

Electronic Correspondence

October 19, 2017

Re: Delineation and Remediation Scope of Work Report

Linn Operating Barclay State Battery Spill 082017 Legal: Unit 7, Sec 2, T23S R31E, Eddy County, NM Latitude/Longitude: 32.33152919/-103.74268849

Etech Project Number: 253-8662

Depth to Groundwater: 168 feet - New Mexico Office of the State Engineer

Release Type: Crude Oil

Contaminants of Concern (COCs) Threshold Levels
TPH 5000 mg/kg

Benzene 10 mg/kg
BTEX 50 mg/kg
Chlorides 600 mg/kg

Etech Environmental & Safety Solutions, Inc. (Etech) is submitting the following delineation and remediation scope of work report on the aforementioned site for review and approval.

Background

On August 29, 2017, Etech responded to a reportable release at the Barclay State Battery site located in Eddy County, New Mexico, that is operated by Linn Operating, Incorporated (Linn). According to Linn's spill report, the release was caused by a hole in the bottom of the three (3) inch oil dump line connected to the production heater. There was approximately twelve (12) barrels of crude oil released, with five (5) barrels of free standing fluids recovered. The release impacted approximately 1,895 square feet of surface area inside the firewall of the facility. Contaminated soil was excavated and placed on plastic by a third party contractor.

Delineation Activities

Delineation activities were conducted at the impacted area on August 29, 2017 by Etech. Soil samples from the impacted area were collected by hand auger from five (5) soil sample locations labeled Auger Hole 1 through Auger Hole 5 (See Attachment A, Annotated Aerial Imagery). Soil samples were collected at depths of six (6) inches, twelve (12) inches, twenty-four (24) inches, and thirty-six (36) inches below ground surface (bgs) at each soil sample location. Soil samples were submitted to Permian Basin Environmental Laboratory (PBELAB) and analyzed for chlorides, TPH, benzene, and BTEX. The laboratory results determined that the chloride concentrations ranged from no analytical detection to 1,150 mg/kg, TPH levels ranged from no analytical detection to 19,800 mg/kg, benzene levels ranged from no analytical detection to 0.136 mg/kg, and BTEX levels ranged from no analytical detection to 27.7 mg/kg (See Table 1 Summary of Delineation Sampling Analytical Results below).

				Tab	le 1				
		Summ	ary of De	lineation S	ampling Ar	nalytical Re	sults		
Sample ID	Depth	Date	C6-C12	>C12-C28	>C28- C35	Total TPH (mg/kg)	Benzene (mg/kg)	BTEX (mg/kg)	Chlorides (mg/kg)
Auger Hole 1	6"	8/29/17	1,010	6,210	1,830	9,060	0.136	10.286	1,150
Auger Hole 1	12"	8/29/17	ND	73.4	ND	73.4	ND	0.0390	681
Auger Hole 1	24"	8/29/17	ND	42.9	ND	42.9	ND	ND	1,080
Auger Hole 1	36"	8/29/17	ND	122	ND	122	ND	ND	538
Auger Hole 2	6"	8/29/17	118	732	140	990	ND	1.6863	8.24
Auger Hole 2	12"	8/29/17	41.7	207	35.8	285	ND	ND	ND
Auger Hole 2	24"	8/29/17	ND	49.4	ND	49.4	ND	ND	ND
Auger Hole 2	36"	8/29/17	ND	42.7	ND	42.7	ND	ND	ND
Auger Hole 3	6"	8/29/17	3,990	13,400	2,420	19,800	0.0699	27.7	32.7
Auger Hole 3	12"	8/29/17	ND	62.2	ND	62.2	ND	ND	11.5
Auger Hole 3	24"	8/29/17	ND	ND	ND	ND	ND	ND	ND
Auger Hole 3	36"	8/29/17	ND	ND	ND	ND	ND	ND	ND
Auger Hole 4	6"	8/29/17	858	13,900	2,830	17,600	0.0606	0.3043	190
Auger Hole 4	12"	8/29/17	33.7	592	252	877	ND	0.00166	32.3
Auger Hole 4	24"	8/29/17	ND	ND	ND	ND	ND	ND	18.5
Auger Hole 4	36"	8/29/17	ND	126	ND	126	ND	ND	19.6
Auger Hole 5	6"	8/29/17	40.1	361	62.8	464	ND	ND	135
Auger Hole 5	12"	8/29/17	ND	133	ND	133	ND	ND	92.1
Auger Hole 5	24"	8/29/17	ND	ND	ND	ND	ND	ND	9.51
Auger Hole 5	36"	8/29/17	ND	ND	ND	ND	ND	ND	ND

Bold values indicate above regulatory threshold levels

Depth to Groundwater Data

Depth to groundwater data was obtained from the New Mexico Office of the State Engineer (OSE) and indicates that the data point to the site displays a depth to ground water of 168 feet bgs

Attachment C contains a diagram displaying the location of the Barclay State Battery and the locations of the closest OSE data points to the Barclay State Battery.

Scope of Work for Remediation of the Release

After finding the release the initial remediation activities conducted at the site included the excavation of the top 1 foot of impacted soil associated with the release and stockpiling on plastic. This remediation activity was conducted prior to the above referenced delineation activities.

Based on the delineation of the site it was determined that soil impacted above OCD regulatory standards for TPH were found in the top 6 inches of the soil within the impacted area of the excavation. A review of the chloride data indicated the chloride impacts extended to an approximate depth of 30 inches within the area of auger hole 1.

Based on the findings of the site delineation and the initial remediation activities it has been determined an additional 2.5 feet of impacted soil within the area of auger hole 1 will need to be excavated along with an additional 8 to 10 inches within the areas of auger holes 3 and 4. The additional excavation activities will be completed in the northern and southern sections of the identified release area.

After completing the additional remediation activities, samples will be collected from the bottom and side walls of the excavations to document the removal of the impacted soil. When confirmation sample analytical results are received and determined to be within the current OCD regulations, the site will be

backfilled with clean fill and leveled to the previous grade. A final report will be generated and submitted to the OCD regional office to document the remediation and closure of the release.

Thank you for your assistance on this matter. Should you have any questions, require additional information, or have any additional stipulations for this site, please contact me at (432) 563-2200 (office) or via email at shane@etechenv.com.

Respectfully:

Shane Estep Geologist

Etech Environmental & Safety Solutions, Inc.

Attachment A Initial C-141

Attachment A Annotated Aerial Imagery

Attachment B Photograph Log

View of release point.

View of release point and pooled oil.

View of pooled oil north of tank battery containment.

View of repaired line and initial remediation activities.

View of release area after initial remediation activities.

View of release area after initial remediation activities.

Attachment Depth to Groundwater Data

GROUND WATER SEARCH

Linn Energy Barclay State Battery

UL :	Sec:2	T: 23S	R: 31E
Groundwater Depth:	168	<u> </u>	t.

- = NM Office of the State Engineer
- = U.S. Geological Survey (unknown well)

× = Site Location				By: Amy Ruth
28 450' EXP DOE 401' MC	27 IN DOE	26	25	30
33 428' M	34 ON DOE	35	T22S R31E 36	T22S R32E 31
4 168' STK BLM	3	2	T23S R31E 1	T23S R32E 6
9	10	11	12	7
16	15	14	13	18

Attachment D
Analytical Results

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Shane Estep
E Tech Environmental & Safety Solutions, Inc.
13000 West County Road 100
Odessa, TX 79765

Project: Barclay State Battery Spill
Project Number: 253-8662
Location: Linn Energy

Lab Order Number: 7H31004

NELAP/TCEQ # T104704516-16-7

Report Date: 09/11/17

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Auger Hole 1 6"	7H31004-01	Soil	08/29/17 12:05	08-31-2017 09:12
Auger Hole 1 12"	7H31004-02	Soil	08/29/17 12:10	08-31-2017 09:12
Auger Hole 1 24"	7H31004-03	Soil	08/29/17 12:15	08-31-2017 09:12
Auger Hole 1 36"	7H31004-04	Soil	08/29/17 12:20	08-31-2017 09:12
Auger Hole 2 6"	7H31004-05	Soil	08/29/17 12:25	08-31-2017 09:12
Auger Hole 2 12"	7H31004-06	Soil	08/29/17 12:30	08-31-2017 09:12
Auger Hole 2 24"	7H31004-07	Soil	08/29/17 12:35	08-31-2017 09:12
Auger Hole 2 36"	7H31004-08	Soil	08/29/17 12:40	08-31-2017 09:12
Auger Hole 3 6"	7H31004-09	Soil	08/29/17 12:45	08-31-2017 09:12
Auger Hole 3 12"	7H31004-10	Soil	08/29/17 12:50	08-31-2017 09:12
Auger Hole 3 24"	7H31004-11	Soil	08/29/17 12:55	08-31-2017 09:12
Auger Hole 3 36"	7H31004-12	Soil	08/29/17 13:00	08-31-2017 09:12
Auger Hole 4 6"	7H31004-13	Soil	08/29/17 13:05	08-31-2017 09:12
Auger Hole 4 12"	7H31004-14	Soil	08/29/17 13:10	08-31-2017 09:12
Auger Hole 4 24"	7H31004-15	Soil	08/29/17 13:15	08-31-2017 09:12
Auger Hole 4 36"	7H31004-16	Soil	08/29/17 13:20	08-31-2017 09:12
Auger Hole 5 6"	7H31004-17	Soil	08/29/17 13:25	08-31-2017 09:12
Auger Hole 5 12"	7H31004-18	Soil	08/29/17 13:30	08-31-2017 09:12
Auger Hole 5 24"	7H31004-19	Soil	08/29/17 13:35	08-31-2017 09:12
Auger Hole 5 36"	7H31004-20	Soil	08/29/17 13:40	08-31-2017 09:12

13000 West County Road 100Project Number: 253-8662Odessa TX, 79765Project Manager: Shane Estep

Auger Hole 1 6" 7H31004-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Perm	ian Basin E	nvironmer	ıtal Lab, I	L.P.				
Organics by GC									
Benzene	0.136	0.0222	mg/kg dry	20	P7I0108	09/01/17	09/01/17	EPA 8021B	
Toluene	2.27	0.0444	mg/kg dry	20	P7I0108	09/01/17	09/01/17	EPA 8021B	
Ethylbenzene	2.24	0.0222	mg/kg dry	20	P7I0108	09/01/17	09/01/17	EPA 8021B	
Xylene (p/m)	4.30	0.0444	mg/kg dry	20	P7I0108	09/01/17	09/01/17	EPA 8021B	
Xylene (o)	1.34	0.0222	mg/kg dry	20	P7I0108	09/01/17	09/01/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		22.0 %	75-1	25	P7I0108	09/01/17	09/01/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		89.0 %	75-1	25	P7I0108	09/01/17	09/01/17	EPA 8021B	
General Chemistry Parameters by EI	PA / Standard Method	s							
Chloride	1150	5.56	mg/kg dry	5	P7I0112	09/01/17	09/05/17	EPA 300.0	
% Moisture	10.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	1010	139	mg/kg dry	5	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	6210	139	mg/kg dry	5	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	1830	139	mg/kg dry	5	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		105 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		93.0 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	9060	139	mg/kg dry	5	[CALC]	09/01/17	09/01/17	calc	

13000 West County Road 100Project Number: 253-8662Odessa TX, 79765Project Manager: Shane Estep

Auger Hole 1 12" 7H31004-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environme	ıtal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.0204	mg/kg dry	20	P7I0108	09/01/17	09/01/17	EPA 8021B	
Toluene	ND	0.0408	mg/kg dry	20	P7I0108	09/01/17	09/01/17	EPA 8021B	
Ethylbenzene	ND	0.0204	mg/kg dry	20	P7I0108	09/01/17	09/01/17	EPA 8021B	
Xylene (p/m)	ND	0.0408	mg/kg dry	20	P7I0108	09/01/17	09/01/17	EPA 8021B	
Xylene (o)	0.0390	0.0204	mg/kg dry	20	P7I0108	09/01/17	09/01/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		38.4 %	75-1	25	P7I0108	09/01/17	09/01/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		104 %	75-1	25	P7I0108	09/01/17	09/01/17	EPA 8021B	
General Chemistry Parameters by E	PA / Standard Metho	ds							
Chloride	681	1.02	mg/kg dry	1	P7I0112	09/01/17	09/05/17	EPA 300.0	
% Moisture	2.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	C35 by EPA Method 8	015M							
C6-C12	ND	25.5	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	73.4	25.5	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		126 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		115 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	73.4	25.5	mg/kg dry	1	[CALC]	09/01/17	09/01/17	calc	

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Auger Hole 1 24" 7H31004-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmen	tal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00104	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.00208	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.8 %	75-12	25	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		38.0 %	75-12	25	P7I0108	09/01/17	09/02/17	EPA 8021B	S-GC
General Chemistry Parameters by EP	A / Standard Method	ls							
Chloride	1080	5.21	mg/kg dry	5	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	4.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 80	015M							
C6-C12	ND	26.0	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	42.9	26.0	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		118 %	70-1.	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		107 %	70-1.	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	42.9	26.0	mg/kg dry	1	[CALC]	09/01/17	09/01/17	calc	

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Auger Hole 1 36" 7H31004-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmer	ıtal Lab, I	P.				
Organics by GC									
Benzene	ND	0.0206	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.0412	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.0206	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.0412	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.0206	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		36.7 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		98.8 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	
General Chemistry Parameters by El	PA / Standard Method	ls							
Chloride	538	1.03	mg/kg dry	1	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	3.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	235 by EPA Method 80)15M							
C6-C12	ND	25.8	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	122	25.8	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		118 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	122	25.8	mg/kg dry	1	[CALC]	09/01/17	09/01/17	calc	

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Auger Hole 2 6" 7H31004-05 (Soil)

Analisa	P l4	Reporting	T I:4	Dilution	Detak	D d	A l J	Madead	N-4
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmer	ıtal Lab, I	P.				
Organics by GC									
Benzene	ND	0.0204	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Toluene	0.0643	0.0408	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	0.313	0.0204	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	0.970	0.0408	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	0.339	0.0204	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.2 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		%	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	S-GC
General Chemistry Parameters by El	PA / Standard Method	ds							
Chloride	8.24	1.02	mg/kg dry	1	P7I0112	09/01/17	09/05/17	EPA 300.0	
% Moisture	2.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	235 by EPA Method 80	015M							
C6-C12	118	25.5	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	732	25.5	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	140	25.5	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		123 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		108 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	990	25.5	mg/kg dry	1	[CALC]	09/01/17	09/01/17	calc	

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Auger Hole 2 12" 7H31004-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environmen	ıtal Lab, I	L .P.				
Organics by GC									
Benzene	ND	0.00103	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.00206	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		34.5 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		100 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	
General Chemistry Parameters by EF	PA / Standard Method	ds							
Chloride	ND	1.03	mg/kg dry	1	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	3.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	015M							
C6-C12	41.7	25.8	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	207	25.8	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	35.8	25.8	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		127 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	285	25.8	mg/kg dry	1	[CALC]	09/01/17	09/01/17	calc	

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Auger Hole 2 24" 7H31004-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environmen	ıtal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.0204	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.0408	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.0204	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.0408	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.0204	mg/kg dry	20	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		45.7 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		109 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	
General Chemistry Parameters by EP	A / Standard Method	ls							
Chloride	ND	1.02	mg/kg dry	1	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	2.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method 80	015M							
C6-C12	ND	25.5	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	49.4	25.5	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		108 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	49.4	25.5	mg/kg dry	1	[CALC]	09/01/17	09/01/17	calc	

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Auger Hole 2 36" 7H31004-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmen	ıtal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00101	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.00202	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		35.8 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		97.7 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	
General Chemistry Parameters by EF	PA / Standard Method	ds							
Chloride	ND	1.01	mg/kg dry	1	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	1.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	015M							
C6-C12	ND	25.3	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	42.7	25.3	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		114 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	42.7	25.3	mg/kg dry	1	[CALC]	09/01/17	09/01/17	calc	

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Auger Hole 3 6" 7H31004-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environmer	ıtal Lab, I	L .P.				
Organics by GC									
Benzene	0.0699	0.0215	mg/kg dry	20	P7I0108	09/01/17	09/05/17	EPA 8021B	
Toluene	4.76	0.0430	mg/kg dry	20	P7I0108	09/01/17	09/05/17	EPA 8021B	
Ethylbenzene	7.19	0.0215	mg/kg dry	20	P7I0108	09/01/17	09/05/17	EPA 8021B	
Xylene (p/m)	10.9	0.0430	mg/kg dry	20	P7I0108	09/01/17	09/05/17	EPA 8021B	
Xylene (o)	4.78	0.0215	mg/kg dry	20	P7I0108	09/01/17	09/05/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		106 %	75-1	25	P7I0108	09/01/17	09/05/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		76.5 %	75-1	25	P7I0108	09/01/17	09/05/17	EPA 8021B	
General Chemistry Parameters by E	PA / Standard Metho	ds							
Chloride	32.7	1.08	mg/kg dry	1	P7I0112	09/01/17	09/05/17	EPA 300.0	
% Moisture	7.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	C35 by EPA Method 8	015M							
C6-C12	3990	134	mg/kg dry	5	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	13400	134	mg/kg dry	5	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	2420	134	mg/kg dry	5	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		113 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		91.3 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	19800	134	mg/kg dry	5	[CALC]	09/01/17	09/01/17	calc	

13000 West County Road 100Project Number: 253-8662Odessa TX, 79765Project Manager: Shane Estep

Auger Hole 3 12" 7H31004-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	ian Basin E	nvironmen	ital Lab, I	P.				
Organics by GC									
Benzene	ND	0.00108	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.00215	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		41.8 %	75-1.	25	P7I0108	09/01/17	09/02/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		107 %	75-1.	25	P7I0108	09/01/17	09/02/17	EPA 8021B	
General Chemistry Parameters by El	PA / Standard Method	ls							
Chloride	11.5	1.08	mg/kg dry	1	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	7.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	62.2	26.9	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		119 %	70-1.	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-1.	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	62.2	26.9	mg/kg dry	1	[CALC]	09/01/17	09/01/17	calc	

13000 West County Road 100Project Number: 253-8662Odessa TX, 79765Project Manager: Shane Estep

Auger Hole 3 24"

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Peri	mian Basin E	Environmen	ıtal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00103	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.00206	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		33.2 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		100 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	
General Chemistry Parameters by EPA / Sta	andard Metho	ds							
Chloride	ND	1.03	mg/kg dry	1	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	3.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by I	EPA Method 8	8015M							
C6-C12	ND	25.8	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		125 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		115 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	09/01/17	09/01/17	calc	

7H31004-11 (Soil)

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Auger Hole 3 36" 7H31004-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmen	tal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00103	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.00206	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.2 %	75-1.	25	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		34.9 %	75-1.	25	P7I0108	09/01/17	09/02/17	EPA 8021B	S-GC
General Chemistry Parameters by EPA /	Standard Method	ds							
Chloride	ND	1.03	mg/kg dry	1	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	3.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 b	y EPA Method 80	015M							
C6-C12	ND	25.8	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		117 %	70-1.	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-1.	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	09/01/17	09/01/17	calc	

Project: Barclay State Battery Spill

13000 West County Road 100

Project Number: 253-8662

Odessa TX, 79765

Project Manager: Shane Estep

Auger Hole 4 6" 7H31004-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Pern	nian Basin E	Environmer	ntal Lab, I	L .P.				
Organics by GC									
Benzene	0.0606	0.00111	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Toluene	0.128	0.00222	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	0.0308	0.00111	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	0.0575	0.00222	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	0.0274	0.00111	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		30.8 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		107 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	
General Chemistry Parameters by EI	PA / Standard Method	ds							
Chloride	190	1.11	mg/kg dry	1	P7I0112	09/01/17	09/05/17	EPA 300.0	_
% Moisture	10.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 8	015M							
C6-C12	858	278	mg/kg dry	10	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	13900	278	mg/kg dry	10	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	2830	278	mg/kg dry	10	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		103 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		92.6 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	17600	278	mg/kg dry	10	[CALC]	09/01/17	09/01/17	calc	

13000 West County Road 100 Pro Odessa TX, 79765 Pro

Project Number: 253-8662
Project Manager: Shane Estep

Auger Hole 4 12" 7H31004-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environmen	ıtal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00102	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.00204	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	0.00166	0.00102	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		32.0 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		107 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	
General Chemistry Parameters by El	PA / Standard Method	ds							
Chloride	32.3	1.02	mg/kg dry	1	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	2.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 8	015M							
C6-C12	33.7	25.5	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	592	25.5	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	252	25.5	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		122 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		114 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	877	25.5	mg/kg dry	1	[CALC]	09/01/17	09/01/17	calc	

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Auger Hole 4 24" 7H31004-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environmen	ıtal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00104	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.00208	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		37.8 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		101 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	
General Chemistry Parameters by EPA / S	tandard Metho	ds							
Chloride	18.5	1.04	mg/kg dry	1	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	4.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 8	015M							
C6-C12	ND	26.0	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: 1-Chlorooctane		120 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-1	30	P7I0105	09/01/17	09/01/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	09/01/17	09/01/17	calc	

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Auger Hole 4 36" 7H31004-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Result	Lillit	Onits	Dilution	Batch	rrepared	Analyzeu	iviculou	Notes
	Pern	nian Basin E	invironmer	ıtal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00103	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.00206	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P7I0108	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		38.7 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		102 %	75-1	25	P7I0108	09/01/17	09/02/17	EPA 8021B	
General Chemistry Parameters by EP	A / Standard Method	ds							
Chloride	19.6	1.03	mg/kg dry	1	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	3.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 80	015M							
C6-C12	ND	25.8	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
>C12-C28	126	25.8	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
Surrogate: 1-Chlorooctane		132 %	70-1	30	P7I0106	09/01/17	09/02/17	TPH 8015M	S-GC
Surrogate: o-Terphenyl		119 %	70-1	30	P7I0106	09/01/17	09/02/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	126	25.8	mg/kg dry	1	[CALC]	09/01/17	09/02/17	calc	

Project: Barclay State Battery Spill

13000 West County Road 100Project Number: 253-8662Odessa TX, 79765Project Manager: Shane Estep

Fax: (432) 563-2213

Auger Hole 5 6" 7H31004-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmen	tal Lab, I	Ĺ.P.				
Organics by GC									
Benzene	ND	0.00115	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.00230	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.00115	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.00230	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.00115	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	75-1.	25	P7I0109	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		44.3 %	75-1.	25	P7I0109	09/01/17	09/02/17	EPA 8021B	S-GC
General Chemistry Parameters by EP	A / Standard Method	ds							
Chloride	135	1.15	mg/kg dry	1	P7I0112	09/01/17	09/05/17	EPA 300.0	
% Moisture	13.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 80	015M							
C6-C12	40.1	28.7	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
>C12-C28	361	28.7	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
>C28-C35	62.8	28.7	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
Surrogate: 1-Chlorooctane		95.4 %	70-1.	30	P7I0106	09/01/17	09/02/17	TPH 8015M	
Surrogate: o-Terphenyl		89.7 %	70-1.	30	P7I0106	09/01/17	09/02/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	464	28.7	mg/kg dry	1	[CALC]	09/01/17	09/02/17	calc	

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Auger Hole 5 12" 7H31004-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	nian Basin E	nvironmen	tal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00116	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.00233	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.00116	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.00233	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.00116	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	75-1.	25	P7I0109	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		32.5 %	75-1.	25	P7I0109	09/01/17	09/02/17	EPA 8021B	S-GC
General Chemistry Parameters by EP	A / Standard Method	ls							
Chloride	92.1	1.16	mg/kg dry	1	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	14.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 80)15M							
C6-C12	ND	29.1	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
>C12-C28	133	29.1	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
>C28-C35	ND	29.1	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
Surrogate: 1-Chlorooctane		117 %	70-1.	30	P7I0106	09/01/17	09/02/17	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-1.	30	P7I0106	09/01/17	09/02/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	133	29.1	mg/kg dry	1	[CALC]	09/01/17	09/02/17	calc	

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Auger Hole 5 24" 7H31004-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environmer	ıtal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00104	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.00208	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		106 %	75-1	25	P7I0109	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		38.2 %	75-1	25	P7I0109	09/01/17	09/02/17	EPA 8021B	S-GC
General Chemistry Parameters by EPA	Standard Method	ds							
Chloride	9.51	1.04	mg/kg dry	1	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	4.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 l	by EPA Method 80	015M							
C6-C12	ND	26.0	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
Surrogate: 1-Chlorooctane		139 %	70-1	30	P7I0106	09/01/17	09/02/17	TPH 8015M	S-GC
Surrogate: o-Terphenyl		130 %	70-1	30	P7I0106	09/01/17	09/02/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	09/01/17	09/02/17	calc	

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Auger Hole 5 36" 7H31004-20 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	nvironmen	ıtal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00101	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Toluene	ND	0.00202	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P7I0109	09/01/17	09/02/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		34.6 %	75-1	25	P7I0109	09/01/17	09/02/17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		103 %	75-1	25	P7I0109	09/01/17	09/02/17	EPA 8021B	
General Chemistry Parameters by EPA	Standard Method	ls							
Chloride	ND	1.01	mg/kg dry	1	P7I0613	09/06/17	09/10/17	EPA 300.0	
% Moisture	1.0	0.1	%	1	P7I0501	09/05/17	09/05/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 l	oy EPA Method 80	15M							
C6-C12	ND	25.3	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P7I0106	09/01/17	09/02/17	TPH 8015M	
Surrogate: 1-Chlorooctane		135 %	70-1	30	P7I0106	09/01/17	09/02/17	TPH 8015M	S-GC
Surrogate: o-Terphenyl		122 %	70-1	30	P7I0106	09/01/17	09/02/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	09/01/17	09/02/17	calc	

Project: Barclay State Battery Spill

13000 West County Road 100

Fax: (432) 563-2213

Project Number: 253-8662 Odessa TX, 79765 Project Manager: Shane Estep

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7I0108 - General Preparation (GC)										

Batch P7I0108 - General Preparation	n (GC)									
Blank (P7I0108-BLK1)				Prepared &	Analyzed	: 09/01/17				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00200	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.0618		"	0.0600		103	75-125			
Surrogate: 4-Bromofluorobenzene	0.0284		"	0.0600		47.4	75-125			S-GC
LCS (P7I0108-BS1)				Prepared &	Analyzed	: 09/01/17				
Benzene	0.101	0.00100	mg/kg wet	0.100		101	70-130			
Toluene	0.102	0.00200	"	0.100		102	70-130			
Ethylbenzene	0.0938	0.00100	"	0.100		93.8	70-130			
Xylene (p/m)	0.182	0.00200	"				70-130			
Xylene (o)	0.0817	0.00100	"				70-130			
Surrogate: 4-Bromofluorobenzene	0.0264		"	0.0600		44.0	75-125			S-GC
Surrogate: 1,4-Difluorobenzene	0.0665		"	0.0600		111	75-125			
LCS Dup (P7I0108-BSD1)				Prepared &	Analyzed	: 09/01/17				
Benzene	0.115	0.00100	mg/kg wet	0.100		115	70-130	12.8	20	
Toluene	0.110	0.00200	"	0.100		110	70-130	7.29	20	
Ethylbenzene	0.100	0.00100	"	0.100		100	70-130	6.49	20	
Xylene (p/m)	0.180	0.00200	"				70-130		20	
Xylene (o)	0.0803	0.00100	"				70-130		20	
Surrogate: 1,4-Difluorobenzene	0.0726		"	0.0600		121	75-125			
Surrogate: 4-Bromofluorobenzene	0.0253		"	0.0600		42.2	75-125			S-GC
Matrix Spike (P7I0108-MS1)	So	urce: 7H31004	4-03	Prepared: 0	9/01/17 A	nalyzed: 09	9/02/17			
Benzene	0.124	0.00104	mg/kg dry	0.104	ND	119	80-120			
Toluene	0.123	0.00208	"	0.104	ND	118	80-120			
Ethylbenzene	0.107	0.00104	"	0.104	ND	103	80-120			
Xylene (p/m)	0.179	0.00208	"		ND		80-120			
Xylene (o)	0.0848	0.00104	"		ND		80-120			
Surrogate: 4-Bromofluorobenzene	0.0215		"	0.0625		34.4	75-125			S-GC
Surrogate: 1,4-Difluorobenzene	0.0684		"	0.0625		109	75-125			

Project: Barclay State Battery Spill

13000 West County Road 100

Project Number: 253-8662

Fax: (432) 563-2213

Odessa TX, 79765 Project Manager: Shane Estep

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

Matrix Spike Dup (P710108-MSD1) Source: 7H31004-03 Prepared: 09/01/17 Analyzed: 09/02/17 Sebrate Source: 7H31004-03 Prepared: 09/01/17 Analyzed: 09/02/17 Sebrate Source: 7H31004-03 Prepared: 09/01/17 Analyzed: 09/02/17 Sebrate Source: 7H31004-03 Prepared: 09/01/17 Analyzed: 09/02/17 Prepared: 09/01/17 Analyzed: 09/02/17 Prepared: 09/01/17 Prepar	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Matrix Spike Dup (P710108-MSD1) Source: 7H31004-05 Prepared: 09/01/17 Analyzed: 09/02/17 Benzene 0.125 0.00104 mg/kg dry 0.104 ND 120 80-120 0.846 20 Benzene 0.120 0.00208 " 0.104 ND 915 80-120 2.24 20 Benzene 0.104 0.00104 " 0.104 ND 915 80-120 2.24 20 Eltylybenzene 0.104 0.00104 " 0.104 ND 99.5 80-120 20 Eltylybenzene 0.0845 0.00104 " 0.0625 ND 80-120 20 Eltylophorbenzene 0.0594 " 0.0625 31.2 75-125 Section 75-125 Banke (P710109-BENET) Prepared: 09/01/17 Analyzed: 09/02/17 Benzene ND 0.00100 mg/kg wet 0.00100 10 Eltylybenzene ND 0.00100 " Section 10 Eltylybenzene 0.0630 " 0.0660 37.0 75-125 Section 10 Eltylybenzene 0.0630 " 0.0660 37.0 75-125 Section 10 Eltylybenzene 0.0630 " 0.0660 37.0 75-125 Section 10 Eltylybenzene 0.0640 0.00100 mg/kg wet 0.100 96.4 70-130 Eltylybenzene 0.0964 0.00100 mg/kg wet 0.100 96.4 70-130 Eltylybenzene 0.0964 0.00100 mg/kg wet 0.100 97.5 70-130 Eltylybenzene 0.0692 0.0020 " 0.100 97.5 70-130 Eltylybenzene 0.0640 0.00200 " 0.100 97.5 70-130 Eltylybenzene 0.0640 0.00200 " 0.100 97.5 70-130 Eltylybenzene 0.0640 0.00200 " 0.100 97.5 70-130 Eltylybenzene 0.0662 0.00200 " 0.100 97.5 70-130 Eltylybenzene 0.0662 0.00200 " 0.100 97.5 70-130 Eltylybenzene 0.0662 0.00200 " 0.00000 10 70-130 Eltylybenzene 0.00200 " 0.00200 " 0.00200 10 70-130 Eltylybenzene 0.00200 " 0.00200 " 0.00200 10 70-130 Eltylybenzene 0.00200 " 0.		- cooun	Zinit	Jto	22,01	- tesait					- 10100
Benzene 0.125 0.00104 mg/kg dry 0.104 ND 120 80-120 0.846 20 16 toten 0.120 0.00208 " 0.104 ND 115 80-120 0.846 20 16 toten 0.120 0.00208 " 0.104 ND 115 80-120 2.24 20 16 toten 0.104 0.00104 " 0.104 ND 99.5 80-120 3.47 20 Xylene (p'm) 0.123 0.00208 " ND 80-120 3.47 20 Xylene (p'm) 0.0845 0.00104 " ND ND 80-120 20 Xylene (p'm) 0.0845 0.00104 " ND ND 80-120 20 Xylene (p'm) 0.00845 0.00104 " ND ND 80-120 20 Xylene (p'm) 0.00845 0.00104 " ND ND 80-120 20 Xylene (p'm) 0.00200 " ND ND 80-120 Xylene (p'm) 0.00100 " ND ND 80-120 Xylene (p'm) 0.00100 " ND ND 80-120 Xylene (p'm) ND 0.00200 " ND ND 0.00100 " ND 0.00100					D. 1.0	10/01/17	1 1 00	/02/17			
Toluene 0.120 0.00208 " 0.104 ND 115 80-120 2.24 20 Ethylbenzene 0.104 0.00104 " 0.104 ND 99.5 80-120 3.47 20 Xylene (p/m) 0.123 0.00208 " ND 80-120 20 Xylene (p/m) 0.123 0.00208 " ND 80-120 20 Xylene (p/m) 0.0845 0.00104 " 0.06625 95.1 75-125 Section (GC) Surrogate: 1.4-Diffuorobenzene 0.0195 " 0.0625 95.1 75-125 Section (GC) Blank (P710109 - General Preparation (GC) Blank (P710109 - General Preparation (GC) Blank (P710109 - Herman (GC)					•				0.045	20	
State Color Colo											
ND ND ND ND ND ND ND ND											
ND Solution ND ND ND ND ND ND ND N	•				0.104		99.5		3.47		
Surrogate: 1,4-Diffuorobenzene 0.0594 " 0.0625 95.1 75-125 Section of the control of	* * /										
Surrogate: 1-4-Diffuorobenzene 0.095 " 0.0625 31.2 75-125 Sector	Xylene (o)		0.00104			ND				20	
Prepared: 09/01/17 Analyzed: 09/02/17 Senzene ND 0.00100 mg/kg wet Toluene ND 0.00100 mg/kg wet Senzene ND 0.00200 " Senzene ND 0.00100 " Senzene ND 0.00100 " Senzene ND 0.00100 " Senzene Senzene Senzene 0.0222 " 0.0600 37.0 75-125 Senzene Senzene 0.0630 " 0.0600 105 75-125 Senzene Senzene 0.0630 " 0.0600 105 75-125 Senzene Senzene 0.0964 0.00100 mg/kg wet 0.100 96.4 70-130 Senzene 0.0964 0.00100 mg/kg wet 0.100 97.5 70-130 Senzene 0.0844 0.00100 " 0.100 84.4 70-130 Senzene 0.0844 0.00100 " 0.100 84.4 70-130 Senzene Senzene 0.0844 0.00100 " 0.100 84.4 70-130 Senzene 0.0662 0.00100 " 0.100 0.0000 " 0.100 0.0000 " 0.0000 0.0000 " 0.0000 0.0000 " 0.0000 0.0000 " 0.0000 0.0000 " 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.0000000 0.00000000	Surrogate: 1,4-Difluorobenzene	0.0594		"	0.0625		95.1	75-125			
Prepared: 09/01/17 Analyzed: 09/02/17 Analyze	Surrogate: 4-Bromofluorobenzene	0.0195		"	0.0625		31.2	75-125			S-G
Senzene ND 0.00100 mg/kg wet	Batch P7I0109 - General Preparation (GC)										
Toluene ND 0.00200 " Ethylbenzene ND 0.00200 " Xylene (p/m) ND 0.00200 " Xylene (o) ND 0.00100 " Surrogate: 4-Bromofluorobenzene 0.0222 " 0.0600 37.0 75-125 Sectoragate: 1,4-Difluorobenzene 0.0630 " 0.0600 105 75-125 LCS (P710109-BS1) Prepared: 09/01/17 Analyzed: 09/02/17 Benzene 0.0964 0.00100 mg/kg wet 0.100 96.4 70-130 Toluene 0.0975 0.00200 " 0.100 97.5 70-130 Ethylbenzene 0.0844 0.00100 " 0.100 84.4 70-130 Xylene (p/m) 0.161 0.00200 " 0.100 84.4 70-130 Xylene (p/m) 0.161 0.00200 " 70-130 Xylene (o) 0.0692 0.00100 " 70-130 Xylene (o) 0.0692 0.00100 " 70-130 Xyrogate: 1,4-Difluorobenzene 0.0714 " 0.0600 119 75-125	Blank (P7I0109-BLK1)				Prepared: 0	9/01/17 A	nalyzed: 09	/02/17			
Ethylbenzene ND 0.00100 " Xylene (p/m) ND 0.00200 " Xylene (o) ND 0.00100 " Surrogate: 4-Bromofluorobenzene 0.0222 " 0.0600 37.0 75-125 S-125 Surrogate: 1,4-Difluorobenzene 0.0630 " 0.0600 105 75-125 LCS (P710109-BS1) Prepared: 09/01/17 Analyzed: 09/02/17 Benzene 0.0964 0.00100 mg/kg wet 0.100 96.4 70-130 Toluene 0.0975 0.00200 " 0.100 97.5 70-130 Ethylbenzene 0.0844 0.00100 " 0.100 84.4 70-130 Xylene (p/m) 0.161 0.00200 " 70-130 Xylene (o) 0.0692 0.00100 " 70-130 Surrogate: 1,4-Difluorobenzene 0.0714 " 0.0600 119 75-125	Benzene	ND	0.00100	mg/kg wet							
ND 0.00100 ND 0.00200 ND 0.00100 ND 0.001000 ND 0.00100 ND	Toluene	ND	0.00200	"							
ND 0.00100 "	Ethylbenzene	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene 0.0222 " 0.0600 37.0 75-125 S-0	Xylene (p/m)	ND	0.00200	"							
Surrogate: 1,4-Difluorobenzene 0.0222 0.0000 3.0 73-123 3-0 CSURROGATE: 1,4-Difluorobenzene 0.0630 " 0.0600 105 75-125 LCS (P710109-BS1) Prepared: 09/01/17 Analyzed: 09/02/17 Benzene 0.0964 0.00100 mg/kg wet 0.100 96.4 70-130 Toluene 0.0975 0.00200 " 0.100 97.5 70-130 Ethylbenzene 0.0844 0.00100 " 0.100 84.4 70-130 Xylene (p/m) 0.161 0.00200 " 70-130 Xylene (o) 0.0692 0.00100 " 70-130 Surrogate: 1,4-Difluorobenzene 0.0714 " 0.0600 119 75-125	Xylene (o)	ND	0.00100	"							
Prepared: 09/01/17 Analyzed: 09/02/17	Surrogate: 4-Bromofluorobenzene	0.0222		"	0.0600		37.0	75-125			S-GO
Benzene 0.0964 0.00100 mg/kg wet 0.100 96.4 70-130 Toluene 0.0975 0.00200 " 0.100 97.5 70-130 Ethylbenzene 0.0844 0.00100 " 0.100 84.4 70-130 Xylene (p/m) 0.161 0.00200 " 70-130 Xylene (o) 0.0692 0.00100 " 70-130 Surrogate: 1,4-Difluorobenzene 0.0714 " 0.0600 119 75-125	Surrogate: 1,4-Difluorobenzene	0.0630		"	0.0600		105	75-125			
Toluene 0.0975 0.00200 " 0.100 97.5 70-130 Ethylbenzene 0.0844 0.00100 " 0.100 84.4 70-130 Xylene (p/m) 0.161 0.00200 " 70-130 Xylene (o) 0.0692 0.00100 " 70-130 Surrogate: 1,4-Difluorobenzene 0.0714 " 0.0600 119 75-125	LCS (P7I0109-BS1)				Prepared: 0)9/01/17 Aı	nalyzed: 09	/02/17			
Ethylbenzene 0.0844 0.00100 " 0.100 84.4 70-130 Xylene (p/m) 0.161 0.00200 " 70-130 Xylene (o) 0.0692 0.00100 " 70-130 Surrogate: 1,4-Difluorobenzene 0.0714 " 0.0600 119 75-125	Benzene	0.0964	0.00100	mg/kg wet	0.100		96.4	70-130			
Xylene (p/m) 0.161 0.00200 " 70-130 Xylene (o) 0.0692 0.00100 " 70-130 Surrogate: 1,4-Difluorobenzene 0.0714 " 0.0600 119 75-125	Toluene	0.0975	0.00200	"	0.100		97.5	70-130			
Xylene (phil) 0.161 0.00200 70-130 Xylene (o) 0.0692 0.00100 " 70-130 Surrogate: 1,4-Difluorobenzene 0.0714 " 0.0600 119 75-125	Ethylbenzene	0.0844	0.00100	"	0.100		84.4	70-130			
Surrogate: 1,4-Difluorobenzene 0.0714 " 0.0600 119 75-125	Xylene (p/m)	0.161	0.00200	"				70-130			
	Xylene (o)	0.0692	0.00100	"				70-130			
Surrogate: 4-Bromofluorobenzene 0.0221 " 0.0600 36.9 75-125 S-0	Surrogate: 1,4-Difluorobenzene	0.0714		"	0.0600		119	75-125			
	Surrogate: 4-Bromofluorobenzene	0.0221		"	0.0600		36.9	75-125			S-GO

Project: Barclay State Battery Spill

13000 West County Road 100

Project Number: 253-8662

Fax: (432) 563-2213

Odessa TX, 79765 Project Manager: Shane Estep

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7I0109 - General Preparation (GC)										
LCS Dup (P7I0109-BSD1)				Prepared: 0	09/01/17	Analyzed: 09	9/02/17			
Benzene	0.0996	0.00100	mg/kg wet	0.100		99.6	70-130	3.28	20	
Toluene	0.102	0.00200	"	0.100		102	70-130	4.07	20	
Ethylbenzene	0.0888	0.00100	"	0.100		88.8	70-130	5.03	20	
Xylene (p/m)	0.185	0.00200	"				70-130		20	
Xylene (o)	0.0816	0.00100	"				70-130		20	
Surrogate: 1,4-Difluorobenzene	0.0672		"	0.0600		112	75-125			
Surrogate: 4-Bromofluorobenzene	0.0215		"	0.0600		35.8	75-125			S-GO
Matrix Spike (P7I0109-MS1)	Sou	ırce: 7H31016	5-01	Prepared: 0	09/01/17	Analyzed: 09	9/02/17			
Benzene	0.0610	0.00102	mg/kg dry	0.0510	ND	120	80-120			
Toluene	0.0494	0.00204	"	0.0510	ND	96.9	80-120			
Ethylbenzene	0.0267	0.00102	"	0.0510	ND	52.4	80-120			QM-05
Xylene (p/m)	0.0456	0.00204	"		ND		80-120			
Xylene (o)	0.0219	0.00102	"		ND		80-120			
Surrogate: 4-Bromofluorobenzene	0.0215		"	0.0612		35.1	75-125			S-GO
Surrogate: 1,4-Difluorobenzene	0.0703		"	0.0612		115	75-125			
Matrix Spike Dup (P7I0109-MSD1)	Sou	ırce: 7H31016	5-01	Prepared: 0	09/01/17	Analyzed: 09	9/02/17			
Benzene	0.0634	0.00102	mg/kg dry	0.0510	ND	124	80-120	3.89	20	QM-03
Toluene	0.0522	0.00204	"	0.0510	ND	102	80-120	5.34	20	
Ethylbenzene	0.0323	0.00102	"	0.0510	ND	63.3	80-120	18.8	20	QM-05
Xylene (p/m)	0.0695	0.00204	"		ND		80-120		20	
Xylene (o)	0.0299	0.00102	"		ND		80-120		20	
Surrogate: 1,4-Difluorobenzene	0.0754		"	0.0612		123	75-125			
Surrogate: 4-Bromofluorobenzene	0.0241		"	0.0612		39.3	75-125			S-GO

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

	·	Reporting		Spike	Source	·	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7I0112 - *** DEFAULT PREP ***										
Blank (P7I0112-BLK1)				Prepared: (09/01/17 A	Analyzed: 09	9/05/17			
Chloride	ND	1.00	mg/kg wet							
LCS (P7I0112-BS1)				Prepared: (09/01/17 A	Analyzed: 09	9/05/17			
Chloride	425	1.00	mg/kg wet	400		106	80-120			
LCS Dup (P7I0112-BSD1)				Prepared: (09/01/17 A	Analyzed: 09	9/05/17			
Chloride	425	1.00	mg/kg wet	400		106	80-120	0.00706	20	
Duplicate (P7I0112-DUP1)	Sou	rce: 7H31004	4-01	Prepared: (09/01/17 A	Analyzed: 09	9/05/17			
Chloride	1160	5.56	mg/kg dry		1150			0.308	20	
Duplicate (P7I0112-DUP2)	Sou	rce: 7H31010	0-05	Prepared: (09/01/17 A	Analyzed: 09	9/05/17			
Chloride	10.8	1.06	mg/kg dry		10.6			2.09	20	
Matrix Spike (P7I0112-MS1)	Sou	rce: 7H31004	4-01	Prepared: (09/01/17 A	Analyzed: 09	9/05/17			
Chloride	2320	5.56	mg/kg dry	1110	1150	105	80-120			
Batch P7I0501 - *** DEFAULT PREP ***										
Blank (P710501-BLK1)				Prepared &	& Analyzed	1: 09/05/17				
% Moisture	ND	0.1	%	•	•					
Duplicate (P7I0501-DUP1)	Sou	rce: 7H31004	4-06	Prepared &	& Analyzed	1: 09/05/17				
% Moisture	3.0	0.1	%		3.0			0.00	20	
Duplicate (P7I0501-DUP2)	Sou	rce: 7H31009	9-06	Prepared &	k Analyzed	1: 09/05/17				
% Moisture	1.0	0.1	%		1.0			0.00	20	

Project: Barclay State Battery Spill

13000 West County Road 100

Odessa TX, 79765

Project Number: 253-8662 Project Manager: Shane Estep Fax: (432) 563-2213

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Batch P7I0501 - *** DEFAULT PREP ***	resuit	Ellill	Cinto	Level	resurt	, under	Emits	МЪ	Limit	110103
Duplicate (P7I0501-DUP3)	Sou	rce: 7H31017	7-02	Prepared &	t Analyze	d: 09/05/17				
% Moisture	2.0	0.1	%		2.0			0.00	20	
Batch P7I0613 - *** DEFAULT PREP ***										
Blank (P7I0613-BLK1)				Prepared: (09/06/17	Analyzed: 09	/07/17			
Chloride	ND	1.00	mg/kg wet							
LCS (P7I0613-BS1)				Prepared: (09/06/17	Analyzed: 09	/10/17			
Chloride	404	1.00	mg/kg wet	400		101	80-120			
LCS Dup (P7I0613-BSD1)				Prepared: (09/06/17	Analyzed: 09	/10/17			
Chloride	408	1.00	mg/kg wet	400		102	80-120	1.04	20	
Duplicate (P7I0613-DUP1)	Sou	rce: 7106006-	07	Prepared: (09/06/17	Analyzed: 09	/10/17			
Chloride	5430	27.8	mg/kg dry		5460			0.439	20	
Duplicate (P7I0613-DUP2)	Sou	rce: 7H31004	l-14	Prepared: (09/06/17	Analyzed: 09	/10/17			
Chloride	32.9	1.02	mg/kg dry		32.3			2.00	20	
Matrix Spike (P7I0613-MS1)	Sou	rce: 7106006-	07	Prepared: (09/06/17	Analyzed: 09	/10/17			
Chloride	7620	27.8	mg/kg dry	2220	5460	97.5	80-120			

Odessa TX, 79765

Project: Barclay State Battery Spill

Fax: (432) 563-2213 13000 West County Road 100

Project Number: 253-8662 Project Manager: Shane Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Prepared Analyzed: 09/01/17 C6-C12 ND 25.0 mg/kg wet C7-C12-C28 ND 25.0 mg/kg wet MD 135 70-130 MG/kg wet MD 120 MD MD MD MD MD MD MD M			Reporting		Spike	Source		%REC		RPD	
Prepared Analyzed: 09/01/17 C6-C12 ND 25.0 mg/kg wet C7-C12-C28 ND 25.0 mg/kg wet MD 135 70-130 MG/kg wet MD 120 MD MD MD MD MD MD MD M	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
ND 25.0 mg/kg wet Percent ND 25.0 mg/kg wet Percent	Batch P7I0105 - General Preparation (GC)										
ND 25.0 "	Blank (P7I0105-BLK1)				Prepared &	k Analyzed:	09/01/17				
Surrogate: I-Chlorooctane	C6-C12	ND	25.0	mg/kg wet							
Surrogate: 1-Chlorooctane	>C12-C28	ND	25.0	"							
Surrogate: o-Terphenyl	>C28-C35	ND	25.0	"							
	Surrogate: 1-Chlorooctane	135		"	100		135	70-130			S-GC
1040 25.0 mg/kg wet 1000 104 75-125	Surrogate: o-Terphenyl	64.4		"	50.0		129	70-130			
1080 25.0 1090 108 75-125 1090 108 75-125 1090 115 70-130 1090 115 70-130 1090 115 70-130 1090 115 70-130 1090 115 70-130 1090	LCS (P7I0105-BS1)				Prepared &	t Analyzed:	: 09/01/17				
Surrogate: 1-Chlorooctane	C6-C12	1040	25.0	mg/kg wet	1000		104	75-125			
Surrogate: o-Terphenyl	>C12-C28	1080	25.0	"	1000		108	75-125			
Prepared & Analyzed: 09/01/17	Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
C6-C12	Surrogate: o-Terphenyl	48.8		"	50.0		97.6	70-130			
Surrogate: 1-Chlorooctane 120 " 1000 113 75-125 4.38 20	LCS Dup (P7I0105-BSD1)				Prepared &	k Analyzed:	09/01/17				
Surrogate: 1-Chlorooctane 120	C6-C12	1060	25.0	mg/kg wet	1000		106	75-125	1.95	20	
Surrogate: 0-Terphenyl Source: 7H31004-08 Prepared & Analyzed: 09/01/17	>C12-C28	1130	25.0	"	1000		113	75-125	4.38	20	
Matrix Spike (P7I0105-MS1) Source: 7H31004-08 Prepared & Analyzed: 09/01/17 C6-C12 941 25.3 mg/kg dry 1010 20.8 91.1 75-125 >C12-C28 1200 25.3 " 1010 42.7 114 75-125 Surrogate: I-Chlorooctane 126 " 101 124 70-130 Surrogate: o-Terphenyl 60.1 " 50.5 119 70-130 Matrix Spike Dup (P7I0105-MSD1) Source: 7H31004-08 Prepared & Analyzed: 09/01/17 Value of the control	Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: 1-Chlorooctane 941 25.3 mg/kg dry 1010 20.8 91.1 75-125	Surrogate: o-Terphenyl	50.6		"	50.0		101	70-130			
Surrogate: I-Chlorooctane 126	Matrix Spike (P7I0105-MS1)	Sou	rce: 7H3100	4-08	Prepared &	k Analyzed:	09/01/17				
Surrogate: I-Chlorooctane 126 " 101 124 70-130 Surrogate: o-Terphenyl 60.1 " 50.5 119 70-130 Matrix Spike Dup (P7I0105-MSD1) Source: 7H31004-08 Prepared & Analyzed: 09/01/17 C6-C12 912 25.3 mg/kg dry 1010 20.8 88.2 75-125 3.19 20 >C12-C28 1130 25.3 " 1010 42.7 108 75-125 6.24 20 Surrogate: I-Chlorooctane 108 " 101 107 70-130	C6-C12	941	25.3	mg/kg dry	1010	20.8	91.1	75-125			
Matrix Spike Dup (P7I0105-MSD1) Source: 7H31004-08 Prepared & Analyzed: 09/01/17 C6-C12 912 25.3 mg/kg dry 1010 20.8 88.2 75-125 3.19 20 >C12-C28 1130 25.3 " 1010 42.7 108 75-125 6.24 20 Surrogate: 1-Chlorooctane 108 " 101 107 70-130	>C12-C28	1200	25.3	"	1010	42.7	114	75-125			
Matrix Spike Dup (P710105-MSD1) Source: 7H31004-08 Prepared & Analyzed: 09/01/17 C6-C12 912 25.3 mg/kg dry 1010 20.8 88.2 75-125 3.19 20 >C12-C28 1130 25.3 " 1010 42.7 108 75-125 6.24 20 Surrogate: 1-Chlorooctane 108 " 101 107 70-130	Surrogate: 1-Chlorooctane	126		"	101		124	70-130			
C6-C12 912 25.3 mg/kg dry 1010 20.8 88.2 75-125 3.19 20 >C12-C28 1130 25.3 " 1010 42.7 108 75-125 6.24 20 Surrogate: 1-Chlorooctane 108 " 101 107 70-130	Surrogate: o-Terphenyl	60.1		"	50.5		119	70-130			
C6-C12 912 25.3 mg/kg dry 1010 20.8 88.2 75-125 3.19 20 >C12-C28 1130 25.3 " 1010 42.7 108 75-125 6.24 20 Surrogate: 1-Chlorooctane 108 " 101 107 70-130	Matrix Spike Dup (P7I0105-MSD1)	Sou	rce: 7H3100	4-08	Prepared &	k Analyzed:	: 09/01/17				
Surrogate: 1-Chlorooctane 108 " 101 107 70-130	C6-C12	912	25.3	mg/kg dry	1010	20.8	88.2	75-125	3.19	20	
surrogate. 1-Cnioroociane 108 101 107 /0-130	>C12-C28	1130	25.3	"	1010	42.7	108	75-125	6.24	20	
Surrogate: o-Terphenyl 56.7 " 50.5 112 70-130	Surrogate: 1-Chlorooctane	108		"	101		107	70-130			
	Surrogate: o-Terphenyl	56.7		"	50.5		112	70-130			

Project: Barclay State Battery Spill

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 253-8662

Project Manager: Shane Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

	5 1	Reporting	** **	Spike	Source	A/DEC	%REC	DDD	RPD	NT 1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7I0106 - General Preparation (GC)										
Blank (P7I0106-BLK1)				Prepared &	Analyzed:	09/01/17				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	130		"	100		130	70-130			
Surrogate: o-Terphenyl	59.7		"	50.0		119	70-130			
LCS (P7I0106-BS1)				Prepared &	Analyzed:	: 09/01/17				
C6-C12	1030	25.0	mg/kg wet	1000		103	75-125			
>C12-C28	1170	25.0	"	1000		117	75-125			
Surrogate: 1-Chlorooctane	125		"	100		125	70-130			
Surrogate: o-Terphenyl	59.5		"	50.0		119	70-130			
LCS Dup (P7I0106-BSD1)				Prepared &	Analyzed:	: 09/01/17				
C6-C12	1090	25.0	mg/kg wet	1000		109	75-125	6.32	20	
>C12-C28	1160	25.0	"	1000		116	75-125	0.973	20	
Surrogate: 1-Chlorooctane	126		"	100		126	70-130			
Surrogate: o-Terphenyl	66.1		"	50.0		132	70-130			S-GO
Matrix Spike (P7I0106-MS1)	Sou	ırce: 7H31004	1-19	Prepared: (09/01/17 A	nalyzed: 09	9/02/17			
C6-C12	897	26.0	mg/kg dry	1040	23.7	83.8	75-125			
>C12-C28	1200	26.0	"	1040	21.9	113	75-125			
Surrogate: 1-Chlorooctane	136		"	104		131	70-130			S-GC
Surrogate: o-Terphenyl	52.3		"	52.1		100	70-130			
Matrix Spike Dup (P7I0106-MSD1)	Sou	ırce: 7H31004	1 -19	Prepared: (09/01/17 A	nalyzed: 09	9/02/17			
C6-C12	960	26.0	mg/kg dry	1040	23.7	89.9	75-125	7.01	20	
>C12-C28	1170	26.0	"	1040	21.9	111	75-125	1.94	20	
Surrogate: 1-Chlorooctane	119		"	104		114	70-130			
Surrogate: o-Terphenyl	55.6		"	52.1		107	70-130			

13000 West County Road 100Project Number:253-8662Odessa TX, 79765Project Manager:Shane Estep

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate. QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable. DET Analyte DETECTED Analyte NOT DETECTED at or above the reporting limit ND Not Reported NR Sample results reported on a dry weight basis dry Relative Percent Difference RPD LCS Laboratory Control Spike MS Matrix Spike Dup Duplicate

	Dren	Darlor		
Report Approved By:			Date:	9/11/2017

D AR

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

12800 W. Hwy 80 E Odessa, Texas 79765 Phone: 432-563-2200 Fax: 432-563-2213

> Bill to Linn Operating CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

p.1 of 2

Company Name: Project Manager: Etech Environmental & Safety Solutions, Inc. Shane Estep

City/State/Zip: Company Address: P.O. Box 8469 Midland, Texas 79708

email:shane@etechenv.com;

Sampler Signature: Thoras Joseph Joseph geoff@etechenv.com

Area: EDDY CO; NM PO#:

M Eng	Start Stam	Special Instructions:	 	7	Ŋ				707		00	20		200	02	6	LAB#(lab use only)		ORDER#: ヘル	(lab use only)	
5 1931/17 7:47	Date				Auger Hole	Auger Hole	Auger Hole 3	Auger Hole	Auger Hole 2	Auger Hole	FIELD CODE		グライ								
Time	ime a				ω	ω	3	ω	2	2	2	2	<u></u>	1	н	Ъ	Start Depth				
\ Zec	Received	D			36"	24"	12"	6"	36"	24"	12"	6"	36"	24"	12"	6"	End Depth	P			
Received by:	M 55 M				8/29/2017	1 8/29/2017	8/29/2017	8/29/2017	8/29/2017	8/29/2017	' 8/29/2017	8/29/2017	8/29/2017	1 8/29/2017	8/29/2017	8/29/2017	Date Sampled	Preservation & # of Containers			
	7				1:00	12:55	12:50	12:45	12:40	12:35	12:30	12:25	12:20	12:15	12:10	12:05	Time Sampled	Containers			
					1	1	1	1	1	1	1	1	1	1	1	1	No. of Containers				
							\boxtimes			\boxtimes			\boxtimes				lce				
1			牌] [HNO₃ HCl				
			H							무							H ₂ SO ₄	ı			
																	NaOH				
																	Na ₂ S ₂ O ₃	Ì			
∞	8]															None				
ジ 婦	31 Date																Other (Specify)				Repo
8:3118:30					S	S	S	S	S	S	S	S	S	S	S	S	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Soild NP=Non-PotableSpecify Other	Matrix			Report Format: STANDARD: 🛛
ويتن					\boxtimes	\boxtimes			\boxtimes	☒	☒	\boxtimes	\boxtimes	\boxtimes	\boxtimes	×	TPH: 418.1 8015M 1005 10	06			ST/
	1																Cations (Ca, Mg, Na, K)				ŃDA
emp	Samp Samp Sarb	Oct abo															Anions (Cl, SO4, CO3, HCO3)	-	0.	٦	RD.
erati	y Sa ∓ y Say	rato SFre															SAR / ESP / CEC	٦	TATO	TCLP:	
ure c	eals eals and I	ontal e of															Metals: As Ag Ba Cd Cr Pb Hg Se	2			넒
Temperature Upon Receipt: 70 NC	Custody seals on container(s) Custody seals on cooler(s) Custody seals on cooler(s) Sample Hand Delivered Sar by Sampler/Client Rep. ? Sar by Courier? UPS D	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?															Volatiles	T			RRP:
R ec	ered ent R	mei Inta					回										Semi volatiles	1			<u>∵</u> □ Analyze
eipt	Sep sine	nts:			\boxtimes	\boxtimes	⋈	\boxtimes		⊠	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	BTEX 8021B/5030 or BTEX 8260	0			7 _
	기년 ? (s)																RCI	Ţ		\Box	FOR NPD
6	. E. 18 18 18 18 18 18 18 18 18 18 18 18 18	333															N.O.R.M.	1	-	_	NPDES:
Ø		$\mathbb{Z}_{\mathbb{Z}}$		므													Chlorides	\downarrow	· 1	4	
Z		゚゚゚゚ヺ゚	붜	님		붜			붜	붜		ᆜ	님	믬				+		\dashv	
C.				믬	-	님		니	니								RUSH TAT(Pre-Schedule) 24, 4	 8∷3	72 h	s	
ŏĮV	ne z z z z sta			퓜											⋈	□		-, '		_	
a Baa			لِسا	ليا							Ľ¥.						STANDARD TAT	-	-		-

Project Name: BARCLAY STATE BATTERY SPILL

Project #: 253-8662 Project Loc: LINN ENERGY 8,20 Page 31 of 32

12800 W. Hwy 80 E Odessa, Texas 79765 Etech Environmental & Safety Solutions, Inc.

Phone: 432-563-2200 Fax: 432-563-2213

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

P. 2 of 2

Company Name: Project Manager: Company Address: P.O. Box 8469 Etech Environmental & Safety Solutions, Inc. **Shane Estep**

Sampler Signature: THORE LENGTH City/State/Zip: Midland, Texas 79708

email:shane@etechenv.com; geoff@etechenv.com

Project #: 253-8662 Project Loc: LINN ENERGY Project Name: BARCLAY STATE BATTERY SPILL 8, 20,1 Area: EDDY CO; NM PO#:

LAB # (fab use only)	Preservation & # of Containers	Preservation & # of Containers				
Auger Hole 4 Auger Hole 4 Auger Hole 4 Auger Hole 4 Auger Hole 5 Au	Preservation & # of Containers	Preservation & # of Containers				
Auger Hole 4 Auger Hole 4 Auger Hole 4 Auger Hole 4 Auger Hole 5 Auger Hole 6 Beceived by: Date Received by: Received by: Received by: Received by: Received by: Received by: Auger Hole 5 Auger Hole 5 Auger Hole 5 Auger Hole 6 Beceived by: Auger Hole 5 Auger Hole 5 Auger Hole 6 Beceived by: Auger Hole 5 Auger Hole 6 Beceived by: Auger Hole 6 Beceived by: Auger Hole 7 Beceived by: Auger Hole 7 Beceived by: Auger Hole 7 Beceived by: Auger Hole 8 Beceived by: Auger Hole 9 Beceived by: Auger Hol	Preservation & # of Containers	Preservation & # of Containers				
Start Depth	Preservation & # of Containers	Preservation & # of Containers				
1	Preservation & # of Containers	Preservation & # of Containers				
1	eservation & # of Containers	eservation & # of Containers				
	Containers	Containers				
	1					
	-		I			
		. 1				
	1		ŀ			
	7					٠.
None None]		ľ			
	4					
Other (Specify)						
S S S S S S S S S S S S S S S S S S S	Matrix	Matrix		-		· ·
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	100	.006	1			
Cations (Ca, Mg, Na, K)			1			
Anions (Cl, SO4, CO3, HCC SAR/ESP/CEC SAR/ESP/CEC SAR/ESP/CEC SAR/ESP/CEC Outstody seals on containers intect; Sample Containers intect; Outstody seals on containers intection.)3))] ;	TOTAL	TC	
SAR/ESP/CEC			i	₽	TCLP:	ļ
Metals: As Ag Ba Cd Cr Pb H	lg Se	Se	[
yolatiles			[12
Semi volatiles			[1 1 1 1 1 1
Anions (Cl, SO4, CO3, HCC SAR/ESP/CEC SAR/ESP/CEC SAR/ESP/CEC SAR/ESP/CEC SAR/ESP/CEC SAR/ESP/CEC SAR/ESP/CEC Outstody seals on containers intactors Sar by Sample Comments Sar by Sample Containers intactors Sar by Sample Containers Semi volatiles RCI RCI RCI RCI	3260	60	[
	-	_	L			֓֓֞֜֜֜֜֓֓֓֓֓֓֜֜֜֜֜֓֓֓֡֜֜֜֜֡֡֡֡֡֡֡֡֡֡֡֡֡
N.U.R.W.			L		:	1
		<u> </u>	Ļ			1
	- 1-	<u> </u>	+	_		1
2]	70 -		
ZZZZZZ	Se 144	. 48	, C	.zn	15	