Schlumberger

PS Platform

Interpretation Results - Final Report

Client:

Cimarex Energy Company

Well:

Adrianne 6 Federal #1

Field:

Chosa Draw

County:

Eddy, New Mexico

API:

30-015-34319

Log Date: 7-Apr-2017

Analyst:

Leonid Kolomytsev

Daniel Amyotte

Casey Chadwick

Production logging with confidence

All interpretations are opinions based on inferences from electrical or other measurements and we cannot, and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretations made by any of our officers, agents or employees.

These interpretations are also subject to Clause 4 of our General Terms and Conditions as set out in our current Price Schedule.

Schlumberger

Log	ging	Objective:
	JJ	

Flow contribution from each perforation.

Well Bore Information:

Production Tubing: 2-3/8" 4.7# L-80 @ 8399.5' MD

Production Casing: 5-1/2" 17# P-110 @ 12235' MD

Perforations: 6 Stages / 48 Perforations Clusters

Correlation: by Field Engineer to Haliburton Radial Cement Bond Log dated 02-Mar-2006.

Logging Tool: Standard PSP-DEFT w/ 2.25" FBS on Digital Slickline (DSL)

General Logging Procedure:

RU & RIH w/ Gauge Ring. Report Tag Depth. ROH.

RU & RIH w/ PSP. Record Main Flowing Passes at variable logging speeds (based on well conditions) from Top Log Interval (TLI) to Bottom Log Interval (BLI).

Record Main Station Stops (at least 2 minutes each) between perforations, stages, major changes in flow regime, or as directed by client or production log analyst.

Record any addition Flowing Passes and/or Station Stops as needed or requested.

ROH. Delivery data to interpreter.

Schlumberger

PL Tool Diagram:

			7	Tool St	ring		
No	Tool	Tool S/N	Length (ft)	Weight (lbm)	Diam. (in)	Sensors (ft) Cumulative Offsets	Offset (ft)
1	DSL125				0.15		
2	DIH	001	0.82	4.85	1.69		
3	XOverG oGoBox 1.6875	004	0.44	1.50	1.69		
4	ESB 1.6875 5ft	001	4.95	70.55	1.69		
5	ESB 1.6875 5ft	002	4.95	70.55	1.69		
6	ESB 1.6875 5ft	003	4.95	70,55	1.69		
7	вмс	001	2.07	10.80	1.69	DSL.DHTE (-26.25) DSL.BMCTemp (- 25.93) DSL.SHCK (-25.76) DSL.FORCE (-25.76) DSL.DRFT (-25.76)	0.00 -1.15 0.00 0.00 -0.98
8	DCC	004	3.54	18.08	1.69	DSL.GR (-24.09) DSL.CCLN (-22.05)	-2.85 -0.82
9	DCR		1.98	13.23	1.69		
10	DPI		1.25	6.83	1.69		
11	PBMS-A		8.17	33.95	1.69	PBMS.WELL_T (- 11.34) PBMS.SAPPHIRE_P (- 11.24)	-1.50 -1.40
12	PGMC- B		4.76	23.37	1.69	PGMC.ACCELERO_IN C (-8.29) PGMC.WFDE_COMP (-8.29)	-3.20 -3.20
13	PFCS-A		5.09	19.71	1.69	PFCS.RELATIVE_BEA RING (-3.48) PFCS.CALIPER_Y (- 1.90) PFCS.SPINNER_FRE Q (-1.90) PFCS.CALIPER_X (- 1.90) PFCS.PROBE_AVG_C LK_CPS (-1.50) PFCS.PROBE_AVG_B UBBLE_CPS (-1.50)	-3.48 -1.90 -1.90 -1.90 -1.50 -1.50

	Total	42.97	343.97	Zero @ Bottom
 %	DSL	42.97	343.97	
2	Pyro			
12	Mech / Others			
	Mobile Weight			

Surface Equipment								
Unit	ASEP							
Computer	Laptop							
DTR	DTR-A							
PCE	PCE-Generic							

	,
No	Sketch
1	
2	73
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	P G M C
13	

Schlumberger

Interpretation Results: Surface Flowrate Results - Stage

				(bpd)	(%)	(%)	(%)
8446	8641	30		100	3.4%		17.9%
9038	9244	180		65	20.3%		11.6%
9294	9510	45		100	5.1%		17.9%
9694	9896	325		100	36.7%		17.9%
9952	10146	50		145	5.6%	**	25.9%
10196	10304	255		50	28.8%	4-	8.9%
	9294 9694 9952	9294 9510 9694 9896 9952 10146	9294 9510 45 9694 9896 325 9952 10146 50	9294 9510 45 9694 9896 325 9952 10146 50	9294 9510 45 100 9694 9896 325 100 9952 10146 50 145	9294 9510 45 100 5.1% 9694 9896 325 100 36.7% 9952 10146 50 145 5.6%	9294 9510 45 100 5.1% 9694 9896 325 100 36.7% 9952 10146 50 145 5.6%

Schlumberger

Interpretation Results: Surface Flowrate Results - Detail

				Gas	Oil	Water	Gas	Oil	Wate
Formation	Stage	Perfo	rations	(mcfpd)	(bpd)	(bpd)	(%)	(%)	(%)
		8446	8447	trace		0	trace		0.0%
	[8497	8498	trace		0	trace		0.0%
	1	. 8523	8524	trace		0	trace		0.0%
Wolfcamp	6	8542	8543	10		0	1.1%		0.0%
woncamp	" [8576	8577	10		20	1.1%		3.6%
	1 [8599	8600	10	**	30	1.1%		5.4%
	[8617	8618	0		20	0.0%		3.6%
	<u>[</u>	8640	8641	0		30	0.0%		5.4%
		9038	9039	155		0	17.5%		0.0%
		9049	9050	0		0	0.0%		0.0%
		9069	9070	15		15	1.7%		2.7%
	1 1	9091	9092	trace		20	trace	**	3.6%
Wolfcamp	5	9142	9143	0		10	0.0%		1.8%
		9159	9160	10	**	10	1.1%		1.8%
		9183	9184	trace	••	0	trace		0.0%
		9215	9216	trace		0	trace		0.0%
		9243	9244	trace		10	trace		1.8%
		0204	0205	1 40 1			4.40/		1 0 000
		9294	9295	10		0	1.1%		0.0%
		9313	9314	0		10	0.0%		1.8%
	1 1	9335	9336	10		10	1.1%		1.8%
187 - 15	l .	9364	9365	0		0	0.0%		0.0%
Wolfcamp	4	9387 9409	9388 9410	0		10	0.0%		1.8%
	1 1	9409	9410	10		10 10	1.1% 0.0%		1.8%
	1 1	9425	9468	15		20	1.7%		3.6%
) h	9508	9510	0		30	0.0%	**	5.4%
		9300	3310	1 0		30	0.076	**	3.4%
	1	9694	9695	210		0	23.7%		0.0%
	} }	9713	9714	45		30	5.1%	***	5.4%
	1 1	9739	9740	25		10	2.8%	**	1.8%
111 16	1 , 1	9763	9764	10		20	1.1%		3.6%
Wolfcamp	3	9821	9822	25		0	2.8%		0.0%
	1 1	9844	9845	10		20	1.1%		3.6%
	i t	9868	9869	trace		10	trace		1.8%
	1 1	9895	9896	0		10	0.0%		1.8%

continued on next page

Schlumberger

Interpretation Results: Surface Flowrate Results - Detail (Continued)

				Gas	Oil	Water	Gas	Oil	Water
Formation	Stage	Perforations		(mcfpd)	(bpd)	(bpd)	(%)	(%)	(%)
									1
		9952	9953	trace		10	trace	**	1.8%
		9981	9982	10		0	1.1%		0.0%
		10010	10011	15		20	1.7%	•	3.6%
Cisco Canyon	2	10037	10038	10		10	1.1%		1.8%
	2	10061	10062	0	*-	20	0.0%	**	3.6%
		10091	10092	15		40	1.7%		7.1%
		10114	10115	trace		30	trace		5.4%
		10145	10146	0		15	0.0%		2.7%
	,	10196	10197	240		0 1	27.1%		0.00/
	1			 					0.0%
		10223	10224	10		0	0.0%		0.0%
Cisco Canyon		10236	10237	0		10	0.0%		1.8%
		10263	10264	15	**	20	1.7%		3.6%
	[10291	10293	0		10	0.0%		1.8%
		10302	10304	0		10	0.0%		1.8%
Total				······································					

Schlumberger

Interpretation Remarks

This interpretation is based on PSP Production Log data recorded on 07-Apr-2017 in memory on slickline. The Field Engineer (FE) is Blake Melcher. Four down and up main logging passes were recorded over the main logging interval under flowing conditions. Color coding is as follows: D1/U1-Red, D2/U2-Dk Blue, D3/U3-Green, D4/U4-Lt Blue, D5-Grey (correlation pass). Down pass curves have solid coding. Up pass have dashed coding. Station stops are presented as circles at their respective depths.

Main logging passes are correlated by Field Engineer to Haliburton Radial Cement Bond Log dated 02-Mar-2006. Top Log Interval (TLI) is observed @ 8300' MD. Bottom Log Interval (BLI) is observed @ 10434' MD.

EOT is observed on the averaged X-Y caliper measurement (C1C2) @ 8408" MD. The average X-Y caliper measurement (C1C2) is consistent and agrees with nominal ID. A nominal ID of 4.892" is used in the interpretation calculations.

Downhole pressure (WPRE) is stable during the main passes. Down and Up passes are used in the interpretation calculations.

Downhole temperature (WTEP) trends are repeatable. Down pass temperatures are used preferentially in the interpretation calculations.

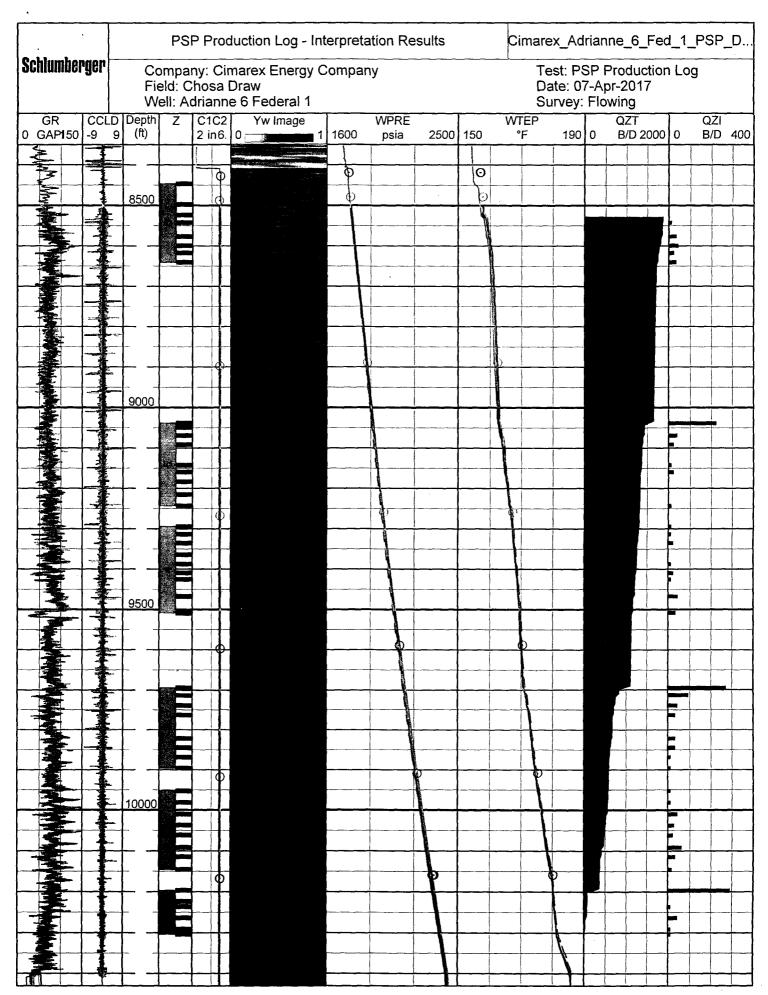
All DEFT (electrical) probes are functioning properly and the basis of the water holdup (Yw) image. DEFT (electrical) probe measurements are most consistent on down passes which are used preferentially in the interpretation calculations. DEFT (electrical) probes provide a confident measurement of water holdup, independent of PVT information, by counting the hydrocarbon bubbles during a dominate water flow regime or water droplets during a dominate gas or oil flow regime.

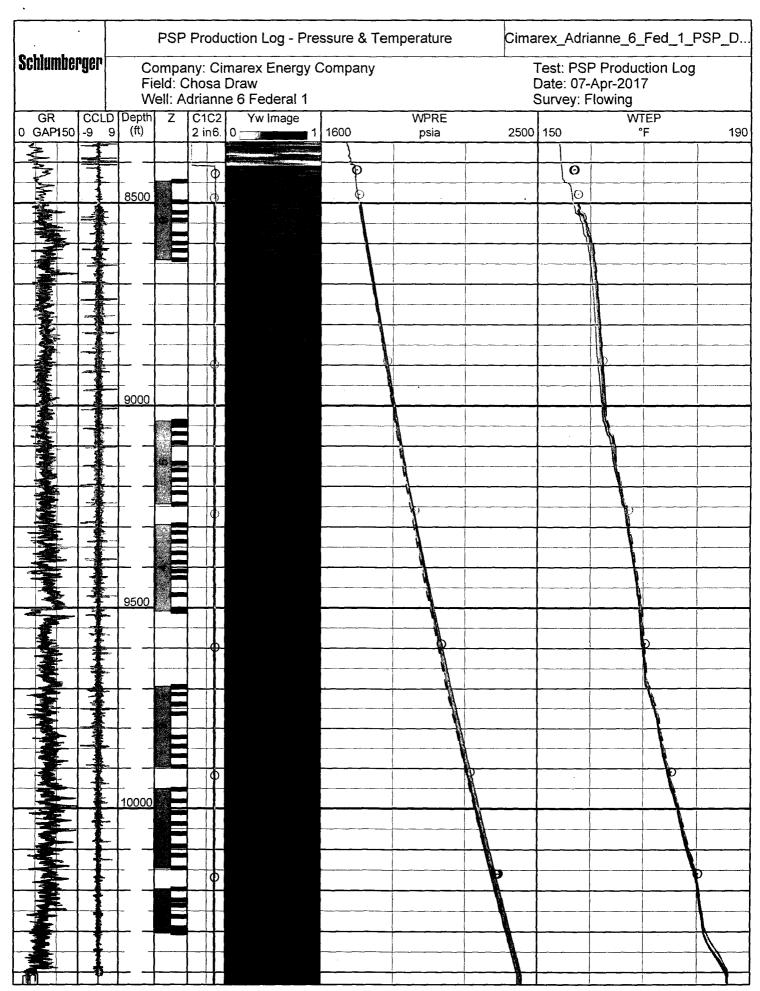
The gradiomanometer density measurement (WFDE) is confident and used in the interpretation calculations.

Spinner response is consistent and provides a confident slope and liquid threshold for downhole in-situ spinner calibrations. All spinner passes are used in the spinner calibrations and apparent velocity calculations.

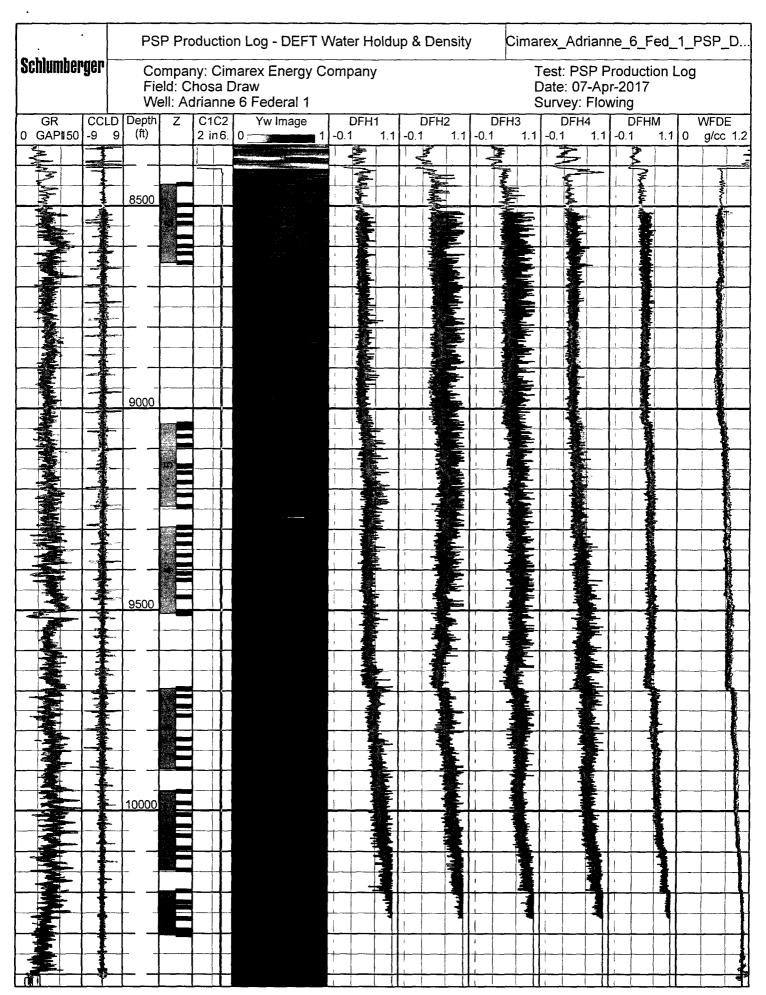
Total downhole rates (QZT) are calculated using the apparent spinner velocity, a nominal casing ID, averaged water holdup (Yw), fluid density (WFDE) and an established water-hydrocarbons flow model. Rates are calculated downhole and presented in downhole barrels on the log snapshots. Calculated downhole rates are then converted to surface rates at standard conditions and presented in the above table.

PVT Information: Oil gravity of 52.2 API, Gas gravity of 0.6824 s.g. Water salinity 52257 ppm was provided by Cimarex .


A report of "trace" gas production is based on temperature, water holdup and density but does not appear to be of sufficient volume to observed on the spinner. Therefore, "trace" gas suggests minimal or negligible gas production, if any, into the wellbore.


Some interference between the logging tool and End of Assy is observed near the top perforation interval. Unable to get contribution for the top perforation interval. Gray shading is used in the table above to indicate this region.

Overall, data quality is high and the downhole environment is stable resulting in a high level of confidence in gas/water interpretation calculations and results.


Leonid Kolomytsev, Production Engineer Schlumberger, Houston, TX, USA

Casey Chadwick, Production Logging Domain Champion, North America Wireline, Houston, TX, USA

PSP Production Log - Spinner & Cable Velocity Cimarex_Adrianne_6_Fed_1_PSP_D.. Schlumberger Test: PSP Production Log Company: Cimarex Energy Company Field: Chosa Draw Date: 07-Apr-2017 Well: Adrianne 6 Federal 1 Survey: Flowing CCLD Depth C1C2 SPIN SCVL GR Yw Image (ft) 0 GAP150 -9 9 2 in6. 0 -40 20 -400 ft/min 400 rps φ θ φ 8500 マレイン パップロトライント 14 1115 3 111 1711 771 11 111) ||(141 3 9000 1 WASHINGTON AND AND ADDRESS OF THE PARTY OF T 111 T 911 (3., Ф <u> [</u>]]] 111 11 111 111 9500 1 Ш 111 111 dil Θ ΦШ 1111 1111 10000 (1)) 7111 111 1111 Φ||| 5 141 $d\mathbf{n}$ 111 3133

PSP & FSI Interpretation Mnemonics

Flow Scanner Caliper CALI FSI CCLC/CCLD Casing Collar Locator

CVEL/SCVL Cable Velocity

DEFT Relative Bearing Probe 1 D1RB

FSI Vertical DEFT Bubble Count Array (0-Bot, 5-Top) DFBFx_FSI (0-5)

PSP Mean DEFT Bubble Count **DFBM**

DFBx (1-4) PSP Individual Probe DEFT Bubble Count

DFHFx_FSI (0-5) FSI Vertical DEFT Water Holdup Array (0-Bot, 5-Top)

DFHM PSP Mean DEFT Water Holdup

PSP Individual Probe DEFT Water Holdup DFHx (1-4)

GHBFx_FSI (0-5) FSI Vertical GHOST Bubble Count Array (0-Bot, 5-Top)

PSP Mean GHOST Bubble Count GHBM2

PSP Individual Probe GHOST Bubble Count GHBx (5-8)

FSI Vertical GHOST Gas Holdup Array (0-Bot,5-Top) GHHFx_FSI (0-5)

GHHM2 PSP Mean GHOST Gas Holdup

PSP Individual Probe GHOST Gas Holdup GHHx (5-8)

Gamma Ray GR

HTEN Head Tension/Compression **MWFD** Pressure Derived Density

PFC1 PSP Caliper 1 (X) PSP Caliper 2 (Y) PFC2 FSI Relative Bearing RB FSI

Full Bore Spinner / Inline Spinner SPIN/SPI1

SPIFx_FSI (0-4) FSI Vertical Micro-Spinner Array (0-Bot, 4-Top)

WFDE Gradio Well Fluid Density

WPRE Well Pressure Well Temperature WTEP

Color Coding is typically the same for all the curves that belong to the same pass RED - Pass One / Dk Blue - Pass Two / Green - Pass Three / Lt Blue - Pass Four

VAFV/VAPP Apparent fluid velocity (gas, water & oil)

Interval Gas, Oil, Water Rates (down hole unless stated otherwise) QGI, QOI, QWI Cumulative Gas, Oil, Water Rates (down hole unless stated otherwise) QGT, QOT, QWT

Tool Mnemonics List

DEFT Digital Fluid Entry Tool (Resistivity Probes) Gas Holdup Optical Sensor Tool (Optical Probes) **GHOST**

FSI Flow Scanner Imager **PSP Production Services Platform**

PBMS Production Basic Measurement Sonde (Temperature, Pressure, CCL, GR)

Production Compression Measurement Sonde **PCMS** Production GradioManometer Carrier (Density) **PGMC**

Production Flowmeter Caliper Sonde (Holdup, Caliper, Full Bore Spinner) **PFCS**

PILS Production In-Line Spinner