	OCD – REC'D 9/3/20)20			
Form 3160-3 (June 2015)			FORM OMB No	APPROV 0. 1004-0	/ED 1137
UNITED STATES			Expires: Ja	nuary 31	, 2018
DEPARTMENT OF THE I BUREAU OF LAND MAN	NTERIOR AGEMENT		5. Lease Serial No.		
APPLICATION FOR PERMIT TO D	RILL OR REENTER		6. If Indian, Allotee or Tribe Name		
					NT
1a. Type of work: DRILL Ib. Type of Well: Oil Well	EENTER		7. II Unit of CA Agr	eement,	
10. Type of Completion: Undersulie Freeturing	8. Lease Name and	Well No.			
		Jie		$\mathbf{\lambda}$	
2. Name of Operator			9. API Well No. 30 015 4740	06	
3a. Address	Address 3b. Phone No. (include area code)				atory
4. Location of Well (Report location clearly and in accordance w	vith any State requirements.	*)	11. Sec., T. R. M. or	Blk. and	Survey or Area
At surface					
At proposed prod. zone					
14. Distance in miles and direction from nearest town or post off	ce*		12. County or Parish	1	13. State
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any)	16. No of acres in lease	17. Spac	ing Unit dedicated to the	his well	I
 18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Proposed Depth	20. BLM	/BIA Bond No. in file		
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approximate date work	k will start*	23. Estimated duration		
	24. Attachments				
The following, completed in accordance with the requirements of (as applicable)	Onshore Oil and Gas Order	No. 1, and the	Hydraulic Fracturing r	ule per 4	3 CFR 3162.3-3
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office 	n Lands, the b. b. c. c. c. c. c. c. c. c. c. c. c. c. c.	over the operation ove). certification. site specific info	ns unless covered by ar rmation and/or plans as	n existing may be r	bond on file (see
25. Signature	Name (Printed/Typed	d)		Date	
Title					
Approved by (Signature)	Name (Printed/Type	Name (Printed/Typed)			
Title	Office			1	
Application approval does not warrant or certify that the applicant applicant to conduct operations thereon. Conditions of approval, if any, are attached.	t holds legal or equitable tit	e to those rights	in the subject lease w	hich wou	ld entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, n of the United States any false, fictitious or fraudulent statements	ake it a crime for any perso or representations as to any r	n knowingly and natter within its	l willfully to make to a jurisdiction.	iny depai	tment or agency
			-		

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505

Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

	WELL LOCATION AND ACREAGE DEDICATION PLAT											
1	API Number	r		² Pool Co	de ³ Pool Name							
30 015 474	406	5 40295 Los Medanos Bone Spring				Los Medanos Bone Spring						
⁴ Property C	Code			⁶ Well Number								
321175			KO LANTA 9-4 FED COM									
⁷ OGRID	No.		⁸ Operator Name ⁹ Elevation									
6137			DEV	ON ENE	N ENERGY PRODUCTION COMPANY, L.P. 3358.6							
	¹⁰ Surface Location											
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/W	est line	County		
Ν	9	23 S	31 E		200	SOUTH	2564	WE	ST	EDDY		
			пE	Bottom I	Hole Location	If Different Fro	om Surface			•		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/W	est line	County		
3	4	23 S	31 E		20	NORTH	2310	WE	ST	EDDY		
¹² Dedicated Acre	s ¹³ Joint	or Infill	¹⁴ Consolidatio	n Code	e ¹⁵ Order No.							
319.76												

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

	N89'43'49"E 2642.34 FT	N89'44'09"E 2642.36 FT		¹⁷ OPERATOR CERTIFICATION
NW CORNER SEC. 4 LAT. = 32.3407510'N		4 CORNER SEC. 4 = 32.3407482 N	NE CORNER SEC. 4 LAT. = 32.3407440'N	I hereby certify that the information contained herein is true and complete
LONG. = 103.7913679'W		6. = 103.7828142'W	E LONG. = 103.7742605'W	to the best of my knowledge and belief, and that this organization either
NMSP EAST (FT) 8N = 488120.70 8	14 13	NMSP EAST (FT) N = 488133.13_{12} , 11	N = 488145.31	owns a working interest or unleased mineral interest in the land including
E = 708717.11 &		E = 711358.84	¦≈ E = /14000.60	the proposed bottom hole location or has a right to drill this well at this
59"W	BOTTOM OF HOLE LAT. = 32.3406936'N		2°20"E	location pursuant to a contract with an owner of such a mineral or working
00.15	LONG. = 103.7838901'W NMSP_FAST_(FT)	LAST TAKE POINT 100' FNL 2310' FWL		interest, or to a voluntary pooling agreement or a compulsory pooling order
z	N = 488111.57	LAT. = 32.3404737'N	LAT. = $32.3335111'N$	heretofore entered by the division.
	DNF_L /11020.08	NMSP EAST (FT) N = 488031.60	LONG. = 103.7742496 W NMSP EAST (FT)	Senny Hanno 5-13-2020
E a		É = 711027.04	E = 714017.69	Signature Date
2636.91	NOTE: LATITUDE AND LONGITUDE COO ARE SHOWN USING THE NORTI	RDINATES	2641.1	JENNY HARMS
2	AMERICAN DATUM OF 1983 (N LISTED NEW MEXICO STATE PL EAST COOPERNATES ARE CRID	AD83)	ш.	Printed Name
15'59	BASIS OF BEARING AND DISTAI USED ARE NEW MEXICO STATE	CES PLANE	23'06	JENNY.HARMS@DVN.COM
00. N	EAST COORDINATES MODIFIED T SURFACE, VERTICAL DATUM NA	D THE VD88.	Soo	E-mail Address
	N89'47'28"E 2647.79 FT	N89'39'20"E 2647.25 FT		
NW CORNER SEC. 9 LAT. = 32.3262572'N	N/4 COR LAT. = 32	ER SEC. 9	LAT. = $32.3262527'N$	¹⁸ SURVEYOR CERTIFICATION
LONG. = 103./913/49W 도 NMSP EAST (FT) 은	LONG. = 10 NMSP F	3.7828050'W	E LUNG. = 103.7742368 ₩ C NMSP EAST (FT)	I hereby certify that the well location shown on this plat
N = 482847.94 5 E = 708741.61 🛠	N = 44 E = 7	2857.59 11388.81	QF N = 482873.50 ℃ E = 714035.43	was plotted from field notes of actual surveys made by
×.			2.E	was protect from freta notes of actual surveys made by
-20*48		FIRST TAKE POINT	719'2	me or under my supervision, and that the same is true
W/4 CORNER SEC. 9	KO LANTA 9-4 FED COM 33	100' FSL, 2310' FWL 22H AT = 32 3120122'N	E/4 CORNER SEC. 9	and correct to the best of my belief.
LONG. = 103.7913664'W	$ELEV. = 3358.6^{\circ}$	LONG. = 103.7838772'W	LONG. = 103.7742333'W	MARCH 16, 2020
NMSP EAST (FT) N = 480207.40	LONG. = 103.7830556'W	N = 477677.47	NMSP EAST (FT) N = 480233.55	Date of Survey
E = 708757.59 └∽	NMSP EAST (F) N = 477778.75	E = /11084.16	E = 714050.30	N ME
2642.	E = 711337.46		2641.	
SW CORNER SEC. 9 😤		S/4 CORNER SEC. 9	岩 SE CORNER SEC. 9	
LAT. = 32.3117373'N . LONG. = 103.7913521'W	ĩ	LAI. = 32.3117373'N LONG. = 103.7827955'W	.☆ LAT. = 32.3117375'N └ LONG. = 103.7742310'W	Signature and Seat of Profession Surv yor:
NMSP EAST (FT)	SHL ~	NMSP EAST (FT)	NMSP EAST (FT)	Certificate Number: JURANUF, JARAMALIS, JLS 12797
N = 4//565./1 E = 708775.36	2564' FTP	E = 711418.86	E = 714064.76	PATESUR KREV 20. 8068
	S89'42'27"W 2644.11 FT	S89'42'07"W 2646.51 FT		10/ 2007

Intent X As Drilled		
API #		
Operator Name:	Property Name:	Well Number
DEVON ENERGY PRODUCTION CO., L.P.	KO LANTA 9-4 FED COM	332H

Kick Off Point (KOP)

UL N	Section 9	Township 23S	Range 31E	Lot	Feet 50 FSL	From N/S	Feet 2310 FW	From E/W -	County EDDY
Latitu	de				Longitude				NAD
32.31187800				32.31187	800	83			

First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
N	9	23S	31E		100	SOUTH	2310	WEST	EDDY
Latitude 32.3120122				Longitude 103	8.7838772			NAD 83	

Last Take Point (LTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
	4	23S	31E	3	100	NORTH	2310	WEST	EDDY
Latitude 32.3404737					Longitud	^e 103.783	8902		NAD 83

Is this well the defining well for the Horizontal Spacing Unit? NO

Is this well an infill well?

YES

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API #		
Operator Name:	Property Name:	Well Number

KZ 06/29/2018

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Devon & OGRID No.: Devon Energy Production Co., L.P. 6137

GAS CAPTURE PLAN

Date: April 30, 2020

 \boxtimes Original

□ Amended - Reason for Amendment:

This Gas Capture Plan outlines actions to be taken by the Devon to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility – Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location	SHL Fo	otages			Expected MCF/D	Flared or Vented	Comments
KO LANTA 9-4 FED COM 231H		9-23S-31E	945	FWL	350	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 232H		9-23S-31E	975	FWL	350	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 512H		9-23S-31E	735	FWL	500	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 522H		9-23S-31E	765	FWL	500	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 621H		9-23S-31E	885	FWL	200	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 711H		9-23S-31E	915	FWL	200	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 331H		9-23S-31E	945	FWL	200	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 622H		9-23S-31E	975	FWL	200	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 514H		9-23S-31E	2534	FWL	500	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 524H		9-23S-31E	2564	FWL	500	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 712H		9-23S-31E	2534	FWL	200	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 332H		9-23S-31E	2564	FWL	200	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 623H		9-23S-31E	2594	FWL	200	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 713H		9-23S-31E	2624	FWL	200	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 233H		9-23S-31E	1250	FEL	350	FSL			KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 234H		9-23S-31E	1220	FEL	350	FSL			KO LANTA 9 CTB 3

KO LANTA 9-4 FED COM 516H	9-23S-31E	1430	FEL	350	FSL		KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 526H	9-23S-31E	1400	FEL	350	FSL		KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 333H	9-23S-31E	1130	FEL	200	FSL		KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 624H	9-23S-31E	1100	FEL	200	FSL		KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 714H	9-23S-31E	1070	FEL	200	FSL		KO LANTA 9 CTB 3
KO LANTA 9-4 FED COM 334H	9-23S-31E	1040	FEL	200	FSL		KO LANTA 9 CTB 3

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if DCP system is in place. The gas produced from production facility is dedicated to <u>DCP</u> and will be connected to <u>DCP</u> low/high pressure gathering system located in Lea County, New Mexico. It will require 0' of pipeline to connect the facility to low/high pressure gathering system. <u>Devon</u> provides (periodically) to <u>DCP</u> a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, <u>Devon</u> and <u>DCP</u> have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at <u>DCP</u> Processing Plant located in the reference table. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>DCP</u> system at that time. Based on current information, it is <u>Devon's</u> belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
 - Compressed Natural Gas On lease
 - o Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

Reference Table:

DCP Plant locations Artesia Sec. 7, T18S, R28E, Eunice Sec. 5, T21S, R36E Linam Sec. 6, T19S, R37E Zia II Sec. 19, T19S, R32E

1. Geologic Formations

TVD of target	11305	Pilot hole depth	N/A
MD at TD:	21548	Deepest expected fresh water	

Basin

	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	485		
Salt	815		
Base of Salt	3965		
Delaware	4195		
Bone Spring 1st	9148		
Bone Spring 2nd	9682		
Bone Spring 3rd	10900		
Wolfcamp	11375		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

		Wt			Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
17 1/2	13 3/8	48.0	H40	STC	0	510	0	510
9 7/8	8 5/8	32.0	P110	TLW	0	9707	0	9707
7 7/8	5 1/2	17.0	P110	BTC	0	21548	0	11305

2. Casing Program (Primary Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.

3. Cementing Program (Primary Design)

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	408	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	510	Surf	9	3.27	Lead: Class C Cement + additives
Int I	67	4000' above	13.2	1.44	Tail: Class H / C + additives
Int 1 Intermediate Squeeze	As Needed	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives
	510	Surf	9	3.27	Lead: Class C Cement + additives
	67	4000' above	13.2	1.44	Tail: Class H / C + additives
Production	89	9207	9.0	3.3	Lead: Class H /C + additives
Production	1431	10738	13.2	1.4	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		~	Tested to:																
			Annular		Х	50% of rated working pressure																
Int 1	13-58"	5M	Bline	d Ram	X																	
			Pipe Ram			5M																
			Double Ram		X	5101																
			Other*																			
	13-5/8"	5M	Annul	ar (5M)	x	50% of rated working																
						pressure																
Production			Blind Ram		X																	
					_	-	-	-						_		_	_		Pipe Ram			5M
			Double Ram		X																	
			Other*																			
			Annul	ar (5M)																		
	Blind Ram																					
	Pipe Ram																					
			Double Ram																			
			Other*																			
N A variance is requested for	variance is requested for the use of a diverter on the surface casing. See attached for schematic.																					
Y A variance is requested to a	A variance is requested to run a 5 M annular on a 10M system																					

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	8.5-9

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, Co	oring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
Х	Completion Rpeort and sbumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Additional	logs planned	Interval		
	Resistivity	Int. shoe to KOP		
	Density	Int. shoe to KOP		
Х	CBL	Production casing		
Х	Mud log	Intermediate shoe to TD		
	PEX			

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	5291
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

Y H2S plan atta	hed.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed

Ko Lanta 9-4 Fed Com 332H

from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan Other, describe

WCDSC Permian NM

Eddy County (NAD 83 NM Eastern) Sec 09-T23S-R31E Ko Lanta 9-4 Fed Com 332H

Wellbore #1

Plan: Permit Plan 1

Standard Planning Report - Geographic

03 May, 2020

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	EDM r WCDS Eddy (Sec 09 Ko Lar Wellbo Permit	5000.141_Pr C Permian N County (NAD)-T23S-R31E nta 9-4 Fed C re #1 Plan 1	od US IM 83 NM Ea: : Com 332H	stern)	Local Co- TVD Refer MD Refer North Ref Survey Ca	ordinate Refer rence: ence: erence: alculation Metl	rence: hod:	Well Ko Lanta RKB @ 3383.6 RKB @ 3383.6 Grid Minimum Curv	9-4 Fed Com 332 50ft 60ft rature	H
Project	Eddy C	ounty (NAD	33 NM Eas	tern)						
Map System: Geo Datum: Map Zone:	US State North Am New Mex	Plane 1983 erican Datur ico Eastern 2	n 1983 Zone		System Da	tum:	Μ	ean Sea Level		
Site	Sec 09-	T23S-R31E								
Site Position: From: Position Uncertainty	Map :		۲ E 0.00 ft	lorthing: Easting: Slot Radius:	477 708	,565.71 usft ,775.36 usft 13-3/16 "	Latitude: Longitude: Grid Converg	gence:		32.311737 -103.791352 0.29 °
Well	Ko Lanta	a 9-4 Fed Co	m 332H							
Well Position	+N/-S		0.00 ft	Northing:		477,778.75	5 usft Lat	itude:		32.312287
Position Uncertainty	+E/-W		0.00 ft 0.50 ft	Easting: Wellhead Eleva	tion:	711,337.46	Susft Lor Gro	ngitude: ound Level:		-103.783056 3,358.60 ft
Wellbore	Wellbo	re #1								
Magnetics	Мо	del Name	S	ample Date	Declina (°)	ition	Dip /	Angle °)	Field Str (nT	rength ⁻)
		IGRF201	5	4/28/2020		6.75		60.07	47,674	4.14353952
Design	Permit I	Plan 1								
Audit Notes:										
Version:				Phase:	PROTOTYPE	Tie	e On Depth:		0.00	
Vertical Section:			Depth Fro	m (TVD)	+N/-S	+E	E/-W	D	irection	
			(ft)	(ft)	((ft)		(°)	
			0.0	0	0.00	0.	.00	;	358.28	
Plan Survey Tool Pro Depth From (ft)	ogram Depth (ft)	Date To Surve	5/3/202	0 e)	Tool Name		Romarks			
1 0.00							Remarks			
	21,5	47.54 Permi	t Plan 1 (W	'ellbore #1)	MWD+HDGM OWSG MWD	1 + HDGM	Keinarko			
Plan Sections	21,5	47.54 Permi	t Plan 1 (W	'ellbore #1)	MWD+HDGM OWSG MWD	1 + HDGM				
Plan Sections Measured Depth Incli (ft)	21,5 nation (°)	47.54 Permi	t Plan 1 (W Vertica Depth (ft)	'ellbore #1) I +N/-S (ft)	MWD+HDGM OWSG MWD +E/-W (ft)	1 + HDGM Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
Plan Sections Measured Depth Incli (ft) 0.00	21,5 nation (°) 0.00	47.54 Permi Azimuth (°) 0.00	t Plan 1 (W Vertica Depth (ft)	lellbore #1) I +N/-S (ft) 0.00 0.00	MWD+HDGM OWSG MWD +E/-W (ft) 0.00	1 + HDGM Dogleg Rate (°/100usft) 0.00	Build Rate (°/100usft) 0.00	Turn Rate (°/100usft) 0.00	TFO (°) 0.00	Target
Plan Sections Measured Depth Incli (ft) 0.00 2,300.00	21,5	47.54 Permi Azimuth (°) 0.00 0.00	t Plan 1 (W Vertica Depth (ft) (2,300	lellbore #1) +N/-S (ft) 0.00 0.00 0.00 0.00	MWD+HDGM OWSG MWD +E/-W (ft) 0.00 0.00	1 + HDGM Dogleg Rate (°/100usft) 0.00 0.00	Build Rate (°/100usft) 0.00 0.00	Turn Rate (°/100usft) 0.00 0.00	TFO (°) 0.00 0.00	Target
Plan Sections Measured Depth Incli (ft) 0.00 2,300.00 2,513.74 10.244.97	21,5 nation (°) 0.00 2.14 2.14	47.54 Permi Azimuth (°) 0.00 239.44 239.44	t Plan 1 (W Vertica Depth (ft) 2,300 2,513 10 225	lellbore #1) l +N/-S (ft) 0.00 0.00 0.00 0.00 0.69 -2.03 0.54 148.65	MWD+HDGM OWSG MWD +E/-W (ft) 0.00 0.00 -3.43 -251 74	1 + HDGM Dogleg Rate (°/100usft) 0.00 0.00 1.00 0.00	Build Rate (°/100usft) 0.00 0.00 1.00	Turn Rate (°/100usft) 0.00 0.00 0.00	TFO (°) 0.00 239.44 0.00	Target
Plan Sections Measured Depth (ft) 0.00 2,300.00 2,513.74 10,244.97 10,387.46	21,5 nation (°) 0.00 2.14 2.14 0.00	47.54 Permi Azimuth (°) 0.00 239.44 239.44 0.00	t Plan 1 (W Vertica Depth (ft) 2,300 2,513 10,239 10,382	rellbore #1) +N/-S (ft) 0.00 0.00 0.00 0.00 0.00 -2.03 0.54 -148.65 0.00 -150.00	MWD+HDGM OWSG MWD +E/-W (ft) 0.00 0.00 -3.43 -251.71 -254.00	1 + HDGM Dogleg Rate (*/100usft) 0.00 0.00 1.00 0.00 1.50	Build Rate (°/100usft) 0.00 0.00 1.00 0.00 -1.50	Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00	TFO (°) 0.00 0.00 239.44 0.00 180.00	Target
Plan Sections Measured Depth Incli (ft) 0.00 2,300.00 2,513.74 10,244.97 10,387.46 10,737.50 0.01	21,5 nation (°) 0.00 0.00 2.14 2.14 0.00 0.00	47.54 Permi Azimuth (°) 0.00 0.00 239.44 239.44 0.00 0.00	t Plan 1 (W Vertica Depth (ft) 2,300 2,513 10,239 10,382 10,732	rellbore #1) rellbore #1) rell rell rell rellbore #1) rell rellbore #1) rellbore #1) rellbo	MWD+HDGM OWSG MWD +E/-W (ft) 0.00 0.00 -3.43 -251.71 -254.00 -254.00	1 + HDGM Dogleg Rate (*/100usft) 0.00 0.00 1.00 0.00 1.50 0.00	Build Rate (°/100usft) 0.00 0.00 1.00 0.00 -1.50 0.00	Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	TFO (°) 0.00 0.00 239.44 0.00 180.00 0.00	Target

Database:	EDM r5000.141 Prod US	Local Co-ordinate Reference:	Well Ko Lanta 9-4 Fed Com 332H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3383.60ft
Project:	Eddy County (NAD 83 NM Eastern)	MD Reference:	RKB @ 3383.60ft
Site:	Sec 09-T23S-R31E	North Reference:	Grid
Well:	Ko Lanta 9-4 Fed Com 332H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Desian:	Permit Plan 1		

Measured			Vertical			Мар	Мар		
Depth (ft)	Inclination (°)	Azimuth (°)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
0.00	0.00	0.00	0.00	0.00	0.00	477 770 75	711 227 46	20.210207	102 702056
100.00	0.00	0.00	0.00	0.00	0.00	4/7,778.75	711,337.40	32.312287	-103.783056
200.00	0.00	0.00	200.00	0.00	0.00	477,778,75	711,337.40	32.312207	-103.783056
200.00	0.00	0.00	200.00	0.00	0.00	477,778,75	711,337.40	32.312207	-103.783056
400.00	0.00	0.00	400.00	0.00	0.00	477,778,75	711,337.40	32.312207	103 783056
500.00	0.00	0.00	500.00	0.00	0.00	477,778,75	711,337.40	32.312207	103 783056
600.00	0.00	0.00	600.00	0.00	0.00	477,778,75	711,337.40	32.312207	-103.783056
700.00	0.00	0.00	700.00	0.00	0.00	477,778,75	711,337.40	32.312207	-103.783056
800.00	0.00	0.00	800.00	0.00	0.00	477 778 75	711,337.40	32 312207	-103 783056
900.00	0.00	0.00	900.00	0.00	0.00	477 778 75	711,337.46	32 312207	-103.783056
1 000 00	0.00	0.00	1 000 00	0.00	0.00	477 778 75	711 337 46	32 312287	-103 783056
1 100 00	0.00	0.00	1,000.00	0.00	0.00	477 778 75	711 337 46	32 312287	-103 783056
1,100.00	0.00	0.00	1,100.00	0.00	0.00	477 778 75	711 337 46	32 312287	-103 783056
1,200.00	0.00	0.00	1,200.00	0.00	0.00	477 778 75	711 337 46	32 312287	-103 783056
1 400 00	0.00	0.00	1 400 00	0.00	0.00	477 778 75	711 337 46	32 312287	-103 783056
1 500 00	0.00	0.00	1 500 00	0.00	0.00	477 778 75	711 337 46	32 312287	-103 783056
1 600 00	0.00	0.00	1 600 00	0.00	0.00	477 778 75	711 337 46	32 312287	-103 783056
1 700 00	0.00	0.00	1 700 00	0.00	0.00	477 778 75	711 337 46	32 312287	-103 783056
1.800.00	0.00	0.00	1.800.00	0.00	0.00	477.778.75	711.337.46	32.312287	-103.783056
1,900.00	0.00	0.00	1.900.00	0.00	0.00	477.778.75	711.337.46	32.312287	-103.783056
2.000.00	0.00	0.00	2.000.00	0.00	0.00	477.778.75	711.337.46	32.312287	-103.783056
2,100.00	0.00	0.00	2,100.00	0.00	0.00	477.778.75	711.337.46	32.312287	-103.783056
2.200.00	0.00	0.00	2.200.00	0.00	0.00	477.778.75	711.337.46	32.312287	-103.783056
2.300.00	0.00	0.00	2.300.00	0.00	0.00	477,778,75	711.337.46	32.312287	-103.783056
2.400.00	1.00	239.44	2.399.99	-0.44	-0.75	477,778.31	711.336.70	32.312286	-103.783058
2,500.00	2.00	239.44	2,499.96	-1.77	-3.01	477,776.98	711,334.45	32.312282	-103.783066
2,513.74	2.14	239.44	2,513.69	-2.03	-3.43	477,776.72	711,334.02	32.312282	-103.783067
2,600.00	2.14	239.44	2,599.89	-3.66	-6.20	477,775.09	711,331.25	32.312277	-103.783076
2,700.00	2.14	239.44	2,699.82	-5.56	-9.41	477,773.19	711,328.04	32.312272	-103.783086
2,800.00	2.14	239.44	2,799.75	-7.46	-12.63	477,771.29	711,324.83	32.312267	-103.783097
2,900.00	2.14	239.44	2,899.68	-9.35	-15.84	477,769.40	711,321.62	32.312262	-103.783107
3,000.00	2.14	239.44	2,999.61	-11.25	-19.05	477,767.50	711,318.41	32.312256	-103.783118
3,100.00	2.14	239.44	3,099.54	-13.15	-22.26	477,765.61	711,315.20	32.312251	-103.783128
3,200.00	2.14	239.44	3,199.47	-15.04	-25.47	477,763.71	711,311.99	32.312246	-103.783139
3,300.00	2.14	239.44	3,299.40	-16.94	-28.68	477,761.81	711,308.77	32.312241	-103.783149
3,400.00	2.14	239.44	3,399.33	-18.83	-31.89	477,759.92	711,305.56	32.312236	-103.783159
3,500.00	2.14	239.44	3,499.26	-20.73	-35.11	477,758.02	711,302.35	32.312231	-103.783170
3,600.00	2.14	239.44	3,599.19	-22.63	-38.32	477,756.12	711,299.14	32.312225	-103.783180
3,700.00	2.14	239.44	3,699.13	-24.52	-41.53	477,754.23	711,295.93	32.312220	-103.783191
3,800.00	2.14	239.44	3,799.06	-26.42	-44.74	477,752.33	711,292.72	32.312215	-103.783201
3,900.00	2.14	239.44	3,898.99	-28.32	-47.95	477,750.43	711,289.51	32.312210	-103.783212
4,000.00	2.14	239.44	3,998.92	-30.21	-51.16	477,748.54	711,286.29	32.312205	-103.783222
4,100.00	2.14	239.44	4,098.85	-32.11	-54.37	477,746.64	711,283.08	32.312200	-103.783232
4,200.00	2.14	239.44	4,198.78	-34.01	-57.58	477,744.74	711,279.87	32.312194	-103.783243
4,300.00	2.14	239.44	4,298.71	-35.90	-60.80	477,742.85	711,276.66	32.312189	-103.783253
4,400.00	2.14	239.44	4,398.64	-37.80	-64.01	477,740.95	711,273.45	32.312184	-103.783264
4,500.00	2.14	239.44	4,498.57	-39.70	-67.22	477,739.05	711,270.24	32.312179	-103.783274
4,600.00	2.14	239.44	4,598.50	-41.59	-70.43	477,737.16	711,267.03	32.312174	-103.783285
4,700.00	2.14	239.44	4,698.43	-43.49	-73.64	477,735.26	711,263.81	32.312169	-103.783295
4,800.00	2.14	239.44	4,798.36	-45.39	-76.85	477,733.37	711,260.60	32.312163	-103.783305
4,900.00	2.14	239.44	4,898.29	-47.28	-80.06	477,731.47	711,257.39	32.312158	-103.783316
5,000.00	2.14	239.44	4,998.22	-49.18	-83.28	477,729.57	711,254.18	32.312153	-103.783326
5,100.00	2.14	239.44	5,098.15	-51.08	-86.49	477,727.68	711,250.97	32.312148	-103.783337
5,200.00	2.14	239.44	5,198.08	-52.97	-89.70	477,725.78	711,247.76	32.312143	-103.783347
5,300.00	2.14	239.44	5,298.01	-54.87	-92.91	477,723.88	711,244.55	32.312138	-103.783358

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Ko Lanta 9-4 Fed Com 332H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3383.60ft
Project:	Eddy County (NAD 83 NM Eastern)	MD Reference:	RKB @ 3383.60ft
Site:	Sec 09-T23S-R31E	North Reference:	Grid
Well:	Ko Lanta 9-4 Fed Com 332H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permit Plan 1		

Measured			Vertical			Мар	Мар		
Depth (ft)	Inclination (°)	Azimuth (°)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
5,400.00	2.14	239.44	5,397.94	-56.76	-96.12	477,721.99	711,241.33	32.312132	-103.783368
5,500.00	2.14	239.44	5,497.87	-58.66	-99.33	477,720.09	711,238.12	32.312127	-103.783378
5,600.00	2.14	239.44	5,597.80	-60.56	-102.54	477,718.19	711,234.91	32.312122	-103.783389
5,700.00	2.14	239.44	5,697.73	-62.45	-105.76	477,716.30	711,231.70	32.312117	-103.783399
5,800.00	2.14	239.44	5,797.66	-64.35	-108.97	477,714.40	711,228.49	32.312112	-103.783410
5,900.00	2.14	239.44	5,897.59	-66.25	-112.18	477,712.50	711,225.28	32.312107	-103.783420
6,000.00	2.14	239.44	5,997.53	-68.14	-115.39	477,710.61	711,222.07	32.312101	-103.783431
6,100.00	2.14	239.44	6,097.46	-70.04	-118.60	477,708.71	711,218.86	32.312096	-103.783441
6,200.00	2.14	239.44	6,197.39	-71.94	-121.81	477,706.81	711,215.64	32.312091	-103.783451
6,300.00	2.14	239.44	6,297.32	-73.83	-125.02	477,704.92	711,212.43	32.312086	-103.783462
6,400.00	2.14	239.44	6,397.25	-75.73	-128.24	477,703.02	711,209.22	32.312081	-103.783472
6,500.00	2.14	239.44	6,497.18	-77.63	-131.45	477,701.12	711,206.01	32.312076	-103.783483
6,600.00	2.14	239.44	6,597.11	-79.52	-134.66	477,699.23	711,202.80	32.312070	-103.783493
6,700.00	2.14	239.44	6,697.04	-81.42	-137.87	477,697.33	711,199.59	32.312065	-103.783503
6,800.00	2.14	239.44	6,796.97	-83.32	-141.08	477,695.44	711,196.38	32.312060	-103.783514
6,900.00	2.14	239.44	6,896.90	-85.21	-144.29	477,693.54	711,193.16	32.312055	-103.783524
7,000.00	2.14	239.44	6,996.83	-87.11	-147.50	477,691.64	711,189.95	32.312050	-103.783535
7,100.00	2.14	239.44	7,096.76	-89.00	-150.71	477,689.75	711,186.74	32.312045	-103.783545
7,200.00	2.14	239.44	7,196.69	-90.90	-153.93	477,687.85	711,183.53	32.312039	-103.783556
7,300.00	2.14	239.44	7,296.62	-92.80	-157.14	477,685.95	711,180.32	32.312034	-103.783566
7,400.00	2.14	239.44	7,396.55	-94.69	-160.35	477,684.06	711,177.11	32.312029	-103.783576
7,500.00	2.14	239.44	7,496.48	-96.59	-163.56	477,682.16	711,173.90	32.312024	-103.783587
7,600.00	2.14	239.44	7,596.41	-98.49	-166.77	477,680.26	711,170.68	32.312019	-103.783597
7,700.00	2.14	239.44	7,696.34	-100.38	-169.98	477,678.37	711,167.47	32.312014	-103.783608
7,800.00	2.14	239.44	7,796.27	-102.28	-173.19	477,676.47	711,164.26	32.312008	-103.783618
7,900.00	2.14	239.44	7,896.20	-104.18	-176.41	477,674.57	711,161.05	32.312003	-103.783629
8,000.00	2.14	239.44	7,996.13	-106.07	-179.62	477,672.68	711,157.84	32.311998	-103.783639
8,100.00	2.14	239.44	8,096.06	-107.97	-182.83	477,670.78	711,154.63	32.311993	-103.783649
8,200.00	2.14	239.44	8,195.99	-109.87	-186.04	477,668.88	711,151.42	32.311988	-103.783660
8,300.00	2.14	239.44	8,295.92	-111.76	-189.25	477,666.99	711,148.20	32.311983	-103.783670
8,400.00	2.14	239.44	8,395.86	-113.66	-192.46	477,665.09	711,144.99	32.311977	-103.783681
8,500.00	2.14	239.44	8,495.79	-115.56	-195.67	477,663.20	711,141.78	32.311972	-103.783691
8,600.00	2.14	239.44	8,595.72	-117.45	-198.89	477,661.30	711,138.57	32.311967	-103.783702
8,700.00	2.14	239.44	8,695.65	-119.35	-202.10	477,659.40	711,135.36	32.311962	-103.783712
8,800.00	2.14	239.44	8,795.58	-121.25	-205.31	477,657.51	711,132.15	32.311957	-103.783722
8,900.00	2.14	239.44	8,895.51	-123.14	-208.52	477,655.61	711,128.94	32.311952	-103.783733
9,000.00	2.14	239.44	8,995.44	-125.04	-211.73	477,653.71	711,125.73	32.311946	-103.783743
9,100.00	2.14	239.44	9,095.37	-126.93	-214.94	477,651.82	711,122.51	32.311941	-103.783754
9,200.00	2.14	239.44	9,195.30	-128.83	-218.15	477,649.92	711,119.30	32.311936	-103.783764
9,300.00	2.14	239.44	9,295.23	-130.73	-221.37	477,648.02	711,116.09	32.311931	-103.783775
9,400.00	2.14	239.44	9,395.16	-132.62	-224.58	477,646.13	711,112.88	32.311926	-103.783785
9,500.00	2.14	239.44	9,495.09	-134.52	-227.79	477,644.23	711,109.67	32.311921	-103.783795
9,600.00	2.14	239.44	9,595.02	-136.42	-231.00	477,642.33	711,106.46	32.311915	-103.783806
9,700.00	2.14	239.44	9,694.95	-138.31	-234.21	477,640.44	711,103.25	32.311910	-103.783816
9,800.00	2.14	239.44	9,794.88	-140.21	-237.42	477,638.54	711,100.03	32.311905	-103.783827
9,900.00	2.14	239.44	9,894.81	-142.11	-240.63	477,636.64	711,096.82	32.311900	-103.783837
10,000.00	2.14	239.44	9,994.74	-144.00	-243.84	477,634.75	711,093.61	32.311895	-103.783848
10,100.00	2.14	239.44	10,094.67	-145.90	-247.06	477,632.85	711,090.40	32.311890	-103.783858
10,200.00	2.14	239.44	10,194.60	-147.80	-250.27	477,630.96	711,087.19	32.311884	-103.783868
10,244.97	2.14	239.44	10,239.54	-148.65	-251.71	477,630.10	711,085.74	32.311882	-103.783873
10,300.00	1.31	239.44	10,294.55	-149.49	-253.14	477,629.26	711,084.32	32.311880	-103.783878
10,387.46	0.00	0.00	10,382.00	-150.00	-254.00	477,628.75	711,083.46	32.311878	-103.783881
10,400.00	0.00	0.00	10,394.54	-150.00	-254.00	477,628.75	711,083.46	32.311878	-103.783881
10,500.00	0.00	0.00	10,494.54	-150.00	-254.00	477,628.75	711,083.46	32.311878	-103.783881
10,600.00	0.00	0.00	10,594.54	-150.00	-254.00	477,628.75	711,083.46	32.311878	-103.783881

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Ko Lanta 9-4 Fed Com 332H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3383.60ft
Project:	Eddy County (NAD 83 NM Eastern)	MD Reference:	RKB @ 3383.60ft
Site:	Sec 09-T23S-R31E	North Reference:	Grid
Well:	Ko Lanta 9-4 Fed Com 332H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permit Plan 1		

Measured			Vertical			Мар	Мар		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
10,700.00	0.00	0.00	10,694.54	-150.00	-254.00	477,628.75	711,083.46	32.311878	-103.783881
10,737.50	0.00	0.00	10,732.04	-150.00	-254.00	477,628.75	711,083.46	32.311878	-103.783881
KOP @ 1	10738' MD, 50'	FSL, 2310' F	WL						
10,800.00	6.25	359.69	10,794.41	-146.59	-254.02	477,632.16	711,083.44	32.311888	-103.783881
10,900.00	16.25	359.69	10,892.37	-127.11	-254.12	477,651.64	711,083.33	32.311941	-103.783881
10,979.00	24.15	359.69	10,966.45	-99.85	-254.27	477,678.90	711,083.18	32.312016	-103.783881
FTP @ 1	0979' MD, 100	' FSL, 2310' I	FWL						
11,000.00	26.25	359.69	10,985.45	-90.91	-254.32	477,687.84	711,083.14	32.312041	-103.783881
11,100.00	36.25	359.69	11,070.83	-39.10	-254.60	477,739.65	711,082.86	32.312183	-103.783881
11,200.00	46.25	359.69	11,145.92	26.75	-254.96	477,805.50	711,082.50	32.312364	-103.783881
11,300.00	50.25 66.25	359.69	11,208.44	104.63	-200.38	477,883.38	711,082.08	32.312578	-103.783881
11,400.00	76.25	350.69	11,200.40	192.19	-200.00	477,970.94	711,001.00	32.312019	-103.703001
11,500.00	86.25	350.69	11,200.00	200.77	-256.90	478,005.52	711,001.09	32.313079	-103.763661
11,000.00	90.23	359.09	11,305,00	422.95	-257.10	478 201 70	711,080.30	32 313453	-103.783881
11 700 00	90.00	359.69	11,305.00	485.45	-257.10	478 264 20	711,000.00	32,313625	-103 783881
11 800 00	90.00	359.69	11,305.00	585 44	-257.98	478 364 19	711,000.01	32,313900	-103 783881
11,000.00	90.00	359.69	11,000.00	685 44	-258 53	478 464 19	711 078 93	32 314175	-103 783881
12.000.00	90.00	359.69	11,305.00	785.44	-259.07	478,564,19	711.078.39	32.314450	-103.783881
12,100.00	90.00	359.69	11,305.00	885.44	-259.61	478.664.19	711.077.85	32.314725	-103.783881
12.200.00	90.00	359.69	11.305.00	985.44	-260.15	478,764,19	711.077.31	32.314999	-103.783882
12,300.00	90.00	359.69	11,305.00	1,085.44	-260.69	478,864.19	711,076.76	32.315274	-103.783882
12,400.00	90.00	359.69	11,305.00	1,185.44	-261.23	478,964.18	711,076.22	32.315549	-103.783882
12,500.00	90.00	359.69	11,305.00	1,285.43	-261.78	479,064.18	711,075.68	32.315824	-103.783882
12,600.00	90.00	359.69	11,305.00	1,385.43	-262.32	479,164.18	711,075.14	32.316099	-103.783882
12,700.00	90.00	359.69	11,305.00	1,485.43	-262.86	479,264.18	711,074.60	32.316374	-103.783882
12,800.00	90.00	359.69	11,305.00	1,585.43	-263.40	479,364.18	711,074.06	32.316649	-103.783882
12,900.00	90.00	359.69	11,305.00	1,685.43	-263.94	479,464.18	711,073.51	32.316924	-103.783882
13,000.00	90.00	359.69	11,305.00	1,785.43	-264.48	479,564.17	711,072.97	32.317198	-103.783882
13,100.00	90.00	359.69	11,305.00	1,885.43	-265.02	479,664.17	711,072.43	32.317473	-103.783882
13,200.00	90.00	359.69	11,305.00	1,985.42	-265.57	479,764.17	711,071.89	32.317748	-103.783883
13,300.00	90.00	359.69	11,305.00	2,085.42	-266.11	479,864.17	711,071.35	32.318023	-103.783883
13,400.00	90.00	359.69	11,305.00	2,185.42	-266.65	479,964.17	711,070.81	32.318298	-103.783883
13,500.00	90.00	359.69	11,305.00	2,285.42	-267.19	480,064.17	711,070.26	32.318573	-103.783883
13,600.00	90.00	359.69	11,305.00	2,385.42	-267.73	480,164.16	711,069.72	32.318848	-103.783883
13,700.00	90.00	359.69	11,305.00	2,485.42	-268.27	480,264.16	711,069.18	32.319123	-103.783883
13,800.00	90.00	359.69	11,305.00	2,585.42	-208.82	480,304.10	711,068.64	32.319397	-103.783883
13,900.00	90.00	359.69	11,305.00	2,000.41	-209.30	400,404.10	711,000.10	32.319072	-103./03003
14,000.00	90.00	359.09	11,305.00	2,705.41	-209.90	400,504.10	711,007.50	32.319947	-103.763663
14,100.00	90.00	359.09	11,305.00	2,005.41	-270.44	480,004.10	711,007.02	32 320222	-103.783883
14,200.00	90.00	359.69	11,305.00	3 085 41	-270.50	480 864 15	711,000.47	32 320772	-103.783884
14,000.00	90.00	359.69	11,305.00	3 185 41	-272.07	480 964 15	711,005.30	32 321047	-103 783884
14,500.00	90.00	359.69	11,305.00	3 285 41	-272.61	481 064 15	711,000.00	32 321322	-103 783884
14 600 00	90.00	359.69	11,000.00	3 385 40	-273 15	481 164 15	711 064 31	32 321597	-103 783884
14.700.00	90.00	359.69	11,305.00	3,485.40	-273.69	481,264.15	711,063.77	32.321871	-103.783884
14,800.00	90.00	359.69	11,305.00	3,585.40	-274.23	481,364.14	711,063.22	32.322146	-103.783884
14,900.00	90.00	359.69	11,305.00	3,685.40	-274.77	481,464.14	711,062.68	32.322421	-103.783884
15,000.00	90.00	359.69	11,305.00	3,785.40	-275.32	481,564.14	711,062.14	32.322696	-103.783884
15,100.00	90.00	359.69	11,305.00	3,885.40	-275.86	481,664.14	711,061.60	32.322971	-103.783884
15,200.00	90.00	359.69	11,305.00	3,985.40	-276.40	481,764.14	711,061.06	32.323246	-103.783884
15,300.00	90.00	359.69	11,305.00	4,085.39	-276.94	481,864.14	711,060.52	32.323521	-103.783884
15,400.00	90.00	359.69	11,305.00	4,185.39	-277.48	481,964.13	711,059.97	32.323796	-103.783885
15,500.00	90.00	359.69	11,305.00	4,285.39	-278.02	482,064.13	711,059.43	32.324070	-103.783885

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Ko Lanta 9-4 Fed Com 332H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3383.60ft
Project:	Eddy County (NAD 83 NM Eastern)	MD Reference:	RKB @ 3383.60ft
Site:	Sec 09-T23S-R31E	North Reference:	Grid
Well:	Ko Lanta 9-4 Fed Com 332H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permit Plan 1		

Measured			Vertical			Мар	Мар		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
15,600.00	90.00	359.69	11,305.00	4,385.39	-278.57	482,164.13	711,058.89	32.324345	-103.783885
15,700.00	90.00	359.69	11,305.00	4,485.39	-279.11	482,264.13	711,058.35	32.324620	-103.783885
15,800.00	90.00	359.69	11,305.00	4,585.39	-279.65	482,364.13	711,057.81	32.324895	-103.783885
15,900.00	90.00	359.69	11,305.00	4.685.38	-280.19	482,464,13	711.057.27	32.325170	-103.783885
16.000.00	90.00	359.69	11,305.00	4,785,38	-280.73	482,564,12	711.056.72	32.325445	-103,783885
16 100 00	90.00	359 69	11 305 00	4 885 38	-281 27	482 664 12	711 056 18	32 325720	-103 783885
16 200 00	90.00	359.69	11 305 00	4 985 38	-281 82	482 764 12	711 055 64	32 325995	-103 783885
16 299 00	90.00	359.69	11 305 00	5 084 38	-282.35	482 863 12	711 055 10	32 326267	-103 783885
Cross se	ection @ 1629	9' MD 0' FSI	2310' FWI	0,00	202.00		,	02.02020.	1001100000
16.300.00	90.00	359.69	11.305.00	5.085.38	-282.36	482.864.12	711.055.10	32.326269	-103,783885
16 400 00	90.00	359.69	11 305 00	5 185 38	-282.90	482,964,12	711 054 56	32 326544	-103 783886
16,100.00	90.00	359.69	11,305,00	5 285 38	-283 44	483 064 12	711 054 02	32 326819	-103 783886
16 600 00	90.00	359.69	11,000.00	5 385 37	-283.98	483 164 11	711 053 47	32 327094	-103 783886
16 700 00	90.00	350.60	11,000.00	5 485 37	-284 52	483 264 11	711,000.47	32 327360	-103 783886
16 800 00	90.00	350.60	11,305.00	5 585 37	285.07	403,204.11	711,052.30	32.327503	103 783886
16,000.00	90.00	250.60	11,305.00	5,505.57	-205.07	403,304.11	711,052.59	22.327044	102 702006
10,900.00	90.00	359.09	11,305.00	5,005.37	-200.01	403,404.11	711,051.05	22.327919	-103.703000
17,000.00	90.00	359.69	11,305.00	5,105.31	-200.15	403,304.11	711,051.51	32.320194	-103.703000
17,100.00	90.00	359.69	11,305.00	5,885.37	-286.69	483,004.11	711,050.77	32.328468	-103.783886
17,200.00	90.00	359.69	11,305.00	5,985.37	-287.23	483,764.10	711,050.22	32.328743	-103.783886
17,300.00	90.00	359.69	11,305.00	6,085.36	-287.77	483,864.10	711,049.68	32.329018	-103.783886
17,400.00	90.00	359.69	11,305.00	6,185.36	-288.32	483,964.10	711,049.14	32.329293	-103.783886
17,500.00	90.00	359.69	11,305.00	6,285.36	-288.86	484,064.10	711,048.60	32.329568	-103.783887
17,600.00	90.00	359.69	11,305.00	6,385.36	-289.40	484,164.10	711,048.06	32.329843	-103.783887
17,700.00	90.00	359.69	11,305.00	6,485.36	-289.94	484,264.10	711,047.52	32.330118	-103.783887
17,800.00	90.00	359.69	11,305.00	6,585.36	-290.48	484,364.09	711,046.97	32.330393	-103.783887
17,900.00	90.00	359.69	11,305.00	6,685.36	-291.02	484,464.09	711,046.43	32.330667	-103.783887
18,000.00	90.00	359.69	11,305.00	6,785.35	-291.57	484,564.09	711,045.89	32.330942	-103.783887
18,100.00	90.00	359.69	11,305.00	6,885.35	-292.11	484,664.09	711,045.35	32.331217	-103.783887
18,200.00	90.00	359.69	11,305.00	6,985.35	-292.65	484,764.09	711,044.81	32.331492	-103.783887
18,300.00	90.00	359.69	11,305.00	7,085.35	-293.19	484,864.09	711,044.27	32.331767	-103.783887
18,400.00	90.00	359.69	11,305.00	7,185.35	-293.73	484,964.08	711,043.72	32.332042	-103.783887
18,500.00	90.00	359.69	11,305.00	7,285.35	-294.27	485,064.08	711,043.18	32.332317	-103.783887
18,600.00	90.00	359.69	11,305.00	7,385.35	-294.82	485,164.08	711,042.64	32.332592	-103.783888
18,700.00	90.00	359.69	11,305.00	7,485.34	-295.36	485,264.08	711,042.10	32.332866	-103.783888
18,800.00	90.00	359.69	11,305.00	7,585.34	-295.90	485,364.08	711,041.56	32.333141	-103.783888
18,900.00	90.00	359.69	11,305.00	7,685.34	-296.44	485,464.08	711,041.02	32.333416	-103.783888
19,000.00	90.00	359.69	11,305.00	7,785.34	-296.98	485,564.07	711,040.47	32.333691	-103.783888
19,100.00	90.00	359.69	11,305.00	7,885.34	-297.52	485,664.07	711,039.93	32.333966	-103.783888
19,200.00	90.00	359.69	11,305.00	7,985.34	-298.07	485,764.07	711,039.39	32.334241	-103.783888
19.300.00	90.00	359.69	11,305.00	8.085.34	-298.61	485.864.07	711.038.85	32.334516	-103.783888
19,400.00	90.00	359.69	11.305.00	8,185,33	-299.15	485,964.07	711.038.31	32.334791	-103.783888
19,500,00	90.00	359.69	11 305 00	8 285 33	-299 69	486 064 07	711 037 77	32 335065	-103 783888
19,600,00	90.00	359.69	11,305,00	8 385 33	-300 23	486 164 06	711 037 22	32 335340	-103 783888
19 700 00	90.00	359.69	11,000.00	8 485 33	-300.77	486 264 06	711 036 68	32 335615	-103 783889
19,700.00	90.00	350.60	11,000.00	8 585 33	-301 32	486 364 06	711,000.00	32 335800	-103 783880
19,000.00	90.00	350.60	11,000.00	8 685 33	-301.86	486 464 06	711,000.14	32 336165	-103 783880
20,000,00	90.00	350.60	11,305.00	8 785 32	-307.00	486 564 06	711,035.00	32,336440	103 783880
20,000.00	00.00	350 60	11 305 00	8 885 22	-302.40	186 661 06	711 034 52	32.000440	-103.703009
20,100.00	90.00	350 60	11 305 00	0,000.02 9 095 20	-302.94 303 10	400,004.00	711,004.02	32.3307 13	103.703009
20,200.00	90.00	250 60	11,303.00	0,900.02	-303.40	400,704.00	711,000.97	32.330990	-103./03009
20,300.00	90.00	359.69	11,305.00	9,085.32	-304.02	480,864.05	711,033.43	32.33/264	-103.783889
20,400.00	90.00	359.69	11,305.00	9,185.32	-304.57	486,964.05	711,032.89	32.337539	-103.783889
20,500.00	90.00	359.69	11,305.00	9,285.32	-305.11	487,064.05	/11,032.35	32.337814	-103.783889
20,600.00	90.00	359.69	11,305.00	9,385.32	-305.65	487,164.05	711,031.81	32.338089	-103.783889
20,700.00	90.00	359.69	11,305.00	9,485.31	-306.19	487,264.05	711,031.27	32.338364	-103.783890

Planning Report - Geographic

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Ko Lanta 9-4 Fed Com 332H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3383.60ft
Project:	Eddy County (NAD 83 NM Eastern)	MD Reference:	RKB @ 3383.60ft
Site:	Sec 09-T23S-R31E	North Reference:	Grid
Well:	Ko Lanta 9-4 Fed Com 332H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permit Plan 1		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
20,800.00	90.00	359.69	11,305.00	9,585.31	-306.73	487,364.04	711,030.72	32.338639	-103.783890
20,900.00	90.00	359.69	11,305.00	9,685.31	-307.27	487,464.04	711,030.18	32.338914	-103.783890
21,000.00	90.00	359.69	11,305.00	9,785.31	-307.81	487,564.04	711,029.64	32.339189	-103.783890
21,100.00	90.00	359.69	11,305.00	9,885.31	-308.36	487,664.04	711,029.10	32.339463	-103.783890
21,200.00	90.00	359.69	11,305.00	9,985.31	-308.90	487,764.04	711,028.56	32.339738	-103.783890
21,300.00	90.00	359.69	11,305.00	10,085.31	-309.44	487,864.04	711,028.02	32.340013	-103.783890
21,400.00	90.00	359.69	11,305.00	10,185.30	-309.98	487,964.03	711,027.48	32.340288	-103.783890
21,468.00	90.00	359.69	11,305.00	10,253.30	-310.35	488,032.03	711,027.11	32.340475	-103.783890
LTP @ 21	1468' MD, 100	' FNL, 2310' F	WL						
21,500.00	90.00	359.69	11,305.00	10,285.30	-310.52	488,064.03	711,026.93	32.340563	-103.783890
21,547.53	90.00	359.69	11,305.00	10,332.83	-310.78	488,111.56	711,026.68	32.340694	-103.783890
PBHL; 20' FNL, 2310' FWL									
21,547.54	90.00	359.69	11,305.00	10,332.84	-310.78	488,111.57	711,026.68	32.340694	-103.783890

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL - Ko Lanta 9-4 Fe	0.00	0.00	0.00	10 332 84	-310 78	488 111 57	711 026 68	32 340694	-103 783890
- plan misses target - Point	center by 1033	37.51ft at 0.0	0.00 Oft MD (0.0	0 TVD, 0.00 N	I, 0.00 E)	100,111.07	11,020.00	02.040004	100.100000

Plan Annotations								
	Measured Vertical		Local Coor	dinates				
	Depth	Depth	+N/-S	+E/-W				
	(ft)	(ft)	(ft)	(ft)	Comment			
	10,737.50	10,732.04	-150.00	-254.00	KOP @ 10738' MD, 50' FSL, 2310' FWL			
	10,979.00	10,966.45	-99.85	-254.27	FTP @ 10979' MD, 100' FSL, 2310' FWL			
	16,299.00	11,305.00	5,084.38	-282.35	Cross section @ 16299' MD, 0' FSL, 2310' FWL			
	21,468.00	11,305.00	10,253.30	-310.35	LTP @ 21468' MD, 100' FNL, 2310' FWL			
	21,547.53	11,305.00	10,332.83	-310.78	PBHL; 20' FNL, 2310' FWL			

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Devon Energy Production Company LP
LEASE NO.:	NMNM077046
LOCATION:	Section 9, T.23 S., R.31 E., NMPM
COUNTY:	Eddy County, New Mexico
WELL NAME & NO.:	Ko Lanta 9-4 Fed Com 331H
SURFACE HOLE FOOTAGE:	200'/S & 945'/W
BOTTOM HOLE FOOTAGE	20'/N & 1090'/W

WELL NAME & NO.:	Ko Lanta 9-4 Fed Com 332H
SURFACE HOLE FOOTAGE:	200'/S & 2564'/W
BOTTOM HOLE FOOTAGE	20'/N & 2310'/W

WELL NAME & NO.:	Ko Lanta 9-4 Fed Com 333H
SURFACE HOLE FOOTAGE:	200'/S & 1130'/E
BOTTOM HOLE FOOTAGE	20'/N & 1650'/E

WELL NAME & NO.:	Ko Lanta 9-4 Fed Com 334H
SURFACE HOLE FOOTAGE:	200'/S & 1040'/E
BOTTOM HOLE FOOTAGE	20'/N & 330'/E

COA

H2S	C Yes	🖸 No	
Potash	🖸 None	Secretary	C R-111-P
Cave/Karst Potential	🖸 Low	C Medium	🖸 High
Cave/Karst Potential	Critical		
Variance	None None	🖸 Flex Hose	C Other
Wellhead	Conventional	🖸 Multibowl	🖸 Both
Other	□4 String Area	Capitan Reef	□ WIPP
Other	Fluid Filled	Cement Squeeze	□ Pilot Hole
Special Requirements	Water Disposal	COM	🗖 Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **13-3/8** inch surface casing shall be set at approximately **550 feet** (a minimum of **70 feet (Eddy County)** into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the **8-5/8** inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 - In <u>Secretary Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Operator has proposed to pump down 13-3/8" X 8-5/8" annulus. <u>Operator must run</u> a CBL from TD of the 8-5/8" casing to surface. Submit results to BLM.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 500 feet into previous casing string. Operator shall provide method of verification.
 Cement excess is less than 25%, more cement might be required.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - Lea County
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL

Page 5 of 8

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not

hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.
- C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 8 of 8

Devon Energy Center 333 West Sheridan Avenue Oklahoma City, Oklahoma 73102-5015

Hydrogen Sulfide (H₂S) Contingency Plan

For

Ko Lanta 9-4 Fed Com 332H

Sec-9 T-23S R-31E 200' FSL & 2564' FWL LAT. = 32.3122870' N (NAD83) LONG = 103.7830556' W

Eddy County NM

Devon Energy Corp. Cont Plan. Page 1

Escape

Crews shall escape upwind of escaping gas in the event of an emergency release of gas. Escape can be facilitated from the location entrance road. Crews should then block the entrance to the location from the lease road so as not to allow anyone traversing into a hazardous area. The blockade should be at a safe distance outside of the ROE. <u>There are no homes or buildings in or near the ROE</u>.

Assumed 100 ppm ROE = 3000'

100 ppm H₂S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- Have received training in the
 - \circ Detection of H₂S, and
 - Measures for protection against the gas,
 - Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas

Common	Chemical	Specific	Threshold	Hazardous Limit	Lethal	
Name	Formula	Gravity	Limit		Concentration	
Hydrogen Sulfide	H₂S	1.189 Air = 1	10 ppm	100 ppm/hr	600 ppm	
Sulfur Dioxide	SO ₂	2.21 Air = 1	2 ppm	N/A	1000 ppm	

Characteristics of H₂S and SO₂

Contacting Authorities

Devon Energy Corp. personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available. The following call list of essential and potential responders has been prepared for use during a release. Devon Energy Corp. Company response must be in coordination with the State of New Mexico's 'Hazardous Materials Emergency Response Plan' (HMER)

Hydrogen Sulfide Drilling Operation Plan

I. HYDROGEN SULFIDE (H₂S) TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards and characteristics of hydrogen sulfide (H₂S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H₂S metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H₂S Drilling Operations Plan and Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H_2S zone (within 3 days or 500 feet) and weekly H_2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H_2S Drilling Operations Plan and the Public Protection Plan.

II. HYDROGEN SULFIDE TRAINING

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H_2S .

1. Well Control Equipment

- A. Flare line
- B. Choke manifold Remotely Operated
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- D. Auxiliary equipment may include if applicable: annular preventer and rotating head.
- E. Mud/Gas Separator

2. Protective equipment for essential personnel:

30-minute SCBA units located at briefing areas, as indicated on well site diagram, with escape units available in the top doghouse. As it may be difficult to communicate audibly while wearing these units, hand signals shall be utilized.

3. H₂S detection and monitoring equipment:

Portable H₂S monitors positioned on location for best coverage and response. These units have warning lights which activate when H₂S levels reach 10 ppm and audible sirens which activate at 15 ppm. Sensor locations:

- Bell nipple
 Possum Belly/Shale shaker
- Rig floor
 Choke manifold
- Cellar

Visual warning systems:

- A. Wind direction indicators as shown on well site diagram
- B. Caution/ Danger signs shall be posted on roads providing direct access to locations. Signs will be painted a high visibility yellow with black lettering of sufficient size to be reasonable distance from the immediate location. Bilingual signs will be used when appropriate.

4. Mud program:

The mud program has been designed to minimize the volume of H₂S circulated to surface. Proper mud weight, safe drilling practices and the use of H₂S scavengers will minimize hazards when penetrating H₂S bearing zones.

5. Metallurgy:

- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold lines, and valves shall be H₂S trim.
- B. All elastomers used for packing and seals shall be H₂S trim.

6. Communication:

- A. Company personnel have/use cellular telephones in the field.
- B. Land line (telephone) communications at Office

7. Well testing:

- A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safety and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H₂S environment will use the closed chamber method of testing.
- B. There will be no drill stem testing.