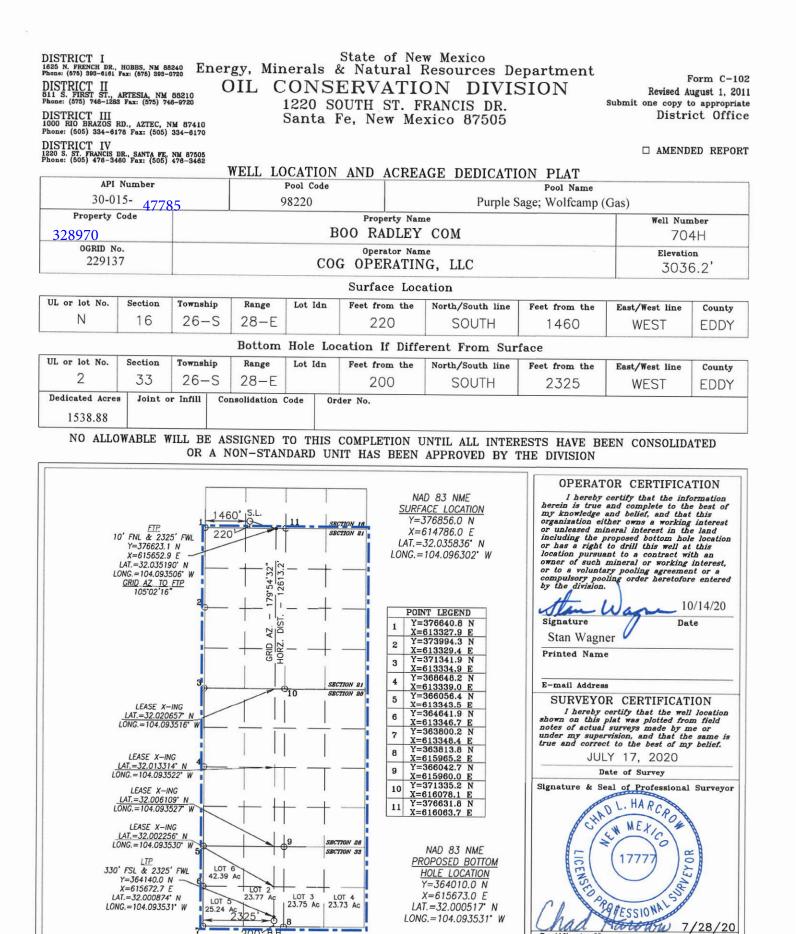
OCD Received 12/7/2020

Form 3160-3 (June 2015) UNITED STATES DEPARTMENT OF THE I BUREAU OF LAND MANA	NTERIOR	OMB No.	PPROVED 1004-0137 uary 31, 2018
APPLICATION FOR PERMIT TO D		6. If Indian, Allotee o	r Tribe Name
1b. Type of Well: ✓ Oil Well ☐ Gas Well ☐	EENTER ther ingle Zone Multiple Zone	7. If Unit or CA Agree 8. Lease Name and W BOO RADLEY COM	/ell No.
2. Name of Operator COG OPERATING LLC		704H 9. API Well No _{30 015}	47785
3a. Address 600 West Illinois Ave, Midland, TX 79701	3b. Phone No. <i>(include area code)</i> (432) 683-7443	10, Field and Pool, or ./PURPLE SAGE W	1 5
 Location of Well (Report location clearly and in accordance w At surface SESW / 220 FSL / 1460 FWL / LAT 32.0358 At proposed prod. zone LOT 2 / 200 FSL / 2325 FWL / L 	836 / LONG -104.096302	11. Sec., T. R. M. or F SEC 16/T26S/R28E	Blk. and Survey or Area NMP
14. Distance in miles and direction from nearest town or post off 13 miles	ìce*	12. County or Parish EDDY	13. State NM
 15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* to nearest well, drilling, completed, applied for on this lease ft 895 feet 	19. Proposed Depth 20. F	BLM/BIA Bond No. in file	s well
applied for, on this lease, ft. 895 feet 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3036 feet	22. Approximate date work will start* 01/01/2021	23. Estimated duration 30 days	n
The following, completed in accordance with the requirements of (as applicable) 1. Well plat certified by a registered surveyor.	4. Bond to cover the oper	the Hydraulic Fracturing rul	-
 A Drilling Plan. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office 		information and/or plans as n	nay be requested by the
25. Signature (Electronic Submission)	Name (Printed/Typed) STAN WAGNER / Ph: (432) 6		Date 08/17/2020
Title Regulatory Advisor Approved by (Signature)	Name (Printed/Typed)		Date
(Electronic Submission) Title Assistant Field Manager Lands & Minerals	Cody Layton / Ph: (575) 234-5 Office Carlsbad Field Office	5959	12/04/2020
Application approval does not warrant or certify that the applicar applicant to conduct operations thereon. Conditions of approval, if any, are attached.		ghts in the subject lease whi	ich would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, n of the United States any false, fictitious or fraudulent statements			y department or agenc
nuds are not to be used until fresh water zones are cased and cemen isolation from the oil or diesel. This includes synthetic oils. Oil bas ing fluids and solids must be contained in a steel closed loop system	sed	contamination through	, to prevent ground wa h whole or partial cond tor shall drill without in er zone or zones and sh
Will require a directional survey with the C-104 NSL Will require an administrative order for and location prior to placing the well on production	VED WITH CONDITION	through the fresh wate immediately set in cer	


non-standard location prior to placing the well on production.

(Continued on page 2)

Entered - KMS NMOCD

Approval Date: 12/04/2020

*(Instructions on page 2)

Certificate No. CHAD HARCROW

200-В.н

W.O. # 20-962

17777

DRAWN BY: AH

Intent X As Drilled		
API #		
30-015		
Operator Name:	Property Name:	Well Number
COG Operating LLC	Boo Radley Com	704H

Kick Off Point (KOP)

ul N	Section 16	Township 26S	Range 28E	Lot	Feet	From N/S	Feet	From E/W	County Eddy	
Latit	ude				Longitude				NAD	
									83	

First Take Point (FTP)

UL C	Section 21	Township 26S	Range 28E	Lot	Feet 10	From N/S North	Feet 2325	From E/W West	County Eddy	
Latitu 32.()3519()			Longitud	。)93506			NAD NAD 83	

Last Take Point (LTP)

Latitu	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
	33	26S	28E	2	330	South	2325	West	Eddy
	000874	1			Longit	ude .093531			NAD NAD 83

Is this well the defining well for the Horizontal Spacing Unit? YES

Is this well an infill well?

NO

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API# 30-015-		
Operator Name:	Property Name:	Well Number
COG Operating LLC	Boo Radley Com	704H

KZ 06/29/2018

Additional Operator Remarks

Location of Well

0. SHL: SESW / 220 FSL / 1460 FWL / TWSP: 26S / RANGE: 28E / SECTION: 16 / LAT: 32.035836 / LONG: -104.096302 (TVD: 0 feet, MD: 0 feet) PPP: NENW / 1 FNL / 2325 FWL / TWSP: 26S / RANGE: 28E / SECTION: 28 / LAT: 32.020657 / LONG: -104.093516 (TVD: 9454 feet, MD: 14787 feet) PPP: NENW / 10 FNL / 2325 FWL / TWSP: 26S / RANGE: 28E / SECTION: 21 / LAT: 32.03519 / LONG: -104.093506 (TVD: 9393 feet, MD: 9516 feet) BHL: LOT 2 / 200 FSL / 2325 FWL / TWSP: 26S / RANGE: 28E / SECTION: 33 / LAT: 32.000517 / LONG: -104.093531 (TVD: 9421 feet, MD: 22050 feet)

BLM Point of Contact

Name: Deborah Ham Title: Legal Landlaw Examiner Phone: (575) 234-5965 Email: dham@blm.gov

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	COG Operating, LLC
LEASE NO.:	NMNM-126965
WELL NAME & NO.:	Boo Radley Com 704H
SURFACE HOLE FOOTAGE:	0220' FSL & 1460' FWL
BOTTOM HOLE FOOTAGE	0200' FSL & 2325' FWL Sec. 33, T.26 S., R.28 E.
LOCATION:	Section 16, T.26 S., R.28 E., NMPM
COUNTY:	Eddy County, New Mexico

COA

H2S	C Yes	🖸 No	
Potash	• None	C Secretary	© R-111-P
Cave/Karst Potential	C Low	C Medium	💽 High
Cave/Karst Potential	Critical		
Variance	C None	• Flex Hose	C Other
Wellhead	Conventional	C Multibowl	C Both
Other	□4 String Area	Capitan Reef	□ WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	□ Water Disposal	COM	🗖 Unit

High Cave/Karst Possible water flows in the Salado and Castile. Possible lost circulation in the Rustler and Delaware.

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **10-3/4** inch surface casing shall be set at approximately **350** feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.
 - In <u>High Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the **5-1/2** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Page 2 of 7

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.
- 3. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be **5000** (**5M**) psi.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

Page 4 of 7

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 4. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 5. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 6. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- d. The results of the test shall be reported to the appropriate BLM office.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 10232020

Approval Date: 12/04/2020

1. Geologic Formations

TVD of target	9,477' EOL	Pilot hole depth	NA
MD at TD:	22,050'	Deepest expected fresh water:	50'

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Quaternary Fill	Surface	Water	
Rustler	NP	Water	
Top of Salt	721	Salt	
Base of Salt	2271	Salt	
Lamar	2456	Salt Water	
Bell Canyon	2506	Salt Water	
Cherry Canyon	3336	Oil/Gas	
Brushy Canyon	4606	Oil/Gas	
Bone Spring Lime	6201	Oil/Gas	
1st Bone Spring Sand	7086	Oil/Gas	
2nd Bone Spring Sand	7731	Oil/Gas	
3rd Bone Spring Sand	8851	Oil/Gas	
Wolfcamp	9201	Target Oil/Gas	
Wolfcamp B	9621	Not Penetrated	
Wolfcamp C	9936	Not Penetrated	

2. Casing Program

Hole Size		g Interval	Csg. Size		Weight Grade Co	Conn.	SF	SF Burst	SF	
	From	То	9		(lbs)			Collapse		Tension
14.75	0	610	10.75	5	45.5	J55	STC	7.66	15.09	17.76
9.875	0	8730	7.625	5	29.7	HCL80	BTC	2.03	1.50	2.78
6.75	0	22,050	5.5"		23	P110	Talon HTQ	2.46	2.92	3.24
				M Minimu	m Safety	y Factor	1.125	1	1.6 Dry 1.8 Wet	

Intermediate casing will be kept at least 1/3 full while running casing.to mitigate collapse. Intermediate burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface. All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Ν
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary?	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	IN
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	YId ft3/ sack	H₂0 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surf.	410	13.5	1.75	9	12	Lead: Class C + 4% Gel
Sun.	100	14.8	1.34	6.34	8	Tail: Class C + 2% CaCl2
Inter.	800	10.3	3.6	21.48	16	Lead: Tuned Light Blend
	250	16.4	1.1	5	8	Tail: Class H
5.5 Prod	550	11.9	2.5	19	72	Lead: 50:50:10 H Blend
	1200	14.4	1.24	5.7	19	Tail: 50:50:2 Class H Blend

Volumes Subject to Observed Hole Conditions and/or Fluid Caliper Results Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	% Excess
Surface	0'	100%
1 st Intermediate	0'	50%
Production	8,230'	35% OH in Lateral (KOP to EOL)

4. Pressure Control Equipment

Ν

A variance is requested for the use of a diverter on the surface casing. See attached for schematic.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		x	Tested to:
			Ann	ular	Х	2500 psi
		ЗМ	Blind Ram			
12-1/4"	13-5/8"		Pipe Ram		Х	3M
			Double	e Ram	Х	JIVI
			Other*			
			5M Ar	nnular	Х	2500 psi
	13-5/8"	5M	Blind	Ram		
8 1/2"			Pipe	Pipe Ram x		5M
			Double	e Ram	Х	5101
			Other*			

BOP and BOPE will be installed per Onshore Order #2 requirements prior to drilling below the surface casing and will be rated to the above pressure rating or greater, see attached diagrams. Required safety valves, with appropriate wrenches and subs for the drill string being utilized, will be in the open position and accessible on the rig floor. BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valves (inside BOP and full-opening valve) with appropriate wrenches and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2.				
Y	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.				
Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.				
	N Are anchors required by manufacturer?				
Y	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.				

5. Mud Program

	Depth	Туре	Weight	Viscosity	Water Loss
From	То	туре	(ppg)	VISCOSILY	Water LUSS
0	Surf. Shoe	FW Gel	8.4 - 8.6	28-29	N/C
Surf csg	Int shoe	Diesel Brine Emul	8.6 - 9.4	30-40	N/C
Int shoe	Lateral TD	OBM	10.5 - 12	30-40	20

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, Coring and Testing.					
Y	Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.				
N	Are Logs are planned based on well control or offset log information.				
N	Drill stem test? If yes, explain.				
N	Coring? If yes, explain.				

Additional logs planned		Interval		
Ν	Resistivity	Pilot Hole TD to ICP		
Ν	Density	Pilot Hole TD to ICP		
Y	CBL	Production casing (If cement not circulated to surface)		
Υ	Mud log	Intermediate shoe to TD		
Ν	PEX			

7. Drilling Conditions

Condition	Specify what type and where?		
BH Pressure at deepest TVD	5915 psi at 9477' TVD		
Abnormal Temperature	NO 155 Deg. F.		

No abnormal pressure or temperature conditions are anticipated. Sufficient mud materials to maintain mud properties and weight increase requirements will be kept on location at all times.

Sufficient supplies of Paper/LCM for periodic sweeps to control seepage and losses will be maintained on location.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

8. Other Facets of Operation

Y	Is it a walking operation?
Y	Is casing pre-set?

x	H2S Plan.	
x	x BOP & Choke Schematics.	
x	Directional Plan	
	5M Annular Variance	

DELAWARE BASIN WEST

ATLAS PROSPECT (NM-E) BOO RADLEY COM PROJECT BOO RADLEY COM #704H

OWB PWP1

Anticollision Report

12 August, 2020

Anticollision Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BOO RADLEY COM #704H				
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3066.2usft (TBD)				
Reference Site:	BOO RADLEY COM PROJECT	MD Reference:	KB=30' @ 3066.2usft (TBD)				
Site Error:	3.0 usft	North Reference:	Grid				
Reference Well:	BOO RADLEY COM #704H	Survey Calculation Method:	Minimum Curvature				
Well Error:	3.0 usft	Output errors are at	2.00 sigma				
Reference Wellbore	OWB	Database:	edm				
Reference Design:	PWP1	Offset TVD Reference:	Offset Datum				
Reference PWP1							
Filter type: Interpolation Metho	NO GLOBAL FILTER: Using user defined a	8	ISCWSA				

Interpolation Method:	Stations		Error Model:	ISCWSA
Depth Range:	Unlimited		Scan Method:	Closest Approach 3D
Results Limited by:	Maximum e	llipse separation of 1,000.0 usft	Error Surface:	Pedal Curve
Warning Levels Evalu	ated at:	2.00 Sigma	Casing Method:	Not applied

Survey Tool Program Date 8/12/2020				
From (usft)	To (usft)	Survey (Wellbore)	Tool Name	Description
0.0	22,050.	6 PWP1 (OWB)	MWD+IFR1+FDIR	OWSG MWD + IFR1 + FDIR Correction

Summary

Site Name Offset Well - Wellbore - Design	Reference Measured Depth (usft)	Offset Measured Depth (usft)	Dista Between Centres (usft)		Separation Factor	Warning
BOO RADLEY COM PROJECT						
BOO RADLEY COM#703H - OWB - PWP1 BOO RADLEY COM#703H - OWB - PWP1 BOO RADLEY COM#705H - OWB - PWP1 BOO RADLEY COM#706H - OWB - PWP1 BOO RADLEY COM#706H - OWB - PWP1 SKEEN 21 DM STATE 1H - OWB - AWP SKEEN 21 DM STATE 1H - OWB - AWP	10,651.0 22,050.6 2,500.0 2,416.5 2,500.0 2,633.3 14,500.0	10,627.0 22,025.0 2,500.1 2,416.9 2,500.0 2,687.3 12,525.0	1,066.5 1,067.2 30.0 60.0 975.9 2,350.0	1,015.0 841.5 17.3 47.6 47.3 955.8 2,231.6	4.729 2.366 4.851 4.733 48.432	ES, SF CC, ES, SF CC ES, SF CC, ES
HONEY GRAHAM STATE PROJECT (ATLAS 2628)						
GRAHAM CRACKER 16 STATE #2H - OWB - AWP GRAHAM NASH STATE COM #6H - OWB-PILOT HOLE GRAHAM NASH STATE COM #6H - OWB-PILOT HOLE	8,030.6 21,743.8 21,800.0	12,538.0 9,417.7 9,418.6	276.8 941.7 943.3	196.7 821.3 822.4		CC, ES, SF CC, ES SF
MYOX 4 28 & 16 ST COM PROJECT						
*MYOX 4 16 ST COM #704H - OWB - PWP0 *MYOX 4 16 ST COM #704H - OWB - PWP0 *MYOX 4 16 ST COM #704H - OWB - PWP0 *MYOX 4 16 ST COM #705H - OWB - PWP0	9,300.0 9,350.0 9,355.9 9,223.9	22,845.5 22,845.5 22,845.5 22,738.2	302.9 295.7 295.7 744.4	180.4 179.4 180.1 598.2		ES

Offset D	esign	BOO F	RADLEY	COM PRO	JECT -	BOO RAD	LEY COM #7	703H - OW	/B - PWP	1			Offset Site Error:	3.0 usft
Survey Pro Refer	•	tandard Keep Offs		3-MWD+IFR1 Semi Majo					Dist	ance			Offset Well Error:	3.0 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	Offset Wellbo +N/-S (usft)	re Centre +E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.0	0.0	0.0	0.0	3.0	3.0	90.66	-28.2	2,455.1	2,455.6					
100.0	100.0	58.8	58.8	3.0	3.0	90.66	-28.2	2,455.1	2,455.3	2,449.3	6.00	409.029		
200.0	200.0	158.8	158.8	3.0	3.0	90.66	-28.2	2,455.1	2,455.3	2,449.2	6.04	406.534		
300.0	300.0	258.8	258.8	3.1	3.0	90.66	-28.2	2,455.1	2,455.3	2,449.1	6.12	401.247		
400.0	400.0	358.8	358.8	3.2	3.0	90.66	-28.2	2,455.1	2,455.3	2,449.0	6.24	393.570		
500.0	500.0	458.8	458.8	3.4	3.0	90.66	-28.2	2,455.1	2,455.3	2,448.9	6.39	384.016		
600.0	600.0	558.8	558.8	3.6	3.1	90.66	-28.2	2,455.1	2,455.3	2,448.7	6.58	373.119		
700.0	700.0	658.8	658.8	3.8	3.1	90.66	-28.2	2,455.1	2,455.3	2,448.5	6.79	361.368		
800.0	800.0	758.8	758.8	4.0	3.1	90.66	-28.2	2,455.1	2,455.3	2,448.2	7.03	349.175		
900.0	900.0	858.8	858.8	4.2	3.2	90.66	-28.2	2,455.1	2,455.3	2,448.0	7.29	336.862		
1,000.0	1,000.0	958.8	958.8	4.5	3.2	90.66	-28.2	2,455.1	2,455.3	2,447.7	7.56	324.665		

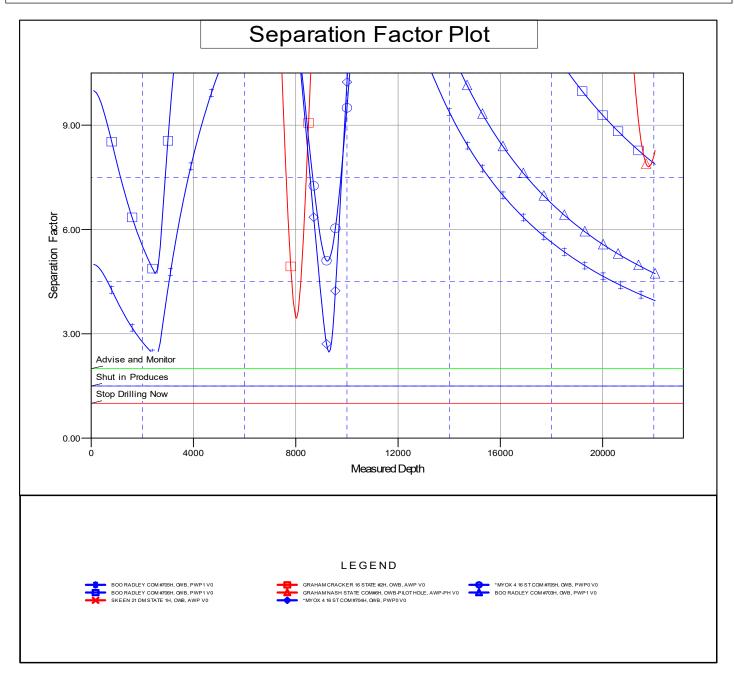
CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Page 2

Anticollision Report

Local Co-ordinate Reference: Well BOO RADLEY COM #704H

erence Design: PWP1 erence Depths are relative to KB=30' @ 3066.2usft (TBD) set Depths are relative to Offset Datum ntral Meridian is 104° 20' 0.000 W			sft (TBD)	Coordina	te System i	tive to: BOO R s US State Pla t Surface is: 0.′	ne 1927 (Ex		New Mexico E
			La	adder	Plot				
10000									
7500-									
2500-									
		XXXX							
0	⊕ ⊕ ⊕ ⊕ 4(000	8000	120 Measu	00 red Depth	16000	20	0000	24000


Company:

DELAWARE BASIN WEST

Anticollision Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BOO RADLEY COM #704H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3066.2usft (TBD)
Reference Site:	BOO RADLEY COM PROJECT	MD Reference:	KB=30' @ 3066.2usft (TBD)
Site Error:	3.0 usft	North Reference:	Grid
Reference Well:	BOO RADLEY COM #704H	Survey Calculation Method:	Minimum Curvature
Well Error:	3.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	edm
Reference Design:	PWP1	Offset TVD Reference:	Offset Datum
_			

Reference Depths are relative to KB=30' @ 3066.2usft (TBD) Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W Coordinates are relative to: BOO RADLEY COM #704H Coordinate System is US State Plane 1927 (Exact solution), New Mexico East 30 Grid Convergence at Surface is: 0.13°

DELAWARE BASIN WEST

ATLAS PROSPECT (NM-E) BOO RADLEY COM PROJECT BOO RADLEY COM #704H

OWB

Plan: PWP1

Standard Survey Report

12 August, 2020

Survey Report

Project: Site: Well: Wellbore:	DELAWARE BASIN WEST ATLAS PROSPECT (NM-E) BOO RADLEY COM PROJECT BOO RADLEY COM #704H OWB PWP1			TVD Refe MD Refe North Re Survey C	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Database:			Well BOO RADLEY COM #704H KB=30' @ 3066.2usft (TBD) KB=30' @ 3066.2usft (TBD) Grid Minimum Curvature edm		
Project	ATLAS PRO	SPECT (NM-E))							
Map System: Geo Datum: Map Zone:		ne 1927 (Exact ADCON CONU East 3001		System	n Datum:		Mean Sea Le	evel		
Well	BOO RADLE	EY COM #704H								
Well Position	+N/-S	0.0 usft	Northing:		376,798.		Latitude:		32° 2' 8	
Position Uncerta	+E/-W ainty	0.0 usft 3.0 usft	Easting: Wellhead El	evation:	573,601.		Longitude: Ground Leve	I:	104° 5' 44 3,03	.930 W 6.2 ust
Wellbore	OWB									
Magnetics	Model Na	ame Sa	ample Date		lination (°)	Di	p Angle (°)		Strength (nT)	
	IGF	RF2020	7/2/2020		6.88		59.68	3 47,	429.28848549	
Design	PWP1									
Audit Notes: Version:			Phase:	PLAN		Tie On Dept	h:			0.0
Vertical Section	:	Depth Fro (us		+N/-S (usft		+E/-W (usft)	I	Direction (°)		
Vertical Section	:	Depth Fro (us		(usft		+E/-W (usft) 0.0		(°)	6.05	
Vertical Section Survey Tool Pro			ft) 0.0	(usft)	(usft)		(°)	6.05	
	gram To	(us Date 8/12/20	ft) 0.0	(usft)	(usft)		(°)	6.05	
Survey Tool Pro From	gram To (usft)	(us	ft) 0.0	(usft) 0.0	(usft) 0.0	Description	(°)		
Survey Tool Pro From (usft)	gram To (usft) .0 22,050.6	(us Date 8/12/20 Survey (Wellbo	ft) 0.0	(usft) 0.0 Tool Name	(usft) 0.0	Description	(°) 17		
Survey Tool Pro From (usft) 0.	gram To (usft) .0 22,050.6	(us Date 8/12/20 Survey (Wellbo	ft) 0.0	(usft) 0.0 Tool Name	(usft) 0.0	Description	(°) 17		
Survey Tool Pro From (usft) 0. Planned Survey Measured Depth (usft)	rgram To (usft) .0 22,050.6 d Inclination (°) .0 0.00	(us Date 8/12/20 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00	ft) 0.0 020 ore) Vertical Depth (usft) 0.0	(usft) +N/-S (usft) 0.0) 0.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0	(usft) 0.0 FDIR Vertical Section (usft) 0.0	Description OWSG MWE Dogleg Rate (°/100usft) 0.00	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00	R Correction Turn Rate (°/100usft) 0.00	
Survey Tool Pro From (usft) 0. Planned Survey Measured Depth (usft) 0. 100.	rgram To (usft) .0 22,050.6 Inclination (°) .0 0.00 .0 0.00	(us Date 8/12/20 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00	ft) 0.0 020 ore) Vertical Depth (usft) 0.0 100.0	(usft) +N/-S (usft) 0.0 0.0) 0.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0	Vertical Section (usft) 0.0 0.0 0.0	Description OWSG MWE Dogleg Rate (°/100usft) 0.00 0.00	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00	
Survey Tool Pro From (usft) 0. Planned Survey Measured Depth (usft) 0. 100. 200.	rgram To (usft) .0 22,050.6 Inclination (°) .0 0.00 .0 0.00 .0 0.00	(us Date 8/12/20 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00	ft) 0.0 020 ore) Vertical Depth (usft) 0.0 100.0 200.0	(usft) +N/-S (usft) 0.0 0.0 0.0) 0.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0	(usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0	Description OWSG MWE Dogleg Rate (°/100usft) 0.00 0.00 0.00	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00	
Survey Tool Pro From (usft) 0. Planned Survey Measured Depth (usft) 0. 100.	rgram To (usft) .0 22,050.6 Inclination (°) .0 0.00 .0 0.00 .0 0.00 .0 0.00	(us Date 8/12/20 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00	ft) 0.0 020 ore) Vertical Depth (usft) 0.0 100.0	(usft) +N/-S (usft) 0.0 0.0) 0.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0	Vertical Section (usft) 0.0 0.0 0.0	Description OWSG MWE Dogleg Rate (°/100usft) 0.00 0.00	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00	
Survey Tool Pro From (usft) 0. Planned Survey Measured Depth (usft) 0. 100. 200. 300.	rgram To (usft) .0 22,050.6 Inclination (°) .0 0.00 .0 0.00 .0 0.00 .0 0.00	(us Date 8/12/20 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00	ft) 0.0 020 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0	(usft) +N/-S (usft) 0.0 0.0 0.0 0.0) 0.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0	(usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0	Description OWSG MWE Dogleg Rate (°/100usft) 0.00 0.00 0.00 0.00	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	
Survey Tool Pro From (usft) 0. Planned Survey Measured Depth (usft) 0. 100. 200. 300. 400.	rgram To (usft) .0 22,050.6 Inclination (°) .0 0.00 .0 0.00 .0 0.00 .0 0.00 .0 0.00	(us Date 8/12/20 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ft) 0.0 020 0re) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0	(usft) +N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0) 0.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0	(usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0	Description OWSG MWE 000000000000000000000000000000000000	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
Survey Tool Pro From (usft) 0. Planned Survey Measured Depth (usft) 0. 100. 200. 300. 400. 500.	rgram To (usft) .0 22,050.6 Inclination (°) .0 0.00 .0 0.00 .0 0.00 .0 0.00 .0 0.00 .0 0.00	(us Date 8/12/20 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ft) 0.0 020 0re) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0	(usft) +N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.) 0.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Description OWSG MWE 000000000000000000000000000000000000	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	
Survey Tool Pro From (usft) 0. Planned Survey Measured Depth (usft) 0. 100. 200. 300. 400. 500. 600. 700. 800.	rgram To (usft) .0 22,050.6 Inclination (°) .0 0.00 .0 0.00 .0 0.00 .0 0.00 .0 0.00 .0 0.00 .0 0.00 .0 0.00 .0 0.00	(us Date 8/12/20 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00	ft) 0.0 020 0re) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0	(usft) +N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.) 0.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Description OWSG MWE Compared and the second compared	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.000 0.00 0.	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	
Survey Tool Pro From (usft) 0. Planned Survey Measured Depth (usft) 0. 100. 200. 300. 400. 500. 600. 700.	rgram To (usft) .0 22,050.6 Inclination (°) .0 0.00 .0 0.00 .0 0.00 .0 0.00 .0 0.00 .0 0.00 .0 0.00 .0 0.00 .0 0.00	(us Date 8/12/20 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00	ft) 0.0 020 0re) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0	(usft) +N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.) 0.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Description OWSG MWE Compared and the second compared	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.0	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	
Survey Tool Pro From (usft) 0. Planned Survey Measured Depth (usft) 0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	rgram To (usft) .0 22,050.6 Inclination .0 0.00 .0 0.00	(us Date 8/12/20 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00	ft) 0.0 020 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0	(usft) +N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.) 0.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Description OWSG MWE Compared and the second compared	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	
Survey Tool Pro From (usft) 0. Planned Survey Measured Depth (usft) 0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1,000. 1,100.	rgram To (usft) .0 22,050.6 Inclination .0 0.00 .0 0.00	(us Date 8/12/20 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00	ft) 0.0 020 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,100.0	(usft) +N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.) 0.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Description OWSG MWE Compared and the second compared	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.0	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	
Survey Tool Pro From (usft) 0. Planned Survey Measured Depth (usft) 0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1,000. 1,100. 1,200.	rgram To (usft) .0 22,050.6 Inclination .0 0.00 .0 0.00	(us Date 8/12/20 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00	ft) 0.0 020 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,100.0 1,200.0	(usft) +N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.) 0.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Description OWSG MWE Compared and the second compared	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.0	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	
Survey Tool Pro From (usft) 0. Planned Survey Measured Depth (usft) 0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1,000. 1,100.	rgram To (usft) .0 22,050.6 Inclination (°) .0 0.00 .0 0.00	(us Date 8/12/20 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00	ft) 0.0 020 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,100.0	(usft) +N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.) 0.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Description OWSG MWE Compared and the second compared	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.0	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BOO RADLEY COM #704H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3066.2usft (TBD)
Site:	BOO RADLEY COM PROJECT	MD Reference:	KB=30' @ 3066.2usft (TBD)
Well:	BOO RADLEY COM #704H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
Start Build	2.00								
2,600.0	2.00	100.49	2,600.0	-0.3	1.7	0.4	2.00	2.00	0.00
2,700.0	4.00	100.49	2,699.8	-1.3	6.9	1.7	2.00	2.00	0.00
2,749.0	4.98	100.49	2,748.6	-2.0	10.6	2.7	2.00	2.00	0.00
	1 hold at 2749								
2,800.0	4.98	100.49	2,799.5	-2.8	15.0	3.8	0.00	0.00	0.00
2,900.0	4.98	100.49	2,899.1	-4.4	23.5	6.0	0.00	0.00	0.00
3,000.0	4.98	100.49	2,998.7	-5.9	32.1	8.1	0.00	0.00	0.00
3,100.0	4.98	100.49	3,098.4	-7.5	40.6	10.3	0.00	0.00	0.00
3,200.0	4.98	100.49	3,198.0	-9.1	49.1	12.5	0.00	0.00	0.00
3,300.0	4.98	100.49	3,297.6	-10.7	57.7	14.6	0.00	0.00	0.00
3,400.0	4.98	100.49	3,397.2	-12.3	66.2	16.8	0.00	0.00	0.00
3,500.0	4.98	100.49	3,496.9	-13.8	74.7	19.0	0.00	0.00	0.00
3,600.0	4.98	100.49	3,596.5	-15.4	83.3	21.1	0.00	0.00	0.00
3,700.0	4.98	100.49	3,696.1	-17.0	91.8	23.3	0.00	0.00	0.00
3,800.0	4.98	100.49	3,795.7	-18.6	100.3	25.4	0.00	0.00	0.00
3,900.0	4.98	100.49	3,895.3	-20.2	108.9	27.6	0.00	0.00	0.00
4,000.0	4.98	100.49	3,995.0	-21.7	117.4	29.8	0.00	0.00	0.00
4,100.0	4.98	100.49	4,094.6	-23.3	125.9	31.9	0.00	0.00	0.00
4,200.0	4.98	100.49	4,194.2	-24.9	134.5	34.1	0.00	0.00	0.00
4,300.0	4.98	100.49	4,293.8	-26.5	143.0	36.3	0.00	0.00	0.00
4,400.0	4.98	100.49	4,393.5	-28.1	151.5	38.4	0.00	0.00	0.00
4,500.0	4.98	100.49	4,493.1	-29.6	160.1	40.6	0.00	0.00	0.00
4,600.0	4.98	100.49	4,592.7	-31.2	168.6	42.8	0.00	0.00	0.00
4,700.0	4.98	100.49	4,692.3	-32.8	177.1	44.9	0.00	0.00	0.00
4,800.0	4.98	100.49	4,791.9	-34.4	185.7	47.1	0.00	0.00	0.00
4,900.0	4.98	100.49	4,891.6	-36.0	194.2	49.2	0.00	0.00	0.00
5,000.0	4.98	100.49	4,991.2	-37.5	202.7	51.4	0.00	0.00	0.00
5,100.0	4.98	100.49	5,090.8	-39.1	211.3	53.6	0.00	0.00	0.00
5,200.0	4.98	100.49	5,190.4	-40.7	219.8	55.7	0.00	0.00	0.00
5,300.0	4.98	100.49	5,290.1	-42.3	228.3	57.9	0.00	0.00	0.00
5,400.0	4.98	100.49	5,389.7	-43.9	236.9	60.1	0.00	0.00	0.00
5,500.0	4.98	100.49	5,489.3	-45.4	245.4	62.2	0.00	0.00	0.00

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BOO RADLEY COM #704H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3066.2usft (TBD)
Site:	BOO RADLEY COM PROJECT	MD Reference:	KB=30' @ 3066.2usft (TBD)
Well:	BOO RADLEY COM #704H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

Measured Depth li (usft)	nclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,600.0	4.98	100.49	5,588.9	-47.0	253.9	64.4	0.00	0.00	0.00
5,700.0	4.98	100.49	5,688.6	-48.6	262.5	66.6	0.00	0.00	0.00
5,800.0	4.98	100.49	5,788.2	-50.2	271.0	68.7	0.00	0.00	0.00
-,			-,						
5,900.0	4.98	100.49	5,887.8	-51.8	279.5	70.9	0.00	0.00	0.00
6,000.0	4.98	100.49	5,987.4	-53.3	288.1	73.1	0.00	0.00	0.00
6,100.0	4.98	100.49	6,087.0	-54.9	296.6	75.2	0.00	0.00	0.00
6,200.0	4.98	100.49	6,186.7	-56.5	305.1	77.4	0.00	0.00	0.00
6,300.0	4.98	100.49	6,286.3	-58.1	313.7	79.5	0.00	0.00	0.00
a (aa a						o			
6,400.0	4.98	100.49	6,385.9	-59.7	322.2	81.7	0.00	0.00	0.00
6,500.0	4.98	100.49	6,485.5	-61.2	330.7	83.9	0.00	0.00	0.00
6,600.0	4.98	100.49	6,585.2	-62.8	339.3	86.0	0.00	0.00	0.00
6,700.0	4.98	100.49	6,684.8	-64.4	347.8	88.2	0.00	0.00	0.00
6,800.0	4.98	100.49	6,784.4	-66.0	356.3	90.4	0.00	0.00	0.00
6,900.0	4.98	100.49	6,884.0	-67.6	364.9	92.5	0.00	0.00	0.00
7,000.0	4.98	100.49	6,983.6	-69.2	373.4	94.7	0.00	0.00	0.00
7,100.0	4.98	100.49	7,083.3	-70.7	381.9	96.9	0.00	0.00	0.00
7,200.0	4.98	100.49	7,182.9	-72.3	390.5	99.0	0.00	0.00	0.00
7,300.0	4.98	100.49	7,282.5	-73.9	399.0	101.2	0.00	0.00	0.00
7,400.0	4.98	100.49	7,382.1	-75.5	407.6	103.4	0.00	0.00	0.00
7,500.0	4.98	100.49	7,481.8	-77.1	416.1	105.5	0.00	0.00	0.00
7,600.0	4.98	100.49	7,581.4	-78.6	424.6	107.7	0.00	0.00	0.00
7,700.0	4.98	100.49	7,681.0	-80.2	433.2	109.8	0.00	0.00	0.00
7,800.0	4.98	100.49	7,780.6	-81.8	441.7	112.0	0.00	0.00	0.00
7,900.0	4.98	100.49	7,880.2	-83.4	450.2	114.2	0.00	0.00	0.00
8,000.0	4.98	100.49	7,979.9	-85.0	458.8	116.3	0.00	0.00	0.00
8,100.0	4.98	100.49	8,079.5	-86.5	467.3	118.5	0.00	0.00	0.00
8,200.0	4.98	100.49	8,179.1	-88.1	475.8	120.7	0.00	0.00	0.00
8,300.0	4.98	100.49	8,278.7	-89.7	484.4	122.8	0.00	0.00	0.00
-,			-, -						
8,400.0	4.98	100.49	8,378.4	-91.3	492.9	125.0	0.00	0.00	0.00
8,500.0	4.98	100.49	8,478.0	-92.9	501.4	127.2	0.00	0.00	0.00
8,600.0	4.98	100.49	8,577.6	-94.4	510.0	129.3	0.00	0.00	0.00
8,700.0	4.98	100.49	8,677.2	-96.0	518.5	131.5	0.00	0.00	0.00
8,800.0	4.98	100.49	8,776.9	-97.6	527.0	133.7	0.00	0.00	0.00
8,900.0	4.98	100.49	8,876.5	-99.2	535.6	135.8	0.00	0.00	0.00
8,952.0	4.98	100.49	8,928.3	-100.0	540.0	136.9	0.00	0.00	0.00
Start DLS 10			-,						
9,000.0	8.34	131.42	8,976.0	-102.7	544.7	139.9	10.00	6.99	64.47
9,100.0	17.61	149.24	9,073.3	-120.5	557.9	158.7	10.00	9.28	17.82
9,200.0	27.40	154.78	9,165.6	-154.4	575.5	193.7	10.00	9.78	5.53
									
9,300.0	37.29	157.54	9,250.0	-203.4	596.9	244.0	10.00	9.89	2.76
9,400.0	47.22	159.27	9,323.9	-265.8	621.5	308.0	10.00	9.93	1.73
9,500.0	57.18	160.51	9,385.1	-340.0	648.6	383.8	10.00	9.95	1.25
9,600.0	67.14	161.51	9,431.8	-423.5	677.3	469.1	10.00	9.96	0.99
9,700.0	77.10	162.36	9,462.5	-513.8	706.8	561.3	10.00	9.97	0.86

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BOO RADLEY COM #704H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3066.2usft (TBD)
Site:	BOO RADLEY COM PROJECT	MD Reference:	KB=30' @ 3066.2usft (TBD)
Well:	BOO RADLEY COM #704H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77 00
9,832.0 90.26 163.40 9,476.9 -638.9 745.3 688.7 10.00 9.97 0.7 Start DLS 2.00 TFO 89.95	77 00
Start DLS 2.00 TFO 89.95 9,900.0 90.26 164.76 9,476.2 -801.3 763.9 755.3 2.00 0.00 2.0 10,000.0 90.26 166.76 9,476.2 -801.3 788.5 853.7 2.00 0.00 2.0 10,100.0 90.26 170.76 9,475.3 -997.4 827.5 1,052.0 2.00 0.00 2.0 10,200.0 90.26 172.76 9,474.8 -1,096.4 841.8 1,151.7 2.00 0.00 2.0 10,400.0 90.26 174.76 9,473.9 -1,295.5 860.1 1,351.6 2.00 0.00 2.0 10,600.0 90.26 176.76 9,473.4 -1,395.4 864.0 1,451.6 2.00 0.00 2.0 10,600.0 90.26 179.87 9,473.2 -1,450.9 864.7 1,507.0 2.00 0.00 2.0 10,605.6 90.26 179.87 9,472.5 -1,595.4 865.1 1,551.4	00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
10,100 90.26 168.76 9,475.7 -899.0 809.7 952.6 2.00 0.00 2.0 10,200.0 90.26 170.76 9,475.3 -997.4 827.5 1,052.0 2.00 0.00 2.0 10,300.0 90.26 172.76 9,474.8 -1,096.4 841.8 1,151.7 2.00 0.00 2.0 10,400.0 90.26 174.76 9,473.9 -1,295.5 860.1 1,351.6 2.00 0.00 2.0 10,600.0 90.26 178.76 9,473.4 -1,395.4 864.7 1,507.0 2.00 0.00 2.0 10,655.6 90.26 179.87 9,473.0 -1,495.4 864.7 1,507.0 2.00 0.00 2.0 10,600.0 90.26 179.87 9,472.5 -1,595.4 864.7 1,651.2 0.00 0.00 0.0 10,800.0 90.26 179.87 9,471.6 -1,795.4 865.2 1,750.9 0.00 0.00 0.0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
10,655.6 90.26 179.87 9,473.2 -1,450.9 864.7 1,507.0 2.00 0.00 2.00 Start 4068.8 hold at 10655.6 MD ND ND ND ND ND ND ND ND 10,700.0 90.26 179.87 9,473.0 -1,495.4 864.8 1,551.4 0.00 0.00 0.00 0.00 10,800.0 90.26 179.87 9,472.5 -1,595.4 865.0 1,651.2 0.00 0.00 0.00 0.00 10,900.0 90.26 179.87 9,471.6 -1,795.4 865.2 1,750.9 0.00 0.00 0.00 0.00 11,000.0 90.26 179.87 9,471.6 -1,795.4 865.6 1,950.5 0.00 0.00 0.00 0.00 11,100.0 90.26 179.87 9,470.7 -1,995.4 865.6 1,950.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>0</td>	0
Start 4068.8 hold at 10655.6 MD 10,700.0 90.26 179.87 9,473.0 -1,495.4 864.8 1,551.4 0.00 0.00 0.00 10,800.0 90.26 179.87 9,472.5 -1,595.4 865.0 1,651.2 0.00 0.00 0.00 10,900.0 90.26 179.87 9,472.0 -1,695.4 865.2 1,750.9 0.00 0.00 0.00 11,000.0 90.26 179.87 9,471.6 -1,795.4 865.4 1,850.7 0.00 0.00 0.00 11,100.0 90.26 179.87 9,471.7 -1,895.4 865.6 1,950.5 0.00 0.00 0.00 11,200.0 90.26 179.87 9,470.7 -1,995.4 865.9 2,050.3 0.00 0.00 0.00 11,300.0 90.26 179.87 9,470.7 -2,995.4 866.1 2,150.0 0.00 0.00 0.00 11,400.0 90.26 179.87 9,469.7 -2,195.4 866.3 <	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
11,000.090.26179.879,471.6-1,795.4865.41,850.70.000.000.0011,100.090.26179.879,471.1-1,895.4865.61,950.50.000.000.0011,200.090.26179.879,470.7-1,995.4865.92,050.30.000.000.0011,300.090.26179.879,470.2-2,095.4866.12,150.00.000.000.0011,400.090.26179.879,469.7-2,195.4866.32,249.80.000.000.0011,500.090.26179.879,469.3-2,295.4866.52,349.60.000.000.0011,600.090.26179.879,468.8-2,395.4866.82,449.40.000.000.0011,600.090.26179.879,468.4-2,495.4867.02,549.10.000.000.0011,800.090.26179.879,467.9-2,595.4867.22,648.90.000.000.0011,900.090.26179.879,467.5-2,695.4867.42,748.70.000.000.00	
11,100.090.26179.879,471.1-1,895.4865.61,950.50.000.000.0011,200.090.26179.879,470.7-1,995.4865.92,050.30.000.000.0011,300.090.26179.879,470.2-2,095.4866.12,150.00.000.000.0011,400.090.26179.879,469.7-2,195.4866.32,249.80.000.000.0011,500.090.26179.879,469.3-2,295.4866.52,349.60.000.000.0011,600.090.26179.879,468.8-2,395.4866.82,449.40.000.000.0011,700.090.26179.879,468.4-2,495.4867.02,549.10.000.000.0011,800.090.26179.879,467.9-2,595.4867.22,648.90.000.000.0011,900.090.26179.879,467.5-2,695.4867.42,748.70.000.000.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
11,300.0 90.26 179.87 9,470.2 -2,095.4 866.1 2,150.0 0.00 0.00 0.0 11,400.0 90.26 179.87 9,469.7 -2,195.4 866.3 2,249.8 0.00 0.00 0.0 11,500.0 90.26 179.87 9,469.3 -2,295.4 866.5 2,349.6 0.00 0.00 0.0 11,600.0 90.26 179.87 9,468.8 -2,395.4 866.5 2,349.6 0.00 0.00 0.00 0.0 11,600.0 90.26 179.87 9,468.8 -2,395.4 866.8 2,449.4 0.00 0.00 0.00 0.0 11,700.0 90.26 179.87 9,468.4 -2,495.4 867.0 2,549.1 0.00 0.00 0.00 0.0 11,800.0 90.26 179.87 9,467.9 -2,595.4 867.2 2,648.9 0.00 0.00 0.00 0.0 11,900.0 90.26 179.87 9,467.5 -2,695.4 867.4 2,748.7 0.00 0.00 0.0	0
11,400.0 90.26 179.87 9,469.7 -2,195.4 866.3 2,249.8 0.00 0.00 0.0 11,500.0 90.26 179.87 9,469.3 -2,295.4 866.5 2,349.6 0.00 0.00 0.0 11,600.0 90.26 179.87 9,468.8 -2,395.4 866.5 2,349.6 0.00 0.00 0.0 11,700.0 90.26 179.87 9,468.4 -2,495.4 867.0 2,549.1 0.00 0.00 0.0 11,800.0 90.26 179.87 9,467.9 -2,595.4 867.2 2,648.9 0.00 0.00 0.0 11,900.0 90.26 179.87 9,467.5 -2,695.4 867.4 2,748.7 0.00 0.00 0.0	0
11,500.090.26179.879,469.3-2,295.4866.52,349.60.000.000.0011,600.090.26179.879,468.8-2,395.4866.82,449.40.000.000.0011,700.090.26179.879,468.4-2,495.4867.02,549.10.000.000.0011,800.090.26179.879,467.9-2,595.4867.22,648.90.000.000.0011,900.090.26179.879,467.5-2,695.4867.42,748.70.000.000.00	0
11,600.090.26179.879,468.8-2,395.4866.82,449.40.000.000.0011,700.090.26179.879,468.4-2,495.4867.02,549.10.000.000.0011,800.090.26179.879,467.9-2,595.4867.22,648.90.000.000.0011,900.090.26179.879,467.5-2,695.4867.42,748.70.000.000.00	0
11,700.090.26179.879,468.4-2,495.4867.02,549.10.000.000.0011,800.090.26179.879,467.9-2,595.4867.22,648.90.000.000.0011,900.090.26179.879,467.5-2,695.4867.42,748.70.000.000.00	0
11,800.090.26179.879,467.9-2,595.4867.22,648.90.000.000.011,900.090.26179.879,467.5-2,695.4867.42,748.70.000.000.0	
11,900.0 90.26 179.87 9,467.5 -2,695.4 867.4 2,748.7 0.00 0.00 0.0	
12,000.0 90.26 179.87 9,467.0 -2,795.4 867.7 2,848.5 0.00 0.00 0.0	0
	0
12,100.0 90.26 179.87 9,466.5 -2,895.4 867.9 2,948.3 0.00 0.00 0.0	0
12,200.0 90.26 179.87 9,466.1 -2,995.4 868.1 3,048.0 0.00 0.00 0.0	0
12,300.0 90.26 179.87 9,465.6 -3,095.4 868.3 3,147.8 0.00 0.00 0.0	0
12,400.0 90.26 179.87 9,465.2 -3,195.4 868.5 3,247.6 0.00 0.00 0.0	0
12,500.0 90.26 179.87 9,464.7 -3,295.4 868.8 3,347.4 0.00 0.00 0.0	0
12,600.0 90.26 179.87 9,464.2 -3,395.4 869.0 3,447.1 0.00 0.00 0.0	
12,700.0 90.26 179.87 9,463.8 -3,495.4 869.2 3,546.9 0.00 0.00 0.0	
12,800.0 90.26 179.87 9,463.3 -3,595.4 869.4 3,646.7 0.00 0.00 0.0	
12,900.0 90.26 179.87 9,462.9 -3,695.4 869.7 3,746.5 0.00 0.00 0.0	
13,000.0 90.26 179.87 9,462.4 -3,795.4 869.9 3,846.2 0.00 0.00 0.0	0
13,100.0 90.26 179.87 9,461.9 -3,895.4 870.1 3,946.0 0.00 0.00 0.0	
13,200.0 90.26 179.87 9,461.5 -3,995.4 870.3 4,045.8 0.00 0.00 0.0	
13,300.0 90.26 179.87 9,461.0 -4,095.4 870.6 4,145.6 0.00 0.00 0.0	
13,400.0 90.26 179.87 9,460.6 -4,195.4 870.8 4,245.4 0.00 0.00 0.0	
13,500.0 90.26 179.87 9,460.1 -4,295.4 871.0 4,345.1 0.00 0.00 0.0	0
13,600.0 90.26 179.87 9,459.7 -4,395.4 871.2 4,444.9 0.00 0.00 0.0	0

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BOO RADLEY COM #704H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3066.2usft (TBD)
Site:	BOO RADLEY COM PROJECT	MD Reference:	KB=30' @ 3066.2usft (TBD)
Well:	BOO RADLEY COM #704H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,700.0	90.26	179.87	9,459.2	-4,495.3	871.5	4,544.7	0.00	0.00	0.00
13,800.0	90.26	179.87	9,458.7	-4,595.3	871.7	4,644.5	0.00	0.00	0.00
13,900.0	90.26	179.87	9,458.3	-4,695.3	871.9	4,744.2	0.00	0.00	0.00
14,000.0	90.26	179.87	9,457.8	-4,795.3	872.1	4,844.0	0.00	0.00	0.00
14.100.0	90.26	179.87	9,457.4	-4,895.3	872.3	4,943.8	0.00	0.00	0.00
,			,	,		,		0.00	
14,200.0	90.26	179.87	9,456.9	-4,995.3	872.6	5,043.6	0.00		0.00
14,300.0	90.26	179.87	9,456.4	-5,095.3	872.8	5,143.3	0.00	0.00	0.00
14,400.0	90.26	179.87	9,456.0	-5,195.3	873.0	5,243.1	0.00	0.00	0.00
14,500.0	90.26	179.87	9,455.5	-5,295.3	873.2	5,342.9	0.00	0.00	0.00
14,600.0	90.26	179.87	9,455.1	-5,395.3	873.5	5,442.7	0.00	0.00	0.00
14,700.0	90.26	179.87	9,454.6	-5,495.3	873.7	5,542.5	0.00	0.00	0.00
14,724.3	90.26	179.87	9,454.5	-5,519.7	873.7	5,566.7	0.00	0.00	0.00
Start DLS 2	2.00 TFO 91.21	1							
14,726.1	90.26	179.91	9,454.5	-5,521.4	873.7	5,568.5	2.00	-0.04	2.00
	2 hold at 1472								
14,800.0	90.26	179.91	9,454.2	-5,595.3	873.9	5,642.2	0.00	0.00	0.00
14,900.0	90.26	179.91	9,453.7	-5,695.3	874.0	5,742.0	0.00	0.00	0.00
15,000.0	90.26	179.91	9,453.2	-5,795.3	874.2	5,841.8	0.00	0.00	0.00
15,100.0	90.26	179.91	9,452.8	-5,895.3	874.3	5,941.5	0.00	0.00	0.00
15,200.0	90.26	179.91	9,452.3	-5,995.3	874.5	6,041.3	0.00	0.00	0.00
15,300.0	90.26	179.91	9,451.9	-6,095.3	874.7	6,141.1	0.00	0.00	0.00
15,400.0	90.26	179.91	9,451.4	-6,195.3	874.8	6,240.9	0.00	0.00	0.00
15,500.0	90.26	179.91	9,451.0	-6,295.3	875.0	6,340.6	0.00	0.00	0.00
15,600.0	90.26	179.91	9,450.5	-6,395.3	875.2	6,440.4	0.00	0.00	0.00
15,700.0	90.26	179.91	9,450.0	-6,495.3	875.3	6,540.2	0.00	0.00	0.00
15,800.0	90.26	179.91	9,449.6	-6,595.3	875.5	6,640.0	0.00	0.00	0.00
15,900.0	90.26	179.91	9,449.1	-6,695.3	875.6	6,739.7	0.00	0.00	0.00
16,000.0	90.26	179.91	9,448.7	-6,795.3	875.8	6,839.5	0.00	0.00	0.00
16,100.0	90.26	179.91	9,448.2	-6,895.3	876.0	6,939.3	0.00	0.00	0.00
16,200.0	90.26	179.91	9,447.8	-6,995.3	876.1	7,039.0	0.00	0.00	0.00
16,300.0	90.26	179.91	9,447.3	-7,095.3	876.3	7,138.8	0.00	0.00	0.00
16,400.0	90.26	179.91	9,446.8	-7,195.3	876.4	7,238.6	0.00	0.00	0.00
16,500.0	90.26	179.91	9,446.4	-7,295.3	876.6	7,338.4	0.00	0.00	0.00
16,600.0	90.26	179.91	9,445.9	-7,395.3	876.8	7,438.1	0.00	0.00	0.00
16,700.0	90.26	179.91	9,445.5	-7,495.3	876.9	7,537.9	0.00	0.00	0.00
16,800.0	90.26	179.91	9,445.0	-7,595.3	877.1	7,637.7	0.00	0.00	0.00
16,900.0	90.26	179.91	9,444.6	-7,695.3	877.3	7,737.5	0.00	0.00	0.00
17,000.0	90.20 90.26	179.91	9,444.0 9,444.1	-7,795.3	877.4	7,837.2	0.00	0.00	0.00
17,100.0	90.26	179.91	9,443.6	-7,895.3	877.6 877.7	7,937.0	0.00	0.00	0.00
17,200.0 17,300.0	90.26 90.26	179.91 179.91	9,443.2 9,442.7	-7,995.3 -8,095.3	877.7 877.9	8,036.8 8,136.5	0.00 0.00	0.00 0.00	0.00 0.00
-									
17,400.0	90.26	179.91	9,442.3	-8,195.3	878.1	8,236.3	0.00	0.00	0.00
17,500.0	90.26	179.91	9,441.8	-8,295.3	878.2	8,336.1	0.00	0.00	0.00
17,600.0	90.26	179.91	9,441.3	-8,395.3	878.4	8,435.9	0.00	0.00	0.00

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BOO RADLEY COM #704H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3066.2usft (TBD)
Site:	BOO RADLEY COM PROJECT	MD Reference:	KB=30' @ 3066.2usft (TBD)
Well:	BOO RADLEY COM #704H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

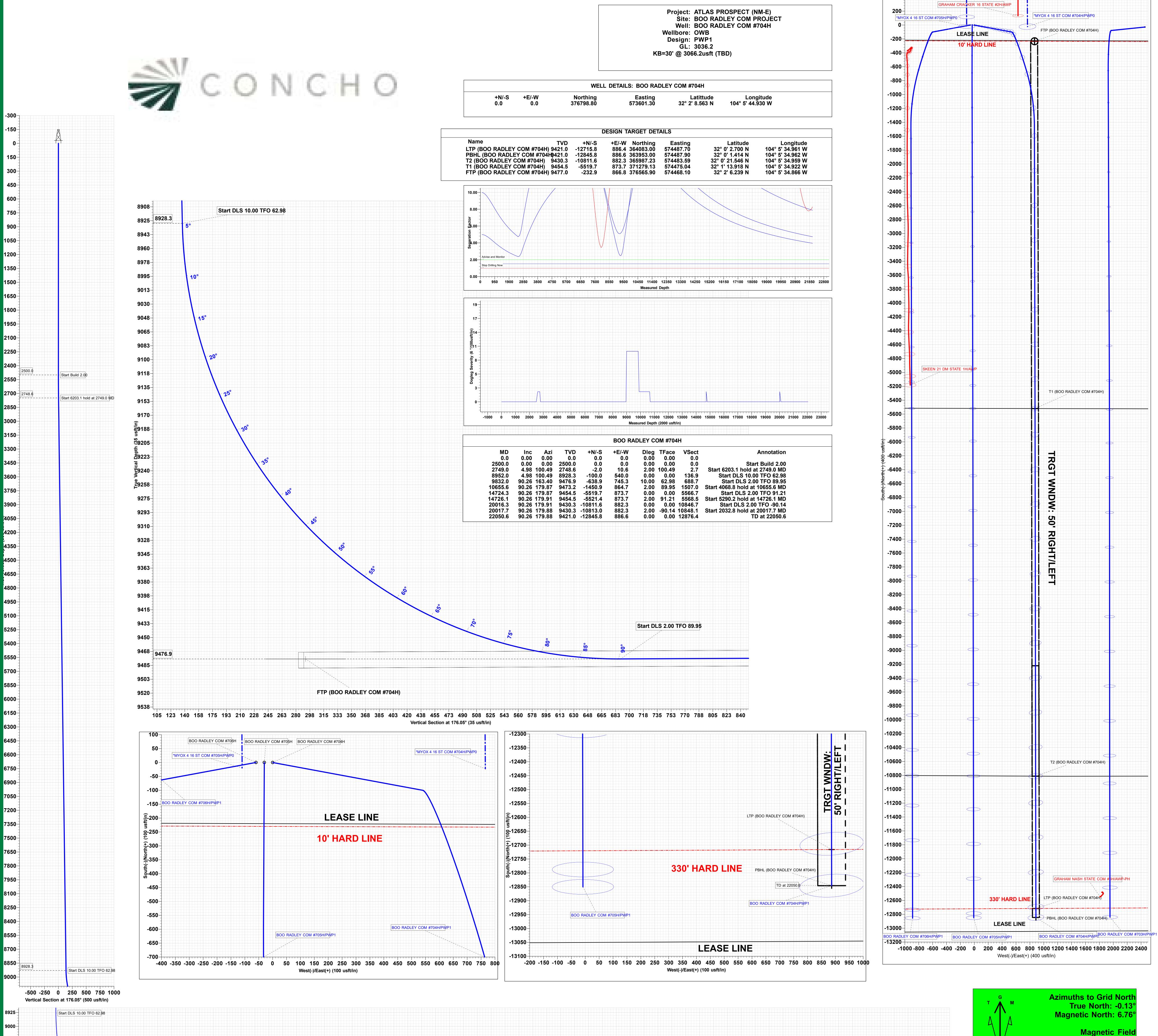
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
17,700.0	90.26	179.91	9,440.9	-8,495.3	878.5	8,535.6	0.00	0.00	0.00
17,800.0		179.91	9,440.4	-8,595.3	878.7	8,635.4	0.00	0.00	0.00
17,900.0	90.26	179.91	9,440.0	-8,695.3	878.9	8,735.2	0.00	0.00	0.00
18,000.0	90.26	179.91	9,439.5	-8,795.3	879.0	8,834.9	0.00	0.00	0.00
18,100.0	90.26	179.91	9,439.1	-8,895.3	879.2	8,934.7	0.00	0.00	0.00
18,200.0		179.91	9,438.6	-8,995.3	879.4	9,034.5	0.00	0.00	0.00
18,300.0	90.26	179.91	9,438.1	-9,095.3	879.5	9,134.3	0.00	0.00	0.00
18,400.0	90.26	179.91	9,437.7	-9,195.3	879.7	9,234.0	0.00	0.00	0.00
18,500.0	90.26	179.91	9,437.2	-9,295.3	879.8	9,333.8	0.00	0.00	0.00
18,600.0	90.26	179.91	9,436.8	-9,395.3	880.0	9,433.6	0.00	0.00	0.00
18,700.0		179.91	9,436.3	-9,495.3	880.2	9,533.4	0.00	0.00	0.00
18,800.0	90.26	179.91	9,435.9	-9,595.3	880.3	9,633.1	0.00	0.00	0.00
18,900.0	90.26	179.91	9,435.4	-9,695.3	880.5	9,732.9	0.00	0.00	0.00
19,000.0	90.26	179.91	9,434.9	-9,795.3	880.6	9,832.7	0.00	0.00	0.00
19,100.0	90.26	179.91	9,434.5	-9,895.3	880.8	9,932.4	0.00	0.00	0.00
19,200.0	90.26	179.91	9,434.0	-9,995.3	881.0	10,032.2	0.00	0.00	0.00
19,300.0	90.26	179.91	9,433.6	-10,095.3	881.1	10,132.0	0.00	0.00	0.00
19,400.0	90.26	179.91	9,433.1	-10,195.3	881.3	10,231.8	0.00	0.00	0.00
19,500.0		179.91	9,432.7	-10,295.3	881.5	10,331.5	0.00	0.00	0.00
19,600.0		179.91	9,432.2	-10,395.3	881.6	10,431.3	0.00	0.00	0.00
19,700.0		179.91	9,431.7	-10,495.3	881.8	10,531.1	0.00	0.00	0.00
19,800.0		179.91	9,431.3	-10,595.3	881.9	10,630.9	0.00	0.00	0.00
19,900.0	90.26	179.91	9,430.8	-10,695.3	882.1	10,730.6	0.00	0.00	0.00
20,000.0	90.26	179.91	9,430.4	-10,795.3	882.3	10,830.4	0.00	0.00	0.00
20,016.3		179.91	9,430.3	-10,811.6	882.3	10,846.7	0.00	0.00	0.00
Start DLS	2.00 TFO -90.1								
20,017.7	90.26	179.88	9,430.3	-10,813.0	882.3	10,848.1	2.00	-0.01	-2.00
Start 2032	2.8 hold at 2001	7.7 MD							
20,100.0	90.26	179.88	9,429.9	-10,895.3	882.5	10,930.2	0.00	0.00	0.00
20,200.0	90.26	179.88	9,429.5	-10,995.3	882.7	11,030.0	0.00	0.00	0.00
20,300.0	90.26	179.88	9,429.0	-11,095.3	882.9	11,129.7	0.00	0.00	0.00
20,400.0		179.88	9,428.5	-11,195.3	883.1	11,229.5	0.00	0.00	0.00
20,500.0	90.26	179.88	9,428.1	-11,295.3	883.3	11,329.3	0.00	0.00	0.00
20,600.0	90.26	179.88	9,427.6	-11,395.3	883.5	11,429.1	0.00	0.00	0.00
20,700.0	90.26	179.88	9,427.2	-11,495.3	883.7	11,528.8	0.00	0.00	0.00
20,800.0		179.88	9,426.7	-11,595.3	884.0	11,628.6	0.00	0.00	0.00
20,900.0		179.88	9,426.3	-11,695.3	884.2	11,728.4	0.00	0.00	0.00
21,000.0		179.88	9,425.8	-11,795.3	884.4	11,828.2	0.00	0.00	0.00
21,100.0		179.88	9,425.3	-11,895.3	884.6	11,927.9	0.00	0.00	0.00
21,200.0		179.88	9,424.9	-11,995.3	884.8	12,027.7	0.00	0.00	0.00
21,300.0		179.88	9,424.4	-12,095.3	885.0	12,127.5	0.00	0.00	0.00
21,400.0		179.88	9,424.0	-12,195.3	885.2	12,227.3	0.00	0.00	0.00
21,500.0		179.88	9,423.5	-12,295.3	885.4	12,327.0	0.00	0.00	0.00
21,600.0	90.26	179.88	9,423.1	-12,395.3	885.6	12,426.8	0.00	0.00	0.00

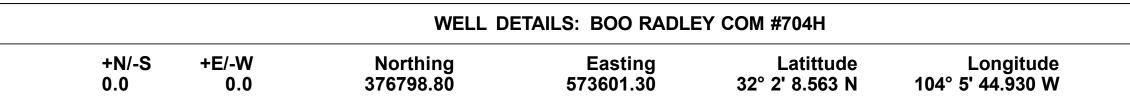
Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well BOO RADLEY COM #704H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3066.2usft (TBD)
Site:	BOO RADLEY COM PROJECT	MD Reference:	KB=30' @ 3066.2usft (TBD)
Well:	BOO RADLEY COM #704H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

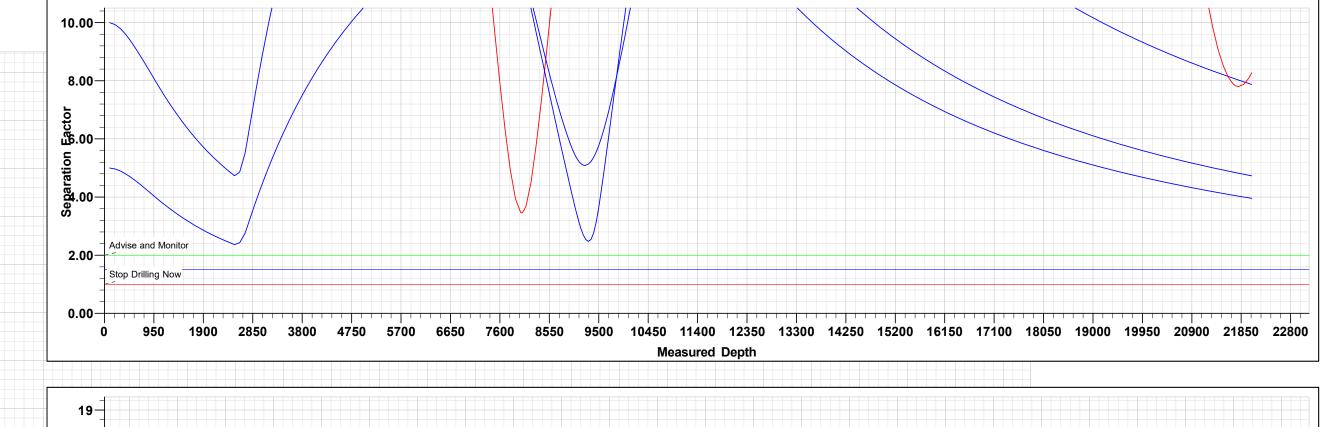
Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
21,700.0	90.26	179.88	9,422.6	-12,495.3	885.9	12,526.6	0.00	0.00	0.00
21,800.0	90.26	179.88	9,422.1	-12,595.3	886.1	12,626.4	0.00	0.00	0.00
21,900.0	90.26	179.88	9,421.7	-12,695.2	886.3	12,726.1	0.00	0.00	0.00
22,000.0	90.26	179.88	9,421.2	-12,795.2	886.5	12,825.9	0.00	0.00	0.00
22,050.6	90.26	179.88	9,421.0	-12,845.8	886.6	12,876.4	0.00	0.00	0.00
TD at 22050).6								


Design Targets


Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
LTP (BOO RADLEY (- plan misses targ - Point			9,421.0 1920.6usft	-12,715.8 MD (9421.6	886.4 TVD, -12715	364,083.00 5.8 N, 886.3 E)	574,487.70	32° 0' 2.700 N	104° 5' 34.961 W
PBHL (BOO RADLE) - plan hits target o - Rectangle (side	center		9,421.0 .0)	-12,845.8	886.6	363,953.00	574,487.90	32° 0' 1.414 N	104° 5' 34.962 W
T2 (BOO RADLEY C - plan hits target o - Rectangle (side	center		9,430.3 .0)	-10,811.6	882.3	365,987.23	574,483.59	32° 0' 21.546 N	104° 5' 34.959 W
T1 (BOO RADLEY C - plan hits target o - Rectangle (sides	center		9,454.5 .0)	-5,519.7	873.7	371,279.13	574,475.04	32° 1' 13.918 N	104° 5' 34.922 W
FTP (BOO RADLEY - plan misses targ			9,477.0 t 9516.1us	-232.9 ft MD (9393.	866.8 7 TVD, -352.	376,565.90 8 N, 653.1 E)	574,468.10	32° 2' 6.239 N	104° 5' 34.866 W

- Circle (radius 50.0)


Plan Annotations


	easured Depth	Vertical Depth	Local Coor +N/-S	dinates +E/-W		
	(usft)	(usft)	(usft)	(usft)	Comment	
	2500	2500	0	0	Start Build 2.00	
	2749	2749	-2	11	Start 6203.1 hold at 2749.0 MD	
	8952	8928	-100	540	Start DLS 10.00 TFO 62.98	
	9832	9477	-639	745	Start DLS 2.00 TFO 89.95	
	10,656	9473	-1451	865	Start 4068.8 hold at 10655.6 MD	
	14,724	9455	-5520	874	Start DLS 2.00 TFO 91.21	
	14,726	9454	-5521	874	Start 5290.2 hold at 14726.1 MD	
	20,016	9430	-10,812	882	Start DLS 2.00 TFO -90.14	
	20,018	9430	-10,813	882	Start 2032.8 hold at 20017.7 MD	
	22,051	9421	-12,846	887	TD at 22050.6	
Checked By:			Арр	proved By:	Date:	

DESIGN TARGET DETAILS										
Name TVE) +N/-S	+E/-W Northing	Easting	Latitude	Longitude					
LTP (BOO RADLEY COM #704H) 9421.() -12715.8	886.4 364083.00	574487.7 0	32° 0' 2.700 N	104° 5' 34.961 W					
PBHL (BOO RADLEY COM #704H9421.0	-12845.8	886.6 363953.00	574487.90	32° 0' 1.414 N	104° 5' 34.962 W					
T2 (BOO RADLEY COM #704H) 9430.3		882.3 365987.23	574483.59	32° 0' 21.546 N	104° 5' 34.959 W					
T1 (BOO RADLEY COM #704H) 9454.	5 -5519.7	873.7 371279.13	574475.04	32° 1' 13.918 N	104° 5' 34.922 W					
FTP (BOO RADLEY COM #704H) 9477.0		866.8 376565.90	574468.10	32° 2' 6.239 N	104° 5' 34.866 W					

-300-

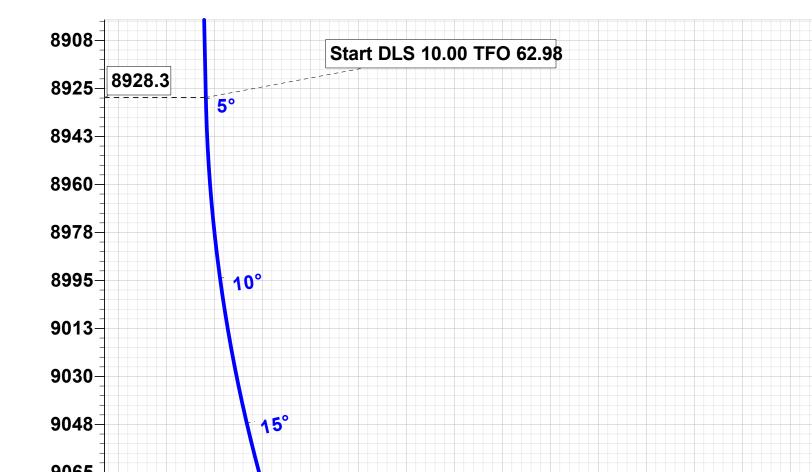
-150-

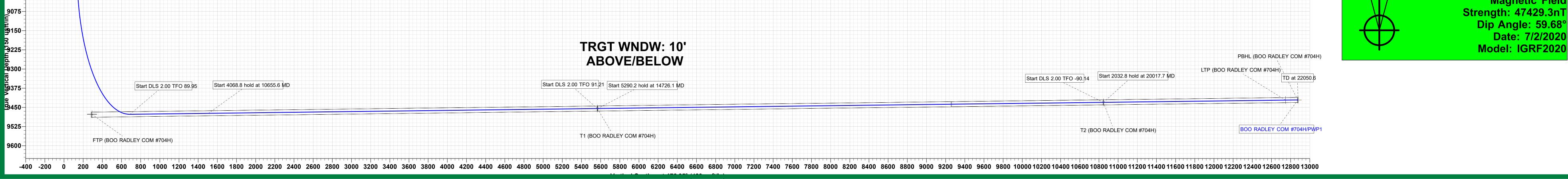
0-

150-

1050-

1650-


1800-


3150-

4050-

4350-

9000-

COG OPERATING LLC HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. HYDROGEN SULFIDE TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. <u>H₂S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment: Flare line.
Choke manifold with remotely operated choke.
Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.
Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

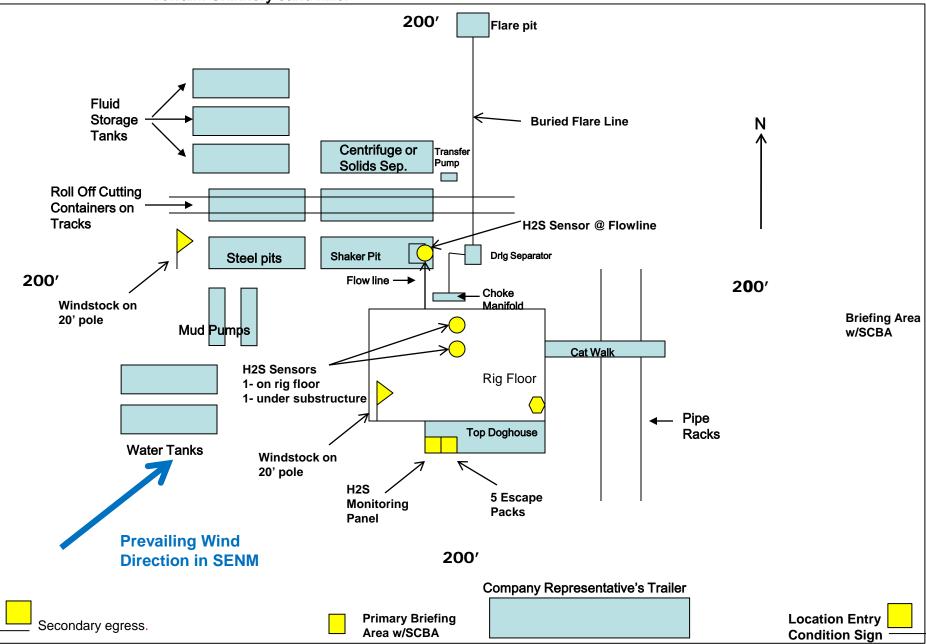

- b. Protective equipment for essential personnel: Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:
 - 2 portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.
- d. Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program: The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

g. Communication:

Company vehicles equipped with cellular telephone.

COG OPERATING LLC has conducted a review to determine if an H2S contingency plan is required for the above referenced well. We were able to conclude that any potential hazardous volume would be minimal. H2S concentrations of wells in this area from surface to TD are low enough; therefore, we do not believe that an H2S contingency plan is necessary.


EMERGENCY CALL LIST

	<u>OFFICE</u>	MOBILE
COG OPERATING LLC OFFICE	575-748-6940	
SETH WILD	432-683-7443	432-528-3633
WALTER ROYE	575-748-6940	432-934-1886

EMERGENCY RESPONSE NUMBERS

	<u>OFFICE</u>
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

COG Operating LLC H_2S Equipment Schematic Terrain: Shinnery sand hills.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GAS CAPTURE PLAN

Date: <u>8/17/20</u>

 \boxtimes Original

Operator & OGRID No.: COG Production LLC, (217955)

□ Amended - Reason for Amendment:_

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility – Name of facility

The well(s) that will be located at the production facility are shown in the table below.

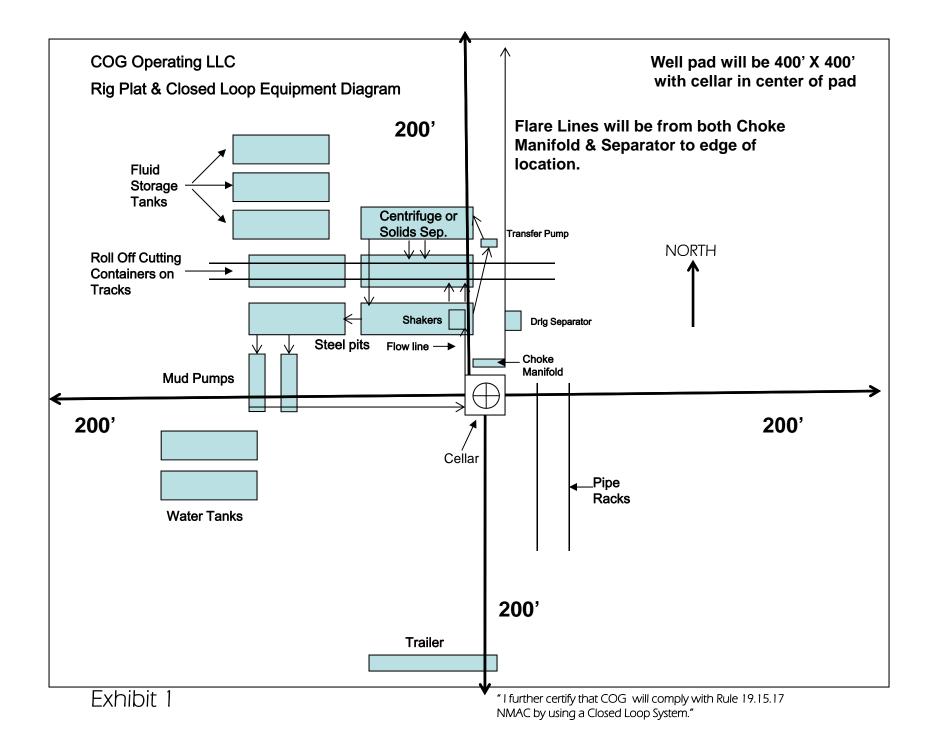
Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Boo Radley Com 701H	30-015-	O-16-26S-28E	200' FSL & 1490' FEL	±5700	None Planned	APD Submission Plan Subject to change
Boo Radley Com 702H	30-015-	O-16-26S-28E	200' FSL & 1520' FEL	±5700	None Planned	APD Submission Plan Subject to change
Boo Radley Com 703H	30-015-	O-16-26S-28E	200' FSL & 1550' FEL	±5700	None Planned	APD Submission Plan Subject to change
Boo Radley Com 704H	30-015-	N-16-26S-28E	220' FSL & 1460' FWL	±5700	None Planned	APD Submission Plan Subject to change
Boo Radley Com 705H	30-015-	N-16-26S-28E	220' FSL & 1430' FWL	±5700	None Planned	APD Submission Plan Subject to change
Boo Radley Com 706H	30-015-	N-16-26S-28E	220' FSL & 1400' FWL	±5700	None Planned	APD Submission Plan Subject to change

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated to **ETC Field Services LLC** and will be connected to **Red Bluff** low pressure gathering system located in **Culberson** County, Texas. **COG Operating LLC** provides (periodically) to **ETC Field Services LLC** a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, **COG Operating LLC** and **ETC Field Services LLC** have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at **ETC Field Services LLC** Processing Plant located in Sec. **35**, Blk. **57**, **T2**, **Culberson** County, Texas. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>Gas Transporter</u> system at that time. Based on current information, it is <u>Operator's</u> belief the system can take this gas upon completion of the well(s).


Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - Gas flared would be minimal, but might be uneconomical to operate when gas volume declines

- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

