Form 3160 -3 (March 2012)				FORM AP OMB No. 1 Expires Octo	1004-0137			
UNITED STATES DEPARTMENT OF THE I				5. Lease Serial No.				
BUREAU OF LAND MAN				NMNM101601	T -'1 - \1			
APPLICATION FOR PERMIT TO	DRILL ÖF	R REENTER		6. If Indian, Allotee or	Iribe Name			
la. Type of work:	ER			7. If Unit or CA Agreem	ient, Name and No.			
lb. Type of Well: Voil Well Gas Well Other	✓ Si	ngle Zone 🔲 Multip	ple Zone	8. Lease Name and Well TANKLESS FEDERA	II No. LL COM 2H 319583			
2. Name of Operator COG PRODUCTION LLC		<i>a</i> 17955		9. API Well No. 30 - 0/5	- 44434			
3a. Address 2208 West Main Street Artesia NM 88210	3b. Phone No (575)748-0). (include area code) 5940		10. Field and Pool, or Exp LIVINGSTON RIDGE	-			
4. Location of Well (Report location clearly and in accordance with an	y State requiren	nents.*)		11. Sec., T. R. M. or Blk.	and Survey or Area			
At surface SESE / 190 FSL / 560 FEL / LAT 32.341248 /	LONG -10	3.741869		SEC 35 / T22S / R31	E / NMP			
At proposed prod. zone NESE / 2310 FSL / 380 FEL / LAT	32.361947	/ LONG -103.74129	96					
 Distance in miles and direction from nearest town or post office* 18 miles 				12. County or Parish EDDY	13. State NM			
 15. Distance from proposed* location to nearest 190 feet property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No. of a 640	acres in lease	17. Spacin 240	g Unit dedicated to this wel	1			
18. Distance from proposed location*	19. Propose	d Depth	20. BLM/I	BIA Bond No. on file	<u> </u>			
to nearest well, drilling, completed, 856 feet applied for, on this lease, ft.	10165 fee	t / 17512 feet	FED: N	MB000860				
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approxi	mate date work will sta	irt*	23. Estimated duration				
3446 feet	08/01/201			30 days				
	24. Atta							
The following, completed in accordance with the requirements of Onshor	re Oil and Gas	Order No.1, must be a	ttached to th	is form:				
1. Well plat certified by a registered surveyor.		4. Bond to cover t Item 20 above).	he operatio	ns unless covered by an ex	isting bond on file (see			
 A Drilling Plan. A Surface Use Plan (if the location is on National Forest System 	Lands, the	5. Operator certific	cation					
SUPO must be filed with the appropriate Forest Service Office).	,	-		ormation and/or plans as m	ay be required by the			
25. Signature		(Printed/Typed) e Reves / Ph: (575)	749 6046		ate 04/12/2017			
(Electronic Submission)	wayı	e Reyes / Ph. (575))/46-6945					
Regulatory Analyst								
Approved by (Signature)	1	(Printed/Typed)			Date			
(Electronic Submission)	Office	Layton / Ph: (575)2	234-5959		08/30/2017			
Supervisor Multiple Resources		LSBAD						
Application approval does not warrant or certify that the applicant hold conduct operations thereon. Conditions of approval, if any, are attached.	is legal or equ	itable title to those righ	nts in the sub	ject lease which would enti	tle the applicant to			
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a ct States any false, fictitious or fraudulent statements or representations as	rime for any p to any matter	person knowingly and within its jurisdiction.	willfully to n	nake to any department or a	agency of the United			
(Continued on page 2)				*(Instru	ctions on page 2)			
		rovnit	IONS					
		rh Cunnt	V		DNSERVATION			
Inder	ED AT							
APPROV		TH CONDIT		SEP	1 1 2017			

r ì

RECEIVED

Rup 9-18-17

NM OIL CONSERVATION

ARTESIA DISTRICT

SEP 1 1 2017

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

RECEIVED

OPERATOR'S NAME:	COG PRODUCTION LLC
LEASE NO.:	NMNM101601
WELL NAME & NO.:	2H –TANKLESS FEDERAL COM
SURFACE HOLE FOOTAGE:	190'/S & 560'/E
BOTTOM HOLE FOOTAGE	2440'/S & 380'/E
LOCATION:	Section 35 T.22S., R.31 E., NMP
COUNTY:	EDDY County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
🖂 Special Requirements
Lesser Prairie-Chicken Timing Stipulations
Below Ground-level Abandoned Well Marker
Potash
Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
🔀 Production (Post Drilling)
Well Structures & Facilities
Pipelines
Interim Reclamation

١

.

Final Abandonment & Reclamation

I. GENERAL PROVISIONS

Э

.

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

V. SPECIAL REQUIREMENT(S)

Timing Limitation Stipulation / Condition of Approval for lesser prairie-chicken:

Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 feet from the source of the noise.

Below Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well. For more installation details, contact the Carlsbad Field Office at 575-234-5972.

Potash

.

.

- 1. Drilling within the Designated Potash Area. It is the intent of the Department of the Interior to administer oil and gas operations throughout the Designated Potash Area in a manner which promotes safe, orderly co-development of oil, gas, and potash resources. It is the policy of the Department of the Interior to deny approval of most applications for permits to drill oil and gas wells from surface locations within the Designated Potash Area. Three exceptions to this policy will be permitted if the drilling will occur under the following conditions from:
 - a. A Drilling Island associated with a Development Area established under this Order or a Drilling Island established under a prior Order;
 - b. A Barren Area and the Authorized Officer determines that such operations will not adversely affect active or planned potash mining operations in the immediate vicinity of the proposed drill-site; or
 - c. A Drilling Island, not covered by (a) above or single well site established under this Order by the approval and in the sole discretion of the Authorized Officer, provided that such site was jointly recommended to the Authorized Officer by the oil and gas lessee(s) and the nearest potash lessee(s).
- 2. Development Areas

a. When processing an application for permit to drill (APD) an oil or gas well in the Designated Potash Area that complies with regulatory requirements, the Authorized Officer will determine whether to establish a Development Area in connection with the application, and if so, will determine the boundaries of the Development Area and the location within the Development Area of one or more Drilling Islands from which drilling will be permitted. The BLM may also designate a Development Area outside of the APD process based on information in its possession, and may modify the boundaries of a Development Area. Existing wells may be included within the boundaries of a Development Area. A Development Area may include Federal oil and gas leases and other Federal and non-Federal lands.

.

- b. After designating or modifying a Development Area, the BLM will issue a Notice to Lessees, consistent with its authorities under 43 CFR Subpart 3105 and part 3180, information lessees that future drilling on lands under an oil and gas lease within that Development Area will:
 - i. occur, under most circumstances, from a Barren Area or A Drilling Island within the Development Area; and
 - ii. be managed under a unit or communitization agreement, generally by a single operator, consistent with BLM regulations and this Order. Unit and communitization agreements will be negotiated among lessees. The BLM will consider whether a specific plan of development is necessary or advisable for a particular Drilling Island.
- c. The Authorized Officer reserves the right to approve an operator or successor operator of a Development Area and/or a Drilling Island, if applicable, to ensure that the operator has the resources to operate and extract the oil and gas resources consistent with the requirements of this Order and all applicable laws and regulations, and has provided financial assurance in the amount required by the Authorized Officer.
- d. The Authorized Officer will determine the appropriate designation of a Development Area in terms of location, shape and size. In most cases, a single Drilling Island will be established for each Development Area. In establishing the location, shape and size of a Development Area and an associated Drilling Island, the Authorized Officer will consider:
 - i. the appropriate location, shape, and size of a Development Area and associated Drillings Island to allow effective extraction of oil and gas resources while managing the impact on potash resources;

- ii. the application of available oil and gas drilling and production technology in the Permian Basin;
- iii. the applicable geology of the Designated Potash Area and optimal locations to minimize loss of potash ore while considering codevelopment of both resources;
- iv. any long term exploration and/or mining plans provided by the potash industry;
- v. whether a Barren Area may be the most appropriate area for a Drilling Island;
- vi. the requirements of this Order; and
- vii. any other relevant factors

.

- e. As the Authorized Officer establishes a Development Area, the Authorized Officer will more strictly apply the factors listed in Section 6.e.(2)(d), especially the appropriate application of the available oil and gas drilling and production technology in the Permian Basin, when closer to current traditional (non-solution) potash mining operations. Greater flexibility in the application of the factors listed in Section 6.e(2)(d) will be applied further from current and near-term traditional (nonsolution)potash mining operations. No Drilling Islands will be established within one mile of any area where approved potash mining operations will be conducted within 3 years consistent with the 3-year mine plan referenced above (Section 6.d.(8)) without the consent of the affected potash lessee(s).
- f. The Authorized Officer may establish a Development Area associated with a well or wells drilled from a Barren Area as appropriate and necessary.
- g. As part of the consideration for establishing Development Areas and Drilling Islands, the BLM will consider input from the potash lessees and the oil and gas lessees or mineral right owner who would be potentially subject to a unitization agreement supporting the Development Are, provided that the input is given timely.
- 3. Buffer Zones. Buffer Zones of ¹/₄ mile for oil wells and ¹/₂ mile for gas wells are hereby established. These Buffer Zones will stay in effect until such time as revised distances are adopted by the BLM Director or other BLM official, as delegated. However, the Authorized Officer may adjust the Buffer Zones in an individual case, when the facts and circumstances demonstrate that such adjustment would enhance conservation and would not compromise safety. The

Director will base revised Buffer Zones on science, engineering, and new technology and will consider comments and reports from the Joint Industry Technical Committee and other interested parties in adopting any revisions.

- 4. Unitization and Communitization. To more properly conserve the potash, oil and gas resources in the Designated Potash Area and to adequately protect the rights of all parties in interest, including the United States, it is the policy of the Department of the Interior that all Federal oil and gas leases within a Development Area should be unitized or subject to an approved communitization agreement unless there is a compelling reason for another operating system. The Authorized Officer will make full use of his/her authorities wherever necessary or advisable to require unitization and/or communitization pursuant to the regulations in 43 CFR Subparts 3105 and 3180. The Authorized Officer will use his/her discretion to the fullest extent possible to assure that any communitization agreement and any unit plan of operations hereafter approved or prescribed within the Designated Potash Area will adhere to the provisions of this Order. The Authorized Officer will work with Federal lessees, and with the State Of New Mexico as provided below, to include non-Federal mineral rights owners in unit or communitization agreements to the extent possible.
- 5. Coordination with the State of New Mexico.
 - a. If the effective operation of any Development Area requires that the New Mexico Oil Conservation Division (NMOCD) revise the State's mandatory well spacing requirements, the BLM will participate as needed in such a process. The BLM may adopt the NMOCD spacing requirements and require lessees to enter into communitization agreements based on those requirements.
 - b. The BLM will cooperate with the NMOCD in the implementation of that agency's rules and regulations.
 - c. In taking any action under Section 6.e. of this Order, the Authorized Officer will take into consideration the applicable rules and regulations of the NMOCD.

To minimize impacts to potash resources, the proposed well is confined within the boundaries of the established Tankless Drill Island (See Potash Memo and Map in attached file for Drill Island description).

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Exclosure Fencing

٠

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

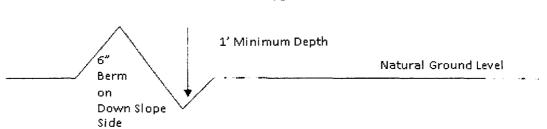
The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.


Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

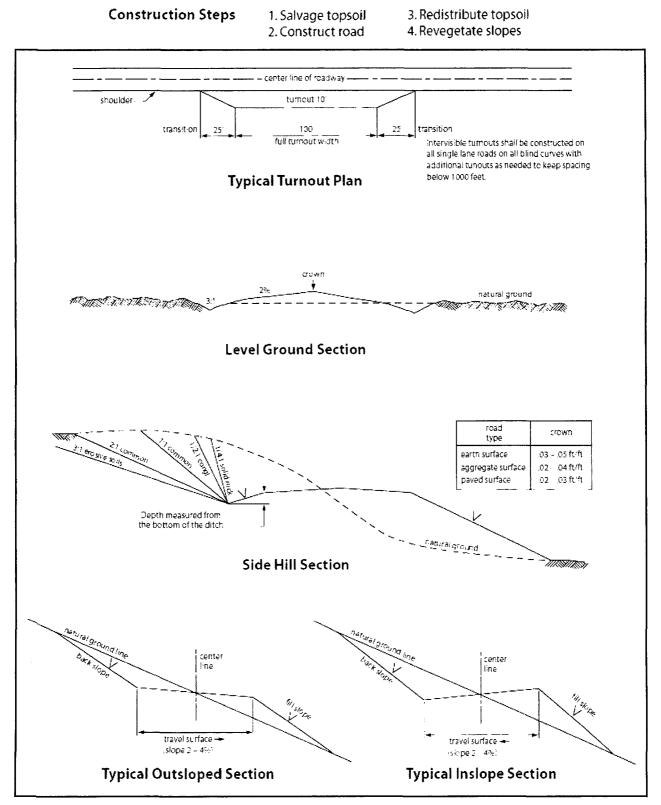
All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: $\underline{400'}_{4\%}$ + 100' = 200' lead-off ditch interval

Cattle guards


An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

.

Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

٠

.

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

B. PIPELINES

STANDARD STIPULATIONS FOR SURFACE INSTALLED PIPELINES

A copy of the Grant and attachments, including stipulations, survey plat(s) and/or map(s), shall be on location during construction. BLM personnel may request to review a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, Holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC § 2601 *et seq.* (1982) with regard to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant (*see* 40 CFR, Part 702-799 and in particular, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193). Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the Authorized Officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. Holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. § 9601, *et seq.* or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, *et seq.*) on the Right-of-Way (unless the release or threatened release is wholly unrelated to activity of the Right-of-Way Holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way Holder on the Right-of-Way. This provision applies without regard to whether a release is caused by Holder, its agent, or unrelated third parties.

4. Holder shall be liable for damage or injury to the United States to the extent provided by 43 CFR Sec. 2883.1-4. Holder shall be held to a standard of strict liability for damage or injury to the United States resulting from pipe rupture, fire, or spills caused or substantially aggravated by any of the following within the right-of-way or permit area:

- a. Activities of Holder including, but not limited to: construction, operation, maintenance, and termination of the facility;
- b. Activities of other parties including, but not limited to:
 - (1) Land clearing
 - (2) Earth-disturbing and earth-moving work
 - (3) Blasting
 - (4) Vandalism and sabotage;
- c. Acts of God.

The maximum limitation for such strict liability damages shall not exceed one million dollars (\$1,000,000) for any one event, and any liability in excess of such amount shall be determined by the ordinary rules of negligence of the jurisdiction in which the damage or injury occurred.

This section shall not impose strict liability for damage or injury resulting primarily from an act of war or from the negligent acts or omissions of the United States.

5. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil, salt water, or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil, salt water, or other pollutant, wherever found, shall be the responsibility of Holder, regardless of fault. Upon failure of Holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he/she deems necessary to control and clean up the discharge and restore the area, including, where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of Holder. Such action by the Authorized Officer shall not relieve Holder of any responsibility as provided herein.

6. All construction and maintenance activity shall be confined to the authorized rightof-way width of 20 feet. If the pipeline route follows an existing road or buried pipeline right-of-way, the surface pipeline shall be installed no farther than 10 feet from the edge of the road or buried pipeline right-of-way. If existing surface pipelines prevent this distance, the proposed surface pipeline shall be installed immediately adjacent to the outer surface pipeline. All construction and maintenance activity shall be confined to existing roads or right-of-ways.

7. No blading or clearing of any vegetation shall be allowed unless approved in writing by the Authorized Officer.

8. Holder shall install the pipeline on the surface in such a manner that will minimize suspension of the pipeline across low areas in the terrain. In hummocky of duney areas, the pipeline shall be "snaked" around hummocks and dunes rather than suspended across these features.

9. The pipeline shall be buried with a minimum of <u>24</u> inches under all roads, "two-tracks," and trails. Burial of the pipe will continue for 20 feet on each side of each crossing. The condition of the road, upon completion of construction, shall be returned to at least its former state with no bumps or dips remaining in the road surface.

10. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

12. Excluding the pipe, all above-ground structures not subject to safety requirement shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be a color which simulates "Standard Environmental Colors" – **Shale Green**, Munsell Soil Color No. 5Y 4/2; designated by the Rocky Mountain Five State Interagency Committee.

13. The pipeline will be identified by signs at the point of origin and completion of the right-of-way and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. Signs will be maintained in a legible condition for the life of the pipeline.

14. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway.

15. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the authorized officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the authorized officer. An evaluation of the discovery will be made by the authorized officer to determine appropriate cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made

by the authorized officer after consulting with the holder.

16. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, powerline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

17. Surface pipelines shall be less than or equal to 4 inches and a working pressure below 125 psi.

- 18. Special Stipulations:
 - a. Lesser Prairie-Chicken: Oil and gas activities will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities and pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Normal vehicle use on existing roads will not be restricted.

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Below Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well.

Seed Mixture for LPC Sand/Shinnery Sites

Holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be <u>no</u> primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed shall be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed shall be either certified or registered seed. The seed container shall be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). Holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. Seeding shall be repeated until a satisfactory stand is established as determined by the Authorized Officer. Evaluation of growth may not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	<u>lb/acre</u>
	•
Plains Bristlegrass	5lbs/A
Sand Bluestem	5lbs/A
Little Bluestem	3lbs/A
Big Bluestem	6lbs/A
Plains Coreopsis	2lbs/A
Sand Dropseed	1lbs/A

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Mayte Reyes		Signed on: 04/10/2017
Title: Regulatory Analyst		
Street Address: 2208 W Ma	ain Street	
City: Artesia	State: NM	Zip: 88210
Phone: (575)748-6945		
Email address: Mreyes1@d	concho.com	
Field Represent	ative	
Representative Name: R	and French	
Street Address: 2208 We	est Main Stret	
City: Artesia	State: NM	Zip: 88210
Phone: (575)748-6940		

Email address: rfrench@concho.com

FMSS

APD ID: 10400013237

Well Type: OIL WELL

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Submission Date: 04/12/2017

Well Number: 2H Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

Section 1 - General

Operator Name: COG PRODUCTION LLC

Well Name: TANKLESS FEDERAL COM

APD ID: 10400013237	Tie to previous NOS?	Submission Date: 04/12/2017						
BLM Office: CARLSBAD	User: Mayte Reyes	Title: Regulatory Analyst						
Federal/Indian APD: FED	Is the first lease penetrated fo	Is the first lease penetrated for production Federal or Indian? FED						
Lease number: NMNM101601	Lease Acres: 640							
Surface access agreement in place?	Allotted? Re	servation:						
Agreement in place? NO	Federal or Indian agreement:	Federal or Indian agreement:						
Agreement number:								
Agreement name:								
Keep application confidential? YES								
Permitting Agent? NO	APD Operator: COG PRODUC	CTION LLC						
Operator letter of designation:								

Operator Info

Operator Organization Name: COO	PRODUCTION LLC	
Operator Address: 2208 West Main	n Street	7:
Operator PO Box:		Zip : 88210
Operator City: Artesia	State: NM	
Operator Phone: (575)748-6940		

Operator Internet Address: mreyes1@concho.com

Section 2 - Well Information

Mater Development Plan name:	
Master SUPO name:	
Master Drilling Plan name:	
Well Number: 2H	Well API Number:
Field Name: LIVINGSTON RIDGE	Pool Name: BONE SPRING
	Master SUPO name: Master Drilling Plan name: Well Number: 2H Field Name: LIVINGSTON

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Operator Name: COG PRODUCTION LLC Well Name: TANKLESS FEDERAL COM

Well Number: 2H

ction area? N	Use Existing Well Pad	? NO	New surface disturbance?
	Multiple Well Pad Nam	e:	Number:
	Number of Legs:		
CAT)			
Distance to ne	arest well: 856 FT	Distanc	e to lease line: 190 FT
Measurement:	240 Acres		
_04-12-2017.pdf			
	Duration: 30 DAYS		
	CAT) Distance to ne Measurement:	Multiple Well Pad Nam Number of Legs: CAT) Distance to nearest well: 856 FT Measurement: 240 Acres _04-12-2017.pdf	Multiple Well Pad Name: Number of Legs: CAT) Distance to nearest well: 856 FT Distance Measurement: 240 Acres _04-12-2017.pdf

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Survey number:

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	DM	ТVD
SHL Leg #1	190	FSL	560	FEL	228	31E	35	Aliquot SESE	32.34124 8	- 103.7418 69	EDD Y		NEW MEXI CO	F	NMNM 101601	344 6	0	0
KOP Leg #1	190	FSL	560	FEL	22S	31E	35	Aliquot SESE	32.34124 8	- 103.7418 69	EDD Y	NEW MEXI CO		F		344 6	0	0
PPP Leg #1	330	FSL	380	FEL	22S	31E	35	Aliquot SESE	32.34163 3	- 103.7412 86	EDD Y	NEW MEXI CO		F	NMNM 101601	- 624 1	968 7	968 7

Vertical Datum: NAVD88

Operator Name: COG PRODUCTION LLC

Well Name: TANKLESS FEDERAL COM

Well Number: 2H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
EXIT Leg #1	231 0	FSL	380	FEL	225	31E	26	Aliquot NESE	32.36159	- 103.7412 96	EDD Y	MEXI			NMNM 62590	- 671 4	172 00	101 60
BHL Leg #1	231 0	FSL	380	FEL	22S	31E	26	Aliquot NESE	32.36194 7	- 103.7412 96	EDD Y	NEW MEXI CO			NMNM 62590	- 671 9	175 12	101 65

#AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400013237

Operator Name: COG PRODUCTION LLC

Well Name: TANKLESS FEDERAL COM

Well Number: 2H

Well Work Type: Drill

Submission Date: 04/12/2017

Highlighted data reflects the most recent changes

Show Final Text

Well Type: OIL WELL

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing
17318	UNKNOWN	0	0	0	Linblogioo	NONE	No
17746	RUSTLER	-665	665	665		NONE	No
17718	TOP SALT	-763	763	763		NONE	No
17722	BASE OF SALT	-4216	4216	4216		NONE	No
17719	LAMAR	-4468	4468	4468		NATURAL GAS,OIL	No
15332	BELL CANYON	-4516	4516	4516		NATURAL GAS,OIL	No
15316	CHERRY CANYON	-5380	5380	5380		NATURAL GAS,OIL	No
17713	BRUSHY CANYON	-6626	6626	6626		NATURAL GAS,OIL	No
17721	BONE SPRING LIME	-8300	8300	8300		NATURAL GAS,OIL	No
19973	UPPER AVALON SHALE	-8719	8719	8719		NATURAL GAS,OIL	No
17697		-9049	9049	9049		NATURAL GAS,OIL	No
15338	BONE SPRING 1ST	-9425	9425	9425		NONE	No
17737	BONE SPRING 2ND	-10012	10012	10012		NATURAL GAS,OIL	Yes
17738	BONE SPRING 3RD	-11157	11157	11157		NATURAL GAS,OIL	No
17709	WOLFCAMP	-11623	11623	11623		NATURAL GAS,OIL	No

Section 2 - Blowout Prevention

Operator Name: COG PRODUCTION LLC

Well Name: TANKLESS FEDERAL COM

Well Number: 2H

Pressure Rating (PSI): 2M

Rating Depth: 4495

Equipment: Annular. The BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all of the components installed will be functional and tested.

Choke Diagram Attachment:

COG_Tankless_2H_2M_Choke_04-10-2017.pdf

BOP Diagram Attachment:

COG_Tankless_2H_2M_BOP_04-10-2017.pdf

Pressure Rating (PSI): 3M

Rating Depth: 10300

Equipment: Annular. The BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Requesting Variance? NO

Variance request: A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all of the components installed will be functional and tested.

Choke Diagram Attachment:

COG_Tankless_2H_3M_Choke_04-10-2017.pdf

BOP Diagram Attachment:

COG_Tankless_2H_3M_BOP_04-10-2017.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	690	0	690	-6719	-7669	690	J-55	54.5	STC	3.58	1.42	DRY	13.6 7	DRY	13.6 7

Operator Name: COG PRODUCTION LLC

Well Name: TANKLESS FEDERAL COM

Well Number: 2H

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	4495	0	4495	-6719	- 16719	4495	J-55	40	LTC	1.08	1	DRY	2.89	DRY	2.89
3	PRODUCTI ON	8.75	5.5	NEW	API	N	0	17512	0	17512	-6719	- 24458	17512	P- 110	17	LTC	1.51	2.69	DRY	2.58	DRY	2.58

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Tankless_2H_Casing_Prog_04-10-2017.pdf

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Tankless_2H_Casing_Prog_04-10-2017.pdf

Well Number: 2H

Casing Attachments

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Tankless_2H_Casing_Prog_04-10-2017.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	690	220	1.75	13.5	385	50	Class C	4% Gel + 1% CaCl2
SURFACE	Tail		0	690	250	1.34	14.8	335	50	С	2% CaCl2
INTERMEDIATE	Lead		0	4495	860	2	12.7	1760	50	35:65:6 C Blend	No Additives.
INTERMEDIATE	Tail		0	4495	250	1.34	14.8	335	50	Class C	No Additives.
PRODUCTION	Lead		0	1751 2	790	2.5	11.9	1975	25	Lead: 50:50:10 H Blend	No additives
PRODUCTION	Tail		0	1751 2	2000	1.24	14.4	2480	25	50:50:2 Class H Blend	No additives

Well Number: 2H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics	
690	4495	OTHER : Saturated Brine	10	10.2							Saturated Brine	
4495	1751 2	OTHER : CUT BRINE	8.6	9.4							Cut Brine	
0	690	OTHER : Fresh water gel	8.6	8.8							Fresh water gel	

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

None planned

List of open and cased hole logs run in the well:

CNL,GR

Coring operation description for the well:

None planned

Well Number: 2H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4970

Anticipated Surface Pressure: 2733.7

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

COG_Tankless_2H_H2S_Schem_04-12-2017.pdf COG_Tankless_2H_H2S_Plan_04-12-2017.pdf

Section 8 - Other Information

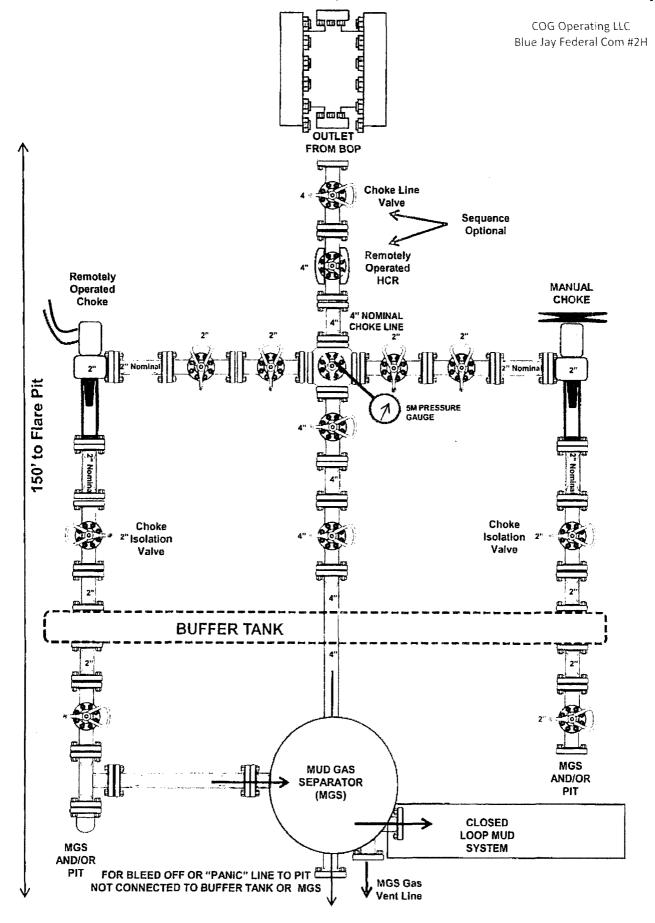
Proposed horizontal/directional/multi-lateral plan submission:

COG_Tankless_2H_Directional_04-10-2017.pdf

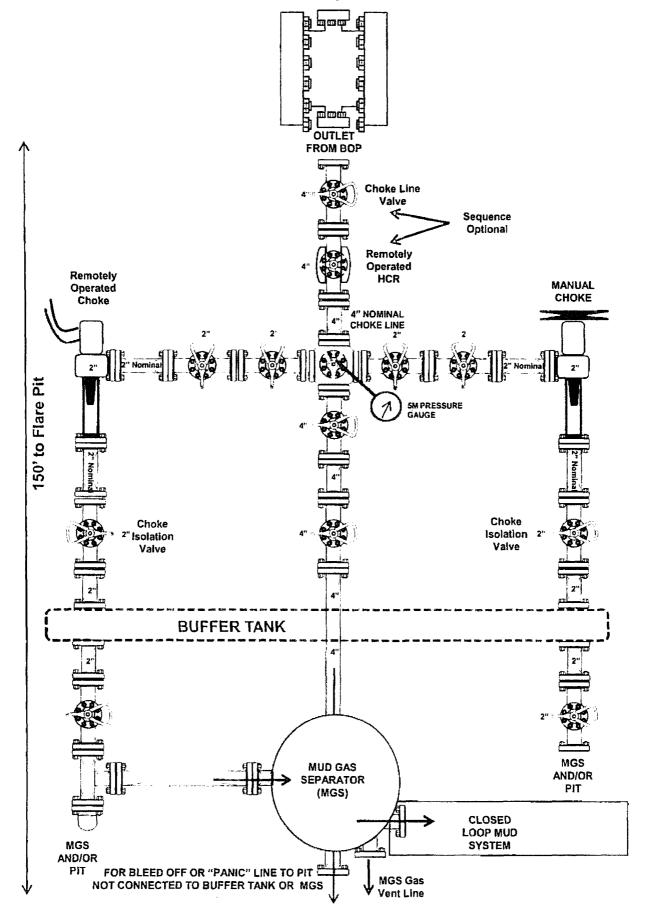
Other proposed operations facets description:

None

Other proposed operations facets attachment:

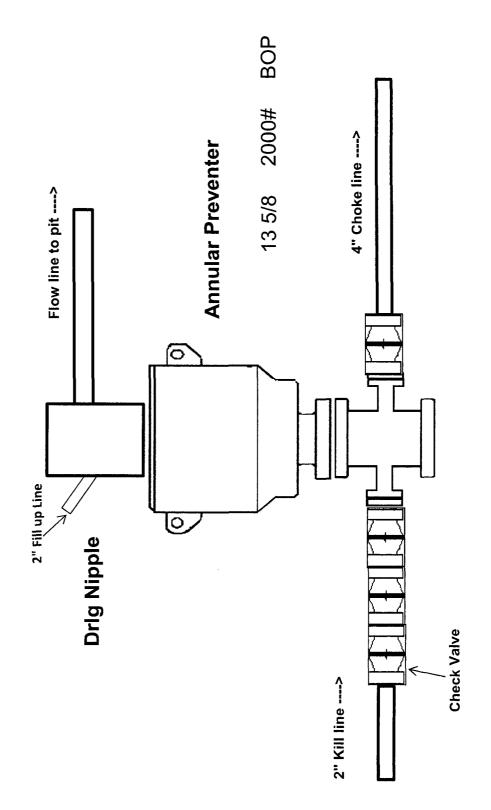

COG_Tankless_2H_Drilling_Prog_04-10-2017.pdf

Other Variance attachment:


COG_Tankless_2H_Flex_Hose_04-10-2017.pdf

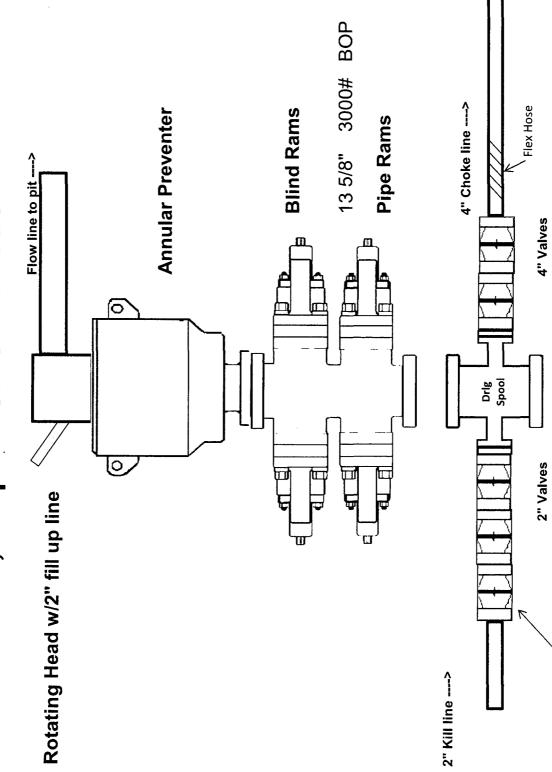
2M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)

.


3M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)

COG Operating LLC Blue Jay Federal Com #2H

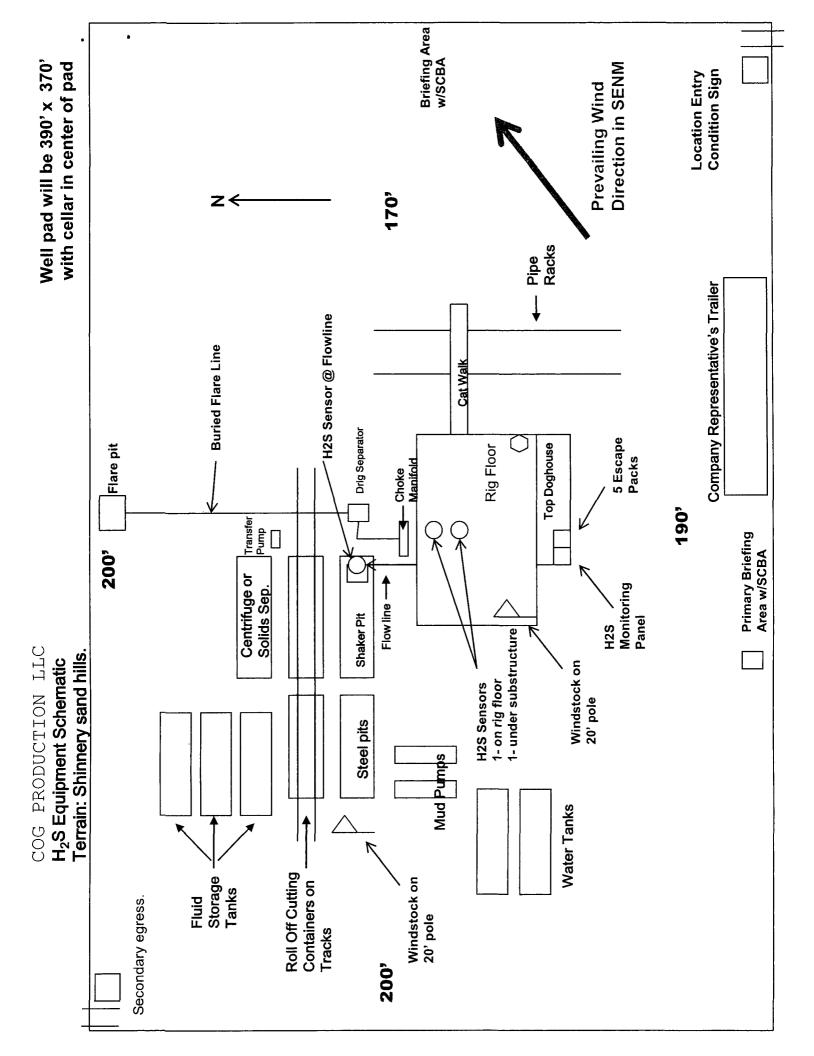
2,000 psi BOP Schematic


,

.

.

Check Valve


Casing Program

1

*

Hole Size		asing	Csg. Size	Weight	Grada	Conn.	SF	SF Burst	SF
	From	То	CS9. 5128	(lbs)	Graue	Conn.	Collapse	Sr Buist	Tension
17.5″	0	690	13.375"	54.5	J55	STC	3.58	1.42	13.67
12.25"	0	4495	9.625"	40	J55	LTC	1.08	1.00	2.89
8.75"	о	17,512	5.5"	17	P110	LTC	1.51	2.69	2.58
			1.125	1	1.6 Dry 1.8 Wet				

Intermediate casing will be kept at least 1/3 full while running casing.to mitigate collapse. Intermediate burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface. All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

COG PRODUCTION LLC HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. HYDROGEN SULFIDE TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. <u>H₂S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H_2S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment:

Flare line. Choke manifold with remotely operated choke. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit. Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

- b. Protective equipment for essential personnel: Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:

2 - portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.

d. Visual warning systems:

Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.

- e. Mud Program: The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

g. Communication:

Company vehicles equipped with cellular telephone.

COG PRODUCTION LLC has conducted a review to determine if an H2S contingency plan is required for the above referenced well. We were able to conclude that any potential hazardous volume would be minimal. H2S concentrations of wells in this area from surface to TD are low enough; therefore, we do not believe that an H2S contingency plan is necessary.

EMERGENCY CALL LIST

	OFFICE	MOBILE
COG PRODUCTION LLC OFFICE	575-748-6940	
SETH WILD	432-683-7443	432-528-3633
WALTER ROYE	575-748-6940	432-934-1886

.

.

EMERGENCY RESPONSE NUMBERS

	OFFICE
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

NM OIL CONSERVATION ARTESIA DISTRICT SEP 1 1 2017

RECEIVED

COG Production LLC

Eddy County, NM (NAD27) Sec 35, T22A, R31E Tankless Federal Com #2H

Wellbore #1

, ,

Plan: Design #1

QES Well Planning Report

03 April, 2017

Database: Company: Project: Site: Well: Wellbore: Design:	Eddy (Sec 3	Production LLC County, NM (N 5, T22A, R31E ess Federal Co ore #1	AD27)		TVD Refer MD Refer North Ref	ence:		Well Tankless Fe KB @ 3475.0usf KB @ 3475.0usf Grid Minimum Curvat	t (Noram #21) t (Noram #21)	4
Project	Eddy C	ounty, NM (NA	AD27)							
Map System: Geo Datum: Map Zone:	NAD 192	e Plane 1927 (E 27 (NADCON C xico East 3001	CONUS)		System Da	tum:	Me	ean Sea Level		
Site	Sec 35	, T22A, R31E								
Site Position: From: Position Uncerta	Map hinty :		North Easti 0 usft Slot I	-		,322.50 usft ,820.60 usft 13-3/16 "	Latitude: Longitude: Grid Converg	ence:		32° 20' 28.052 N 103° 44' 28.975 W 0.32 °
Well	Tankles	s Federal Com	n #2H							
Well Position	+N/-S +E/-W	C	0.0 usft E	orthing: asting:		488,322.50 682,820.60	usft Lor	itude: Igitude:		32° 20' 28.052 N 103° 44' 28.975 W
Position Uncerta	hinty		0.0 usft 🛛 🛚	ellhead Elevat	ion:	0.0) usft Gro	und Level:		3,446.0 usft
Wellbore	Wellbo	ore #1								
Magnetics	Mo	del Name		le Date	Declina (°)		Dip A (°	")	Field Si (n	Τ)
		IGRF2010		3/22/2017		6.96		60.12		48,092
Design Audit Notes:	Design	#1								
Version:			Phas	se: F	LAN	Tie	on Depth:		0.0	
Vertical Section:		C	Depth From (T (usft) 0.0	VD)	+N/-S (usft) 0.0	(u	5/-W I sft) D.O	l	ection (°) .03	
Plan Sections										
Measured	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	ТFО (°)	Target
0.0 9,687.5 10,437.8	0.00 0.00 90.04	0.00 0.00 15.20	0.0 9,687.5 10,165.0	0.0 0.0 461.1	0.0 0.0 125.3	0.00 0.00 12.00	0.00 0.00 12.00	0.00 0.00 0.00	0.00 0.00 15.20	
10,826.4	90.04 90.04 90.04	359.66 359.66	10,164.7 10,160.0	845.2 7,530.9	125.5 175.4 135.6	4.00	0.00	-4.00 0.00	-89.99	BHL Tankless Feder

Database:	EDM5002	Local Co-ordinate Reference:	Well Tankless Federal Com #2H
Company:	COG Production LLC	TVD Reference:	KB @ 3475.0usft (Noram #21)
Project:	Eddy County, NM (NAD27)	MD Reference:	KB @ 3475.0usft (Noram #21)
Site:	Sec 35, T22A, R31E	North Reference:	Grid
Well:	Tankless Federal Com #2H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	-	
Design:	Design #1		

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0					
					0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0 Rustler	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
665.0	0.00	0.00	665 O	0.0	0.0		0.00	0.00	0.00
			665.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	70 0.0	0.0	0.0	0.0	0.00	0.00	0.00
TOS	0.00	0.00	700.0		• •	• •			
763.0	0.00	0.00	763.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00							
2,300.0	0.00	0.00	2,300.0 2,400.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
2,600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2,700.0	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
2,800.0	0.00	0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00
2,900.0	0.00	0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00
3,000.0	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00
3,100.0	0.00	0.00	3,100.0	0.0	0.0	0.0	0.00	0.00	0.00
3,200.0	0.00	0.00	3,200.0	0.0	0.0	0.0	0.00	0.00	0.00
3,300.0	0.00	0.00	3,300.0	0.0	0.0	0.0	0.00	0.00	0.00
3,400.0	0.00	0.00	3,400.0	0.0	0.0	0.0	0.00	0.00	0.00
3,500.0	0.00	0.00	3,500.0	0.0	0.0	0.0	0.00	0.00	0.00
3,600.0	0.00	0.00	3,600.0	0.0	0.0	0.0	0.00	0.00	0.00
3,700.0	0.00	0.00	3,700.0	0.0	0.0	0.0	0.00	0.00	0.00
3,800.0	0.00	0.00	3,800.0	0.0	0.0	0.0	0.00	0.00	0.00
3,900.0	0.00	0.00	3,900.0	0.0	0.0	0.0	0.00	0.00	0.00
4,000.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0.00	0.00
4,100.0	0.00	0.00	4,100.0	0.0	0.0	0.0	0.00	0.00	0.00
4,200.0	0.00	0.00	4,200.0	0.0	0.0	0.0	0.00	0.00	0.00
BOS (Castile))								
4,216.0	0.00	0.00	4,216.0	0.0	0.0	0.0	0.00	0.00	0.00
4,300.0	0.00	0.00	4,300.0	0.0	0.0	0.0	0.00	0.00	0.00
4,300.0	0.00	0.00	4,300.0	0.0	0.0	0.0	0.00	0.00	0.00
Delaware	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
4,468.0	0.00	0.00	4,468.0	0.0	0.0	0.0	0.00	0.00	0.00
4,500.0	0.00	0.00	4,500.0	0.0	0.0	0.0	0.00	0.00	0.00

Database:	EDM5002	Local Co-ordinate Reference:	Well Tankless Federal Com #2H
Company:	COG Production LLC	TVD Reference:	KB @ 3475.0usft (Noram #21)
Project:	Eddy County, NM (NAD27)	MD Reference:	KB @ 3475.0usft (Noram #21)
Site:	Sec 35, T22A, R31E	North Reference:	Grid
Well:	Tankless Federal Com #2H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
. ,	()	.,	. ,	()	()		. ,	, ,	
Bell Canyon									
4,516.0	0.00	0.00	4,516.0	0.0	0.0	0.0	0.00	0.00	0.0
4,600.0	0.00	0.00	4,600.0	0.0	0.0	0.0	0.00	0.00	0.0
4,700.0	0.00	0.00	4,700.0	0.0	0.0	0.0	0.00	0.00	0.0
4,800.0	0.00	0.00	4,800.0	0.0	0.0	0.0	0.00	0.00	0.0
4,900.0	0.00	0.00	4,900.0	0.0	0.0	0.0	0.00	0.00	0.0
5,000.0	0.00	0.00	5,000.0	0.0	0.0	0.0	0.00	0.00	0.0
5,100.0	0.00	0.00	5,100.0	0.0	0.0	0.0	0.00	0.00	0.0
5,200.0	0.00	0.00	5,200.0	0.0	0.0	0.0	0.00	0.00	0.0
5,300.0	0.00	0.00	5,300.0	0.0	0.0	0.0	0.00	0.00	0.0
Cherry Cany	on								
5,380.0	0.00	0.00	5,380.0	0.0	0.0	0.0	0.00	0.00	0.0
5,400.0	0.00	0.00	5,400.0	0.0	0.0	0.0	0.00	0.00	0.0
5,500.0	0.00	0.00	5,500.0	0.0	0.0	0.0	0.00	0.00	0.0
5,600.0	0.00	0.00	5,600.0	0.0	0.0	0.0	0.00	0.00	0.0
5,700.0	0,00	0.00	5,700.0	0.0	0.0	0.0	0.00	0.00	0.0
5,800.0	0.00	0.00	5,800.0	0.0	0.0	0.0	0.00	0.00	0.0
5,900.0	0.00	0.00	5,900.0	0.0	0.0	0.0	0.00	0.00	0.0
6,000.0	0.00	0.00	6,000.0	0.0	0.0	0.0	0.00	0.00	0.0
6,100.0	0.00	0.00	6,100.0	0.0	0.0	0.0	0.00	0.00	0.0
6,200.0	0.00	0.00	6,200.0	0.0	0.0	0.0	0.00	0.00	0.0
6,300.0	0.00	0.00	6,300.0	0.0	0.0	0.0	0.00	0.00	0.0
6,400.0	0.00	0.00	6,400.0	0.0	0.0	0.0	0.00	0.00	0.0
6,500.0	0.00	0.00	6,500.0	0.0	0.0	0.0	0.00	0.00	0.0
6,600.0	0.00	0.00	6,600.0	0.0	0.0	0.0	0.00	0.00	0.0
Brushy Cany	/on								
6,626.0	0.00	0.00	6,626.0	0.0	0.0	0.0	0.00	0.00	0.0
6,700.0	0.00	0.00	6,700.0	0.0	0.0	0.0	0.00	0.00	0.0
6,800.0	0.00	0.00	6,800.0	0.0	0.0	0.0	0.00	0.00	0.0
6,900.0	0.00	0.00	6,900.0	0.0	0.0	0.0	0.00	0.00	0.0
7,000.0	0.00	0.00	7,000.0	0.0	0.0	0.0	0.00	0.00	0.0
7,100.0	0.00	0.00	7,100.0	0.0	0.0	0.0	0.00	0.00	0.0
7,200.0	0.00	0.00	7,200.0	0.0	0.0	0.0	0.00	0.00	0.0
7,300.0	0.00	0.00	7,300.0	0.0	0.0	0.0	0.00	0.00	0.0
7,400.0	0.00	0.00	7,400.0	0.0	0.0	0.0	0.00	0.00	0.0
7,500.0	0.00	0.00	7,500.0	0.0	0.0	0.0	0.00	0.00	0.0
7,600.0	0.00	0.00	7,600.0	0.0	0.0	0.0	0.00	0.00	0.0
7,700.0	0.00	0.00	7,700.0	0.0	0.0	0.0	0.00	0.00	0.0
7,800.0	0.00	0.00	7,800.0	0.0	0.0	0.0	0.00	0.00	0.0
7,900.0	0.00	0.00	7,900.0	0.0	0.0	0.0	0.00	0.00	0.0
8,000.0	0.00	0.00	8,000.0	0.0	0.0	0.0	0.00	0.00	0.0
8,100.0	0.00	0.00	8,100.0	0.0	0.0	0.0	0.00	0.00	0.0
8,200.0	0.00	0.00	8,200.0	0.0	0.0	0.0	0.00	0.00	0.0
Bone Sprg (I	BGSL)								
8,300.0	0.00	0.00	8,300.0	0.0	0.0	0.0	0.00	0.00	0.0
8,400.0	0.00	0.00	8,400.0	0.0	0.0	0.0	0.00	0.00	0.0
8,500.0	0.00	0.00	8,500.0	0.0	0.0	0.0	0.00	0.00	0.0
8,600.0	0.00	0.00	8,600.0	0.0	0.0	0.0	0.00	0.00	0,0
8,700.0	0.00	0.00	8,700.0	0.0	0.0	0.0	0.00	0.00	0.0
U Avalon Sh									
8,719.0	0.00	0.00	8,719.0	0.0	0.0	0.0	0.00	0.00	0.0
8,800.0	0.00	0.00	8,800.0	0.0	0.0	0.0	0.00	0.00	0.0
0,000.0	0.00	0.00	0,000.0	0.0	0.0	0.0	0.00	0.00	0.0

Database:	EDM5002	Local Co-ordinate Reference:	Well Tankless Federal Com #2H
Company:	COG Production LLC	TVD Reference:	KB @ 3475.0usft (Noram #21)
Project:	Eddy County, NM (NAD27)	MD Reference:	KB @ 3475.0usft (Noram #21)
Site:	Sec 35, T22A, R31E	North Reference:	Grid
Well: Wellbore: Design:	Tankless Federal Com #2H Wellbore #1 Design #1	Survey Calculation Method:	Minimum Curvature

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,000.0	0.00	0.00	9,000.0	0.0	0.0	0.0	0.00	0.00	0.00
L Avalon Sh	0.00	0.00	0,000,0	0.0	0.0	0.0	0.00	0.00	0.00
9,049.0	0.00	0.00	9,049.0	0.0	0.0	0.0	0.00	0.00	0.00
			3,045.0						
9,100.0	0.00	0.00	9,100.0	0.0	0.0	0.0	0.00	0.00	0.00
9,200.0	0.00	0.00	9,200.0	0.0	0.0	0.0	0.00	0.00	0.00
9,300.0	0.00	0.00	9,300.0	0.0	0.0	0.0	0.00	0.00	0.00
9,400.0	0.00	0.00	9,400.0	0.0	0.0	0.0	0.00	0.00	0.00
FBSG									
9,425.0	0.00	0.00	9,425.0	0.0	0.0	0.0	0.00	0.00	0.00
9,500.0	0.00	0.00	9,500.0	0.0	0.0	0.0	0.00	0.00	0.00
9,600.0	0.00	0.00	9,600.0	0.0	0.0	0.0	0.00	0.00	0.00
KOP: Build 1	2°/100' @ 9687.	5' MD							
9,687.5	0.00	0.00	9,687.5	0.0	0.0	0.0	0.00	0.00	0.00
9,700.0	1.50	15.20	9,700.0	0.2	0.0	0.2	12.00	12.00	0.00
9,725.0	4.50	15.20	9,725.0	1.4	0.4	1.4	12.00	12.00	0.00
9,750.0	7,50	15.20	9,749.8	3.9	1.1	4.0	12.00	12.00	0.00
9,775.0	10.50	15.20	9,774.5	7.7	2.1	7.8	12.00	12,00	0.00
9,800.0	13.50	15.20	9,799.0	12.7	3.5	12.8	12.00	12.00	0.00
9,825.0	16.50	15.20	9,823.1	19.0	5.2	19.1	12.00	12.00	0.00
9,850.0	19.50	15.20	9,846.9	26.4	7.2	26.6	12.00	12.00	0.00
9,875.0	22.50	15.20	9,870.2	35.1	9.5	35.2	12.00	12.00	0.00
9,900.0	25.50	15.20	9,893.1	44.9	12.2	45.1	12.00	12.00	0.00
9,925.0	28.50	15.20	9,915.3	55.8	15.2	56.1	12.00	12.00	0.00
9,950.0	31.50	15.20	9,937.0	67.9	18.4	68.2	12.00	12.00	0.00
9,975.0	34.50	15.20	9,957.9	81.0	22.0	81.4	12.00	12.00	0.00
10,000,0	37.50	15.20	9,978.2	95.2	25,9	95.7	12.00	12.00	0.00
10,025.0	40.50	15.20	9,997.6	110.4	30.0	110.9	12.00	12.00	0.00
SBSG	40.00	10.20	0,007.0	170.4	00.0	110.0	12.00	12.00	0.00
10,044.3	42.81	15.20	10,012.0	122.8	33.4	123.3	12.00	12.00	0.00
10,044.3	43.50	15.20	10,012.0	122.0	34.4	123.3	12.00	12.00	0.00
10,050.0	46.50	15.20	10,018.2	120.5	34.4	144.3	12.00	12.00	0.00
10,100.0	49.50	15.20	10,050.6	161.5	43.9	162.3	12.00	12.00	0.00
10,125.0	52.50	15.20	10,066.3	180.3	49.0	181.1	12.00	12.00	0.00
10,150.0	55.50	15.20	10,081.0	199.8	54.3	200.7	12.00	12.00	0.00
10,175.0	58.50	15.20	10,094.6	220.0	59.8	221.1	12.00	12.00	0.00
10,200.0	61.50	15.20	10,107.1	240.9	65.5	242.0	12.00	12.00	0.00
10,225.0	64.50	15.20	10,118.5	262.4	71.3	263.6	12.00	12.00	0.00
10,250.0	67.50	15.20	10,128.6	284.4	77.3	285.8	12.00	12.00	0.00
10,275.0	70.50	15.20	10,137.6	307.0	83.4	308.4	12.00	12.00	0.00
10,300.0	73.50	15.20	10,145.3	329.9	89.6	331.5	12.00	12.00	0.00
10,325.0	76.50	15.20	10,151.8	353.2	96.0	354.9	12.00	12.00	0.00
10,350.0	79.50	15.20	10,157.0	376.8	102.4	378.6	12.00	12.00	0.00
10,375.0	82.50	15.20	10,160.9	400.6	108.8	402.5	12.00	12.00	0.00
10,400.0	85,50	15.20	10,163.5	424.6	115.4	426.6	12.00	12.00	0.00
10,425.0	88,50	15.20	10,164.8	448.7	121.9	450,8	12.00	12.00	0.00
	8' MD, 90.04° Inc		urn 4°/100'						
10,437.8	90.04	15.20	10,165.0	461.1	125.3	463.3	12.00	12.00	0.00
10,500.0	90.04	12.71	10,164.9	521.4	140.3	523.9	4.00	0.00	-4.00
10,600.0	90.04	8.71	10,164.9	619.6	158.9	622.4	4.00	0.00	-4.00
10,000.0	90.04	4.71	10,164.8	718.9	170.5	721.9	4.00	0.00	-4.00
10,800.0	90.04	0.71	10,164.7	818.8	175.3	821.8	4.00	0.00	-4.00
	90.04 MD, 90.04° Inc		10,104.7	510.0	170.0	021.0	4.00	0.00	
10,826.4	90.04 mc	359.66 Azm	10 164 7	845.2	175.4	848.2	4.00	0.00	-4.00
10,020.4	90.04	209.00	10,164.7	040.Z	175.4	040.2	4.00	0.00	-4.00

Database:	EDM5002
Company:	COG Production LLC
Project:	Eddy County, NM (NAD27)
Site:	Sec 35, T22A, R31E
Well:	Tankless Federal Com #2H
Wellbore:	Wellbore #1
Design:	Design #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well Tankless Federal Com #2H KB @ 3475.0usft (Noram #21) KB @ 3475.0usft (Noram #21) Grid Minimum Curvature

	Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
	(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
1	10,900.0	90.04	359.66	10,164.6	918.8	174.9	921.8	0.00	0.00	0.00
ĺ	11,000.0	90.04	359.66	10,164.6	1,018.8	174.3	1,021.8	0.00	0.00	0.00
	11,100.0	90.04	359.66	10,164.5	1,118.8	173.7	1,121.7	0.00	0.00	0.00
	11,200.0	90.04	359.66	10,164.4	1,218.8	173.1	1,221.7	0.00	0.00	0.00
i I	11,300.0	90.04	359.66	10,164.4	1,318.8	172.5	1,321.7	0.00	0.00	0.00
	44 400 0	00.04	250.00	10 164 2	1 440 0	171.9	1,421.7	0.00	0.00	0.00
1	11,400.0	90.04	359.66	10,164.3	1,418.8				0.00	0.00
Ì	11,500.0	90.04	359.66	10,164.2	1,518.8	171.4	1,521.6	0.00		0.00
	11,600.0	90.04	359.66	10,164.1	1,618.8	170.8	1,621.6	0.00	0.00	
	11,700.0	90.04	359.66	10,164.1	1,718.8	170.2	1,721.6	0.00	0.00	0.00 0.00
	11,800.0	90.04	359.66	10,164.0	1,818.8	169.6	1,821.5	0.00	0.00	
	11,900.0	90.04	359.66	10,163.9	1,918.8	169.0	1,921.5	0.00	0.00	0.00
	12,000.0	90.04	359.66	10,163.9	2,018.8	168.4	2,021.5	0.00	0.00	0.00
	12,100.0	90.04	359.66	10,163.8	2,118.8	167.8	2,121.5	0.00	0.00	0.00
1	12,200.0	90.04	359.66	10,163.7	2,218.8	167.2	2,221.4	0.00	0.00	0.00
	12,300.0	90.04	359.66	10,163.7	2,318.8	166.6	2,321.4	0.00	0.00	0.00
1	12,400.0	90.04	359.66	10,163.6	2,418.8	166.0	2,421.4	0.00	0.00	0.00
	12,500.0	90.04	359.66	10,163.5	2,518.8	165.4	2,521.3	0.00	0.00	0.00
1	12,600.0	90.04	359.66	10,163.4	2,618.8	164.8	2,621.3	0.00	0.00	0.00
1	12,700.0	90.04	359.66	10,163.4	2,718.8	164.2	2,721.3	0.00	0.00	0.00
	12,800.0	90.04	359.66	10,163.3	2,818.8	163.6	2,821.3	0.00	0.00	0.00
i	12.900.0	90.04	359.66	10,163.2	2,918.8	163.0	2,921.2	0.00	0.00	0.00
	13,000.0	90.04	359.66	10,163.2	3,018.8	162.4	3,021.2	0.00	0.00	0.00
	13,100.0	90.04	359.66	10,163.1	3,118.8	161.8	3,121.2	0.00	0.00	0.00
i.	13,200.0	90.04	359.66	10,163.0	3,218.8	161.2	3,221.1	0.00	0.00	0.00
	13,300.0	90.04	359.66	10,163.0	3,318.8	160.6	3,321.1	0.00	0.00	0.00
	13,400.0	90.04	359.66	10,162.9	3,418.8	160.1	3,421.1	0.00	0.00	0.00
	13,500.0	90.04	359.66	10,162.8	3,518.8	159.5	3,521.1	0.00	0.00	0,00
	13,600.0	90.04	359.66	10,162.7	3,618.8	158.9	3,621.0	0.00	0.00	0.00
	13,700.0	90.04	359.66	10,162.7	3,718.8	158.3	3,721.0	0.00	0.00	0.00
	13,800.0	90.04	359.66	10,162.6	3,818.8	157.7	3,821.0	0.00	0.00	0.00
	13,900.0	90.04	359.66	10,162.5	3,918.8	157.1	3,920.9	0.00	0.00	0.00
	14,000.0	90.04	359.66	10,162.5	4,018.8	156.5	4,020.9	0.00	0.00	0.00
}	14,100.0	90.04	359.66	10,162.4	4,118.7	155.9	4,120.9	0.00	0.00	0.00
	14,200.0	90.04	359.66	10,162.3	4,218.7	155.3	4,220.9	0.00	0.00	0.00
1	14,300.0	90.04	359.66	10,162.3	4,318.7	154.7	4,320.8	0.00	0.00	0.00
	14,400.0	90.04	359.66	10,162.2	4,418.7	154.1	4,420.8	0.00	0.00	0.00
	14,500.0	90.04	359,66	10,162.1	4,518.7	153.5	4,520.8	0.00	0.00	0.00
	14,600.0	90.04	359.66	10,162.0	4,618.7	152.9	4,620.7	0.00	0.00	0.00
	14,700.0	90.04	359.66	10,162.0	4,718,7	152.3	4,720.7	0.00	0.00	0.00
	14,800.0	90.04	359.66	10,161.9	4,818.7	151.7	4,820.7	0.00	0.00	0.00
	14,900.0	90.04	359.66	10,161.8	4,918.7	151.1	4,920.7	0.00	0.00	0.00
	15,000.0	90.04	359.66	10,161.8	5,018.7	150.5	5,020.6	0.00	0.00	0.00
	15,100.0	90.04	359.66	10,161.7	5,118.7	149.9	5,120.6	0.00	0.00	0.00
	15,200.0	90.04	359.66	10,161.6	5,218.7	149.3	5,220.6	0.00	0.00	0.00
	15,300.0	90.04	359.66	10,161.6	5,318.7	148.8	5,320.5	0.00	0.00	0.00
	15,400.0	90.04	359,66	10,161.5	5,418,7	148.2	5,420.5	0.00	0.00	0.00
	15,500.0	90.04	359.66	10,161.4	5,518.7	147.6	5,520.5	0.00	0.00	0.00
	15,600.0	90.04	359.66	10,161.3	5,618.7	147.0	5,620.5	0.00	0.00	0.00
	15,700.0	90.04	359.66	10,161.3	5,718.7	146.4	5,720.4	0.00	0.00	0.00
	15,800.0	90.04	359.66	10,161.2	5,818.7	145.8	5,820.4	0.00	0.00	0.00
										0.00
	15,900.0	90.04	359.66	10,161.1	5,918.7	145.2	5,920.4	0.00	0.00	
	16,000.0	90.04	359.66	10,161.1	6,018.7	144.6	6,020.3	0.00	0.00	0.00
	16,100.0	90.04	359.66	10,161.0	6,118.7	144.0	6,120.3	0.00	0.00	0.00
	16,200.0	90.04	359.66	10,160.9	6,218.7	143.4	6,220.3	0.00	0.00	0.00

Database:	EDM5002	Local Co-ordinate Reference:	Well Tankless Fe
Company:	COG Production LLC	TVD Reference:	KB @ 3475.0usft
Project:	Eddy County, NM (NAD27)	MD Reference:	KB @ 3475.0usft
Site:	Sec 35, T22A, R31E	North Reference:	Grid
Well:	Tankless Federal Com #2H	Survey Calculation Method:	Minimum Curvatu
Wellbore:	Wellbore #1		
Design:	Design #1		

Well Tankless Federal Com #2H KB @ 3475.0usft (Noram #21) KB @ 3475.0usft (Noram #21) Grid Minimum Curvature

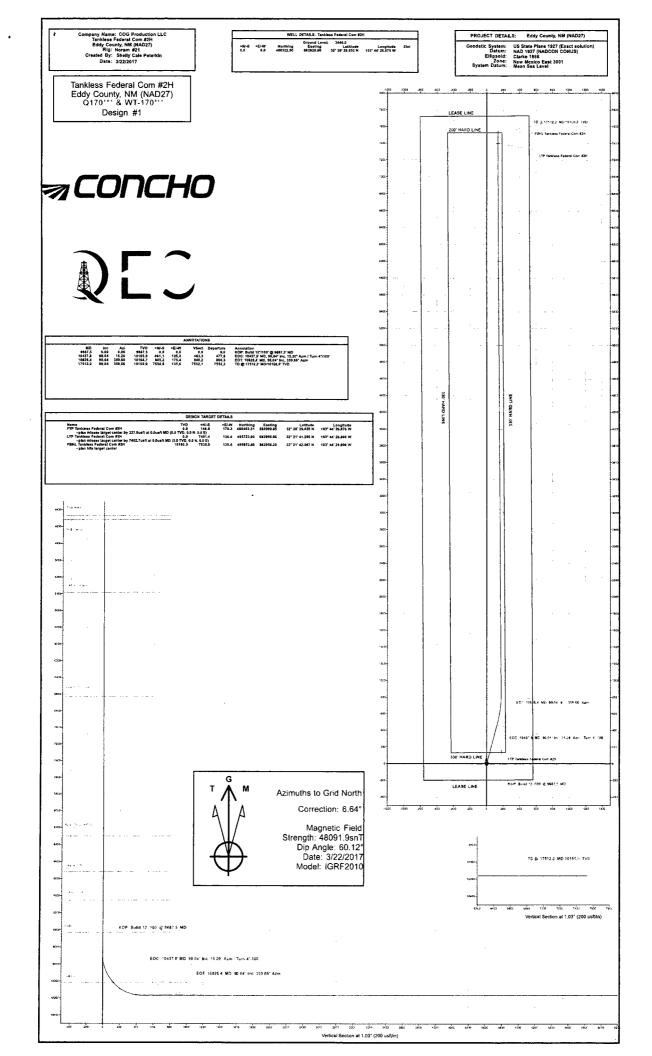
		Vertical			Vertical	Dogleg	Build	Turn	
Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)	
90.04	359.66	10,160.9	6,318.7	142.8	6,320.3	0.00	0.00	0.00	
90.04	359.66	10,160.8	6,418.7	142.2	6,420.2	0.00	0.00	0.00	
90.04	359.66	10,160.7	6,518.7	141.6	6,520.2	0.00	0.00	0.00	
90.04	359.66	10,160.6	6,618.7	141.0	6,620.2	0.00	0.00	0.00	
90.04	359.66	10,160.6	6,718.7	140.4	6,720.1	0.00	0.00	0.00	
90.04	359.66	10,160.5	6,818,7	139.8	6,820.1	0.00	0.00	0.00	
90.04	359.66	10,160.4	6,918.7	139.2	6,920.1	0.00	0.00	0.00	
90.04	359.66	10,160.4	7,018.7	138.6	7,020.1	0.00	0.00	0.00	
90.04	359.66	10,160.3	7,118.7	138.1	7,120.0	0.00	0.00	0.00	
90.04	359.66	10,160.2	7,218.7	137.5	7,220.0	0.00	0.00	0.00	
90.04	359.66	10,160.1	7,318.7	136.9	7,320.0	0.00	0.00	0.00	
90.04	359.66	10,160.1	7,418.7	136.3	7,419.9	0.00	0.00	0.00	
90.04	359.66	10,160.0	7,518.7	135.7	7,519.9	0.00	0.00	0.00	
2' MD/10160.0' T	DVD								
90.04	359.66	10,160.0	7,530.9	135.6	7,532.1	0.00	0.00	0.00	
	(°) 90.04 90.04 90.04 90.04 90.04 90.04 90.04 90.04 90.04 90.04 90.04 90.04 90.04 90.04 90.04 90.04 90.04	(°) (*) 90.04 359.66	Inclination (°) Azimuth (°) Depth (usft) 90.04 359.66 10,160.9 90.04 359.66 10,160.8 90.04 359.66 10,160.7 90.04 359.66 10,160.7 90.04 359.66 10,160.6 90.04 359.66 10,160.6 90.04 359.66 10,160.6 90.04 359.66 10,160.6 90.04 359.66 10,160.4 90.04 359.66 10,160.3 90.04 359.66 10,160.3 90.04 359.66 10,160.1 90.04 359.66 10,160.1 90.04 359.66 10,160.1 90.04 359.66 10,160.1 90.04 359.66 10,160.1 90.04 359.66 10,160.1 90.04 359.66 10,160.1 90.04 359.66 10,160.1 90.04 359.66 10,160.0	Inclination (°) Azimuth (°) Depth (usft) +N/-S (usft) 90.04 359.66 10,160.9 6,318.7 90.04 359.66 10,160.8 6,418.7 90.04 359.66 10,160.7 6,518.7 90.04 359.66 10,160.6 6,618.7 90.04 359.66 10,160.6 6,718.7 90.04 359.66 10,160.5 6,818.7 90.04 359.66 10,160.4 6,918.7 90.04 359.66 10,160.4 7,018.7 90.04 359.66 10,160.3 7,118.7 90.04 359.66 10,160.2 7,218.7 90.04 359.66 10,160.1 7,318.7 90.04 359.66 10,160.1 7,418.7 90.04 359.66 10,160.1 7,518.7 90.04 359.66 10,160.0 7,518.7 90.04 359.66 10,160.0 7,518.7	Inclination (°) Azimuth (°) Depth (usft) +N/-S (usft) +E/-W (usft) 90.04 359.66 10,160.9 6,318.7 142.8 90.04 359.66 10,160.8 6,418.7 142.2 90.04 359.66 10,160.7 6,518.7 141.6 90.04 359.66 10,160.6 6,618.7 141.6 90.04 359.66 10,160.6 6,618.7 140.4 90.04 359.66 10,160.5 6,818.7 139.8 90.04 359.66 10,160.4 6,918.7 139.2 90.04 359.66 10,160.3 7,118.7 138.6 90.04 359.66 10,160.2 7,218.7 137.5 90.04 359.66 10,160.1 7,318.7 136.9 90.04 359.66 10,160.1 7,418.7 136.3 90.04 359.66 10,160.0 7,518.7 135.7	Inclination (*) Azimuth (*) Depth (usft) +N/-S (usft) +E/-W (usft) Section (usft) 90.04 359.66 10,160.9 6,318.7 142.8 6,320.3 90.04 359.66 10,160.8 6,418.7 142.2 6,420.2 90.04 359.66 10,160.6 6,518.7 141.6 6,520.2 90.04 359.66 10,160.6 6,618.7 141.0 6,620.2 90.04 359.66 10,160.6 6,718.7 140.4 6,720.1 90.04 359.66 10,160.4 6,818.7 139.8 6,820.1 90.04 359.66 10,160.4 6,918.7 139.8 6,920.1 90.04 359.66 10,160.4 7,018.7 138.6 7,020.1 90.04 359.66 10,160.2 7,218.7 136.9 7,320.0 90.04 359.66 10,160.1 7,318.7 136.3 7,419.9 90.04 359.66 10,160.1 7,418.7 136.3 7,419.9 90.04	Inclination (°) Azimuth (°) Depth (usft) +N/-S (usft) +E/-W (usft) Section (usft) Rate (°/) 90.04 359.66 10,160.9 6,318.7 142.8 6,320.3 0.00 90.04 359.66 10,160.7 6,518.7 141.6 6,520.2 0.00 90.04 359.66 10,160.7 6,518.7 141.6 6,520.2 0.00 90.04 359.66 10,160.6 6,618.7 141.0 6,620.2 0.00 90.04 359.66 10,160.5 6,818.7 139.8 6,820.1 0.00 90.04 359.66 10,160.4 6,918.7 139.8 6,820.1 0.00 90.04 359.66 10,160.4 7,018.7 138.6 7,020.1 0.00 90.04 359.66 10,160.3 7,118.7 138.6 7,020.1 0.00 90.04 359.66 10,160.2 7,218.7 137.5 7,220.0 0.00 90.04 359.66 10,160.1 7,418.7 136.3	Inclination (*) Azimuth (*) Depth (usft) +N/-S (usft) +E/-W (usft) Section (usft) Rate (*/100usft) Rate (*/100usft) 90.04 359.66 10,160.9 6,318.7 142.8 6,320.3 0.00 0.00 90.04 359.66 10,160.7 6,518.7 142.2 6,420.2 0.00 0.00 90.04 359.66 10,160.7 6,518.7 141.6 6,520.2 0.00 0.00 90.04 359.66 10,160.6 6,618.7 141.0 6,620.2 0.00 0.00 90.04 359.66 10,160.6 6,718.7 140.4 6,720.1 0.00 0.00 90.04 359.66 10,160.4 6,918.7 139.8 6,820.1 0.00 0.00 90.04 359.66 10,160.4 7,018.7 138.6 7,020.1 0.00 0.00 90.04 359.66 10,160.2 7,218.7 137.5 7,220.0 0.00 0.00 90.04 359.66 10,160.1 7,318.7	Inclination (°) Azimuth (°) Depth (usft) +N/-S (usft) +E/-W (usft) Section (usft) Rate (°/100usft) Rate (°/100usft) Rate (°/100usft) Rate (°/100usft) 90.04 359.66 10,160.9 6,318.7 142.8 6,320.3 0.00 0.00 0.00 90.04 359.66 10,160.7 6,518.7 142.2 6,420.2 0.00 0.00 0.00 90.04 359.66 10,160.6 6,618.7 141.6 6,520.2 0.00 0.00 0.00 90.04 359.66 10,160.6 6,618.7 141.0 6,620.2 0.00 0.00 0.00 90.04 359.66 10,160.6 6,718.7 140.4 6,720.1 0.00 0.00 0.00 90.04 359.66 10,160.4 6,918.7 139.2 6,920.1 0.00 0.00 0.00 90.04 359.66 10,160.3 7,118.7 138.6 7,020.1 0.00 0.00 0.00 90.04 359.66 10,160.1

Design Targets

Target Name

- hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
LTP Tankless Federal C - plan misses target - Point		0.00 2.7usft at 0.(0.0 Dusft MD (0.0	7,401.4 TVD, 0.0 N, 1	136.4 0.0 E)	495,723.90	682,956.96	32° 21' 41.286 N	103° 44' 26.908 W
FTP Tankless Federal C - plan misses target - Point		0.00 9usft at 0.00,	0.0 usft MD (0.0 ⁻	140.8 TVD, 0.0 N, 0.	179.3 .0 E)	488,463.31	682,999.85	32° 20' 29.435 N	103° 44' 26.876 W
PBHL Tankless Federal - plan hits target cer - Point		0.00	10,160.0	7,530.9	135.6	495,853.40	682,956.20	32° 21' 42.567 N	103° 44' 26.908 W

Formations


Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)
665.0	665.0	Rustler		-0.04	1.03
763.0	763.0	TOS		-0.04	1.03
4,216.0	4,216.0	BOS (Castile)		-0.04	1.03
4,468.0	4,468.0	Delaware		-0.04	1.03
4,516.0	4,516.0	Bell Canyon		-0.04	1.03
5,380.0	5,380.0	Cherry Canyon		-0.04	1.03
6,626.0	6,626.0	Brushy Canyon		-0.04	1.03
8,300.0	8,300.0	Bone Sprg (BGSL)		-0.04	1.03
8,719.0	8,719.0	U Avalon Sh		-0.04	1.03
9,049.0	9,049.0	L Avalon Sh		-0.04	1.03
9,425.0	9,425.0	FBSG		-0.04	1.03
10,044.3	10,012.0	SBSG		-0.04	1.03

Database: Company: Project: Site:	EDM5002 COG Production LLC Eddy County, NM (NAD27) Sec 35, T22A, R31E	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference:	Well Tankless Federal Com #2H KB @ 3475.0usft (Noram #21) KB @ 3475.0usft (Noram #21) Grid
Well: Wellbore:	Tankless Federal Com #2H Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Design #1		

Plan Annotations

Measured	Vertical	Local Coor	dinates	
Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment
9,687.5	9,687.5	0.0	0.0	KOP: Build 12°/100' @ 9687.5' MD
10,437.8	10,165.0	461.1	125.3	EOC: 10437.8' MD, 90.04° Inc, 15.20° Azm / Turn 4°/100'
10,826.4	10,164.7	845.2	175.4	EOT: 10826.4' MD, 90.04° Inc, 359.66° Azm
17,512.2	10,160.0	7,530.9	135.6	TD @ 17512.2' MD/10160.0' TVD

COG Production LLC - Tankless Federal #2H

1. Geologic Formations

1

TVD of tar	get	10,165' EOL	Pilot hole depth	NA
MD at TD:		17,512'	Deepest expected fresh water:	450'

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Quaternary Fill	Surface	Water	
Rustler	665	Water	
Top of Salt	763	Salt	
Base of Salt	4216	Salt	
Lamar	4468	Salt Water	
Bell Canyon	4516	Salt Water	
Cherry Canyon	5380	Oil/Gas	
Brushy Canyon	6626	Oil/Gas	
Bone Spring Lime	8300	Oil/Gas	
U. Avalon Shale	8719	Oil/Gas	
L. Avalon Shale	9049	Oil/Gas	
1st Bone Spring Sand	9425	Oil/Gas	
2nd Bone Spring Sand	10012	Oil/Gas	
3rd Bone Spring Sand	11157	Oil/Gas	
Wolfcamp	11623	Oil/Gas	

2. Casing Program

Hole Size	Ca	asing	Csg. Size	Weight	Grade Conn.	SF	SF Burst	SF	
	From	То	CS9. 5120	(lbs)	Grade	Conn.	Collapse	SF BUISL	Tension
17.5"	0	690	13.375"	54.5	J55	STC	3.58	1.42	13.67
12.25"	0	4495	9.625"	40	J55	LTC	1.08	1.00	2.89
8.75"	0	17,512	5.5"	17	P110	LTC	1.51	2.69	2.58
			BLM	1 Minimur	n Safety	Factor	1.125	1	1.6 Dry 1.8 Wet

Intermediate casing will be kept at least 1/3 full while running casing.to mitigate collapse. Intermediate burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface. All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

COG Production LLC - Tankless Federal #2H

3

,

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef? Is well within the designated 4 string boundary?	
Is well located in SOPA but not in R-111-P?	Y
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	Y
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. Ib/ gal	YId ft3/ sack	H ₂ 0 gal/sk	500# Comp. Strength (hours)	Slurry Description
Quint	220	13.5	1.75	9	12	Lead: Class C + 4% Gel + 1% CaCl2
Surf. –	250	14.8	1.34	6.34	8	Tail: Class C + 2% CaCl2
Intor	860	12.7	2.0	9.6	16	Lead: 35:65:6 C Blend
Inter.	250	14.8	1.34	6.34	8	Tail: Class C + 2% CaCl
5.5 Prod	790	11.9	2.5	19	72	Lead: 50:50:10 H Blend
5.5 P100	2000	14.4	1.24	5.7	19	Tail: 50:50:2 Class H Blend

Volumes Subject to Observed Hole Conditions and/or Fluid Caliper Results Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	тос	% Excess
Surface	0'	50%
1 st Intermediate	0'	50%
Production	3,995'	25% OH in Lateral (KOP to EOL) – 40% OH in Vertical

4. Pressure Control Equipment

A variance is requested for the use of a diverter on the surface casing.
See attached for schematic.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ту	pe	x	Tested to:		
			Ann	ular	х	2000 psi		
			Blind	Ram				
12-1/4"	13-5/8"	2M	Pipe Ram			2M		
			Double Ram					
			Other*					
			Ann	ular	x	50% testing pressure		
8-3/4"	13-5/8"	ЗM	Blind	Ram	х			
			Pipe Ram		х	ЗМ		
						Double		e Ram
_			Other*					

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2.
x	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.
	N Are anchors required by manufacturer?
N	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

COG Production LLC - Tankless Federal #2H

5. Mud Program

Depth		T = == =	Weight			
From	То	— Туре	(ppg)	Viscosity	Water Loss	
0	Surf. Shoe	FW Gel	8.6 - 8.8	28-34	N/C	
Surf csg	9-5/8" Int shoe	Saturated Brine	10 - 10.2	28-34	N/C	
9-5/8" Int shoe	Lateral TD	Cut Brine	8.6 - 9.4	28-34	N/C	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

VA/heat will be used to recently the lase or weight of flying	
What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
finde the best to monitor the loop of gain of hard.	i thi door though thousand

6. Logging and Testing Procedures

Logging, Coring and Testing.	
Y	Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.
Y	No Logs are planned based on well control or offset log information.
N	Drill stem test? If yes, explain.
N	Coring? If yes, explain.

Ad	ditional logs planned	Interval
Ν	Resistivity	Pilot Hole TD to ICP
Ν	Density	Pilot Hole TD to ICP
Y	CBL	Production casing (If cement not circulated to surface)
Υ	Mud log	Intermediate shoe to TD
Ν	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	4970 psi at 10165' TVD
Abnormal Temperature	NO 160 Deg. F.

No abnormal pressure or temperature conditions are anticipated. Sufficient mud materials to maintain mud properties and weight increase requirements will be kept on location at all times.

Sufficient supplies of Paper/LCM for periodic sweeps to control seepage and losses will be maintained on location.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

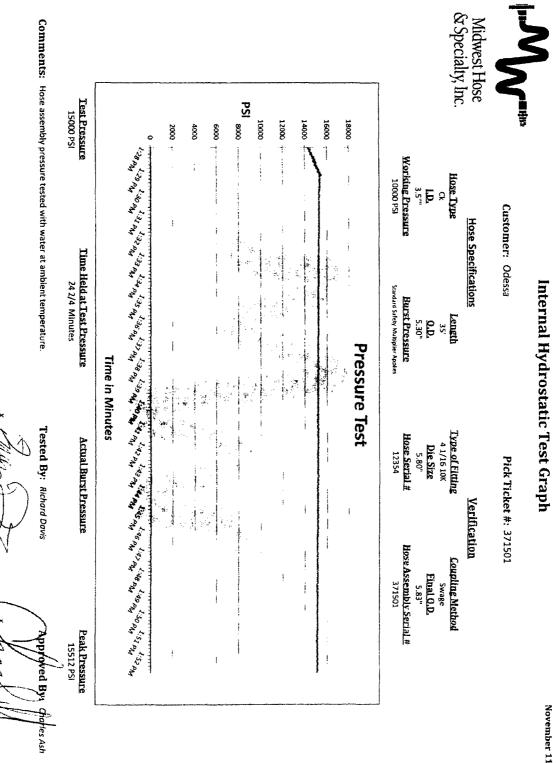
Y H2S Plan attached

8. Other Facets of Operation

N	ls it a walking operation?
N	Is casing pre-set?

x	H2S Plan.
x	BOP & Choke Schematics.
x	Directional Plan

Midwest Hose					
		ialty, Inc.			
	*	**			
Inter	nal Hydrosta	itic Test Certificate			
Customer	Odessa	Hose Assembly Type	Choke & Kill		
MWH Sales Representative	Charles Ash	Certification	API 7K/FSL LEVEL2		
Date Assembled	11/11/2016	Hose Grade	Mud		
Location Assembled	ОКС	Hose Working Pressure	100000		
Sales Order #	308747	Hose Lot # and Date Code	12354-09/15		
Customer Purchase Order #	345144	HOSE I.D. (Inches)	3.5"		
Assembly Serial # (Pick Ticket #)	371501	Hose O.D. (Inches)	5.87"		
Hose Assembly Length	35 Feet	Armor (yes/no)	No		
End A		End	3		
Stern (Part and Revision #)	R3.5X64WB	Stem (Part and Revisian #)	R3.5X64WB		
Stem (Hear #)	A112669	Stem (Heat#)	A112669		
Ferrule (Part and Revision #)	RF3.5X5750	Ferrule (Port and Revision #)	RF3.5X5750		
Ferrule (Heat #)	41632	Ferrule (Heat #)	41632		
Connection Flange Hammier Union Part	4-1/16 10K	Connection (Part #)	4-1/16 10K		
Connection (Heat #)		Connection (Heot #)			
Nut (Part #)		Nut (Port #)			
NUT (Heat#)		Nut (Heat #)			
Dies Used	5.80"	Dies Used	5.80"		
		an an the state of t An and the state of t			
Test Pressure (psi)	15,000	Hose assembly was tested	l with ambient water		
Test Pressure Hold Time (minutes)	24 1/2	temperal	ture.		
Date Tested	Tested	Ву	Approved By		
11/11/2016	Rul	-1 A. Clan	bo Ach		


.

.

			
	Midw & Spe	rest Hose cialty, Inc.	
Customer: Odessa	elle Sociale Science Paratane Sciare (SPA), sub-s	Customer P.O.# 345144	ining an
Sales Order # 308747		Date Assembled: 11/11/201	6
Hose Assembly Type:	Choke & Kill	Rig # N/A	
Assembly Serial #	371501	Hose Lot # and Date Code	12354-09/15
Hose Working Pressure (psi)	100000	Test Pressure (psi)	15000
Hose Assembly Description:	СК56	-SS-10K-6410K-6410K-35.00' FT	-W/LIFTERS
We hereby certify that the above		or the referenced purchase orde nt industry standards.	r to be true according
to the requirements of the purch Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd			
to the requirements of the purch Supplier: Midwest Hose & Specialty, Inc .			

•

٠

.

November 11, 2016

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400013237

Operator Name: COG PRODUCTION LLC

Well Name: TANKLESS FEDERAL COM

Well Type: OIL WELL

Submission Date: 04/12/2017

Well Number: 2H Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? NO

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

COG_Tankless_2H_Maps_Plats_04-10-2017.pdf

New road type: RESOURCE

Length: 26

Max slope (%): 33

Max grade (%): 1

Width (ft.): 30

Army Corp of Engineers (ACOE) permit required? NO

Feet

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns. **New road access plan or profile prepared?** NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Operator Name: COG PRODUCTION LLC

Well Name: TANKLESS FEDERAL COM

Well Number: 2H

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Blading

Access other construction information: No turnouts are planned. Re-routing access road around proposed well location.

Access miscellaneous information:

Number of access turnouts: Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: None necessary

Road Drainage Control Structures (DCS) description: None needed.

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES Attach Well map: COG_Tankless_2H_1Mile_Data_04-10-2017.pdf Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? DEFER

Estimated Production Facilities description: Production will be sent to a proposed adjacent Tankless Central Tank Battery facility. A surface flow line of approximately 506.8' of 3" steel pipe carrying oil, gas and water under a maximum pressure of 125 psi will follow the road to the facility at the Tankless Central Tank Battery location. We plan to install a 4" surface polyethylene pipe transporting Gas Lift Gas from the Tanklesss Central Tank Battery to the Tankless Federal Com 2H. The surface Gas Lift Gas pipe of approximately 506.8' under a maximum pressure of 125 psi will be installed no farther than 10 feet from the edge of the road.. Please see attached CTB and flowlines plats.

Section 5 - Location and Types of Water Supply

Water Source Table

Operator Name: COG PRODUCTION LLC	
Well Name: TANKLESS FEDERAL COM Well	Number: 2H
)
Water source use type: ICE PAD CONSTRUCTION & MAINTENANCE, STIMULATION, SURFACE CASING Describe type: Fresh water will be furnished by the C-1455 water located in Section 18. T22S. R34E. The water will be purchased fit	^{rom} Source longitude:
Mesquite Services 2313 Eas Greene Street, Carlsbad, NM 88220 Source latitude:	
Source datum:	
Water source permit type: PRIVATE CONTRACT	
Source land ownership: PRIVATE	
Water source transport method: PIPELINE	
Source transportation land ownership: PRIVATE	
Water source volume (barrels): 450000	Source volume (acre-feet): 58.001892
Source volume (gal): 18900000	
Water source use type: INTERMEDIATE/PRODUCTION CASIN	G Water source type: OTHER
Describe type: Brine water will be provided by Malaga II Brine St located in Section 12. T23S. R28E. Brine water will be purchased Mesquite SWD Inc., P O Box 1479, Carlsbad, NM 88221. Phone: 706-1840 Source latitude:	from Source longitude
Source datum:	
Water source permit type: PRIVATE CONTRACT	
Source land ownership: COMMERCIAL	
Water source transport method: TRUCKING	
Source transportation land ownership: COMMERCIAL	
Water source volume (barrels): 30000	Source volume (acre-feet): 3.866793
Source volume (gal): 1260000	

Water source and transportation map:

COG_Tankless_2H_Fresh_H2O_04-10-2017.pdf

COG_Tankless_2H_Brine_H2O_04-10-2017.pdf

Water source comments: Fresh water will be furnished by the C-1455 water well located in Section 18. T22S. R34E. The water will be purchased from Mesquite Services 2313 Eas Greene Street, Carlsbad, NM 88220. Brine water will be provided by Malaga II Brine Station located in Section 12. T23S. R28E. Brine water will be purchased from Mesquite SWD Inc., P O Box 1479, Carlsbad, NM 88221. Phone: 575-706-1840 New water well? NO

New Water Well Info

Well latitude:	Well Longitude:	Well datum:				
Well target aquifer:						
Est. depth to top of aquifer(ft):	Est thickness of aquifer:					

Operator Name: COG PRODUCTION LLC Well Name: TANKLESS FEDERAL COM

Well Number: 2H

Aquifer comments:	
Aquifer documentation:	
Well depth (ft):	Well casing type:
Well casing outside diameter (in.):	Well casing inside diameter (in.):
New water well casing?	Used casing source:
Drilling method:	Drill material:
Grout material:	Grout depth:
Casing length (ft.):	Casing top depth (ft.):
Well Production type:	Completion Method:
Water well additional information:	
State appropriation permit:	
Additional information attachment:	

Section 6 - Construction Materials

Construction Materials description: Caliche will be obtained from the actual well site. If caliche does not exist or is not plentiful from the well site, the caliche source will be caliche pit from from Draper Brantley located in Section 15. T23S. R28E. Draper Brantley address is 706 Riverside Drive, Carlsbad, NM 88220. (575) 706-3169. **Construction Materials source location attachment:**

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drilling fluids and produced oil land water while drilling and completion operations

Amount of waste: 6000 barrels

Waste disposal frequency : One Time Only

Safe containment description: All drilling waste will be stored safely and disposed of properly

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Waste type: GARBAGE

Waste content description: Garbage and trash produced during drilling and completion operations.

Amount of waste: 500 pounds

Waste disposal frequency : One Time Only

Safe containment description: Garbage and trash produced during drilling and completion operations will be collected in a trash container and disposed of properly at a state approved disposal facility Safe containmant attachment:

Operator Name: COG PRODUCTION LLC

Well Name: TANKLESS FEDERAL COM

Well Number: 2H

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY Disposal type description:

Disposal location description: Trucked to an approved disposal facility.

Waste type: SEWAGE

Waste content description: Human waste and gray water

Amount of waste: 1000 gallons

Waste disposal frequency : One Time Only

Safe containment description: Waste will be properly contained and disposed of properly at a state approved disposal facility.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE FACILITY Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NOAre you storing cuttings on location? YESDescription of cuttings location Roll off cutting containers on tracksCuttings area length (ft.)Cuttings area width (ft.)Cuttings area depth (ft.)Cuttings area volume (cu. yd.)Is at least 50% of the cuttings area in cut?WCuttings area liner

Cuttings area liner specifications and installation description

Well Number: 2H

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: YES

Ancillary Facilities attachment:

COG_Tankless_2H_GCP_04-10-2017.pdf COG_Tankless_2H_Closed_Loop_04-12-2017.pdf Comments: Gas Capture Plan attached

Section 9 - Well Site Layout

Well Site Layout Diagram:

COG_Tankless_Flowlines_04-10-2017.pdf

COG_Tankless_CTB_04-10-2017.pdf

COG_Tankless_2H_Prod_Facility_04-12-2017.pdf

Comments: Production will be sent to a proposed adjacent Tankless Central Tank Battery facility. A surface flow line of approximately 506.8' of 3" steel pipe carrying oil, gas and water under a maximum pressure of 125 psi will follow the road to the facility at the Tankless Central Tank Battery location. We plan to install a 4" surface polyethylene pipe transporting Gas Lift Gas from the Tanklesss Central Tank Battery to the Tankless Federal Com 2H. The surface Gas Lift Gas pipe of approximately 506.8' under a maximum pressure of 125 psi will be installed no farther than 10 feet from the edge of the road.

Section 10 - Plans for Surface Reclamation

Type of disturbance: NEW

Recontouring attachment:

Drainage/Erosion control construction: Surface run off control structures will not be necessary for this proposed location due to the relatively flat topography, along with all of the existing disturbance that surrounds this location, powerlines, roads, buried and surface pipelines and CTB.

Drainage/Erosion control reclamation: N/A

Wellpad long term disturbance (acres): 2.69	Wellpad short term disturbance (acres): 3.31
Access road long term disturbance (acres): 0.01	Access road short term disturbance (acres): 0.01
Pipeline long term disturbance (acres): 3.443526E-8	Pipeline short term disturbance (acres): 3.443526E-8
Other long term disturbance (acres): 0	Other short term disturbance (acres): 0
Total long term disturbance: 2.7	Total short term disturbance: 3.32

Reconstruction method: Portions of the pad not needed for production operations will be re-contoured to its original state as much as possible. The caliche that is removed will be reused. The stockpiled topsoil will be spread out over reclaimed area and reseeded with BLM approved seed mixture. **Topsoil redistribution:** West 70'

Soil treatment: None

Existing Vegetation at the well pad: Shinnery Oak/Mesquite grassland

Existing Vegetation at the well pad attachment:

Operator Name: COG PRODUCTION LLC

Well Name: TANKLESS FEDERAL COM

Well Number: 2H

Existing Vegetation Community at the road: Shinnery Oak/Mesquite grassland Existing Vegetation Community at the road attachment: Existing Vegetation Community at the pipeline: Shinnery Oak/Mesquite grassland Existing Vegetation Community at the pipeline attachment: Existing Vegetation Community at other disturbances: N/A Existing Vegetation Community at other disturbances attachment: Non native seed used? NO Non native seed description: Seedling transplant description: Will seedlings be transplanted for this project? NO Seedling transplant description attachment: Will seed be harvested for use in site reclamation? NO Seed harvest description:

Seed Management

Seed Table	
Seed type:	Seed source:
Seed name:	
Source name:	Source address:
Source phone:	
Seed cultivar:	
Seed use location:	
PLS pounds per acre:	Proposed seeding season:
Sood Summary	Total pounds/Acre:

Seed Summary Seed Type Pounds/Acre

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Rand	Last Name: French
Phone: (432)254-5556	Email: rfrench@concho.com

Seedbed prep:

Operator Name: COG PRODUCTION LLC

Well Name: TANKLESS FEDERAL COM

Well Number: 2H

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: N/A

Weed treatment plan attachment:

Monitoring plan description: N/A

Monitoring plan attachment:

Success standards: N/A

Pit closure description: N/A

Pit closure attachment:

COG_Tankless_2H_Closed_Loop_04-10-2017.pdf

Section 11 - Surface Ownership

Disturbance type: WELL PAD Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

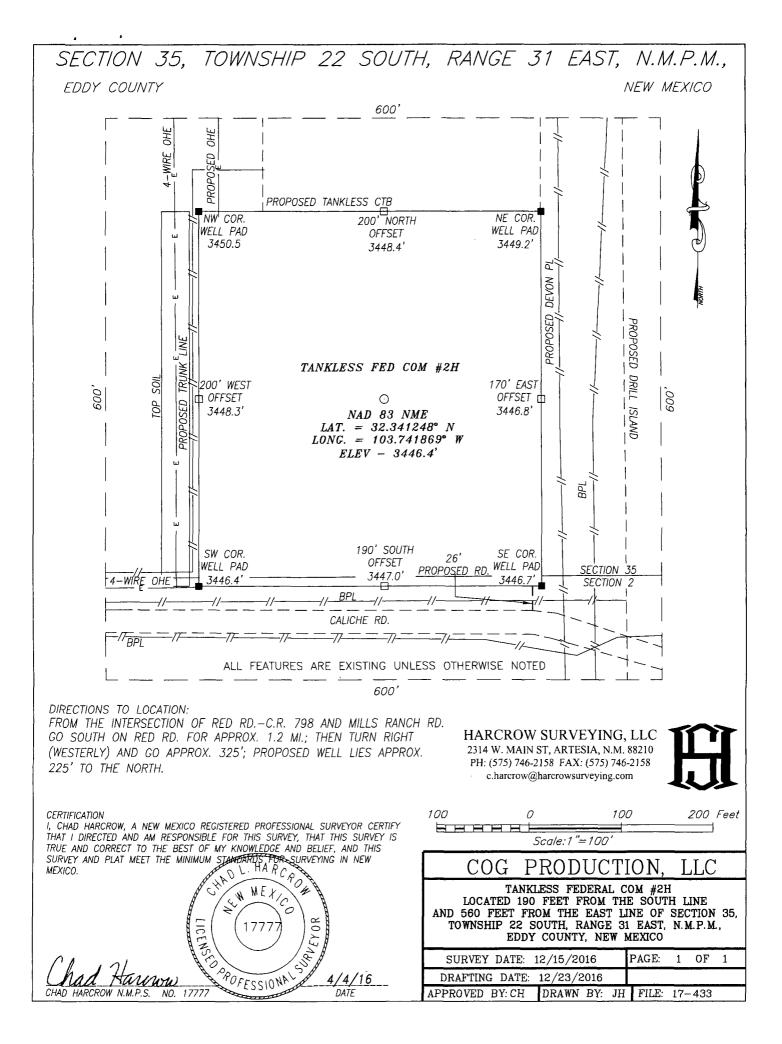
USFS Forest/Grassland:

USFS Ranger District:

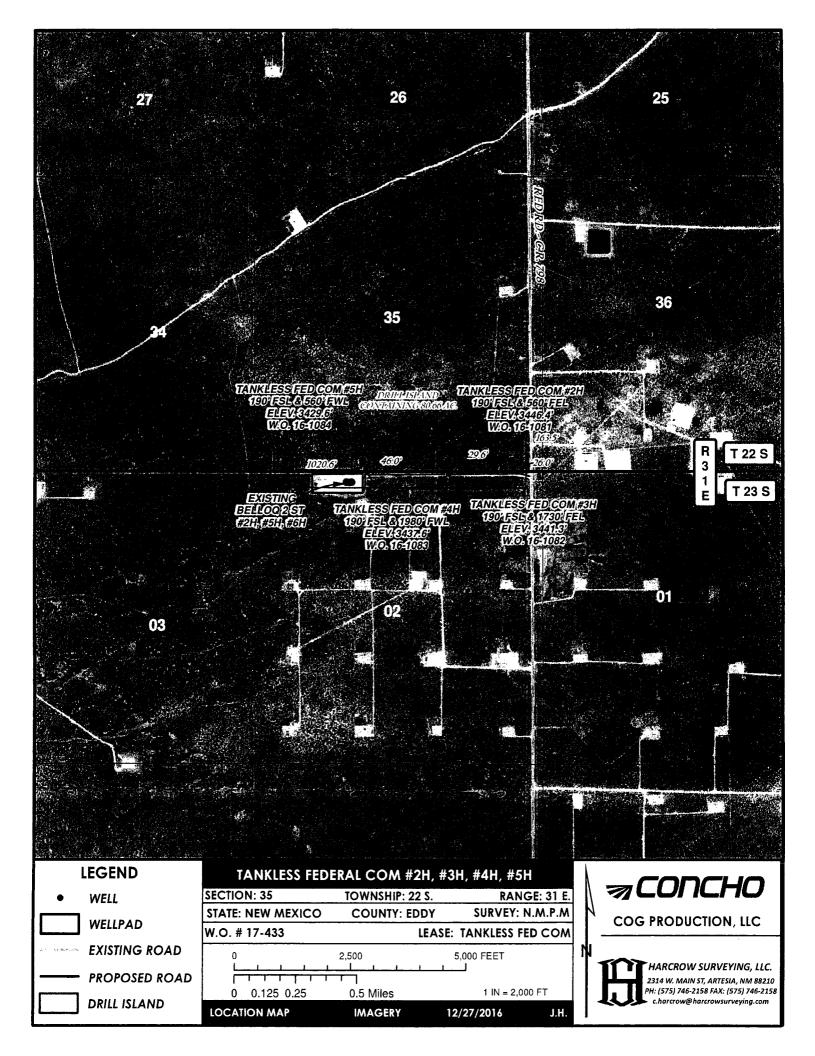
Well Number: 2H

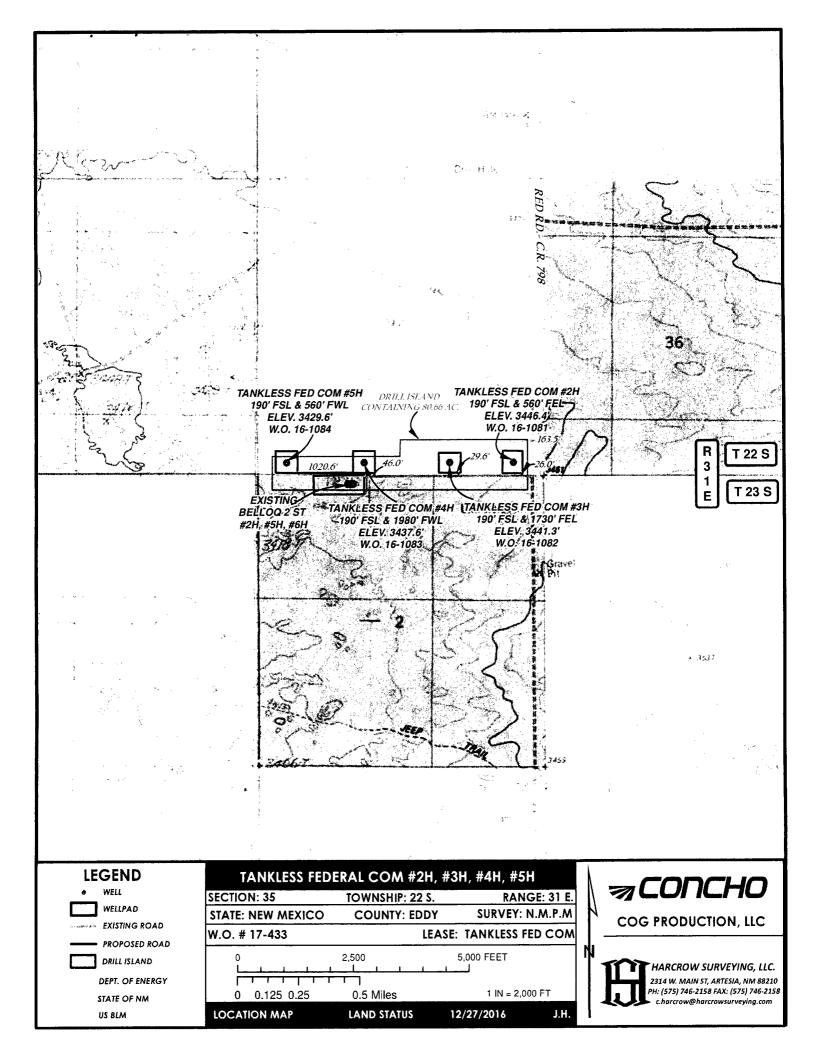
Section 12 - Other Information

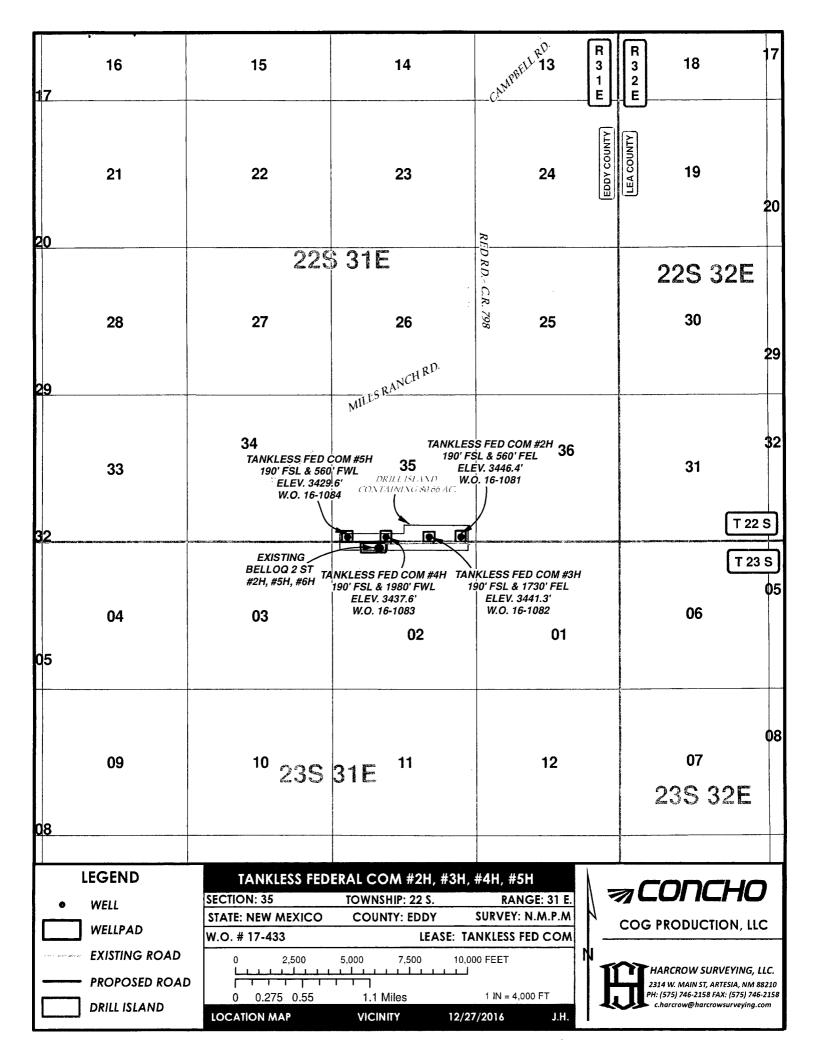
Right of Way needed? NO ROW Type(s):

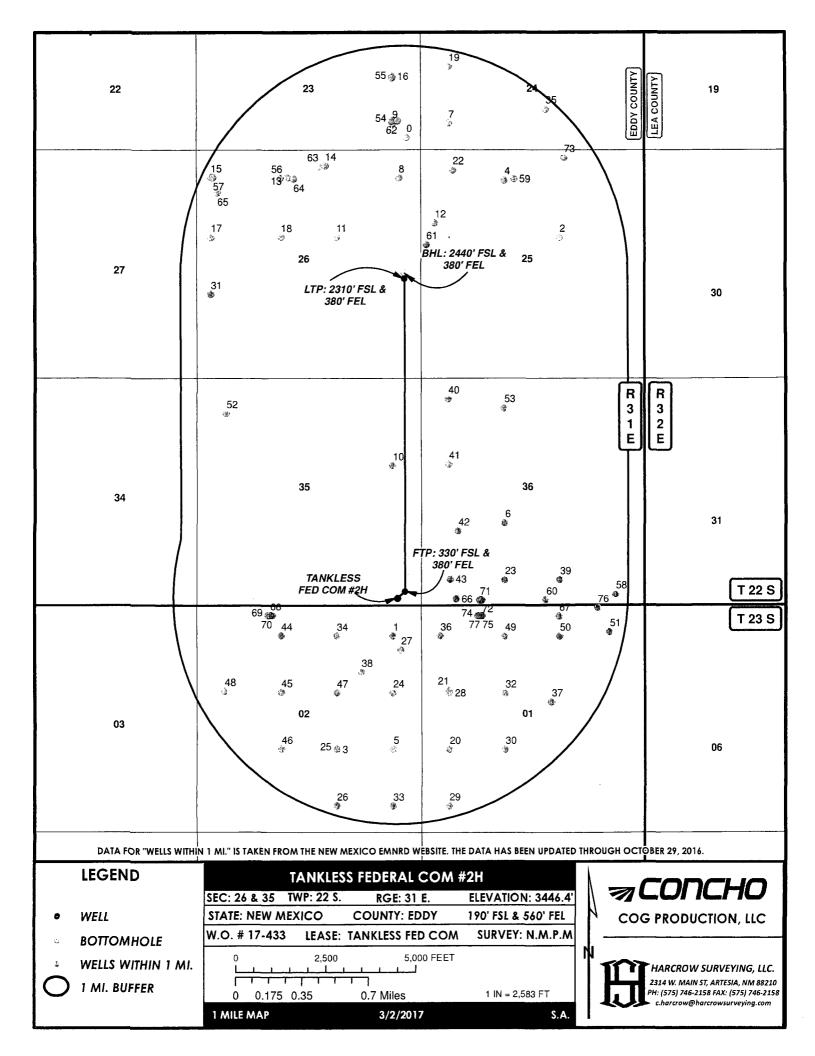

Use APD as ROW?

ROW Applications


SUPO Additional Information: Use a previously conducted onsite? NO Previous Onsite information:


Other SUPO Attachment


COG_Tankless_2H_Certification_04-10-2017.pdf





D_COMPL_STAT	Plugged	Active	Plugged	Plugged	Plugged	Plugged	Active	Active	Plugged	Active	Active	Plugged	Active	Active	Active	Active		Active	Active	Dhinasod	Dinged	Active	Active	Active	Plugged	Active	Plugged	Active	Plugged	Active	Active	Active	Artive	Plupped	Plugged	Active	New (Not drilled or compl)	Active	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	Active	Active	Active	Plugged		New (Not drilled or compi)	New (Not drilled or compl)	New (Not drilled or compl) New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)
FTG_EW_EW_CI	330 E	660 E	1980 E	1980 E	1980 W	660 E	1980 W	660 W	510 E	660 E	660 E	1980 E	330 W	2130 W	2230 E	330 W	330 M	33U W	W 0861	660 W	N DOD	760 W	V 00/	660 F	1980 E	1980 E	470 E	660 W	660 W	1980 W	330 W	1980 W	000 E 1980 F	2310 F	460 W	2180 E	1400 E	1980 E	660 W	660 W	860 W	099 M	W 0801	W 0861	1980 V	1980 E	660 W	1980 F	1980 E 810 E	730 W	W 1981
RANGE FTG_NS_CD_FTG_EW_EW_CD_	330 S	660 N	1980 N	1980 S		1980 S	1980 5	660 S	610 N	660 S	1980 N	1980 N	1650 N	610 N	330 N	600 N	14 0601	N 0861	1980 N	2 0801	1010 N	NOTET	N 024	000 J N 0801	1980 5	660.5	N 066	N 0861	660 S	1980 S	1980 S	N 0801	660 N	5 066	660 N	2180 N	1500 N	660 S	460 N	1980 N		66U S	660 N	N 0861	1980 5	N 0861	N 0861	66U N	66U N 560 N	N OZZ	661 N
-	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	310	31E	31E 21E	21C 21E	31E 31E	31E	31C	31F	31E	31E	31E	31E	31E	31E	31E 211	31E 31F	315	31F	31E	31E	31E	31E	31E	31E	31E	31E	31E 21F	31E	31E	31E 241	31E	31E 21F	31E 31F	315	31E
ION TOWNSHIP	23 22.0S	2 23.0S	25 22.0S	2 23.0S	25 22.05	2 23.05	36 22.05	24 22.05	26 22.0S	23 22.0S	35 22.0S	26 22.05	25 22.0S	26 22.05	26 22.05	26 22.05	20.22 E2	50.22 42	20.22 02	20 21 1	20.62 I	1 23.05	50 CC 36	50.22 0C	2 23.05	2 23.05	2 23.05	1 23.05	1 23.05	1 23.0S	26 22.05	1 23.0S	50.62 2 20.62 C	20.02 2 20.70 AC	1 23.05	1 23.05	2 23.0S	36 22.0S	36 22.0S	36 22.05	36 22.05	36 22.05	2 23.0S		2 23.05	2 23.05	2 23.0S	1 23.05	1 23.05 1 73.05	2E 32 06	36 22.05
IANNLESS FEDERAL COW #271 I WILE DAIA (17-299) LATITUDE LONGITUDE API SECTION	-103.741154 3001505839	-103.742237 3001505840	-103.729422 3001520947	-103.74651 3001524112		-103.742215 3001525534	-103.733648 3001526171	-103.737931 3001526287	-103.74174 3001526376	-103.742227 3001526377	-103.742236 3001526629	-103.746525 3001526638	-103.739008 3001526639	-103.750247 3001526788					-103./50/36 3001526941									-103.737931 3001530065	-103.737911 3001530066				-103./42205 3001530809				-103.744637 3001533665	-103.729429 3001534644											-103.729441 3001535794 -103 725615 3001535795		
	32.370592	32.338792	32.364224	32.331567		32.331549	32.346035	32.371496	32.368008	32.371499	32.349705	32.36424	32.365148	32.368005					32.364239							32.327939			32.327909				22/22/22 207955 CS	00/000130			32.336486	32.342414			32.345522	32.342446	32.338805	32.335196	32.331586			32.338778	32.338772		32.35338
WELL_NAME	WRIGHT FED 001	STATE AA-2 001	FEDERAL B 001	DUNES ST 001	NEFF FEDERAL 001	BARCLAY STATE 001	MEDANO STATE 001	GETTY 24 FEDERAL 002	FEDERAL 26 001	FEDERAL 23 001	DAVID ROSS FEDERAL SWD 001	FEDERAL 26 002	NEFF FEDERAL 002	FEDERAL 26 003	FEDERAL 26 005	FEDERAL 26 004	FEDERAL 23 UUZ	FEDERAL 26 006	FEDERAL 26 00/	UCI 17 24 FEDERAL UU/		UNION FEDERAL UUZ	NEFF FEVERAL UUS	MEDANU STATE UUZ BABCI AV STATE DO2	RARCI AV STATE DO	BARCIAY STATE 004	BARCLAY STATE 008	BARCLAY FEDERAL 014	BARCLAY FEDERAL 015	BARCLAY FEDERAL 010	FEDERAL 26 009	BARCLAY FEDERAL 021	BARCLAY STATE UU/ BABCLAY STATE OOD		ALCINE 24 LEVENAL OLD	BARCLAY FEDERAL 029	BARCLAY STATE 005C	LIVINGSTON RIDGE 36 STATE 001	STATE 36 002C	STATE 36 003C	STATE 36 004C	36 STATE 005	STATE 2 002	STATE 2 003	STATE 2 004	STATE 2 001	STATE 2 007C	FEDERAL 1 004C	FEDERAL 1 003C	TEVENAL I UUSC TANKI FSS BE FENERAL DAS	STATE 36 001C
OPERATOR	TEXAS CRUDE OIL CO	LINN OPERATING, INC.	CLEARY PET CORP	SUPERIOR OIL CO	POGO PRODUCING CO	LINN OPERATING, INC.	LINN OPERATING, INC.	CHEVRON U S A INC	OXY USA INC	OXY USA INC	EOG Y RESOURCES, INC.	POGO PRODUCING CO	OXY USA INC	OXY USA INC	OXY USA INC	OXY USA INC				CHEVRON US A INC	OWENS PETING			LINN OPERATING, INC.	LINN OPFRATING INC	LINN OPERATING. INC.	LINN OPERATING, INC.	LINN OPERATING, INC.	FOREST OIL CORPORATION	LINN OPERATING, INC.	OXY USA INC	LINN OPERATING, INC.	LINN OPERATING, INC. LINN OPERATING INC			LINN OPERATING, INC.	FOREST OIL CORPORATION	COG OPERATING LLC	REEF EXPLORATION, L.P.	REEF EXPLORATION, L.P.	REEF EXPLORATION, L.P.	HARVARD PETROLEUM COMPANY, LLC	TLT SWD, LLC	TLT SWD, LLC	TLT SWD, LLC	TLT SWD, LLC	REEF EXPLORATION, L.P.	REEF EXPLORATION, L.P.	REEF EXPLORATION, L.P. BEEE EXPLORATION 1 P		CUG FRUDUCTION, LLC REEF EXPLORATION, L.P.
FID Shape	0 Point	1 Point	2 Point	3 Point	4 Point	5 Point	6 Point	7 Paint	8 Point	9 Point	10 Point	11 Point	12 Point	13 Point	14 Point	15 Point	10 POINT	T/ Point	18 Point 10 Point		20 POINT	21 Point	22 FOINT	24 Point	25 Point	26 Point	27 Point	28 Point	29 Point	30 Point	31 Point	32 Point	33 Point	as point	36 Point	37 Point	38 Point	39 Point	40 Point	41 Point	42 Point	43 Point	44 Point	45 Point	46 Point	47 Point	48 Point	49 Point	50 Point 51 Point		53 Point

e **1**

New (Not drilled or compl)	Active	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)	New (Not drilled or compl)
	660 E	1955 W	380 W	660 E	2218 W	2310 E	150 W	528 E	2378 E	2277 W	490 W	795 W	2005 E	1720 W	1670 W	1770 W	1353 W	1403 W	1885 E	1310 W	1410 W	1090 E	1360 W
715 S	1709 5	590 N	590 N	330 S	634 N	190 S	2160 N	713 S	334 N	610 N	941 N	200 S	200 N	200 N	200 N	200 N	171 S	176 S	150 N	200 N	200 N	5 S	200 N
31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E	31E
23 22.05	23 22.05	26 22.0S	26 22.0S	36 22.0S	25 22.0S	36 22.0S	25 22.0S	23 22.0S	26 22.0S	26 22.0S	26 22.0S	36 22.0S	1 23.0S	2 23.0S	2 23.0S	2 23.0S	36 22.0S	36 22.0S	25 22.0S	1 23.0S	1 Z3.0S	36 22.05	1 23.05
	-103.742262 3001537340	-103.750815 3001539436	-103.755941 3001539437	-103.725133 3001539683	-103.7329 3001541031	-103.730501 3001541298	-103.739638 3001541459	-103.741833 3001541573	-103.747855 3001541600	-103.749768 3001541636	-103.755594 3001541803	-103.737402 3001542082	-103.729506 3001542655	-103.751586 3001542895	-103.751749 3001542896	-103.751424 3001542897	-103.735586 3001543027	-103.735423 3001543028	-103.729083 3001543184	-103.735722 3001543592	-103.735397 3001543593	-103.726531 3001543670	-103.73556 3001543889
32.371655	32.374387	32.368	32.368038	32.34149	32.367955	32.341126	32.363769	32.371653	32.368724	32.367949	32.367071	32.341179	32.34005	32.340103	32.340106	32.340101	32.341093	32.341106	32.36928	32.340073	32.340072	32.340602	32.340073
FEDERAL 23 004	FEDERAL 23 006	FEDERAL 23 007H	FEDERAL 23 011H	LIVINGSTON RIDGE 36 STATE 004H	NEFF 25 FEDERAL 005H	BULTACO STATE 002H	NEFF 25 FEDERAL 009H	FEDERAL 26 012H	FEDERAL 26 013H	FEDERAL 23 013H	FEDERAL 23 012H	ARK 36 STATE 001H	TOMB RAIDER 1 FEDERAL 001H	BELLOQ 2 STATE 002H	BELLOQ 2 STATE 005H	BELLOQ 2 STATE 006H	ARK 36 STATE 002H	ARK 36 STATE D03H	NEFF FEDERAL 006H	TOMB RAIDER 1 12 FEDERAL 061H	TOMB RAIDER 1 FEDERAL 004H	BULTACO STATE 003H	TOMB RAIDER 1 12 FEDERAL 062H
OXY USA INC	UXY USA INC	OXY USA INC	DXY USA INC	COG OPERATING LLC	DXY USA INC	COG OPERATING LLC	OXY USA INC	DXY USA INC	OXY USA INC	OXY USA INC	OXY USA INC	DEVON ENERGY PRODUCTION COMPANY, LP	OXY USA INC	DEVON ENERGY PRODUCTION COMPANY, LP	DEVON ENERGY PRODUCTION COMPANY, LP	COG OPERATING LLC	DEVON ENERGY PRODUCTION COMPANY, LP						
54 Point	55 Point	56 Point	57 Point	58 Point	59 Point	60 Point	61 Point	62 Point	63 Point	64 Point	65 Point	66 Point	67 Point	68 Point	69 Point	70 Point	71 Point	72 Point	73 Point	74 Point	75 Point	76 Point	77 Point

. 1

7	Map Legend							
Tankless Fed #2H Water Transfer Route	Route							WEE
Desce data 2017 Time & Constantian Dore Author: Why Time AirDonald		0	1.25	2.5	5	7.5	10 Miles	Ś

7	Map Legend							N
Tankless Fed #2H To Malaga II Brine	Route							WEEE
Date: 4/3/2017 E.3 Use A visitor is a low of visitor Whythe NetDonald State: New Neuro Constraints of the low of the		0	0.5	1	2	3	4 Miles	Ś

State of New Mexico ARTESIA DISTRICT_{Submit} Original

Energy, Minerals and Natural Resources Department SEP 1 1 2017 to Appropriate District Office

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

RECEIVED

GAS CAPTURE PLAN

Date: 4/7/2017

 \boxtimes Original

Operator & OGRID No.: COG Production LLC, OGRID 229137

□ Amended - Reason for Amendment:

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility - Name of facility

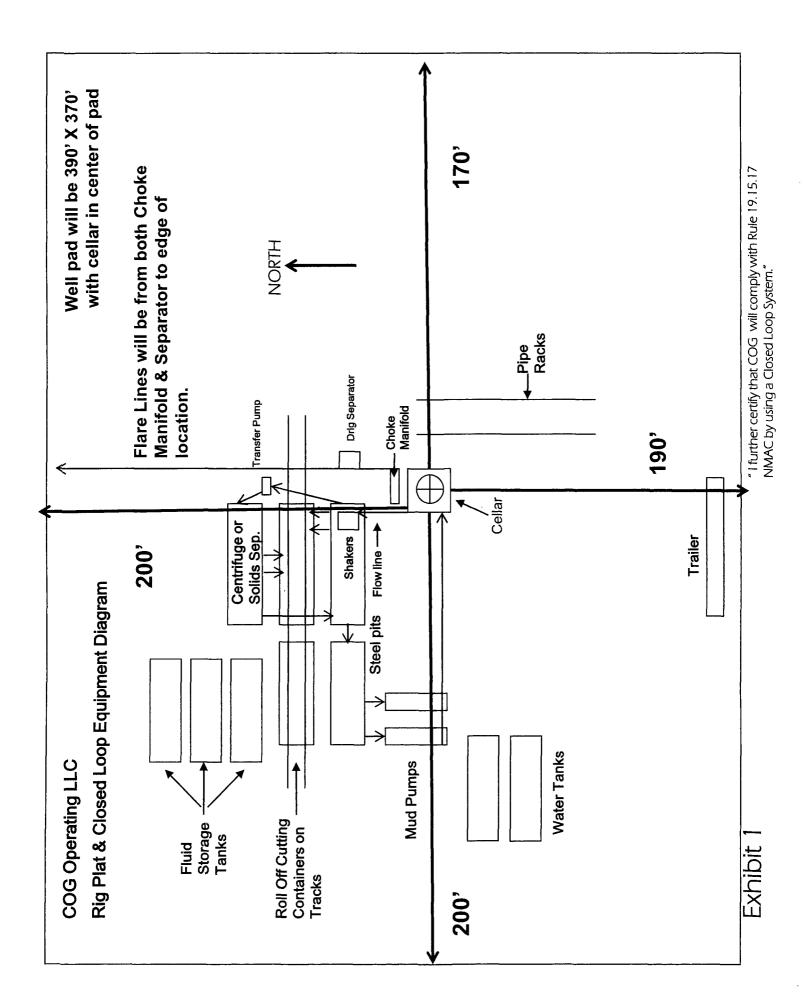
The well(s) that will be located at the production facility are shown in the table below.

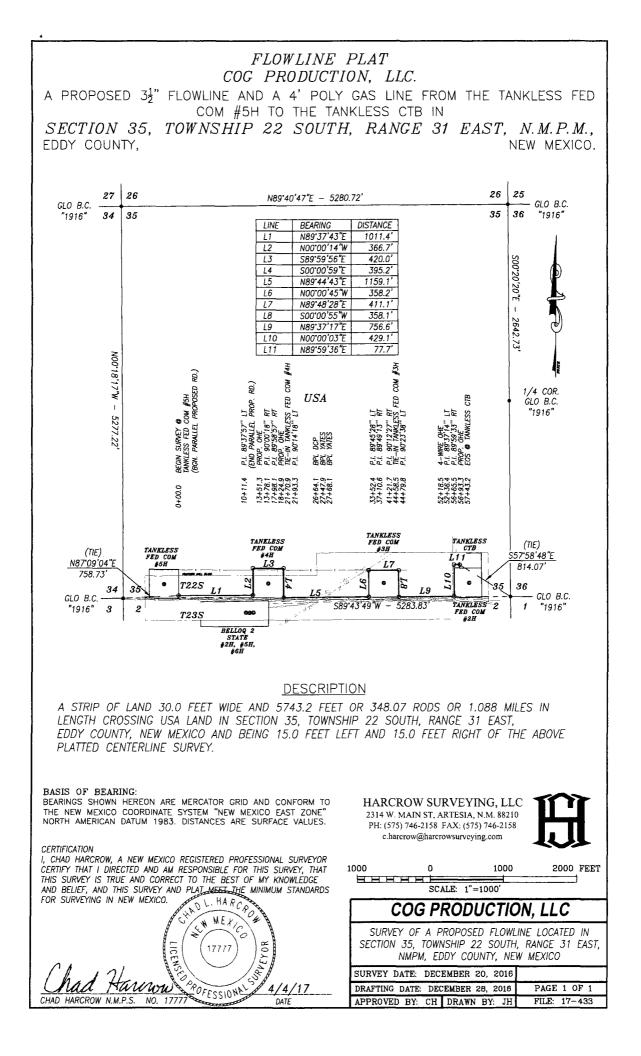
Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Fankless Fed Com 2H	30-015	P-35-228-31E	190° USE & 560° UTE	656 MMCED		Gas will connect to a proposed C1B in Sec35, 1228, R31F

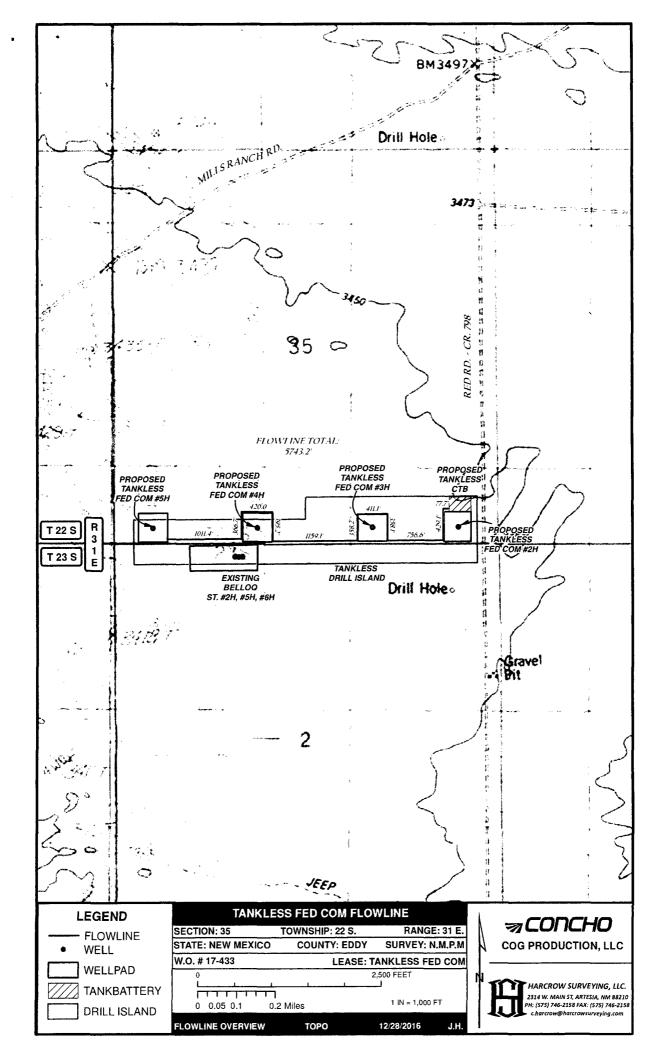
Gathering System and Pipeline Notification

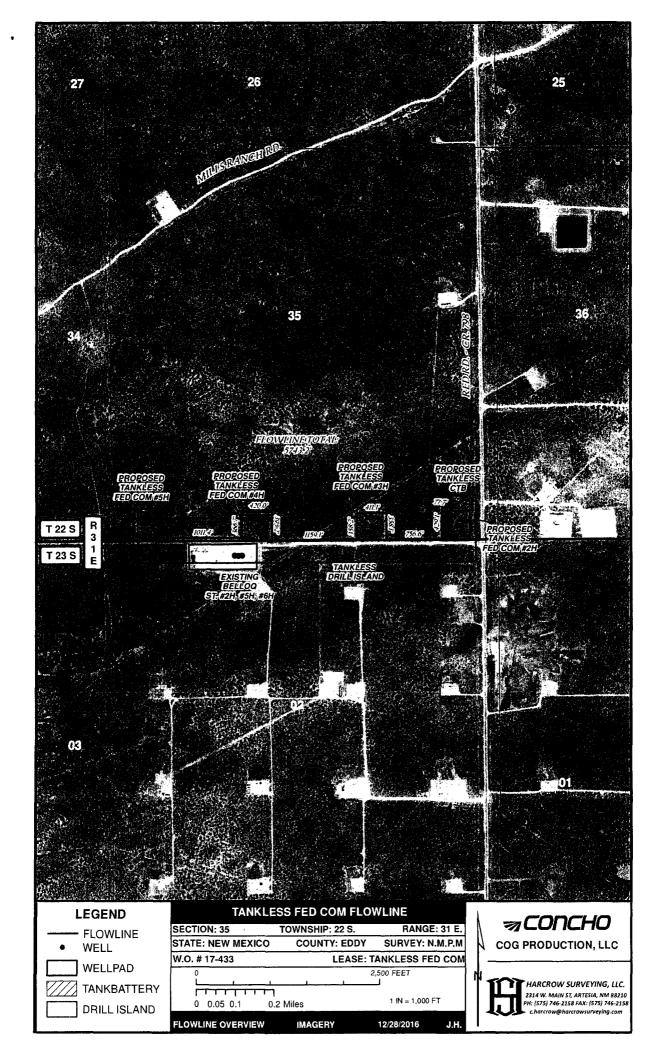
Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated to <u>DCP</u>, and will be connected to <u>Eunice low/high</u> pressure gathering system located in <u>Lea</u> County, New Mexico. It will require <u>0' to an undetermined amount of feet</u> of pipeline to connect the facility to low/high pressure gathering system. <u>COG Operating LLC</u> provides (periodically) to <u>DCP</u> a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, <u>COG Operating LLC</u> and <u>DCP</u> have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at <u>Eunice</u> Processing Plant located in <u>Sec 3 Twn, 21S Rng, 36E, Lea</u> County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

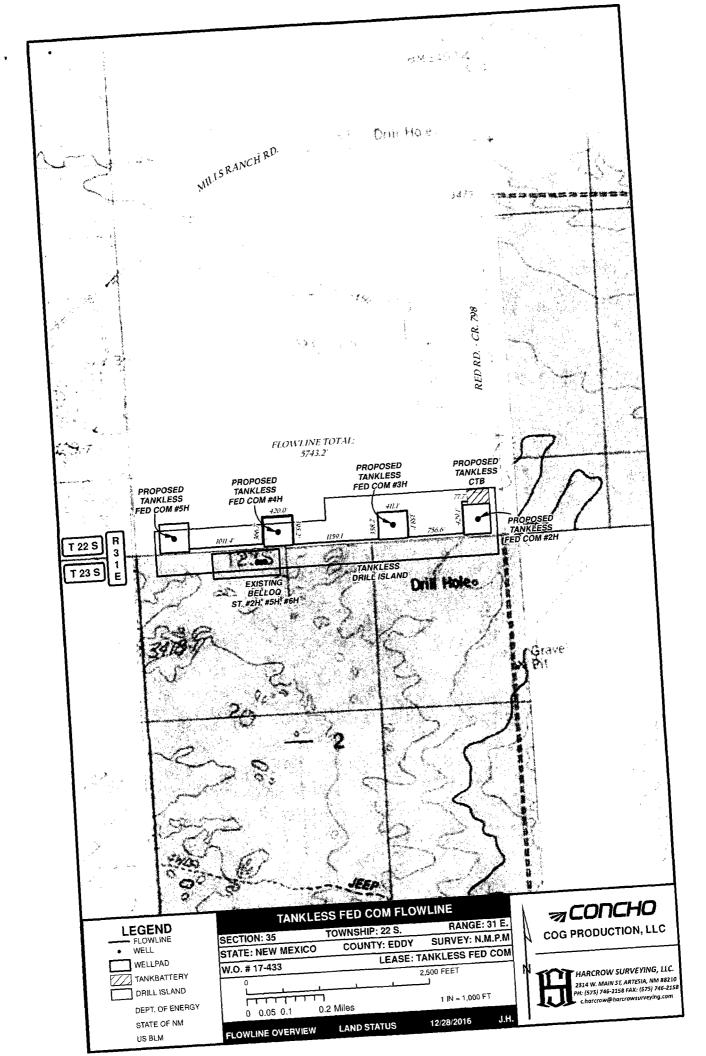
Flowback Strategy

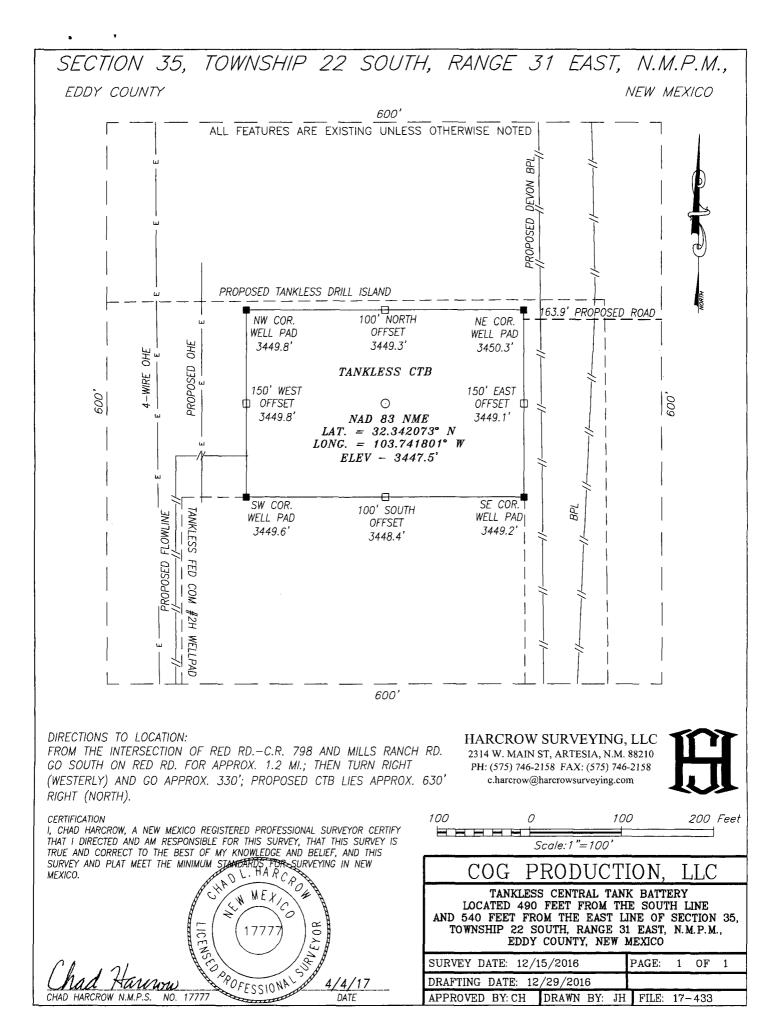

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>Gas Transporter</u> system at that time. Based on current information, it is <u>Operator's</u> belief the system can take this gas upon completion of the well(s).

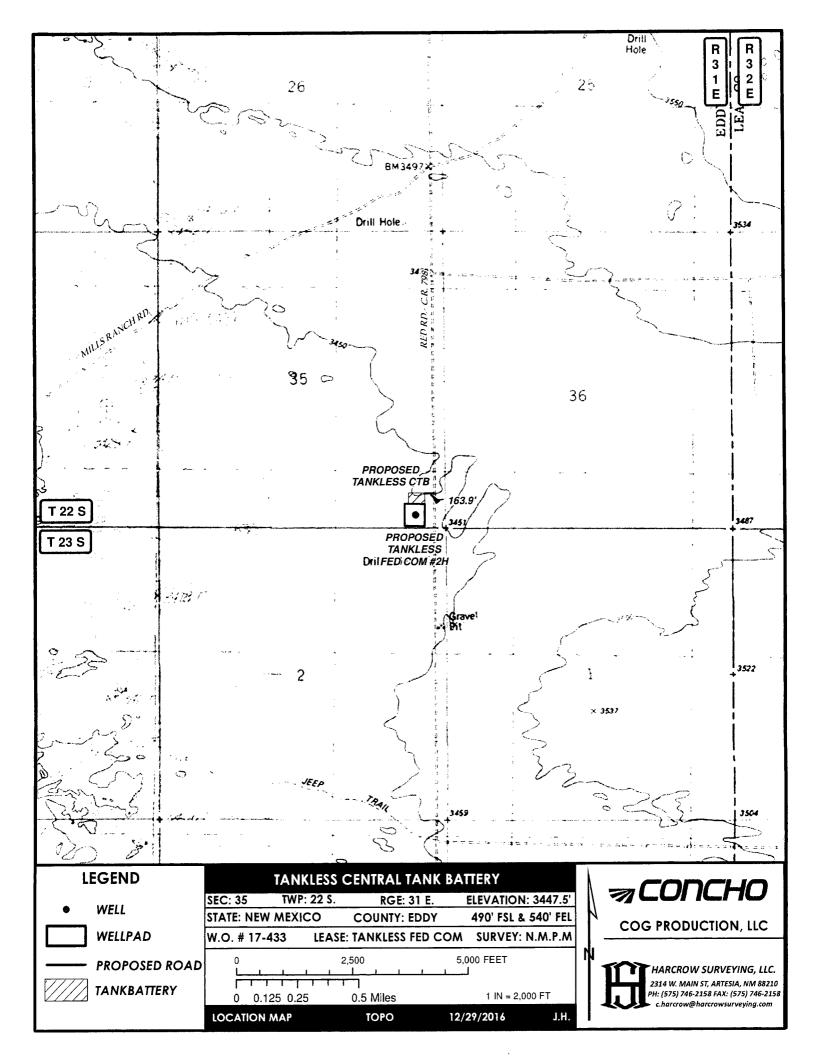

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

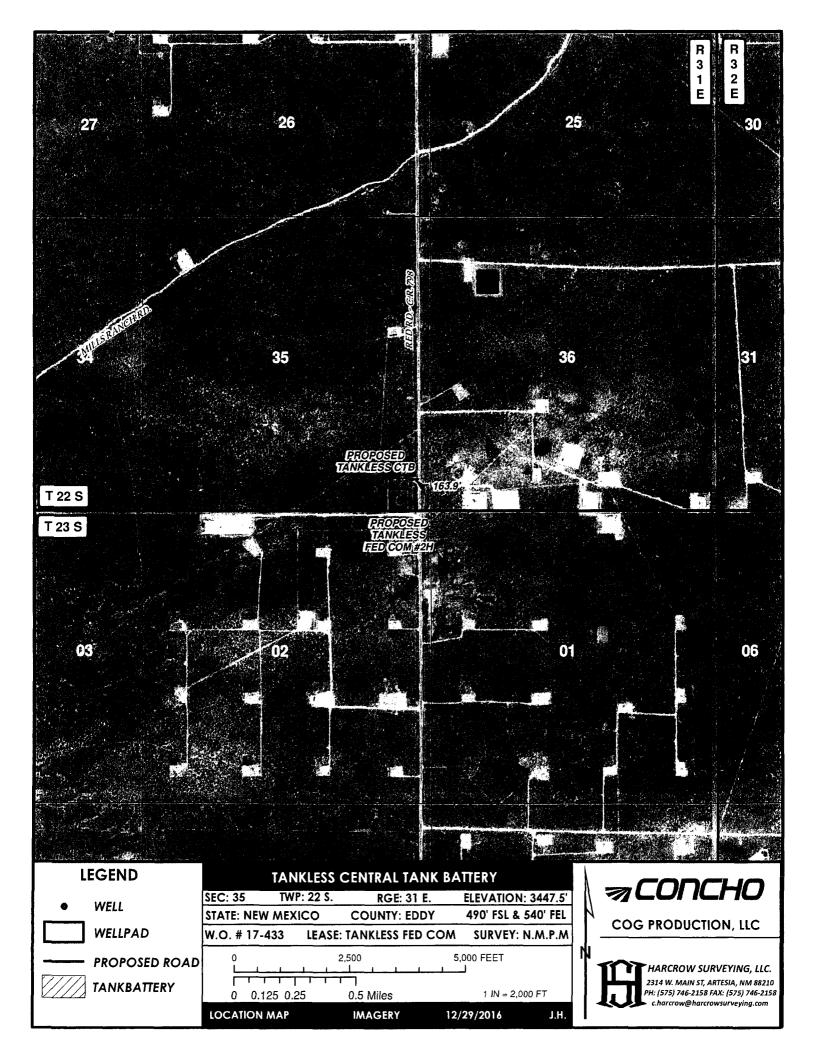

Alternatives to Reduce Flaring

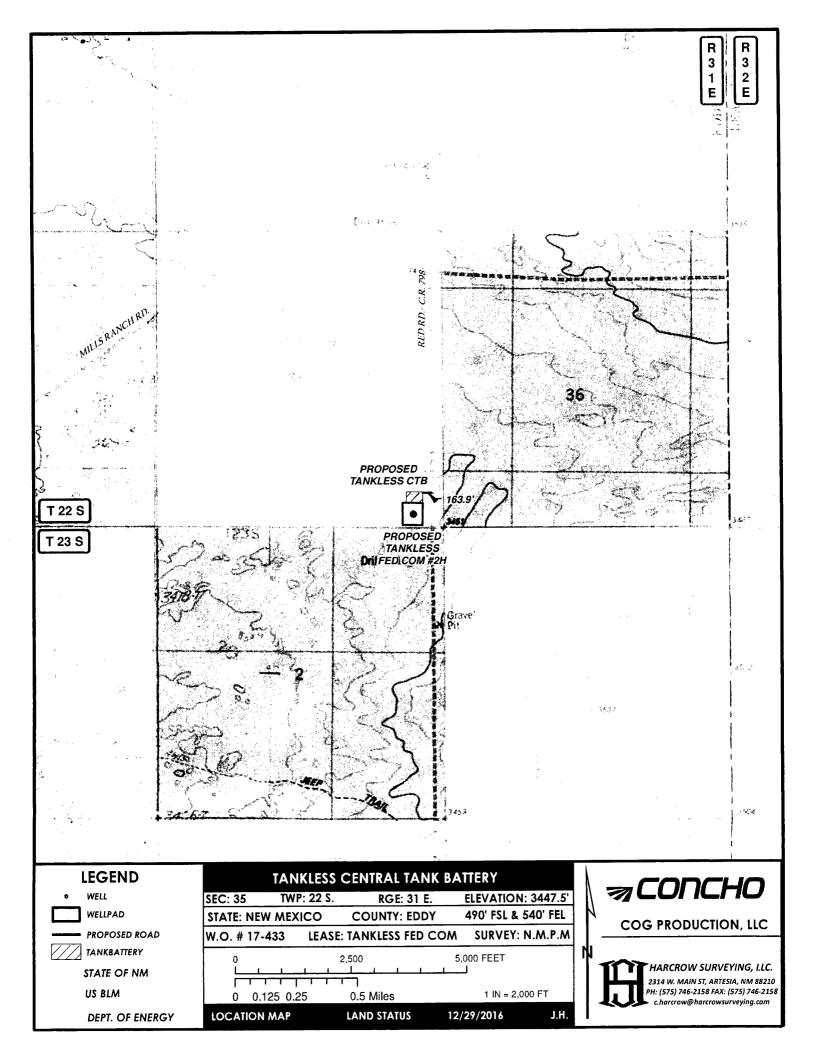

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

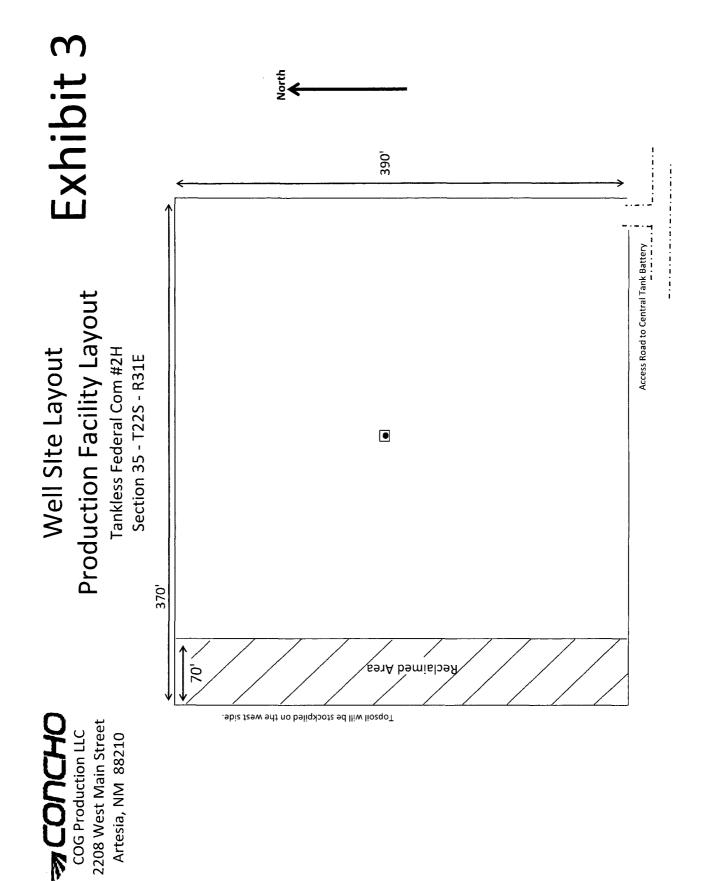

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines











Surface Use Plan COG Production LLC Tankless Federal Com #2H SHL: 190' FSL & 560' FEL UL P Section 35, T22S, R31E BHL: 2440' FSL & 380' FEL UL I Section 26, T22S, R31E Eddy County, New Mexico

OPERATOR CERTIFICATION

I hereby certify that I, or persons under my direct supervision, have inspected the drill site and access road proposed herein; that I am familiar with the conditions that presently exist; that I have full knowledge of State and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or COG Production LLC, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements. Executed this $\underline{\mathcal{T}^{+h}}$ day of $\underline{APR_{ILL}}$, 2017.

Signe

Printed Name: Mayte Reyes Position: Regulatory Analyst Address: 2208 W. Main Street, Artesia, NM 88210 Telephone: (575) 748-6945 E-mail: <u>mreyes1@concho.com</u> Field Representative (if not above signatory): Rand French E-mail: <u>rfrench@concho.com</u>

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

PWD disturbance (acres):

a * *

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type: Injection well number: Assigned injection well API number? Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: Underground Injection Control (UIC) Permit? UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

PWD disturbance (acres):

Injection well name:

Injection well API number:

PWD disturbance (acres):

⇒ÁFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB000860

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

