|                                   |                       | SI                        | E INFORM              | ATION             |                                                                                                 |  |  |  |
|-----------------------------------|-----------------------|---------------------------|-----------------------|-------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| Report Type: Work Plan 2RP-4128   |                       |                           |                       |                   |                                                                                                 |  |  |  |
| General Site Info                 | ormation:             |                           |                       |                   |                                                                                                 |  |  |  |
| Site:                             |                       | Barn Owl Fe               | deral #2H             |                   |                                                                                                 |  |  |  |
| Company:                          |                       | COG Operati               | ng LLC                |                   |                                                                                                 |  |  |  |
| Section, Townsl                   | hip and Range         | Unit B                    | Sec. 19               | T 26S             | R 27E                                                                                           |  |  |  |
| Lease Number:                     | · ·                   | API No. 30-0 <sup>2</sup> | 15-42472              |                   |                                                                                                 |  |  |  |
| County:                           |                       | Eddy County               | 1                     |                   |                                                                                                 |  |  |  |
| GPS:                              |                       |                           | 32.0336952º N         |                   | 104.2253418º W                                                                                  |  |  |  |
| Surface Owner:                    |                       | Federal                   |                       |                   |                                                                                                 |  |  |  |
| Mineral Owner:                    |                       |                           |                       |                   |                                                                                                 |  |  |  |
| Directions:                       |                       |                           | onto lease rd for 1.9 |                   | Rd, travel west on Whites City Rd for approx 7.8 est onto lease rd for 1.25 mi, turn south onto |  |  |  |
| Release Data:                     |                       |                           |                       |                   |                                                                                                 |  |  |  |
| Date Released:                    |                       | 2/23/2017                 |                       |                   |                                                                                                 |  |  |  |
| Type Release:                     |                       | Oil & Produce             | d Water               |                   |                                                                                                 |  |  |  |
| Source of Contar                  | nination:             | Wellhead                  |                       |                   |                                                                                                 |  |  |  |
| Fluid Released: 0.5 bbl oil & 5   |                       |                           | bbl water             |                   |                                                                                                 |  |  |  |
| Fluids Recovered: 0 bbl oil & 4.5 |                       |                           |                       |                   |                                                                                                 |  |  |  |
| Official Commu                    | nication:             |                           |                       |                   |                                                                                                 |  |  |  |
| Name:                             | Robert McNeil         |                           |                       |                   | Ike Tavarez                                                                                     |  |  |  |
|                                   |                       | <u> </u>                  |                       |                   | Tetra Tech                                                                                      |  |  |  |
| Company:                          | COG Operating, LI     |                           |                       |                   |                                                                                                 |  |  |  |
| Address:                          | One Concho Cente      |                           |                       |                   | 4000 N. Big Spring                                                                              |  |  |  |
|                                   | 600 W. Illinois Ave   |                           |                       |                   | Ste 401                                                                                         |  |  |  |
| City:                             | Midland Texas, 79     | 701                       |                       |                   | Midland, Texas                                                                                  |  |  |  |
| Phone number:                     | (432) 686-3023        |                           |                       |                   | (432) 687-8110                                                                                  |  |  |  |
| Fax:                              | (432) 684-7137        |                           |                       |                   |                                                                                                 |  |  |  |
| Email:                            | rmcneil@concho        | resources com             |                       |                   | Ike.Tavarez@tetratech.com                                                                       |  |  |  |
| Ranking Criteria                  | -                     |                           |                       |                   |                                                                                                 |  |  |  |
| Depth to Groundv                  | vater:                |                           | Ranking Score         |                   | Site Data                                                                                       |  |  |  |
| < <u>50 ft</u>                    |                       |                           | 20                    |                   | <50                                                                                             |  |  |  |
| 50-99 ft                          |                       |                           | 10                    |                   |                                                                                                 |  |  |  |
| >100 ft.                          |                       |                           | 0                     |                   |                                                                                                 |  |  |  |
|                                   | -                     |                           |                       |                   |                                                                                                 |  |  |  |
| WellHead Protect                  |                       | ç,                        | Ranking Score         |                   | Site Data                                                                                       |  |  |  |
| ,                                 | 000 ft., Private <200 |                           | 20<br><b>0</b>        |                   | 0                                                                                               |  |  |  |
| water Source >1,0                 | 000 ft., Private >200 |                           | U                     |                   | U                                                                                               |  |  |  |
| Surface Body of V                 | Vater:                |                           | Ranking Score         |                   | Site Data                                                                                       |  |  |  |
| <200 ft.                          |                       |                           | 20                    |                   |                                                                                                 |  |  |  |
| 200 ft - 1,000 ft.                |                       |                           | 10                    |                   |                                                                                                 |  |  |  |
| >1,000 ft.                        |                       |                           | 0                     |                   | 0                                                                                               |  |  |  |
|                                   |                       |                           |                       |                   |                                                                                                 |  |  |  |
| To                                | tal Ranking Score     | :                         | 20                    |                   |                                                                                                 |  |  |  |
|                                   |                       |                           | ble Soil RRAL (n      |                   | ]                                                                                               |  |  |  |
|                                   |                       |                           |                       |                   |                                                                                                 |  |  |  |
|                                   |                       | Benzene<br>10             | Total BTEX<br>50      | <b>TPH</b><br>100 |                                                                                                 |  |  |  |



June 18, 2018

Mike Bratcher Environmental Engineer Specialist Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico, 88210

# Re: Work Plan for the COG Operating LLC., Barn Owl Federal #2H, Unit B, Section 19, Township 26 South, Range 27 East, Eddy County, New Mexico. 2RP-4128.

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating LLC., (COG) to evaluate and assess a release that occurred at Barn Owl Federal #2H, Unit B, Section 19, Township 26 South, Range 27 East, Eddy County, New Mexico (Site). The spill site coordinates are N 32.0336952°, W 104.2253418°. The site location is shown on Figures 1 and 2.

#### Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on February 23, 2017, and released approximately 0.5 barrels of oil and 5 barrels of produced water due to a packing blowout at the stuffing box. A vacuum truck was used to remove all freestanding fluids and recovered approximately 4.5 bbls of produced water and none of the oil. The release occurred on the pad area and measured approximately 20' x 55'. The initial C-141 Form is included in Appendix A.

#### Groundwater

No wells are listed within Section 19 in the New Mexico Office of the State Engineers database, USGS National Water Information System, or the Geology and Groundwater Resources of Eddy County, New Mexico (Report 3). The nearest well listed is in Section 07, with a reported depth to water of 18 feet below surface. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in the area is less than 50' below surface. The groundwater data is shown in Appendix B.



#### Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 100 mg/kg.

#### **Soil Assessment and Analytical Results**

#### Initial Trench Sampling

On March 21, 2017, COG personnel were onsite to evaluate and sample the release area. One sample trench (T-1) was installed in the release area to a total depth of 7.0' below surface. For horizontal extents, four (4) sample trenches (North, South, East, and West) were installed outside of the release footprint to total depths between 3.0' and 4.0' below surface. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The sampling results are summarized in Table 1. The trench locations are shown on Figure 3.

Referring to Table 1, none of the samples analyzed for TPH, benzene, or total BTEX exceeded the RRALs. However, the area of trench (T-1) showed elevated chloride concentrations, with a chloride high of 10,500 mg/kg at 1.0' below surface. The chloride concentrations declined to 703 mg/kg at 6.0' before spiking to 2,520 mg/kg at 7.0' below surface and not vertically defined. The area of trench (South) showed a chloride high of 1,070 mg/kg at surface, which decline with depth to 47.7 mg/kg at 1.0' below surface. The remaining areas of trenches (North, East, and West) showed minimal chloride concentrations in the shallow soils.

#### Additional Trench Sampling

Based on the laboratory data, ASSI personnel were onsite on October 12, 2017, to confirm and attempt to define the chloride concentrations in the areas of trenches (T-1 and South). ASSI personnel installed one sample trench (T-1A) in the area of T-1 to a total depth of 6.0' below surface. A confirmation surface sample (South 1A) was also collected in trench (South). Additionally, one background trench (Background) was installed in the adjacent pasture to a total depth of 4.0' below surface to evaluate the native soils. The samples were analyzed for chlorides by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The sampling results are summarized in Table 1. The trench locations are shown on Figure 3.



Referring to Table 1, the area of trench (T-1A) showed chloride concentrations below the laboratory reporting limits at surface, which then increased with depth to 891 mg/kg at 6.0' below surface. The surface sample collected at (South 1A) showed a chloride concentration of 1.53 mg/kg. The area of trench (Background) showed chloride concentrations ranging from 1.52 mg/kg (3.0') to 33.2 mg/kg (surface).

#### Borehole Installation

Based on the laboratory data, Tetra Tech personnel were onsite on November 20, 2017, to install one borehole (BH-1) in the area of trench (T-1) to a total depth of 29'-30' below surface in order to vertically define the chloride concentrations. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The sampling results are summarized in Table 1. The borehole location is shown on Figure 3.

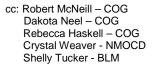
Referring to Table 1, the samples showed shallow impact to the area. The area of borehole (BH-1) showed a chloride high of 9,920 mg/kg at 0-1'and declined with depth to 714 mg/kg at 6.0'-7.0'. The bottom hole sample at 29'-30' showed a chloride concentration of 85.7 mg/kg. Additionally, the sample collected at 9-10' showed TPH, benzene, and total BTEX concentrations below the laboratory reporting limits.

#### Work Plan

Based on the laboratory results, COG proposes to remove the chloride impacted soils as shown on Figure 4 and highlighted (green) on Table 1. The area of trench (T-1) will be excavated to approximately 4.0' below surface to remove the chloride impacted soils. The excavation will then be backfilled with clean material to surface grade. All of the excavated material will be transported offsite for proper disposal.

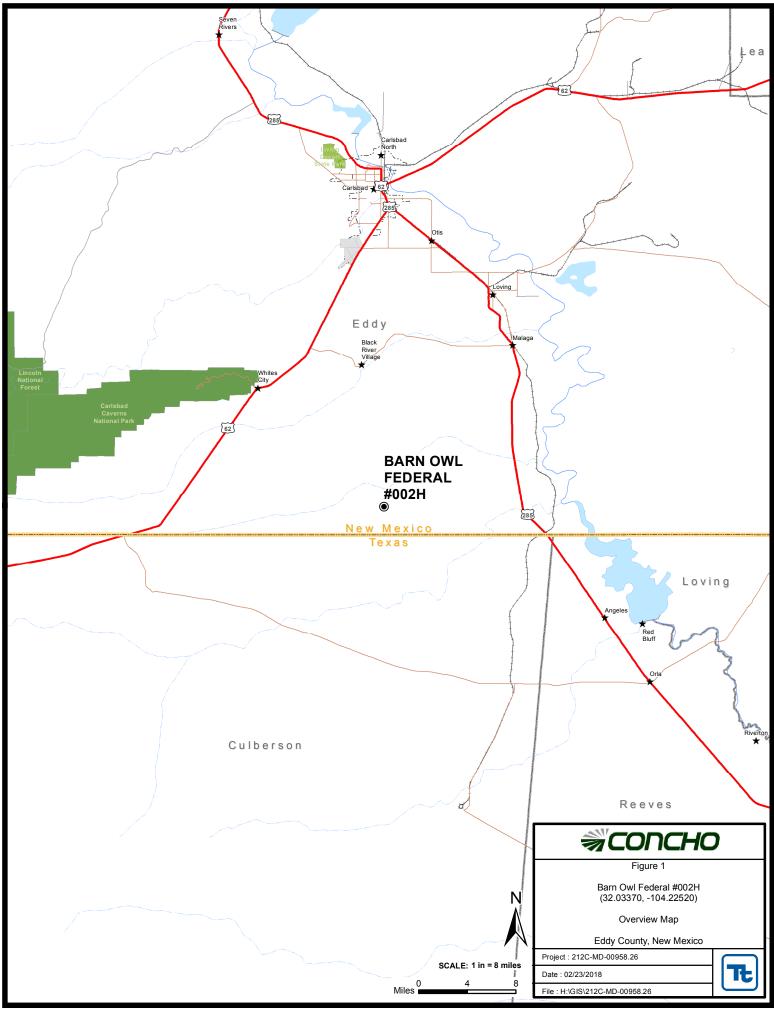
The proposed excavation depths may not be reached due to wall cave ins and safety concerns for onsite personnel. In addition, impacted soil around oil and gas equipment, structures or lines may not be feasible or practicable to be removed due to safely concerns for onsite personnel. As such, COG will excavate the impacted soils to the maximum extent practicable.



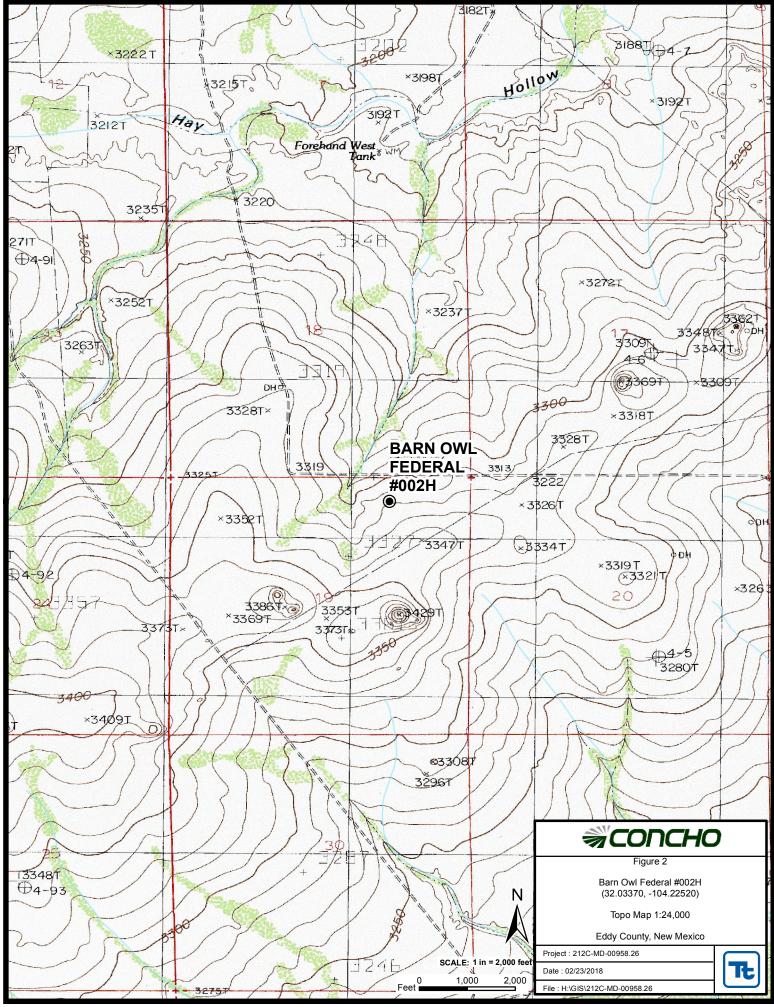

#### Conclusion

Upon completion, a final report detailing the remediation activities will be submitted to the NMOCD. If you have any questions or comments concerning the assessment or the proposed remediation activities for this site, please call at (432) 682-4559.

Respectfully submitted, TETRA TECH


longalos

Clair Gonzales, Project Manager




Ike Tavarez, Senior Project Manager, P.G.

# Figures



Mapped By: Isabel Marmolejo



Mapped By: Isabel Marmolejo





# Tables

# Table 1COG Operating LLC.Barn Owl Federal #2HEddy County, New Mexico

|           |             | Sample     | Soil    | Status  |        | TPH (   | mg/kg)  |       | Benzene  | Toluene  | Ethlybenzene | Xylene   | Total BTEX | Chloride |
|-----------|-------------|------------|---------|---------|--------|---------|---------|-------|----------|----------|--------------|----------|------------|----------|
| Sample ID | Sample Date | Depth (ft) | In-Situ | Removed | C6-C10 | C10-C28 | C28-C35 | Total | (mg/kg)  | (mg/kg)  | (mg/kg)      | (mg/kg)  | (mg/kg)    | (mg/kg)  |
| T-1       | 3/21/2017   | Surface    | Х       |         | <15.0  | <15.0   | -       | <15.0 | <0.00152 | <0.00203 | <0.00203     | <0.00203 | <0.00152   | 9,950    |
|           | "           | 1          | Х       |         | <15.0  | <15.0   | -       | <15.0 | <0.00149 | <0.00199 | <0.00199     | <0.00199 | <0.00152   | 10,500   |
|           | "           | 2          | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 9,760    |
|           | "           | 3          | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 5,620    |
|           | н           | 4          | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 2,050    |
|           | "           | 6          | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 703      |
|           | II          | 7          | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 2,520    |
| T-1A      | 10/12/2017  | Surface    | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | <49.4    |
|           | "           | 1          | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | <49.2    |
|           | п           | 2          | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 10.3     |
|           | н           | 3          | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 55.9     |
|           | н           | 4          | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 298      |
|           | н           | 5          | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 895      |
|           | "           | 6          | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 891      |
| BH-1      | 11/20/2017  | 0-1        | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 9,920    |
|           | "           | 2-3        | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 8,400    |
|           | "           | 4-5        | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 1,820    |
|           | "           | 6-7        | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 714      |
|           | "           | 9-10       | Х       |         | <25.0  | <25.0   | <25.0   | <25.0 | <0.00199 | <0.00199 | <0.00199     | <0.00199 | <0.00199   | <49.1    |
|           | "           | 14-15      | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 105      |
|           | "           | 19-20      | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 105      |
|           | "           | 24-25      | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 104      |
|           | "           | 29-30      | Х       |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 85.7     |

# Table 1COG Operating LLC.Barn Owl Federal #2HEddy County, New Mexico

| Commissio  | Commis Data | Sample     | ple Soil Status |         |        | TPH (   | (mg/kg) |       | Benzene  | Toluene  | Ethlybenzene | Xylene   | Total BTEX | Chloride |
|------------|-------------|------------|-----------------|---------|--------|---------|---------|-------|----------|----------|--------------|----------|------------|----------|
| Sample ID  | Sample Date | Depth (ft) | In-Situ         | Removed | C6-C10 | C10-C28 | C28-C35 | Total | (mg/kg)  | (mg/kg)  | (mg/kg)      | (mg/kg)  | (mg/kg)    | (mg/kg)  |
| North      | 3/21/2017   | Surface    | Х               |         | <15.0  | 43.8    | -       | 43.8  | <0.00265 | <0.00353 | <0.00353     | <0.00353 | <0.00265   | 40.2     |
|            | "           | 1          | Х               |         | <14.9  | <14.9   | -       | <14.9 | <0.00150 | <0.00200 | <0.00200     | <0.00200 | <0.00265   | 13.5     |
|            | "           | 2          | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 63.0     |
|            | II          | 3          | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 173      |
| South      | 3/21/2017   | Surface    | Х               |         | <14.9  | 57.9    | -       | 57.9  | <0.00283 | <0.00377 | <0.00377     | <0.00377 | <0.00283   | 1,070    |
|            | "           | 1          | Х               |         | <15.0  | <15.0   | -       | <15.0 | <0.00150 | <0.00200 | <0.00200     | <0.00200 | <0.00150   | 47.7     |
|            | "           | 2          | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | <10.0    |
|            | н           | 3          | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 27.1     |
| South 1A   | 10/12/2017  | Surface    | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 1.53     |
| East       | 3/21/2017   | Surface    | Х               |         | <15.0  | <15.0   | -       | <15.0 | <0.00151 | <0.00202 | <0.00202     | <0.00202 | <0.00151   | 179      |
|            | "           | 1          | Х               |         | <15.0  | <15.0   | -       | <15.0 | <0.00151 | <0.00202 | <0.00202     | <0.00202 | <0.00151   | 204      |
|            | "           | 2          | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 156      |
|            | "           | 3          | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 168      |
| West       | 3/21/2017   | Surface    | Х               |         | <15.0  | <15.0   | -       | <15.0 | <0.00152 | <0.00202 | <0.00202     | <0.00202 | <0.00152   | 161      |
|            | "           | 1          | Х               |         | <15.0  | <15.0   | -       | <15.0 | <0.00149 | <0.00199 | <0.00199     | <0.00199 | <0.00149   | 31.8     |
|            | "           | 2          | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 17.9     |
|            | н           | 3          | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 15.4     |
| Background | 10/12/2017  | Surface    | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 33.2     |
|            | II          | 1          | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 3.20     |
|            | "           | 2          | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 1.90     |
|            | II          | 3          | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 1.52     |
|            | "           | 4          | Х               |         | -      | -       | -       | -     | -        | -        | -            | -        | -          | 5.52     |

# Photos

COG Operating LLC Barn Owl Federal #2H Eddy County, New Mexico



View North – Area of BH-1



View West – Area of BH-1

# Appendix A

C D

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1 ...

| <b>Release Not</b> | ification an | d Corrective | Action |
|--------------------|--------------|--------------|--------|
|--------------------|--------------|--------------|--------|

|                                            |               | <b>OPERATOR</b> | 🛛 Initial Report | Final Report |
|--------------------------------------------|---------------|-----------------|------------------|--------------|
| Name of Company: COG Operating I           | LLC           | Contact:        | Robert McNeill   |              |
| Address: 600 West Illinois Avenue, Midland | Telephone No. | 432-683-7443    |                  |              |
| Facility Name: Barn Owl Federal #002H      |               | Facility Type:  | Wellhead         |              |
|                                            |               |                 |                  |              |
| Surface Owner: Federal                     | Mineral Owner | r:              | API No. 30-0     | 15-42472     |

#### LOCATION OF RELEASE

| Unit Letter | Section | Township | Range | Feet from the | North/South Line | Feet from the | East/West Line | County |  |
|-------------|---------|----------|-------|---------------|------------------|---------------|----------------|--------|--|
| В           | 19      | 26S      | 27Ē   | 520           | North            | 1450          | East           | Eddy   |  |

Latitude 32.0336952 Longitude -104.2253418

# NATURE OF RELEASE

| Type of Release:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Volume of Release:                     | Volume Recovered:                      |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|--|--|--|--|--|--|--|
| Oil and Produced Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5 bbls Oil & 5 bbls PW               | 0 bbls Oil & 4.5 bbls PW               |  |  |  |  |  |  |  |
| Source of Release:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date and Hour of Occurrence:           | Date and Hour of Discovery:            |  |  |  |  |  |  |  |
| Weilhead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | February 23, 2017 9:00 am              | February 23, 2017 9:00 am              |  |  |  |  |  |  |  |
| Was Immediate Notice Given?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | If YES, To Whom?                       |                                        |  |  |  |  |  |  |  |
| 🛄 Yes 🛛 No 🖾 Not Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                        |  |  |  |  |  |  |  |
| By Whom?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date and Hour:                         |                                        |  |  |  |  |  |  |  |
| Was a Watercourse Reached?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | If YES, Volume Impacting the Wa        | tercourse.                             |  |  |  |  |  |  |  |
| 🗌 Yes 🛛 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                        |  |  |  |  |  |  |  |
| If a Watercourse was Impacted, Describe Fully.*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • • • • • •                          |                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |  |  |  |  |  |  |  |
| Describe Cause of Problem and Remedial Action Taken.*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |  |  |  |  |  |  |  |
| There was a packing blowout from the stuffing box. The pumping unit was shut down and the packing was replaced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |  |  |  |  |  |  |  |
| Describe Area Affected and Cleanup Action Taken.*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |  |  |  |  |  |  |  |
| The release occurred on the pad. A vacuum truck was dispatched to remov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                        |  |  |  |  |  |  |  |
| any possible impact from the release and we will present a remediation we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ork plan to the NMOCD for approval     | prior to any significant remediation   |  |  |  |  |  |  |  |
| activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                        |  |  |  |  |  |  |  |
| I hereby certify that the information given above is true and complete to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                        |  |  |  |  |  |  |  |
| regulations all operators are required to report and/or file certain release n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                        |  |  |  |  |  |  |  |
| public health or the environment. The acceptance of a C-141 report by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                        |  |  |  |  |  |  |  |
| should their operations have failed to adequately investigate and remediat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                        |  |  |  |  |  |  |  |
| or the environment. In addition, NMOCD acceptance of a C-141 report d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oes not relieve the operator of respon | sibility for compliance with any other |  |  |  |  |  |  |  |
| federal, state, or local laws and/or regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                        |  |  |  |  |  |  |  |
| Signature: Kebliga Harhell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OIL CONSERV                            | VATION DIVISION                        |  |  |  |  |  |  |  |
| Signature. I will a will be a set of the set |                                        |                                        |  |  |  |  |  |  |  |
| Printed Name: Rebecca Haskell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Assessed by Estimate and Secolal       | -                                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Approved by Environmental Speciali     | SI:                                    |  |  |  |  |  |  |  |
| Title: Senior HSE Coordinator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Approval Date:                         | Expiration Date:                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |  |  |  |  |  |  |  |
| E-mail Address: rhaskell@concho.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conditions of Approval:                | Attached                               |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |  |  |  |  |  |  |  |
| Date: February 24, 2017 Phone: 432-683-7443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                        |  |  |  |  |  |  |  |

\* Attach Additional Sheets If Necessary

Appendix B

#### Water Well Data Average Depth to Groundwater (ft) COG - Barn Owl Federal #2H Eddy County, New Mexico

|    | 25 Sc | outh        | 26  | East |    |
|----|-------|-------------|-----|------|----|
| 6  | 5     | 4           | 3   | 2    | 1  |
|    |       |             | 45  |      |    |
| 7  | 8     | 9 <b>45</b> | 10  | 11   | 12 |
| 60 |       |             |     |      |    |
| 18 | 17    | 16          | 15  | 14   | 13 |
|    |       |             |     |      |    |
| 19 | 20    | 21          | 22  | 23   | 24 |
|    |       |             | 118 |      |    |
| 30 | 29    | 28          | 27  | 26   | 25 |
|    |       |             |     |      |    |
| 31 | 32    | 33          | 34  | 35   | 36 |
|    |       |             |     |      |    |

|    | 25 So | outh 27 East |    |    |                 |
|----|-------|--------------|----|----|-----------------|
| 6  | 5     | 4            | 3  | 2  | 1               |
| 7  | 8     | 9            | 10 | 11 | 12<br><b>92</b> |
| 18 | 17    | 16           | 15 | 14 | 13              |
| 19 | 20    | 21           | 22 | 23 | 24              |
| 30 | 29    | 28           | 27 | 26 | 25              |
| 31 | 32    | 33<br>19     | 34 | 35 | 36              |

27 East

26 South

<mark>18</mark> 

|    | 25 Sc | outh        | 28                 |              |        |
|----|-------|-------------|--------------------|--------------|--------|
| 6  | 5     | 4 <b>35</b> | 3 <b>32</b>        | 2            | 1      |
|    | 59    |             |                    |              | Site   |
| 7  | 8     | 9           | 10                 | 11           | 12     |
| 18 | 17    | 16          | 15 <mark>48</mark> | 14           | 13     |
| 67 |       |             | 49                 |              |        |
| 19 | 20    | 21          | 22                 | 23           | 24     |
|    | 96    |             |                    |              | $\sum$ |
| 30 | 29    | 28          | 27                 | 26 <b>40</b> | 25     |
|    | 15    | 90          |                    |              | 5      |
| 31 | 32    | 33          | 34                 | 35           | 36     |
|    |       |             |                    |              | 40     |

|    | 26 Sc | outh | 28  | East         |      |
|----|-------|------|-----|--------------|------|
| 6  | 5     | 4    | 3   | 2 <b>120</b> | 1 کر |
|    |       |      |     | 21           |      |
| 7  | 8     | 9    | 10  | 11           | 12   |
|    |       |      |     |              | 100  |
| 18 | 17    | 16   | 15  | 14           | 13   |
|    |       |      |     | 120          | 56   |
| 19 | 20    | 21   | 22  | 23           | 24   |
|    |       |      | 120 |              |      |
| 30 | 29    | 28   | 27  | 26           | 25   |
|    |       |      |     |              |      |
| 31 | 32    | 33   | 34  | 35           | 36   |
|    |       |      |     |              |      |

|    | 26 So             | outh | 26                    | East |              |
|----|-------------------|------|-----------------------|------|--------------|
| 6  | 5                 | 4    | 3                     | 2    | 1            |
| 7  | 8 <mark>22</mark> | 9    | 10                    | 11   | 12 <b>17</b> |
| 18 | 17                | 16   | 15<br><mark>31</mark> | 14   | 13           |
| 19 | 20                | 21   | 22                    | 23   | 24           |
| 30 | 29                | 28   | 27                    | 26   | 25           |
| 31 | 32                | 33   | 34                    | 35   | 36           |

88 New Mexico State Engineers Well Reports

105 USGS Well Reports

90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6)

90 Geology and Groundwater Resources of Eddy County, NM (Report 3)

34 NMOCD - Groundwater Data

123 Tetra Tech installed temporary wells and field water level

143 NMOCD Groundwater map well location

| A CLW##### in the<br>POD suffix indicates the<br>POD has been replaced<br>& no longer serves a<br>vater right file.) | (R=POD<br>replaced,<br>O=orphan<br>C=the file<br>closed) | ned,                | (qu |   |         |   |               |          | E 3=SW<br>argest) | ,           | 3 UTM in meters)   | ſ                   | In feet)   |      |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------|-----|---|---------|---|---------------|----------|-------------------|-------------|--------------------|---------------------|------------|------|
|                                                                                                                      | cioscu)                                                  | POD                 | (qu |   |         |   |               | -51 10 1 |                   | (17.100     | e e 101 in meters) | (.                  |            |      |
|                                                                                                                      |                                                          | Sub-                | •   | - | Q       | - | ~             |          | _                 |             |                    |                     |            | ater |
| POD Number                                                                                                           | Code                                                     | <b>basin</b><br>CUB | ED  |   | 16<br>1 |   | <b>Sec</b> 07 |          | <b>Rng</b><br>27E | X<br>573039 | Y I<br>3546725*    | DepthWellDept<br>35 | hWater Col | lumn |
| 2 02219                                                                                                              |                                                          | CUB                 | ED  | 4 | 4       | 4 | 05            | 268      | 27E               | 575033      | 3547948*           | 35                  |            |      |
| <u>    02474                               </u>                                                                      |                                                          | CUB                 | ED  |   | 4       | 3 | 02            | 26S      | 27E               | 578964      | 3548029* 🧉         | 100                 |            |      |
| 02475                                                                                                                |                                                          | CUB                 | ED  |   | 2       | 4 | 13            | 26S      | 27E               | 581450      | 3545252* 🧉         | 100                 |            |      |
| 02476                                                                                                                |                                                          | CUB                 | ED  |   | 4       | 1 | 24            | 26S      | 27E               | 580653      | 3544032* 🌍         | 150                 |            |      |
| 02930                                                                                                                |                                                          | С                   | ED  | 2 | 3       | 4 | 22            | 26S      | 27E               | 577938      | 3543284* 🍯         | 100                 | 50         | 50   |
|                                                                                                                      |                                                          |                     |     |   |         |   |               |          |                   |             | Average Depth to   | Water:              | 50 feet    |      |
|                                                                                                                      |                                                          |                     |     |   |         |   |               |          |                   |             | Minimun            | n Depth:            | 50 feet    |      |
|                                                                                                                      |                                                          |                     |     |   |         |   |               |          |                   |             | Maximum            | Depth:              | 50 feet    |      |
| Record Count: 6                                                                                                      |                                                          |                     |     |   |         |   |               |          |                   |             |                    |                     |            |      |
| PLSS Search:                                                                                                         |                                                          |                     |     |   |         |   |               |          |                   |             |                    |                     |            |      |

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

12/6/17 8:18 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER



# New Mexico Office of the State Engineer Water Column/Average Depth to Water

| (A CLW##### in the<br>POD suffix indicates the<br>POD has been replaced<br>& no longer serves a<br>water right file.) | (R=POD hare<br>replaced,<br>O=orphane<br>C=the file<br>closed) | ed,   | (qu          |   |   |   |               |     | E 3=SW<br>argest) |             | 3 UTM in meter  | rs)              | (In feet)    |        |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------|--------------|---|---|---|---------------|-----|-------------------|-------------|-----------------|------------------|--------------|--------|
|                                                                                                                       |                                                                | POD   |              |   |   |   |               |     |                   |             |                 |                  |              |        |
| POD Number                                                                                                            |                                                                | Sub-  | C            | - | Q | - |               | т   | D                 | v           | V               | D 41- 337 - 11 D |              | Water  |
| C 01351                                                                                                               | Code                                                           | Dasin | County<br>ED |   |   |   | <b>Sec</b> 19 |     | Rng<br>26E        | X<br>563772 | Y<br>3543411* 🦲 | DepthWellD<br>25 | eptn water o | Column |
| <u>C 01351 X</u>                                                                                                      |                                                                |       | ED           | 4 | 4 | 1 | 20            | 26S | 26E               | 564581      | 3543822*        | 25               |              |        |
| <u>C 01351 X-2</u>                                                                                                    |                                                                |       | ED           | 3 | 1 | 3 | 20            | 26S | 26E               | 563978      | 3543413* 🧉      | 25               |              |        |
| <u>C_01887</u>                                                                                                        |                                                                | С     | ED           | 4 | 4 | 2 | 15            | 26S | 26E               | 568614      | 3545497* 🧧      | 53               | 31           | 22     |
| <u>C 02407</u>                                                                                                        |                                                                | С     | ED           | 1 | 4 | 1 | 08            | 26S | 26E               | 564347      | 3547268* 🧧      | 160              | 22           | 138    |
| <u>C 02438</u>                                                                                                        |                                                                |       | ED           | 4 | 2 | 3 | 12            | 26S | 26E               | 571015      | 3546705* 🍯      | 30               |              |        |
| <u>C 02439</u>                                                                                                        |                                                                |       | ED           | 2 | 4 | 2 | 15            | 26S | 26E               | 568614      | 3545697* 🍯      | 30               |              |        |
| <u>C 02791</u>                                                                                                        |                                                                |       | ED           |   | 4 | 4 | 17            | 26S | 26E               | 565288      | 3544739* 🌍      | 100              |              |        |
| <u>C 03810 POD1</u>                                                                                                   |                                                                | С     | ED           | 3 | 1 | 3 | 20            | 26S | 26E               | 563896      | 3543406 🌍       | 100              | 15           | 85     |
| <u>C 03811 POD1</u>                                                                                                   |                                                                | С     | ED           | 4 | 1 | 4 | 19            | 26S | 26E               | 563746      | 3543436 🍯       | 46               | 15           | 31     |
| <u>C 03812 POD1</u>                                                                                                   |                                                                | С     | ED           | 4 | 4 | 1 | 20            | 26S | 26E               | 564641      | 3543737 🧧       | 96               | 15           | 81     |
| <u>C 04041 POD1</u>                                                                                                   |                                                                | С     | ED           | 2 | 1 | 3 | 20            | 26S | 26E               | 564281      | 3543559 🧧       | 100              | 60           | 40     |
| <u>C 04046 POD1</u>                                                                                                   |                                                                | CUB   | ED           | 1 | 2 | 3 | 20            | 26S | 26E               | 564437      | 3543647 🧧       | 140              | 100          | 40     |
| <u>C 04048 POD1</u>                                                                                                   |                                                                | CUB   | ED           | 2 | 3 | 2 | 20            | 26S | 26E               | 565061      | 3543969 🧧       | 140              | 80           | 60     |
| <u>C 04091 POD1</u>                                                                                                   |                                                                | CUB   | ED           | 2 | 3 | 2 | 21            | 26S | 26E               | 566528      | 3543940 🧧       | 140              | 85           | 55     |
|                                                                                                                       |                                                                |       |              |   |   |   |               |     |                   |             | Average Depth   | to Water:        | 47 f         | eet    |
|                                                                                                                       |                                                                |       |              |   |   |   |               |     |                   |             | Minim           | um Depth:        | 15 f         | eet    |
|                                                                                                                       |                                                                |       |              |   |   |   |               |     |                   |             | Maximu          | um Depth:        | 100 f        | eet    |
| Record Count: 15                                                                                                      |                                                                |       |              |   |   |   |               |     |                   |             |                 |                  |              |        |

#### PLSS Search:

Township: 268 Range: 26E

\*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

12/6/17 8:19 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Appendix C

# Analytical Report 569372

for Tetra Tech- Midland

**Project Manager: Ike Tavarez** 

Barn Own Federal #2H

212C-MD-00958 Task#26

04-DEC-17

Collected By: Client





## 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)



04-DEC-17

Project Manager: **Ike Tavarez Tetra Tech- Midland** 4000 N. Big Spring Suite 401 Midland, TX 79705

Reference: XENCO Report No(s): **569372 Barn Own Federal #2H** Project Address: Eddy County,New Mexico

#### Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 569372. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 569372 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Meles &

Mike Kimmel Client Services Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America



## Sample Id

| BH #1 (0-1')   |
|----------------|
| BH #1 (2-3')   |
| BH #1 (4-5')   |
| BH #1 (6-7')   |
| BH #1 (9-10')  |
| BH #1 (14-15') |
| BH #1 (19-20') |
| BH #1 (24-25') |
| BH #1 (29-30') |
|                |

# Sample Cross Reference 569372



# Tetra Tech- Midland, Midland, TX

Barn Own Federal #2H

| Matrix | Date Collected | Sample Depth | Lab Sample Id |
|--------|----------------|--------------|---------------|
| S      | 11-21-17 00:00 |              | 569372-001    |
| S      | 11-21-17 00:00 |              | 569372-002    |
| S      | 11-21-17 00:00 |              | 569372-003    |
| S      | 11-21-17 00:00 |              | 569372-004    |
| S      | 11-21-17 00:00 |              | 569372-005    |
| S      | 11-21-17 00:00 |              | 569372-006    |
| S      | 11-21-17 00:00 |              | 569372-007    |
| S      | 11-21-17 00:00 |              | 569372-008    |
| S      | 11-21-17 00:00 |              | 569372-009    |



# CASE NARRATIVE

### Client Name: Tetra Tech- Midland Project Name: Barn Own Federal #2H

Project ID:212C-MD-00958 Task#26Work Order Number(s):569372

 Report Date:
 04-DEC-17

 Date Received:
 11/27/2017

#### Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3034532 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.



# Certificate of Analysis Summary 569372

Tetra Tech- Midland, Midland, TX Project Name: Barn Own Federal #2H



Project Id:212C-MD-00958 Task#26Contact:Ike TavarezProject Location:Eddy County,New Mexico

Date Received in Lab:Mon Nov-27-17 03:26 pmReport Date:04-DEC-17Project Manager:Kelsey Brooks

|                                   | Lab Id:    | 569372-0  | 001   | 569372-0    | 02    | 569372-0    | 03    | 569372-0    | 04    | 569372-0    | 05      | 569372-0    | 06    |
|-----------------------------------|------------|-----------|-------|-------------|-------|-------------|-------|-------------|-------|-------------|---------|-------------|-------|
|                                   | Field Id:  | BH #1 (0- | -1')  | BH #1 (2-   | -3')  | BH #1 (4-   | -5')  | BH #1 (6-   | -7')  | BH #1 (9-   | 10')    | BH #1 (14-  | -15') |
| Analysis Requested                | Depth:     |           |       |             |       |             |       |             |       |             |         |             |       |
|                                   | Matrix:    | SOIL      |       | SOIL        |       | SOIL        |       | SOIL        |       | SOIL        |         | SOIL        |       |
|                                   | Sampled:   | Nov-21-17 | 00:00 | Nov-21-17 ( | 00:00 | Nov-21-17 ( | 00:00 | Nov-21-17   | 00:00 | Nov-21-17   | 00:00   | Nov-21-17   | 00:00 |
| BTEX by EPA 8021B                 | Extracted: |           |       |             |       |             |       |             |       | Nov-29-17   | 16:00   |             |       |
|                                   | Analyzed:  |           |       |             |       |             |       |             |       | Nov-30-17   | 07:43   |             |       |
|                                   | Units/RL:  |           |       |             |       |             |       |             |       | mg/kg       | RL      |             |       |
| Benzene                           |            |           |       |             |       |             |       |             |       | < 0.00199   | 0.00199 |             |       |
| Toluene                           |            |           |       |             |       |             |       |             |       | < 0.00199   | 0.00199 |             |       |
| Ethylbenzene                      |            |           |       |             |       |             |       |             |       | < 0.00199   | 0.00199 |             |       |
| m,p-Xylenes                       |            |           |       |             |       |             |       |             |       | < 0.00398   | 0.00398 |             |       |
| o-Xylene                          |            |           |       |             |       |             |       |             |       | < 0.00199   | 0.00199 |             |       |
| Total Xylenes                     |            |           |       |             |       |             |       |             |       | < 0.00199   | 0.00199 |             |       |
| Total BTEX                        |            |           |       |             |       |             |       |             |       | < 0.00199   | 0.00199 |             |       |
| Inorganic Anions by EPA 300/300.1 | Extracted: | Dec-04-17 | 09:00 | Dec-04-17 0 | 9:00  | Dec-04-17 ( | 09:00 | Dec-04-17 ( | 09:00 | Dec-04-17 ( | 09:00   | Dec-04-17 ( | 09:00 |
|                                   | Analyzed:  | Dec-04-17 | 10:21 | Dec-04-17 1 | 0:27  | Dec-04-17 1 | 10:33 | Dec-04-17   | 0:50  | Dec-04-17   | 0:56    | Dec-04-17   | 1:02  |
|                                   | Units/RL:  | mg/kg     | RL    | mg/kg       | RL    | mg/kg       | RL    | mg/kg       | RL    | mg/kg       | RL      | mg/kg       | RL    |
| Chloride                          |            | 9920      | 100   | 8400        | 98.0  | 1820        | 49.2  | 714         | 49.2  | <49.1       | 49.1    | 105         | 49.9  |
| TPH by Texas1005                  | Extracted: |           |       |             |       |             |       |             |       | Nov-29-17   | 16:00   |             |       |
| Analyzed:                         |            |           |       |             |       |             |       |             |       | Nov-29-17   | 20:12   |             |       |
|                                   | Units/RL:  |           |       |             |       |             |       |             |       | mg/kg       | RL      |             |       |
| C6-C12 Range Hydrocarbons         |            |           |       |             |       |             |       |             |       | <25.0       | 25.0    |             |       |
| C12-C28 Range Hydrocarbons        |            |           |       |             |       |             |       |             |       | <25.0       | 25.0    |             |       |
| C28-C35 Range Hydrocarbons        |            |           |       |             |       |             |       |             |       | <25.0       | 25.0    |             |       |
| Total TPH                         |            |           |       |             |       |             |       |             |       | <25.0       | 25.0    |             |       |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Mike Kimmel Client Services Manager



Ike Tavarez

Eddy County, New Mexico

**Contact:** 

**Project Location:** 

# Certificate of Analysis Summary 569372

Tetra Tech- Midland, Midland, TX Project Name: Barn Own Federal #2H



Date Received in Lab:Mon Nov-27-17 03:26 pmReport Date:04-DEC-17Project Manager:Kelsey Brooks

|                                   | Lab Id:    | 569372-0    | 07    | 569372-0    | 08    | 569372-0    | 09    |  |  |
|-----------------------------------|------------|-------------|-------|-------------|-------|-------------|-------|--|--|
| Analysis Paguested                | Field Id:  | BH #1 (19-  | 20')  | BH #1 (24-  | 25')  | BH #1 (29-  | 30')  |  |  |
| Analysis Requested                | Depth:     |             |       |             |       |             |       |  |  |
|                                   | Matrix:    | SOIL        |       | SOIL        |       | SOIL        |       |  |  |
|                                   | Sampled:   | Nov-21-17 ( | 00:00 | Nov-21-17 ( | 00:00 | Nov-21-17 ( | 00:00 |  |  |
| Inorganic Anions by EPA 300/300.1 | Extracted: | Dec-04-17 ( | 09:00 | Dec-04-17 0 | 9:00  | Dec-04-17 0 | 9:00  |  |  |
|                                   | Analyzed:  | Dec-04-17 1 | 1:08  | Dec-04-17 1 | 1:14  | Dec-04-17 1 | 1:38  |  |  |
|                                   | Units/RL:  | mg/kg       | RL    | mg/kg       | RL    | mg/kg       | RL    |  |  |
| Chloride                          |            | 105         | 49.8  | 104         | 49.3  | 85.7        | 49.1  |  |  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Mike Kimmel Client Services Manager



**Flagging Criteria** 



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- \*\* Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

| MDL Method Detection Limit       | SDL Sample Detection Limit    | LOD Limit of Detection    |
|----------------------------------|-------------------------------|---------------------------|
| PQL Practical Quantitation Limit | MQL Method Quantitation Limit | LOQ Limit of Quantitation |

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- \* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

#### A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

|                                                 | Phone          | Fax            |
|-------------------------------------------------|----------------|----------------|
| 4147 Greenbriar Dr, Stafford, TX 77477          | (281) 240-4200 | (281) 240-4280 |
| 9701 Harry Hines Blvd, Dallas, TX 75220         | (214) 902 0300 | (214) 351-9139 |
| 5332 Blackberry Drive, San Antonio TX 78238     | (210) 509-3334 | (210) 509-3335 |
| 1211 W Florida Ave, Midland, TX 79701           | (432) 563-1800 | (432) 563-1713 |
| 2525 W. Huntington Dr Suite 102, Tempe AZ 85282 | (602) 437-0330 |                |
|                                                 |                |                |



# Form 2 - Surrogate Recoveries

# Project Name: Barn Own Federal #2H

|               | : 3034557 | Sample: 569372-005 / SMP             | Batc                   |                       | -                     |                         |       |
|---------------|-----------|--------------------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| Units:        | mg/kg     | Date Analyzed: 11/29/17 20:12        | SU                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|               | TPH       | by Texas1005                         | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flage |
|               |           | Analytes                             |                        |                       | [D]                   |                         |       |
| o-Terphenyl   |           |                                      | 41.4                   | 50.0                  | 83                    | 70-130                  |       |
| 1-Chlorooctar | ie        |                                      | 89.9                   | 99.9                  | 90                    | 70-130                  |       |
| Lab Batch #   | : 3034532 | Sample: 569372-005 / SMP             | Batc                   | h: 1 Matrix           | : Soil                |                         |       |
| Units:        | mg/kg     | Date Analyzed: 11/30/17 07:43        | SU                     | RROGATE R             | ECOVERY               | STUDY                   |       |
|               |           | X by EPA 8021B<br>Analytes           | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1,4-Difluorob |           | Anarytes                             | 0.0294                 | 0.0300                | 98                    | 80-120                  |       |
| 4-Bromofluor  |           |                                      | 0.0294                 | 0.0300                | 98                    | 80-120                  |       |
| Lab Batch #   |           | Sample: 7635168-1-BLK / B            |                        |                       | : Solid               | 80-120                  |       |
| Units:        | mg/kg     | Date Analyzed: 11/29/17 12:08        |                        | RROGATE R             |                       | TUDV                    |       |
| C             | 88        | 2                                    | 50                     | KNOGATE N             |                       | 51001                   |       |
|               | ТРН       | by Texas1005                         | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|               |           | Analytes                             |                        |                       | [D]                   |                         |       |
| o-Terphenyl   |           |                                      | 43.3                   | 50.0                  | 87                    | 70-130                  |       |
| 1-Chlorooctar | ie        |                                      | 89.5                   | 100                   | 90                    | 70-130                  |       |
| Lab Batch #   | : 3034532 | Sample: 7635171-1-BLK / B            | LK Bate                | h: 1 Matrix           | : Solid               | <u> </u>                |       |
| Units:        | mg/kg     | Date Analyzed: 11/30/17 01:38        | SU                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|               |           | X by EPA 8021B<br>Analytes           | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1.4-Difluorob |           |                                      | 0.0304                 | 0.0300                | 101                   | 80-120                  |       |
| 4-Bromofluor  |           |                                      | 0.0255                 | 0.0300                | 85                    | 80-120                  |       |
| Lab Batch #   |           | <b>Sample:</b> 7635168-1-BKS / B     |                        |                       | Solid                 | 00 120                  |       |
| Units:        | mg/kg     | <b>Date Analyzed:</b> 11/29/17 13:40 |                        | RROGATE R             |                       | STUDY                   |       |
|               | ТРН       | by Texas1005                         | Amount<br>Found        | True<br>Amount        | Recovery              | Control<br>Limits       | Flage |
|               |           | Analytes                             | [A]                    | [B]                   | %R<br>[D]             | %R                      |       |
| o-Terphenyl   |           | -                                    | 48.1                   | 50.0                  | 96                    | 70-130                  |       |
| 1-Chlorooctar |           |                                      | 107                    | 100                   | 107                   | 70-130                  |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B

All results are based on MDL and validated for QC purposes.



# Form 2 - Surrogate Recoveries

# Project Name: Barn Own Federal #2H

| Units:         | malka    | Data Analyzad: 11/20/17 22.42        | ~~~                    |                       | FOOTERT               |                         |       |
|----------------|----------|--------------------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| Units:         | mg/kg    | Date Analyzed: 11/29/17 23:43        | SU                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|                | BTEX     | K by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|                |          | Analytes                             |                        |                       | [D]                   |                         |       |
| 1,4-Difluorobe | nzene    |                                      | 0.0301                 | 0.0300                | 100                   | 80-120                  |       |
| 4-Bromofluoro  |          |                                      | 0.0274                 | 0.0300                | 91                    | 80-120                  |       |
| Lab Batch #:   | 3034557  | Sample: 7635168-1-BSD / B            | SD Bate                | h: 1 Matrix           | : Solid               |                         |       |
| Units:         | mg/kg    | Date Analyzed: 11/29/17 14:02        | SU                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|                |          | by Texas1005<br>Analytes             | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| o-Terphenyl    |          | Anarytes                             | 50.6                   | 50.0                  | 101                   | 70-130                  |       |
| 1-Chlorooctane | <u>,</u> |                                      | 105                    | 100                   | 101                   | 70-130                  |       |
| Lab Batch #:   |          | Sample: 7635171-1-BSD / B            |                        |                       |                       | 70-150                  |       |
| Units:         | mg/kg    | <b>Date Analyzed:</b> 11/30/17 00:02 |                        |                       |                       |                         |       |
| Ollits.        | mg/kg    | Date Analyzett. 11/30/17/00.02       | SU                     | RROGATE R             | ECOVERYS              | STUDY                   |       |
|                | BTEX     | 5 by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|                |          | Analytes                             |                        |                       | [D]                   |                         |       |
| 1,4-Difluorobe | nzene    |                                      | 0.0313                 | 0.0300                | 104                   | 80-120                  |       |
| 4-Bromofluoro  | benzene  |                                      | 0.0286                 | 0.0300                | 95                    | 80-120                  |       |
| Lab Batch #:   | 3034557  | Sample: 569570-001 S / MS            | Batcl                  | h: 1 Matrix           | : Soil                |                         |       |
| Units:         | mg/kg    | Date Analyzed: 11/29/17 14:45        | SU                     | RROGATE R             | ECOVERY               | STUDY                   |       |
|                | ТРН      | by Texas1005                         | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|                |          | Analytes                             |                        |                       | [D]                   |                         |       |
| o-Terphenyl    |          |                                      | 42.2                   | 50.0                  | 84                    | 70-130                  |       |
| 1-Chlorooctane |          |                                      | 89.6                   | 100                   | 90                    | 70-130                  |       |
| Lab Batch #:   | 3034532  | Sample: 569650-001 S / MS            | Batcl                  | h: 1 Matrix           | : Soil                |                         |       |
| Units:         | mg/kg    | Date Analyzed: 11/30/17 00:21        | SU                     | RROGATE R             | ECOVERY               | STUDY                   |       |
|                | BTEX     | K by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|                |          | Analytes                             |                        |                       | [D]                   |                         |       |
| 1,4-Difluorobe | nzene    |                                      | 0.0311                 | 0.0300                | 104                   | 80-120                  |       |
| 4-Bromofluoro  |          |                                      | 0.0295                 | 0.0300                | 98                    | 80-120                  |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B

All results are based on MDL and validated for QC purposes.



# Form 2 - Surrogate Recoveries

# Project Name: Barn Own Federal #2H

| Work Orders : 569372<br>Lab Batch #: 3034557 | ,<br>Sample: 569570-001 SD / M | MSD Batc               |                       | 212C-MD-0<br>Soil     | 0958 Taska              | #26   |
|----------------------------------------------|--------------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| Units: mg/kg                                 | Date Analyzed: 11/29/17 15:07  | SU                     | RROGATE RI            | ECOVERY S             | STUDY                   |       |
|                                              | by Texas1005                   | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
|                                              | Analytes                       | 40.7                   | 10.0                  |                       | 70.120                  |       |
| o-Terphenyl                                  |                                | 42.7                   | 49.9                  | 86                    | 70-130                  |       |
| 1-Chlorooctane                               |                                | 88.9                   | 99.8                  | 89                    | 70-130                  |       |
| Lab Batch #: 3034532                         | Sample: 569650-001 SD / M      | MSD Batcl              | h: 1 Matrix:          | Soil                  |                         |       |
| Units: mg/kg                                 | Date Analyzed: 11/30/17 00:40  | SU                     | RROGATE RI            | ECOVERY S             | STUDY                   |       |
|                                              | by EPA 8021B                   | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|                                              | Analytes                       |                        |                       | [D]                   |                         |       |
| 1,4-Difluorobenzene                          |                                | 0.0301                 | 0.0300                | 100                   | 80-120                  |       |
| 4-Bromofluorobenzene                         |                                | 0.0285                 | 0.0300                | 95                    | 80-120                  |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B

All results are based on MDL and validated for QC purposes.



# **BS / BSD Recoveries**



## **Project Name:** Barn Own Federal #2H

| <b>Work Order #:</b> 569372                   |                               |                                               |                                 |                             |                       |                                           | Pro                           | ject ID:  | 212C-MD-(               | 00958 Tas                 | k#26 |  |
|-----------------------------------------------|-------------------------------|-----------------------------------------------|---------------------------------|-----------------------------|-----------------------|-------------------------------------------|-------------------------------|-----------|-------------------------|---------------------------|------|--|
| Analyst: ALJ                                  | D                             | ate Prepar                                    | red: 11/29/20                   | 17                          |                       |                                           | Date A                        | nalyzed:  | 1/29/2017               |                           |      |  |
| Lab Batch ID: 3034532 Sample: 7635171         | -1-BKS                        | Bate                                          | <b>h #:</b> 1                   |                             |                       | Matrix: Solid                             |                               |           |                         |                           |      |  |
| Units: mg/kg                                  |                               | BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RE |                                 |                             |                       |                                           |                               |           |                         | DY                        |      |  |
| BTEX by EPA 8021B                             | Blank<br>Sample Result<br>[A] | Spike<br>Added                                | Blank<br>Spike<br>Result        | Blank<br>Spike<br>%R        | Spike<br>Added        | Blank<br>Spike<br>Duplicate               | Blk. Spk<br>Dup.<br>%R        | RPD<br>%  | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |  |
| Analytes                                      |                               | [B]                                           | [C]                             | [D]                         | [E]                   | Result [F]                                | [G]                           |           |                         |                           |      |  |
| Benzene                                       | <0.00200                      | 0.0998                                        | 0.0971                          | 97                          | 0.100                 | 0.0931                                    | 93                            | 4         | 70-130                  | 35                        |      |  |
| Toluene                                       | < 0.00200                     | 0.0998                                        | 0.0917                          | 92                          | 0.100                 | 0.0871                                    | 87                            | 5         | 70-130                  | 35                        |      |  |
| Ethylbenzene                                  | < 0.00200                     | 0.0998                                        | 0.0902                          | 90                          | 0.100                 | 0.0867                                    | 87                            | 4         | 71-129                  | 35                        |      |  |
| m,p-Xylenes                                   | < 0.00399                     | 0.200                                         | 0.171                           | 86                          | 0.201                 | 0.164                                     | 82                            | 4         | 70-135                  | 35                        |      |  |
| o-Xylene                                      | <0.00200                      | 0.0998                                        | 0.0862                          | 86                          | 0.100                 | 0.0832                                    | 83                            | 4         | 71-133                  | 35                        |      |  |
| Analyst: OJS                                  | D                             | ate Prepar                                    | red: 12/04/20                   | 17                          |                       |                                           | Date A                        | nalyzed:  | 12/04/2017              | •                         |      |  |
| Lab Batch ID: 3034908 Sample: 7635380         | -1-BKS                        | Batc                                          | <b>h #:</b> 1                   |                             |                       |                                           |                               | Matrix: S | Solid                   |                           |      |  |
| Units: mg/kg                                  |                               | BLAN                                          | K /BLANK                        | SPIKE / I                   | BLANK S               | SPIKE DUP                                 | LICATE                        | RECOV     | ERY STUI                | DY                        |      |  |
| Inorganic Anions by EPA 300/300.1<br>Analytes | Blank<br>Sample Result<br>[A] | Spike<br>Added<br>[B]                         | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E] | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>%  | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |  |
| Chloride                                      | <5.00                         | 250                                           | 226                             | 90                          | 250                   | 227                                       | 91                            | 0         | 90-110                  | 20                        |      |  |

Relative Percent Difference RPD =  $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] =  $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] =  $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes



# **BS / BSD Recoveries**



## **Project Name: Barn Own Federal #2H**

| Work Order       | #: 569372          |                                                           |                |                          |                      |                |                                  | Proj                   | ect ID:  | 212C-MD-0               | 00958 Tas                 | k#26 |  |
|------------------|--------------------|-----------------------------------------------------------|----------------|--------------------------|----------------------|----------------|----------------------------------|------------------------|----------|-------------------------|---------------------------|------|--|
| Analyst:         | ARM                | <b>Date Prepared:</b> 11/29/2017                          |                |                          |                      |                | <b>Date Analyzed:</b> 11/29/2017 |                        |          |                         |                           |      |  |
| Lab Batch ID:    | BKS                | Batc                                                      | <b>h #:</b> 1  |                          | Matrix: Solid        |                |                                  |                        |          |                         |                           |      |  |
| Units:           | mg/kg              | BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY |                |                          |                      |                |                                  |                        |          |                         |                           |      |  |
| TPH by Texas1005 |                    | Blank<br>Sample Result<br>[A]                             | Spike<br>Added | Blank<br>Spike<br>Result | Blank<br>Spike<br>%R | Spike<br>Added | Blank<br>Spike<br>Duplicate      | Blk. Spk<br>Dup.<br>%R | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |  |
| Analytes         |                    |                                                           | [B]            | [C]                      | [D]                  | [E]            | Result [F]                       | [G]                    |          |                         |                           |      |  |
| C6-C12 R         | ange Hydrocarbons  | <25.0                                                     | 1000           | 952                      | 95                   | 1000           | 996                              | 100                    | 5        | 75-125                  | 25                        |      |  |
| C12-C28 I        | Range Hydrocarbons | <25.0                                                     | 1000           | 995                      | 100                  | 1000           | 990                              | 99                     | 1        | 75-125                  | 25                        |      |  |

Relative Percent Difference RPD =  $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] =  $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] =  $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes



# Form 3 - MS / MSD Recoveries

### Project Name: Barn Own Federal #2H



|                                                                                         |                                                                                                                                                                                  |                                                                                                                                         |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project II                                                                                                                                                                                                                                                                              | • 212C-I                                                                                                                                                                                                                                                                                                                                                                                                                      | MD-0095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 Task#26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OC- Sample ID:                                                                          | 569650-0                                                                                                                                                                         | 01.5                                                                                                                                    | Ba                                                                                                                | tch #∙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                               | 00)3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o Tuskii20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                         |                                                                                                                                                                                  |                                                                                                                                         |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         | . Jon                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                         |                                                                                                                                                                                  |                                                                                                                                         |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Parent                                                                                  | s                                                                                                                                                                                | piked Sample                                                                                                                            | Spiked                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Duplicate                                                                                                                                                                                                                                                                               | Spiked                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sample<br>Result<br>[A]                                                                 | Spike<br>Added<br>[B]                                                                                                                                                            | Result<br>[C]                                                                                                                           | Sample<br>%R<br>[D]                                                                                               | Spike<br>Added<br>[E]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spiked Sample<br>Result [F]                                                                                                                                                                                                                                                             | Dup.<br>%R<br>[G]                                                                                                                                                                                                                                                                                                                                                                                                             | RPD<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Limits<br>%R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limits<br>%RPD                                                                                                                                                                                                                                                                                                                                                                                                             | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| < 0.00199                                                                               | 0.0994                                                                                                                                                                           | 0.0709                                                                                                                                  | 71                                                                                                                | 0.0998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0824                                                                                                                                                                                                                                                                                  | 83                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| < 0.00199                                                                               | 0.0994                                                                                                                                                                           | 0.0658                                                                                                                                  | 66                                                                                                                | 0.0998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0769                                                                                                                                                                                                                                                                                  | 77                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| < 0.00199                                                                               | 0.0994                                                                                                                                                                           | 0.0666                                                                                                                                  | 67                                                                                                                | 0.0998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0759                                                                                                                                                                                                                                                                                  | 76                                                                                                                                                                                                                                                                                                                                                                                                                            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| < 0.00398                                                                               | 0.199                                                                                                                                                                            | 0.128                                                                                                                                   | 64                                                                                                                | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.144                                                                                                                                                                                                                                                                                   | 72                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70-135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| < 0.00199                                                                               | 0.0994                                                                                                                                                                           | 0.0668                                                                                                                                  | 67                                                                                                                | 0.0998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0734                                                                                                                                                                                                                                                                                  | 74                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| QC- Sample ID:                                                                          | 569343-0                                                                                                                                                                         | 10 S                                                                                                                                    | Ba                                                                                                                | tch #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 Matrix                                                                                                                                                                                                                                                                                | : Soil                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Date Prepared: 12/04/2017 Analyst: OJS                                                  |                                                                                                                                                                                  |                                                                                                                                         |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY                                    |                                                                                                                                                                                  |                                                                                                                                         |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                         | MA                                                                                                                                                                               | TRIX SPIKI                                                                                                                              | E / MAT                                                                                                           | 'RIX SPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KE DUPLICA                                                                                                                                                                                                                                                                              | TE REC                                                                                                                                                                                                                                                                                                                                                                                                                        | OVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Parent<br>Sample                                                                        | Spike                                                                                                                                                                            | piked Sample<br>Result                                                                                                                  | Spiked<br>Sample                                                                                                  | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Duplicate<br>Spiked Sample                                                                                                                                                                                                                                                              | Spiked<br>Dup.                                                                                                                                                                                                                                                                                                                                                                                                                | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Control<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Control<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                          | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                         | S                                                                                                                                                                                | piked Sample                                                                                                                            | Spiked                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Duplicate                                                                                                                                                                                                                                                                               | Spiked                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                            | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample<br>Result                                                                        | Spike<br>Added                                                                                                                                                                   | piked Sample<br>Result                                                                                                                  | Spiked<br>Sample<br>%R                                                                                            | Spike<br>Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Duplicate<br>Spiked Sample                                                                                                                                                                                                                                                              | Spiked<br>Dup.<br>%R                                                                                                                                                                                                                                                                                                                                                                                                          | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Control<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limits                                                                                                                                                                                                                                                                                                                                                                                                                     | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample<br>Result<br>[A]                                                                 | Spike<br>Added<br>[B]<br>246                                                                                                                                                     | piked Sample<br>Result<br>[C]<br>262                                                                                                    | <b>Spiked</b><br>Sample<br>%R<br>[D]<br>104                                                                       | Spike<br>Added<br>[E]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Duplicate<br>Spiked Sample<br>Result [F]                                                                                                                                                                                                                                                | <b>Spiked</b><br><b>Dup.</b><br><b>%R</b><br>[G]<br>104                                                                                                                                                                                                                                                                                                                                                                       | RPD<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Control<br>Limits<br>%R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Limits<br>%RPD                                                                                                                                                                                                                                                                                                                                                                                                             | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample<br>Result<br>[A]<br>5.00                                                         | Spike         S           Added         [B]           246         569374-000000000000000000000000000000000000                                                                    | piked Sample<br>Result<br>[C]<br>262<br>01 S                                                                                            | Spiked<br>Sample<br>%R<br>[D]<br>104<br>Ba                                                                        | Spike<br>Added<br>[E]<br>246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Duplicate       Spiked Sample       Result [F]       260       1     Matrix                                                                                                                                                                                                             | <b>Spiked</b><br><b>Dup.</b><br><b>%R</b><br>[G]<br>104                                                                                                                                                                                                                                                                                                                                                                       | RPD<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Control<br>Limits<br>%R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Limits<br>%RPD                                                                                                                                                                                                                                                                                                                                                                                                             | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample<br>Result<br>[A]<br>5.00<br>QC- Sample ID:                                       | Spike         S           Added         [B]           246                                                                                                                        | piked Sample<br>Result<br>[C]<br>262<br>01 S<br>17                                                                                      | Spiked<br>Sample<br>%R<br>[D]<br>104<br>Ba<br>Ar                                                                  | Spike<br>Added<br>[E]<br>246<br>atch #:<br>nalyst: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Duplicate       Spiked Sample       Result [F]       260       1     Matrix                                                                                                                                                                                                             | Spiked<br>Dup.<br>%R<br>[G]<br>104<br>x: Soil                                                                                                                                                                                                                                                                                                                                                                                 | <b>RPD</b> %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Control<br>Limits<br>%R<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limits<br>%RPD                                                                                                                                                                                                                                                                                                                                                                                                             | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample<br>Result<br>[A]<br>5.00<br>QC- Sample ID:<br>Date Prepared:<br>Parent<br>Sample | Spike         S           Added         [B]         246           246         246         12/04/201           12/04/201         MA         3           Spike         S         S | piked Sample<br>Result<br>[C]<br>262<br>01 S<br>17<br>TRIX SPIKI<br>piked Sample<br>Result                                              | Spiked<br>Sample<br>%R<br>[D]<br>104<br>Ba<br>Ar<br>E / MAT<br>Spiked<br>Sample                                   | Spike<br>Added<br>[E]<br>246<br>atch #:<br>nalyst: (<br>TRIX SPI<br>Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Duplicate<br>Spiked Sample<br>Result [F]<br>260<br>1 Matrix<br>DJS<br>KE DUPLICA<br>Duplicate<br>Spiked Sample                                                                                                                                                                          | Spiked<br>Dup.<br>%R<br>[G]<br>104<br>:: Soil<br>TE REC<br>Spiked<br>Dup.                                                                                                                                                                                                                                                                                                                                                     | RPD<br>%<br>1<br>OVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control<br>Limits<br>%R<br>90-110<br>STUDY<br>Control<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limits<br>%RPD<br>20<br>Control<br>Limits                                                                                                                                                                                                                                                                                                                                                                                  | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample<br>Result<br>[A]<br>5.00<br>QC- Sample ID:<br>Date Prepared:<br>Parent           | Spike         S           Added         [B]         246           246         246         246           569374-00         12/04/201         MA           MA         S         S  | piked Sample<br>Result<br>[C]<br>262<br>01 S<br>17<br>TRIX SPIKI<br>piked Sample                                                        | Spiked<br>Sample<br>%R<br>[D]<br>104<br>Ba<br>Ar<br>E / MAT<br>Spiked                                             | Spike<br>Added<br>[E]<br>246<br>atch #:<br>nalyst: (C<br>TRIX SPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Duplicate<br>Spiked Sample<br>Result [F]<br>260<br>1 Matrix<br>DJS<br>KE DUPLICA<br>Duplicate                                                                                                                                                                                           | Spiked<br>Dup.<br>%R<br>[G]<br>104<br>x: Soil<br>TE REC<br>Spiked                                                                                                                                                                                                                                                                                                                                                             | <b>RPD</b><br>%<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control<br>Limits<br>%R<br>90-110<br>STUDY<br>Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limits<br>%RPD<br>20<br>Control                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                         | Parent<br>Sample<br>Result<br>[A]           <0.00199                                                                                                                             | Date Prepared:       11/29/201         MA         Parent       Spike         Result       [A]         [A]       0.0994         <0.00199 | Parent<br>Sample<br>Result<br>[A]         Spike<br>Added<br>[B]         Spike<br>Result<br>[C]           <0.00199 | Date Prepared:         11/29/2017         Art           Date Prepared:         11/29/2017         Art           MATRIX SPIKE / MAT         Spiked         Spiked         Spiked         Spiked         Spiked         Sample         Spiked         Spiked         Spiked         Spiked         Sample         Spiked         Spiked         Spiked         Sample         Spiked         Spiked         Spiked         Sample         Spiked         Spiked         Sample         Spiked         Spiked         Sample         Spiked         Sample | Date Prepared:       11/29/2017       Analyst:       A         MATRIX SPIKE / MATRIX SPI         Parent       Spike       Spiked       Spiked       Spiked       Spike         Result       Spike       Added       [C]       Spike       Spike       Added       [E]          <0.00199 | QC- Sample ID:       569650-001 S       Batch #:       1       Matrix         Date Prepared:       11/29/2017       Batch #:       1       Matrix         MATRIX SPIKE / MATRIX SPIKE DUPLICA         Parent<br>Sample<br>Result<br>[A]       Spike<br>Added<br>[B]       Spiked Sample<br>Result<br>[C]       Spike<br>%R<br>(D]       Spike<br>Added<br>[E]       Duplicate<br>Spiked Sample<br>Result [F]         <0.00199 | QC- Sample ID:       569650-001 S       Batch #:       1       Matrix:       Soil         Date Prepared:       11/29/2017       Analyst:       ALJ         MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECO         Parent       Spiked       < | QC- Sample ID:       569650-001 S       Batch #:       1       Matrix:       Soil         Date Prepared:       11/29/2017       Analyst:       ALJ         MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY         Parent       Spike       Spiked       Spike       Spike       Spiked       Spiked       Spiked       RPD       %R         Result       Spike       Spike       Spike       Spike       Spike       Spiked       Spiked       Spike       RPD       %R       R | Date Prepared:       11/29/2017       Analyst:       ALJ         MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY         Parent<br>Sample<br>Result<br>[A]       Spike<br>Added<br>[B]       Spiked<br>Result<br>[C]       Spike<br>%R<br>[D]       Spike<br>%R<br>[E]       Duplicate<br>spiked Sample<br>[C]       Spiked<br>Dup.<br>%R<br>[G]       RPD<br>%%<br>%R       Control<br>Limits<br>%R         <0.00199 | QC- Sample ID:       569650-001 S       Batch #:       1       Matrix:       Soil         Date Prepared:       11/29/2017       Analyst:       ALJ         MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY         Parent       Spiked       Spiked |

Matrix Spike Percent Recovery  $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD =  $200^{*}|(C-F)/(C+F)|$  Matrix Spike Duplicate Percent Recovery [G] = 100\*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.



# Form 3 - MS / MSD Recoveries

#### Project Name: Barn Own Federal #2H



| Work Order # :             | 569372                                      | Project ID: 212C-MD-00958 Task#26                    |              |                         |           |              |                            |                |     |                   |                   |      |
|----------------------------|---------------------------------------------|------------------------------------------------------|--------------|-------------------------|-----------|--------------|----------------------------|----------------|-----|-------------------|-------------------|------|
| Lab Batch ID:              | <b>ch ID:</b> 3034557 <b>QC- Sample ID:</b> |                                                      | 569570       | 569570-001 S Ba         |           |              | 1 Matrix                   | <b>x:</b> Soil |     |                   |                   |      |
| Date Analyzed:             | 11/29/2017                                  | Z2017Date Prepared                                   |              | 017                     | An        | alyst: A     | ARM                        |                |     |                   |                   |      |
| <b>Reporting Units:</b>    | mg/kg                                       | MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY |              |                         |           |              |                            |                |     |                   |                   |      |
|                            | TPH by Texas1005                            | Parent<br>Sample                                     | Spike        | Spiked Sample<br>Result | Sample    | Spike        | Duplicate<br>Spiked Sample | -              | RPD | Control<br>Limits | Control<br>Limits | Flag |
| Analytes                   |                                             | Result<br>[A]                                        | Added<br>[B] | [C]                     | %R<br>[D] | Added<br>[E] | Result [F]                 | %R<br>[G]      | %   | %R                | %RPD              |      |
| C6-C12 Range Hydrocarbons  |                                             | 535                                                  | 1000         | 1450                    | 92        | 998          | 1440                       | 91             | 1   | 75-125            | 25                |      |
| C12-C28 Range Hydrocarbons |                                             | 3580                                                 | 1000         | 4460                    | 88        | 998          | 4430                       | 85             | 1   | 75-125            | 25                |      |

Matrix Spike Percent Recovery [D] = 100\*(C-A)/BRelative Percent Difference RPD = 200\*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100\*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Relinquished by: Relinquished by: Relinquished by: state) Comments: Analysis Request of Chain of Custody Record mila Receiving Laboratory: Project Name voice to: roject Location: lient Name: LAB USE ONLY LAB # h BH #1 (29-30') BH #1 (24-25') BH #1 (14-15') BH #1 (19-20') BH #1 (4-5') BH #1 (2-3') BH #1 (9-10') BH #1 (6-7') BH #1 (0-1') (county, Eddy County, New Mexico winers COG COG Xenco Midland Tx Barn Own Federal #2H Tetra Tech, Inc. SAMPLE IDENTIFICATION 11/27/17 Date: Date: Date: Time: 5 Time: ime R 5 ORIGIN Received by 11/21/2017 Received by 11/21/2017 Sampler Signature: leceived by: 11/21/2017 11/21/2017 'EAR: 2017 Project #: Site Manager: 11/21/2017 11/21/2017 11/21/2017 11/21/2017 11/21/2017 DATE NIN SAMPLING Temp: CF:(0-6: -0.2°C) TIME (6-23: +0.2°C) WATER Ike Tavarez MATRIX × × × × × × ×  $\times$ × SOIL 4000 N. Big Spring Street, Ste 401 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946 Mike Carmona 212C-MD-00958 Task#26 Date: Date: 1.12.1 Date: HCL PRESERVATIVE METHOD HNO IR ID:R-8 × × × × Time: × × × × × ICE Time: Time None # CONTAINERS 6 z z Z Z Z z Z Z Ζ FILTERED (Y/N) Sample Temperature (Circle) HAND DELIVERED FEDEX UPS × LAB USE ONLY BTEX 8021B BTEX 8260B TPH TX1005 (Ext to C35) × TPH 8015M ( GRO - DRO - ORO - MRO) PAH 8270C (Circle or Specify Method No. Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg REMARKS: TCLP Volatiles ANALYSIS REQUEST RUSH: Same Day 24 hr Rush Charges Authorized TCLP Semi Volatiles Special Report Limits or TRRP Report RCI STANDARD GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082/608 Tracking #: NORM Page PLM (Asbestos) ×  $\times \times$  $\times \times$ × × × × Chloride Chloride Sulfate TDS 48 hr General Water Chemistry (see attached list) Anion/Cation Balance 72 hr |\_\_\_ of Hold Page 15 of Final 1.000

Corrected Temp: 3,8

16



## **XENCO** Laboratories Prelogin/Nonconformance Report- Sample Log-In



Client: Tetra Tech- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 11/27/2017 03:26:00 PM Temperature Measuring device used : R8 Work Order #: 569372 Comments Sample Receipt Checklist #1 \*Temperature of cooler(s)? 3.8 #2 \*Shipping container in good condition? Yes #3 \*Samples received on ice? Yes #4 \*Custody Seals intact on shipping container/ cooler? No #5 Custody Seals intact on sample bottles? N/A #6\*Custody Seals Signed and dated? N/A #7 \*Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? No

#18 Water VOC samples have zero headspace?

#### \* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Hawel Smatch

Date: 11/27/2017

N/A

Checklist reviewed by:

Mbeti Mike Kimmel

Date: 12/03/2017