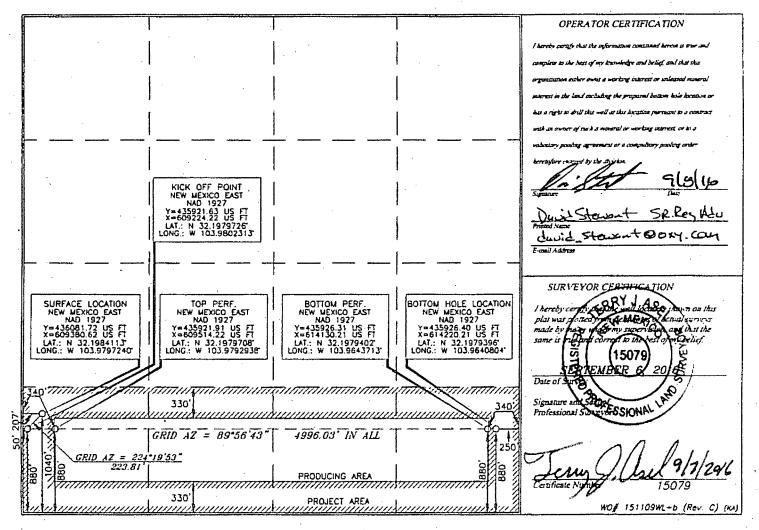
. •								
	Form 3160-3 (June 2015)					OMB N	APPROV o 1004-0	137
٥	UNITED STA					Expires Ja		, é ^u 10
+	DEPARTMENT OF TH BUREAU OF LAND M			· ·		5 Lease Serial No NMNM13996		
	APPLICATION FOR PERMIT T					6 If Indian, Ailotee	or Tribe	Name
·	la Type of work	REE	NTER			7 If Unit or CA Ag		
	Ib Type of Well Ib Oil Well Gas Well Ic Type of Completion Hydraulic Fracturing	Othe	er le Zone 🔽	Multiple Zone		8 Lease Name and Cedar Canyon 22 9 API Well No	Well No Federal	Com #64
	2 Name of Operator OXY USA Inc.	<u> </u>	<u> </u>	<u></u>		9 API Well No 30-015- 4-3	90	
	3a. Address P.O. Box 50250 Midland, TX 79710		b. Phone Ne 32-685-57) (include area cod	e)	10 Field and Pool, Corral Draw Bone	or Explo	يتو من من الله الله الله الله الله الله الله الل
	4 Location of Well (Report location clearly and in accorda		11. Sec., T. R. M. o					
	At surface 1040 FSL 207 FWL SWSW (M) At proposed prod. zone 880 FSL 250 FEL SESE (P	2)				Sec 22 T24S R29	E,	
	14 Distance in miles and direction from nearest town or po 6 miles northeast from Loving NM		.*			12. County or Paris Eddy	sh	13 State NM
	15. Distance from proposed* 207'		6 No of aci	es in lease	17 Spacii	ng Unit dedicated to	this well	<u> </u>
	location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)		99.71		160			
	18 Distance from proposed location ^o to nearest well, drilling, completed, 50 ^o applied for, on this lease, ft		19 Proposed	•	20 BLM	BIA Bond No in file 226	8	·
	21 Elevations (Show whether DF, KDB, RT, GL, etc.) 2939.1'		22. Approxir 1/16/16	nate date work will	start*	23 Estimated dura 20 days	tion	
			120 00,0		······································			
	 Well plat certified by a registered surveyor A Drilling Plan A Surface Use Plan (if the location is on National Forest SUPO must be filed with the appropriate Forest Service C 		Lands, the	Item 20 above) 5 Operator certifie 6. Such other site s	cation	is unless covered by a mation and/or plans a		-
	25 Signature			BLM (Printed/Typed)			Date	-1 -1
	Title		David	Slewart				10/10
	Sr. Regulatory Advisor			_stewart@oxy.co	om		1	
	Approved by (Signature)	1		(Printed/Typed)	ody,	1. Lay the	Date	114/16
	Application approval does not warrant or certify that the app	No.		CF-O	hose rights	in the Subject lease y	vhichwo	uld entitle the
	applicant to conduct operations thereon Conditions of approval, if any, are attached							
	Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 12						апу depa	rtment or agen
•	of the United States any false, fictitious or fraudulent statem	ients of		nis as to any matter		SBAD CONTROL	LEDV	ATER BAS
	This is a replacement well for the Code	r Cai-		adami Cara d				•
	This is a replacement well for the Ceda original hole was abandoned due to lo							
	This well will fit on the original had, so APPROVAL SUBJECT TO							.u suutn.
								FOR
	GENERAL REQUIREMEN	-	and		1	SEE ATTAC	,FIE []	FUR


.

District 1 1625 N. Franch Dr., Hobbs, NM 84240 Phone: (575) 393-6161 Fast: (575) 393-0720 <u>District II</u> 817 S. First SL, Artesia, NM 83210 Phone: (575) 744-1245 Fast. (575) 748-9720 <u>District III</u> 1000 Rev Brazos Roud, Aznec, NM 87410 <u>Phone: (505) 334-6178 Fast</u> (525) 334-6170 <u>Phone: (505) 334-6178 Fast</u> (525) 345-6170 <u>Phone: (505) 334-6178 Fast</u> (525) 476-3462 State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

		· · · · V	VELL LOCATIO	N AND ACR	EAGE DI	EDICATIO	N PLAT			
	•	Number	Pool Co	xlc	·	<u> </u>	Pool Name	-		
		43906	9623	8	Corna	. () van	, Bare	Spring	·	
Prope	rty Code			Property	Name				Well Number	
3161	56		CEDAR CA	ANYON "22	" FEDER	PAL COM			6HY	
	ID No.			Operator	Name				Élevation	
166	<u> </u>			OXY USA INC.					<i>2939.1</i> ′	
				Surface Lo	ocation					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North South line	Feet from the	East West line	County	
۲. ۲	22	24 SOUTH	29 EAST, N.M.	. P. M.	1040'	SOUTH	207'	WEST	EDDY	
		<u></u> ,	Bottom Hole	Location If I	Different I	From Surfac	e		· · · · · · · · · · · · · · · · · · ·	
UL or lot no.	Section	Township	Range	Lot Ida	Feet from the	North South line	Feet from the	East/West line	County	
Р	22	24 SOUTH	29 EAST, N.M.	.P.M.	880'	SOUTH	250	EAST	EDDY	
Dedicated	Acres	Joint or Infill	Consolidation Code	Order No.	L	· ·				
160)	~					· · ·			

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

1. Geologic Formations

TVD of target	8,720'	Pilot hole depth	N/A
MD at TD:	13,430'	Deepest expected fresh water:	354'

Delaware Basin

Formation	TVD - RKB	Expected Fluids
T. Rustler	354	
T. Salt	766	
T. Delaware / Lamar / B. Anhydrite	2,969	Oil/Gas
T. Bell Canyon*	3,017	Water/Oil/Gas
T. Brushy Canyon*	5,092	Oil/Gas
T. 1 st BSPG	6,661	Oil/Gas
T. 2 nd BSPG	7,913	Oil/Gas
Target 2 nd BSPG	8,702	Oil/Gas
T. 3rd BSPG	8,849	Oil/Gas

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

Hole	Casin	g Interval	val Csg. Wei	Weight	Grade	Conn.	SF	SF	SF
Size	From	То	Size	(lbs)	· · · · · ·		Collapse	Burst	Tension
14.75"	0	400	10.75"	40.5	J55	BTC	8.05	1.4	3.98
9.875"	0	8,100	7.625"	26.4	L80	BTC	2.82	1.25	2.01
6.75"	0	8,750	5.5"	17	P-110	Ultra SF	1.7	1.20	2.23
6.75"	8,750	13,430	4.5"	11.6	P-110	DQX	1.7	1.20	1.96
	· · ·		1	BLM Mir	imum Sa	fety Factor	1.125	1	1.6 Dry
		;				- · ·			1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h *Oxy requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool will be run in case a contingency second stage is required for cement to reach surface. If cement circulated to surface during first stage we will drop a cancelation cone and not pump the second stage.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
	1

Oxy USA Inc. - Cedar Canyon 22 Fed Com #6/1Y

Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
	NT
Is well located in critical Cave/Karst?	<u>N</u>
If yes, are there three strings cemented to surface?	- A.

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H20 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surf.	260	14.8	1.35	6.53	6:50	Premium Plus Cement 2% Calcium Chloride – Flake (Accelerator)
Inter.	910	10.3	3.05	15.63	15:07	TUNED LIGHT (TM) SYSTEM 0.80% HR-601(Retarder), 3 lbm/sk Kol-Seal (Lost Circulation Additive), 0.125 lbm/sk Poly-E-Flake (Lost Circulation Additive)
	250	13.2	1.65	8.45	12:57	Super H Cement, 0.1 % HR-800 (Retarder), 0.5 % Halad(R)-344 (Low Fluid Loss Control), 0.3 % CFR-3 (Dispersant), 2 lbm Kol- Seal (Lost Circulation Additive), 3 lbm Salt (Salt)
	DV/EC	P Tool @		•	•	n to cancel the second stage if cement is circulated to stage of cement operations)
	465	12.9	1.85	9.86	12:44	Halliburton Light Premium Plus Cement with 5% Salt (Accelerator), 0.125 lbs/sk Poly-E-Flake (Lost Circulation Additive), 5 lbs/sk Kol-Seal (Lost Circulation Additive), 0.35% HR-800 (Retarder)
	190	14.8	1.33	6.34	6:31	Premium Plus cement
Prod.	550	13.2	1.631	8.37	15:15	Super H Cement, 0.1 % HR-800 (Retarder), 0.5 % Halad(R)-344 (Low Fluid Loss Control), 0.4 % CFR-3 (Dispersant), 3 lbm Salt (Salt)

Casing String	TOC	% Excess (Lead/Tail)
Surface	0'	50%
Intermediate	0'	100% / 20%
Intermediate Contingency 2 nd Stage	0'	75% / 125%
Production	7,100'	15%

4. Pressure Control Equipment

DOD :	C:	- A <i>S</i> !	783		Tracked Act
BOP installed	Size?	Min.	Гуре	V	lested to:

Oxy USA Inc. - Cedar Canyon 22 Fed Com #6/1Y

and tested before drilling which hole?		Required WP			
			Annular	\checkmark	70% of working pressure
0.075"			Blind Ram		
9.875" Intermediate	13-3/8"	5M	Pipe Ram		250/5000
mermediale	e		Double Ram	\checkmark	250/5000psi
			Other*		· · · · · · · · · · · · · · · · · · ·

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.
Y Are anchors required by manufacturer?
A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. See attached schematic.
We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

5. Mud Program

Depth		Туре	Weight (ppg)	Viscosity	Water Loss	
From	То					
0	Surf. shoe	FW Gel	8.4-8.8	28-38	N/C	
Surf csg	2,950'	Saturated Brine	9.8-10	28-32	N/C	
2,950'	Int shoe	EnerSeal (MMH)	8.8-9.6	38-50	N/C	
Int shoe	TD	OBM	8.8-9.4	28-100	N/C	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Oxy proposes to drill out the 10-3/4" surface casing shoe with a saturated brine system from 400'-2,970', which is the base of the salt system. At this point we will swap fluid systems to a high viscosity mixed metal hydroxide system. We will drill with this system to the intermediate TD @ 8,100'.

What will be used to monitor the loss or gain	PVT/MD Totco/Visual Monitoring	i
of fluid?		

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
Yes	Will run GR from TD to surface (horizontal well - vertical portion of hole). Stated logs
	run will be in the Completion Report and submitted to the BLM.
No	Logs are planned based on well control or offset log information.
No	Drill stem test? If yes, explain
No	Coring? If yes, explain

Addi	tional logs planned	Interval
No	Resistivity	
No	Density	
No	CBL	
Yes	Mud log	Intermediate Shoe - TD
No	PEX	·

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	3984 psi
Abnormal Temperature	No

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

8. Other facets of operation

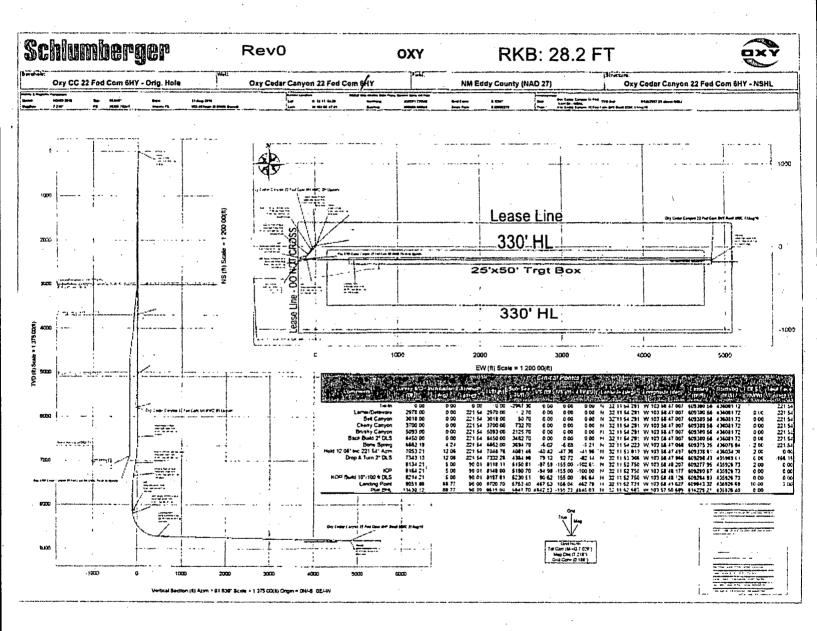
Yes/No

Oxy USA Inc. - Cedar Canyon 22 Fed Com #6/1Y

 Will the well be drilled with a walking/skidding operation? If yes, describe. We plan to drill the three well pad in batch by section: all surface sections, intermediate sections and production sections. The wellhead will be secured with a night cap whenever the rig is not over the well. 	Yes
Will more than one drilling rig be used for drilling operations? If yes, describe.	No

1

Attachments


_x__ Directional Plan

_x__H2S Contingency Plan

_x__ Flex III Attachments

9. Company Personnel

Name	Title	Office Phone	Mobile Phone
Richard Mercer	Drilling Engineer	(713)366-5174	(832) 523-6392
Diego Tellez	Drilling Engineering Team Lead	(713)350-4602	(713) 303-4932
Ryan Farrell	Drilling Engineer Supervisor	(713)366-5058	(832) 914-7443
Travis Samford	Drilling Superintendent	(713)522-8652	(281) 684-6897
Daniel Holderman	Drilling Manager	(713)497-2006	(832) 525-9029

Schlumherger

Oxy Cedar Canyon 22 Fed Com 6/Y Rev0 MMC 31Aug16 Proposal Geodetic Report (Non-Def Plan)

NNNN

N 609380.56

NNN 609380.56 609380.56

N

609380.56 N N

609380.56

609380 56

609180 56 609380.56 609380.56

609380.58 609380.58

609360.56

609380.58 609380.56 609380.58

609380.56 N N

609380.56 609380.56 N

609380.56 609380.56 609380.56 N N

609380.56 NN

609380.56

609380.56

609380.56

609338.61

609380.27 N

Report Data:		September 07, 2016	3 - 01 14 PM		Sur	vey / DLS Computation:	Mini	imum Curvature /	Lubinski		
Client:		oxy			Var	tical Section Azimuth:	91.8	338 * (Grid North)			
Field:		NM Eddy County (N	AD 27)		Var	tical Section Origin:	0.00	o fi, 0 000 fi			
				HSHL / Oxy Cedar Car	won 22						
Structure / Slot:		Fed Com 6H - NSH			TVI) Reference Datum:	AKE	3			
Woll:		Oxy Cedar Canyon			TVI	O Reference Elevation:	296	7.300 ft above MS	1		
Borohola:		Oxy CC 22 Fed Cor				ibed / Ground Elevation:		9,100 ft above MS		•	
UWI / API#:		Unknown / Unknown				pretic Declination:	7.21				
Survey Name:			22 Fed Corn 6HY Ro					.4670mgn (9.8066	C Daradh		
			22 Fed Com on Find	MO MWC 21 KDQ10		al Gravity Field Strongth:	GA		in cranent		
Survey Dala;		August 31, 2016				vity Model:					
Tort / AHD / DDI / EF		111.651 */ 5148.54				al Magnetic Field Strengt		05.782 nT			
Coordinate Reference			State Plane, Easter			gnetic Dip Angle:		048			•
Location Lat / Long			", W 103* 58' 47.007	705*		lination Date:		und 31.2018			
Location Grid N/E Y			E 609380.560 hUS			gnetic Declination Model:		GM 2018	4		
CRS Grid Converge		0.1884 *				th Reference:		Nonh			
Grid Scale Factor:		0.99992279				d Convergence Used:	Q.14	684			
Version / Patch:		2.9.370.0				al Corr Mag North->Grid	7.0	272 '			
					Na			-	D-1-4		•
					Lo	al Coord Referenced To:	Sin	ucture Reference I	Point		
	MD	Incl	Azim Grid	TVD	VSEC	NS	EW	DLS	Northing	Easting	Latitude Longitude
Comments	(R)		ALITE GERG			(R)	_(ft)	(*/10011)	(nus)	(RUS)	(N/S * * *) (E/W * * *)
Tie In	0.00	(*) 0.00	0.00	(ft) 0.00	<u>(n)</u> 0.00	0.00	0.00	N/A	436081 72		32 11 54.28 W 103 58 47.01
114.10	100.00	0.00	221.54	100.00	0.00	0.00	0.00	0.00	436081 72		32 11 54.28 W 103 58 47 01
	200.00	0.00	221.54	200.00	0.00	0.00	0.00	0.00	436081 72		1 32 11 54.28 W 103 58 47.01
	300.00	000	221.54	300.00	D.DD	0.00	0.00	0.00	436081 72		32 11 54.28 W 103 58 47.01
	400.00	0.00	221.54	400.00	0.00	0.00	0.00	0.00	436081 72		32 11 54.28 W 103 58 47.01
	500 00	0.00	221.54	500.00	0.00	0.00	0.00	0.00	436081 72		32 11 54.28 W 103 58 47.01
	600 00	0.00	221.54	600.00	0.00	0.00	0.00	0.00	436081 72	609380.56	1 32 11 54.28 W 103 58 47.01
	700.00	0.00	221 54	700.00	0.00	0.00	0.00	D.00	436081.72	609380.56	1 32 11 54.28 W 103 58 47.01
	800 008	0.00	221 54	800.00	0.00	. 0.00	0.00	0.00	436081.72	609380.56 I	N 32 11 54.28 W 103 58 47.01
	900 008	0.00	221 54	900.00	0.00	0.00	0.00	0.00	436081.72	609380.56	N 32 11 54.28 W 103 58 47.01
	1000.00	0.00	221 54	1000.00	0 00	0.00	0.00	0.00	436081.72		N 32 11 54.28 W 103 58 47.01
,	1100.00	0.00	221.54	1100.00	0.00	0.00	0.D0	0.00	436081.72	609380.56	
	1200.00	0.00	221.54	1200.00	0.00	0.00	0.D0	0.00	436081.72	609380.56	
	1300.00	0.00	221.54	1300.00	0 00	0.00	0.00	0.00	436081.72		N 32 11 54.28 W 103 58 47.01
	1400.00	0 00	221.54	1400.00	0.00	0.00	0.00	0.00	436081 72		N 32 11 54 28 W 103 58 47.01
	1500.00	0.00	221.54	1500.00	0.00	0.00	0.00	0.00	436081.72		N 32 11 54 28 W 103 58 47.01
	1600.00	0.00	221.54	1600.00 1700.00	0.00	0.00	0.00	0.00 0.00	436081 72 436081 72		N 32 11 54.28 W 103 58 47.01 N 32 11 54.28 W 103 58 47.01
	1800.00	0.00	221.54 221.54	100.00	0.00 0.00	0.00	0.00	0.00	436081 72		N 32 11 54.28 W 103 58 47.01
	1900.00	0.00	221.54	1900.00	0.00	0.00	0.00	0.00	436081 72		N 32 11 54.28 W 103 58 47.01
	2000.00	0.00	221.54	2000.00	0.00	0.00	0.00	0.00	436081 72		N 32 11 54.28 W 103 58 47.01
	2100.00	0.00	221.54	2100.00	0.00	0.00	0.00	0.00	436081 72		N 32 11 54 28 W 103 58 47 01
	2200.00	0.00	221.54	2200.00	0.00	0.00	0.00	0.00	436081 72		N 32 11 54 28 W 103 58 47.01
	2300.00	0.00	221.54	2300.00	0 00	0.00	0.00	0.00	436081 72		N 32 11 54.28 W 103 58 47.01
	2400.00	0.00	221.54	2400 00	0.00	0.00	0.00	0.00	436081 72		N 32 11 54 28 W 103 58 47.01
	2500.00	0.00	221.54	2500.00	0 00	0.00	0.00	0.00	436081 72		N 32 11 54.28 W 103 58 47.01
	2600.00	0.00	221.54	2600.00	0.00	0.00	0.00	0.00	436081 72	609380.56	N 32 11 54 28 W 103 58 47.01
	2700.00	0.00	221.54	2700.00	0.00	0.00	0.00	0.00	436081 72	609380.56	N 32 11 54.28 W 103 58 47.01
•	2800.00	0.00	221.54	2800.00	0.00	0.00	0.00	0.00	436081 72	609380.56	N 32 11 54.28 W 103 58 47.01
	2900.D0	0.00	221.54	2900 00	0.00	0.00	0.00	0.00	43608t 72	609380.56	N 32 11 54.28 W 103 58 47.01
	3000.00	0.00	221.54	3000.00	0.00	0.00	0.00	0.00	436081 72		N 32 11 54.28 W 103 58 47.01
	Ĵ100.00	0.00	221.54	3100.00	0.00	0.00	0.00	0.00	436081 72		N 32 11 54 28 W 103 58 47.01
	3200.00	0.00	221.54	3200.00	0.00	0.00	0.00	0.00	436081 72		N 32 11 54.28 W 103 58 47.01
	3300.00	0.00	221.54	3300 00	0,00	0.00	0 00	0.00	436081 72		N 32 11 54.28 W 103 58 47.01
	3400.00	0.00	221.54	3400.00	0.00	D 00	0.00	0.00	436081 72		N 32 11 54.28 W 103 58 47.01
	3500.00	0.00	221.54	3500.00	0.00	0.00	0 00	0.00	436081.72		N 32 11 54.28 W 103 58 47.01
	3600.00	0.00	221.54	3600.00	0.00	0.00	0.00	0.00	436081 72		N 32 11 54.28 W 103 58 47.01
	3700.00	0.00	221.54	3700.00	0.00	0.00	0.00	0.00	436081 72		N 32 11 54.28 W 103 58 47.01
	3800 00	0.00	221.54	3800.00	0.00	0.00	0.00	0.00	436081 72		N° 32 11 54 28 W 103 58 47.01
	3900.00	0.00	221.54	3900.00	0.00	0.00	0.00	0.00	436081.72		N 32 11 54.28 W 103 58 47.01
	4000.D0	0.00	221.54	4000.00	0.00	0.00	0.00	0 00	436081.72	609380.56	N 02 11 54.28 W 103 58 47.01

4100.00

4200.00

4200.00 4300.00 4400.00 4500.00

4600.00 4700.00 4800.00

4900.00 5000.00 5100.00

5200.00 5300.00 5400.00

5500.00 5600.00 5700.00

5800.00 5900.00

6000.00 6100.00

6200.00

6300.00 6400.00

6450.00

6500.00

6599.93 6699 68

6799.13

6898.15

6996.63

7048.78

7094.52

7192.31

7290.10

221.54 221.54 221.54

221.54 221.54 221.54 221.54

221.54 221.54 221.54

221.54 221.54 221.54 221.54 221.54 221.54 221.54

221.54 221.54 221.54 221.54

221.54 221.54 221.54 221.54 221.54 221.54

221.54 221.54

221.54

221.54

221.54 221.54 221.54 221.54 221.54 221.54

221.54

221.54 221.54 221.54

0.00 9.00 0.00 0.00 0.00 0.00

0.00

0.00

0.00

0 00

0.00

0.00

1.00

3.00

7.00 9.00

11.00

12.06

12.06 12.06

12 06

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-0.28

-2.51

-6.96

-22.53

-40.42

-48.66

-60.01 -73.36

0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00

-0.33

-2.94

-15.98

-26 40 -39 40

-47.36

-54.68 -70.32 -85.97

0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-0 29

-2.60

-14.16 -23.39 -34.90

-41.96

-48.44

-62.30

0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

2.00

2.00 2.00 2.00 2.00 2.00 2.00

2.00

0.00 0.00 ,0.00

436081.72 436081.72 436081.72 436081.72 436081.72 436081.72 436081.72

436081.72 436081.72 436081.72

436081 72 436081 72 436081 72

436081 72

436081 72 436081 72

436081 72

436081.39

436078.78

436065.74

436055.32

436042 33

436034.36

436027.04

436011.40 435995.76

Buck Build 2 DLS

Hold 12.06* inc 221.54* Azm

4100.00

4200.00

4300.00 4400.00 4500.00

4600.00

4700.00

4900.00

5000.00 5100.00

5200.00 5300.00 5400.00 5500.00

5600.00 5700.00

5800 00

5900.00

6000.00

6100.00

6200.00

6300.00

6400.00

6450 00

6500.00

6600.00

6700.00

6800.00

6900.00

7000.00

7053.21

7100.00

7200.00

7300.00

22 11 54.28 W 100 58 47.01 32 11 54.28 W 100 58 47.01 32 11 54.28 W 100 58 47.01 32 11 54.28 W 103 58 47.01 32 11 54.28 W 103 58 47.01 32 11 54.28 W 103 58 47.01

N 32 11 54.28 W 103 58 47.01 N 32 11 54.28 W 103 58 47.01

32 11 54.28 W 103 58 47.01

N 32 11 53.81 W 103 58 47.50

609380.56 N 32 11 54.28 W 103 58 47.01

609309.27 N 32 11 54.28 W 103 56 47.01 609377.66 N 32 11 54.25 W 103 56 47.04 609373 33 N 32 11 54.20 W 103 56 47.09 609366.40 N 32 11 54.12 W 103 56 47 10 609357 17 N 32 11 54.02 W 103 58 47.28 609345.66 N 32 11 53.89 W 103 58 47.41

609332.12 N 32 11 53.74 W 103 58 47.57 609318.26 N 32 11 53.59 W 103 58 47.73 609304.41 N 32 11 53.43 W 103 58 47.90

,				•								
Comments	MD	inel (*)	Azim Grid	TVD	VSEC	NS	EW	DLS	Northing	Easting	Latitudo	
Drop & Turn 2*	7343.13	12.06	221 54	7332.28	(R)	-92.72	(f)	('/100fi)	(nUS)	(11/8)	(N/S · · ·)	(E/W • • • • • • • • • • • • • • • • • • •
DLS	7400.00	10.96			-79.12		-82 14	0.00	435989 01			W 103 58 47.97
	7500.00	9 05	220.11	7385.00	-86.27	-101.30	-89 56	2.00	435980 43			W 103 58 48.05
	7600.00	7.18	216.76 211.67	7486 48	·96 68	-114.88	-100.40	2.00	435968 85			W 103 58 48.18
	7700.00	5.4t	203 14	7585 48 7684.87	104.27	-126 50	108.38	2.00	435955.23			W 103 58 45.27
	7800.00	3 86	187.17	7784 54	-109.09	136.15	113.52	2.00	435945.58			W 103 58 48 33
	7900.00	2.93	158.65	7884 38	-111.12 -110.34	-143 82 -149.51	-115.79	2.00	435937.91	609264.78		W 100 58 48 36
	8000.00	3.20	118.80	7984 24	-106.77	-153.19	-115.20	2.00	435932.23			W 103 58 48.35
	8100.00	4.48	95.07	8084.02	100.41	154.88	105.43	2,00	435928.54 435926 85			W 103 59 48.31
	8134.21	5 00	90.01	8118.11	97.59	-155 00	102.61	2.00	435926.73			W 103 58 48 24
ICP	8154.21	5.00	90.01	B148.00	94.98	-155.00	100.00	0.00	435926.73			W 103 58 48.21
	8200.00	5 00	90.01	B183.66	-91.66	-155.00	-96,65	0 00	435926.73			W 103 58 48 18 W 103 58 48 14
KOP Build 10%100 ft DES	8214.21	5.00	90.01	8197.81	-90.62	-155.00	-95.64	0 00	435926.73			W 103 58 48 13
	8300.00	13.58	90.01	8282.40	-76,79	-155.00	-81 81	10.00	435926.73	609298.76	N 32 11 52 75	W 103 58 47.98
	8400 00	23.58	90.01	8377.07	-44.99	-155.01	-49.98	10.00	435926.73			W 100 58 47.59
	8500.00	33.58	90.00	8454.77	2.77	-155.01	-2.21	10,00	435928.72			W 103 58 47.04
	8600.00	43.58	90.00	8542.85	65.01	-155.01	60.07	10.00	435926.72			W 103 58 48 31
	9700.00	53.58	90.00	8608.92	139 87	-155.02	134,97	10.00	435926.71			W 100 58 45 44
	8800.00	63.58	90,00	8660.99	225.05	-155.03	220.19	10.00	435926.71			W 103 58 44.45
	8900.00	73.58	90.00	8697.46	317.98	-155.03	313.17	10.00	435926.70	609693.70	N 32 11 52.74	W 103 58 43.37
	9000.00	83.58	90.00	8717.24	415 83	-155.04	411.06	10.00	435926.69	609791.59		W 103 58 42.23
Landing Point	9051.86	68.77	90.00	6720.70	467.53	-155.04	482 79	10,00	435926.69	609843.32		W 103 58 41.63
	9100.00	88.77	90.00	8721.73	515.83	-155.05	510.92	0.00	435926.69	609891.44	N 32 11 52.73	W 103 58 41.07
	9200.00	88.77	90.00	8723 89	615 56	155.05	610.90	0.00	435926.68	609991.41		W 103 58 39.90
	9300.00	88.77	80.00	8726.04	715.48	-155.06	710 87	0.00	435926.67	610091.38	N 32 11 52.72	W 103 58 38.74
	9400.00	88.77	90.00	8728.20	815.41	-155.07	810.85	0.00	435926.67	610191.35	N 32 11 52.72	W 103 58 37.58
•	9500.00	88.77	90.00	8730.35	915.33	-155.07	910.63	0.00	435928.66			W 103 58 36.41
	9600.00	88.77	90.00	8732.50	1015.26	-155.08	1010.80	Q 00	435926.65	610391.28	N 32 11 52.71	W 103 58 35 25
	9700.00 9800.00	88.77	90.00	8734.66	1115.18	-155.09	1110.78	0 00	435926.65			W 103 58 34.09
	9900.00	88,77 88,77	90.00	8736.81	1215.11	-155.09	1210.76	0.00	435926.64			W 103 58 32.92
	10000.00	68.77	90.00	8738.97	1315.03	+155.10	1310.73	0.00	435926.63			W 103 58 31 76
	10100.00	88.77	90 00	8741.12	1414.96	-155.11	1410.71	0.00	435926.63			W 103 58 30,60
	10200.00	88.77	90.00 90.00	8743.27 8745.43	1514.89	-155.11	1510.69	0.00	435926.62			W 103 58 29.43
	10300.00	88.77	90.00	6747,58	1614 81	-155.12	1610.66	0.00	435926.61			W 103 58 28.27
	10400.00	68.77	90.00	8749.74	1714.74 1814.66	-155.13 -155.13	1710.64	0.00	435926 61			W 103 58 27.11
	10500.00	83.77	90.00	0751.89	1914 59	-155.14	1810.62 1910.59	0.00 0.00	435926 60	611191.03		W 103 58 25.94
	10600.00	68.77	90.00	8754.04	2014.51	-155.15	2010.57	0.00	435926.59	611291.00		W 103 58 24.78
	10700.00	88.77	90.00	6756.20	2114.44	+155.15	2110.55	0.00	435928.59 435928.58	611390.97		W 103 58 23.62
	10800.00	88.77	90.00	8758.35	2214.36	155.16	2210.52	0.00	435928.57	611490.94 611590.91		3 W 103 58 22.45
	10900.00	88.77	90.00	8760.50	2314.29	155.16	2310.50	0.00	435926.57	611690.88		7 W 103 58 21.29
	11000.00	88.77	90.00	8762.66	2414.22	-155.17	2410.48	0.00	435928.58	611790.85		7 W 103 58 20.13 7 W 103 58 18.96
	11100.00	88.77	90.00	B764.81	2514.14	155 18	2510.46	0.00	435926.55	61 1890.62		5 W 103 58 17.80
	11200.00	88.77	90,00	8766.97	2614.07	-155.18	2510.43	0.00	435926.55	611990.79		5 W 103 58 16.64
	11300.00	88.77	90.00	8769.12	2713.99	-155.19	2710.41	0.00	435926.54	612090.75		6 W 103 56 15.47
	11400.00	88.77	90.00	8771,27	2813.92	-155.20	2810.39	0 00	435926.53			5 W 103 58 14.31
	11500.00	88.77	90.00	8773.43	2913.84	-155 20	2910.38	0.00	435928.53			5 W 100 58 13.15
	11600.00	68.77	90.00	8775.50	3013.77	-155.21	3010.34	0.00	435926.52			5 W 103 58 11:98
	11700 00	88.77	90.00	8777.74	3113,69	-155.22	3110.32	0.00	435926.51	612490.63		4 W 103 58 10.82
	11800.00	68.77	90.00	8779.89	3213 62	-155.22	3210.29	0.DD	435926.51		N 32 11 52.6	
	11900.00	66.77	90.00	8782.04	3313.55	-155.23	3310.27	0.D0	435926.50	612690.57		4 W 103 58 8.49
	12000.00	68.77	90.00	8784 20	3413.47	-155.24	3410.25	0.00	435926.49	612790.54	N 32 11 52.60	3 W 103 58 7.33
	12100.00	88.77	90,09	6786.35	3513 40	155.24	3510.22	0.00	435925.49	612890.51		3 W 103 58 6.16
	12200.00	88.77	90.00	9788.50	3813 32	155.25	3610.20	0.00	435926 48	612990.47		
•	12300.00	88.77	90.00	8790.66	3713.25	155.28	3710.18	0.00	435926.47	613090.44		2 W 103 58 3.84
	12400.00	88.77	90.00	8792.81	3813,17	155.26	3810.15	0.00	435926.47	613190.41		2 W 103 58 2.67
	12500.00	88.77	90.00	8794.97	3913.10	155.27	3910 13	0.00	435926.46	613290.38		
	12600.00	88.77	90,00	8797 12	4013.02	155.28	4010.11	0.00	435926.45	613390.35		1 W 103 58 0 35
	12700.00	88.77	90.00	8799.27	4112 95	-155.28	4110.08	0.00	435926.45			1 W 103 57 59.18
	12800.00	88.77	90.00	8801.43	4212.88	155.29	4210 06	0.00	435926.44	613590.29	N 32 11 52 64	0 W 103 57 58.02
	12900.00	88.77	90.00	8803.58	4312.80	155.30	4310.04	0.00	435926.44			0 W 103 57 58.66
•	13000 00	88.77	90.00	8805.74	4412.73	155.30	4410.01	0.00	435926.43			0 W 103 57 55 69
	13100.00	89.77	90 00	8807.69	4512.65	-155.31	4509.99	0.00	435926.42			9 W 103 57 54 53
	13200.00	89.77	90.00	8810.04	4612.58	-155.32	4609 97	0.00	435926.42			9 W 103 57 53 37
	13300.00	66.77	90.00	0812.20	4712.50	-155.32	4709.94	0.00	435926.41			9 W 103 57 52.20
	13400.00	89.77	90.00	8814.35	4812.43	155.33	4809 92	0 00	435926.40			B W 100 57 51.04
Piai BHL	13430.12	88.77	90.00	8815.00	4842.53	-155.33	4640.03	0.00	435926.40			8 W 103 57 50.69

Survey Type:

Non-Def Plan

ISCWSA Rev 0 *** 3-D 95.000% Confidence 2.7955 sigma

Survey Error Model: Survey Program:	ISCWS	4 Rev 0 *** 3-(D 95.000% Confl	5.000% Confidence 2.7955 sigma						
Description		Part	MD From (ft)	MD To (ft)	EOU Frog (ft)	Hole Size Ces (in)	ing Diamater (in)	Expected Mex Inclination (dog)	Survey Tool Type	Barahale / Survey
		1	0.000	26 200	1/100.000	30 000	30.000		NAL_MWD_PLUS_0.5_DEG- Depth Only	Oxy CC 22 Fed Com 6HY - Ong Hole / Oxy Cedar Canyon 22 Fed Com 6HY Rev-3 MMC 31Aug18
		1	28.200	13430.119	1/100.000	30.000	30.000		NAL_MWD_PLUS_0.5_DEG	Oxy CC 22 Fed Cam 6HY - Orig. Hole / Oxy Cedar Canyon 22 Fed

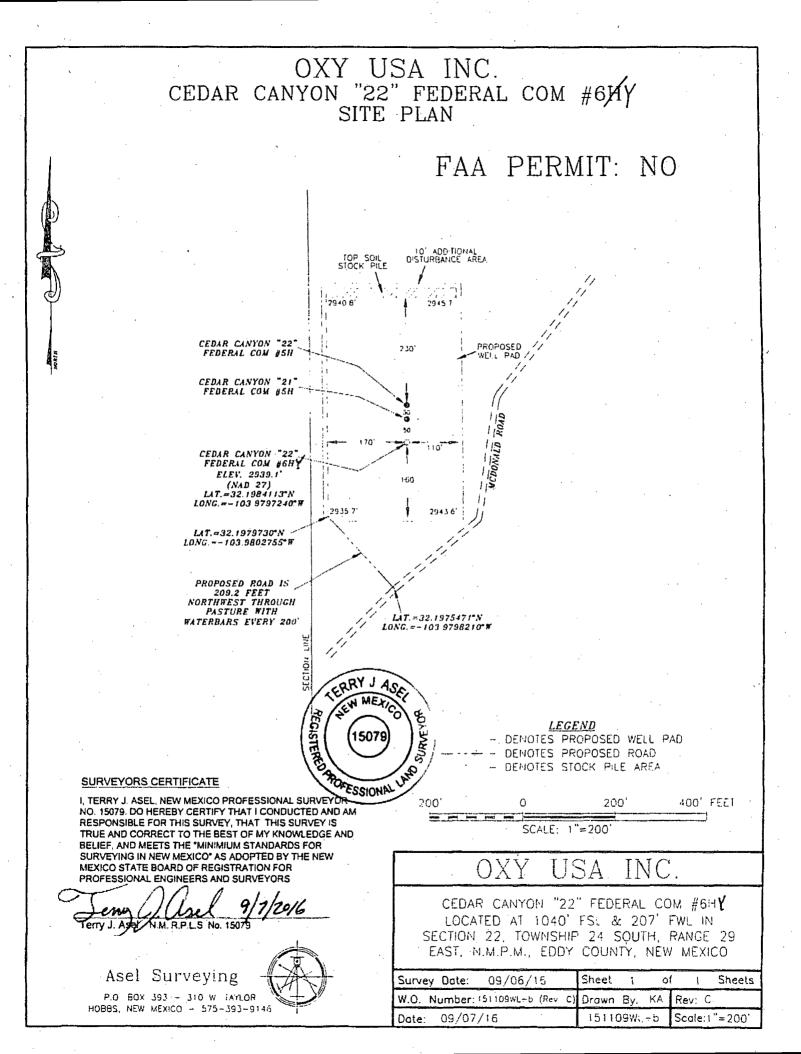
Schumberger

Analysis Dote-24hr Time: Client: Field: Structure: Stot: Well: Borshole: Scan MD Range:	Septamber 07 2016 - 13:10 OXY Mi Eddy County (NAD 27) Oxy Cedar Canyon 22 Fed Com 6HY - NSHL Oxy Cedar Canyon 22 Fed Com 6HY - NSHL Oxy Cedar Canyon 22 Fed Com 6HY Oxy CC 22 Fed Com 6HY - Orig Hole 0 00tt - 13430.12tt	Analysia Method: Reference Trajectory: Depth Intervat: Ruio Bot; Min Plas: Version / Paich; Database \ Project;	3D Least Distance Oxy Cedar Canyon 22 Fed Com SHY RevO MMC 31Aug16 (Non-Del Plan) Every 10 S Measured Depth (ft) NAL Procedure: D&M AntiCollision Standard S002 All local minima indicated. 2.9 370 0 us1 153app452 dit sib comuniting NM Eddy County 2.9
Insiectory Error Model:	ISCWSA0 3-D 95 000% Confidence 2.7955 sigma	 	

Otlaet Trajectoriae Summary

Insiectory Error Model:

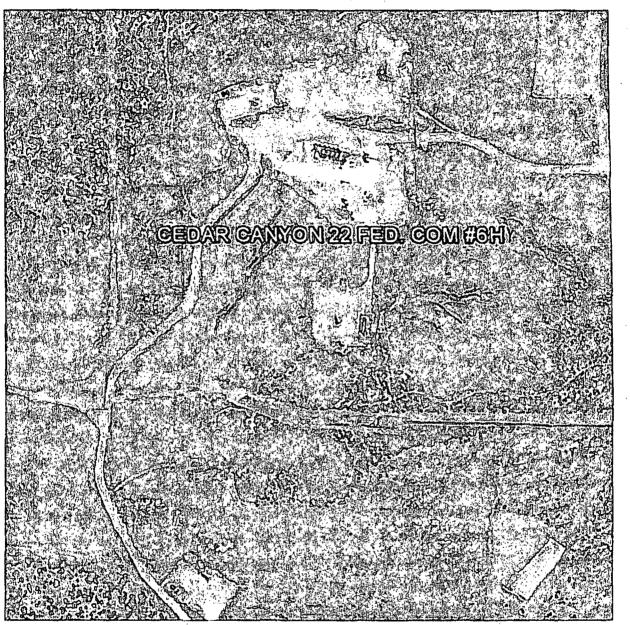
<u>Diffect Selection Criteria</u> Weilhead distance scan: Selection litters:


Not performedi Definitive Surveys - Definitive Plans - Definitive surveys exclude definitive plans - All Non-Def Surveys when no Def-Survey is set in a borahole - All Non-Def Plans no Del-Plan is set in a botshole

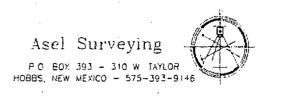
Offset Trajectory Separation Allow Sep. Contra		Controlling	g Roterance Trajectory Risk Lovel					Alert					
	C1-C1 (ft)	MA5 (ft)	EOU (III)	Dev. (11)	Fact.	Rule	MD (ft)	TVD (n)	Alert	Minor	Major		
Costar Carryon 22 Fed Co		I Indiaia / Mars. J	~		هرينا به سر ان .	، بەكىرىيە بار ى بى دۇر بىر ب	فلد معاكليت من		متعاظيات يحمل فاستكاف				THE PAG
M		100	5		() - () - () +	1.92 (1.14)		2	مردق مو بهتر که محمد علاقه ما] او مانو او او ارو الم الم الم الم اسرا الا مستحمد مدار الم		Fel Major
	20 00	18.50	17.60	3.50	N'A	MAS = 5 03 (m)	0.00	0 00	CtCton16me16 00			Enter Alert	
	20.00	16.50	17.50	3 50	' N/A	MAS = 5 03 (m)	28 20	28 20	• •			WRP	
	19 84	18 60	15.74	3.44	10 56	MAS = 5.03 (m)	350 00	350 00				ManPta	
	10.65	16.50	12 70	2.12	4 80	MAS = 5.03 (m)	630.00	630.00				MnPts	
	18.75	16.50	12.64	2.28	4.48	MAS = 5 03 (m)	680.00	680 00				MINPT-U-EOU	
	19.37	16.50	12.09	2.14	4 10	MAS = 6.03 (m)	750 00	750.00				MnPt-O-8F	
	71.000	. 15.50	េរេញ	1.64	3 39	MAS = 5 03 (m)	1270.00	1270 00				ManPos	
	21.60	18.64	8 24	2.66	177	OSF1.50		2450.00				MinPt-CtCl	
	21,63	20 48	7.05	1.05	1.59	OSF1.50		2730 00				MaPt-CtCl	
	21.01	21.85	6.40	-0.05	1.50	OSF1 50	2920.00	2920 00	•	OSF<1.50		Enter Minor	
	21.91	23 65	5.31	-1 74	1 38	OSF1.50	3210 00	3210.00				MinPt-CiCl	L .
	21.21	25 05	1 75	-6.76	1 10	DSF1.90	3863 00	3863.00				MnPt-CtC	1
	71,31	29.19	1.01	-7.88	1.06	OSF1.50	4030.00	4030 00				MinPl-CtC	t i
	21.70	31 44	-0.04	-9.6E	1.00	OSF1.50	4370.00	4370 00			OSF<1 00	Enter Major	÷.
	27.74	32.27	-0.63	-10.58	6.97	OSF1.50		4500.00	· · · ·			ManPt-CtC	t
	22.16	36 52	1.02	-14 38	0.87	OSF1,50	5160 00	\$160.00				ManP1-CtC	t i
	22.37	37.68	-3 69	-15.31	2.85	OSF1.50		6330 00				MnPt-O-5P	:
	22,41	37.75	-1 59	16.34	0 85	OSF1.50		5340 00				MINPT-D-EUL	J
	22.62	37 88	-3.67	-15.20	0.85	OSF1.50		\$360 00				MarPI-O-ADP	>
	28.89	39.14	-000	-12.25	1 00	OSF1.60	5540.00	5540 00			OSF+1.00) EntMejo	r [.]
	40.72	40.74	12.73	-0 01	1.50	OSF1.60		6770 00		OSF>1.50	2	Ext Mino	<i>,</i>
	76.75	27.18	57.80	49.60	4 62	OSP1.60		5850.00	OSF>6 00		,	Ext Alar	۲
	4052.75	54 25	4045.78	4025 \$3		OSF1.50		8759.77				MnPI-D-5	•
	\$747.43	66.07	5702.55	5681 36	135,57	OSF1 50	13430,12	\$815.00				70)

hor	Felling and the second s	alman . ard	لأفسيعي فستقد ستكف السعاد تعا	in an an and shad		and have been been	Just in the		- Section .		poste (Non-Del Duivey)
	Emer Alert		C1C1+=15m<15.00	0 00	0.00	MAS = 5.03 (m)	N/A	3,60	17.50	16.50	20 00
	WRP			28 20	28 20	MAS = 5.03 (m)	N/A	3.50	17.60	16.60	20.00
	Mr.Ptz			350.00	, 350.00	MAS = 5.03 (m)	10.66	3.64	15.79	18 50	(9 84
	ManPta			630.00	630 00	MAS = 5.00 (m)	4 80 -	2.11	12 TV	18.50	18 65
	MINPT-O-EOU	•		680.00	580 GC	MAS = \$ 03 (m)	4 48	. 2.25	12,65	16 💬	18.76
	MnPt-0-8F			750,00	750 00	MAS = 5 (CJ (m)	A 36	2.96	12.09	18.50	19 37
	ManPta			1270.00	1270 00	MAS = 6.03 (m)	3 39	6.54	13 07	16.50	21.64
	MinPI-CICi			2480.00	2460 00	OSF1 50	1.77	2 86	8.24	18 84	21,60
	MinPt-CtCl			2736 00	2730.00	OSF1 50	1.59	1.05	7.06	20 48	1.64
	0 Enter Minor	OSF<1 50		2920 00	2920 00	OSF1.50	1.50	-0 05	6.40	21.65	21.81
	MmPts			3060 00	3050 00	OSF1 50	1.40	1,29	6, an	22.75	21.44
	- MonPts			3070 00	3070.00	OSF1 50	7.45	-1.24	5 47	22.81	21.52
	0 Ext Minor	OSF>1.50		3110.00	3110.00	OSF1 50	1.47	-0.36	8.49	23 08	22.70
	Exit Alert		OSF-16 CC	3400.00	3400 00	OSF1 50	4 97	51 41	54 62	24.73	78.13
	MinPt-CtCt			5000 00	5000 00	OSF1.50	10 40	199 49	210.70	35.13	238 6.2
•	MerPt-CrCt	•	•	5170 00	6170 00	OSF1.50	10.04	198.29	209 90	37.33	234 81
	MmP1-CtCt			6260 00	8260 00	OSF1.50	0.30	192.12	205 00	44.37	736.45
	MinPt-O-SF			6500 00	6500.00	OSF1.50	6.1.2	190 42	204 86	45 63	234.11
	MinPi O-6F			6906 00	6910 00	OSF1 60	10	157.12	170 66	43 69	200.82
	ktinPts			6917.69	6920 00	O5F1.60	125	114.95	173 63	4343	277 41
	MnPt-O-SF			8743 49	10110 20	OSF1.60	97.81	2476.22	2489.06	41.03	2517.25
	מזי	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		\$\$15.00	13430.12	OSF1 50	153.62	6323.31	5340.80	54.99	5378.30

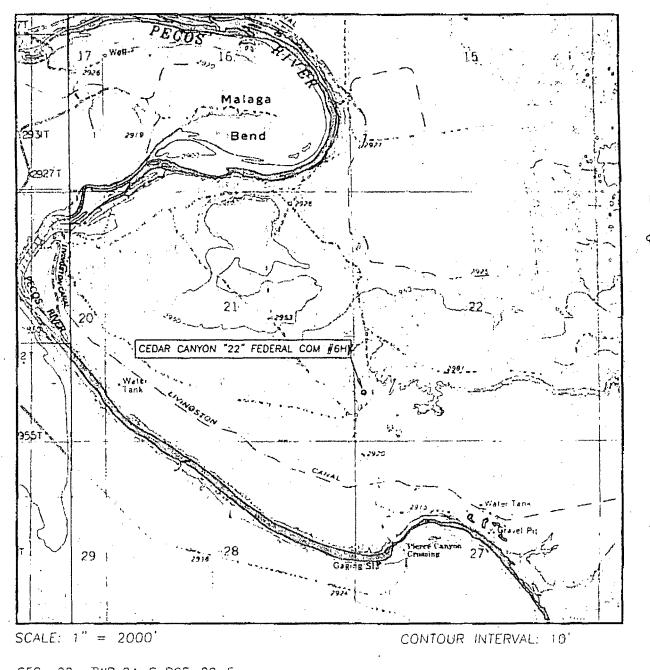
22 Faderel 1 (Offset) 75. 1 $r^{2}e$ 众. 1.1 2-164 法定 Gyna 20 ŝ ÷ αĜ - T. - 22 . War 32.81 32.81 32.81 32.81 32.81 32.81 32.81 MAS = 10.00 (m) 0 00 20 00 25 20 510 00 1220 33 812.63 811.92 811.92 811.92 807.96 702.33 N/A 701 44 12501.00 781.58 17019 85 779.79 383.46 0 00 20 00 28 20 519 00 1220 00 015.13 014.49 Surtec e MarPt-O-5F WAP MnPu MnPts 814 37 383.46 612.34 100.11 797 (713.30


	Ø23 31	32.81	700.6L	770.47	78 24	MAS - 10 00 (m)	2240 00	2240.00		MinPts
	803.31	32.81	790 45	770.60	77 66	MAS + 10.00 (m)	2260 00	2260 00		MINPT-O-EOU
	acc 2 cc 1	47 14	769 /4	754.90	21.15	OSF1.50	6500.00	6500.00		ManPta
	803 67	46 06	772.11	757.62	27 64	OSF1.50	6820.00	6818 97		ManPi-O-ADP
	803 64	- 48.0°	172,15	767.62	27.66	OSF1 50	6830 00	6828 89		MINPT-O-EOU
	and \$3	45.98	277,12	257.65	27.69	OSF1.60	8340 00	8038 80		MarPt-CtCt
	238.65	73.7R	108.59	164 89	4 98	OSF1 50	7770.00	7754 62	OSF-6.00	Enter Alert
	238.12	73.73	184 05	164.31	417	OSF1 50	7720 00	7764 59	· ·	MarPts
	216 01	73.57	105 05	164.44	4.98	OSF1.50	7790.00	7774.5T	OSF>6 00	Ext Aleri
· . · ·	1258 63	38.14	1232.38	1220.48	17.44	OSF1.50	9780 00	8733.35		MnPt-O-SF
	4383 89	54.98	4346 21	4328.71	125 22	OSF1.50	13430.12	8815 00		סז

VICINITY MAP

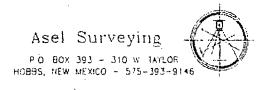

25	· · · · ·			<u> </u>		1	بمستعد في مكال الكالي ب	1					
<u> </u>		35	2 2 CP	Q	<u>``.</u>		T2						
-20 LOVING	R2	8E	23	- A	£9	20	82 21	9E 27 /	23	24	19	20	
29	28 JAN	2.	26	25	10	, 2 ⁰ . ¹	28 1	37	26) 25 i	مد	29	
32	L. C	1 34	15	37		32	.1.3 -4	34	35	36	31 :	32	
<u>5</u>			7.6.)	1					* 2 : .			5	
П <mark>В</mark> /	1-1-1-1 1-1-1-1	Tion		2		−в	9	10	1	i2	7	8	
	16 T2	45	Malaga			1 de la	16 I	45		13	18	i 17	
25	R2	8E	23	24	10	20	R:	9E CEDA	R CANYO	N "22" Fi	EDERAL C	OM #6H	H I I PORT H
29	25	2.20	254	25	30	25	28	3	26	25	30	29	· ·
37	33 /	34	35	36	31		23	34	ß	36	31	32	
3	4	3	2			3		3	2	1	8	5	· ·
6	3	ן כו	11	12		8	9	ر ٥ 	11	12	7	8	
17	16 T2	55	14		18	15 (1)		15 255	14	13	18	17	
	R2	8E	<u> </u>				R	2 9E -			1		
SURVE	<u>22</u> TV	N.N	1.P.M.	<u>29-E</u>					SCAL	E; 1"	= 2 M	ILES	
	RETION_	1040' F	DY SL & ?939.1'		<u>VL</u>			sel S Box 39	Survey	ying w taylor		SF -	
	TOR		JSA INC							75-393-9			
LEASE	CEDAR	CANYON	1 "22"	FEDERA	L COM	<u>#6H</u> Y							
			and the second se					and he shall be shall					MALAGA,
GO EAST ON COUNTY ROAD #720 FOR 1.3 MILES, TURN RIGHT ON COUNTY ROAD #746 (MCDONALD													
ROAD) AND GO SOUTH FOR 0.8 MILES, CONTINUE SOUTHEAST/EAST FOR 4.8 MILES, CURVE TO THE													
LEFT FOR 0.4 MILES, TURN LEFT AND GO WEST FOR 0.1 MILES, TURN RIGHT AND GO NORTH FOR 0.5 MILES, TURN LEFT ON PROPOSED ROAD AND GO NORTHWEST FOR 209.2 FEET TO LOCATION													
<u>U.J. MI</u>	LES, IL	IRN LEI	NU I	PRUPUS	EU RUI	AU ANU	GU NO	JKIHWE	SIFOR	209.2	FEEL I	U LOCA	ION

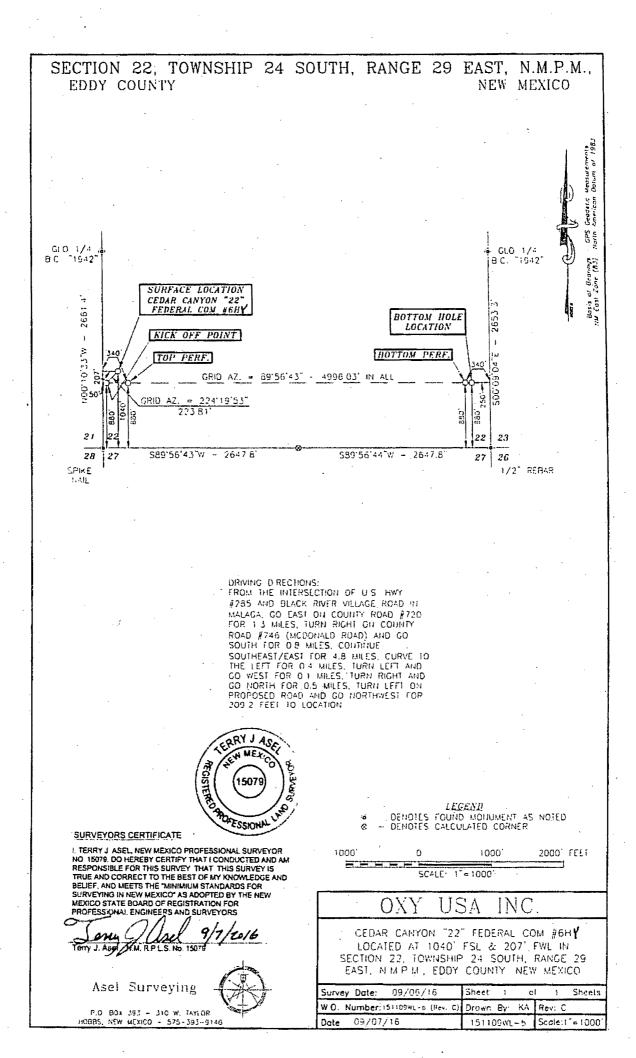
AERIAL MAP



SCALE: NOT TO SCALE

SEC. 22 TV	NP. 24-5 RGE. 29-E
SURVEY	<u>N.M.P.M</u>
COUNTY	EDDY
DESCRIPTION	1040' FSL & 207' FWL
ELEVATION	2939.1'
OPERATOR	OXY USA INC.
LEASE CEDAR	CANYON "22" FEDERAL COM #6HY




LOCATION VERIFICATION MAP

SEC _22_TWP.24-S_RGE.29-E SURVEY____N.M.P.M. COUNTY____EDDY DESCRIPTION 1040' FSL & 207' FWL ELEVATION ____2939.1 OPERATOR ____OXY_USA_INC. LEASE CEDAR_CANYON "22" FEDERAL_COM #6H**Y** U.S.G.S. TOPOGRAPHIC_MAP

PIERCE CANYON, N.M.

PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME:	OXY USA Inc.
LEASE NO.:	NMNM13996
WELL NAME & NO.:	Cedar Canyon 22 Federal Com_6Y
SURFACE HOLE FOOTAGE:	1040'/S & 207'/W
BOTTOM HOLE FOOTAGE	880'/S & 250'/E
LOCATION:	Section 22, T 24 S., R 29 E., NMPM
COUNTY:	Eddy County, New Mexico

This application is approved in accordance with the original approval of the Cedar Canyon 22 Fed Com 6H(API: 30-015-43759) with the following amendments: The surface location has been moved 20 feet South because the original wellbore was plugged due to hole problems.

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions

Permit Expiration

Archaeology, Paleontology, and Historical Sites

Noxious Weeds

Special Requirements

Avian Protection

Cave/Karst

VRM

Communitization Agreement

Construction

Notification

Topsoil

Closed Loop System

Federal Mineral Material Pits

Well Pads

Roads

Road Section Diagram

🛛 Drilling

Medium Cave/Karst Logging Requirements Waste Material and Fluids

Production (Post Drilling)

Well Structures & Facilities

Pipelines	
Electric Lines	
Interim Reclamation	
🗌 Final Abandonment & R	eclamation

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160; the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

V. SPECIAL REQUIREMENT(S)

Avian protection

Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all power line structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. The holder without liability or expense shall make such modifications and/or additions to the United States.

Cave and Karst

** Depending on location, additional Drilling, Casing, and Cementing procedures may be required by engineering to protect critical karst groundwater recharge areas.

Cave/Karst Surface Mitigation

The following stipulations will be applied to minimize impacts during construction, drilling and production.

Construction:

In the advent that any underground voids are opened up during construction activities, construction activities will be halted and the BLM will be notified immediately.

No Blasting:

No blasting will be utilized for pad construction. The pad will be constructed and leveled by adding the necessary fill and caliche.

Pad Berming:

The entire perimeter of the well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad.

- The compacted berm shall be constructed at a minimum of 12 inches high with impermeable mineral material (e.g. caliche).
- No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad.
- The topsoil stockpile shall be located outside the bermed well pad.
- Topsoil, either from the well pad or surrounding area, shall not be used to construct the berm.
- No storm drains, tubing or openings shall be placed in the berm.
- If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.

- The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed.
- Any access road entering the well pad shall be constructed so that the integrity of the berm height surrounding the well pad is not compromised. (Any access road crossing the berm cannot be lower than the berm height.)

Tank Battery Liners and Berms:

Tank battery locations and all facilities will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain $1\frac{1}{2}$ times the content of the largest tank.

Leak Detection System:

A method of detecting leaks is required. The method could incorporate gauges to measure loss, situating values and lines so they can be visually inspected, or installing electronic sensors to alarm when a leak is present. Leak detection plan will be submitted to BLM for approval.

Automatic Shut-off Systems:

Automatic shut off, check values, or similar systems will be installed for pipelines and tanks to minimize the effects of catastrophic line failures used in production or drilling.

Cave/Karst Subsurface Mitigation

The following stipulations will be applied to protect cave/karst and ground water concerns:

Rotary Drilling with Fresh Water:

Fresh water will be used as a circulating medium in zones where caves or karst features are expected. SEE ALSO: Drilling COAs for this well.

Directional Drilling:

Kick off for directional drilling will occur at least 100 feet below the bottom of the cave occurrence zone. SEE ALSO: Drilling COAs for this well.

Lost Circulation:

ALL lost circulation zones from the surface to the base of the cave occurrence zone will be logged and reported in the drilling report.

Regardless of the type of drilling machinery used, if a void of four feet or more and circulation losses greater than 70 percent occur simultaneously while drilling in any cavebearing zone, the BLM will be notified immediately by the operator. The BLM will assess the situation and work with the operator on corrective actions to resolve the problem.

Abandonment Cementing:

Upon well abandonment in high cave karst areas additional plugging conditions of approval may be required. The BLM will assess the situation and work with the operator to ensure proper plugging of the wellbore.

Pressure Testing:

Annual pressure monitoring will be performed by the operator on all casing annuli and reported in a sundry notice. If the test results indicated a casing failure has occurred, remedial action will be undertaken to correct the problem to the BLM's approval.

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> on the sign.

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

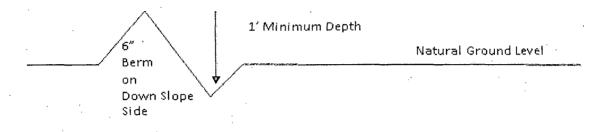
Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts


Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

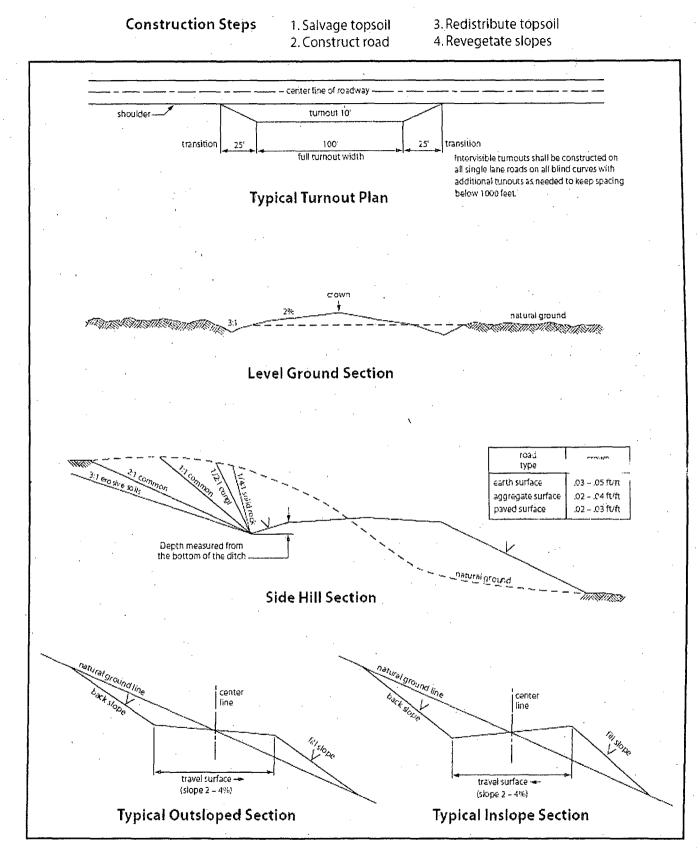
All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: 400' + 100' = 200' lead-off ditch interval 4%

Cattleguards


An appropriately sized cattleguard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattleguards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattleguards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

. Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

VII. DRILLING

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - **Eddy County**

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- 2. The operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the

approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. (For surface casing the BOP can be nippled up after the cement has reached 500 psi compressive strength.)

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Medium cave/karst

Possible water flows in Castile and Salado. Posible lost circulation in Rustler, Red Beds and Delaware.

- 1. The 10 3/4 inch surface casing shall be set at approximately 400 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, the operator shall set the casing 25' above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Formation below the 10-3/4" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight

necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

The 7-5/8 inch intermediate casing must be kept liquid filled while running into hole to meet minimum BLM requirements for collapse.

2. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:

a. First stage to DV tool:

Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage.

Operator has proposed a contingency DV tool at 2900'. If operator circulates cement on the first stage, operator is approved to inflate the ACP and run the DV tool cancellation plug and cancel the second stage of the proposed cement plan. If cement does not circulate, operator will inflate ACP and proceed with the second stage.

- b. Second stage above DV tool:
- Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.

If cement does not circulate to surface on the intermediate casing, the cement on the production casing must come to surface.

Formation below the 7-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe (not the mud weight required to prevent dissolving the salt formation) and the mud weight for the bottom of the hole. Report results to BLM office.

3. The minimum required fill of cement behind the 5-1/2 x 4-1/2 inch production casing is:

Cement should tie-back at least 500 feet into previous casing string. Operator shall provide method of verification.

4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

5M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

- 4. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the

plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.
- c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- d. The results of the test shall be reported to the appropriate BLM office.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

MHH04292016

VIII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the

largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

VRM Facility Requirement

Low-profile tanks not greater than eight-feet-high shall be used.

B. PIPELINES

STANDARD STIPULATIONS FOR SURFACE INSTALLED PIPELINES

A copy of the Grant and attachments, including stipulations, survey plat(s) and/or map(s), shall be on location during construction. BLM personnel may request to review a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, Holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC § 2601 *et seq.* (1982) with regard to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant (*see* 40 CFR, Part 702-799 and in particular, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193). Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the Authorized Officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. Holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. § 9601, *et seq.* or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, *et seq.*) on the Right-of-Way (unless the release or threatened release is wholly unrelated to activity of the Right-of-Way Holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way Holder on the Right-of-Way. This provision applies

without regard to whether a release is caused by Holder, its agent, or unrelated third parties.

4. Holder shall be liable for damage or injury to the United States to the extent provided by 43 CFR Sec. 2883.1-4. Holder shall be held to a standard of strict liability for damage or injury to the United States resulting from pipe rupture, fire, or spills caused or substantially aggravated by any of the following within the right-of-way or permit area:

a. Activities of Holder including, but not limited to: construction, operation, maintenance, and termination of the facility;

b. Activities of other parties including, but not limited to:

(1) Land clearing

(2) Earth-disturbing and earth-moving work

(3) Blasting

(4) Vandalism and sabotage;

c. Acts of God.

The maximum limitation for such strict liability damages shall not exceed one million dollars (\$1,000,000) for any one event, and any liability in excess of such amount shall be determined by the ordinary rules of negligence of the jurisdiction in which the damage or injury occurred.

This section shall not impose strict liability for damage or injury resulting primarily from an act of war or from the negligent acts or omissions of the United States.

5. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil, salt water, or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil, salt water, or other pollutant, wherever found, shall be the responsibility of Holder, regardless of fault. Upon failure of Holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he/she deems necessary to control and clean up the discharge and restore the area, including, where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of Holder. Such action by the Authorized Officer shall not relieve Holder of any responsibility as provided herein.

6. All construction and maintenance activity shall be confined to the authorized right-of-way width of 20 feet. If the pipeline route follows an existing road or buried pipeline right-of-way, the surface pipeline shall be installed no farther than 10 feet from the edge of the road or buried pipeline right-of-way. If existing surface pipelines prevent this distance, the proposed surface pipeline shall be installed immediately adjacent to the outer surface pipeline. All construction and maintenance activity shall be confined to existing roads or right-of-ways.

7. No blading or clearing of any vegetation shall be allowed unless approved in writing by the Authorized Officer.

8. Holder shall install the pipeline on the surface in such a manner that will minimize suspension of the pipeline across low areas in the terrain. In hummocky of duney areas, the pipeline shall be "snaked" around hummocks and dunes rather than suspended across these features.

9. The pipeline shall be buried with a minimum of 24 inches under all roads, "two-tracks," and trails. Burial of the pipe will continue for 20 feet on each side of each crossing. The condition of the road, upon completion of construction, shall be returned to at least its former state with no bumps or dips remaining in the road surface.

10. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

12. Excluding the pipe, all above-ground structures not subject to safety requirement shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be a color which simulates "Standard Environmental Colors" – **Shale Green**, Munsell Soil Color No. 5Y 4/2; designated by the Rocky Mountain Five State Interagency Committee.

13. The pipeline will be identified by signs at the point of origin and completion of the right-of-way and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. Signs will be maintained in a legible condition for the life of the pipeline.

14. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway.

15. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the authorized officer. Holder shall suspend all

operations in the immediate area of such discovery until written authorization to proceed is issued by the authorized officer. An evaluation of the discovery will be made by the authorized officer to determine appropriate cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the authorized officer after consulting with the holder.

16. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, powerline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

17. Surface pipelines shall be less than or equal to 4 inches and a working pressure below 125 psi.

C. ELECTRIC LINES

STANDARD STIPULATIONS FOR OVERHEAD ELECTRIC DISTRIBUTION LINES

A copy of the grant and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq</u>. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the

Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

4. There will be no clearing or blading of the right-of-way unless otherwise agreed to in writing by the Authorized Officer.

5. Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all powerline structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. Such modifications and/or additions shall be made by the holder without liability or expense to the United States.

Raptor deterrence will consist of but not limited to the following: triangle perch discouragers shall be placed on each side of the cross arms and a nonconductive perching deterrence shall be placed on all vertical poles that extend past the cross arms.

6. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

7. The BLM serial number assigned to this authorization shall be posted in a permanent, conspicuous manner where the power line crosses roads and at all serviced facilities. Numbers will be at least two inches high and will be affixed to the pole nearest the road crossing and at the facilities served.

8. Upon cancellation, relinquishment, or expiration of this grant, the holder shall comply with those abandonment procedures as prescribed by the Authorized Officer.

9. All surface structures (poles, lines, transformers, etc.) shall be removed within 180 days of abandonment, relinquishment, or termination of use of the serviced facility or facilities or within 180 days of abandonment, relinquishment, cancellation, or expiration of this grant, whichever comes first. This will not apply where the power line extends service to an active, adjoining facility or facilities.

10. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

11. Special Stipulations:

- For reclamation remove poles, lines, transformer, etc. and dispose of properly.
- Fill in any holes from the poles removed.

IX. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

X. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Seed Mixture 2, for Sandy Sites

The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be <u>no</u> primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State law (s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	l <u>b/acre</u>
Sand dropseed (Sporobolus cryptandrus)	1.0
Sand love grass (Eragrostis trichodes)	1.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

NMOCD CONDITION OF APPROVAL

The *New!* Gas Capture Plan (GCP) notice is posted on the NMOCD website under Announcements. The Plan became effective May 1, 2016. A copy of the GCP form is included with the NOTICE and is also in our FORMS section under Unnumbered Forms. Please review filing dates for all applicable activities currently approved or pending and submit accordingly. Failure to file a GCP may jeopardize the operator's ability to obtain C-129 approval to flare gas after the initial 60-day completion period.