

PHOENIX TECHNOLOGY SERVICES

March 20, 2013

Oil Conservation Division State of New Mexico 811 S. First St. Artesia, New Mexico 88210

Dear District 2 - Artesia

Re: Concho Resources Inc. Clydesdale 1 Fee #1H Eddy County, NM API #30-015-10214 Job No. 1310195

40214

Enclosed please find the Survey Data Certification, and the original Plat and one copy of the Survey Report performed on the above referenced Well by Phoenix Technology Services, Inc. (P-5 No. 664171). Other information required by your office is as follows:

Name & Title of Surveyor	Drainhole Number		veyed oths	Dates Pe	erformed	Type of
		From	То	Start	End	Survey
Robert Dillon	1H	2,241	7,363	03/03/13	03/09/13	MWD

A certified plat on which the bottom hole location is oriented both to the surface location and to the lease lines (or unit lines in case of pooling) is attached to the survey report. If any other information is required, please contact the undersigned at the letterhead address and phone number.

Best Regards,

Kelly Jo Walter

Kelly Jo Walter Operations Administrator

Certified mail receipt number: 7011 1570 0001 4364 9483

1805 Brittmoore Rd. Houston, TX 77043 • Phone (713) 337-0600 • Fax (713) 337-0599 www.phxtech.com

PHOENIX TECHNOLOGY SERVICES SURVEY DATA CERTIFICATION

MAR 2 5 2013 OPERATOR COG Operating PHOENIX JOB NUMBER 1310195 NMOCD ARTESIA Sec. 3 & Vy Eddy, NM

WELL NAME Clydesdale 1 Fee # 1H

in States Sec. 8

API WELL NUMBER 30-015-40214

PROPOSED DIF

RECT	ION	271:25	·. ·	

TIE-IN DATA	·		·······		· · · · · · · · · · · · · · · · · · ·	
MEASURED	VERTICAL		· · ·	N-S	E-W	DATA
DEPTH	DEPTH	INCLIN	AZIMUTH	COORD	COORD	SOURCE
2,149 ft	2,148.62 ft	1.86	278.09	11.41	-31.88	Gyro

FIRST	FIRST		
SURVEY	SURVEY		
DATE	DEPTH	INCLIN	AZIMUTH
3-Mar-13	2,241 ft	1.9	278.4

LAST	LAST	-	
SURVEY	SURVEY		
DATE	DEPTH	INCLIN	AZIMUTH
9-Mar-13	7,363 ft	92.7	271

PROJECTED	PROJECTED		
TD SURVEY	TD SURVEY		
DATE	DEPTH	INCLIN	AZIMUTH
9-Mar-13	7,424 ft	92.7	271

MAGNETIC DECLINATION OR TOTAL GRID

TOTAL CORRECTION USED	7.86
DECLINATION OR GRID	GRID

SURVEY INSTRUMENT TYPE PHOENIX MWD

TO THE BEST OF MY KNOWLEDGE I **CERTIFY THIS SURVEY DATA TO BE** TRUE AND CORRECT.

PRINT, YOUR NAME ABOVE

SIGN YOUR NAME ABOVE

3-9-2013

TODAY'S DATE

MWD SUPERVISOR 1 MWD SUPERVISOR 2 Bob Dillon. Eric Burchinal

DIRECTIONAL DRILLER 1 Andrew Hodgkins DIRECTIONAL DRILLER 2 Nathan Hodgkins

1805 Brittmore Road

Houston, Texas 77043

(713)3370609 (Voice), (713)337-0599 (Fax)

COG Operating LLC Eddy County, New Mexico (NAD 27 NME) Clydesdale 1 Fee #1H Wellbore #1 / Job #1310195

Survey: Phoenix MWD Surveys

Survey Report

10 March, 2013

<i>∛COTCHO</i>				32° 41' 44.717849 N 104° 25' 46.368925 W -0.05 °	32° 41' 44.717849 N 104° 25' 46.368925 W 3,434.00 usft			
J€	rence Well #1H = RF @ 3447100usft (JW 4) = RF @ 3447100usft (JW 4) = RF @ 3447100usft (JW 4) = Gid find find for the final state of the fi	Mean Sea Level		Latitude: Longitude: Grid Convergence:	Latitude: Longitude: Ground Level:	9h) 55		
ort	LocalCo-ordinate Reference LocalCo-ordinate Reference TVD Reference MD Reference North Reference Survey Calculation Method Database	System Datum:		616,840.10 usft La 470,401.70 usft La 13-3/16 "G	616,840.10 usft 470,401.70 usft usft	Field Stren		Direction 34 1
Survey Report				Northing: Easting: Slot Radius:	Northing: 6 Basting: 4 Wellhead Elevation:	colination Colination 7.81	Tie On Depth:	(1) (1) 00 000
·	Company: COG Operating ILCC Project Eddy County, New Mexico (NAD) 27/ NME) Stie Wellbore: # 11 Wellbore: # 11/Job # 13101955 Wellbore: # 11/Job # 13101955	New Mexco (NAD)27/NME) (Exact solution) CONUS) 1		st 1	entropy of the second se 0.00 using the second	000 #1310195 Sample Date 2010 02/14/13	100 #1310195	pth From (TVD) (usrt) (usrt) 0.00 0.00 0.00
	COG Operating LLC Edgy County New Mexic Edgy County New Mexic Cydesdalet Fee 7.5 #1H #1H Wellbore #1//Job#1310	m: US State Plane 1927 (Exact solution) m: NAD 1927 (NADCON CONUS) New Mexico East 3001		Site Position: From: Map Position Uncertainty: 0.00 usft		Weilbore A Wellbore #11.Job #1310195 Magnetics Model Name Sample Date IGRF2010_14 02/14/13	Audit Notes: 1.0 Phase: ACTL	Vertical Section: From (TVD) (1950) 0.00
	Company: Project: Site Welli Wellbore: Design	Recipect Map System: Geo Datum: Map Zone:	Site	Site Position: From: Position Unce	Well Position + Vell Position + Position Uncertainty	Wellbore Magnetics	- Designary Audit Notes: Version:	Vertical St

03/10/13 8:10:44AM

.

Page 2

COMPASS 5000.1 Build 56

9			Easting (ush)	470,305.02 470,366.84	470,365.66	470,363.82 470,360,94	470.356.62	470,351.20	470,344.54	470,336.62	470,327.03	470,316.23	470,302.85	470,287.08	470,267.92	470,247.17	470,225.03	470,201.82	470,177.45	470,152.04	470,124.90	COMPASS 5000.1 Build 56
⇒ COTCH(66: 14 Well #1H 3.5 (100 4) RF-@ 3447.00ush (JW 4) RF-@ 3447.00ush (JW 4) RF-@ 3447.00ush (JW 4) RF-@ 3447.00ush (JW 4) Grid Grid Grid CCR:DB.45000			010,001.01	616,852.08	616,852.18 e1e ee2 27	616.852.47	616,852.88	616,853.42	616,853.95	616,854.39	616,854,64	616,854.31	616,853.41	616,852.11	616,850.74	616,849.58	616,848.65	616,847.91	616,847.50	616,847.55	COMPASS 5
	Vei #114 F. @ 3447.00ust F. @ 3447.00ust F. @ 3447.00ust F. @ 3447.00ust F. @ 3447.00ust F. @ 3447.00ust F. @ 3447.00ust		0.00		1.97	5.84	7.54	7.78	7.42	8.12	8.51	10.46	17.81	20.34	19.42	13.98	8.90	10.10	11.36	10.11	9.14	
	Reference: Method Method		((12)) ((عد الا 14 فرانية المسلم 35.11	36.30 36.30	38.13 41.05	45.34	50.76	57.44	65.37	74.96	85.77	99.14	114.88	- 134.01	154.73	176.83	200.02	224.36	249.77	276.89	
	Local Co-ordinate Local Co-ordinate TVO) Reference: WD/Reference: Survey Calculatio Database:	ag ag ag	LEN LEN LEN		· · · · · · · · · · · · · · · · · · ·	-37.88 40.70	45.08	-50.50	-57.16	-65.08	-74.67	-85.47	-98.85	-114.62	-133.78	-154.53	-176.67	-199.88	-224.25	-249.66	-276.80	
Survey Report	Local Co-ordinate References TVOIReterence: MDReference: North Reference: Survey Calculation Method: Survey Calculation Method: Database:	MVD - Standard		11.41 전문문은 2012년 7 11.84	194	12.08	12.17	12.78	13.32	13.85	14.29	14.54	14.21	13.31	12.01	10.64	9.48	8.55	7.81	7.40	7.45	
Survey		ATOCINAME 3 MVD b MVD		2,148.62 영제: 112:43:55 전 112:13 2,240.57	2.271.55	2,302.49 2,222.25	2,355,06 2,365,06	2,395.58	2,425.85	2,455.81	2,486.34	2,515.39	2,544.44	2,571.10	2,596.67	2,619.65	2,641.32	2,661.84	2,680.98	2,698.72	2,715.68	Page 3
			270-26- 2	-1,298.36 	-1.175.45	-1,144.51 4 442.65	-1,113.03	-1,051.42		-991.19	-960.66	-931.61	-902.56	-875.90	-850.33	-827.35	-805.68	-785.16	-766.02	-748.28	-731.32	
	0(NMD)271NME) 95	3 Weilbore) Surveys (Wellbore) NMVD Surveys	(c)	278.40 전국학자 1228.40 278.40		272.10	271.0U 273.5N	274.80	274.50	273.30	272.10	270.60	267.00	266.50	265.80	266.60	267.40	268.00	268.50	269.60	270.60	
	Deraining (LLC) -) Junny: New Mexico ale 1/ Fee	Date 03/10/13 To Survey Wellbore) 2.149.00 VES Gyro Surveys (Wellbore #1 / Job #13 7,424.00 Phoenix MWD Surveys (Wellbore #1 / Job	inc Azi	1.86 	VD Survey (7) 2.50	4.30	UC.0	11.30	13.60	16.10	18.80	22.00	27.50	33.80	40.00	44.30	47.00	50.10	53.60	56.60	59.40	
	Company Project State Project State Site: State Cydesdafe I Fee Well: Wellbore: #1/100 #1310195 Mellbore: #1/100 #1310195 Mellbore: #1/100 #1310195	Survey)Program Date 03/10/13 From To (ustt) (ustt) Survey Willbore) 100.00 2.149.00 VES Gyro Surveys (Wellbore #17.42 2.241.00 7,424.00 Phoenix MWD Surveys (Wellbore #17.45	(new constraint) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	2,149.00 1.86 2.8.09 -1,298.38 2,148.02 11,41 -31.08 35.12 0.00 010,091.01 470,000 2,241,00 11,90 35.11 0.04 616,851.94 470,306 2,241.00 1.90 278.40 -1,206.43 2,240.57 11.84 -34.86 35.11 0.04 616,851.94 470,366	Cirst Phoenix MWD Survey 71 250 275.30 275.30	2,303.00	2,334.UU 2 366 00	2.397.00	2,428.00	2,459.00	2,491.00	2,522.00	2,554.00	2,585.00	2,617.00	2,648.00	2,679.00	2,710.00	2,741.00	2,772.00	2,804.00	03/10/13 8:10:44AM

. .

 Company:
 Cool Operating LLC
 Molections
 Woll #1H

 Project:
 Edoy County New Maxio (NAD 21 ME)
 TO Reference:
 Mol H

 Project:
 Edoy County New Maxio (NAD 21 ME)
 TO Reference:
 Mol H

 Project:
 Edoy County New Maxio (NAD 21 ME)
 TO Reference:
 Mol H

 Project:
 Edoy County New Maxio (NAD 21 ME)
 Mol Reference:
 Mol New Maxio (NAD 21 ME)

 Sine (Sine (S 469,144.09 468,770.45 468,489.75 468,302.88 470,041.98 470,013.03 169,704.25 469,611.36 469,517.53 469,424.72 469,330.87 469,051.22 t68,957.32 168,864.38 168,676.55 468,582.67 468,396.80 469,982.51 469,952.45 469,922.07 469,891,49 469,859.80 469,829.01 469,798.13 469,237.98 616,875.36 616,849.25 616,853.49 616,854.75 616,857.72 616,863.22 616,866.54 616,868.92 616,871.59 616,878.85 616,885.47 616,888.97 616,891.26 616,892.23 616,852.38 616,859.20 616,881.47 616,883.34 616,887.50 616,890.04 516,893.05 616,851.30 616,856.21 616,850.21 616,890.61 9.79 4.78 5.16 4.18 2.28 1.46 0.63 0.65 0.62 0.22 8.43 11.31 5.57 1.15 1.00 1.75 0.38 1.29 10.94 10.33 7.77 6.46 1.60 0.58 0.67 1.57 419.34 ,445.03 ,537.99 1,631.93 ,725.83 1,819.70 2,005.56 359.84 388.80 542.12 603.85 697.78 790.73 884.59 977.44 ,071.35 164.29 1,258.22 ,351.11 2,099.47 331.54 449.41 479.81 510.41 572.94 ,912.61 -1,444.38 -2,098.82 697.45 -1,350.48 -359.72 -419.19 449.25 479.63 -572.69 -790.34 -884.17 -976.98 -1,537.32 -1,631.25 -1.725.15 -1,819.03 -331.44 -388.67 541.90 603.57 -1,070.83 -1,163.72 -1,257.61 1,911.95 -2,004.90 510.21 8.38 9.15 10.11 11.20 13.39 14.65 16.11 17.62 19.10 23.12 26.44 28.82 31.49 35.26 38.75 41.37 43.24 45.37 47.40 48.87 49.94 50.51 51.16 52.13 52.95 12.28 2,744.92 2,757.57 2,778.15 2,800.80 2,804.04 2,808.36 2,805.52 2,800.44 2,795.25 2,791.56 2,780.48 2,766.65 2,758.16 2,755.40 2,751.47 2,768.61 2,806.31 2,776.71 2,770.83 2,785.02 2,785.65 2,791.67 2,796.60 2,788.72 2,774.11 2,761.89 680.35 661.35 640.69 641.48 646.56 651.75 -655.44 658.28 661.98 666.52 -670.29 672.89 676.17 688.84 691.60 695.53 -702.08 689.43 668.85 -655.33 650.40 646.20 642.96 685.11 678.39 638.64 271.10 271.30 272.10 272.50 272.80 272.80 272.70 272.20 271.90 271.00 272.30 272.30 272.00 271.20 271.50 271.00 270.80 270.50 270.20 270.60 271.80 272.00 272.00 272.20 270.60 270.40 93.00 90.70 92.80 93.40 93.00 91.50 92.00 92.50 93.10 91.50 92.30 92.80 64.40 67.40 74.40 80.00 81.70 83.20 84.80 86.80 91.70 93.00 91.60 70.90 77.60 91.80 ł 3,895.00 4,644.00 3,241.00 3,615.00 3,989.00 4,082.00 2,928.00 2,960.00 3,022.00 3,085.00 3,521.00 3,802.00 4,457.00 2,991.00 3,116.00 3,334.00 3,708.00 4,176.00 2,866.00 2,897.00 3,053.00 3,147.00 3,428.00 1,270.00 4,364.00 \$,550.00

Survey Report

COMPASS 5000.1 Build 56

Page 4

03/10/13 8:10:44AM

		Easting Easting (usrt) 468,208.97	468,116.04 468,022.09 467 028 13	401,520.13
	0000th (J/W 4) 0000th (J/W 4) 0000th (J/W 4) 0000th (J/W 4)	Northing (usth) 616,893.71	616,894.52 616,895.50 616 806 40	010,020,40
	Well #114 P.1. RF @ 3447:00ust (JV RF @ 3447:00ust (JV RF @ 3447:00ust (JV Minmum Curvature GCR DB v5000	((100ust))	0.39 0.85	47°
	alo Réference :	V. Sec. V. Sec. (ush) 2,193.37	2,286.31 2,380.25 2,474 21	2,4/4.21
	Local Co-ordina Local Co-ordina TVD Reference MD Reference North Reference Survey Calculati Database	EW (ust) -2, 192.73	-2,285.66 -2,379.61 -2,473.57	10.014,2-
Survey Report		NIS (usft) 53.61	54.42 55.40 55.30	00.00
Su		, TVD , TVD (US f) 2,747.45	2,744.12 2,741.17 2,738 71	2,138.11
		(11) SSOUT (11) (11) (12) (12) (12) (12) (12) (12)	-702.88 -705.83 709 20	R7'80/-
	AD 217 NME)	muth) 270.40	270.60 270.60	NC.U/2

	re #1 /Job #1310 re #1 /Job #1310					MD Reference: North Reference: Survey Calculation Method: Octobase:	and the second second second	R Grid F Minimum Curvature GCR DB v5000	Gide :	
	200		t INDESS Internet		2	EW [V Sec.	Diegostinis	Northing	Easting
4,738.00	6	270.40	-699.55	2,747.45		-2,192.73	2,193.37	1.17	616,893.71	468,208.97
4,831.00	92.20	270.60	-702.88	2,744.12	54.42	-2,285.66	2,286.31	0.39	616,894.52	468,116.04
4,925.00	91.40	270.60	-705.83	2,741.17	55.40	-2,379.61	2,380.25	0.85	616,895.50	468,022.09
5,019.00	91.60	270.50	-708.29	2,738.71	56.30	-2,473.57	2,474.21	0.24	616,896.40	467,928.13
5,113.00	91.80	270.00	-711.08	2,735.92	56.71	-2,567.53	2,568.16	0.57	616,896.81	467,834.17
5,206.00	92.00	270.60	-714.16	2,732.84	57.20	-2,660.48	2,661.09	0.68	616,897.30	467,741.22
5,300.00	92.60	272.00	-717.94	2,729.06	59.33	-2,754.38	2,755.02	1.62	616,899.43	467,647.32
5,393.00	93.20	271.20	-722.64	2,724.36	61.93	-2,847.22	2,847.89	1.07	616,902.03	467,554.48
5,487.00	93.10	272.10	-727.81	2,719.19	64.63	-2,941.04	2,941.75	0.96	616,904.73	467,460.66
5,581.00	93.60	272.00	-733.30	2,713.70	67.98	-3,034.82	3,035.58	0.54	616,908.08	467,366.88
5,674.00	92.60	272.10	-738.33	2,708.67	71.31	-3,127.62	3,128.43	1.08	616,911.41	467,274.08
5,767.00	92.90	271.70	-742.79	2,704.21	74.39	-3,220.46	3,221.32	0.54	616,914.49	467,181.24
5,861.00	93.70	271.40	-748.20	2,698.80	76.92	-3,314.27	3,315.16	0.91	616,917.02	467,087.43
5,955.00	92.10	271.60	-752.96	2,694.04	79.38	-3,408.12	3,409.04	1.72	616,919.48	466,993.58
6,048.00	92.00	271.10	-756.28	2,690.72	81.57	-3,501.03	3,501.98	0.55	616,921.67	466,900.67
6,142.00	92.20	271.10	-759.73	2,687.27	83.38	-3,594.95	3,595.91	0.21	616,923.48	466,806.75
6,236.00	92.40	270.60	-763.50	2,683.50	84.77	-3,688.86	3,689.83	0.57	616,924.87	466,712.84
6,329.00	92.50	270.80	-767.48	2,679.52	85.90	-3,781.77	3,782.74	0.24	616,926.00	466,619.93
6,423.00	92.70	270.60	-771.74	2,675.26	87.05	-3,875.67	3,876.64	0:30	616,927.15	466,526.03
6,516.00	93.00	269.60	-776.36	2,670.64	87.21	-3,968.55	3,969.51	1.12	616,927.31	466,433.15
6,610.00	92.00	270.70	-780.47	2,666.53	87.46	-4,062.46	4,063.40	1.58	616,927.56	466,339.24
6,703.00	92.20	270.40	-783.87	2,663.13	88.35	-4,155.39	4,156.33	0.39	616,928.45	466,246.31
6,796.00	92.50	269.80	-787.69	2,659.31	88.51	-4,248.31	4,249.23	0.72	616,928.61	466,153.39
6,890.00	92.90	270.60	-792.11	2,654.89	88.84	-4,342.21	4,343.11	0.95	616,928.94	466,059.49
6,984.00	91.90	272.10	-796.05	2,650.95	91.05	-4,436.09	4,437.02	1.92	616,931.15	465,965.61
7,077.00	92.10	271.70	-799.30	2,647.70	94.14	-4,528.99	4,529.96	0.48	616,934.24	465,872.71
7 171 00	00 00	074 EO	10 000	1644.00	06 76	00000	00000			

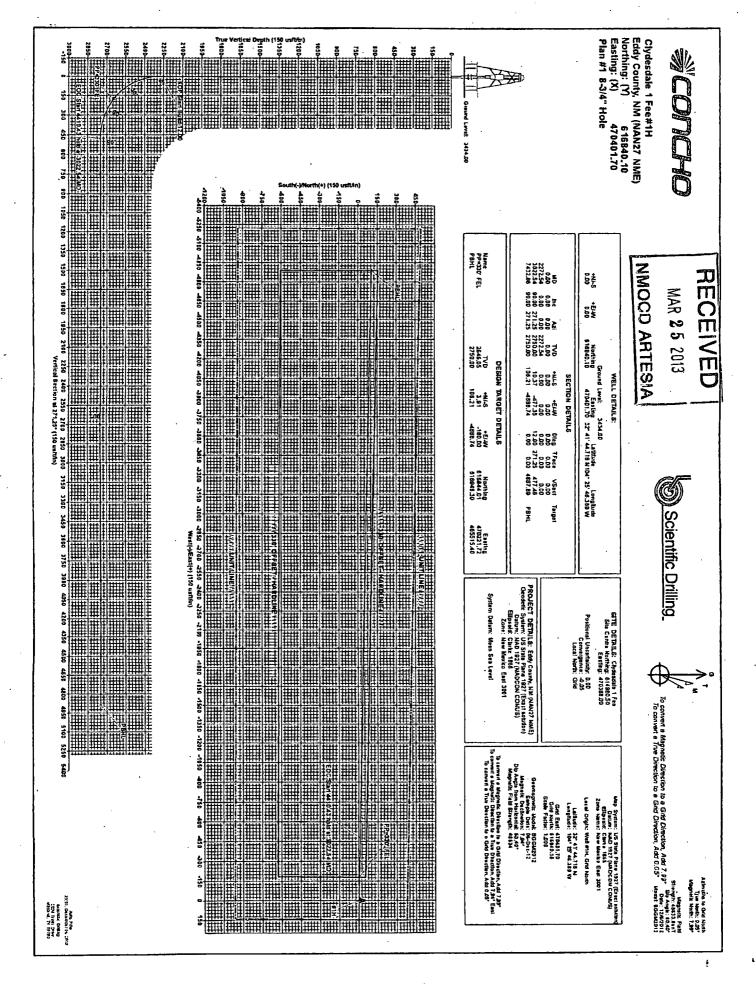
03/10/13 8:10:44AM

COMPASS 5000.1 Build 56

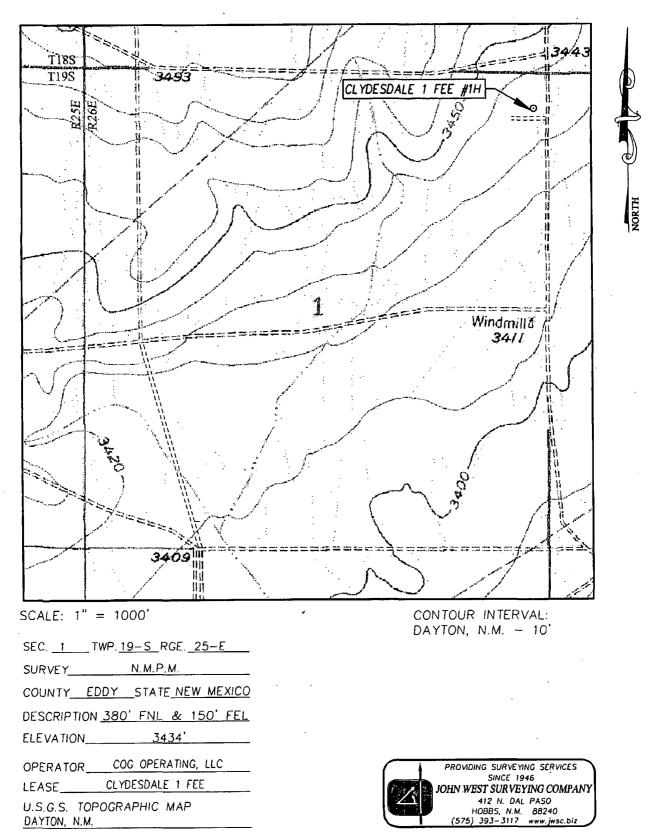
Page 5

Survey Report

465,587.07 465,526.14 465,685.94 Easting (1) (nst)) 616,941.45 616,942.51 616,939.29 orthing (ust) RF @ 3447.00usft (JW/4) RF @ 3447.00usft (JW/4) GCRIDB v5000 0.51 0.32 Leg. 00usft) Vell #1H 4,815.70 4,716.80 (jish) 4,814.63 4,715.76 8 EN 101.35 99.19 (nsft) NSN 2,635.54 2,640.12 insft) -811.46 -806.88 (**usft**)) 271.00 271.50 Velibore #1/Job #1310195 Azi (a 92.70 92.60 Eddy County h Clydesdale 1 F llbore # 7,363.00 7,264.00 . (USD) rojeci Wellbo Design Well Site


	·					•
, i	in Ref.					
1						÷
1						•
*				•		
i,						
J						
1						
1						
i i	est in some					
Ļ						
	Sang Configura					
H						
1						
1						
2	5, 4					
	Richard Barris					
3						
	24514					
i,						
	é mina s					
	en li de la reme		<u>ک</u>			
Ψ,			٣			
ι.	THE R. P. LEWIS CO.		-			
			Sur			
			VD Sur	sy		
			MWD Sur	urvey	6	
		vey	hix MWD Sur	Survey	to TD	
		survey	penix MWD Sur	ND Survey	on to TD	
		n Survey	Phoenix MWD Sur	MWD Survey	ction to TD	
		e On Survey	st Phoenix MWD Sur	al MWD Survey	ojection to TD	
	Comments	Tie On Survey	First Phoenix MWD Sur	Final MWD Survey	Projection to TD	
	Comments and the	Tie On Survey	First Phoenix MWD Survey	Final MWD Survey		
	Comments	38 Tie On Survey	36 First Phoenix MWD Sur			
	Comments	31.88 Tie On Survey	34.86 First Phoenix MWD Sur			
	a AW AW Comments work of	-31.88 Tie On Survey	-34.86 First Phoenix MWD Sur			
	ites tes •E-W (usti) Commenti Parti	-31.88 Tie On Survey	-34.86 First Phoenix MWD Sur	-4,814.63 Final MWD Survey		
	inates =E-Wi ((usft): Comment Press	-31.88 Tie On Survey	-34.86 First Phoenix MWD Sur			
	ordinates =E-W =(usft) Comments	-31.88 Tie On Survey	-34.86 First Phoenix MWD Sur			
	Coordinates	-31.88 Tie On Survey	-34.86	4,814.63	4,875.56	
	ates ÷E/W (usft)	.41 -31.88 Tie On Survey	-34.86	4,814.63	4,875.56	-
	ocal Coordinates S (1)	11.41 -31.88 Tie On Survey	-34.86	4,814.63	4,875.56	
	Local Coordinates N.S. +E/W M.S. (usit)	11.41 -31.88 Tie On Survey	-34.86		4,875.56	-
	LocalCoordinates +N.S +E/W (usft) = ((usft)	11.41 -31.88 Tie On Survey	-34.86	4,814.63	4,875.56	
	Local Coordinates +Local Coordinates +L/W +L/W (usft) - (usft) - (usft)	11.41 -31.88 Tie On Survey	-34.86	4,814.63	4,875.56	
	HINCO	11	11.84 -34.86	101.35 -4,814.63	102.41 4,875.56	
	HINCO	11	11.84 -34.86	101.35 -4,814.63	102.41 4,875.56	-
	HINCO	11	11.84 -34.86	101.35 -4,814.63	102.41 4,875.56	
	HINCO	11	11.84 -34.86	101.35 -4,814.63	102.41 4,875.56	
	Vertical Vertical Depth +N.S ((ash) ((ash) ((ash)	11	11.84 -34.86	4,814.63	102.41 4,875.56	
	Vertical Vertical Depth H-N-S (ush) (ush)	2,148.62 11.	2,240.57 11.84 -34.86	2,635.54 101.35 -4,814.63	2,632.67 102.41 4,875.56	
	Vertical Vertical Depth H-N-S (ush) (ush)	2,148.62 11.	2,240.57 11.84 -34.86	2,635.54 101.35 -4,814.63	2,632.67 102.41 4,875.56	
	Vertical Vertical Depth H-N-S (ush) (ush)	2,148.62 11.	2,240.57 11.84 -34.86	2,635.54 101.35 -4,814.63	2,632.67 102.41 4,875.56	
	Vertical Vertical Depth H-N-S (ush) (ush)	2,148.62 11.	2,240.57 11.84 -34.86	2,635.54 101.35 -4,814.63	2,632.67 102.41 4,875.56	
	Vertical Vertical Depth H-N-S (ush) (ush)	2,148.62 11.	2,240.57 11.84 -34.86	101.35 -4,814.63	2,632.67 102.41 4,875.56	
	Measured Vertical Loca Depth Depth - NuS (usit) (usit) (usit)	2,148.62 11.	2,240.57 11.84 -34.86	2,635.54 101.35 -4,814.63	2,632.67 102.41 4,875.56	
	Measured Vertical Loca Depth Depth - NuS (usit) (usit) (usit)	2,148.62 11.	2,240.57 11.84 -34.86	2,635.54 101.35 -4,814.63	2,632.67 102.41 4,875.56	
	Vertical Vertical Depth H-N-S (ush) (ush)	2,148.62 11.	2,240.57 11.84 -34.86	2,635.54 101.35 -4,814.63	2,632.67 102.41 4,875.56	

seⁿgith


03/10/13 8:10:44AM

Page 6

COMPASS 5000.1 Build 56

LOCATION VERIFICATION MAP

