JForm 3160-5 (June 2015)	UNITED STATES	S NTERIOR GEME STATISDAG	OMB N	APPROVED O. 1004-0137 anuary 31, 2018	
BU SUNDRY N	IREAU OF LAND MANA		VICIO		
Do not use this abandoned well	s form for proposals to . Use form 3160-3 (API	drill or to re-entertan 1	Artes If Indian, Allottee of	or Tribe Name	
SUBMIT IN T	RIPLICATE - Other inst	tructions on page 2	7. If Unit or CA/Agre	ement, Name and/or No.	
 Type of Well Oil Well Gas Well Other 	er: INJECTION		8. Well Name and No. UBER EAST SW		
2. Name of Operator MESQUITE SWD INC	2. Name of Operator Contact: MELANIE WILSON				
3a. Address PO BOX 1479 CARLSBAD, NM 88221		3b. Phone No. (include area code) Ph: 575-914-1461	10. Field and Pool or SWD; DEVONI		
4. Location of Well (Footage, Sec., T.,	R., M., or Survey Description	ייייייייייייייייייייייייייייייייייייי	11. County or Parish,	State	
Sec 24 T23S R31E Mer NMP I			EDDY COUNT	Y, NM	
12. CHECK THE AP	PROPRIATE BOX(ES)	TO INDICATE NATURE O	F NOTICE, REPORT, OR OT	HER DATA	
TYPE OF SUBMISSION		TYPE OF	ACTION		
Notice of Intent	Acidize	🗖 Deepen	Production (Start/Resume)	🗖 Water Shut-Off	
_	Alter Casing	Hydraulic Fracturing	Reclamation	Well Integrity	
Subsequent Report	Casing Repair	New Construction	Recomplete	Other Change to Original A	
Final Abandonment Notice	Change Plans	Plug and Abandon	Temporarily Abandon	PD	
	Convert to Injection	Plug Back	Water Disposal		
If the proposal is to deepen directiona Attach the Bond under which the wor following completion of the involved testing has been completed. Final Ab determined that the site is ready for fu	k will be performed or provide operations. If the operation re andonment Notices must be fi nal inspection.	e the Bond No. on file with BLM/BIA esults in a multiple completion or reco led only after all requirements, includ	. Required subsequent reports must be mpletion in a new interval, a Form 31 ing reclamation, have been completed	e filed within 30 days 60-4 must be filed once and the operator has	
Mesquite SWD, Inc. requests p APD:	permission to make the f	ollowing changes to the origina	ally approved R	ECEIVED	
Casing Surface Approved: 20" 106.5# J55 LT0 Change to: 20" 94# J55 BTC : 1st Intermediate	set at 850' 1060'	CO	OC SEE ATTACHED FC NDITIONS OF CASTRIC W	T 2 5 2018 DR DVAL	
Approved: 13 3/8" 68# J55 BT Change to: 13 3/8" 54.5# J55 6 8 #		n single stage	~ <u>m</u>		
14. I hereby certify that the foregoing is	Electronic Submission # For MES	439256 verified by the BLM Wel QUITE SWD INC, sent to the Ca or processing by MUSTAFA HAC	risbad		
Name (Printed/Typed) MELANIE			ATORY ANALYST		
and the second					
Signature (Electronic S	ubmission)	Date 10/11/2	018		
	THIS SPACE F	OR FEDERAL OR STATE	OFFICE USE		
Approved By Mustafe	Hagel		leum Engineer	Date 10-22-20	
Conditions of approval, if any, are attached certify that the applicant holds legal or equ which would entitle the applicant to condu	itable title to those rights in th	1	bad Field Office		
Title 18 U.S.C. Section 1001 and Title 43 States any false, fictitious or fraudulent s			willfully to make to any department o	r agency of the United	
(Instructions on page 2) ** OPERAT	OR-SUBMITTED ** C	PERATOR-SUBMITTED *	* OPERATOR-SUBMITTED) **	

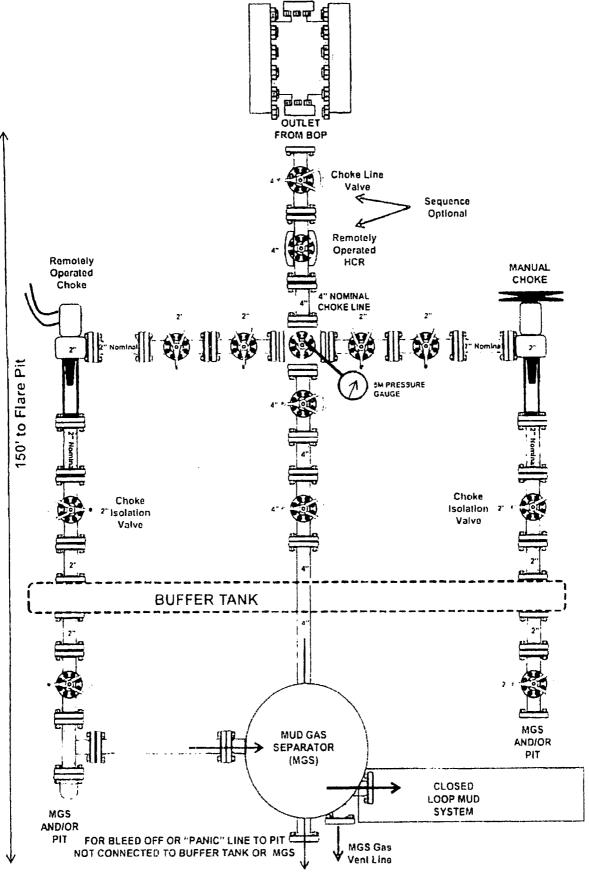
KWP1Z-24-18

Additional data for EC transaction #439256 that would not fit on the form

32. Additional remarks, continued

2nd Intermediate Approved: 9 5/8" 58.4# L80 LTC set at 11500' Change to: 9 5/8" 53.5# N80 BTC set at 11500'

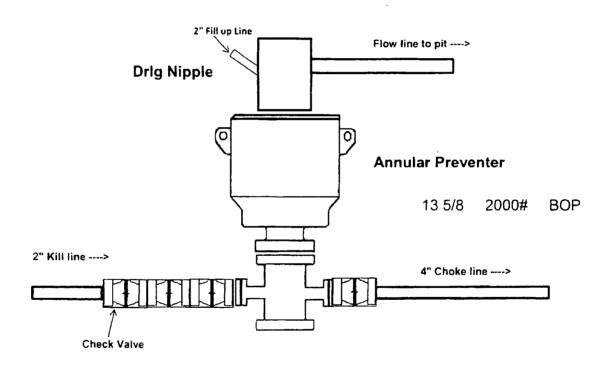
Production Approved: 7" 29# P110/35# HCL80 LTC set 0-16390' Change to: 7 5/8" 39# P110 FJM set 11200'-16390'

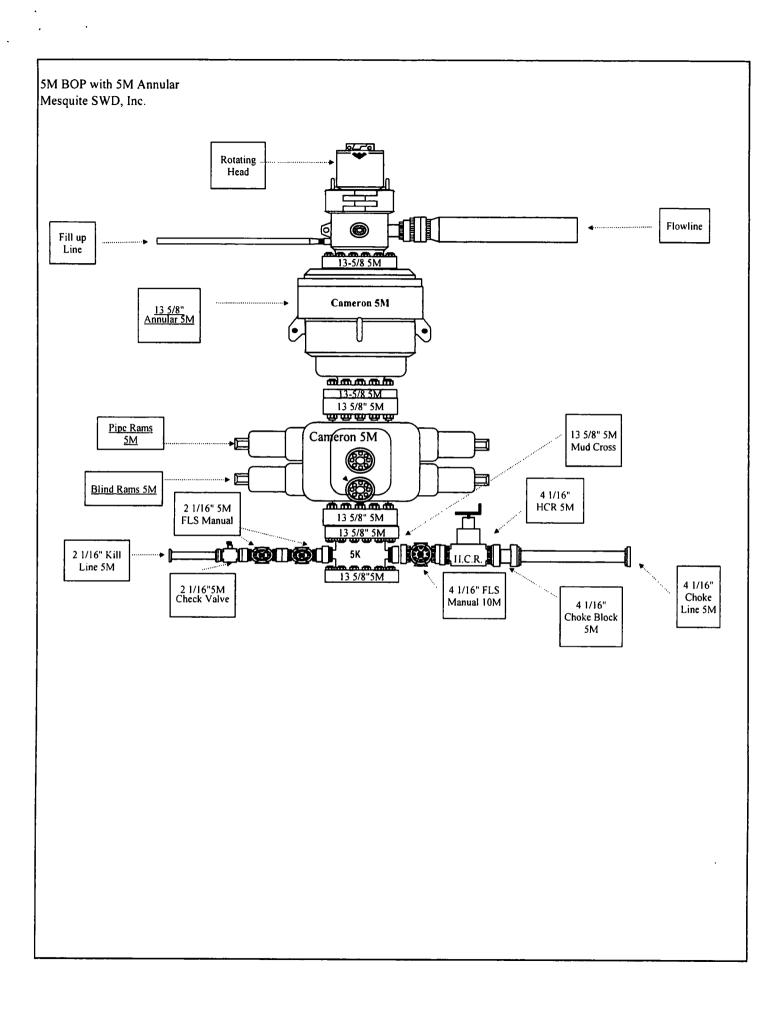

Open Hole Approved: 5 7/8" open hole 16390-17500' Change to: 6 1/2" open hole 16390-17500'

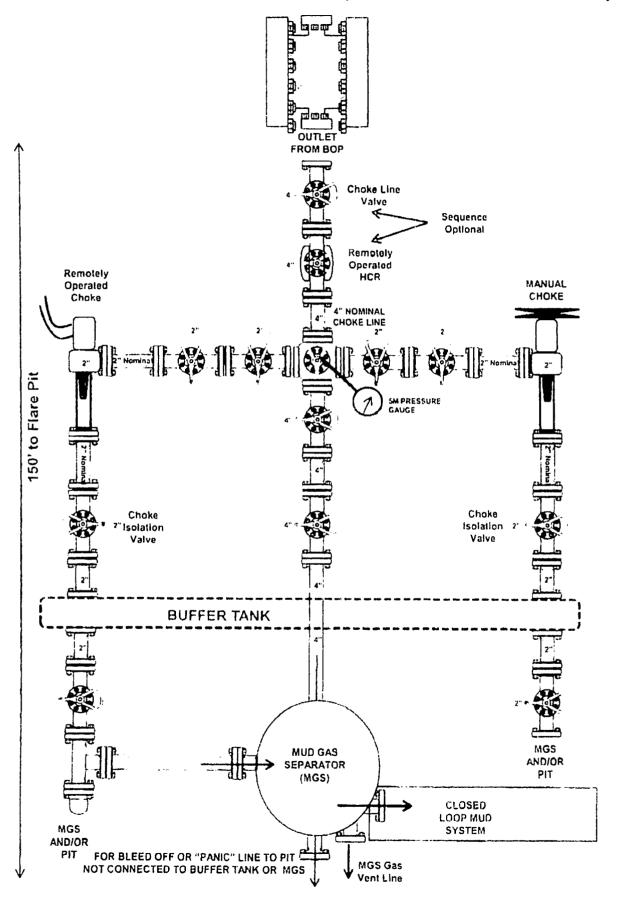
Tubing

Approved: 4 1/2" 11.6# P110/L80 set 0-16390' Change to: 7" x 5 1/2" tapered string. 7" 0-10800', 5 1/2" 10800-16390'

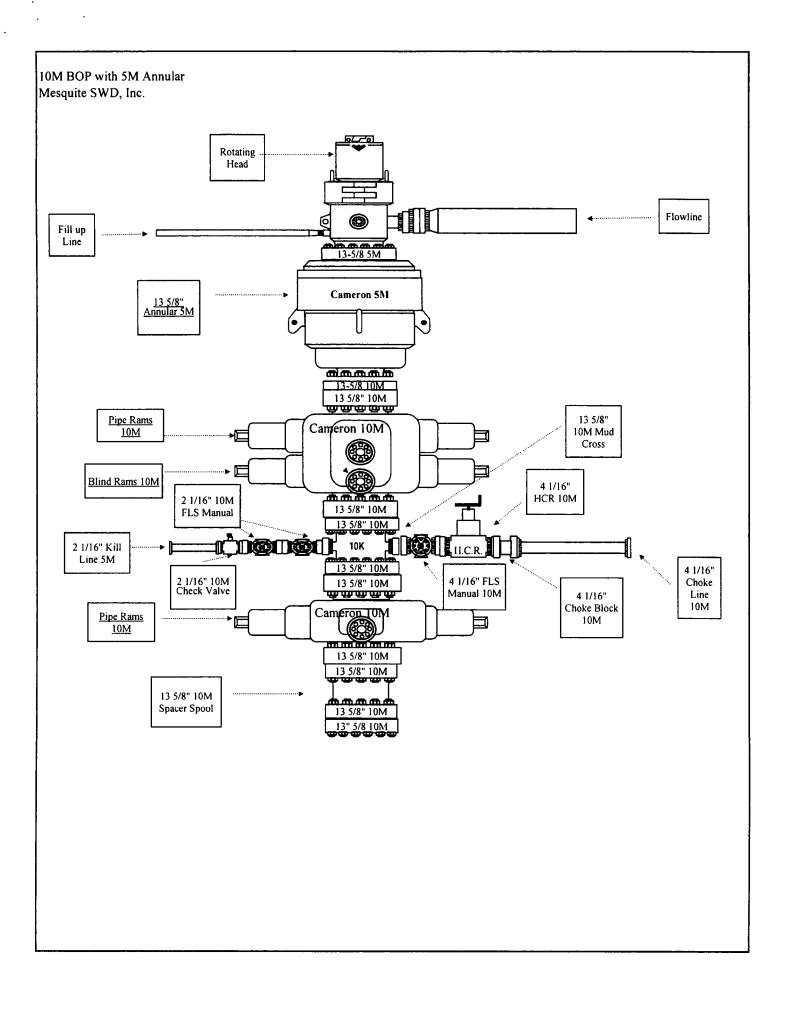
Pressure Control Approved: 10M BOP with 10M annular preventer Change to: Nipple up on 20" csg w/2M BOP system. Nipple up on 13 3/8" csg w/5M BOP system. Nipple up on 9 5/8" csg w/10M BOP system. Request variance for use of 10M BOP with 5M annular. Well Control Plan and BOP diagrams are attached.

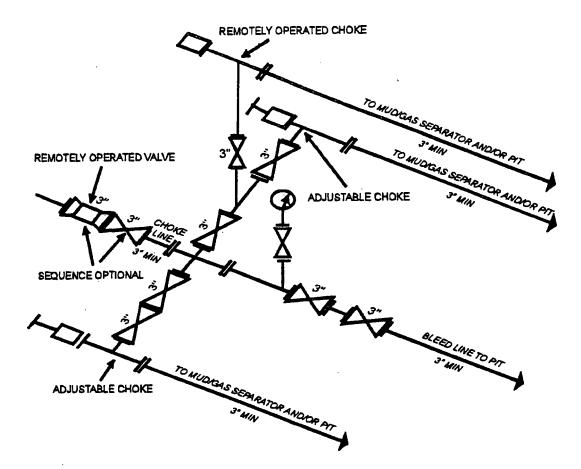

2M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)




2,000 psi BOP Schematic

•





5M Choke Manifold Equipment (with MGS + closed loop)

他看到她们的这个话,你是我们就们们们们的这些,我都不知道我,我把她把她把她们的这个人,这么一次就,想到了吗?"他说,说道:""他说,这一个的这个人,她是这些我们的我还是我的,我<mark>你们我们有我的</mark>的的。

10M AND 15M CHOKE MANIFOLD EQUIPMENT - CONFIGURATION OF CHOKES MAY VARY [53 FR 49661, Dec. 9, 1988 and 54 FR 39528, Sept 27, 1989]

Mesquite SWD, Inc. Well Control Plan

A. Component and Preventer Compatibility Table

Component	OD	Preventer	RWP
Drill Pipe	5"	Upper VBR: 4" - 7" Lower: 5" fixed	10M
Heavyweight Drill Pipe	5"	Upper VBR: 4" - 7" Lower: 5" fixed	10M
Drill Collars & MWD Tools	6 1/2"	Upper VBR: 4" - 7"	10M
Mud Motor	6 1/2"	Upper VBR: 4" – 7"	10M
Production Casing	5 1/2"	Upper VBR: 4" – 7"	10M
All	0 – 13 5/8"	Annular	5M
Open Hole		Brind Rams	10M

B. Well Control Procedures

.

- I. <u>General Procedures While Drilling</u>:
 - a. Sound alarm alert crew
 - b. Space out drill string
 - c. Shut down pumps and stop rotary
 - d. Open HCR
 - e. Shut well in, utilizing upper VBRs
 - f. Close choke
 - g. Confirm shut in
 - h. Notify rig manager and Mesquite SWD, Inc. company representative
 - i. Call Mesquite SWD, Inc. engineer
 - j. Read and record:
 - i. Shut in drill pressure and shut in casing pressure
 - ii. Pit gain
 - iii. Time
 - k. Regroup, identify forward plan
- II. <u>General Procedures While Tripping</u>:
 - a. Sound alarm alert crew
 - b. Stab full opening safety valve and close
 - c. Space out drill string
 - d. Open HCR
 - e. Shut well in, utilizing upper VBRs
 - f. Close choke
 - g. Confirm shut in
 - h. Notify rig manager and Mesquite SWD, Inc. company representative
 - i. Call Mesquite SWD, Inc. engineer
 - j. Read and record:
 - i. Shut in drill pressure and shut in casing pressure
 - ii. Pit gain
 - iii. Time
 - k. Regroup, identify forward plan

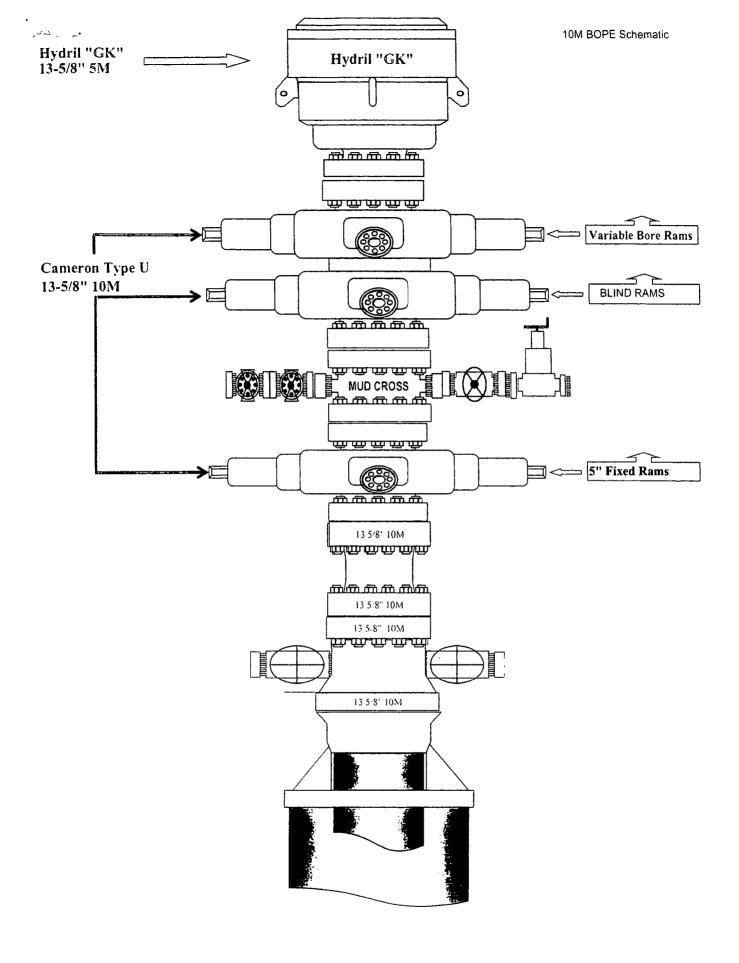
Mesquite SWD, Inc. Well Control Plan

III. General Procedures While Running Casing:

- a. Sound alarm alert crew
- b. Stab full opening safety valve and close
- c. Space out drill string
- d. Open HCR
- e. Shut well in, utilizing upper VBRs
- f. Close choke
- g. Confirm shut in
- h. Notify rig manager and Mesquite SWD, Inc. company representative
- i. Call Mesquite SWD, Inc. engineer
- j. Read and record:
 - i. Shut in drill pressure and shut in casing pressure
 - ii. Pit gain
 - iii. Time
- k. Regroup, identify forward plan

IV. General Procedures With No Pipe in Hole (Open Hole):

- a. Sound alarm alert crew
- b. Open HCR
- c. Shut well in with blind rams
- d. Close choke
- e. Confirm shut in
- f. Notify rig manager and Mesquite SWD, Inc. company representative
- g. Call Mesquite SWD, Inc. engineer
- h. Read and record:
 - i. Shut in drill pressure and shut in casing pressure
 - ii. Pit gain
 - iii. Time
- i. Regroup, identify forward plan
- V. General Procedures While Pulling BHL Through BOP Stack:
 - 1. Prior to pulling last joint of drill pipe through stack
 - A. Perform flow check and if flowing:
 - a. Sound alarm alert crew
 - b. Stab full opening safety valve and close
 - c. Space out drill string with tool joint just beneath upper pipe ram
 - d. Open HCR
 - e. Shut well in utilizing upper VBRs
 - f. Close choke
 - g. Confirm shut in
 - h. Notify rig manager and Mesquite SWD, Inc. company representative
 - i. Call Mesquite SWD, Inc. engineer
 - j. Read and record:
 - i. Shut in drill pressure and shut in casing pressure
 - ii. Pit gain
 - iii. Time
 - k. Regroup, identify forward plan


Mesquite SWD, Inc. Well Control Plan

- 2. With BHL in the BOP stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm alert crew
 - b. Stab full opening safety valve and close
 - c. Space out drill string with tool joint just beneath upper pipe ram
 - d. Open HCR

.

- e. Shut well in utilizing upper VBRs
- f. Close choke
- g. Confirm shut in
- h. Notify rig manager and Mesquite SWD, Inc. company representative
- i. Call Mesquite SWD, Inc. engineer
- j. Read and record:
 - i. Shut in drill pressure and shut in casing pressure
 - ii. Pit gain
 - iii. Time
- k. Regroup, identify forward plan
- 3. With BHA in the BOP stack and no compatible ram preventer and pipe combo immediately available
 - a. Sound alarm alert crew
 - b. If possible to pick up high enough, pull string clear of the stack and follow Open Hole scenario (III)
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - i. Stab crossover, make up one joint/stand of drill pipe and full opening safety valve and close
 - ii. Space out drill string with tool joint just beneath the upper pipe ram
 - iii. Open HCR
 - iv. Shut in utilizing upper VBRs
 - v. Close choke
 - vi, Confirm shut in
 - vii. Notify rig manager and Mesquite SWD, Inc. company representative
 - viii. Read and record:
 - 1. Shut in drill pipe pressure and shut in casing pressure
 - 2. Pit gain
 - 3. Time
 - d. Regroup and identify forward plan

** If annular is used to shut in well and pressure build to or is expected to get to 50% of RWP, confirm space-out and swap to upper VBRs for shut in.

CASING TABL ES

Dimensional & Grade Designators							Collapse	
O D Size		elght P E	NOM Wall	NOM	API Drift	Alternate Drift	Product	Resistance
in.	lb/ft	на страница при на			+		Grade	
7 5/8	33 70	33.07	0 4 3 0	6 765	5.640			
7 5/8	33.70	33.07	0 4 30	6 765	6 640	+		7281
75/8	33 70	33 07	0 430	6 765	6,640		195	7 280
7 5/8	33 70	33.07	0 4 30	5 765	6.640	+	J\$\$ C95	
75/8	33 70	33.07	0.430	6 765	6 540	+	USS C100	
7 5/8	33 70	33 07	0.430	6 765	5.640	+	<u> </u>	
758	33.70	33 07	0.430	6 765	5.540 5.540		P110 SR16	7,870
7 5/8	33.70	33 67	0 4 3 0	6 765			P110	
7 5 / 8	33.70	33.07	0 430	6 765	6.640		P110 HC	9110
75/8	33.70	33.07	0 4 30	5.765	†		P110 HP	
7 5/8	33.70	33 07		+	6.640	+	0125	8 350
7 5/8	33 70	33 07	0 430	6 765	6.640	·	Q125 HC	9 - 50
75'8	33 70	33.07	0 4 3 0	6 765	6.640		Q125 HP	10 220
7 5/8	33 70	33.07		5 765	6 540		USS140	5 5 5 5
7 5/8	39.00	38.08	0 430	5 765	6.640		USS V150	8 850
7 5/8	39.00	38.08	0 500	6 625	6.500	+	USS GT805	8 8 2 3
7 5/8	39.00		0.500	6.625	6.500		L80	8 520
7 5/8	39 00	38.08	0.500	5 6 2 5	6 500		L80 HC	9 - 50
7 5/8	39.00	38.08	<u> </u>	6 625	6 500	·	L80 HP	10 012
7 5/8	39 00	38.08	0.500	6.625	6 500	++	N80 Type 1	8 117
7 5/8 7 5/8	39 00	38.08	0.500	6.625	5.500	+	080	8.820
7 5/8	39.00	38.08	2 500	6.625	6 500		NBO HC	÷ 511
7 5/8	39.00	38.08	0.500	6.625	6.500		9H 08N	
7 5/8	39 00	······································	0 500	6.625	5.500		C90	7.623
7 5/8	39.00	38.08	0 500	6.525	6.500	···	USS C90	9,620
7 5/8		38 05	0 500	6.625	6.500		R95	10:00
7 5.8	39.00	38.08	0.500	6.625	6.500		795	10,000
7 5/8	39 00	38.05	0.500	<u>625</u>	6 500	·	USS C95	10 000
7 5/8		38.08	0.500	6.625	6 500		USS C100	10 310
	39.00	38.08	0 500	5.625	6.500	÷	C110	11.080
7 5/8 7 5/8	39.00	38.08	0.500	6 525	6.500		P110 SR16	11 080
7 5/8	<u>39.00</u> 39.00	38.08	0.500	6.625	5:500		P110	11 080
7 5/8	39.00	38.08 38.08	0 500	6.625	6.500		P110 HC	12.180
7 5/8	· · · · · · · · · · · · · · · · · · ·	······	······	6 625	5 500	÷	P110 HP	13 130
75'8	39.00 39.00	38.08	0.500	6.625	5 500	······································	Q125	12,060
75/8	39.00	38 08 38.08	0 500	5.625	6 500	• · - • · - · - · - · - · · · ·	0125 HC	12,510
7 5/8	39.00	38.08	0 500	6.625	5.500	·	0125 HP	13,790
7 5/8	39.00	38.08	0.500	6 625	5 500 6 500		USSIED	12.930
7 5/8	42.80	42.43	0.500	6.625	5 500		USS V150	13,440
7 5/8	42.80	42.53	0 562	5.501	6.376	·· · ·	USS CT805	10,810
7 5/8	42.80 42.80	42.43	0 562	E.501	6.376	···· ·	180	10,810
7 5/8	42.80				5 376		LSC HC	11.170
7 5/8	42.80	42 43 . = 2 43	0 562	5.501	6 375		LEO HP	11,740
7 5/8	42.80	42.43	0 562	<u> </u>	6 376		NSO Type 1	10,810
7 5/8	42.80	42.43 42.43	0 552	6.501	5.376		N80	10,810

6.376

N80 HC

11,730

6.501

0 552

•

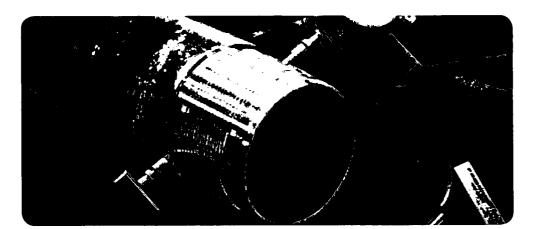
.

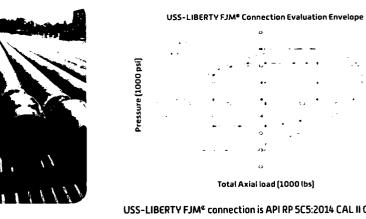
•

4243

	-					Internai	Yield			Ductile	Outside	Diameter
	TENSIC	2 N			API H	storical		Lame V	on Mises	Rupture		
		1,000 ibs	·	Pipe		eaded & Coup		Open End	Capped End	Capped End	Regular Coupling	Special Clr Coupling
Yield Pipe Body	Thread STC	ed and Co LTC	BTCa	Body psi	 	psi	BTC psi	– – – – – – – – – – – – – – – – – – –	psi	 ρsι	in	
												0.105
923			925	9.370		9,270	9.370	9 310	10 270	<u>- 3'730</u> -	8,500	8.125
923		772	925	9 370		9,370	9,370	9 3 10	10,270	:0 420	8 500	8 125
923		277	925	3,370		9,370	9 370	9 310	10.270	10 - 20	3 500	8 125
972		812	971	9.860	••	9 860	033 6	9,800	10 810	10 950	ā 500	5 125
1 069				10 850				10 780	1:890	12.025	8.520	8.125
:069		901	: 093	1,550	••	1 550	i 550	1,550	11 890	<u> </u>	8 500	8 125
1 069	-	901	: 093 '	10 850		10 850	10.850	10 780	11,850	12 500	8.500	8 125
1 069		901	1,093	10.850		10 850	10 850	10,780	11,890	12,500	8 500	8 125
: 215		992	1,165	12,330	-	12,330	12 330	12 250	13 510	13,100	8.500	8.125
: :15	•	: 009	1 197	12,330		12.330	12,330	12.250	13 510	13,600	8 500	
1 215		1,009	1,197	12.330		12 330	12 330	12 250	13,510	13,600	8.500	
1 312		1 068	1.257	13,310		13 310	13,310	13 230	14,590	14,180	8,500	
1 351		5 1.78	ب -	13 810		13 810	13.810	13 722	15,120	15,230	8 500	· · ·
1 458		1,207	1,424	14,790		14,790	14 790	14.700	16 210	16 320	8 50 0	
895			945	9.190	•••	9 190	o 190	9 110	9,970	9.940	8 510	8 125
895		786	9-5	9,190		5,190	9 190	9,110	9,970	9 940	8 500	8 125
295	·	• • 786	345	9,195	· •	9,190	9,190	9110	9 970	9,940	8.500	8.125
951		- <u>111</u> - 870	<u></u>	9,710		9 770	9 770	9.580	10.590	940 940	8.510	8.125
895		798		4 190		9 190	9 190	9.110	9.970	8 550	\$ 50°	8.125
895		798	981	9,190		9,190	9 190	9,110	9,970	10,470	 8.500	8.125
		798	- <u>111</u> 981	9,190		9 190	391.9	9,110	9,970	: :C.470	8,500	8 125
: 263		914	1.055	10 910		10,490	9 7 9 0	10 820	11.840	11,070	8.500	8 125
			1.013	10.340		10 34 0	10,340	10 250	11.220	11.630	8 500	8 125
1 557			1.013	10.340	······································	10 340	10,340	10,250	11,220	12.630	8.500	8 125
116		<u></u> 9]4	1 015 -	10 910	·	10 910	10.910	10 820	11 840	<u>- 11</u> 070	8.501	8.125
1.263	·	914	1,065	<u>10 910</u>		10 910	10 910	10 820	11.840	12 2-0	8 500	8.125
. 173			1.003 1.055	10 910	··	10 910	10 310	10 820	11,340	12 240		8125
1 :19		914 950	1,118	11,490	·	10 9.0	11.490	11 390	12,460	12 860	6 50C	8.125
				12,640		·		12 530	13 710	.4 10C	8 500	8 125
	·- · ·	1 066	1 750			1 800	1.800	1 800	13,710		8.500	9 125
		1 056	1 258	1 800		12,640	12,640	12,530	13,710	14.680	1 8 500	8.125
: 23:		1,065	1,258	12,640		12,640	12,040	12,530	13.710	4.680	5.500	8.125
	<u> </u>	1 066	1 258	12,640			- <u> </u>	12 330	15,580	15,380	8.500	9.125
· · · · · · · · · · · · · · · · · · ·		1 179	1.343	14 360		14 360 	13.46C 14.360	14,240	15,580	15,980	8.500	
1 2 7 8		1 190	1 379	14,360		14,360		·	15,580	15 980	8 8 200	
. : <u>:</u>		1 194	: 379 	14 360		14 360	14 350	14,240	15.820		8 500	• • · · · · · · ·
: :::		1,264	1,447	15.510		15,510	15,290	15,380	15.820	15,650 17,390	8 500	
. :::"		1,325	- 536	16 080		15,080	16.080	15,950		19,170		·
: 679		1,428	1,640	17.230		17.230	17,230	17,090	18,690	+	· · · · · · · · · · · · · · · · · · ·	ε 125
998			1 353	10.320		10 320	5,790	10,220	11.120	11240	8.500	
998	•	193	1,053	10 320			9 790	10,220	. 11,120	11 24 0	3,300	8.125
395		- 8 <u>9;</u>	. : 053 _	10,320	· · -	10 320	9790	10 220	11,120	11 2-0	8.500	8 125
1.060		930	1.070	10 976		10,490	9 790	10,850	11.820	11 240	3 504	8.125
958		905	1,093	10,320		10 320	9 790	10,220	11 120	\$ 75C	<u>\$.500</u>	8 125
998		905	1,093	10,320		10,320	9,790	10.220	11 120	11,630	8 500	8.125
998 998		905	1,093	10,320		10 320	9,790	10.220	11.120	11,830	3.500	\$ 125

ŝ

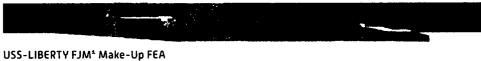

PERFORMANCE PROPERTIES


$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pipe Nominal OD inches	Nominal Weight Ibs/ft	Plain-End Weight Ibs/ft	Nominal Wall inches	Drift Diameter inches	Pin Bored ID inches	Makeup Loss inches	Connection Efficiency	55 KSI Tensile and Compressive Strength 1000 lbs	80 KSI Tensile and Compressive Strength 1000 lbs	95 KSI Tensile and Compressive Strength 1000 lbs
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										131	155
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										146	173
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								· · · · ·	· · · · · · · · · · · · · · · · · · ·	182	216
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										204	242
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										137	163
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•							154	183
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			÷							168	200
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					÷					190	226
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			<u> </u>					+ - · · · · · · · · · · · · · · · · · ·		170	202
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								• · · · · · · · · · · · · · · · · · · ·		182	216
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										193	229
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								· · · · · · · · · · · · · · · · · · ·		220	261
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		····					-			168	200
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										191	226
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										219	261
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								t		262	311
521.421.324.1264.0014.0404.08 61.57% 212523.223.114.0443.9193.9584.33 61.42% 2295 1/215.515.364.9504.8254.8642.8058.02%1445 1/217.016.894.8924.7674.8062.9758.14%1595 1/220.019.834.7784.6534.6923.3058.09%1865 1/223.022.564.6704.5454.5843.4757.66%2105 1/226.025.564.5484.5004.5393.8054.10%2246 5/823.222.215.9655.8405.8793.6059.95%2156 5/823.222.215.9655.8405.8793.6059.95%2156 5/823.222.215.9655.8405.8793.6059.95%2156 5/823.027.675.7915.6665.7054.1059.56%2666 5/828.027.675.7915.6655.5894.4359.44%3006 5/823.031.235.6755.5005.5894.4359.44%300720.019.566.4566.3316.3703.4160.12%190723.022.656.3666.2506.2893.5858.80%215726.025.696.2766.151			<u> </u>					· · · · · · · · · · · · · · · · · · ·		290	344
523.223.114.0443.9193.9584.33 61.42% 2295 1/215.515.364.9504.8254.8642.8058.02%1445 1/217.016.894.8924.7674.8062.9758.14%1595 1/220.019.834.7784.6534.6923.3058.02%1865 1/223.022.554.6704.5454.5843.4757.66%2105 1/226.025.564.5484.5004.5393.8054.10%2246 5/820.019.516.0495.9245.9633.2759.60%1886 5/823.222.215.9655.8405.8793.6059.95%2156 5/824.023.605.9215.7965.8353.7660.03%2296 5/828.027.675.7915.6655.5054.1059.25%2666 5/828.027.675.7515.6365.6754.1059.21%2746 5/833.032.745.6255.5005.5394.6059.38%314720.019.566.4566.3316.3703.4160.12%190723.022.656.3666.2505.5394.6059.38%215726.025.696.2766.1516.1903.9159.57%247720.019.566.3666.250 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>299</td><td>355</td></t<>										299	355
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										309	366
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										334	396
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										210	249
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										231	274
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										271	322
65/8 20.0 19.51 6.049 5.924 5.963 3.27 $59.60%$ 188 $65/8$ 23.2 22.21 5.965 5.840 5.879 3.60 $59.95%$ 215 $65/8$ 24.0 23.60 5.921 5.796 5.835 3.76 $60.03%$ 229 $65/8$ 28.0 27.67 5.791 5.666 5.705 4.10 $59.56%$ 266 $65/8$ 28.6 28.60 5.761 5.636 5.675 4.10 $59.21%$ 274 $65/8$ 32.0 31.23 5.675 5.550 5.589 4.43 $59.44%$ 300 $65/8$ 32.0 31.23 5.675 5.550 5.589 4.43 $59.44%$ 300 $65/8$ 33.0 32.74 5.625 5.500 5.539 4.60 $59.38%$ 314 7 20.0 19.56 6.456 6.331 6.370 3.41 $60.12%$ 190 7 23.0 22.65 6.366 6.250 6.289 3.58 $58.80%$ 215 7 26.0 25.69 6.276 6.151 6.190 3.91 $59.57%$ 247 7 29.0 28.75 6.184 6.125 6.164 4.24 $56.15%$ 261 7 32.0 31.70 6.094 6.000 6.039 4.41 $57.92%$ 297 7 $5/8$ 26.40 25.59 0.328 6.844 6.883							-			306	363
6 5/8 23.2 22.21 5.965 5.840 5.879 3.60 59.95% 215 6 5/8 24.0 23.60 5.921 5.796 5.835 3.76 60.03% 229 6 5/8 28.0 27.67 5.791 5.666 5.705 4.10 59.56% 266 6 5/8 28.6 28.60 5.761 5.636 5.675 4.10 59.21% 274 6 5/8 32.0 31.23 5.675 5.550 5.589 4.43 59.44% 300 6 5/8 33.0 32.74 5.625 5.500 5.539 4.60 59.38% 314 7 20.0 19.56 6.456 6.331 6.370 3.41 60.12% 190 7 23.0 22.65 6.366 6.250 6.289 3.58 58.80% 215 7 26.0 25.69 6.276 6.151 6.190 3.91								·		325	386
6 5/8 24.0 23.60 5.921 5.796 5.835 3.76 60.03% 229 6 5/8 28.0 27.67 5.791 5.666 5.705 4.10 59.56% 266 6 5/8 28.6 28.60 5.761 5.636 5.675 4.10 59.21% 274 6 5/8 32.0 31.23 5.675 5.550 5.589 4.43 59.44% 300 6 5/8 33.0 32.74 5.625 5.500 5.539 4.60 59.38% 314 7 20.0 19.56 6.456 6.331 6.370 3.41 60.12% 190 7 23.0 22.65 6.366 6.250 6.289 3.58 58.80% 215 7 26.0 25.69 6.276 6.151 6.190 3.91 59.57% 247 7 29.0 28.75 6.184 6.125 6.164 4.24 56.15%							· · · ·			273	325
6 5/8 28.0 27.67 5.791 5.666 5.705 4.10 59.56% 266 6 5/8 28.6 28.60 5.761 5.636 5.675 4.10 59.21% 274 6 5/8 32.0 31.23 5.675 5.550 5.589 4.43 59.44% 300 6 5/8 33.0 32.74 5.625 5.500 5.539 4.60 59.38% 314 7 20.0 19.56 6.456 6.331 6.370 3.41 60.12% 190 7 23.0 22.65 6.366 6.250 6.289 3.58 58.80% 215 7 26.0 25.69 6.276 6.151 6.190 3.91 59.57% 247 7 29.0 28.75 6.184 6.125 6.164 4.24 56.15% 261 7 32.0 31.70 6.094 6.000 6.039 4.41 57.92% 297										313	372
6 5/8 28.6 28.60 5.761 5.636 5.675 4.10 59.21% 274 6 5/8 32.0 31.23 5.675 5.550 5.589 4.43 59.44% 300 6 5/8 33.0 32.74 5.625 5.500 5.539 4.60 59.38% 314 7 20.0 19.56 6.456 6.331 6.370 3.41 60.12% 190 7 23.0 22.65 6.366 6.250 6.289 3.58 58.80% 215 7 26.0 25.69 6.276 6.151 6.190 3.91 59.57% 247 7 29.0 28.75 6.184 6.125 6.164 4.24 56.15% 261 7 32.0 31.70 6.094 6.000 6.039 4.41 57.92% 297 7 5/8 26.40 25.59 0.328 6.844 6.883 3.76 59.94% 248 <										333	396
6 5/8 32.0 31.23 5.675 5.550 5.889 4.43 59.44% 300 6 5/8 33.0 32.74 5.625 5.500 5.539 4.60 59.38% 314 7 20.0 19.56 6.456 6.331 6.370 3.41 60.12% 190 7 23.0 22.65 6.366 6.250 6.289 3.58 58.80% 215 7 26.0 25.69 6.276 6.151 6.190 3.91 59.57% 247 7 29.0 28.75 6.184 6.125 6.164 4.24 56.15% 261 7 32.0 31.70 6.094 6.000 6.039 4.41 57.92% 297 7 5/8 26.40 25.59 0.328 6.844 6.883 3.76 59.94% 248 7 5/8 29.70 29.06 0.375 6.750 6.789 3.92 59.41% 279										388	460
6 5/8 33.0 32.74 5.625 5.500 5.539 4.60 59.38% 314 7 20.0 19.56 6.456 6.331 6.370 3.41 60.12% 190 7 23.0 22.65 6.366 6.250 6.289 3.58 58.80% 215 7 26.0 25.69 6.276 6.151 6.190 3.91 59.57% 247 7 29.0 28.75 6.184 6.125 6.164 4.24 56.15% 261 7 32.0 31.70 6.094 6.000 6.039 4.41 57.92% 297 7 5/8 26.40 25.59 0.328 6.844 6.883 3.76 59.94% 248 7 5/8 29.70 29.06 0.375 6.750 6.789 3.92 59.41% 279 7 5/8 33.70 33.07 0.430 6.640 6.679 4.26 59.23% 316 7 5/8								·		398	473
7 20.0 19.56 6.456 6.331 6.370 3.41 60.12% 190 7 23.0 22.65 6.366 6.250 6.289 3.58 58.80% 215 7 26.0 25.69 6.276 6.151 6.190 3.91 59.57% 247 7 29.0 28.75 6.184 6.125 6.164 4.24 56.15% 261 7 32.0 31.70 6.094 6.000 6.039 4.41 57.92% 297 7 5/8 26.40 25.59 0.328 6.844 6.883 3.76 59.94% 248 7 5/8 29.70 29.06 0.375 6.750 6.789 3.92 59.41% 279 7 5/8 29.70 29.06 0.375 6.570 6.609 4.42 59.09% 340 7 5/8 33.70 33.07 0.430 6.640 6.679 4.26 59.23% 316 7 5/8 35.80 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>436</td> <td>518</td>								· · · · · · · · · · · · · · · · · · ·		436	518
7 23.0 22.65 6.366 6.250 6.289 3.58 58.80% 215 7 26.0 25.69 6.276 6.151 6.190 3.91 59.57% 247 7 29.0 28.75 6.184 6.125 6.164 4.24 56.15% 261 7 32.0 31.70 6.094 6.000 6.039 4.41 57.92% 297 7 5/8 26.40 25.59 0.328 6.844 6.883 3.76 59.94% 248 7 5/8 29.70 29.06 0.375 6.750 6.789 3.92 59.41% 279 7 5/8 29.70 29.06 0.375 6.750 6.789 3.92 59.41% 279 7 5/8 33.70 33.07 0.430 6.640 6.679 4.26 59.23% 316 7 5/8 35.80 35.59 0.465 6.570 6.609 4.42 59.09% 340 (7 578) (3								· · · · ·		457	543
7 26.0 25.69 6.276 6.151 6.190 3.91 59.57% 247 7 29.0 28.75 6.184 6.125 6.164 4.24 56.15% 261 7 32.0 31.70 6.094 6.000 6.039 4.41 57.92% 297 7 5/8 26.40 25.59 0.328 6.844 6.883 3.76 59.94% 248 7 5/8 29.70 29.06 0.375 6.750 6.789 3.92 59.41% 279 7 5/8 33.70 33.07 0.430 6.640 6.679 4.26 59.23% 316 7 5/8 35.80 35.59 0.465 6.570 6.609 4.42 59.09% 340 (7 5/8 35.80 35.59 0.465 6.570 6.609 4.42 59.09% 340 (7 5/8 (39.08) (0.500) (6.5339) (4.75) (59.55%)			·							277	328
7 29.0 28.75 6.184 6.125 6.164 4.24 56.15% 261 7 32.0 31.70 6.094 6.000 6.039 4.41 57.92% 297 7 5/8 26.40 25.59 0.328 6.844 6.883 3.76 59.94% 248 7 5/8 29.70 29.06 0.375 6.750 6.789 3.92 59.41% 279 7 5/8 33.70 33.07 0.430 6.640 6.679 4.26 59.23% 316 7 5/8 35.80 35.59 0.465 6.570 6.609 4.42 59.09% 340 (7 5/8 0.900 (38.08) (0.500) (6.5339) (4.75) (59.55%) (366) 7 5/8 42.80 42.43 0.562 6.376 6.415 5.09 59.42% 407 7 5/8 45.30 44.71 0.595 6.310 6.349			+ · · · · · · · · · · · · · · · · · · ·		·			t		313	372
7 32.0 31.70 6.094 6.000 6.039 4.41 57.92% 297 7 5/8 26.40 25.59 0.328 6.844 6.883 3.76 59.94% 248 7 5/8 29.70 29.06 0.375 6.750 6.789 3.92 59.41% 279 7 5/8 33.70 33.07 0.430 6.640 6.679 4.26 59.23% 316 7 5/8 35.80 35.59 0.465 6.570 6.609 4.42 59.09% 340 (7 5/8 (93.00) (38.08) (0.500) (6.539) (4.75) (59.55%) (366) 7 5/8 42.80 42.43 0.562 6.376 6.415 5.09 59.42% 407 7 5/8 45.30 44.71 0.595 6.310 6.349 5.25 59.34% 429								f		360	427
7 5/8 26.40 25.59 0.328 6.844 6.883 3.76 59.94% 248 7 5/8 29.70 29.06 0.375 6.750 6.789 3.92 59.41% 279 7 5/8 33.70 33.07 0.430 6.640 6.679 4.26 59.23% 316 7 5/8 35.80 35.59 0.465 6.570 6.609 4.42 59.09% 340 (7 5/8 (9.900) (38.08) (0.500) (6.539) (4.75) (59.55%) (366) 7 5/8 42.80 42.43 0.562 6.376 6.415 5.09 59.42% 407 7 5/8 45.30 44.71 0.595 6.310 6.349 5.25 59.34% 429				<u>ن</u> ان				<u> </u>		380	451
7 5/8 29.70 29.06 0.375 6.750 6.789 3.92 59.41% 279 7 5/8 33.70 33.07 0.430 6.640 6.679 4.26 59.23% 316 7 5/8 35.80 35.59 0.465 6.570 6.609 4.42 59.09% 340 (7 5/8 (9.00) (38,08) (0.500) (6.539) (4.75) (59.55%) (366) 7 5/8 42.80 42.43 0.562 6.376 6.415 5.09 59.42% 407 7 5/8 45.30 44.71 0.595 6.310 6.349 5.25 59.34% 429										432	513
7 5/8 33.70 33.07 0.430 6.640 6.679 4.26 59.23% 316 7 5/8 35.80 35.59 0.465 6.570 6.609 4.42 59.09% 340 (7 5/8 (99.00) (38.08) (0.500) (6.539) (4.75) (59.55%) (366) 7 5/8 42.80 42.43 0.562 6.376 6.415 5.09 59.42% 407 7 5/8 45.30 44.71 0.595 6.310 6.349 5.25 59.34% 429										360	428
7 5/8 35.80 35.59 0.465 6.570 6.609 4.42 59.09% 340 (7 578 (39.00) (38.08) (0.500) (6.539) (4.75) (59.55%) (366) 7 5/8 42.80 42.43 0.562 6.376 6.415 5.09 59.42% 407 7 5/8 45.30 44.71 0.595 6.310 6.349 5.25 59.34% 429					F	· · · · · · · · · · · · · · · · · · ·			·	406	482
(7 5/8) (39.00) (38.08) (0.500) (6.539) (4.75) (59.55%) (366) 7 5/8 42.80 42.43 0.562 6.376 6.415 5.09 59.42% 407 7 5/8 45.30 44.71 0.595 6.310 6.349 5.25 59.34% 429					····			+ <u> </u>		460	547
7 5/8 42.80 42.43 0.562 6.376 5.415 5.09 59.42% 407 7 5/8 45.30 44.71 0.595 6.310 6.349 5.25 59.34% 429										495	587
7 5/8 45.30 44.71 0.595 6.310 6.349 5.25 59.34% 429								t		(533)	(633)
								+	i	593 623	704
ן 1814 – 1878,07 – 2.20 – 2.20 – 2.20 – 2.20 – 2.20 – 1.20 – 1.20 – 1.20 – 1.20 – 1.20 – 1.20 – 1.20 – 1.20 – 1											740
								· · · · · ·	·	608	722
8 5/8 28.00 27.04 0.304 7.892 7.931 3.91 60.71% 265 8 5/8 32.00 31.13 0.352 7.875 7.914 4.25 55.57% 280			· ···							<u>386</u> 407	458 483
8 5/8 32.00 31.13 0.332 7.815 7.914 4.25 55.57% 280 8 5/8 36.00 35.17 0.400 7.700 7.739 4.58 60.70% 345										· · · · · · · · · · · · · · · · · · ·	
8 5/8 36.00 35.17 0.400 7.700 7.139 4.58 60.70% 345 8 5/8 40.00 39.33 0.450 7.625 7.664 4.91 59.48% 378										502 550	596 653

NOTES:

1. Connection efficiency is calculated by dividing the connection-critical area by the nominal pipe body area. 2. Tensile and compressive strengths are calculated by multiplying the pipe body yield and connection critical area. Contact U. S. Steel Tubular Products to receive information for grades not listed.

110 KSI	125 KSI		
Tensile and	Tensile and		
Compressive	Compressive		
Strength	Strength		
1000 lbs	1000 lbs		
180	204		
201	228		
250	284		
280	319		
189	214		
212	241		
231	263		
261	297		
233	265		
250	285		
265	301		
302	343		
231	263		
262	298		
302	343		
360	409		
399	453		
411	467		
424	482		
459	521		
288	327		
317	361		
372	423		
421	478		
447	508		
376	427		
430	489		
458	521		
533	605		
547	622		
600	682		
628	714		
380	432		
430	489		
495	562		
522	593		
594	675		
495	563		
558	634		
633	719		
680	773		
(68)	CEEG		
815	926		
857	974		
836	950		
531	603		
560	636		
690	784		
756	860		
	أمم مستعققة مستعلم		



Total Axial load (1000 lbs)

USS-LIBERTY FJM^e connection is API RP 5C5:2014 CAL II Qualified

U. S. Steel Tubular Products

PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Mesquite SWD Inc
LEASE NO.:	NM0533177A
WELL NAME & NO.:	1-Uber East SWD
SURFACE HOLE FOOTAGE:	2345'/S & 660'/E
BOTTOM HOLE FOOTAGE	'/ & '/
LOCATION:	Section 24, T. 23 S., R. 31 E., NMPM
COUNTY:	Eddy County, New Mexico

Potash		© Secretary	C R-111-P
Cave/Karst Potential	₢ Low		
Variance		C Flex Hose	C Other
Wellhead	Conventional		
Other	□4 String Area	□Capitan Reef	□WIPP

All previous COAs still apply except for the following:

A. CASING

- 1. The 20 inch surface casing shall be set at approximately 1060 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

- 2. The minimum required fill of cement behind the **13 3/8** inch **68** lbs/ft first intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to potash.

Second intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 3. The minimum required fill of cement behind the 9 5/8 inch second intermediate is:
 - Cement to surface. If cement does not circulate contact appropriate BLM office
- 4. The minimum required fill of cement behind the 7 5/8 inch production liner is:
 - Cement to top of liner. Operator shall provide method of verification.
- 5. Open Hole completion from 16390' to TD of 17500'

B. PRESSURE CONTROL

.

- 1. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 20 inch surface casing shoe shall be 2000 (2M) psi. In the case where the only BOP installed is an annular preventer, it shall be tested to a minimum of 2000 psi (which may require upgrading to 3M or 5M annular).
- Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 13 3/8 inch first intermediate casing shoe shall be 5000 (5M) psi.
- 3. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9 5/8 inch second intermediate casing shoe shall be 10,000 (10M) psi. Variance in approved to use 5M Annular which shall be tested to 5000 psi.

MHH 10222018

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties

Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201. During office hours call (575) 627-0272. After office hours call (575)

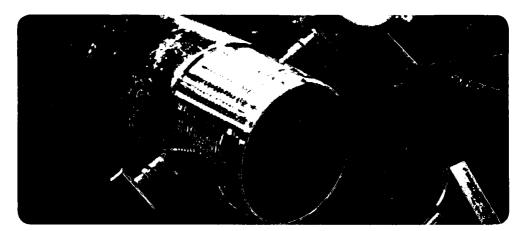
Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

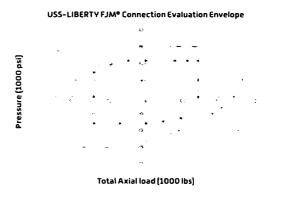
- Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- A. CASING
- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> hours. WOC time will be recorded in the driller's log.
- 3. <u>Wait on cement (WOC) for Water Basin</u>: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

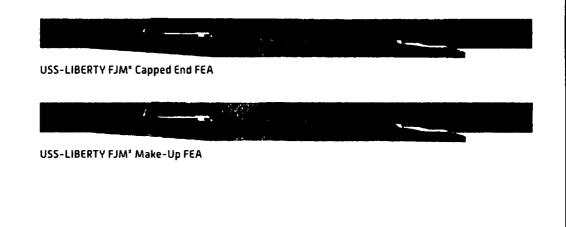
B. PRESSURE CONTROL


- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall


have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.

- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.


110 KSI	125 KSI			
Tensile and	Tensile and			
Compressive	Compressive			
Strength	Strength			
1000 lbs	1000 lbs			
180	204			
201	228			
250	284			
280	319			
189	214			
212	241			
231	263			
261	297			
233	265			
250	285			
265	301			
302	343			
231	263			
262	298			
302	343			
360	409			
399	453			
411	467			
424	482			
459	521			
288	327			
317	361			
372	423			
421	478			
447	508			
376	427			
430	489			
458	521			
533	605			
547	622			
600	682			
628	714			
380	432			
430	489			
495	562			
522	593			
594	675			
495	563			
558	634			
633	719			
680	773			
(7/53)	652			
815	926			
857	974			
836	950			
531	603			
560	636			
690	784			
756	860			

USS-LIBERTY FJM^e connection is API RP 5C5:2014 CAL II Qualified

J_SS) U. S. Steel Tubular Products

Haque, Mustafa <mhaque@blm.gov>

[EXTERNAL] MESQUITE SWD INC - DRLG CHANGE SUNDRY - USER EAST SWD #4/

Melanie & Tommy Wilson <mjp1692@gmail.com> To: "Haque, Mustafa" <mhaque@blm.gov>

Mon, Oct 15, 2018 at 7:41 AM

Hi Haque,

.....

Sheryl said on the 13 3/8" casing, we will run 66# J55 BTC casing instead of the 54.5#. Will that work?

Thank you!!

Melanie

From: Haque, Mustafa <mhaque@blm.gov> Sent: Friday, October 12, 2018 9:06 AM To: Melanie Wilson <mjp1692@gmail.com> Subject: Re: [EXTERNAL] MESQUITE SWD INC - DRLG CHANGE SUNDRY - UBER EAST SWD #1

Good Morning Melanie,

Our geologist is not agreeing to change surface casing depth.

Also, the 13 3/8" casing burst safety factor does not meet the minimum requirement.

Thanks-

Haque

4.5

[Quoted text hidden] [Quoted text hidden]

• 1 • 1 .

.

PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Mesquite SWD, Inc
LEASE NO.:	NM0405444
WELL NAME & NO.:	1-Uber North SWD
SURFACE HOLE FOOTAGE:	516'/N & 2355'/E
BOTTOM HOLE FOOTAGE	'/ & '/
LOCATION:	Section 15, T. 23 S., R. 31 E., NMPM
COUNTY:	Eddy County, New Mexico

Potash		C Secretary	• R-111-P
Cave/Karst Potential	€ Low		
Variance		← Flex Hose	C Other
Wellhead	Conventional	Multibowl	
Other	□4 String Area	Capitan Reef	□WIPP

All previous COAs still apply except for the following:

- 5

A. CASING

- 1. The 20 inch surface casing shall be set at approximately 680 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

- 2. The minimum required fill of cement behind the 13 3/8 inch 68 lbs/ft first intermediate casing, which shall be set at approximately 4275 feet, is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to potash.
- 3. The minimum required fill of cement behind the 9 5/8 inch second intermediate, which shall be set at approximately 1150 feet, is:
 - Cement to surface. If cement does not contact appropriate BLM office
- 4. The minimum required fill of cement behind the 7 5/8 inch production liner is:
 - Cement to top of liner. Operator shall provide method of verification.
- 5. Open Hole completion from 16510' to TD of 17500'

B. PRESSURE CONTROL

- 1. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 20 inch surface casing shoe shall be 2000 (2M) psi. In the case where the only BOP installed is an annular preventer, it shall be tested to a minimum of 2000 psi (which may require upgrading to 3M or 5M annular).
- Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 13 3/8 inch first intermediate casing shoe shall be 5000 (5M) psi.
- 3. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9 5/8 inch second intermediate casing shoe shall be 10,000 (10M) psi. Variance in approved to use 5M Annular which shall be tested to 5000 psi.

MHH 10172018

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)
 - Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- A. CASING
- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> hours. WOC time will be recorded in the driller's log.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall

have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.

e. The results of the test shall be reported to the appropriate BLM office.

.

- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.