Fo J	Form 3160-5 June 2015) DE	UNITED STATES	TERIOR		FORM APPROVED OMB NO. 1004-0137 Expires: January 31, 2018					
	SUNDRY	5. Lease Se NMNM	rial No. 045273							
	Do not use thi abandoned wel	6. If Indian	6. If Indian, Allottee or Tribe Name							
-	SUBMIT IN 1	7. If Unit o 891008	r CA/Agreement, Name and/or No. 36550							
_	1. Type of Well Oil Well 🛛 Gas Well 🗂 Oth	CC 8. Well Nam BOGLE	ne and No. FLATS UNIT 4 3/7/78							
	2. Name of Operator MEWBOURNE OIL COMPAN	Y E-Mail: jlathan@me	ACKIE LATHANESIO	9. API Wel 30-015	I No. -10576-00-S1					
	3a. Address P O BOX 5270 HOBBS, NM 88241		3b. Phone No. (include area code) Ph: 575-393-5905	10. Field ar INDIAN	nd Pool or Exploratory Area NBASIN-STRAWN - 4P.SO 73690					
-	4. Location of Well (Footage, Sec., T.	C, R., M., or Survey Description)		11. County	or Parish, State					
	Sec 10 T22S R23E SENW 21	00FNL 1650FWL		EDDY	COUNTY, NM					
_	12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT, OR OTHER DATA									
	TYPE OF SUBMISSION		TYPE OF	ACTION						
	Notice of Intent	Acidize	Deepen	Production (Start/Re	esume) 🔲 Water Shut-Off					
	Notice of finent	Alter Casing	Hydraulic Fracturing	Reclamation	Well Integrity					
	Subsequent Report	Casing Repair	New Construction	Recomplete	Other					
	Final Abandonment Notice	Change Plans	Plug and Abandon	Temporarily Abando	on					
		Convert to Injection	🛛 Plug Back	Water Disposal						
	An and the site is ready for fi Mewbourne Oil Company requestions of the site is ready for fi Office and the site is ready for first office and the site is ready for first office and the site of the	andonment Notices must be filed inal inspection. Jests approval to make the S Fadaral Unit 10/9 Y1FE #	following changes:	ing reclamation, have been c	RECEIVED					
	 3) Mill window in casing @ 156 Sec. 9, T22S, R23E. 4) Set & cmt tapered 5 1/2" & 4 5) Change nool to: Indian Basi 	65' and drill lateral in Yeso 4 1/2" production csg string in Yeso (33690)	formation w/BHL @ 1980' F g from surface to TD.	NL & 100' FWL /DIST	'AUU ₩ # 2010 RICT II-ARTESIA O.C.D.					
	Please see attachments conta drilling plan, and casing and ce	ining C-102, plug-back pro ement information.	cedure, proposed wellbore o	liagram, REE ATT CONDITION	ACHED FOR S OF APPROVAL					
	14. I hereby certify that the foregoing is	true and correct. Electronic Submission #42 For MEWBOURN mmitted to AFMSS for proce	7574 verified by the BLM Wel NE OIL COMPANY, sent to the essing by ZOTA STEVENS on	I Information System Carlsbad 07/18/2018 (18ZS0132SE	E)					
_	Name (Printed/Typed) KLAY H K	IRKES	Title ENGINE	ER						
=	Signature (Electronic S	ubinission)	Date 07/17/20	018						
_		THIS SPACE FOR	R FEDERAL OR STATE	OFFICE USE						
	Approved By_ZQTA STEVENS				Date 07/18/2018					
Co cer wł	onditions of approval, if any, are attached rtify that the applicant holds legal or equ hich would entitle the applicant to conduc	 Approval of this notice does no itable title to those rights in the st ct operations thereon. 	ot warrant or ubject lease Office Carlsbac		·					
	itle 18 U.S.C. Section 1001 and Title 43 I	U.S.C. Section 1212, make it a cr	ime for any person knowingly and	willfully to make to any dep	artment or agency of the United					

¥

A (I A P
8-16-18	RW,

Additional data for EC transaction #427574 that would not fit on the form

32. Additional remarks, continued

Please contact Klay Kirkes with any questions.

TVD of target	1972'	Pilot hole depth	NA
MD at TD:	8737'	Deepest expected fresh water:	225'

Casing Program

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)	· ·		Collapse	Burst	Tension	Tension
7.875"	0'	1615'	5.5"	17	L80	LTC	8.92	10.97	3.07	3.61
7.875"	1615'	8737'	4.5"	11.6	L80	LTC	6.94	8.50	2.57	3.23
BI	LM Minim	um Safety	1.125	1	1.6 Dry	1.6 Dry				
		The second se		1 1	1010	1010				

 Factor
 1.8 Wet
 1.8 Wet

 All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

 Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	L
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Cementing Program

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H20 gal/ sk	500# Comp. Strength (hours)	Slurry Description
Prod.	970	11.9	2.47	10	10	50/50/10 Poz Class C

A copy of cement test will be available on location at time of cement job providing pump times & compressive strengths.

Casing String	TOC	% Excess
Production	0'	25%

Pressure Control Equipment

Variance: None	
	A

BOP installed and tested before drilling which hole?	Size?	System Rated WP	J	Гуре	>	Tested to:
			Annular		X	1500#
			Blin	nd Ram	X	
7 7/8"	7 7/8" 13-5/8" 3M Pipe Ram		e Ram	X	2000#	
			Double Ram			5000#
			Other*			

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.

A variance is requested for the use of a flexible choke line from the BOP to ChokeY Manifold. See attached for specs and hydrostatic test chart.

N Are anchors required by manufacturer?

N A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

• Provide description here: See attached schematic.

Mud Program

De	pth	Туре	Weight (ppg)	Viscosity	Water Loss	
From	То					
1565	8737	FW Gel	8.4	28-34	N/C	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	Visual Monitoring
of fluid?	

Logging and Testing Procedures

Logging, Coring and Testing.
Will run GR/CNL from KOP (') to surface (horizontal well – vertical portion of hole).
Stated logs run will be in the Completion Report and submitted to the BLM.
No Logs are planned based on well control or offset log information.
Drill stem test? If yes, explain
Coring? If yes, explain

Ado	litional logs planned	Interval
X	Gamma Ray	1565' to TD
	Density	
	CBL	
	Mud log	
	PEX	

Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	915 psi
Abnormal Temperature	No

Mitigation measure for abnormal conditions. Describe.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

	H2S is present			
Х	H2S Plan attached			

Other facets of operation

Is this a walking operation? If yes, describe. Will be pre-setting casing? If yes, describe.

Attachments

Directional Plan
Other, describe

Weybourne Oil Company

RE-ENTRY PROCEDURE

Submitted By: K. Kirkes

Well Name: Bogle Flats Fed Unit 10/9 Y1FE #1H

Location: 2100' FNL & 1650' FWL Sec 10, T22S, R23E Eddy Co, NM

Date: 7/13/18

Csg Set: 7630'

PBTD: 7562'

Csg Size: 5 1⁄2" 14# & 15.5# J55

Min ID: 4.825"

Packer Depth: 7044'

Packer Type: Baker Model 'D'

Tbg Size: 3 1⁄2" 9.3# L80 EUE

DV Tool: N/A

Perforations: 7143' - 7306' New Perfs: None

Procedure:

- 1) MIRU well-service rig & rental equipment.
- 2) Kill well w/ 2% KCL water. NU 5M hydraulic BOP.
- 3) Release packer & POOH w/3 1/2" tbg.
- 4) RIH & set 5 1/2" CIBP @ 7130'
- 5) Spot 25 sk Class C cmt plug @ 7130'. WOC & tag plug
- 6) Test csg to 500#.
- 7) Spot 25 sk Class C cmt plug @ 6500'. WOC & tag plug.
- 8) POOH w/tbg.
- 9) ND BOP & ND B-section.
- 10) Weld on 5 1/2" lift sub & pull slips.
- 11) RU WL & chemical cut 5 1/2" csg @ 6160'
- 12) POOH w/cut off 5 1/2" csg.
- 13) NU BOP & RIH w/3 1/2" open-ended.
- 14) Spot 75 sk Class C cmt plug @ 3600'. WOC & tag plug.
- 15) Spot 90 sk Class C cmt plug @ 2200'. WOC & tag plug. POOH.
- 16) PU 8 5/8" 10K# CIBP. TIH & set @ 1580'. Circ hole clean w/FW.
- 17) LD 3 1/2" tbg. ND BOP & install capping flange.
- 18) RDMO well-service rig.
- 19) MIRU drilling rig.
- 20) TIH w/ whipstock. Orient & set whipstock on CIBP @ 1565'.
- 21) Mill window in 8 ⁵/₈" csg. TOOH.
- 22) PU directional tools. Drill curve & lateral according to dir plan.
- 23) Run 5 ½" x 4 ½" tapered csg string & cmt in place. (See attachment for details)
- 24) RDMO drilling rig.

.

Drawing not to scale

. :					
Spitter,	\geq	ENGINEERING & SERVICES	•		
ES E & S NOR 44TH STREET PUS CHRISTI	TH AM	ERICA, INC. IS 78405		PHONE: 361-887-9807 FAX: 361-887-0812 EMAIL: <i>Tim.Cantu@g</i> ates WEB: www.gates.com	s.com
10K C	EME	NTING ASSEMBL	Y PRESSURE T	EST CERTIFICATE	
			7	4/20/3015	
stomer :		AUSTIN DISTRIBUTING	lest Date:	-043015-7	
Noice No. :		500506	Created By:	JUSTIN CROPPER	
			-		
vduct Description:			10K3.548.0CK4.1/1610KFL0	ie/e le	
d 5ittioo 1 :		4 1/16 10K FLG	End Fitting 2 :	4 1/16 10K FLG	
tes Part No. :		4773-6290	Assembly Code :	L36554102914D-043015-7	
Gates E & S the Gates Oi	North	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/O1, Fifth Ec	Test Pressure : that the following h pecification requirem	15,000 PSI nose assembly has been tested nents and passed the 15 minu st pressure 9.6.7 and per Tab	d to ite ble 9
Gates E & S the Gates Oi hydrostatic tes to 15,000 ps	North Ifield F st per / i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t	Test Pressure : that the following h pecification requirem ition, June 2010, Te ict number. Hose bu he working pressure	15,000 PSI nose assembly has been tested nents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9.	d to te ble 9 the
Gates E & S I the Gates Oi nydrostatic tes to 15,000 psi	North ilfield f st per / i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t	Test Pressure : that the following h pecification requirem ition, June 2010, Te ict number. Hose bui he working pressure	15,000 PSI nose assembly has been tested nents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds t per Table 9.	d to te ble 9 the
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi	North ilfield F st per / i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t	Test Pressure : that the following h pecification requirem lition, June 2010, Te lict number. Hose bui he working pressure	15,000 PSI nose assembly has been tested nents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9. PRODUCTION	d to tte ble 9 the
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi uality Manager : ate :	North ilfield F st per / i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t	Test Pressure : that the following h pecification requirem iition, June 2010, Te ict number. Hose bu he working pressure Produciton: bate :	15,000 PSI nose assembly has been tested nents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9. PRODUCTION	d to tte ble 9 the
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North ilfield F i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t QUALITY 4/30/2015 4/30/2015	Test Pressure : that the following h pecification requirem lition, June 2010, Te lict number. Hose bui he working pressure Produciton: bate : Signature :	15,000 PSI nose assembly has been tested hents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9. PRODUCTION 4/30/2018	d to tte ble 9 the
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi uallity Manager : ate : gnature :	North ilfield F i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t QUALITY 4/30/2015 MMAN	Test Pressure : that the following h pecification requirem fition, June 2010, Te ict number. Hose bui he working pressure Produciton: bate : Signature :	15,000 PSI nose assembly has been tester nents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9. PRODUCTION 4/30/2015 Additional Form PTC - 01	d to the ple 9 the Rev.02
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North ilfield F t per / i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t QUALITY 4/30/2015 MJMAN	Test Pressure : s that the following h pecification requirem iition, June 2010, Te ict number. Hose bu he working pressure Produciton: bate : Signature :	15,000 PSI nose assembly has been tested nents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9. PRODUCTION 4/30/2015 Addates FormPTC-01	d to tte ble 9 the Rev.02
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North ilfield F i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t QUALITY 4/30/2015 MMAN	Test Pressure : that the following h pecification requirem iition, June 2010, Te ict number. Hose but he working pressure Produciton: bate : Signature :	15,000 PSI nose assembly has been tester nents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9. PRODUCTION 4/30/2015 Form PTC - 01	d to ite ble 9 the Rev.0 2
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi uallity Manager : ate : gnature :	North ilfield F i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t QUALITY 4/30/2015 MMAN	Test Pressure : that the following h pecification requirem fition, June 2010, Te ict number. Hose but he working pressure Produciton: Date : Signature :	15,000 PSI tose assembly has been tested thents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9. PRODUCTION 4/30/2015 Form PTC - 01	d to the ble 9 the Rev.0 2
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North ilfield F i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t QUALITY 4/30/2015 4/30/2015	Test Pressure : that the following h pecification requirem iition, June 2010, Te ict number. Hose but he working pressure Produciton: bate : Signature :	15,000 PSI nose assembly has been tested nents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9. PRODUCTION 4/30/2015 Additional Form PTC - 01	d to tte ble 9 the Rev.D 2
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North ilfield F i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Eco cordance with this produ minimum of 2.5 times t QUALITY 4/30/2015 4/30/2015	Test Pressure : that the following h pecification requirem ition, June 2010, Te ict number. Hose bui he working pressure Produciton: Date : Signature :	15,000 PSI nose assembly has been tested nents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9. PRODUCTION A/30/2015 FormPTC-01	d to the ple 9 the Rev.D 2
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psl uality Manager : ate : gnature :	North ilfield F i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t QUALITY 4/30/2015 MMMM	Test Pressure : that the following h pecification requirem ition, June 2010, Te ict number. Hose but he working pressure Produciton: bate : Signature :	15,000 PSI IDENTIFY INSTRUCTION IDENTIFY INSTRUCTION IDENTIFY IDENTIFY I	d to the ble 9 the Rev.0 2
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi uality Manager : ate : ignature :	North ilfield f i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t QUALITY 4/30/2015 4/30/2015	Test Pressure : that the following h pecification requirem iltion, June 2010, Te ict number. Hose but he working pressure Produciton: bate : Signature :	15,000 PSI nose assembly has been tested nents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9. PRODUCTION 4/30/2015 FormPTC-01	d to the ple 9 the Rev.D 2
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi uallity Manager : ate : gnature :	North lifield f i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t QUALITY 4/30/2015 MMMM	Test Pressure : that the following h pecification requirem ition, June 2010, Te ict number. Hose bui he working pressure Produciton: bate : Signature :	15,000 PSI IDENTIFY INSTRUCTION IDENTIFY INFORMATION IDENTIFY IDENTIFY I	d to the ble 9 the Rev.0 2
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North ilfield f i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t QUALITY 4/30/2015 4/30/2015	Test Pressure : that the following h pecification requirem iltion, June 2010, Te ict number. Hose but he working pressure Produciton: bate : Signature :	15,000 PSI nose assembly has been tested nents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9. PRODUCTION 4/30/2015 Forn PTC - 01	d to the ple 9 the Rev.D 2
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi uallty Manager : ate : gnature :	North lifield F i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ minimum of 2.5 times t QUALITY 4/30/2015 MMMM	Test Pressure : that the following h pecification requirem ition, June 2010, Te ict number. Hose bui he working pressure Produciton: bate : Signature :	15,000 PSI tose assembly has been tested tents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9. PRODUCTION 4/30/2015 Form PTC-01 Form PTC-01	d to the ble 9 the Rev.0 2
Gates E & S I the Gates Oi hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North ilfield f i in acc	10,000 PSI America, Inc. certifies toughneck Agreement/S API Spec 7K/Q1, Fifth Ec cordance with this produ- minimum of 2.5 times t QUALITY 4/30/2015 4/30/2015	Test Pressure : that the following h pecification requirem iition, June 2010, Te ict number. Hose but he working pressure Produciton: bate : Signature :	15,000 PSI nose assembly has been tested nents and passed the 15 minu st pressure 9.6.7 and per Tab rst pressure 9.6.7.2 exceeds to per Table 9. PRODUCTION 4/30/2015 FormPTC-01	d to the ple 9 the Rev.D 2

٠

.

 Mewbourne Oil Co.

 By: K.Kirkes
 Proposed Wellbore Schematic

 Date: 7/13/2018
 Bogle Flats Fed Unit 10/9 Y1FE #1H

 Eddy County, NM

SL: 2100' FNL & 1650' FWL - Sec. 10-T22S-R23E

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Bogle Flats Fed Unit 10/9 Y1FE #1H Sec 10, T22S, R23E SL: 2100' FNL & 1650' FWL, Sec 10 BHL: 1980' FNL & 100' FWL, Sec 9

Plan: Design #1

Standard Planning Report

17 July, 2018

Planning Report

•

t Database: Company: Project: Site: Well: Wellbore: Design:	Hobbs Mewbourne Oil Company Eddy County, New Mexico NAD 83 Bogle Flats Fed Unit 10/9 Y1FE #1H Sec 10, T22S, R23E BHL: 1980' FNL & 100' FWL, Sec 9 Design #1		н	Local Co-ordinate Reference: Site Bogle F TVD Reference: WELL @ 40 MD Reference: WELL @ 40 North Reference: Grid Survey Celculation Method: Minimum C			Site Bogle Flats WELL @ 4048.0 WELL @ 4048.0 Grid Minimum Curvat	Fed Unit 10/9 rusft (Original rusft (Original rure	Y1FE #1H Well Elev) Well Elev)	
Project	Eddy C	ounty, New M	exico NAD 83							
Map System: Geo Datum: Map Zone:	US State North An New Me	e Plane 1983 nerican Datum xico Eastern Z	1983 one		System Dat	tum:	Me	aan Sea Level		
Site	Bogle I	Flats Fed Unit	10/9 Y1FE #1H							<u> </u>
Site Position: From: Position Uncert	Map tainty:	0.	North Eastli 0 usft Slot R	ing: 1g: tadius:	511 461	,832.00 usft ,688.00 usft 13-3/16 "	Latitude: Longitude: Grid Converg	jence:		32.4068295 -104.5914228 -0.14 °
Well	Sec 10.	T22S, R23E			<u> </u>					
Well Position	+N/-S		0.0 usft No	orthing:		511,832.00	ousft Lat	itude:		32.4068295
Position Uncert	+E/-W tainty		0.0 usft Ea 0.0 usft W	asting: ellhead Eleva	tion:	461,688.00) usft Lon) usft Gro	igitude: ound Level:		-104.5914228 4,021.0 usft
Wellbore	BHL: 1	980' FNL & 10	00' FWL, Sec 9			_,, ·				
Magnetics	Ma	IGRE2010	Sampi	e Date	Declina (°)	ition 7 20	Dip A ('	Angle ') 60.01	Field (Strength (nT) 47 908
							····			
Design	Design	#1								
Audit Notes:			Phae	ه٠ ا	PROTOTYPE	Ti,	on Denth		0.0	
	n:	1	Depth From (T	vD)	+N/-S	+	EI-W	Dire	ection	
Vertical Section			(usft) 0.0		(usft) 0.0	(u	1 sft) D.O	27	'1.17 	
Plan Sections		·	(usft) 0.0		(usft) 0.0	. (u	15ft) D.O	27	'1.17 	
Plan Sections Measured Depth (usft)	Inclination (*)	Azimuth (°)	(usft) 0.0 Vertical Depth (usft)	+N/-S (usft)	(usft) 0.0 +E/-W (usft)	(u Dogleg Rate (*/100usft)	Isft) 0.0 Build Rate (*/100usft)	27 Turn Rate (*/100usft)	TFO (°)	Target
Plan Sections Measured Depth (usft) 0.0	Inclination (°) 0.00	Azimuth (°) 0.00	(usft) 0.0 Vertical Depth (usft) 0.0	+N/-S (usft) 0.0	(usft) 0.0 +E/-W (usft) 0.0	(u Dogleg Rate (*/100usft) 0.00	Isft) 0.0 Build Rate (*/100usft) 0.00	27 Tum Rate (*/100usft) 0.00	(), 1.17 TFO (*) 0.00	Target
Plan Sections Measured Depth (usft) 0.0 1,617.5	Inclination (*) 0.00 0.00	Azimuth (*) 0.00 0.00	(usft) 0.0 Vertical Depth (usft) 0.0 1.617.5	+N/-S (usft) 0.0 0.0	(usft) 0.0 +E/-W (usft) 0.0 0.0	(u Dogleg Rate (*/100usft) 0.00 0.00	Isft) 0.0 Build Rate (*/100usft) 0.00 0.00	27 Turn Rate (*/100usft) 0.00 0.00	TFO (*) 0.00 0.00	Target
Plan Sections Measured Depth (usft) 0.0 1,617.5 2,075.4	Inclination (°) 0.00 0.00 56.51	Azimuth (°) 0.00 289.63 270.10	(usft) 0.0 Vertical Depth (usft) 0.0 1.617.5 2.004.7 2.005.0	+N/-S (usft) 0.0 69.9	(usft) 0.0 +E/-W (usft) 0.0 0.0 -196.0	(u Dogleg Rate (*/100usft) 0.00 0.00 12.34	Build Rate (*/100usft) 0.00 0.00 12.34	27 Turn Rate (*/100usft) 0.00 0.00 0.00	TFO (*) 0.00 0.00 289.63	Target

•

.

Planning Report

 I

 Database:
 Hobbs

 Company:
 Mewbourne Oil Company

 Project:
 Eddy County, New Mexico NAD 83

 Site:
 Bogle Flats Fed Unit 10/9 Y1FE #11

 Well:
 Sec 10, T22S, R23E

 Wellbore:
 BHL: 1980' FNL & 100' FWL, Sec 9

 Design:
 Design #1

Planned Survey

	Local Co-ordin
	TVD Reference
3	MD Reference:
1H	North Referen
	Survey Calcula
٩	•

ocal Co-ordinate Reference: VD Reference: ID Reference: orth Reference: urvey Calculation Method: Site Bogle Flats Fed Unit 10/9 Y1FE #1H WELL @ 4048.0usft (Original Well Elev) WELL @ 4048.0usft (Original Well Elev) Grid Minimum Curvature

0.0 5L: 2100' FNL & 165 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,000.0 1,000.0 1,000.0 1,200.0 1,200.0 1,200.0 1,200.0 1,200.0 1,200.0 1,400.0 1,600.0 1,600.0 1,600.0 1,600.0 1,600.0 1,600.0 2,000.0 2,000.0 2,000.0 2,000.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,500.0 2,600.0 2,500.0 2,600.0 3,000.0 3,000.0 3,000.0 3,000.0 3,600.0 3,900.0 4,000.0 4,000.0 4,000.0 4,100.0 5,000.0 3,00	/*)	Inclination	Azimuth	Depth (usff)	+N/-S	+E/-W	Section (usff)	Rate	Rate	Rate (*/100us#)
0.0 SL: 2100' FNL & 165 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 1,000.0 2,000.0 3,00	()	()	()	(031()	(0511)	(usit)	(0310)	(11000310)	(/ 1000311)	(11000311)
100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,000.0 1,000.0 1,000.0 1,200.0 1,300.0 1,400.0 1,600.0 1,600.0 1,600.0 1,600.0 1,600.0 1,600.0 1,600.0 2,000.0 3,0	0.00	U.UU	0.00	0.0	0.0	0.0	0.0	0.00	0.00	. 0.00
100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,000.0 1,200.0 1,200.0 1,300.0 1,400.0 1,500.0 1,600.0 1,600.0 1,600.0 1,600.0 2,075.4 2,100.0 2,000.0 2,000.0 2,000.0 2,000.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,600.0 2,600.0 2,600.0 3,000.0 3,000.0 3,000.0 3,000.0 3,600.0 3,600.0 3,600.0 3,700.0 3,600.0 3,700.0 3,600.0 3,000.0 3,600.0 3,700.0 3,600.0 3,000.0 3,600.0 3,000.0	000 FVVL,	L & 1050 FWL, 3	BC 10	100.0		0.0	0.0	0.00	0.00	0.00
200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,000.0 1,200.0 1,200.0 1,200.0 1,300.0 1,400.0 1,600.0 1,600.0 1,600.0 1,600.0 1,600.0 1,600.0 1,900.0 2,075.4 2,100.0 2,200.0 2,300.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,500.0 2,600.0 2,500.0 3,000.0 3,000.0 3,000.0 3,000.0 3,600.0 3,700.0 3,600.0 3,700.0 3,600.0 3,900.0 4,000.0 4,100.0	0.00	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,000.0 1,200.0 1,200.0 1,200.0 1,200.0 1,200.0 1,600.0 1,600.0 1,617.5 (OP @ 1618' 1,700.0 2,000.0 2,000.0 2,000.0 2,000.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,600.0 2,500.0 2,600.0 2,500.0 3,000.0 3,000.0 3,000.0 3,600.0 3,600.0 3,900.0 4,000.0 4,000.0 4,100.0	0.00	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,000.0 1,200.0 1,300.0 1,300.0 1,400.0 1,500.0 1,600.0 1,617.5 (OP @ 1618' 1,700.0 1,800.0 2,000.0 2,000.0 2,000.0 2,000.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,500.0 2,600.0 2,500.0 2,500.0 3,000.0 3,100.0 3,200.0 3,200.0 3,200.0 3,400.0 3,500.0 3,600.0 3,600.0 3,900.0 4,000.0 4,100.0	0.00	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0 600.0 700.0 800.0 900.0 1,000.0 1,000.0 1,200.0 1,200.0 1,200.0 1,400.0 1,500.0 1,600.0 1,617.5 COP @ 1618' 1,700.0 1,800.0 2,000.0 2,000.0 2,000.0 2,000.0 2,400.0 2,400.0 2,400.0 2,400.0 2,500.0 2,500.0 2,500.0 2,500.0 2,500.0 3,000.0 3,100.0 3,200.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,600.0 3,900.0 4,000.0 4,100.0	0.00	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0 700.0 800.0 900.0 1,000.0 1,100.0 1,200.0 1,300.0 1,400.0 1,600.0 1,617.5 COP @ 1618' 1,700.0 1,617.5 COP @ 1618' 1,700.0 2,000.0 2,000.0 2,000.0 2,000.0 2,000.0 2,400.0 2,400.0 2,400.0 2,400.0 2,500.0 2,500.0 2,500.0 2,600.0 2,500.0 3,000.0 3,000.0 3,000.0 3,000.0 3,500.0 3,500.0 3,500.0 3,500.0 3,900.0 4,000.0 4,000.0	0.00	0.00	0.00	500.0	0.0	0.0	0.0	0,00	0.00	0.00
700.0 800.0 900.0 1,000.0 1,200.0 1,200.0 1,200.0 1,300.0 1,400.0 1,600.0 1,600.0 1,600.0 1,600.0 2,075.4 2,100.0 2,075.4 2,200.0 2,000.0 2,075.4 2,200.0 2,300.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,600.0 2,600.0 2,700.0 2,800.0 3,000.0 3,100.0 3,200.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,600.0 3,700.0 3,600.0 3,900.0 4,000.0 4,000.0 4,100.0	0.00	0.00	0.00	600,0	0.0	0.0	0.0	0,00	0.00	0.00
800.0 900.0 1,000.0 1,200.0 1,200.0 1,200.0 1,200.0 1,300.0 1,600.0 1,600.0 1,600.0 1,600.0 2,000.0 2,000.0 2,000.0 2,000.0 2,000.0 2,000.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,600.0 2,700.0 2,600.0 3,000.0 3,000.0 3,000.0 3,000.0 3,000.0 3,600.0 3,600.0 3,600.0 3,700.0 3,600	0.00	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0 1,000.0 1,100.0 1,200.0 1,200.0 1,200.0 1,200.0 1,400.0 1,600.0 1,617.5 COP @ 1618' 1,700.0 1,900.0 2,075.4 2,100.0 2,000.0 2,000.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,600.0 2,500.0 2,600.0 2,500.0 3,000.0 3,000.0 3,000.0 3,000.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0 4,000.0 4,100.0	0.00	0.00	0.00	800.0	0.0	0.0	0.0	0.00	. 0.00	0.00
1,000.0 1,100.0 1,200.0 1,200.0 1,200.0 1,300.0 1,400.0 1,600.0 1,617.5 COP @ 1618' 1,700.0 1,800.0 1,900.0 2,000.0 2,000.0 2,000.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,600.0 2,600.0 2,500.0 2,600.0 3,000.0 3,000.0 3,000.0 3,000.0 3,400.0 3,600.0 3,600.0 3,600.0 3,900.0 3,900.0 4,000.0 4,100.0	0.00	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0 1,100.0 1,200.0 1,200.0 1,300.0 1,400.0 1,600.0 1,617.5 (OP @ 1618' 1,700.0 1,900.0 2,000.0 2,000.0 2,000.0 2,000.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,600.0 2,500.0 2,600.0 3,700.0 3,200.0 3,200.0 3,200.0 3,300.0 3,400.0 3,600.0 3,600.0 3,900.0 4,000.0 4,100.0	0.00	0.00	0.00	1 000 0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0 1,200.0 1,200.0 1,400.0 1,600.0 1,617.5 (OP @ 1618' 1,700.0 1,800.0 2,000.0 2,000.0 2,000.0 2,000.0 2,200.0 2,400.0 2,400.0 2,400.0 2,400.0 2,400.0 2,500.0 2,500.0 2,500.0 2,500.0 3,000.0 3,100.0 3,200.0 3,400.0 3,400.0 3,500.0 3,600.0 3,600.0 3,900.0 4,000.0 4,000.0 4,100.0	0.00	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	.0.00
1,300.0 1,300.0 1,400.0 1,600.0 1,600.0 1,617.5 (OP @ 1618' 1,700.0 1,800.0 2,000.0 2,000.0 2,000.0 2,000.0 2,200.0 2,300.0 2,400.0 2,400.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,600.0 2,600.0 2,600.0 3,000.0 3,000.0 3,200.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.	0.00	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0 1,400.0 1,500.0 1,600.0 1,617.5 (OP @ 1618' 1,700.0 1,800.0 2,000.0 2,075.4 2,100.0 2,200.0 2,300.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,600.0 2,700.0 2,800.0 3,000.0 3,100.0 3,200.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.	0.00	0.00	0.00	1,200,0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0 1,600.0 1,600.0 1,617.5 (OP @ 1618' 1,700.0 1,800.0 2,000.0 2,000.0 2,000.0 2,000.0 2,200.0 2,300.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,600.0 2,700.0 2,800.0 3,000.0 3,000.0 3,200.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,600.0 3,700.0 3,600.0 3,600.0 3,700.0 3,800.0 3,900.0 4,000.0 4,100.0	0.00	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500,0 1,600,0 1,617,5 (OP @ 1618' 1,700,0 1,800,0 1,900,0 2,075,4 2,100,0 2,000,0 2,000,0 2,400,0 2,400,0 2,401,5 P/FTP: 1980' FNL & 2,500,0 2,600,0 2,600,0 2,600,0 3,000,0 3,000,0 3,200,0 3,300,0 3,400,0 3,500,0 3,600,0 3,600,0 3,700,0 3,800,0 3,900,0 4,000,0 4,100,0	0.00	0.00	0.00	1,400.0	0.0	0.0	0.0	0,00	0.00	0.00
1,600.0 1,617.5 (OP @ 1618' 1,700.0 1,800.0 2,000.0 2,000.0 2,000.0 2,000.0 2,000.0 2,200.0 2,400.0 2,400.0 2,400.0 2,400.0 2,600.0 2,500.0 2,500.0 2,500.0 2,500.0 3,000.0 3,000.0 3,200.0 3,200.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0 4,000.0 4,100.0	0.00	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,617.5 (OP @ 1618' 1,700.0 1,800.0 2,000.0 2,007.4 2,000.0 2,000.0 2,000.0 2,200.0 2,400.0 2,400.0 2,400.0 2,400.0 2,600.0 2,500.0 2,500.0 2,500.0 2,500.0 3,000.0 3,100.0 3,200.0	0.00	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
XOP @ 1618' 1,700.0 1,800.0 1,900.0 2,000.0 2,075.4 2,100.0 2,300.0 2,300.0 2,400.0 2,400.0 2,500.0 2,500.0 2,600.0 2,700.0 2,800.0 2,900.0 3,000.0 3,000.0 3,000.0 3,000.0 3,600.0 3,600.0 3,600.0 3,600.0 3,600.0 3,900.0 4,000.0	0.00	0.00	0.00	1,617.5	0.0	0.0	0.0	0,00	0.00	0.00
1,700.0 1,800.0 2,000.0 2,075.4 2,100.0 2,200.0 2,300.0 2,400.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,700.0 2,800.0 2,900.0 3,100.0 3,200.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3										
1,800.0 1,900.0 2,075.4 2,100.0 2,200.0 2,300.0 2,400.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,700.0 2,800.0 2,900.0 3,000.0 3,200.0 3,200.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3	10,18	10.18	289,63	1,699,6	2,5	-6.9	6.9	12.34	12.34	0.00
1,900,0 2,000,0 2,075,4 2,100,0 2,200,0 2,300,0 2,400,0 2,401,5 P/FTP: 1980' FNL & 2,500,0 2,600,0 2,600,0 2,600,0 2,600,0 3,000,0 3,100,0 3,200,0 3,400,0 3,500,0 3,6	22.52	22.52	289.63	1,795.3	11.9	-33.3	33.6	12.34	12.34	0.00
1,900.0 2,000.0 2,075.4 2,100.0 2,200.0 2,300.0 2,400.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,700.0 2,800.0 2,900.0 3,000.0 3,200.0 3,200.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0 4,000.0 4,100.0						74.5				
2,000.0 2,075.4 2,100.0 2,200.0 2,400.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,700.0 2,600.0 2,700.0 2,900.0 3,000.0 3,000.0 3,200.0 3,300.0 3,400.0 3,600.0 3,600.0 3,600.0 3,900.0 4,000.0 4,100.0	34.87	34.87	289,63	1,882.9	28.0	-78,5	79.0	12.34	12.34	0.00
2,075.4 2,100.0 2,200.0 2,400.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,700.0 2,600.0 2,700.0 2,800.0 3,000.0 3,100.0 3,200.0 3,200.0 3,200.0 3,200.0 3,300.0 3,400.0 3,600.0 3,700.0 3,800.0 3,900.0 4,000.0 4,100.0	47.21	47.21	289.63	1,958.2	50.0	-140.2	141.2	12.34	12.34	0.00
2,100.0 2,200.0 2,300.0 2,400.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,700.0 2,600.0 2,700.0 2,900.0 3,000.0 3,200.0 3,200.0 3,200.0 3,200.0 3,400.0 3,500.0 3,600.0 3,600.0 3,900.0 4,000.0 4,100.0	56.51	56.51	289.63	2,004.7	69.9	-196.0	197.4	12.34	12.34	0.00
2,200.0 2,300,0 2,401,5 P/FTP: 1980' FNL & 2,500,0 2,600,0 2,700,0 2,800,0 2,700,0 2,800,0 3,000,0 3,000,0 3,200,0 3,200,0 3,400,0 3,500,0 3,600,0 3,600,0 3,600,0 3,900,0 4,000,0 4,100,0	59.04	59.04	287.81	2,017.8	76.6	-215.7	217.2	12.00	10.25	-7.37
2,300.0 2,400.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,700.0 2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,200.0 3,400.0 3,500.0 3,600.0 3,600.0 3,600.0 3,600.0 4,000.0 4,100.0	69.51	69.51	281.28	2,061.2	98.9	-302.8	304.7	12.00	10.47	-6.53
2,400.0 2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,700.0 2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,400.0 3,500.0 3,600.0 3,600.0 3,600.0 3,600.0 4,000.0 4,000.0	80,18	80,18	275,59	2,087,3	112,9	-398.1	400.3	12.00	10,68	-5,68
2,401.5 P/FTP: 1980' FNL & 2,500.0 2,600.0 2,700.0 2,800.0 2,900.0 3,000.0 3,000.0 3,200.0 3,200.0 3,200.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0 4,000.0 4,100.0	90,95	90,95	270,27	2.095.0	118.0	-497.5	499.8	12.00	10,77	-5.32
P/FTP: 1980' FNL & 2,500.0 2,600.0 2,700.0 2,900.0 3,000.0 3,100.0 3,200.0 3,200.0 3,300.0 3,400.0 3,600.0 3,600.0 3,600.0 3,600.0 4,000.0 4,100.0	91,11	91,11	270,19	2,095.0	118.0	-499.0	501.3	12.00	10.78	-5.28
2,500,0 2,600,0 2,700,0 2,800,0 2,900,0 3,000,0 3,100,0 3,200,0 3,200,0 3,300,0 3,400,0 3,600,0 3,600,0 3,600,0 3,600,0 4,000,0 4,100,0	& 1150' E	' ENI & 1150' EV	/I Sec 10							
2,500.0 2,700.0 2,700.0 2,800.0 3,000.0 3,100.0 3,200.0 3,200.0 3,400.0 3,500.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0 4,000.0	Q1 11	91 11	270 19	2 093 1	118 3	-597 5	500 8	0.00	0.00	0.00
2,700.0 2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,800.0 4,000.0 4,100.0	91 11	91 11	270.19	2,000.1	118.7	-697.5	699.7	0.00	0.00	0.00
2,700.0 2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,200.0 3,400.0 3,500.0 3,600.0 3,600.0 3,600.0 3,800.0 3,800.0 4,000.0 4,100.0		UT.11	2.0,10	2,001.1		007.0	000.7	0.00	0.00	0.00
2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,200.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,800.0 4,000.0 4,100.0	91.11	91.11	270.19	2,089.2	119,0	-797.4	799.7	0.00	0,00	.00
2,900,0 3,000,0 3,100,0 3,200,0 3,300,0 3,400,0 3,500,0 3,600,0 3,700,0 3,800,0 3,800,0 4,000,0 4,100,0	91.11	91.11	270.19	2,087.3	119.3	-897.4	899.7	0.00	0.00	0.00
3,000,0 3,100,0 3,200,0 3,300,0 3,400,0 3,600,0 3,600,0 3,700,0 3,800,0 3,800,0 4,000,0 4,100,0	91,11	91.11	270.19	2,085.3	119.7	-997.4	999.6	0.00	0.00	0.00
3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0 4,000.0 4,100.0	91,11	91,11	270.19	2,083.4	120.0	-1,097.4	1,099.6	0.00	0.00	0.00
3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0 4,000.0 4,100.0	91,11	91,11	270,19	2,081.4	120.3	-1,197.4	1,199.6	0.00	0.00	0.00
3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0 4,000.0 4,100.0	91.11	91.11	270.19	2,079.5	120.6	-1,297.3	1,299.5	0.00	0.00	0.00
3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0 4,000.0 4,100.0	91.11	91.11	270.19	2,077.6	121.0	-1.397.3	1,399.5	0.00	0.00	0.00
3,500.0 3,600.0 3,700.0 3,800.0 3,900.0 4,000.0 4,100.0	91.11	91.11	270.19	2,075.6	121.3	-1 497 3	1,499.5	0.00	0.00	0.00
3,600.0 3,700.0 3,800.0 3,900.0 4,000.0 4,100.0	91.11	91.11	270.19	2.073.7	121.6	-1.597.3	1,599.4	0.00	0.00	0.00
3,700.0 3,800.0 3,900.0 4,000.0 4,100.0	91.11	91.11	270.19	2.071 7	122.0	-1.697.3	1,699.4	0.00	0.00	0.00
3,700.0 3,800.0 3,900.0 4,000.0 4,100.0		•								
3,800.0 3,900.0 4,000.0 4,100.0	91.11	91,11	270.19	2,069.8	122.3	-1,797.2	1,799.4	0.00	0.00	0.00
3,900.0 4,000.0 4,100.0	91.11	91.11	270.19	2,067.8	122,6	-1,897.2	1,899.3	0.00	0.00	0.00
4,000.0 4,100.0	91,11	91,11	270.19	2,065.9	123,0	-1,997.2	1,999.3	0.00	0.00	0.00
4,100.0	91.11	91.11	270.19	2,064.0	123.3	-2,097.2	2,099.3	0.00	0.00	0.00
	91.11	91,11	270,19	2,062.0	123.6	-2,197.2	2,199.2	0.00	0.00	0.00
4 200 0	01 11	01 11	270 10	2 060 1	124.0	-2 207 1	2 200 2	0.00	0.00	0.00
4 300 0	01.11 01:11	51.11	270.13	2,000.1	124.0	-2,207.1	2,233.2	0.00	0.00	0.00
4,300,0	31.11 01.44	91.11	270.19	2,030,1	124.3	-2,381.1	2,333.2	0.00	0.00	0.00
4,400.0	91,11	91.11	270.19	2,000.2	124.0	-2,497.1	2,499.1	0.00	0.00	0.00
4,500.0	91.11	91.11	270.19	2,054.3	125.0	-2,597.1	2,599.1	0.00	0.00	0.00

COMPASS 5000.1 Build 72

Planning Report

t Database: Hobbs Company: Mewbou Project: Eddy Co Site: Bogle Fil Well: Sec 10, Wellbore: BHL: 194 Design: Design #

Hobbs Mewbourne Oil Company Eddy County, New Mexico NAD 83 Bogle Flats Fed Unit 10/9 Y1FE #1H Sec 10, T22S, R23E BHL: 1980' FNL & 100', FWL, Sec 9 Design #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Site Bogle Flats Fed Unit 10/9 Y1FE #1H WELL @ 4048.0usft (Original Well Elev) WELL @ 4048.0usft (Original Well Elev) Grid Minimum Curvature

Planned Survey

Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (*/100usft)	Rate (°/100usft)	Rate (*/100usft)
4.700.0	91,11	270,19	2.050.4	125.6	-2.797.0	2,799,0	0.00	0.00	0.00
4,800.0	91.11	270,19	2.048.4	126.0	-2.897.0	2,899,0	0.00	0.00	0.00
4,900.0	91.11	270,19	2.046.5	126.3	-2.997.0	2,999,0	0.00	0.00	0.00
5.000 0	91.11	270.19	2.044.5	126.6	-3.097.0	3,098,9	0.00	0.00	0.00
5,100.0	91.11	270.19	2,042.6	126.9	-3,197.0	3,198.9	0.00	0.00	0.00
5,200.0	91.11	270.19	2,040.7	127.3	-3,296.9	3,298.9	0.00	0.00	0.00
5,300.0	91.11	270.19	2,038.7	127.6	-3,396.9	3,398.8	0.00	0.00	0.00
5,400.0	91,11	270,19	2,036.8	127.9	-3,496.9	3,498.8	0.00	0.00	0.00
5,500.0	91.11	270.19	2,034.8	128.3	-3,596.9	3,598.8	0.00	0.00	0.00
5,600.0	91.11	270.19	2,032.9	128.6	-3,696.9	3,698.7	0.00	0.00	0.00
5,700.0	91.11	270.19	2,031.0	128,9	-3,796.9	3,798.7	0.00	0.00	0.00
5,800.0	91,11	270.19	2,029.0	129.3	-3,896.8	3,898.7	0.00	0.00	0.00
5,900.0	91.11	270,19	2,027.1	129.6	-3,996.8	3,998.6	0.00	0.00	0.00
6,000.0	91.11	270.19	2,025.1	129.9	-4,096.8	4,098.6	0.00	0.00	0.00
6,100.0	91,11	270,19	2,023.2	130.3	-4,196.8	4,198.6	0.00	0.00	0.00
6,200.0	91.11	270.19	2,021.3	130.6	-4,296.8	4,298.5	0.00	0.00	0.00
6,300.0	91.11	270.19	2,019.3	130.9	-4,396.7	4,398.5	0.00	0.00	0.00
6,400.0	91.11	270.19	2,017.4	131.3	-4,496.7	4,498.5	0.00	0.00	0.00
6,500.0	91.11	270.19	2,015.4	131.6	-4,596.7	4,598.4	0.00	0.00	0.00
6,600.0	91.11	270.19	2,013.5	131.9	-4,696.7	4,698.4	0.00	0.00	0.00
6,700.0	91,11	270.19	2,011.5	132.2	-4,796.7	4,798.4	0.00	0.00	0.00
6,800.0	. 91.11	270,19	2,009.6	132.6	-4,896.6	4,898.3	0.00	0.00	0.00
6,900.0	91,11	270,19	2,007.7	132,9	-4,996.6	4,998.3	0.00	0.00	0.00
7,000.0	91.11	270,1 9	2,005.7	133.2	-5,096.6	5,098.3	0.00	0.00	0.00
7,100.0	91,11	270,19	2,003,8	133.6	-5,196.6	5,198;2	0.00	0.00	0.00
7,200.0	91.11	270.19	2,001.8	133.9	-5,296.6	5,298.2	0.00	0.00	0.00
7,300.0	91.11	270.19	1,999.9	134.2	-5,396.5	5,398.2	0.00	0.00	0.00
7,400.0	91.11	270.19	1,998.0	134.6	-5,496.5	5,498.1	0.00	0.00	0.00
7,500.0	91.11	270.19	1,996.0	134.9	-5,596.5	5,598.1	0.00	0.00	0.00
7,600.0	91.11	270.19	1,994.1	135.2	-5,696.5	5,698.1	0.00	0.00	0.00
7,700.0	91.11	270.19	1,992.1	135.6	-5,796.5	5,798.0	0.00	0.00	0.00
7,800.0	91,11	270.19	1,990.2	135.9	-5,896.4	5,898.0	0.00	0,00	0.00
7,900.0	91,11	270,19	1,988.2	136.2	-5,996.4	5,998.0	0.00	0,00	0.00
8,000.0	91.11	270,19	1,986.3	136.6	-6,096.4	6,097.9	0.00	0.00	0.00
8,100.0	91.11	270.19	1,984,4	136.9	-6,196.4	6,197.9	0.00	0.00	0.00
8,200.0	91.11	270.19	1,982.4	137.2	-6,296.4	6,297.9	0.00	0.00	0.00
8,300.0	91.11	270.19	1,980.5	137.6	-6,396.3	6,397.8	0.00	0.00	0.00
8,400.0	91,11	270.19	1,978.5	137.9	-6,496.3	6,497.8	0.00	0.00	0.00
8,500.0	91.11	270.19	1,976.6	138.2	-6,596.3	6,597.8	0.00	0.00	0.00
8,600.0	91.11	270.19	1,974.7	138.5	-6,696.3	6,697.7	0.00	0.00	0.00
8,700.0	91.11	270.19	1,972.7	138.9	-6,796.3	6,797.7	0.00	0.00	0.00
8,736.7	91,11	270.19	1,972.0	139.0	-6,833.0	6,834.4	0.00	0.00	0.00

Database:	Hobbs	Local Co-ordinate Reference:	Site Bogle Flats Fed Unit 10/9 Y1FE #1H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 4048.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 4048.0usft (Original Well Elev)
Site:	Bogle Flats Fed Unit 10/9 Y1FE #1H	North Reference:	Grid
Well:	Sec 10, T22S, R23E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 1980' FNL & 100' FWL, Sec 9		
.Design:	Design #1		

Design Targets										
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude	
SL: 2100' FNL & 1650' F - plan hits target cen - Point	0.00 ter	0.00	0.0	0.0	0.0	511,832.00	461,688.00	32.4068295	-104.5914228	
KOP @ 1618' - plan hits target cen - Point	0.00 ter	0.00	1,617.5	0.0	0.0	511,832.00	461,688.00	32,4068295	-104.5914228	
BHL/LTP: 1980' FNL & 1 - plan hits target cen - Point	0.00 ter	0.00	1,972.0	139.0	-6,833.0	511,971.00	454,855.00	32.4071643	-104.6135648	
LP/FTP: 1980' FNL & 11 - plan hits target cen - Point	0.00 ter	0.00	2,095.0	118.0	-499.0	511,950.00	461,189.00	32.4071505	-104.5930406	

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Mewbourne Oil Co
LEASE NO.:	NM045273
WELL NAME & NO.:	1H – Bogle Flats Fed Unit 10/9 Y1FE
SURFACE HOLE FOOTAGE:	2100'/N & 1650'/W
BOTTOM HOLE FOOTAGE	1980'/N & 100'/W
LOCATION:	Sec. 10, T. 22 S, R. 23 E
COUNTY:	Eddy County, New Mexico

COA

All previous COAs still apply expect the following:

H2S	· Yes	r No	
Potash	• None	C Secretary	⊂ R-111-P
Cave/Karst Potential	C Low	• Medium	∩ High
Variance	∩ None	• Flex Hose	⊂ Other
Wellhead	Conventional	Multibowl	⊂ Both
Other	□ □ 4 String Area	Capitan Reef	F WIPP

A. CASING

The pilot hole plugging procedure is approved as written. Note plug tops on subsequent drilling report.

Pilot hole is required to have a plug at the bottom of the hole. If two plugs are set, the BLM is to be contacted (575-361-2822) prior to tag of bottom plug, which must be a minimum of 200' in length. Operator can set one plug from bottom of pilot hole to kick-off point and save the WOC time for tagging the first plug. Note plug tops on subsequent drilling report.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

- In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 1. The minimum required fill of cement behind the 5 ½ X 4-1/2 inch production liner is: Cement to surface. If cement does not circulate to surface contact BLM.

B. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties

Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201. During office hours call (575) 627-0272. After office hours call (575)

Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.

- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.

- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, no tests shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
 - g. BOP/BOPE must be tested by an independent service company within 500

feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Waste Minimization Plan (WMP)

In the interest of resource development, submission of additional well gas capture development plan information is deferred but may be required by the BLM Authorized Officer at a later date.

ZS 071818

BUREAU OF LAND MANAGEMENT Carlsbad Field Office 620 East Greene Street Carlsbad, New Mexico 88220 575-234-5972

Conditions of Approval

Failure to comply with the following Conditions of Approval may result in a Notice of Incidents of Noncompliance (INC) in accordance with 43 CFR 3163.1.

1. Recompletion operations shall commence within <u>ninety (90)</u> days from the approval date of this Notice of Intent to Abandon.

If you are unable to Recomplete the well by the 90th day provide this office, prior to the 90th day, with the reason for not meeting the deadline and a date when we can expect the well to be Recompleted. Failure to do so will result in enforcement action.

The rig used for the Recomplete procedure cannot be released and moved off without the prior approval of the authorized officer. Failure to do so may result in enforcement action.

2. <u>Notification:</u> Contact the appropriate BLM office at least 24 hours prior to the commencing of any Recomplete operations. For wells in Chaves and Roosevelt County, call 575-627-0272; Eddy County, call 575-361-2822; Lea County, call 575-393-3612.

3. <u>Blowout Preventers</u>: A blowout preventer (BOP), as appropriate, shall be installed before commencing any plugging operation. The BOP must be installed and maintained as per API and manufacturer recommendations. The minimum BOP requirement is a 2M system for a well not deeper than 9,090 feet; a 3M system for a well not deeper than 13,636 feet; and a 5M system for a well not deeper than 22,727 feet.

4. <u>Mud Requirement:</u> Mud shall be placed between all plugs. Minimum consistency of plugging mud shall be obtained by mixing at the rate of 25 sacks (50 pounds each) of gel per 100 barrels of **brine** water. Minimum nine (9) pounds per gallon.

5. <u>Cement Requirement</u>: Sufficient cement shall be used to bring any required plug to the specified depth and length. Any given cement volumes on the proposed plugging procedure are merely estimates and are not final. Unless specific approval is received, no plug except the surface plug shall be less than 25 sacks of cement. Any plug that requires a tag will have a minimum WOC time of 4 hours.

In lieu of a cement plug across perforations in a cased hole (not for any other plugs), a bridge plug set within 50 feet to 100 feet above the perforations shall be capped with 25 sacks of cement. If a bailer is used to cap this plug, 35 feet of cement shall be sufficient. Before pumping or bailing cement on top of CIBP, tag will be required to verify depth. Based on depth, a tag of the cement may be deemed necessary.

Unless otherwise specified in the approved procedure, the cement plug shall consist of either Neat

Class "C", for up to 7,500 feet of depth or Neat Class "H", for deeper than 7,500 feet plugs.

t.

7. <u>Subsequent Recomplete Reporting</u>: Within 30 days after Recomplete work is completed, file one original and three copies of the Subsequent Report of Recomplete, Form 3160-5 to BLM. The report should give in detail the manner in which the recompletion was carried out, the extent (by depths) of cement plugs placed, and the size and location (by depths) of casing left in the well. **Show date well was recompleted.**

8. <u>Trash:</u> All trash, junk and other waste material shall be contained in trash cages or bins to prevent scattering and will be removed and deposited in an approved sanitary landfill. Burial on site is not permitted.

222310D APD18-564 BOGLE FLATS FED UNIT 10 Y1MD 1H 30025 NMNM045273 Mewbourne 12-55 03182018 ZS

High

13 3/8	surface of	sg in a	17 1/2	inch hole.		<u>Design</u>	Factors	SUF	RFACE
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	48.00	н	40	ST&C	26.31	6.92	2.53	255	12,240
"B"					·			Ó	0
w/8.4#/g	mud, 30min Sfc	Csg Test psig:	1,100	Tail Cmt	does not	circ to sfc.	Totals:	255	12,240
<u>Comparison c</u>	of Proposed to	<u>Minimum</u>	Required Ce	ement Volume	S				
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd.	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
17 1/2	0.6946	250	382	232	65	8.40	339	2M	1.56
				• •			er ar cepty at many er at	9. <i>2. 1</i> 999 <i>2. 1999</i> 2.	
8 5/8	8 casing inside the 13		13 3/8		•	Design	Factors	INTER	MEDIATE
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	32.00	J	55	LT&C	8.33	3.7	4.3	1,565	50,080
"B"	•		• .				,	0	0
w/8.4#/g			Totals:	1,565	50,080				
The c	ement volume	e(s) are inte	nded to ach	ieve a top of	0	ft from su	urface or a	255	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
11 (0.2542	700	1404	469	199	8.40	453	2M	0.69
Toil om t	•	• • • • • • • • • • •		a ann a ann a ann .		14 A AND & AND A AND	ల భా 1960 లో 4360 లో 45		
$\frac{1400000}{51/2}$	casing inside the		85/8	a mada a mana a mawa .		Design Factors		PRODUCTION	
Segment	#/ft	Grade	0 0,0	Counling	.loint	Collanse	Burst	Length	Woight
"A"	17.00	L	80	I T&C	10 70	8 93	8 47	1 615	27 455
"B"	11.60	Ē	80	LT&C	4 17	4 47	8 51	7 122	82 615
w/8.4#/g	mud. 30min Sfc	 Csg Test psig:	1.500				Totals	8 737	110 070
	would be:		_,		51 19	7.38	if it were a	vertical we	llhore
В			MTD	Max VTD	Cso VD	Curve KOP	Dogleg ^o	Severitv ^o	MEOC
В					1072	1618	91	40	2402
В	00		8737	2095	1317	1177111		/	/ / /
B The c	00 ement volume	e(s) are inte	8737 nded to ach	2095 ieve a top of	0	ft from si	urface or a	1565	overlan
B The co Hole	00 ement volume Annular	e(s) are inte 1 Stage	8737 nded to ach 1 Stage	2095 ieve a top of Min	0 1 Stage	ft from su	urface or a	1565 Reg'd	overlap. Min Diet
B The co Hole Size	00 ement volume Annular Volume	e(s) are inte 1 Stage Cmt Sx	8737 nded to ach 1 Stage CuFt Cmt	2095 ieve a top of Min Cu Ft	0 1 Stage % Excess	ft from su Drilling Mud Wt	urface or a Caic MASP	1565 Req'd BOPE	overlap. Min Dist
B The c Hole Size 7 7/8	00 ement volume Annular Volume 0.1733	e(s) are inte 1 Stage Cmt Sx 970	8737 nded to ach 1 Stage CuFt Cmt 2396	2095 ieve a top of Min Cu Ft 1524	0 1 Stage % Excess 57	ft from su Drilling Mud Wt 8 40	urface or a Calc MASP	1565 Req'd BOPE	overlap. Min Dist Hole-Cplg

भाषत के महत्र का क्रमेंग के करना 6 करना एं काएए एं कान प्रे सीम्र ते सीम्र के दोस्र एं साल