

SKELLY UNIT #940 BATTERY REMEDIATION PLAN

RELEASE DATE: 8/4/2020
INCIDENT ID: NRM2021853352
UNIT LETTER D, SECTION 22, TOWNSHIP 17S, RANGE 31E
EDDY COUNTY, NEW MEXICO

September 10, 2020

PREPARED BY:

September 10, 2020

State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division – District II
C/O Mike Bratcher, Robert Hamlet, Victoria Venegas, Cristina Eads
811 S. First Street
Artesia, NM 88210

Bureau of Land Management C/O Jim Amos 620 E. Green Street Carlsbad, NM 88220

Spur Energy Partners, LLC C/O Braidy Moulder 919 Milam Street Suite 2475 Houston, TX 77002

RE: Skelly Unit #940 Battery – Remediation Plan

Date of Release: August 4, 2020

API No: 30-015-32599

U/L D, Section 22, Township 17S, Range 31E

To Whom it May Concern:

Spur Energy Partners has retained ESS (Energy Staffing and Services), Environmental & Regulatory Division to address the environmental compliance issues concerning the release detailed herein. Below you will find the site-specific information concerning the delineation process that has taken place at the Skelly Unit #940 Battery.

SITE BACKGROUND

The site is located in Eddy County, New Mexico, 13 miles east of Loco Hills, New Mexico. The incident occurred on or before August 4, of 2020. The cause of the release was due to a startup failure on the SWD H-Pump. When the pump did not engage, the water tanks began to runover. The release occurred inside of the lined containment. There was a breach in the

containment, which caused fluid to leave the lined berm and released fluid onto the pad behind the facility and into the pasture area.

A vacuum truck was dispatched out to recover the standing fluid. Approximately 20bbls of crude oil and 389bbls of produced water was released, with recovering approximately 16bbls of crude oil and 244bbls of produced water. The NMOCD and BLM was notified by email on August 4th of 2020 which described the incident that had occurred on the Skelly Unit #940 Battery. The initial C141 was submitted both to the NMOCD and BLM on August 5th, 2020. Once approved the NMOCD assigned Incident ID No. NRM2021853352 to the release detailed herein.

GENERAL SITE CHARACHTERISTICS

ESS conducted an extended groundwater study of the area and it has been determined that according to the New Mexico Office of the State Engineer, the depth of groundwater is estimated to be located at 96'bgs (below ground surface). The closed well to the site with viable groundwater data is labelled L 14207 POD3. Please see the list below for groundwater wells found within 5000' from the impacted area of the release for the Skelly Unit #940 Battery.

RA 11590 POD3 – 3903' (0.73 miles) from the site, drilled in 2010 (depth of well 60'bgs), with no GW data available

RA 11590 POD4 – 4306' (0.81 miles) from the site, drilled in 2010, (depth of well 55'), with no GW data available

L 14207 POD3 - 4565' (0.86 miles) from the site, drilled in 2016 (depth of well 240'), with GW at 96'bgs

RA 11590 POD1 – 4845' (0.91 miles) from the site, drilled in 2010 (depth of well 158'), with no GW data available

L 14207 POD3 is found to be upgradient and the three wells are listed under RA 11590 POD 1 thru 3.

Using the Table I, Closure Criteria for Soils Impacted by a Release dated 8/14/2018, this site falls under the site ranking of 51-100'bgs based on groundwater data. With that being said, this is a Federal Site, therefore it will fall under the less than 0-50' to groundwater closure criteria. Please see the chart below for the sampling criteria for this site:

DGW	Constituent	Method	Limit
≤ 50′	Chloride	EPA 300.0 OR SM4500 CLB	600 mg/kg
	TPH (GRO + DRO + MRO)	EPA SW-846 METHOD 8015M	100 mg/kg
	GRO + DRO	EPA SW-846 METHOD 8015M	50 mg/kg
	BTEX	EPA SW-846 METHOD 8021B OR 8260B	10 mg/kg
	Benzene	EPA SW-846 METHOD 8021B OR 8260B	10 mg/kg

DISTANCE TO NEAREST POTABLE WATER WELL

Based on the review of the NMOSE Database, registered potable water wells are not present within .5 miles of the site. L 14207 POD3 shows to be .86 miles north of the Skelly Unit #940 Battery according to the NMOSE Database. During the OSE POD search several other well pods were found. The below information found on the OSE POD Database for each water well in the area is listed below:

RA 11950 POD 1 and POD 2, were permitted to Central Valley Electric Coop on May 1, 2013 and conducted Geothermal boreholes, stating that electrical grounding holes were drilled to moist soil and a ground rod was buried to surface with an additional twenty-foot surface seal. The permit was approved on May 8, 2013 and logs were due on May 8, 2014. RA 11950 POD 1, drilling permit shows the well was drilled and completed on 1/26/2010, which states that the well was dry and will be plugged or capped, with the well depth of 158'bgs. RA 11950 POD 2 does not have any well logs or well depth information available. RA 11950 POD3, drilling permit shows the well was drilled and completed on 1/22/2010, which states that the well was dry and will be plugged or capped, with the well depth of 60'bgs. RA 11950 POD4, drilling permit shows the well was drilled and completed on 1/22/2010, which states that the well was dry and will be plugged or capped, with a well depth of 55'bgs. These wells are shown to be downgradient of the Skelly Unit #940 and have been drilled with in the 25-year cap and should be used as verifiable groundwater data showing that the downgradient wells do no show static water levels between 55-158'bgs.

With the L14207 POD 3 (which is the only viable well in the area according to NMOSE) also has other pods drilled and are listed below:

L14207 POD1 – shows the well was drilled on 10/12/2016, with a depth of 100'bgs (MW-1 LPU - 59). This well shows to have been drilled to 240'bgs according to the MW-1 log.
L14207 POD2 – shows the well was drilled on 10/12/2016, with a depth of 101'bgs (LPU - 60).
This well shows to have been drilled to 230'bgs according to the MW-1 log for LPU-60.
L14207 POD4 – has no information available but has a label of MW-2 (LPU-60)
L14207 POD5 – has no information available but has a label of MW-14 (Water Plant)
L14207 POD6 – has no information available but has a label of MW-15 (Water Plant)
L14207 POD7 – has no information available but has a label of MW-16 (Water Plant)

L14207 POD 8 – has no information available L14207 – MW-1 (LPU 96) does not have a POD number associated, but water was encountered at 95.54 on or around 10/3/2016.

On October 15th 2019, HCI Drilling submitted a WD-08 Well Plugging Plan to plug the L14207 POD1 which indicates the static water level is 106'bgs and the depth of the well was set at 230'bgs. The plugging plan was approved by the NMOSE on October 17th 2019. It is also documented that the L14207 POD Wells, were drilled to be long term monitoring wells for chloride contamination and that all three wells were to be installed following NMOSE regulations of potential chloride impacts in groundwater and will be considered in regard to proper grouting of annular spaces.

With the information provided, it is safe to say that groundwater will not be a factor for this site. Please see the OSE POD Map and information found above to be attached to this report. With delineation and closure sample criteria being the most stringent due to Federal Land, no water wells will be drilled at this time to determine the closure criteria.

DISTANCE TO NEAREST SURFACE WATER

Brantley Lake near Lakewood is the closest surface water to the Skelly 940 Battery and is found to be approximately 67.57 miles southwest of the site. It is registered under USGS as 08399500 Pecos River on the USGS.Gov website.

SOIL CHARACTERISTICS

According to the USDA Resources Conservation Service, the soil survey indicates the following (please see the soil map and information attached):

100% Kermit-Berino fine sands with 0-3 percent slopes

KARST CHARACTERISTICS

ESS evaluated data from the NMOCD Share-Point for Karst Map Designations in reference to the Skelly Unit #940 Battery release. The site appears to be with in the Low Karst Risk Area. Based on the site observations with the extent of the release margins, the potential for Karst formations in this area is of "low potential". With the information provided in this report, Karst is not a factor in determining the site characterization. As mentioned above due to the site being on Federal Land, the site characteristics remain in the 0-50'bgs groundwater sampling and closure criteria.

SOIL REMEDIAL ACTION LEVELS

ESS proposes to remediate this crude oil and produced water impacted soil for the Skelly Unit #940 Battery release consistent with the remediation/abatement goals and objectives set forth in the NMOCD (New Mexico Oil Conservation Division) Closure Criteria for Soils Impacted by a Release, dated August 14, 2018 and by BLM Guidelines.

The guidance document provides direction for Spur Energy's initial response actions, site assessment, sampling procedures conducted by ESS Staff, we would like to present to you the following information concerning the delineation process for the release detailed herein.

Soil Sampling Procedures

Soil sampling for laboratory analysis was conducted according to the NMOCD – approved industry standards. Accepted NMOCD soil sampling procedures and laboratory analytical methods are as follows:

- Collect clean samples in air tight glass jars supplied by the laboratory to conduct the analysis
- Each sample jar was labelled with site and sample information
- Samples were kept in and stored in a cool place and packed on ice
- Promptly ship sample to the lab for analysis following the chain of custody procedures

The following lab analysis method was used for each bottom hole and side wall sample submitted to Envirotech Analytical Laboratory:

Volatile Organics by EPA 8021B

• Benzene, Toluene, Ethylbenzene, p.m. Xylene, o-Xylene and Total Xylenes

Nonhalogenated Organics by EPA 8015D – GRO

Gasoline Range Organics (C6-C10)

Nonhalogenated Organics by EPA 8015D – DRO/ORO

- Diesel Range Organics (C10-C28)
- Oil Range Organics (C28-C40)

Anions by EPA 300.0/9056A

Chloride

RELEASE INVESTIGATION DATA EVALUATION

On August 7th of 2020, ESS began to remove the impacted soil from inside the lined containment. The impacted soil from inside the containment was removed by use of shovel and stockpiled on plastic. The hydrocarbon and chloride impacted soil from inside the lined facility was then hauled to Lea Landfill for disposal. A total of 166 cubic yards was hauled to Lea Landfill. The liner was inspected and has been compromised.

After the containment was cleared of caliche and pea gravel, the crews began the sampling procedures for the pad and pasture area. The impacted pad and pasture area measured 1427.899 sq. ft. A total of seven vertical soil samples was obtained and used to delineate the impacted area. Field samples were conducted using the Titration Method to test for chlorides in the soil and a PID Meter to test for volatiles found in the soil. Each soil sample was grabbed and field tested by use of a hand auger for the pad area due to multiple buried lines in the area, which included gas lines, production flowlines and electrical lines. Overhead powerlines also restrict usage of heavy equipment in the area of the release on the pad. A backhoe was used to sample the pasture area. The vertical samples were tested using 1' intervals. Both Hydrocarbon and Chloride contaminated soil was found during the delineation process.

Below you will find the vertical and horizontal delineation sample data along with the confirmed lab analysis (in yellow). A background sample was also grabbed at the surface in the pasture area away from the impacted area. Each bottom hole vertical sidewall sample was jarred, labelled and sent to Envirotech Laboratory for confirmation:

Vertical Sample Data

SP ID	Depth	Titration	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL
SP1	SURFACE	640	TPH						
	1'	400	TPH						
	2'	320	TPH						
	3'	320	TPH						
	4'	320	TPH						
	5'	320	TPH						
	6'	280	TPH						
	7'	280	TPH						
	8'	320	TPH						
	9'	280	TPH						
	10'	280	TPH	0.354	ND	13800	5180	18980	30.8
			# A						
SP2	SURFACE	640	TPH						
	1	400	TPH						
	2'	320	TPH						

	3'	400	TPH						
	4'	560	TPH		_				
	5'	560	TPH						
	6'	560	TPH						
	7'	320	TPH						
	8'	320	TPH						
	9'	240	TPH						
	10'	240	TPH						
	11'	240	TPH						
	12'	160	TPH						
	13'	160	TPH	0.0471	ND	95.3	ND	95.3	ND
-140			1,5,17						15.00
SP3	SURFACE	480	TPH						
	1'	320	TPH						
	2'	280	TPH						
	3'	320	TPH						
	4'	400	TPH						
	5'	400	TPH						
	6'	400	TPH						
	7'	480	TPH						
	8'	400	TPH						
	9'	320	TPH						
	10'	320	TPH						
	11'	320	TPH						
	12'	320	TPH						
	13'	320	TPH	0.0526	ND	ND	ND	ND	ND
SP4	SURFACE	320	TPH						
	1'	240	TPH						
	2'	320	TPH						
	3'	320	TPH						
	4'	480	TPH						
	5'	320	TPH						
	6'	320	TPH						
	7'	320	TPH						
	8'	320	TPH						
	9'	320	TPH	ND	ND	81.1	ND	81.1	ND
SP5	SURFACE	480	TPH						
	1'	640	TPH						
	2'	320	TPH						
	3'	640	TPH						
	4'	400	TPH						
	5'	400	TPH						
	6'	400	TPH						

	7'	240	TPH						
	8'	240	TPH						
	9'	480	TPH						
	10'	480	TPH	ND	ND	113	63.3	176.3	ND
SP6	SURFACE	320	TPH						
	1'	400	TPH						
	2'	320	TPH						
	3'	400	TPH						
	4'	320	TPH						
	5'	400	TPH						
	6'	400	TPH						
	7'	400	TPH						
	8'	320	TPH						
	9'	320	TPH						
	10'	320	TPH						
	11'	320	TPH	ND	ND	217	107	324	ND
SP7	SURFACE	320	TPH			ľ			
	1'	320	TPH						
	2'	400	TPH						
	3'	400	TPH						
	4'	320	TPH						
	5'	320	TPH						
	6'	320	TPH						
	7'	320	TPH						
	8'	320	TPH						
	9'	320	TPH	0.344	ND	5990	2140	8130	ND

Horizontal Sample Data

SP ID	Depth	Titration	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL
SW1	SURFACE	320							
	1'	240							
	2'	240							
	3'	240		ND	ND	47.9	ND	47.9	71.3
	V V V	-,2(10)							
SW2	SURFACE	320							
	1'	320							
	21	240		ND	ND	ND	ND	ND	ND
				1.12		1 117 - 1		7 Hart 1 1/1	
SW3	SURFACE	320							
	1'	320							

	2'	320	0.032	ND	269	142	411	ND
RITH.								S reg
SW4	SURFACE	320						
	1'	320						
	2'	320	ND	ND	ND	ND	ND	ND
W2 41			Land Name of St					
SW5	SURFACE	320						
	1'	240						
	2'	240	ND	ND	ND	ND	ND	ND
	والمناك المعقار				e marie			S- Shot
SW6	SURFACE	320						
	1'	400						
	2'	320	ND	ND	818	412	1230	45
dillo.							100	
SW7	SURFACE	320						
	1'	320						
	2'	720						
	3'	320						
	4'	240	ND	ND	27.8	ND	27.8	25.9
SW8	SURFACE	320					5 2- A, N-	
	1'	320						
	2'	240	ND	ND	ND	ND	ND	ND
	L Jaki Karan Asi	E 100 E				J. J. Y.		
SW9	SURFACE	320						
	1'	320						
	2'	240	0.0617	ND	37.7	ND	37.7	ND
SW10	SURFACE	320	The Land			PILLER		S. Land
34410	1'	320			-			
	2'	320	0.12	ND	ND	ND	ND	ND
	2	320	0.12		NO.	A SUPERIOR	NV ANCE	
SW11	SURFACE	400						
_,,,	1'	320						
	2'	320	0.154	ND	ND	ND	ND	ND
× , , , ,				<u> Harsini</u>				January C
SW12	SURFACE	320						
	1'	320						
	2'	240	ND	ND	ND	ND	ND	ND
SW13	SURFACE	320				Trink K	A CONTRACT	
244 72	1'	880						

	2'	400						
	3'	320	ND	ND	943	501	1444	264
				F BIG		STATE OF THE		
SW14	SURFACE	320						
	1'	240						
	2'	160	ND	ND	149	107	256	31.9
1600							IN VEGETA	
SW15	SURFACE	160						
	1'	160						
	21	240						
	3'	640						
	4'	400						
	5'	240	ND	ND	54.3	ND	54.3	147
l Heelf I			The state of the state of the			ME WEST		

Background Sample Data

	SP ID	Depth	Titration	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL
Ī	BG	SURFACE	20		ND	ND	ND	ND	ND	ND

REMEDIATION AND DEFERRAL PROPOSAL

Based on the site investigation procedures conducted at this site, ESS would like to present the following scope of work to remediate the Skelly Unit #940 Battery to NMOCD/BLM rules and regulations.

We would like to propose that the entire impacted area on the pad and pasture area be excavated to 5'bgs and a 20-mil liner be installed at 4'bgs. Most of the area will be excavated by use of hydro-vac, due to the restrictions in this area. There are 13 lines which include, a main gas line, electrical lines and poly lines. The area of the pasture is adjacent to the electrical power panel and overhead powerlines. Please see the sample map to see how the buried lines affect full remediation of the pad and pasture areas. We will pad the 5' excavation area to 4' place a 20-mil liner in the pasture and on the pad under all the lines. The liner will be padded with topsoil on the pad then finish with caliche due to the access road being affected. The back fence of the facility will be pulled out and moved to the edge of the pad and moving the entrance gate to the north side of the road. The area will the pasture above the liner will be backfilled with topsoil and reseeded with BLM #3 seed. The disturbed area will be contoured back to its natural state.

During or before the remediation begins, crews will also remove the liner in the area of the release and sample the containment area where the release occurred. The sample points will

be taken to a depth of 12'bgs if possible. The infrastructure in the area of the release is very congested and will need to be deferred until the facility is reconstructed or decommissioned. We will excavate what we can safely reach without compromising the integrity of the production equipment, production lines or electrical components and haul the contaminates to a local disposal but full remediation of the facility area will need deferred at this time.

Approximately 265 cubic yards of contamination will be hauled to Lea Landfill and R360 for disposal and approximately 318 cubic yards of backfill will be brought in to backfill the excavation areas of the pad and pasture area Once the areas have been excavated to the depths listed above, 48-hour notice will be given, both to the BLM and NMOCD for final closure samples and samples will be confirmed before backfilling of the site commences. The 200 square foot composite sample protocol will be followed during the final sampling event. Composite samples will consist of seven composites along with 15 sidewall samples. All final samples will be turned into Envirotech Laboratory for confirmation. The closure samples will all be taken at a 5' level.

A closure/deferral report will be submitted to both the BLM and NMOCD for the above remediation plan for the Skelly Unit #940 Battery. If you have any questions or concerns about the above remediation plan or scope of work, please contact me at any time. Thank you for your time and consideration in respect to the release that occurred on the Skelly Unit #940 Battery. Spur Energy would like to get this remediation started as soon as possible.

Sincerely,

Natalie Gladden

Director of Environmental and Regulatory Services

#7 Compress Road

Artesia, NM 88210

Cell - (575) 390-6397

Email: natalie@energystaffingllc.com

Attachments:

Initial C141

Groundwater Data and Maps

OSE POD Water Map

Soil Data and Map

Site Map

Karst Map

Sample Data

Delineation Sample Map

Lab Analysis Site Photos Remediation C141 w/deferral information DISTRICT I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

BEHING THE FACILITY.

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	NRM2021853352
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

					J				
Responsible	Party SPU	R ENERGY PAR	RTNERS, LLC	0	GRID 32	8947			
Contact Nam	e BRAIDY	MOULDER		C	Contact Tel	ephone 713-26	54-2517		
Contact emai	il <u>bmoulder</u>	@spurepllc.com		In	ncident # (a	assigned by OCD)			
Contact mail HOUSTON		919 MILAM STF	REET SUITE 247	75					
Location of Release Source									
Latitude 32.8	246078			Loi	ngitude -1	03.865058900			
S 			(NAD 83 in dec						
Site Name SKELLY UNIT #940					ite Type F	ACILITY/SW	'D		
Date Release Discovered 8/4/2020					API# (if applicable) 30-015-32599				
Unit Letter	Section	Township Range			County	v			
D	22	17S	31E	EDDY					
Surface Owner	r □ State		rihal □ Private ()	Name:))		
Surface Owner	т. 🗀 знате		ibai 🔲 i iivate (i	тите					
			Nature and	d Volun	ne of R	elease			
	Materia	(s) Released (Select al	I that apply and attach	calculations	or specific ju	istification for the	volumes provided below)		
Crude Oil		Volume Release	d (bbls) 20			Volume Recov	vered (bbls) 16		
□ Produced	Water	Volume Release	d (bbls) 389			Volume Recov	vered (bbls) 244		
Is the concentration of dissolved chloride in the produced water >10,000 mg/l?					the	Yes No	0		
Condensa	Condensate Volume Released (bbls)					Volume Recovered (bbls)			
☐ Natural Gas Volume Released (Mcf)						Volume Recov	vered (Mcf)		
Other (describe) Volume/Weight Released (provide units)						Volume/Weig	ht Recovered (provide units)		
Cause of Pale	Cause of Delease								

THE SWD H-PUMP FILED TO START, CAUSING TH WATER TANKS TO RUNOVER. RELEASE IS INSIDE A LINED CONTAINMENT, CONTAINMENT WAS BREACHED THEREFORE FLUID RELEASED ONTO PAD AND PASTURE

Form C-141	State of Nev
Page 2	Oil Conservati

	I ugugu Nj
Incident ID	NRM2021853352
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? VOLUME OF RELEASE
⊠ Yes □ No	
If YES, was immediate no EMAIL WAS SENT TO	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? THE BLM AND NMOCD ON 8/4/2020 AT 2:58PM.
	Initial Response
The responsible p	arty must undertake the following actions immediately unless they could create a safety hazard that would result in injury
☐ The source of the rele	ase has been stopped.
☐ The impacted area has	s been secured to protect human health and the environment.
Released materials ha	ve been contained via the use of berms or dikes, absorbent pads, or other containment devices.
All free liquids and re	coverable materials have been removed and managed appropriately.
has begun, please attach a	AC the responsible party may commence remediation immediately after discovery of a release. If remediation narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred tarea (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
regulations all operators are r public health or the environm failed to adequately investiga	mation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and equired to report and/or file certain release notifications and perform corrective actions for releases which may endanger lent. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have te and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
Printed Name: Natalie Gl	adden Title: Director of Environmental and Regulatory
Signature:	ie Gradden Date: 8/5/2020
Email: natalie@energysta	Telephone: (575)390-6397
OCD Only	
Received by: Ramona	Marcus Date: 8/17/2020

New Mexico Office of the State Engineer

Wells with Well Log Information

No wells found.

UTMNAD83 Radius Search (in meters):

Easting (X): 606233.69 **Northing (Y):** 3632413.36 **Radius:** 1000

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/5/20 10:57 AM WELLS WITH WELL LOG INFORMATION

New Mexico Office of the State Engineer

Wells with Well Log Information

(A CLW##### in the	(R=POI	O has													
POD suffix indicates the	been rep	placed,													
POD has been replaced	O=orph	aned,													
& no longer serves a	C=the fi	ile is	(quart	ters are 1=1	NW 2=N	E 3=SV	V 4=SE)								
water right	closed)			(quarters	are small	lest to la	argest)	(NAD83	UTM in meters)				(in fe	et)	
		POD			qqq							Log File	Depth	Depth	License
POD Number	Code	Subbasin	County	Source	64164	Sec 7	Tws Rng	X	Y	Distance Start Date	Finish Date	Date		Water Driller	Number
RA 11590 POD3		RA	ED		3 1 2	32	17S 31E	603932	3629260	3903 01/22/2010	01/22/2010	04/23/2010	60		225
RA 11590 POD4		RA	ED		4 1 1	32	17S 31E	603308	3629253	4306 01/21/2010	01/22/2010	04/23/2010	55		225
L 14207 POD3		L	LE	Shallow	2 3 3	31	16S 37E	606117	3636977	4565 10/03/2016	10/12/2016	12/12/2016	240	96 WHITE, JOHN W	1456
RA 11590 POD1		RA	ED		2 1 3	32	17S 31E	603315	3628545	4845 01/20/2010	01/26/2010	04/23/2010	158		225

Record Count: 4

UTMNAD83 Radius Search (in meters):

Easting (X): 606233.69 **Northing (Y):** 3632413.36 **Radius:** 5000

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/5/20 10:58 AM WELLS WITH WELL LOG INFORMATION

JOHNNOWN.GENER

New Mexico Office of the State Engineer

Wells with Well Log Information

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a	(R=POI been rep O=orph C=the fi	placed, aned,	(quar	ters are 1=	NW 2=N	E 3=S'	W 4=SE)								
water right	closed)			(quarters	are smal	lest to l	argest)	(NAD8	33 UTM in meters	s)			(in fe	eet)	
POD Number	Code	POD Subbasin	County	Source	q q q 64164	Sec	Twe Rn	g X	Y	Distance Start Date	Finish Date	Log File		Depth Water Driller	License Number
RA 11590 POD3	Couc	RA	ED	Bource			17S 31I	~	3629260	3903 01/22/2010	01/22/2010		60	Water Dimer	225
RA 11590 POD4		RA	ED		4 1 1	32	17S 31I	E 603308	3629253	4306 01/21/2010	01/22/2010	04/23/2010	55		225
L 14207 POD3		L	LE	Shallow	2 3 3	31	16S 37I	E 606117	3636977	4565 10/03/2016	10/12/2016	12/12/2016	240	96 WHITE, JOHN W	1456
RA 11590 POD1		RA	ED		2 1 3	32	17S 31I	E 603315	3628545	4845 01/20/2010	01/26/2010	04/23/2010	158		225
RA 10175		RA	LE	Shallow	2 1	28	17S 32I	E 614814	3631005*	8695 02/04/2002	02/04/2002	03/06/2002	158	EADES, ALAN	1044
RA 12721 POD1		RA	LE		3 2 3	28	17S 32I	E 614645	3630141	8712 04/18/2019	04/19/2019	05/15/2019	125	JOHN W WHITE	1456
RA 12020 POD1		RA	LE	Shallow	2 2 1	28	17S 32I	E 614828	3630954	8716 09/24/2013	09/25/2013	10/07/2013	120	81 WHITE, JOHN (LD)	1456
RA 12042 POD1		RA	LE		2 2 1	28	17S 32I	E 614891	3631181	8744 11/13/2013	11/22/2013	12/12/2013	400	CRASS, DARRELL (LD)	1261
RA 12522 POD1		RA	LE	Shallow	3 3 4	21	17S 32I	E 614941	3631122	8802 07/25/2017	07/26/2017	08/22/2017	100	WHITE, JOHN W	1456
RA 12522 POD2		RA	LE	Shallow	2 2 1	28	17S 32I	E 614949	3631098	8814 07/24/2017	07/26/2017	08/22/2017	100	WHITE, JOHN W	1456
RA 12522 POD3		RA	LE	Shallow	4 4 3	28	17S 32I	E 614980	3631093	8845 07/20/2017	07/26/2017	08/22/2017	100	WHITE, JOHN W	1456
RA 12521 POD1		RA	LE	Shallow	3 3 4	21	17S 32I	E 615127	3631271	8966 07/21/2017	07/26/2017	08/22/2017	105	92 WHITE, JOHN W	1456
RA 12020 POD3		RA	LE	Shallow	2 1 2	28	17S 32I	E 615152	3631019	9026 07/13/2015	07/15/2015	08/10/2015	112	83 WHITE, JOHN W	1456
RA 12721 POD2		RA	LE	Shallow	1 1 4	28	17S 32I	E 615055	3630407	9046 04/18/2019	04/19/2019	05/15/2019	124	75 JOHN W WHITE	1456
RA 12721 POD4		RA	LE		1 1 2	33	17S 32I	E 615055	3629589	9262 04/18/2019	04/19/2019	05/15/2019	140	JOHN W WHITE	1456
RA 12721 POD7		RA	LE		1 3 2	33	17S 32I	E 615064	3629198	9397 04/28/2020	04/28/2020	05/18/2020	130	WHITE, JOHNNOWN.GENER	1456
RA 12721 POD3		RA	LE	Shallow	2 3 4	28	17S 32I	E 615417	3629979	9500 04/18/2019	04/19/2019	05/15/2019	115	JOHN W WHITE	1456
RA 12721 POD5		RA	LE	Shallow	2 4 4	28	17S 32I	E 615650	3629961	9730 04/27/2020	04/28/2020	05/18/2020	130	124 WHITE, JOHNNOWN.GENER	1456
<u>CP 00672</u>		CP	LE	Shallow	4 4	07	18S 32I	E 612475	3624947*	9731 07/17/1992	08/07/1992	08/12/1992	524	430 ABBOTT, MURRELL	46
CP 00672 CLW475398	О	CP	LE	Shallow	4 4	07	18S 32I	E 612475	3624947*	9731 01/22/1985	01/29/1985	02/08/1985	540	460 FELKINS, LARRY	882
RA 12721 POD6		RA	LE		1 2 2	33	17S 32I	E 615530	3629431	9763 04/28/2020	04/28/2020	05/18/2020	130	WHITE,	1456

Record Count: 21

UTMNAD83 Radius Search (in meters):

Easting (X): 606233.69 **Northing (Y):** 3632413.36 **Radius:** 10000

*UTM location was derived from PLSS - see Help

8/5/20 11:01 AM WELLS WITH WELL LOG INFORMATION

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number** Q64 Q16 Q4 Sec Tws Rng

X

RA 11590 POD3

603932

3629260

Driller License: 225

Driller Company: RODGERS & CO., INC.

2 32 17S 31E

Driller Name:

Drill Start Date: 01/22/2010

01/22/2010

Plug Date: Source:

Log File Date: 04/23/2010 **Pump Type:**

Pipe Discharge Size:

Drill Finish Date:

PCW Rcv Date:

Estimated Yield:

Casing Size:

Depth Well: 60 feet

Depth Water:

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number Q64

Q64 Q16 Q4 Sec Tws Rng

X Y

RA 11590 POD4

4 1 1 32 17S 31E

603308 3629253

Driller License: 225

Driller Company: RODGERS & CO., INC.

Driller Name:

Drill Start Date: 01/21/2010

01/22/2010

Plug Date: Source:

Log File Date: 04/23/2010 Pump Type:

Pipe Discharge Size:

Drill Finish Date:

PCW Rcv Date:

Estimated Yield:

Casing Size:

Depth Well: 55 feet

Depth Water:

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number Q64 Q16 Q4 Sec Tws Rng

L 14207 POD3

X

3 31 16S 37E

606117 3636977

Driller License: 1456 **Driller Company: WHITE DRILLING COMPANY**

Driller Name: WHITE, JOHN W

Drill Start Date: Drill Finish Date: Plug Date: 10/03/2016 10/12/2016

Log File Date: 12/12/2016 **PCW Rcv Date:** Source: Shallow

Pump Type: Pipe Discharge Size: **Estimated Yield:**

Casing Size: Depth Well: Depth Water: 4.00 240 feet 96 feet

Water Bearing Stratifications:	Тор	Bottom	Description
	75	140	Sandstone/Gravel/Conglomerate
	140	200	Sandstone/Gravel/Conglomerate
	200	205	Sandstone/Gravel/Conglomerate
	205	218	Sandstone/Gravel/Conglomerate
	218	236	Sandstone/Gravel/Conglomerate
	236	237	Sandstone/Gravel/Conglomerate
	237	240	Sandstone/Gravel/Conglomerate
Casing Perforations:	Тор	Bottom	

90 220

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number

Q64 Q16 Q4 Sec Tws Rng

X Y

RA 11590 POD1

2 1 3 32 17S 31E

603315 3628545

Driller License: 225

Driller Company: RODGERS & CO., INC.

Driller Name:

Drill Start Date: 01/20/2010

01/26/2010

Plug Date: Source:

Log File Date: 04/23/2010 Pump Type:

Pipe Discharge Size:

Drill Finish Date:

PCW Rcv Date:

Estimated Yield:

Casing Size:

Depth Well: 158 feet

Depth Water:

	POD NUMI	BER (WE	LL NU	JMBER)						OSE FILE NUM				
ĝ	1									RA 11590				
CY	WELL OW		. ,	a Land Offi	na/Cantast: Da	lloo D	innu			PHONE (OPTION 505-827-5				
2					ce/Contact: Da	iias r	фру					CHE A MINT		7115
าน	WELL OW:			ADDRESS						стту Santa Fe		STATE NM	87	zip 504
[]	-0 00	. 1140								Santa i e		14101		
ANI	WELI	L			DEGREES	MIN	UTES	SECONI			A DOLLARD OLIF TO		70110	
AL.	LOCATI	l l	LAT	TTUDE	32		47	24.	и 00		REQUIRED: ONE TEN DUIRED: WGS 84	TH OF A SEC	UND	
GENERAL AND WELL LOCATION	(FROM C	urs)	LON	GITUDE	103		53	48.	00 W	DATONIKE				
	DESCRIPT	TION REI	ATIA.	G WELL LOCATI	ON TO STREET ADDR	ESS ANI	COMMON I	LANDMA	RKS					
-														
	(2.5 AC	RE)		(10 ACRE)	(40 ACRE)	T	(160 ACRE)		SECTION		TOWNSHIP	_	RANGE	
7	NE :	1/4	N'	w ½	SW ½		½			32	17	NORTH SOUTH	31	☐ east ☐ west
OPTIONAL	SUBDIVISI								LOT NUM	BER	BLOCK NUMBER	<u> </u>	UNIT/TRA	
rTI	in E	Eddy (Cour	nty										
2. 0]	HYDROGR	APHIC S	URVE	Υ							MAP NUMBER		TRACT NU	MBER
	LICENSE N	UMBER		NAME OF LICE	ENSED DRILLER						NAME OF WELL DI	RILLING CON	IPANY	
	WE	0225		John Aguii	re						Rodgers & Co	o., Inc.		
	DRILLING	STARTE	D	DRILLING ENI	DED DEPTH OF CO.	MPLETE	D WELL (FT))	BORE HO	E DEPTH (FT)	DEPTH WATER FIR	RST ENCOUN	TERED (FT)	
ž	1/2	0/10		1/26/10	•					158	no v	vater end	ountered	İ
ΞÌ	COMPLETED WELL IS: ARTESIAN DRY HOLE SHALLOW (UNCONFINED) DRILLING FLUID: AIR MUD ADDITIVES - SPECIFY: DRILLING METHOD: ROTARY HAMMER CABLE TOOL OTHER - SPECIFY: HOllow stem auger and complete to the comp													L (FT)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	COMPLETED WELL IS: ARTESIAN DRY HOLE SHALLOW (UNCONFINED)													
FO	DRILLING	FLUID:		AIR	☐ MUD		ADDITIVE	S – SPECI	FY:					
5	DRILLING	метно	D:	ROTARY	HAMMER		CABLE TO	OC	✓ отне	R - SPECIFY: 1	Hollow stem au	iger and	core	
N.	DEPT	H (FT)		BORE HOL	.e	CASIN	G.		CON	RECTION	INSIDE DIA.	CASING	3 WALL	SLOT
풅	FROM	ТС	,	DIA. (IN)	2	матек	1AL			(CASING)	CASING (IN)	THICKN	ESS (IN)	SIZE (IN)
3.1													8 S	A
į					_								APR	ſ₹! ==
												1	2 -	Z .
					l								<u>-</u> تد	ž
	DEPT	H (FT)		THICKNES	is						ATER-BEARING S			YIELD
\T.\	FROM	TC)	(FT)		(IN	CLUDE WA	ATER-B	EARING	CAVITIES OF	R FRACTURE ZON	(ES)	= -5	(GPM)
T.R.		<u> </u>									<u> </u>			<u> </u>
,es							-						<u> </u>	<u>n - </u>
\RI;		ļ												· in
BE,		-												
FER		l			<u> </u>						· · · · · · · · · · · · · · · · · · ·			
WATER BEARING STRATA	METHOD	USED TO	ESTI	MATE YIELD OF	WATER-BEARING ST	KATA					TOTAL ESTIMATE	O WELL YIEL	.D (GPM)	
4.														
	·													

FOR OSE INTERNAL USE

FILE NUMBER R A-11590

POD NUMBER POD 1

TRN NUMBER 449198

PAGE 1 OF 2

MP	TYPE O	F PUMP:	□ SUBMEI		☐ JET ☐ CYLINDER	□ NO PUMP – WELL NOT EQUIPPET □ OTHER – SPECIFY:)		
SEAL AND PUMP	ANNI	HAR	DEPTE FROM	I (FT)	BORE HOLE DIA. (IN)	MATERIAL TYPE AND SIZE	AMOUNT (CUBIC FT)	METH PLACE	
EAL.	SEAL	AND							
S. S.	GRAVE	L PACK							
								<u> </u>	
	DEPT	H (FT)	тніск		1	COLOR AND TYPE OF MATERIAL ENCOUN		WA	
	FROM	ТО	(F	l') 	(INCL	JDE WATER-BEARING CAVITIES OR FRAC	TURE ZONES)	BEAF	
								YES	□ ио
								☐ YES	□ NO
į								☐ YES	□ NO
								☐ YES	□ NO
11								YES	NO
W.E			· · · · · · · · · · · · · · · · · · ·					☐ YES	□ NO
308								YES	□ NO
Ŏ								☐ YES	□ NO
215								YES	NO
GEOLOGIC LOG OF WELL								☐ YES	□ NO
								YES	□ NO
j.					ļ			YES	□ NO
								YES	□ NO
								YES	□ NO
							· · · · · · · · · · · · · · · · · · ·	YES	□ NO
								☐ YES	□ NO
			. 777 . 611	LANDITION	LAL BACEE AS ALL	EEDED TO FULLY DESCRIBE THE GEOLOG	IC LOC OF THE WELL	1 163	
	1		ATTACH	-	· · · · · · · · · · · · · · · · · · ·		IC LOG OF THE WELL		
6	Werr	. TEST	METHOD:	BAILE		☐ AIR LIFT ☐ OTHER – SPECIFY:			
NAL INFO	C	. 11:31				NATA COLLECTED DURING WELL TESTING AND DRAWDOWN OVER THE TESTING PEI		ME, END T	IME,
Į.			MENTS OR EXPL						
7. TEST & ADDITION	C-1 bor	e abanc	loned and (grouted b	ack entire dep	in.			
7									
EST									
7. T		,							
	<u> </u>	<u> </u>							
TURE	CORREC	T REĆOR	D OF THE AE	BOVE DESC	RIBED HOLE ANI	EST OF HIS OR HER KNOWLEDGE AND BEI O THAT HE OR SHE WILL FILE THIS WELL ON OF WELL DRILLING:	TEF, THE FOREGOING I RECORD WITH THE STA	S A TRUE A ATE ENGIN	IND EER AND
SIGNATURE	0	John	agu	urie.	112	04/20/10			
œ	7	/·	SIGNATUR	RE OF DRIL	LER	DATE			

FOR OSE INTERNAL USE		WELL RECORD & LOG	(Version 6/9/08)
FILE NUMBER	POD NUMBER	TRN NUMBER	_
LOCATION		<u>-</u>	PAGE 2 OF 2

John R. D Antonio, Jr., P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr:

449198

File Nbr:

RA 11590

TITE RET.

Well File Nbr: RA 11590 POD1

May. 04, 2010

DALLAS RIPPY, ASST COMM OF RECR DIV NEW MEXICO STATE LAND OFFICE PO BOX 1148 SANTA FE, NM 87504

Greetings:

The above numbered permit was issued in your name on 01/22/2010.

The Well Record was received in this office on 04/23/2010, stating that it had been completed on 01/26/2010, and was a dry well. The well is to be plugged or capped or otherwise maintained in a manner satisfactory to the State Engineer.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 01/31/2011.

If you have any questions, please feel free to contact us.

Sincerely,

Melinda Spivey (575)622-6521

drywell

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

		m												
2	POD NUMB	EK (WEI	LL NU	MBER)				OSE FILE NUM RA 11590						
GENERAL AND WELL LOCATION														
-51	WELL OWN			1 1 0 (6				PHONE (OPTIO	•					
Š					ce/Contact: Dalla	as Rippy		505-827-5	760					
= [WELL OWN			ADDRESS		•		CITY		STATE		ZIP		
Ϋ́E	PO Box	1148						Santa Fe		NM	87	504		
, Q,					DEGREES	MINUTES S	SEÇONDS	[
٨,	WELL LOCATION	1			32	47	47.00 N	• ACCURACY	REQUIRED: ONE TEN	ITH OF A SEC	COND	1		
. 3	(FROM G	l l	LAT.	TUDE				j	QUIRED: WGS 84					
S.		,	LON	GITUDE	103	53	24.00 W							
GE	DESCRIPT.	ION REL	ATING	WELL LOCATI	ON TO STREET ADDRE	SS AND COMMON LA	NDMARKS							
						•								
							<u> </u>							
l	(2.5 ACRE) (10 ACRE) (40 ACRE) (160 ACRE) SECTION TOWNSHIP RANGE SW 1/4 NW 1/4 NE 1/4 32 17 (150 MW) 31 C													
1	SW 1	/•	N\	N 1/4	NE ¼	1/4	İ	32 17						
Z O	SUBDIVISI	ON NAM	1E				LOT NUA	BER	BLOCK NUMBER		UNIT/TRA	ст		
OPTIONAL	in Eddy County													
0.7	HYDROGR	APHIC S	URVE	MAP NUMBER TRACT NUMBER										
	:										1			
	LICENSE NUMBER NAME OF LICENSED DRILLER NAME OF WELL DRILLING COMPANY													
	l '													
)225		John Agui		· · · · · · · · · · · · · · · · · · ·		Rodgers & Co., Inc. HOLE DEPTH (FT) DEPTH WATER FIRST ENCOUNTERED (FT)						
	DRILLING		D	DRILLING EN		PLETED WELL (FT)	BOREHO		1					
%	1/2	2/10		1/22/10	<u> </u>		60	no v	vater end	countered	j '			
Ĕ	STATIC WATER LEVEL IN COMPLETED WELL (FT) COMPLETED WELL IS: ARTESIAN DRY HOLE SHALLOW (UNCONFINED)													
Ì	COMPLETI	ED WELI	L IS:	ARTESIAI	DRY HOLE									
l Ö	COMPLETED WELL IS: ARTESIAN DRY HOLE SHALLOW (UNCONFINED) DRILLING FLUID: AIR MUD ADDITIVES - SPECIFY: DRILLING METHOD: ROTARY HAMMER CABLE TOOL TOTHER - SPECIFY: HOllow Stem auger DEPTH (FT) BORE HOLE CASING CONNECTION INSIDE DIA. CASING WALL FROM TO DIA. (IN) MATERIAL TYPE (CASING) CASING (IN) THICKNESS (CASING (IN))													
2								n apround	Hollow stem at	iner				
	DRILLING			ROTARY	HAMMER	CABLE TOO	r (-) (1)	IER - SPECIFY: Hollow stem auger						
🖫	DEPT	'H (FT)		BORE HOL	i i	CASING		NECTION	INSIDE DIA.		G WALL	SLOT		
NE.	FROM	TC)	DIA. (IN)	M	ATERIAL	ТҮРЕ	(CASING)	CASING (IN)	THICK		SIZE (IN)		
m										5	SI			
										APR	J.E.			
										1	िर्दे			
ĺ										\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	72 Z			
	DEPT	H (FT)		(m. 11.01/. 1171	20 12	ODMATION DESC	TRIBITION OF I	DINCIDAL W	VATED DEADING	OTD A TLA	₹	VIELD		
ج	FROM	TC	-	THICKNE: (FT)	SS F	ORMATION DESC	TER REARING	CAVITICS O	'ATER-BEARING S R FRACTURE ZOI	AEG)		YIELD (GPM)		
3	PROM					(IIICEODE IIII	TEN-DEMINI		KTIGIOTORE ECI	———	<u> </u>	(4.1.1.7)		
Ĭ.		<u> </u>							 					
ç		ļ								<u>~~</u>	_ 			
Z Z												1.1.		
4. WATER BEARING STRATA		<u> </u>												
 												<u> </u>		
ĮĘ	метнор	USED TO	EST1	MATE YIELD OF	WATER-BEARING STR	ATA			TOTAL ESTIMATE	D WELL YIE	LD (GPM)			
🖹														
	-													
											7.04	. (0.(0.))		
	FOR OSE INTERNAL USE WELL RECORD & LOG (Version 6/9/08) FILE NUMBER RA-11590 POD NUMBER POD 3 TRN NUMBER 4,49,198													
						POD NC	MIDER PUI	<u> </u>	1 MA NOWR	cx 4,4		•		
	LOCATI	ION	1.3	31.32 2	ムーろ						PAGE 1	OF 2		

EXPLORE

JMP	TYPE OF PUMP: SUBMERSIBLE DET NO PUMP - WELL NOT EQUIPPED TURBINE CYLINDER OTHER - SPECIFY:										
SEAL AND PUMP	ANNUI SEAL A GRAVEL	ND DAY	DEPTH FROM	TO	BORE HOLE DIA. (IN)	MATERIAL TYPE AND SIZE	AMOUNT (CUBIC FT)	METHO PLACE			
5.5							-				
	DEPTH	(FT)	THICK	NESS		COLOR AND TYPE OF MATERIAL ENCOUN'	TERED	WA [*]	rco		
,	FROM	то	(F		1	UDE WATER-BEARING CAVITIES OR FRACT		BEAR			
		-						☐ YES	□ NO		
								☐ YES	□ №		
								☐ YES	Ои		
								☐ YES	□ NO		
]	ļļ.							☐ YES	□ NO		
.¥E								☐ YES	NO		
l Ö								YES	□ NO		
9.								YES	□ NO		
5		 -						YES	□ NO		
0.00	-		-					YES	□ NO		
6. GEOLOGIC LOG OF WELL			1		<u> </u>			YES	NO		
`	ļ		<u> </u>					☐ YES	□ NO		
			<u> </u>					YES	□ NO		
	-		<u> </u>				· · · · · · · · · · · · · · · · · · ·	YES	□ NO		
								☐ YES			
			İ					YES	□ NO		
	-		ATTACE	ADDITION	IAL PAGES AS N	EEDED TO FULLY DESCRIBE THE GEOLOGIC	C LOG OF THE WELL	.1			
<u> </u>	l l		METHOD:	BAILE	R DUMP	☐ AIR LIFT ☐ OTHER – SPECIFY:			·		
NAL INFO	WELL	TEST	TEST RESU	JLTS - ATTA	CH A COPY OF I	DATA COLLECTED DURING WELL TESTING, AND DRAWDOWN OVER THE TESTING PER	INCLUDING START T	IME, END T	IME,		
FX	A DOITION A	AI STATEN	MENTS OR EXPL					 ,			
7. TEST & ADDITION					ack entire dep	oth.					
33	ļ										
resi											
-											
URE	CORRECT	T RECOR	D OF THE AF	BOVE DESC	RIBED HOLE AN	EST OF HIS OR HER KNOWLEDGE AND BELI D THAT HE OR SHE WILL FILE THIS WELL F ION OF WELL DRILLING:	EF, THE FOREGOING I ECORD WITH THE STA	S A TRUE A ATE ENGIN	ND EER AND		
SIGNATURE	0	Olin	agu	 כסגנו	PL-	04/20/10					
8. 8		<u>~// / / / / / / / / / / / / / / / / / /</u>	SIGNATUI	RE OF DRIL	rep.	DATE					
<u> </u>	<u> </u>										

FOR OSE INTERNAL USE		WELL RECORD & LOG	(Version 6/9/08)
FILE NUMBER	POD NUMBER	TRN NUMBER	
LOCATION			PAGE 2 OF 2
		<u> </u>	

John R. D Antonio, Jr., P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr:

449198

File Nbr:

RA 11590

Well File Nbr: RA 11590 POD3

May. 04, 2010

DALLAS RIPPY, ASST COMM OF RECR DIV NEW MEXICO STATE LAND OFFICE PO BOX 1148 SANTA FE, NM 87504

Greetings:

The above numbered permit was issued in your name on 01/22/2010.

The Well Record was received in this office on 04/23/2010, stating that it had been completed on 01/22/2010, and was a dry well. The well is to be plugged or capped or otherwise maintained in a manner satisfactory to the State Engineer.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 01/31/2011.

If you have any questions, please feel free to contact us.

Sincerely,

Melinda Spivey (575)622-6521

drywell

	POD NUMI	BER (WE	LLNU	JMBER)				<u> </u>		OSE FILE NU	MBER(S)		-			
NO NO	4									RA 11590	•					
GENERAL AND WELL LOCATION	WELL OW									PHONE (OPTIO						
007					ce/C	ontact: Dall	as Rippy			505-827-5	5760					
]				ADDRESS						CITY		STATE		ZIP		
ΝE	PO Box	1148								Santa Fe		NM	87	7504		
QN.	WEL	L			DE	GREES	MINUTES	SECOND		<u> </u>						
VI.	LOCAT	L	LAT	TTUDE		32	47	47.0	и ОС	J	REQUIRED: ONE TEN	TH OF A SEC	COND			
SER.	(FROM (GPS)	LON	KGITUDE		103	53	48.0	00 W	• DATUM REC	QUIRED: WGS 84					
GE.	DESCRIPT	TION REL	ATIN	G WELL LOCAT	ION TO	STREET ADDRE	SS AND COMMON L	ANDMA	RKS					,		
-																
	(2.5 AC	RE)		(10 ACRE)		(40 ACRE)	(160 ACRE)		SECTION		TOWNSHIP		RANGE			
_		/ ₄	N'	· ·		IW ¼	1/4			32	17	NORTH	31	Z EAST		
N.	SUBDIVIS			. /4		/4	/4		OT NUM		BLOCK NUMBER	✓ soumi	UNIT/TRA	CT WEST		
2. OPTIONAL	in E	Eddy C	Cour	nty												
. O	HYDROGR	APHIC S	URVE	Y						 	MAP NUMBER		TRACT NU	IMBER		
	LICENSEN	UMBER		NAME OF LICE	ENSED	DRILLER					NAME OF WELL DE	ULLING CON	IPANY			
	wc)225		John Aguir	rre						Rodgers & Co	o., Inc.				
NC	DRILLING STARTED DRILLING ENDER					DEPTH OF COM	PLETED WELL (FT)	i	SORE HO	LE DEPTH (FT)	DEPTH WATER FIR	ST ENCOUN	TERED (FT)			
	1/21/10 1/22/10									55	no v	vater end	ountered	<u></u>		
DRILLING INFORMATION	COMPLETED WELL IS: ARTESIAN DRY HOLE SHALLOW (UNCONFINED)										STATIC WATER LE	VEL IN COM	PLETED WEL	LL (FT)		
KFOR	DRILLING	FLUID:		AIR		MUD ADDITIVES - SPECIFY:										
Ü	DRILLING	METHOD	D:	ROTARY		HAMMER	CABLE TOO	յե [✓ отне	ER - SPECIFY: Hollow stem auger						
<u> </u>	DEPT	H (FT)		BORE HOL	.Е		CASING		CONN	VECTION	INSIDE DIA.	CASING	WALL	SLOT		
I NC	FROM	ТО		DIA. (IN)		M.	ATERIAL		TYPE	(CASING)	CASING (IN)	THICKN	ESS (IN)	SIZE (IN)		
								_			· · · · · · · · · · · · · · · · · · ·		- ;	_*		
					\rightarrow							200	ROS			
								!_	:							
		H (FT)		THICKNES	s	F					ATER-BEARING S			YIELD (GPM)		
STRATA	FROM	ТО	_	(FT)			(INCLUDE WA	TEK-BE	AKING	CAVITIES OF	R FRACTURE ZON	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 1.4	(0181)		
							-					<u> </u>		·		
NG			_		+					_		→	- 美円			
BEARING											<u></u>	_	<u> 축</u> 국			
28		<u> </u>		<u></u>	-	· <u></u> -						. u	- 5			
WATER	METHOD	JSED TO	ESTIN	MATE YIELD OF	WATER	R-BEARING STRA	<u></u>				TOTAL ESTIMATED	WELL YIEL	D (GPM)	- P		
4. 8.												-	,,			
7	<u> </u>													<u></u>		
	EOD OCE			LIOT							WELL DECO	nn a 100	01 2 6	0.00		

FOR OSE INTERNAL USE

FILE NUMBER RA-11690

POD NUMBER PDD L

TRN NUMBER 449198

LOCATION 17, 31, 32, 114

EXPLORE

JMP	түре о	F PUMP:	☐ SUBMEF		☐ JET ☐ CYLINDER	☐ NO PUMP – WELL NOT EQUIPPED ☐ OTHER – SPECIFY:			
SEAL AND PUMP	ANNI	JLAR	DEPTI FROM	TO	BORE HOLE DIA. (IN)	MATERIAL TYPE AND SIZE	AMOUNT (CUBIC FT)	METHO PLACE	
SEAL		. AND L PACK						İ	
5.			<u> </u>					!	
	DEPT	H (FT)	THICK	NESS		COLOR AND TYPE OF MATERIAL ENCOUNT	rered	WA.	rer
	FROM	то	(FI	r)	(INCLI	JDE WATER-BEARING CAVITIES OR FRACT	URE ZONES)	BEAR	ING?
								☐ YES	□ NO
								☐ YES	□ NO
								☐ YES	□ №
								☐ YES	□ NO
T.								☐ YES	□ NO
GEOLOGIC LOG OF WELL								☐ YES	NO
105							<u></u>	YES	□ NO
0,1								☐ YES	□ NO
CIC								☐ YES	□ NO
010								YES	□ NO
6. GE		<u> </u>						☐ YES	□ NO
9			1				<u></u>	☐ YES	□ NO
								☐ YES	□ NO
1			<u> </u>	•				☐ YES	
								YES	□ NO
								YES	□ NO
	<u> </u>		ATTACU	LADDITION	AL PAGES AS NE	EEDED TO FULLY DESCRIBE THE GEOLOGIC	LOG OF THE WELL	1 11,3	
	<u> </u>						C ECG OF THE WEEK		
FO	l WELL	. TEST	METHOD:	BAILE		☐ AIR LIFT ☐ OTHER - SPECIFY: ATA COLLECTED DURING WELL TESTING,	INCLUDING START T	ME ENDT	ME
NAL INFO			AND A TAE	BLE SHOWIN	NG DISCHARGE	AND DRAWDOWN OVER THE TESTING PERI	INCLUDING START TI	MIG. END T	19112,
ION.	1		IENTS OR EXPL						
TIC	C-4 bot	e aband	loned and (grouted ba	ack entire dep	th.			
(V a	-								
ST 8	,								
7. TEST & ADDITIO									
		·							
TURE	CORREC	CT RECOR	D OF THE AR	BOVE DESCR	RIBED HOLE ANI	EST OF HIS OR HER KNOWLEDGE AND BELI O THAT HE OR SHE WILL FILE THIS WELL R ON OF WELL DRILLING:	EF, THE FOREGOING DECORD WITH THE STA	S A TRUÉ A ATÉ ENGINI	ND EER AND
SIGNATURE		ohn	- agu	urre	112	04/20/10			
æć	0		SIGNATUR	RE OF DRILL	ER (DATE			

FOR OSE INTERNAL USE		WELL RECORD & LOG (Version 6/9/08)	
FILE NUMBER	POD NUMBER	TRN NUMBER	
LOCATION			PAGE 2 OF 2

John R. D Antonio, Jr., P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr:

449198

File Nbr:

RA 11590

Well File Nbr: RA 11590 POD4

May. 04, 2010

DALLAS RIPPY, ASST COMM OF RECR DIV NEW MEXICO STATE LAND OFFICE PO BOX 1148 SANTA FE, NM 87504

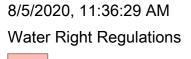
Greetings:

The above numbered permit was issued in your name on 01/22/2010.

The Well Record was received in this office on 04/23/2010, stating that it had been completed on 01/22/2010, and was a dry well. The well is to be plugged or capped or otherwise maintained in a manner satisfactory to the State Engineer.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 01/31/2011.

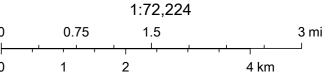
If you have any questions, please feel free to contact us.


Sincerely,

Melinda Spivey (575)622-6521

drywell

OSE Public Print



Critical Management Area - Guidelines

OSE District Boundary

GIS WATERS PODs

- Active
- Pending
- Plugged

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community, Esri, HERE, Garmin, (c) OpenStreetMap contributors, Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user

Soil Map—Eddy Area, New Mexico (SKELLY 940 BATTERY)

MAP LEGEND

â

0

Δ

Water Features

Transportation

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways

Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

+ Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

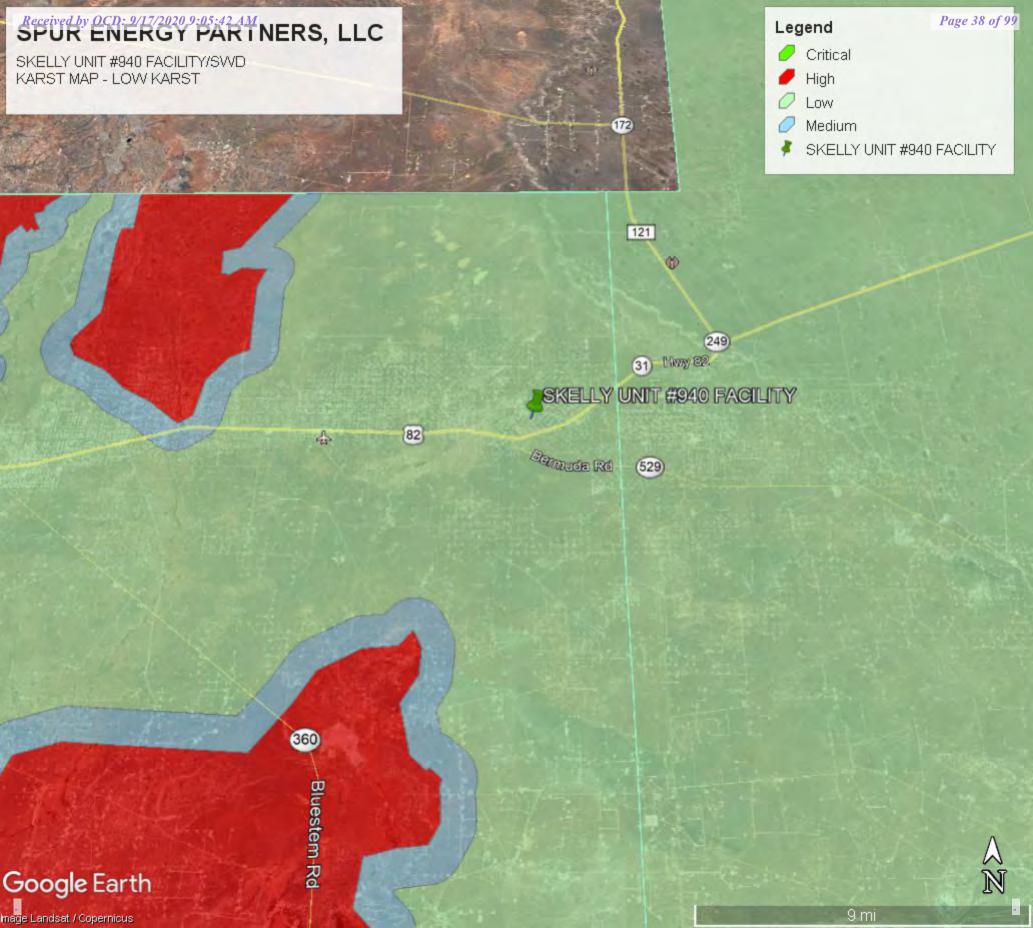
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 16, Jun 8, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.


Date(s) aerial images were photographed: Sep 18, 2016—Nov 20, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

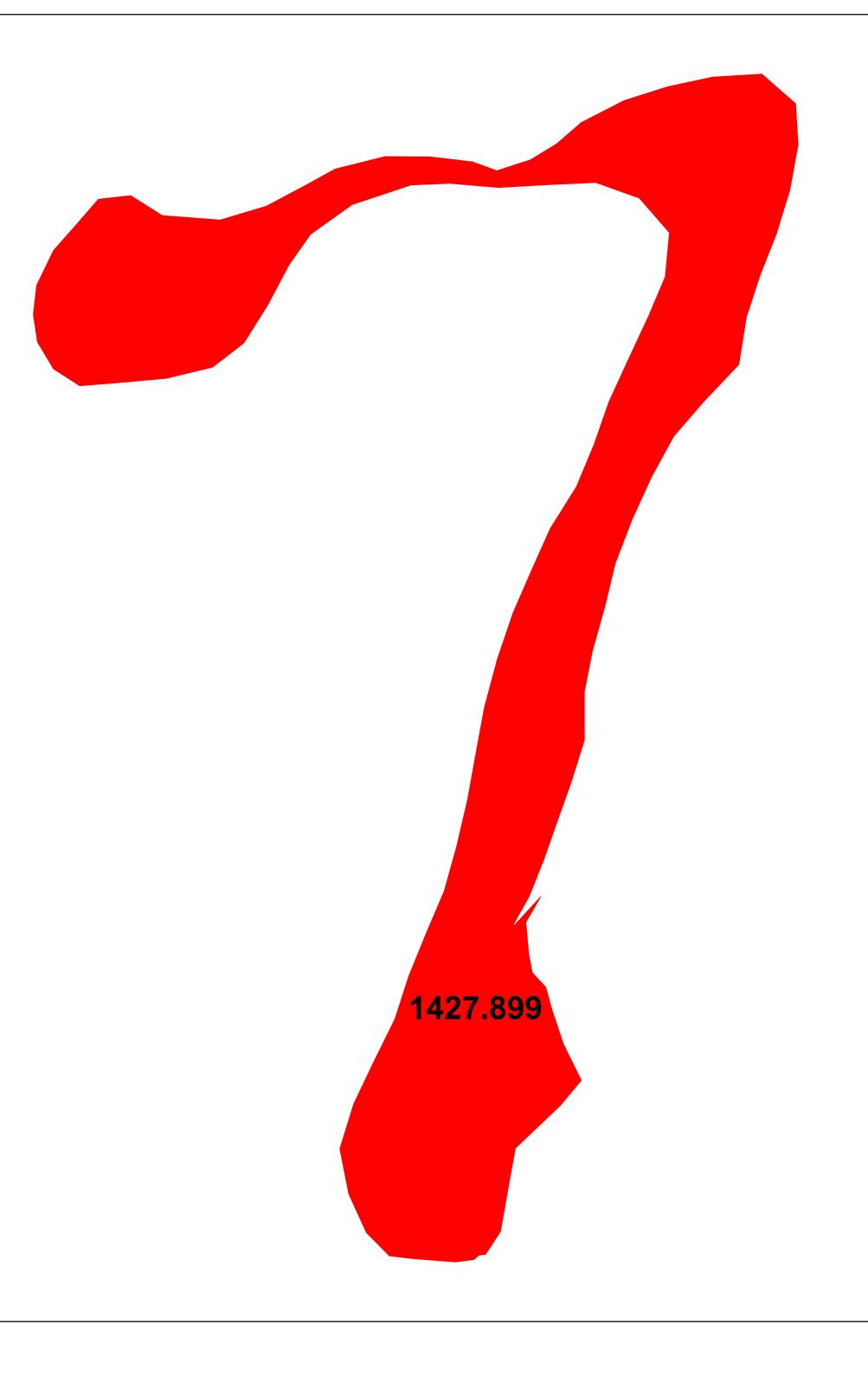
Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
КМ	Kermit-Berino fine sands, 0 to 3 percent slopes	7.5	100.0%
Totals for Area of Interest		7.5	100.0%

Received by OCD: 9/17/2020 9:05:42 AM

SKELLY UNIT #940 BATTERY

Legend


Area_generic

Site Map
awn By: Dakoatah Montanez
ecked by: Natalie Gladden

Date: 8-9-2020

Page 40 of 99

1,427.90 SQ FT.

0 1.25 2.5 5 7.5 10

Meters

Legend

	Drawn By: Dakoatah Montanez
	Checked by: Natalie Gladden
	Date: 8-9-2020

Site Map

SKELLY UNIT #940 BATTERY PASTURE AREA

Area_generic

Company Name: SPUR ENERGY Location Name: SKELLY 940 BTY Release Date: 8/4/2020

SP ID	Depth	Titr	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL	Soil	Notes
SP1	SURFACE	640	TPH								
	1'	400	TPH								
	2'	320	TPH								
	3'	320	TPH								
	4'	320	TPH								
	5'	320	TPH								
	6'	280	TPH								
	7'	280	TPH								
	8'	320	TPH								
	9'	280	TPH								
	10'	280	TPH	0.354	ND	13800	5180	18980	30.8		MAXED OUT HAND AUGER
SP2	SURFACE	640	TPH								
	1'	400	TPH								
	2'	320	TPH								
	3'	400	TPH								
	4'	560	TPH								
	5'	560	TPH								
	6'	560	TPH								
	7'	320	TPH								
	8'	320	TPH								
	9'	240	TPH								
	10'	240	TPH								
	11'	240	TPH		-						
	12'	160	TPH								
	13'	160	TPH	0.0471	ND	95.3	ND	95.3	ND		MAXED OUT HAND AUGER
SP3	SURFACE	480	TPH								
	1'	320	TPH								
	2'	280	TPH								
	3'	320	TPH								

	4'	400	TPH							
	5'	400	TPH							
	6'	400	TPH							
	7'	480	TPH							
	8'	400	TPH							
	9'	320	TPH							
	10'	320	TPH							
	11'	320	TPH							
	12'	320	TPH							
	13'	320	TPH	0.0526	ND	ND	ND	ND	ND	MAXED OUT HAND AUGER
SP4	SURFACE	320	TPH							
	1'	240	TPH							
	2'	320	TPH							
	3'	320	TPH							
	4'	480	TPH							
	5'	320	TPH							
	6'	320	TPH							
	7'	320	TPH							
	8'	320	TPH							
	9'	320	TPH	ND	ND	81.1	ND	81.1	ND	
SP5	SURFACE	480	TPH							
	1'	640	TPH							
	2'	320	TPH							
	3'	640	TPH							
	4'	400	TPH							
	5'	400	TPH							
	6'	400	TPH							
	7'	240	TPH							
	8'	240	TPH							
	9'	480	TPH							
	10'	480	TPH	ND	ND	113	63.3	176.3	ND	MAXED OUT HAND AUGER
			-							

SP6	SURFACE	320	TPH								
	1'	400	TPH								
	2'	320	TPH								
	3'	400	TPH								
	4'	320	TPH								
	5'	400	TPH								
	6'	400	TPH								
	7'	400	TPH								
	8'	320	TPH								
	9'	320	TPH								
	10'	320	TPH								
	11'	320	TPH	ND	ND	217	107	324	ND		
SP7	SURFACE	320	TPH								
	1'	320	TPH								
	2'	400	TPH								
	3'	400	TPH								
	4'	320	TPH								
	5'	320	TPH								
	6'	320	TPH								
	7'	320	TPH								
	8'	320	TPH								
	9'	320	TPH	0.344	ND	5990	2140	8130	ND		MAXED OUT HAND AUGER
SP ID	Depth	Titr	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL	Soil	Notes
SW1	SURFACE	320									
	1'	240									
	2'	240									
	3'	240		ND	ND	47.9	ND	47.9	71.3		
SW2	SURFACE	320									
	1'	320									
	2'	240		ND	ND	ND	ND	ND	ND		

SW3	SURFACE	320							
	1'	320							
	2'	320	0.032	ND	269	142	411	ND	
SW4	SURFACE	320							
	1'	320							
	2'	320	ND	ND	ND	ND	ND	ND	
SW5	SURFACE	320							
	1'	240							
	2'	240	ND	ND	ND	ND	ND	ND	
SW6	SURFACE	320							
	1'	400							
	2'	320	ND	ND	818	412	1230	45	
SW7	SURFACE	320							
	1'	320							
	2'	720							
	3'	320							
	4'	240	ND	ND	27.8	ND	27.8	25.9	
SW8	SURFACE	320							
	1'	320							
	2'	240	ND	ND	ND	ND	ND	ND	
SW9	SURFACE	320							
	1'	320							
	2'	240	0.0617	ND	37.7	ND	37.7	ND	
SW10	SURFACE	320							
	1'	320							
	2'	320	0.12	ND	ND	ND	ND	ND	

SW11	SURFACE	400									
	1'	320									
	2'	320		0.154	ND	ND	ND	ND	ND		
SW12	SURFACE	320									
	1'	320									
	2'	240		ND	ND	ND	ND	ND	ND		
SW13	SURFACE	320									
	1'	880									
	2'	400									
	3'	320		ND	ND	943	501	1444	264		
SW14	SURFACE	320									
	1'	240									
	2'	160		ND	ND	149	107	256	31.9		
SW15	SURFACE	160									
	1'	160									
	2'	240									
	3'	640									
	4'	400									
	5'	240		ND	ND	54.3	ND	54.3	147		
SP ID	Depth	Titr	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL	Soil	Notes
BG	SURFACE	20		ND	ND	ND	ND	ND	ND		BACKGROUND SAMPLE

Analytical Report

Report Summary

Client: Spur

Samples Received: 9/5/2020

Job Number: 20046-0001

Work Order: P009030

Project Name/Location: Skelly Unit #940

Report Reviewed By:	Walter Hinderson	Date:	9/9/20	
	Walter Hinchman, Laboratory Director	_		

Envirotech Inc. certifies the test results meet all requirements of TNI unless footnoted otherwise.

Statement of Data Authenticity: Envirotech, Inc, attests the data reported has not been altered in any way.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Envirotech, Inc, holds the Utah TNI certification NM009792018-1 for the data reported.

Envirotech, Inc, holds the Texas TNI certification T104704557-19-2 for the data reported.

SpurProject Name:Skelly Unit #940PO Box 1058Project Number:20046-0001Reported:Hobbs NM, 88240Project Manager:Natalie Gladden09/09/20 13:44

Sample Summary

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
SP1-10'	P009030-01A	Soil	09/01/20	09/04/20	Glass Jar, 4 oz.
SP2-13'	P009030-02A	Soil	09/01/20	09/04/20	Glass Jar, 4 oz.
SP3-13	P009030-03A	Soil	09/01/20	09/04/20	Glass Jar, 4 oz.
SP4-9'	P009030-04A	Soil	09/01/20	09/04/20	Glass Jar, 4 oz.
SP5-10'	P009030-05A	Soil	09/02/20	09/04/20	Glass Jar, 4 oz.
SP6-11'	P009030-06A	Soil	09/02/20	09/04/20	Glass Jar, 4 oz.
SP7-9'	P009030-07A	Soil	09/03/20	09/04/20	Glass Jar, 4 oz.
Background	P009030-08A	Soil	09/03/20	09/04/20	Glass Jar, 4 oz.
SW1-3'	P009030-09A	Soil	09/03/20	09/04/20	Glass Jar, 4 oz.
SW2-2'	P009030-10A	Soil	09/03/20	09/04/20	Glass Jar, 4 oz.
SW3-2'	P009030-11A	Soil	09/03/20	09/04/20	Glass Jar, 4 oz.
SW4-2'	P009030-12A	Soil	09/03/20	09/04/20	Glass Jar, 4 oz.
SW5-2'	P009030-13A	Soil	09/03/20	09/04/20	Glass Jar, 4 oz.
SW6-2'	P009030-14A	Soil	09/03/20	09/04/20	Glass Jar, 4 oz.
SW7-4'	P009030-15A	Soil	09/03/20	09/04/20	Glass Jar, 4 oz.
SW8-2'	P009030-16A	Soil	09/03/20	09/04/20	Glass Jar, 4 oz.
SW9-2'	P009030-17A	Soil	09/03/20	09/04/20	Glass Jar, 4 oz.
SW10-2'	P009030-18A	Soil	09/04/20	09/04/20	Glass Jar, 4 oz.
SW11-2'	P009030-19A	Soil	09/04/20	09/04/20	Glass Jar, 4 oz.
SW12-2'	P009030-20A	Soil	09/04/20	09/04/20	Glass Jar, 4 oz.
SW13-3'	P009030-21A	Soil	09/04/20	09/04/20	Glass Jar, 4 oz.
SW14-2'	P009030-22A	Soil	09/04/20	09/04/20	Glass Jar, 4 oz.
SW15-2'	P009030-23A	Soil	09/04/20	09/04/20	Glass Jar, 4 oz.

1

SP1-10' P009030-01 (Solid)

		002000 01 (8011	,				
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	0.0449	0.0250	1	09/05/20	09/08/20		
Toluene	0.0660	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	0.137	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	0.215	0.0500	1	09/05/20	09/08/20		
o-Xylene	0.138	0.0250	1	09/05/20	09/08/20		
Total Xylenes	0.354	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		119 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		87.4 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	13800	250	10	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	5180	500	10	09/08/20	09/08/20		
Surrogate: n-Nonane		127 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	30.8	20.0	1	09/08/20	09/08/20		

Skelly Unit #940 Spur Project Name: PO Box 1058 20046-0001 Project Number: Hobbs NM, 88240 Natalie Gladden Project Manager:

Reported: 09/09/20 13:44

SP2-13' P009030-02 (Solid)

		002000 02 (801	,				
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	0.0471	0.0250	1	09/05/20	09/08/20		
Total Xylenes	0.0471	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		108 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.1 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	95.3	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		97.0 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20	·	•

Skelly Unit #940 Spur Project Name: PO Box 1058 20046-0001 Project Number: Reported: Hobbs NM, 88240 Natalie Gladden 09/09/20 13:44 Project Manager:

SP3-13 P009030-03 (Solid)

		007000 00 (2011	",				
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	0.0526	0.0250	1	09/05/20	09/08/20		
Total Xylenes	0.0526	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		101 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.1 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	ND	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		85.9 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20		

Skelly Unit #940 Spur Project Name: PO Box 1058 20046-0001 Project Number: Reported: Hobbs NM, 88240 09/09/20 13:44 Project Manager: Natalie Gladden

SP4-9' P009030-04 (Solid)

		` `					
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		103 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.4 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	81.1	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		92.0 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20	•	•

SP5-10' P009030-05 (Solid)

		` `					
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		101 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		87.9 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	113	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	63.3	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		99.2 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20	•	•

Skelly Unit #940 Spur Project Name: PO Box 1058 20046-0001 Project Number: Hobbs NM, 88240 Natalie Gladden Project Manager:

Reported: 09/09/20 13:44

SP6-11' P009030-06 (Solid)

		007000 00 (501	,				
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		103 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		86.5 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	217	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	107	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		112 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20	·	·

SP7-9' P009030-07 (Solid)

		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	0.113	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	0.220	0.0500	1	09/05/20	09/08/20		
o-Xylene	0.124	0.0250	1	09/05/20	09/08/20		
Total Xylenes	0.344	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		115 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		87.1 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	5990	250	10	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	2140	500	10	09/08/20	09/08/20		
Surrogate: n-Nonane		124 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20		

Reported:

SpurProject Name:Skelly Unit #940PO Box 1058Project Number:20046-0001Hobbs NM, 88240Project Manager:Natalie Gladden

Natalie Gladden 09/09/20 13:44

Background P009030-08 (Solid)

		003000 00 (2011	"				
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
o,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		105 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.6 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	ND	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		94.6 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20		

Reported:

Skelly Unit #940 Spur Project Name: PO Box 1058 20046-0001 Project Number: Hobbs NM, 88240 Natalie Gladden 09/09/20 13:44 Project Manager:

SW1-3' P009030-09 (Solid)

	1,	107030-07 (30H	u)				
Analyte	Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
o,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		102 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.1 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	47.9	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		101 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	71.3	20.0	1	09/08/20	09/08/20		

SW2-2' P009030-10 (Solid)

		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		101 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.5 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	ND	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		95.0 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20		

SW3-2' P009030-11 (Solid)

		009020 11 (8011	"				
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	0.0317	0.0250	1	09/05/20	09/08/20		
o,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	0.0320	0.0250	1	09/05/20	09/08/20		
Total Xylenes	0.0320	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		112 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		86.8 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	269	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	142	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		120 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20		

SW4-2' P009030-12 (Solid)

		` `					
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		99.0 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.8 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	ND	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		97.4 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20		

SW5-2' P009030-13 (Solid)

		003000 10 (801					
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
o,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		98.7 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.3 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	ND	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		99.7 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20		

Skelly Unit #940 Spur Project Name: PO Box 1058 20046-0001 Project Number: Reported: Hobbs NM, 88240 09/09/20 13:44 Project Manager: Natalie Gladden

SW6-2' P009030-14 (Solid)

		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
o,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
p-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		96.8 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		87.6 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	818	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	412	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		116 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	45.0	20.0	1	09/08/20	09/08/20		

SW7-4' P009030-15 (Solid)

		00,000 16 (801	",				
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		98.9 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.6 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	27.8	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		98.7 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	25.9	20.0	1	09/08/20	09/08/20		

SW8-2' P009030-16 (Solid)

		000000 10 (8011)				
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
o,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		99.7 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.2 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	ND	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	11	09/08/20	09/08/20		
Surrogate: n-Nonane		101 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20		

SW9-2' P009030-17 (Solid)

		002020 17 (501	<i>u,</i>				
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	0.0256	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	0.0518	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	0.0617	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	0.0617	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		99.8 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.3 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	37.7	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		99.0 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20		

Skelly Unit #940 Spur Project Name: PO Box 1058 20046-0001 Project Number: Reported: Hobbs NM, 88240 Natalie Gladden 09/09/20 13:44 Project Manager:

SW10-2' P009030-18 (Solid)

		003000 10 (801	",				
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	0.0633	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	0.118	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	0.0834	0.0500	1	09/05/20	09/08/20		
o-Xylene	0.0366	0.0250	1	09/05/20	09/08/20		
Total Xylenes	0.120	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		99.1 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.2 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	ND	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		98.5 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20		

Skelly Unit #940 Spur Project Name: PO Box 1058 20046-0001 Project Number: Reported: Hobbs NM, 88240 09/09/20 13:44 Project Manager: Natalie Gladden

SW11-2' P009030-19 (Solid)

		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	0.0992	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	0.126	0.0250	1	09/05/20	09/08/20		
o,m-Xylene	0.0982	0.0500	1	09/05/20	09/08/20		
o-Xylene	0.0558	0.0250	1	09/05/20	09/08/20		
Total Xylenes	0.154	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		98.9 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.0 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	ND	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		117 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20		

SW12-2' P009030-20 (Solid)

		007000 20 (8011	",				
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg				Batch:	2036048
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 4-Bromochlorobenzene-PID		100 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036048
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.1 %	50-150	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036046
Diesel Range Organics (C10-C28)	ND	25.0	1	09/08/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/08/20	09/08/20		
Surrogate: n-Nonane		102 %	50-200	09/08/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037001
Chloride	ND	20.0	1	09/08/20	09/08/20		

SpurProject Name:Skelly Unit #940PO Box 1058Project Number:20046-0001Hobbs NM, 88240Project Manager:Natalie Gladden

Reported: 09/09/20 13:44

SW13-3' P009030-21 (Solid)

		Reporting					
Analyte	Result	Limit	Diluti	ion Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg				Batch:	2036049
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 1,2-Dichloroethane-d4		103 %	70-130	09/05/20	09/08/20		
Surrogate: Toluene-d8		99.3 %	70-130	09/05/20	09/08/20		
Surrogate: Bromofluorobenzene		99.6 %	70-130	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036049
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1,2-Dichloroethane-d4		103 %	70-130	09/05/20	09/08/20		
Surrogate: Toluene-d8		99.3 %	70-130	09/05/20	09/08/20		
Surrogate: Bromofluorobenzene		99.6 %	70-130	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036047
Diesel Range Organics (C10-C28)	943	50.0	2	09/05/20	09/08/20		
Oil Range Organics (C28-C40)	501	100	2	09/05/20	09/08/20		
Surrogate: n-Nonane		110 %	50-200	09/05/20	09/08/20		
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Batch:	2037002
Chloride	264	20.0	1	09/08/20	09/08/20		

Skelly Unit #940 Spur Project Name: PO Box 1058 20046-0001 Project Number: Reported: Hobbs NM, 88240 Natalie Gladden 09/09/20 13:44 Project Manager:

SW14-2' P009030-22 (Solid)

		,					
	Reporting						
Result	Limit	Di	ilution	Prepared	Analyzed	Notes	
mg/kg	mg/kg					Batch:	2036049
ND	0.0250		1	09/05/20	09/08/20		
ND	0.0250		1	09/05/20	09/08/20		
ND	0.0250		1	09/05/20	09/08/20		
ND	0.0500		1	09/05/20	09/08/20		
ND	0.0250		1	09/05/20	09/08/20		
ND	0.0250		1	09/05/20	09/08/20		
	101 %	70-130		09/05/20	09/08/20		
	99.4 %	70-130		09/05/20	09/08/20		
	101 %	70-130		09/05/20	09/08/20		
mg/kg	mg/kg					Batch:	2036049
ND	20.0		1	09/05/20	09/08/20		
	101 %	70-130		09/05/20	09/08/20		
	99.4 %	70-130		09/05/20	09/08/20		
	101 %	70-130		09/05/20	09/08/20		
mg/kg	mg/kg					Batch:	2036047
149	25.0		1	09/05/20	09/08/20		•
	50.0		1	09/05/20	09/08/20		
107	50.0						
107	112 %	50-200		09/05/20	09/08/20		
mg/kg		50-200		09/05/20	09/08/20	Batch:	2037002
	Result mg/kg ND ND ND ND ND ND ND ND ND N	Result Reporting mg/kg mg/kg ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0500 ND 0.0250 ND 0.0250 ND 0.0250 MD 0.0250 MD 4% 101 % 99.4 % 101 % 99.4 % 101 % 99.4 % 101 % 101 % mg/kg mg/kg	mg/kg mg/kg ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 I01 % 70-130 99.4 % 70-130 101 % 70-130 mg/kg mg/kg ND 20.0 101 % 70-130 99.4 % 70-130 101 % 70-130 mg/kg mg/kg	Reporting Result Limit Dilution mg/kg mg/kg ND 0.0250 1 101 % 70-130 99.4 % 70-130 mg/kg mg/kg ND 20.0 1 101 % 70-130 99.4 % 70-130 99.4 % 70-130 mg/kg mg/kg	Reporting Result Limit Dilution Prepared mg/kg mg/kg ND 0.0250 1 09/05/20 ND 0.0250 1 09/05/20 ND 0.0250 1 09/05/20 ND 0.0500 1 09/05/20 ND 0.0250 1 09/05/20 ND 0.0250 1 09/05/20 ND 0.0250 1 09/05/20 99.4 % 70-130 09/05/20 99.4 % 70-130 09/05/20 mg/kg mg/kg 1 ND 20.0 1 09/05/20 99.4 % 70-130 09/05/20 99.4 % 70-130 09/05/20 99.4 % 70-130 09/05/20 101 % 70-130 09/05/20 mg/kg mg/kg 09/05/20	Reporting Mode Limit Dilution Prepared Analyzed mg/kg mg/kg 09/05/20 09/08/20 ND 0.0250 1 09/05/20 09/08/20 ND 0.0250 1 09/05/20 09/08/20 ND 0.0500 1 09/05/20 09/08/20 ND 0.0250 1 09/05/20 09/08/20 99.4 % 70-130 09/05/20 09/08/20 99.4 % 70-130 09/05/20 09/08/20 mg/kg mg/kg 09/05/20 09/08/20 101 % 70-130 09/05/20 09/08/20 101 % 70-130 09/05/20 09/08/20 mg/kg mg/kg 09/05/20 09/08/20	Result Limit Dilution Prepared Analyzed Notes mg/kg mg/kg Batch: ND 0.0250 1 09/05/20 09/08/20 99.4 % 70-130 09/05/20 09/08/20 99.4 % 70-130 09/05/20 09/08/20 mg/kg mg/kg Batch: ND 20.0 1 09/05/20 09/08/20 101 % 70-130 09/05/20 09/08/20 101 % 70-130 <td< td=""></td<>

Reported:

09/09/20 13:44

Skelly Unit #940 Spur Project Name: PO Box 1058 20046-0001 Project Number: Hobbs NM, 88240 Natalie Gladden Project Manager:

> SW15-2' P009030-23 (Solid)

		007020 22 (5011	<u>u)</u>				
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg				Batch:	2036049
Benzene	ND	0.0250	1	09/05/20	09/08/20		
Toluene	ND	0.0250	1	09/05/20	09/08/20		
Ethylbenzene	ND	0.0250	1	09/05/20	09/08/20		
p,m-Xylene	ND	0.0500	1	09/05/20	09/08/20		
o-Xylene	ND	0.0250	1	09/05/20	09/08/20		
Total Xylenes	ND	0.0250	1	09/05/20	09/08/20		
Surrogate: 1,2-Dichloroethane-d4		99.7 %	70-130	09/05/20	09/08/20		
Surrogate: Toluene-d8		102 %	70-130	09/05/20	09/08/20		
Surrogate: Bromofluorobenzene		101 %	70-130	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg				Batch:	2036049
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/20	09/08/20		
Surrogate: 1,2-Dichloroethane-d4		99.7 %	70-130	09/05/20	09/08/20		
Surrogate: Toluene-d8		102 %	70-130	09/05/20	09/08/20		
Surrogate: Bromofluorobenzene		101 %	70-130	09/05/20	09/08/20		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg				Batch:	2036047
Diesel Range Organics (C10-C28)	54.3	25.0	1	09/05/20	09/08/20		
Oil Range Organics (C28-C40)	ND	50.0	1	09/05/20	09/08/20		
Surrogate: n-Nonane		102 %	50-200	09/05/20	09/08/20		
	_					Batch:	2037002
Anions by EPA 300.0/9056A	mg/kg	mg/kg				Baten:	203 / 002

Skelly Unit #940 Spur Project Name: PO Box 1058 20046-0001 Project Number: Reported: Hobbs NM, 88240 09/09/20 13:44 Project Manager: Natalie Gladden

Volatile Organic Compounds by EPA 8260B - Quality Control

		Reporting	Spike	Source		REC		RPD	
Analyte	Result	Limit	Level	Result	REC	Limits	RPD	Limit	Notes
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	
Blank (2036049-BLK1)							Prepared	: 09/05/20 1 A	nalyzed: 09/08/20
Benzene	ND	0.0250							
Toluene	ND	0.0250							
Ethylbenzene	ND	0.0250							
o,m-Xylene	ND	0.0500							
o-Xylene	ND	0.0250							
Total Xylenes	ND	0.0250							
Surrogate: 1,2-Dichloroethane-d4	0.481		0.500		96.1	70-130			
Surrogate: Toluene-d8	0.503		0.500		101	70-130			
Surrogate: Bromofluorobenzene	0.505		0.500		101	70-130			
LCS (2036049-BS1)							Prepared	: 09/05/20 1 A	nalyzed: 09/08/20
Benzene	2.68	0.0250	2.50		107	70-130			
Toluene	2.55	0.0250	2.50		102	70-130			
Ethylbenzene	2.56	0.0250	2.50		102	70-130			
p,m-Xylene	4.90	0.0500	5.00		98.0	70-130			
p-Xylene	2.43	0.0250	2.50		97.4	70-130			
Total Xylenes	7.34	0.0250	7.50		97.8	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.498		0.500		99.6	70-130			
Surrogate: Toluene-d8	0.505		0.500		101	70-130			
Surrogate: Bromofluorobenzene	0.506		0.500		101	70-130			
Matrix Spike (2036049-MS1)					Source: P	009030-21	Prepared	: 09/05/20 1 A	nalyzed: 09/08/20
Benzene	2.79	0.0250	2.50	ND	111	48-131			
Toluene	2.64	0.0250	2.50	ND	105	48-130			
Ethylbenzene	2.62	0.0250	2.50	ND	105	45-135			
o,m-Xylene	5.02	0.0500	5.00	ND	100	43-135			
o-Xylene	2.49	0.0250	2.50	ND	99.5	43-135			
Total Xylenes	7.51	0.0250	7.50	ND	100	43-135			
Surrogate: 1,2-Dichloroethane-d4	0.510		0.500		102	70-130			
Surrogate: Toluene-d8	0.498		0.500		99.6	70-130			
Surrogate: Bromofluorobenzene	0.503		0.500		101	70-130			
Matrix Spike Dup (2036049-MSD1)					Source: P	009030-21	Prepared	: 09/05/20 1 A	nalyzed: 09/08/20
Benzene	2.56	0.0250	2.50	ND	103	48-131	8.26	23	
Toluene	2.37	0.0250	2.50	ND	94.9	48-130	10.5	24	
Ethylbenzene	2.39	0.0250	2.50	ND	95.4	45-135	9.42	27	
p,m-Xylene	4.57	0.0500	5.00	ND	91.4	43-135	9.43	27	
o-Xylene	2.25	0.0250	2.50	ND	90.1	43-135	10.0	27	
Total Xylenes	6.82	0.0250	7.50	ND	90.9	43-135	9.62	27	
Surrogate: 1,2-Dichloroethane-d4	0.502		0.500		100	70-130			
Surrogate: Toluene-d8	0.495		0.500		98.9	70-130			
· ·			0.500		100	70-130			
Surrogate: Bromofluorobenzene	0.500		0.500		100	/0-130			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Surrogate: 4-Bromochlorobenzene-PID

9.49

 Spur
 Project Name:
 Skelly Unit #940

 PO Box 1058
 Project Number:
 20046-0001
 Reported:

 Hobbs NM, 88240
 Project Manager:
 Natalie Gladden
 09/09/20 13:44

Hobbs NM, 88240		Project Manage	er: N	Vatalie Gladdo	en				09/09/20 13:44
	Volat	tile Organics	by EPA 8	021B - Qu	ality Cor	ıtrol			
		Reporting	Spike	Source		REC		RPD	
Analyte	Result	Limit	Level	Result	REC	Limits	RPD	Limit	Notes
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	
Blank (2036048-BLK1)							Prepared	: 09/05/20 1	Analyzed: 09/08/20 1
Benzene	ND	0.0250							
Toluene	ND	0.0250							
Ethylbenzene	ND	0.0250							
p,m-Xylene	ND	0.0500							
o-Xylene	ND	0.0250							
Total Xylenes	ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID	8.21		8.00		103	50-150			
LCS (2036048-BS1)							Prepared	: 09/05/20 1	Analyzed: 09/08/20 1
Benzene	5.33	0.0250	5.00		107	70-130			
Toluene	5.45	0.0250	5.00		109	70-130			
Ethylbenzene	5.47	0.0250	5.00		109	70-130			
o,m-Xylene	11.1	0.0500	10.0		111	70-130			
o-Xylene	5.55	0.0250	5.00		111	70-130			
Total Xylenes	16.6	0.0250	15.0		111	70-130			
Surrogate: 4-Bromochlorobenzene-PID	8.32		8.00		104	50-150			
Matrix Spike (2036048-MS1)					Source: P	009030-01	Prepared	: 09/05/20 1	Analyzed: 09/08/20 1
Benzene	5.39	0.0250	5.00	0.0449	107	54-133			
Toluene	5.56	0.0250	5.00	0.0660	110	61-130			
Ethylbenzene	5.65	0.0250	5.00	0.137	110	61-133			
p,m-Xylene	11.3	0.0500	10.0	0.215	111	63-131			
o-Xylene	5.81	0.0250	5.00	0.138	113	63-131			
Total Xylenes	17.1	0.0250	15.0	0.354	112	63-131			
Surrogate: 4-Bromochlorobenzene-PID	9.54		8.00		119	50-150			
Matrix Spike Dup (2036048-MSD1)					Source: P	009030-01	Prepared	: 09/05/20 1	Analyzed: 09/08/20 1
Benzene	5.28	0.0250	5.00	0.0449	105	54-133	2.04	20	
Toluene	5.43	0.0250	5.00	0.0660	107	61-130	2.34	20	
Ethylbenzene	5.55	0.0250	5.00	0.137	108	61-133	1.81	20	
p,m-Xylene	11.0	0.0500	10.0	0.215	108	63-131	2.45	20	
o-Xylene	5.69	0.0250	5.00	0.138	111	63-131	2.00	20	
•	16.7	0.0250	15.0	0.354	109	63-131	2.30	20	

ing som

8.00

119

50-150

 Spur
 Project Name:
 Skelly Unit #940

 PO Box 1058
 Project Number:
 20046-0001
 Reported:

 Hobbs NM, 88240
 Project Manager:
 Natalie Gladden
 09/09/20 13:44

Nonhalogenated Organics by EPA 8015D - GRO - Quality Control	l
--	---

Analyte	Result	Reporting Limit	Spike Level	Source Result	REC	REC Limits	RPD	RPD Limit	Notes
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	
Blank (2036048-BLK1)							Prepared	l: 09/05/20 1 A	Analyzed: 09/08/20 1
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.15		8.00		89.4	50-150			
LCS (2036048-BS2)							Prepared	1: 09/05/20 1	Analyzed: 09/08/20 1
Gasoline Range Organics (C6-C10)	47.9	20.0	50.0		95.8	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.02		8.00		87.7	50-150			
Matrix Spike (2036048-MS2)					Source: P	009030-01	Prepared	1: 09/05/20 1	Analyzed: 09/08/20 1
Gasoline Range Organics (C6-C10)	67.1	20.0	50.0	ND	134	70-130			M6
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.01		8.00		87.6	50-150			
Matrix Spike Dup (2036048-MSD2)					Source: P	009030-01	Prepared	1: 09/05/20 1	Analyzed: 09/08/20 1
Gasoline Range Organics (C6-C10)	68.1	20.0	50.0	ND	136	70-130	1.42	20	M6
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.08		8.00		88.5	50-150			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

SpurProject Name:Skelly Unit #940PO Box 1058Project Number:20046-0001Reported:Hobbs NM, 88240Project Manager:Natalie Gladden09/09/20 13:44

Nonhalogenated Organics by EPA 8015D - GRO - Quality Control

Analyte	Result	Reporting Limit	Spike Level	Source Result	REC	REC Limits	RPD	RPD Limit	Notes
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	
Blank (2036049-BLK1)							Prepared	: 09/05/20 1 A	nalyzed: 09/08/20
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1,2-Dichloroethane-d4	0.481		0.500		96.1	70-130			
Surrogate: Toluene-d8	0.503		0.500		101	70-130			
urrogate: Bromofluorobenzene	0.505		0.500		101	70-130			
LCS (2036049-BS2)							Prepared	: 09/05/20 1 A	nalyzed: 09/08/20
Gasoline Range Organics (C6-C10)	59.1	20.0	50.0		118	70-130			
'urrogate: 1,2-Dichloroethane-d4	0.490		0.500		98.0	70-130			
Surrogate: Toluene-d8	0.501		0.500		100	70-130			
Surrogate: Bromofluorobenzene	0.496		0.500		99.2	70-130			
Matrix Spike (2036049-MS2)					Source: P	009030-21	Prepared	: 09/05/20 1 A	nalyzed: 09/08/20
Gasoline Range Organics (C6-C10)	64.6	20.0	50.0	ND	129	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.502		0.500		100	70-130			
Gurrogate: Toluene-d8	0.507		0.500		101	70-130			
Surrogate: Bromofluorobenzene	0.496		0.500		99.2	70-130			
Matrix Spike Dup (2036049-MSD2)					Source: P	009030-21	Prepared	: 09/05/20 1 A	nalyzed: 09/08/20
Gasoline Range Organics (C6-C10)	61.4	20.0	50.0	ND	123	70-130	5.15	20	
Surrogate: 1,2-Dichloroethane-d4	0.514		0.500		103	70-130			
Eurrogate: Toluene-d8	0.506		0.500		101	70-130			
Surrogate: Bromofluorobenzene	0.498		0.500		99.5	70-130			

SpurProject Name:Skelly Unit #940PO Box 1058Project Number:20046-0001Reported:Hobbs NM, 88240Project Manager:Natalie Gladden09/09/20 13:44

Nonhalogenated	Organics by	EPA 8015D -	- DRO/ORO -	Ouality Control

		- 8				<u> </u>			
Analyte	Result	Reporting Limit	Spike Level	Source Result	REC	REC Limits	RPD	RPD Limit	Notes
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	
Blank (2036046-BLK1)							Prepared	: 09/05/20 0 A	Analyzed: 09/08/20
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C40)	ND	50.0							
Surrogate: n-Nonane	49.0		50.0		97.9	50-200			
LCS (2036046-BS1)							Prepared	: 09/05/20 0 A	Analyzed: 09/08/20
Diesel Range Organics (C10-C28)	469	25.0	500		93.9	38-132			
Surrogate: n-Nonane	49.1		50.0		98.3	50-200			
Matrix Spike (2036046-MS1)					Source: P	009030-09	Prepared	: 09/05/20 0 A	Analyzed: 09/08/20
Diesel Range Organics (C10-C28)	603	25.0	500	47.9	111	38-132			
Surrogate: n-Nonane	56.6		50.0		113	50-200			
Matrix Spike Dup (2036046-MSD1)					Source: P	009030-09	Prepared	: 09/05/20 0 A	Analyzed: 09/08/20
Diesel Range Organics (C10-C28)	606	25.0	500	47.9	112	38-132	0.414	20	
Surrogate: n-Nonane	60.5		50.0		121	50-200			

 Spur
 Project Name:
 Skelly Unit #940

 PO Box 1058
 Project Number:
 20046-0001
 Reported:

 Hobbs NM, 88240
 Project Manager:
 Natalie Gladden
 09/09/20 13:44

Nonhalogenated Or	ganics by EPA	8015D - DRO/	ORO - Oualit	v Control
110IIIIaiogciiaica Oi	Eamics by Ell	LUUISD - DICO	ONO - Quant	Y COHUOI

Analyte	Result	Reporting Limit	Spike Level	Source Result	REC	REC Limits	RPD	RPD Limit	Notes
,	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	
	mg/kg	mg/kg	mg/kg	mg/kg	70	70	70	70	
Blank (2036047-BLK1)							Prepared	: 09/05/20 0 A	Analyzed: 09/08/20 1
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C40)	ND	50.0							
Surrogate: n-Nonane	43.8		50.0		87.7	50-200			
LCS (2036047-BS1)							Prepared	: 09/05/20 0 A	Analyzed: 09/08/20 2
Diesel Range Organics (C10-C28)	477	25.0	500		95.3	38-132			
Surrogate: n-Nonane	48.8		50.0		97.7	50-200			
Matrix Spike (2036047-MS1)					Source: P	009031-09	Prepared: 09/05/20 0 Analyzed: 09/08/		Analyzed: 09/08/20 2
Diesel Range Organics (C10-C28)	502	25.0	500	ND	100	38-132			
Surrogate: n-Nonane	49.6		50.0		99.3	50-200			
Matrix Spike Dup (2036047-MSD1)					Source: P	009031-09	Prepared	: 09/05/20 0 A	Analyzed: 09/08/20 2
Diesel Range Organics (C10-C28)	489	25.0	500	ND	97.8	38-132	2.68	20	
Surrogate: n-Nonane	53.5		50.0		107	50-200			

 Spur
 Project Name:
 Skelly Unit #940

 PO Box 1058
 Project Number:
 20046-0001
 Reported:

 Hobbs NM, 88240
 Project Manager:
 Natalie Gladden
 09/09/20 13:44

Anions by EPA	300.0/9056A - Q	Quality Control
---------------	-----------------	------------------------

	Ai	nons by ETA	300.0/7030	JA - Quan	ty Conti	UI			
Analyte	Result	Reporting Limit	Spike Level	Source Result	REC	REC Limits	RPD	RPD Limit	Notes
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	
Blank (2037001-BLK1)							Prepared	l: 09/08/20 0 A	Analyzed: 09/08/20 1
Chloride	ND	20.0							
LCS (2037001-BS1)							Prepared	l: 09/08/20 0 A	Analyzed: 09/08/20 1
Chloride	247	20.0	250		98.9	90-110			
Matrix Spike (2037001-MS1)					Source: P	009030-01	Prepared	l: 09/08/20 0 A	Analyzed: 09/08/20 1
Chloride	279	20.0	250	30.8	99.4	80-120			
Matrix Spike Dup (2037001-MSD1)					Source: P	009030-01	Prepared	l: 09/08/20 0 A	Analyzed: 09/08/20 1
Chloride	281	20.0	250	30.8	100	80-120	0.568	20	

Skelly Unit #940 Spur Project Name: PO Box 1058 20046-0001 Project Number: Reported: 09/09/20 13:44 Hobbs NM, 88240 Project Manager: Natalie Gladden

Anions by EPA 300.0/9056A - Quality Control

		ions by Elif.		· · ·	tj Conti				
Analyte	Result	Reporting Limit	Spike Level	Source Result	REC	REC Limits	RPD	RPD Limit	Notes
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	
Blank (2037002-BLK1)							Prepared	: 09/08/20 0 A	Analyzed: 09/08/20 1
Chloride	ND	20.0							
LCS (2037002-BS1)							Prepared	: 09/08/20 0 A	Analyzed: 09/08/20 1
Chloride	249	20.0	250		99.4	90-110			
Matrix Spike (2037002-MS1)					Source: P	009031-01	Prepared	: 09/08/20 0 A	Analyzed: 09/08/20 1
Chloride	456	20.0	250	190	107	80-120			
Matrix Spike Dup (2037002-MSD1)					Source: P	009031-01	Prepared	: 09/08/20 0 A	Analyzed: 09/08/20 1
Chloride	439	20.0	250	190	99.7	80-120	3.87	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values my differ slightly.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Spur	Project Name:	Skelly Unit #940	
PO Box 1058	Project Number:	20046-0001	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	09/09/20 13:44

Notes and Definitions

M6 Matrix spike recovery has a high bias. The native sample results were below the RL, but appears to have contributed to high MS

recoveries.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

** Methods marked with ** are non-accredited methods.

Soil data is reported on an "as received" weight basis, unless reported otherwise.

•
٥.
_
5
y
>
N
~
N
- 4
S
-
Z
~ ~
0
V
• •
0
9
9
4
4
4
.42
.42
.42
.42
:42A
:42A
:42 AA
:42 AA
:42 AA
:42A
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA
:42 AA

37
₹
35
age
~~

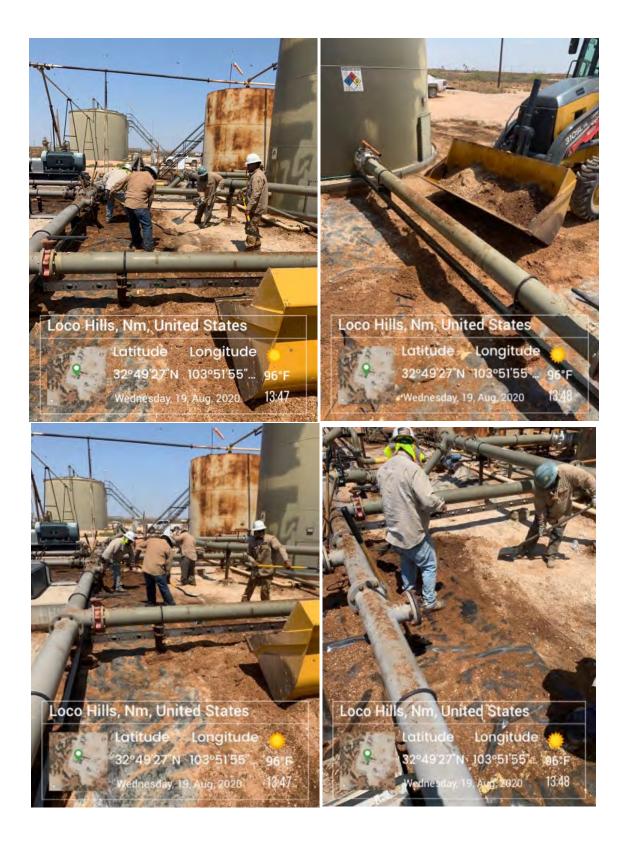
Client:	SCUR	-NECLG	4			Bill To Lab Use Only TAT						120											
Project:	pject: SYSULY UNIT # 940 Attention: NATALIE (LLA)							Lab	WO#				Num		11	D	3D	RCRA	CWA	SDWA			
	Nanager:				Ad	Address: / W. Compress rd P 009030 20040-000							1										
Address:					Cit	y, State, Zip Av HSia UM		4 1 1 1 1 1 1 1								State							
City, Stat	e, Zip				Ph	one: 675 - 390 - 6397 nail: Makalie @ Onlygy stat						1-	7 - 4						NM CO UT				
Phone:					Em	nail: Matalie @ onergy star	China LLC	com	15			111						- 1	/				
Email:						- //	,	y 80	y 80	1	0	-	0.0			_			TX OK				
Report d	ue by: 9	55						30 b	30 b	802	826	5010	30(- R	×						
Time Sampled	Date Sampled	Matrix	No Containers	Sample ID			Lab Number	рко/око by	GRO/DRO by 8015	втех by 8021	VOC by 8260	Metals 6010	Chloride 300.0			BGDOC - NM	BGDOC-		Rer	narks			
9:10	9-1		1	SPI	-10		1								/								
10:26	9-1		1	570	- 13'		2								1	/							
2:03	9-1		1	523	-13		3								/								
2:36	9-1			5P4	-9'		4								-	1							
10:00	9-2			5P5	-10'		5								1	1							
1:57				596	-10'		6								1	1							
8:55	9-3				-91		7								,	1							
9:03				Back	ground		8									1							
9:33				SWI	ground -3'		9								/	1		H					
8:48				Swa	· d'		10									7							
Addition	al Instruc		vis. ice	M C00	ler y o	115120																	
l, (field sample time of collect	er), attest to th	e validity and red fraud and	authenticity of t	this sample. I a	m aware that tamp	ering with or intentionally mislabelling the sample l	lowas	\supset											ne day they are sa n subsequent day				
Relinquished by: (Signature) Date Post file allows Date 12:59 Received by: (Signature)					Received by: (Signature)	Pate 9. 4.	_	Time	1:5	1	Rece	eived	on ic	e:		b Use N	Only						
Relinquish	Date 11:30 Received by: (Signature)				Received by: (Signature)	Date 915/2	0	Time	26		T1				2			<u>T3</u>					
Relinquish	ed by: (Signa	ature)	Date		Time	Received by: (Signature)	Date		Time			ΔVG	Tem	np °C_1	7								
Sample Mat	rix: S - Soil So	d - Solid, Se -	Sludge, A - A	quenus O - O	ther		Container	Type	. p - c	rlass	_	_				plass	s. v - V	/OA					
						gements are made. Hazardous samples will b													ove samples	is applicable			
						e laboratory is limited to the amount paid for			-0-00		33.46							5.97.515.55	The same of the same of	- September			

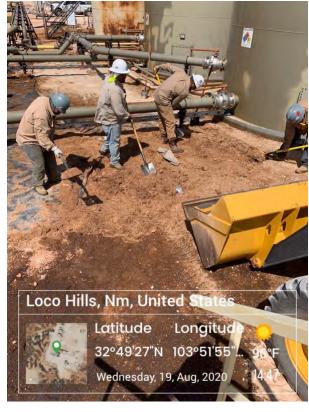
P	
g_{n}	
e	
82	
9	
6	
6	

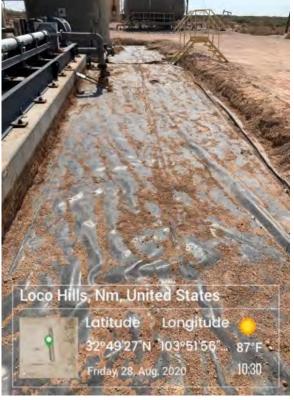
Client:	Bill To		Lab Use Only TAT EPA							PA Program					
Project:	Attention:		Lab WO# Job Number							1D	3D	RCRA	CWA	SDWA	
Project Manager:	Address:	PU	vao	30				-000	/						
Address:	City, State, Zip						Analys	sis ar	d Metho	d				ate	
City, State, Zip	Phone:	-											NM CO	UT AZ	
Phone:	Email:		315	015			1 1						/	L. East Time	
Email:			oy 8(эу 8(21	00	0	0.00		5		TX OK			
Report due by:			RO	ROI	y 80	826	601	e 30		Z	×				
Time Date Matrix No Containers Sample II		Lab Number	DRO/ORO by 8015	GRO/DRO by 8015	ВТЕХ by 8021	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC - NM	BGDOC-		Ren	marks	
10:07 9-3 5W	3-2'	11 -								1					
10:21 9-3 SW	1-27	12								/					
10:52 9-3 SW	3-2' 1-2' 5-2'	13								/					
11:43 9-3 SWI	,-0	14								1					
11:57 9-3 500	1-4	15								1					
2:15 9-3 Sws	1-2'	16								/					
J:28 9-3 5WG	-2'	17								/					
8:479-4 Sw1) -d'	18								/					
	1-2'	19								/					
9:24 9-4 5001	2-2'	20								/					
Additional Instructions: VIS ICC IM CON	_														
I, (field sampler), attest to the validity and authenticity of this sample. I time of collection is considered fraud and may be grounds for legal action		Contant?								eservation must be received on ice the day they are sampled or or g temp above 0 but less than 6 °C on subsequent days.					
Relinquished by: (Signature) Cakoutah United 9-4-20	Time Received by: (Signature) Time	9. 4-1	C	Time /2	:59		Rece	ived	on ice:	G	ab Us	e Only			
Relinquished by: (Signature) Relinquished by: (Signature) Date 4.2	Date 9-5-	Time				<u>T1</u>		T2			Т3				
Relinquished by: (Signature) Date	Time Received by: (Signature)	Date		Time			AVG	Tem	p°c 4	0					
Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - (ther	Container	Туре	: g - gl	ass, p						SS, V -	VOA			
Note: Samples are discarded 30 days after results are reported	I he returned to cli	ient or	disnose	d of at	tho	client ov	nonco	The rener	+ for th	n namely	t. Fal		a applicable		

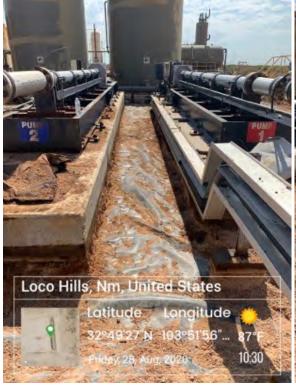
Client:						Bill To				La	ab Use Only TAT				E	EPA Program			
Project:					A.	ttention:	Lab WO# P 90 90 30						Num	ber	1D	3D	RCRA	CWA	SDWA
	Manager:				A	ddress:	P	30 9	030)	20046-000				TT				
Address: City, State, Zip					ty, State, Zip						Analy	sis ar	nd Metho	d			St	ate	
City, Stat	te, Zip				P	none:												NM CO	UT AZ
Phone:					E	mail:		15	15) I								
Email:					1 1			y 80	y 80	н	_	10 10 10 10 10 10						TX OK	
Report d	lue by:							0 p	0 p	802	8260	5010	300		S Z	×			
Time Sampled	Date Sampled	Matrix	No Containers	Sample ID			Lab Number	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC - NM	BGDOC-TX		Ren	narks
10:08	9-4		(JW13	-3		24								/				
10:37	9-4		1	5W14 -	- a '		22								/				
10:52	9-4	7	1	SW15 .	2'		23								1				
				in cooler		als ho						Samala	. samilti						
				s for legal action. Sam	pled by:	pering with or intentionally hislabelling the sar			I-:						temp abo	ion must be received on ice the day they are sampled or p above 0 but less than 6 °C on subsequent days.			
Caker	ed by: (Signary) ed by: (Signary)	and .	Date Date		2:59 430	Received by: (Signature) Received by: (Signature)	Date 9-4-3 Date 9/5/2		Time	12:		Rece	eived	on ice:	T2)/ N	se Only	Т3	
Relinquish	d by: (Sign	ature)	Date	Time		Received by: (Signature)	Date		Time			AVG	Ten	np °C <u>↓.</u>					
				queous, O - Other			Container				p-p	oly/pl	astic,	ag - amb	er gla				
						ngements are made. Hazardous samples he laboratory is limited to the amount pa		ient or	dispos	sed of a	t the	client e	xpense	e. The repor	t for th	e analy	sis of the ab	ove samples i	s applicable

SKELLY UNIT #940 BATTERY INITIAL PHOTOS

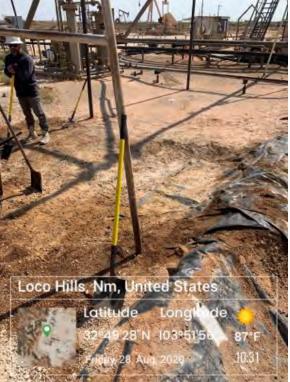

SKELLY UNIT #940 BATTERY LINER AND DELINEATION PHOTOS

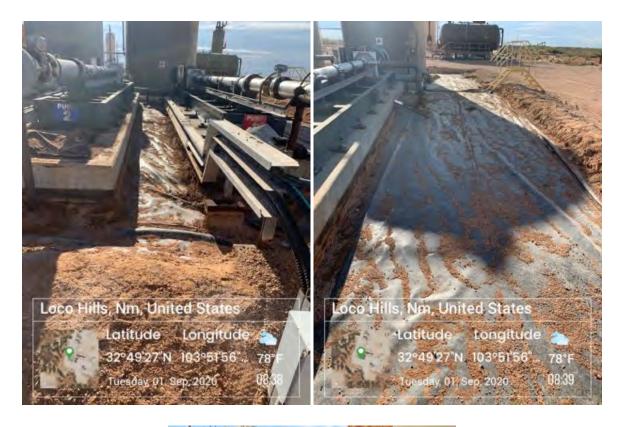


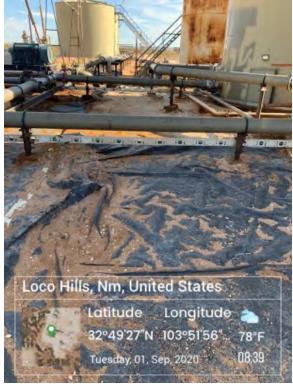


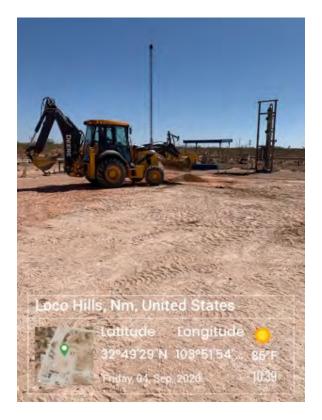












Received by OCD: 9/17/2020 9:05:42 AM
State of New Mexico
Page 3
Oil Conservation Division

	I uge 77 of
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver	tical extents of soil

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soi contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.	
 Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody 	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 9/17/2020 9:05:42 AM
Form C-141 State of New Mexico
Page 4 Oil Conservation Division

	Page 98 of 99
ncident ID	
istrict RP	
acility ID	
polication ID	

E F

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: NATALIE GLADDEN Title: DIRECTOR OF ENVIRONMENTAL AND REGULATORY SERVICES

Signature: Date: Telephone: u575-390-6397

Telephone: u575-390-6397

DCD Only

Received by: Date:

	Page 99 of 99
Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.
☐ Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.
Extents of contamination must be fully delineated. (LIMITED DELINEATION AREAS)
☐ Contamination does not cause an imminent risk to human health, the environment, or groundwater.
rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: NATALIE GLADDEN Title: DIRECTOR OF ENVIRONMENTAL AND REGULATORY SERVICES Signature: Date:
OCD Only
Received by: Date:
Approved
Signature: Date: