo: 6	6278					
Prep Date: 2/3/2020	Analysis D	ate: 2/	5/2020	S	SeqNo: 2	277438	Units: mg/K	g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.83	0.024	0.9479	0.01514	86.1	78.5	119				
Toluene	0.85	0.047	0.9479	0.01731	88.0	75.7	123				
Ethylbenzene	0.85	0.047	0.9479	0.01476	87.9	74.3	126				
Xylenes, Total	2.5	0.095	2.844	0.04532	87.7	72.9	130				

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

- WO#: 2002001
 - 06-Feb-20

	esource Gr	oup Lto	l.											
Project: Todd 13	Dattery													
Sample ID: 2002001-001ams	SampT	ype: MS	i	Test	tCode: EF	PA Method	8021B: Volat	iles						
Client ID: SS20-01 0'	Batch	n ID: 502	219	R	RunNo: 6	6278								
Prep Date: 2/3/2020	Analysis D	Analysis Date: 2/5/2020 SeqNo: 2277438 Units: mg/Kg												
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Surr: 4-Bromofluorobenzene	0.79		0.9479		83.2	80	120							
Sample ID: 2002001-001amsc	I SampT	ype: MS	D	Test	tCode: EF	PA Method	8021B: Volat	iles						
Client ID: \$\$20-01 0'	Batch													
Prep Date: 2/3/2020					-		Units: mg/K	ſg						
Prep Date: 2/3/2020 Analyte			5/2020		-		Units: mg/K HighLimit	(g %RPD	RPDLimit	Qual				
Analyte	Analysis D	ate: 2/	5/2020	S	SeqNo: 22	277439	Ŭ	0	RPDLimit 20	Qual				
•	Analysis D Result	ate: 2/ PQL	5/2020 SPK value	S SPK Ref Val	SeqNo: 22 %REC	277439 LowLimit	HighLimit	%RPD		Qual				
Analyte Benzene	Analysis D Result 0.86	eate: 2/ PQL 0.025	5/2020 SPK value 0.9814	SPK Ref Val 0.01514	SeqNo: 22 %REC 86.3	277439 LowLimit 78.5	HighLimit 119	%RPD 3.73	20	Qual				
Analyte Benzene Toluene	Analysis D Result 0.86 0.89	Pate: 2/ PQL 0.025 0.049	5/2020 SPK value 0.9814 0.9814	SPK Ref Val 0.01514 0.01731	SeqNo: 22 %REC 86.3 89.0	277439 LowLimit 78.5 75.7	HighLimit 119 123	%RPD 3.73 4.57	20 20	Qual				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 7

ANAL	RONMENTAL YSIS Ratory	Hall Environmen TEL: 505-345-3 Website: www	4901 H Albuquerque, 975 FAX: 50:	awkins NE NM 87109 -345-4107	Sample Log-In Check List					
Client Name:	VERTEX CARLSBAD	Work Order Num	ber: 200200	1		RcptNo: 1				
Received By:	Erin Melendrez	2/1/2020 10:00:00	AM	ú	MA	3				
Completed By: Reviewed By:	Erin Melendrez YG $2 3 25$	2/1/2020 10:43:12	АМ	Ú.	MA	7				
Chain of Cus	tody									
Contraction of the second s	ustody sufficiently complete	?	Yes 🔽] N	lo 🗆	Not Present				
2. How was the	sample delivered?		Courier							
Log In										
	npt made to cool the sample	s?	Yes 🔽] N	lo 🗌					
4. Were all sam	ples received at a temperatu	rre of >0° C to 6.0°C	Yes 🗹] N	lo 🗆					
5. Sample(s) in	proper container(s)?		Yes 🗹] N	lo 🗆					
6. Sufficient sam	ple volume for indicated tes	t(s)?	Yes 🔽	N	•					
7. Are samples ((except VOA and ONG) prop	erly preserved?	Yes 🗸	N	o 🗌					
8. Was preserva	tive added to bottles?		Yes 🗌	N	• 🗸	NA 🗌				
9. Received at le	east 1 vial with headspace <	1/4" for AQ VOA?	Yes 🗌	N	•	NA 🗹	/			
10. Were any sar	mple containers received bro	oken?	Yes 🗆	N	lo 🗹	# of preserved bottles checked				
	ork match bottle labels? ancies on chain of custody)		Yes 🔽	N	o 🗆	for pH: (<2 or >12 unless noted	I)			
12. Are matrices	correctly identified on Chain	of Custody?	Yes 🔽	N	•	Adjusted?				
13. Is it clear wha	t analyses were requested?		Yes 🗸	N	• 🗆	10				
	ng times able to be met? ustomer for authorization.)		Yes 🗸	N	•	checked by: JR+2/	3/2			
Special Hand	ling (if applicable)				4					
	otified of all discrepancies wi	th this order?	Yes [] N	lo 🗌	NA 🔽				
Person By Who Regard		Date:	eMail	Phone	🗌 Fax	In Person				
Client I	nstructions:									
16. Additional re	marks: rmation									

lecen	. >	OCD: 8/6/	/2020 8.	43:4											Page 89 of 10
	HALL ENVIRONMENTAL	www.hallenvironmental.com 4901 Hawkins NE - Albuquerque. NM 87109		↓0 (†r		04.1) 1022, 1022, 1022,	·VO/ fals 10 ³ 10 c	letho 3 Me 3r, <i>N</i> (AO)	8) 0728 8260 (Y	7	>				inks: Natalie Gordon Luon
		49	Ĥ		208) s						2				CC .
Turn-Around Time:	Standard Day		Project #: 20E-00141-00-		Notelli Gordon	Sampler: SS	olers:	Cooler Temp(including CF): 3, 9-1, 3(CF)= (°C)	Container Preservative HEAL No.	3	402 i.e -002				Time: Relinquished by Received by Via: Date Time Remarks: Natal's Cordon Time: Relinquished by Via: Ourier Date Time (CC! Natal's Cordon 131Lo prince (CC! Natal's Cordon 191D DU UN
Chain-of-Ciletody Bacord	Client: Vortex	Mailing Address: On F. L.		0	QA/QC Package:	Accreditation:	ype)		Date Time Matrix Sample Name	5 56:1	130 5:15 soil BH 20-03 5'				Date: Time: Relinquished by: Date: Time: Relinquished by: Date: Time: Relinquished by: Date: All 2010 All 20

March 04, 2020

Natalie Gordon Devon Energy 6488 Seven Rivers Highway Artesia, NM 88210 TEL: (575) 748-0176 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 2002A66

RE: Todd 13 Battery

Dear Natalie Gordon:

Hall Environmental Analysis Laboratory received 1 sample(s) on 2/25/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

CLIENT: Devon Energy

Todd 13 Battery

Project:

Analytical Report Lab Order 2002A66

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/4/2020

Client Sample ID: BS20-01 Collection Date: 2/24/2020 12:25:00 PM Received Date: 2/25/2020 10:55:00 AM

Lab ID: 2002A66-001	Matrix: SOIL	Reco	eived Date:	2/25/2	2020 10:55:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: BRM
Diesel Range Organics (DRO)	ND	9.0	mg/Kg	1	2/27/2020 6:02:15 PM
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	2/27/2020 6:02:15 PM
Surr: DNOP	76.6	55.1-146	%Rec	1	2/27/2020 6:02:15 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	2/29/2020 12:00:35 AM
Surr: BFB	81.3	66.6-105	%Rec	1	2/29/2020 12:00:35 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.023	mg/Kg	1	2/29/2020 12:00:35 AM
Toluene	ND	0.046	mg/Kg	1	2/29/2020 12:00:35 AM
Ethylbenzene	ND	0.046	mg/Kg	1	2/29/2020 12:00:35 AM
Xylenes, Total	ND	0.093	mg/Kg	1	2/29/2020 12:00:35 AM
Surr: 4-Bromofluorobenzene	89.3	80-120	%Rec	1	2/29/2020 12:00:35 AM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	2100	60	mg/Kg	20	3/1/2020 8:24:21 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix

- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 5

	ovon Energy dd 13 Battery
Sample ID: MB-50776	SampType: mblk TestCode: EPA Method 300.0: Anions
Client ID: PBS	Batch ID: 50776 RunNo: 66941
Prep Date: 3/1/2020	Analysis Date: 3/1/2020 SeqNo: 2302756 Units: mg/Kg
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chloride	ND 1.5
Sample ID: LCS-50776	SampType: Ics TestCode: EPA Method 300.0: Anions
Client ID: LCSS	Batch ID: 50776 RunNo: 66941
Prep Date: 3/1/2020	Analysis Date: 3/1/2020 SeqNo: 2302757 Units: mg/Kg
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chloride	14 1.5 15.00 0 93.9 90 110

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: 2002A66

	Devon Energy Todd 13 Battery									
Sample ID: LCS-506	•	/pe: LCS		Test	Code: El	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: LCSS	1.3	ID: 50685			unNo: 6			J		
Prep Date: 2/26/20		ate: 2/27/20	20		eqNo: 2		Units: mg/K	a		
					•			•		o 1
Analyte	Result			SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (D Surr: DNOP	RO) 57 5.1	10	50.00 5.000	0	114 101	70 55.1	130 146			
Sull. DNOP	5.1		5.000		101	55.1	140			
Sample ID: MB-5068	SampTy	/pe: MBLK		Test	Code: El	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: PBS	Batch	ID: 50685		R	unNo: 6	6879				
Prep Date: 2/26/20	20 Analysis Da	ate: 2/27/20	20	S	eqNo: 2	299850	Units: mg/K	g		
Analyte	Result	PQL SPK	value S	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (D	RO) ND	10								
Motor Oil Range Organics	(MRO) ND	50								
Surr: DNOP	11		10.00		115	55.1	146			
Sample ID: MB-5082	23 SampTy	/pe: MBLK		Test	Code: El	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: PBS	Batch	ID: 50823		R	unNo: 6	6967				
Prep Date: 3/3/202	0 Analysis Da	ate: 3/3/202	0	S	eqNo: 2	304322	Units: %Rec	;		
Analyte	Result	PQL SPK	value S	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	8.8		10.00		88.5	55.1	146			
Sample ID: LCS-508	SampTy	/pe: LCS		Test	Code: El	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: LCSS	Batch	ID: 50823		R	unNo: 6	6967		-	-	
Prep Date: 3/3/202	0 Analysis Da	ate: 3/3/202	0	S	eqNo: 2	304323	Units: %Rec	;		
Analyte	Result	PQL SPK	value S	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	4.3		5.000		86.4	55.1	146			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 5

WO#:	2002A66	

04-Mar-20

Client: Devon E Project: Todd 13	25								
Sample ID: mb-50678	SampType:	MBLK	Test	Code: EF	PA Method	8015D: Gasol	line Rang	e	
Client ID: PBS	Batch ID:	50678	R	unNo: 66	6892				
Prep Date: 2/25/2020	Analysis Date:	2/28/2020	S	eqNo: 2	301157	Units: mg/K	g		
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0							
Surr: BFB	830	1000		83.4	66.6	105			
Sample ID: Ics-50678	SampType:	LCS	Test	Code: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Batch ID:	50678	R	unNo: 66	6892				
Prep Date: 2/25/2020	Analysis Date:	2/28/2020	S	eqNo: 23	301158	Units: mg/K	g		
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	22	5.0 25.00	0	86.5	80	120			
Surr: BFB	890	1000		88.9	66.6	105			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#:	2002A66
	04-Mar-20

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	Devon Energy Todd 13 Battery									
Sample ID: mb-5067	8 Samp	SampType: MBLK TestCode: EPA Method 8021B: Volatiles								
Client ID: PBS	Bato	h ID: 50	678	RunNo: 66892						
Prep Date: 2/25/202	20 Analysis	Date: 2/	28/2020	S	eqNo: 2	301205	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenz	ene 0.90		1.000		89.9	80	120			
Sample ID: LCS-506	78 Samp	Туре: LC	s	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSS	Bato	:h ID: 50	678	F	lunNo: 6	6892				
Prep Date: 2/25/202	20 Analysis	Date: 2/	28/2020	S	eqNo: 2	301206	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.94	0.025	1.000	0	94.1	80	120			
Toluene	0.97	0.050	1.000	0	97.1	80	120			
Ethylbenzene	0.98	0.050	1.000	0	98.1	80	120			
Xylenes, Total	3.0	0.10	3.000	0	99.0	80	120			
Surr: 4-Bromofluorobenz	ene 0.95		1.000		94.8	80	120			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

WO#:	2002A66

04-Mar-20

_				
Page	06	01	F 1	07
ruge	20	01		U /

.

ENVIRONMENTAL ANALYSIS		Hawkins NE 1e, NM 87109 505-345-4107	Sam	ple Log-In C	Pa heck List
Client Name: DEVON ENERGY Wor モルー てたちに)	k Order Number: 2002	A66	<u>_</u> _	RcptNo:	1
Received By: JUAN ROJAS 2/25/2	020 10:55:00 AM				
Completed By: Erin Melendrez 2/25/2	020 1:20:55 PM	Ú	nt	2	
				-	
Chain of Custody					
1. Is Chain of Custody sufficiently complete?	Yes	✓ N	o 🗌	Not Present	
2. How was the sample delivered?	Couri	er			
Log In					
3. Was an attempt made to cool the samples?	Yes	M N	> [_]	NA 🗌	
4. Were all samples received at a temperature of >0° C	C to 6.0°C Yes	V N		NA 🗌	
5. Sample(s) in proper container(s)?	Yes	V N	b 🗌		
6. Sufficient sample volume for indicated test(s)?	Yes	✓ No	•		
7. Are samples (except VOA and ONG) properly presen	ved? Yes	V No			
8. Was preservative added to bottles?	Yes [No.		NA 🗌	
9. Received at least 1 vial with headspace <1/4" for AQ	VOA? Yes [No		NA 🗹	► 6
10. Were any sample containers received broken?	Yes [· 🗹 🥫	# of propon (od	
	_			# of preserved bottles checked	-11
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes	✓ No		for pH:	2 2 5 / 12 unless note
12. Are matrices correctly identified on Chain of Custody'	? Yes	V No		Adjusted?	
13. Is it clear what analyses were requested?		✓ No	_		
14. Were all holding times able to be met?	Yes			Checked by:	
(If no, notify customer for authorization.) Special Handling (if applicable)			-		
15. Was client notified of all discrepancies with this order	r? Yes		b		
Person Notified:	Date:	(A) (Apr.			
By Whom:	Via: CeMai	il 🗌 Ph one [Fax	In Person	
Regarding:					
Client Instructions:					
16. Additional remarks:					
17. <u>Cooler Information</u>					
Cooler No Temp C Condition Seal Intact	Seal No Seal Dat	te Signed	Ву		
1 0.2 Good					
2 4.2 Good	1				

IALL ENVIRONMENTAL IALL ENVIRONMENTAL IALL ENVIRONMENTAL IALLYSIS LABORATORY www.hallenvironmental.com ns NE - Albuquerque, NM 87109 .5-3975 Fax 505-345-4107 Analysis Request	8260 (VOA) 1028 (Semi-VOA) Total Coliform (Present/Absent)		Page 97 of 107 t = 3083% to $t = 3083%$ to $t = 100%$
 HALL ENVI HALL ENVI ANALYSIS ANALYSIS ANALYSIS Analysis Ré 	BTEX) MTBE / TMB's (8021) (CPH)8015D(GRO / DRO / MRO) 8081 Pesticides/8082 PCB's EDB (Method 504.1) PAHs by 8310 or 8270SiMS RCRA 8 Metals CI,F, Br, NO ₃ , NO ₂ , PO₄, SO₄		Remarks: B;11; Deven CC: Nafalre Cerdon
Turn-Around Time: S-Jay A Standard I Rush Project Name: Toold 13 Battery Project #: 306-00141	Project Manager: $Nafa$ li $Cordan$ Sampler: Sampler: On loe: $2^{-}Yes$ no $0^{-}0^{-}0^{-}Co^{-}0^{-}Co^{-}0^{-}Co^{-}0^{-}Co^{$		Time: Relinquished by: Received by: Via: Date Time Remarks: B;II! Devol 15:00 Mundon Mundon Mundon W.C. Athen W.C. Athen M.C. Athen 208396 15:00 Mundon Mundon Mundon W.C. Athen 208396 15:00 Mundon Mundon W.C. Athen W.C. Athen 208396 15:00 Mundon Mundon W.C. Athen 208396 15:00 Mundon Mundon W.C. Athen 208396 15:00 Mundon Mundon W.C. Athen 208396 16 Time: Relinquished by: W.C. Athen W.C. Athen 17 Mundon Mundon W.C. Athen 2083976 17 Mundon Mundon W.C. Athen Mundon 17 Mundon Mundon W.C. Athen Mundon 17 Mundon Mundon Mundon Mundon 16 Mundon Mundon Mundon
Chain-of-Custody Record ^{Client:} De VOD Envroyd Mailing Address: อก ร์เโอ Phone #: อัก ร์เโอ	email or Fax#: AA A A QA/QC Package:	2/24/20 12:25 Soil BS20-01	Date: Time: Relinquished by: AlP1/20 Relinquished by: AlP1/20 Relinquished by: Date: Time: Relinquished by: Anth Anth Toto Anth Toto Anth Relinquished by: Anth Toto Anth Toto

June 25, 2020

Natalie Gordon Devon Energy 6488 Seven Rivers Highway Artesia, NM 88210 TEL: (575) 748-0176 FAX:

RE: Todd 13 Battery

OrderNo.: 2006A28

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Natalie Gordon:

Hall Environmental Analysis Laboratory received 3 sample(s) on 6/19/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2006A28

Date Reported: 6/25/2020

CLIENT: Devon Energy		Cl	ient Sample II	D: BS	520-01				
Project: Todd 13 Battery	Collection Date: 6/17/2020 1:31:00 PM								
Lab ID: 2006A28-001	Matrix: SOIL		Received Dat	e: 6/1	19/2020 9:35:00 AM				
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analys	t: MRA			
Chloride	ND	60	mg/Kg	20	6/24/2020 3:52:01 PM	53275			
EPA METHOD 8015D MOD: GASO	LINE RANGE				Analys	t: DJF			
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/22/2020 3:58:23 AM	53183			
Surr: BFB	107	70-130	%Rec	1	6/22/2020 3:58:23 AM	53183			
EPA METHOD 8015M/D: DIESEL R	ANGE ORGANICS				Analys	t: BRM			
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	6/21/2020 2:49:08 AM	53187			
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	6/21/2020 2:49:08 AM	53187			
Surr: DNOP	95.8	55.1-146	%Rec	1	6/21/2020 2:49:08 AM	53187			
EPA METHOD 8260B: VOLATILES	SHORT LIST				Analys	t: DJF			
Benzene	ND	0.025	mg/Kg	1	6/22/2020 3:58:23 AM	53183			
Toluene	ND	0.050	mg/Kg	1	6/22/2020 3:58:23 AM	53183			
Ethylbenzene	ND	0.050	mg/Kg	1	6/22/2020 3:58:23 AM	53183			
Xylenes, Total	ND	0.099	mg/Kg	1	6/22/2020 3:58:23 AM	53183			
Surr: 1,2-Dichloroethane-d4	96.5	70-130	%Rec	1	6/22/2020 3:58:23 AM	53183			
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	6/22/2020 3:58:23 AM	53183			
Surr: Dibromofluoromethane	99.3	70-130	%Rec	1	6/22/2020 3:58:23 AM	53183			
Surr: Toluene-d8	98.7	70-130	%Rec	1	6/22/2020 3:58:23 AM	53183			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 7

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2006A28

Date Reported: 6/25/2020

CLIENT: Devon Energy		Cl	ient Sa	ample II	D: BS	20-02	
Project: Todd 13 Battery		(Collect	tion Dat	e: 6/1	7/2020 1:48:00 PM	
Lab ID: 2006A28-002	Matrix: SOIL		Recei	ved Dat	e: 6/1	9/2020 9:35:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	MRA
Chloride	ND	60		mg/Kg	20	6/24/2020 4:04:22 PM	53275
EPA METHOD 8015D MOD: GASOLIN	E RANGE					Analyst	DJF
Gasoline Range Organics (GRO)	ND	4.9		mg/Kg	1	6/22/2020 4:27:38 AM	53183
Surr: BFB	103	70-130		%Rec	1	6/22/2020 4:27:38 AM	53183
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS					Analyst	BRM
Diesel Range Organics (DRO)	ND	9.6		mg/Kg	1	6/21/2020 2:59:26 AM	53187
Motor Oil Range Organics (MRO)	ND	48		mg/Kg	1	6/21/2020 2:59:26 AM	53187
Surr: DNOP	167	55.1-146	S	%Rec	1	6/21/2020 2:59:26 AM	53187
EPA METHOD 8260B: VOLATILES SH	ORT LIST					Analyst	DJF
Benzene	ND	0.025		mg/Kg	1	6/22/2020 4:27:38 AM	53183
Toluene	ND	0.049		mg/Kg	1	6/22/2020 4:27:38 AM	53183
Ethylbenzene	ND	0.049		mg/Kg	1	6/22/2020 4:27:38 AM	53183
Xylenes, Total	ND	0.098		mg/Kg	1	6/22/2020 4:27:38 AM	53183
Surr: 1,2-Dichloroethane-d4	96.5	70-130		%Rec	1	6/22/2020 4:27:38 AM	53183
Surr: 4-Bromofluorobenzene	95.2	70-130		%Rec	1	6/22/2020 4:27:38 AM	53183
Surr: Dibromofluoromethane	97.1	70-130		%Rec	1	6/22/2020 4:27:38 AM	53183
Surr: Toluene-d8	101	70-130		%Rec	1	6/22/2020 4:27:38 AM	53183

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 7

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2006A28

Date Reported: 6/25/2020

CLIENT: Devon Energy		Cl	ient Sample II	D: W	S20-01	
Project: Todd 13 Battery		(Collection Dat	e: 6/	17/2020 2:03:00 PM	
Lab ID: 2006A28-003	Matrix: SOIL		Received Dat	e: 6/	19/2020 9:35:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	ND	60	mg/Kg	20	6/24/2020 4:16:42 PM	53275
EPA METHOD 8015D MOD: GASOLINE	RANGE				Analyst	DJF
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	6/22/2020 4:57:22 AM	53183
Surr: BFB	108	70-130	%Rec	1	6/22/2020 4:57:22 AM	53183
EPA METHOD 8015M/D: DIESEL RANGI	E ORGANICS				Analyst	BRM
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	6/21/2020 3:09:38 AM	53187
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	6/21/2020 3:09:38 AM	53187
Surr: DNOP	113	55.1-146	%Rec	1	6/21/2020 3:09:38 AM	53187
EPA METHOD 8260B: VOLATILES SHO	RT LIST				Analyst	DJF
Benzene	ND	0.025	mg/Kg	1	6/22/2020 4:57:22 AM	53183
Toluene	ND	0.049	mg/Kg	1	6/22/2020 4:57:22 AM	53183
Ethylbenzene	ND	0.049	mg/Kg	1	6/22/2020 4:57:22 AM	53183
Xylenes, Total	ND	0.098	mg/Kg	1	6/22/2020 4:57:22 AM	53183
Surr: 1,2-Dichloroethane-d4	95.4	70-130	%Rec	1	6/22/2020 4:57:22 AM	53183
Surr: 4-Bromofluorobenzene	99.7	70-130	%Rec	1	6/22/2020 4:57:22 AM	53183
Surr: Dibromofluoromethane	96.5	70-130	%Rec	1	6/22/2020 4:57:22 AM	53183
Surr: Toluene-d8	98.6	70-130	%Rec	1	6/22/2020 4:57:22 AM	53183

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 7

Client: Project:	Devon Er Todd 13	0.									
Sample ID: MB-	53275	SampT	ype: ml	olk	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID: PBS	5	Batch	D: 53	275	F	RunNo: 69	9865				
Prep Date: 6/2	4/2020	Analysis D	ate: 6/	24/2020	S	SeqNo: 24	426931	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID: LCS	-53275	SampT	ype: Ics	5	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID: LCS	S	Batch	ID: 53	275	F	RunNo: 69	9865				
Prep Date: 6/2	4/2020	Analysis D	ate: 6/	24/2020	S	SeqNo: 24	426932	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	96.2	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#:	2006A28
	25-Jun-20

Page 103 of 107	
------------------------	--

WO#:	2006	A28
		• •

25-Jun-20

	evon Energy odd 13 Battery									
Sample ID: LCS-5318	SampTyp	e: LC	S	Test	tCode: EF	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: LCSS	Batch I	D: 53	184	R	unNo: 69	9768				
Prep Date: 6/19/2020	Analysis Date	e: 6/	20/2020	S	eqNo: 24	422439	Units: %Rec			
Analyte	Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	6.4		5.000		128	55.1	146			
Sample ID: LCS-5318	SampTyp	e: LC	s	Test	tCode: EF	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: LCSS	Batch II	D: 53	187	R	unNo: 69	9768				
Prep Date: 6/19/2020	Analysis Date	e: 6/	20/2020	S	eqNo: 24	422440	Units: mg/K	g		
Analyte	Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO) 59	10	50.00	0	119	70	130			
Surr: DNOP	6.5		5.000		131	55.1	146			
Sample ID: MB-53184	SampTyp	e: Me	BLK	Test	Code: EF	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: PBS	Batch II	D: 53	184	R	unNo: 69	9768				
Prep Date: 6/19/2020	Analysis Date	e: 6/	20/2020	S	eqNo: 24	122442	Units: %Rec			
Analyte	Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	14		10.00		137	55.1	146			
Sample ID: MB-53187	SampTyp	e: Me	BLK	Test	Code: EF	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: PBS	Batch I	D: 53	187	R	unNo: 69	9768				
Prep Date: 6/19/2020	Analysis Date	e: 6/	20/2020	S	eqNo: 24	422443	Units: mg/K	g		
Analyte	Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)) ND	10								
Motor Oil Range Organics (N	,	50								
Surr: DNOP	12		10.00		115	55.1	146			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#:	2	2006A28					
	25		20				

25-Jun-20

	Energy 3 Battery									
Sample ID: mb-53183	•	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8260B: Volat	tiles Short	List	
Client ID: PBS		Batch ID: 53183			RunNo: 69787					
							1 loite			
Prep Date: 6/19/2020	Analysis [Jale: 6/	21/2020		SeqNo: 2	423069	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 1,2-Dichloroethane-d4	0.49		0.5000		97.8	70	130			
Surr: 4-Bromofluorobenzene	0.51		0.5000		103	70	130			
Surr: Dibromofluoromethane	0.47		0.5000		94.8	70	130			
Surr: Toluene-d8	0.50		0.5000		100	70	130			
Sample ID: Ics-53183	Samp	Туре: LC	:S4	Tes	tCode: El	PA Method	8260B: Volat	tiles Short	List	
Client ID: BatchQC	Batc	h ID: 53	183	F	RunNo: 6	9787				
Prep Date: 6/19/2020	Analysis [Date: 6/	21/2020	S	SeqNo: 2	423070	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.97	0.025	1.000	0	97.4	80	120			
Toluene	1.1	0.050	1.000	0	106	80	120			
Ethylbenzene	1.1	0.050	1.000	0	110	80	120			
Xylenes, Total	3.2	0.10	3.000	0	106	80	120			
Surr: 1,2-Dichloroethane-d4	0.50		0.5000		101	70	130			
Surr: 4-Bromofluorobenzene	0.48		0.5000		96.3	70	130			
Surr: Dibromofluoromethane	0.51		0.5000		101	70	130			
Surr: Toluene-d8	0.50		0.5000		99.4	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 7

Client:Devon HProject:Todd 13	Energy B Battery								
Sample ID: mb-53183	SampType	e: MBLK	Tes	tCode: EPA	Method	8015D Mod: (Gasoline I	Range	
Client ID: PBS	Batch ID): 53183	F	RunNo: 6978	57				
Prep Date: 6/19/2020	Analysis Date	e: 6/21/2020	S	SeqNo: 2423	143	Units: mg/K	g		
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC Lo	owLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0							
Surr: BFB	540	500.0		107	70	130			
Sample ID: Ics-53183	SampType	e: LCS	Tes	tCode: EPA	Method	8015D Mod: (Gasoline I	Range	
Client ID: LCSS	Batch ID	D: 53183	F	RunNo: 6978	37				
Prep Date: 6/19/2020	Analysis Date	e: 6/21/2020	S	SeqNo: 2423	144	Units: mg/K	g		
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC Lo	owLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	22	5.0 25.00	0	86.6	70	130			
Surr: BFB	540	500.0		109	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 7

WO#: 2006A28 25-Jun-20

	-3975 FAX: ww.hallenvi		Sample Log-In Check List				
Client Name: Devon Energy Work Order Nur	mber: 200	6A28			RcptNo:	1	
Received By: Isaiah Ortiz 6/19/2020 9:35:00	D AM		I	~0	4		
Completed By: Juan Rojas 6/19/2020 9:52:26	5 AM		I Guan	39			
Reviewed By: SPA 6.19.20			/				
Chain of Custody							
1. Is Chain of Custody complete?	Yes		No		Not Present		
2. How was the sample delivered?	Cou	rier					
Log In							
3. Was an attempt made to cool the samples?	Yes	•	No				
4. Were all samples received at a temperature of $>0^{\circ}$ C to 6.0°C	Yes		No				
5. Sample(s) in proper container(s)?	Yes		No				
5. Sufficient sample volume for indicated test(s)?	Yes	~	No				
7. Are samples (except VOA and ONG) properly preserved?	Yes	~	No				
3. Was preservative added to bottles?	Yes		No		NA 🗌		
Received at least 1 vial with headspace <1/4" for AQ VOA?	Yes		No		NA 🗹	τ	
0. Were any sample containers received broken?	Yes		No	V			
1. Does paperwork match bottle labels?	Yes	~	No		# of preserved bottles checked for pH:	6/19/20	
(Note discrepancies on chain of custody)			1.7.	_		>12 unless noted)	
2. Are matrices correctly identified on Chain of Custody?	Yes		No		Adjusted?		
 Is it clear what analyses were requested? Were all holding times able to be met? 	Yes Yes		No	븝	Checked by:	_	
(If no, notify customer for authorization.)	res	V	No		Oncoked by		
pecial Handling (if applicable)							
5. Was client notified of all discrepancies with this order?	Yes		No		NA 🗹		
Person Notified: Date	e			-			
By Whom: Via:		ail 🗔 F	hone	Fax	In Person		
Regarding:							
Client Instructions:			-				

17. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	3.1	Good				

Client: $\int e \sqrt{o} - \frac{E}{L} e^{-3} + \frac{1}{2}$ $\square Standard$ $\square Rush$ Mailing Address: $\partial_{old} F_{ILE}$ Project Name: Mailing Address: $\partial_{old} F_{ILE}$ Project Name: Mailing Address: $\partial_{old} F_{ILE}$ $\square A 1 \ge A + 1 $ Phone #: $Project Manage: 2 \circ 8 2 g 6 \circ 7 Phone #: Project #: 2 \circ 8 2 g 6 \circ 7 Phone #: Project #: Project #: Phone #: Project #: 2 \circ 8 2 g 6 \circ 7 Phone #: Project #: Project #: Phone #: Project #: Project #: Phone #: Project Manager: 2 \circ 8 2 g 6 \circ 7 Standard \Box Level 4 (Full Validation) N a_1 a h^2 e G_0 d Accreditation: \Box Az Compliance Nater: I(w.inter higher: I(w.inter higher) \Box NELAC \Box Other \Box Net Project Manager: Parcolars = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = $	Rush Battery					MALL ENVIRONMENIAL	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	thery		A HV II ANA		ULL.	ANALYSTS LABORATOR	DPV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	thery			www.hallenvironmental.com	ronmen	tal com	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4901 H	4901 Hawkins NE		ndnerdn	Albuquerque, NM 87109	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Tel. 50	505-345-3975		Fax 505	505-345-4107	
e: $\Box = Level 4 (Full Validation)$ $\Box = Az Compliance$ $\Box = Other$ $\Box = Other$ $Conters: If the set of Conters: If the set of Contens: $	7			Anal	sis Req	Request	
$ \begin{array}{c c} & & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$				[⊅] O		(ìr	
$\Box \text{ Level 4 (Full Validation)} / \sqrt{\alpha} + \alpha + \infty$ $\Box \text{ Az Compliance} \text{ Sampler: } l(t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t$		ЯМ	SM	S '⁺(ıəsq	
□ Az Compliance Sampler: I <i>(twi</i>)~ □ Other ■ On Ice: ■ Yes # of Conters:	Gordun	/ 08	IIS0	ЪС		A\tn	
Other On Ice: Yes # of Conlers:	Smith	אם א		10 ⁵		_	
	D No	05	_	-	(40	: 0:	
	1	(GE		_		-	
Cooler Temp(including CF);	2-01KE131-(°C)	120	1.0				
Time Matrix Sample Name Trope and # Trope	HEAL No.	YX3TE 08:H91 9 1808	M) 803 d eHAc	RARA R	S) 0228	D letoT	
Soil 8520-01 402 inc it		×		-			
4	- 00J ×	*		×			
2:03 X MS40-01 X X	× 200-			Y			
							1
			+				
Date: Received by: Nia: Received by: Via:	L/15/20 1000	Remarks:	СС	Nata lie	ilie G	Gordon	
Date: Time: Relinquished by Received by Via:	Date Time			Q.ir	Devon	Ene 131	