	UNITED STATE EPARTMENT OF THE I UREAU OF LAND MANA	NTERIOR			OMB NO Expires: Ja	APPROVED D. 1004-0137 nuary 31, 2018
SUNDRY NOTICES AND REPORTS ON WELLS Do not use this form for proposals to drill or to re-enter an abandoned well. Use form 3160-3 (APD) for such proposals.			5. Lease Serial No. NMNM43744			
			6. If Indian, Allottee of	r Tribe Name		
SUBMIT IN	TRIPLICATE - Other ins	tructions o	n page 2		7. If Unit or CA/Agree	ment, Name and/or No.
1. Type of Well			-		8. Well Name and No.	·
🛛 Oil Well 🔲 Gas Well 🔲 Otl						34-3 FEDERAL COM 177
2. Name of Operator OXY USA INCORPORATED	Contact: E-Mail: SARAH_C		CHAPMAN DXY.COM		 API Well No. 30-015-46046-0 	0-X1
3a. Address 5 GREENWAY PLAZA SUITE HOUSTON, TX 77046-0521	110	3b. Phone N Ph: 713-3	lo. (include area code) 850-4997		10. Field and Pool or E PURPLE SAGE	Exploratory Area -WOLFCAMP (GAS)
4. Location of Well (Footage, Sec., 7	., R., M., or Survey Description	ı)	· · · · · · · · · · · · · · · · · · ·		11. County or Parish, S	State
Sec 34 T23S R31E NENW 22 32.267582 N Lat, 103.765938					EDDY COUNTY	΄, ΝΜ
12. CHECK THE AI	PPROPRIATE BOX(ES)	TO INDIC	ATE NATURE O	F NOTICE,	REPORT, OR OTH	IER DATA
TYPE OF SUBMISSION			TYPE OF	F ACTION		
X Notice of Intent	Acidize	D De	epen	Product	tion (Start/Resume)	Water Shut-Off
· · · · ·	Alter Casing		draulic Fracturing	🗖 Reclam	ation	Well Integrity
Subsequent Report	Casing Repair	□ New Construction □ Recomple		plete	🛛 Other	
Final Abandonment Notice	Change Plans	🗖 Pl	Plug and Abandon		rarily Abandon	Change to Original A PD
	Convert to Injection	🗖 Pl	Plug Back Water D		Disposal	
13. Describe Proposed or Completed Op If the proposal is to deepen direction Attach the Bond under which the wo following completion of the involved testing has been completed. Final Al determined that the site is ready for f	ally or recomplete horizontally, rk will be performed or provide l operations. If the operation re bandonment Notices must be fi	, give subsurface the Bond No. esults in a mult	e locations and measu on file with BLM/BIA ple completion or reco	red and true vo Required su mpletion in a	ertical depths of all pertin bsequent reports must be new interval, a Form 316	ent markers and zones. filed within 30 days 0-4 must be filed once
OXY USA Inc. respectfully red 1. BHL is moving 560' west, to 2. Landing zone change 3. Cement Design (3-string to 4. Casing Design 5. Well Control Update	be 1640' FWL	oved APD b	ecause of the follo	owing chang	jes:	
Please find updated documen Thank you.	itation for your use.		–		I Field Of	
		X	(Opera	ator Copy	RECEIVED
14. I hereby certify that the foregoing is	s true and correct.	- 	1	<u> </u>	<u> </u>	-JUL_0_1-2019
	Electronic Submission #		ATED cont to the	Carlebad		
Committed to AFMSS for processing by PRISCILLA P Name(Printed/Typed) SARAH E CHAPMAN Title						IICT II-AHTESIAO.C.D
Name (Printed/Typed) SARAH E			THE REGUL	ATORY SP		
Signature (Electronic	Submission)		Date 06/06/2	019	<u></u>	

THIS SPACE FOR FEDERAL OR STATE OFFICE USE

 $\overline{}$

Kup 7-26-19.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	OXY USA Incorporated
LEASE NO.:	NMNM043744
WELL NAME & NO.:	Platinum MDP1 33-4 Federal Com 177H
SURFACE HOLE FOOTAGE:	220'/N & 2557'/W
BOTTOM HOLE FOOTAGE	20'/S & 2200'/W
LOCATION:	Section 34, T.23 S., R.31 E., NMPM
COUNTY:	Eddy County, New Mexico

COA

H2S	C Yes	€ No	
Potash	✓ None	C Secretary	• R-111-P
Cave/Karst Potential	• Low	C Medium	
Variance	∩ None	• Flex Hose	C Other
Wellhead	C Conventional	C Multibowl	🕫 Both
Other	☐ 4 String Area	Capitan Reef	Г WIPP
Other	Fluid Filled	Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	COM	☐ Unit

All Previous COAs Still Apply

A. CASING

Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 633 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength,

whichever is greater.

- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing 1 shall be set at approximately 4325 feet is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Cement excess is less than 25%, more cement might be required.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 3. The minimum required fill of cement behind the 7-5/8 inch intermediate casing 2 is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Operator has proposed to pump down 9-5/8" X 7-5/8" annulus. <u>Operator must run</u> a CBL from TD of the 7-5/8" casing to surface. Submit results to BLM.

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back 500 feet into the previous casing. Operator shall provide method of verification.
 Cement excess is less than 25%, more cement might be required.

B. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.

b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **intermediate casing 1** shoe shall be **5000 (5M)** psi.

c. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **intermediate casing 2** shoe shall be **5000 (5M)** psi.

Option 2:

- 1. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

C. SPECIAL REQUIREMENT (S)

Break Testing

- Break testing variance is approved to be conducted only from 0-10000 feet or the top of the 3rd Bone Spring which ever is shallower.
- Pressure above 500 psi and/or flow above 500 mcf or 100 bbl over the anticipated conditions while drilling require notification to the Authorized Officer before any pressure test can begin.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

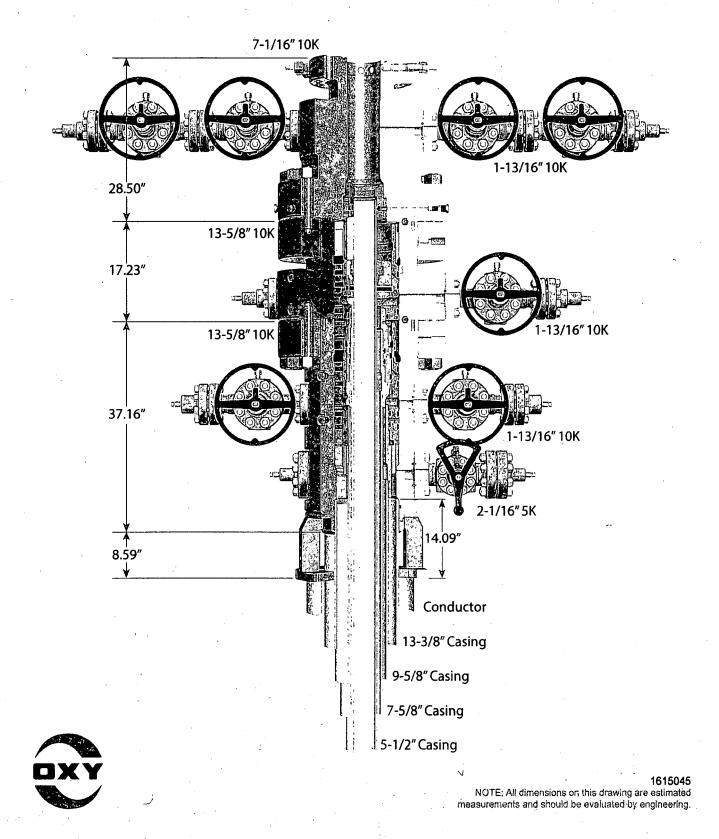
- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)
 - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- 1. 'Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as

well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING


- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> hours. WOC time will be recorded in the driller's log.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

13-5/8" 10K MN-DS Wellhead Four String

PERFORMANCE DATA

5.500 in

TMK UP TORQ™ DQW Technical Data Sheet

Tubular Parameters

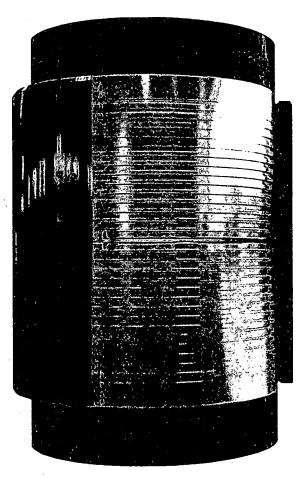
Size	5.500	in
Nominal Weight	20.00	lbs/ft
Grade	P110 CY	
PE Weight	19.81	lbs/ft
Wall Thickness	0.361	in
Nominal ID	4.778	in
Drift Diameter	4.653	in
Nom. Pipe Body Area	5.828	in²
Grade PE Weight Wall Thickness Nominal ID Drift Diameter	P110 CY 19.81 0.361 4.778 4.653	lbs/ft in in in

Connection Parameters

Connection OD	6.050	in
Connection ID	4.778	in
Make-Up Loss	4.324	in
Critical Section Area	5.828	in²
Tension Efficiency	100.0	%
Compression Efficiency	100.0	%
Yield Load In Tension	641,000	lbs
Min. Internal Yield Pressure	12,640	psi
Collapse Pressure	11,110	psi
Uniaxial Bending	92	°/ 100 ft

Make-Up Torques

Min. Make-Up Torque	14,000	ft-lbs
Opt. Make-Up Torque	16,000	ft-lbs
Max. Make-Up Torque	18,000	ft-lbs
Operating Torque	36,800	ft-lbs
Yield Torque	46,000	ft-Ibs


Printed on: March-05-2019

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

Minimum Yield	110,000	psi
Minimum Tensile	125,000	psi
Yield Load	641,000	lbs
Tensile Load	729,000	lbs
Min. Internal Yield Pressure	12,640	psi
Collapse Pressure	11,110	psi

20.00 lbs/ft

P110 CY

PERFORMANCE DATA

5.500 in

)

TMK UP DQX Technical Data Sheet

Tubular Parameters

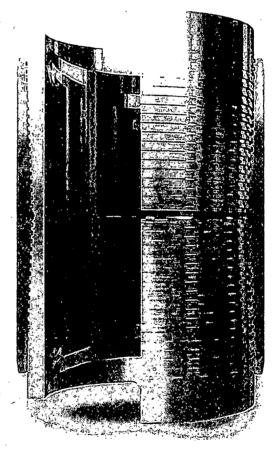
Size	5.500	in
Nominal Weight	20:00	lbs/ft
Grade	P-110	
PE Weight	19.81	lbs/ft
Wall Thickness	0.361	in 🖍
Nominal ID	4.778	in
Drift Diameter	4.653	in
Nom. Pipe Body Area	5.828	in²
	t	1

Connection Parameters

Connection OD	6.050	in
Connection ID	4.778	in
Make-Up Loss	4.122	in
Critical Section Area	5.828	in²
Tension Efficiency	100 0	%
Compression Efficiency	100.0	%
Yield Load In Tension	641,000	lbs
Min. Internal Yield Pressure	12,600	psi
Collapse Pressure	11,100	psi

Make-Up Torques

Min. Make-Up Torque	11,600	ft-lbs
Opt. Make-Up Torque	12,900	ft-lbs
Max. Make-Up Torque	14,100	ft-lbs
Yield Torque	20,600	ft-lbs


Printed on: July-29-2014


NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

Minimum Yield 110,000 psi **Minimum Tensile** 125,000 psi Yield Load 641,000 lbs **Tensile Load** 729,000 lbs Min. Internal Yield Pressure 12,600 psi **Collapse Pressure** 11,100 psi

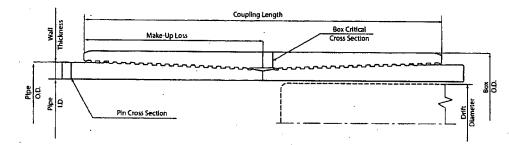
TECHNICAL DATA SHEET TMK UP DQX 5.5 X 20 P110

TUBULAR PARAMETERS		PIPE BODY PROPERTIES	
Nominal OD, (inch)	5.500	PE Weight, (lbs/ft)	19.81
Wall Thickness, (inch)	0.361	Nominal Weight, (lbs/ft)	20.00
Pipe Grade	P110	Nominal ID, (inch)	4.778
Coupling	Regular	Drift Diameter, (inch)	4 6 5 3
Coupling Grade	P110	Nominal Pipe Body Area, (sq inch)	5.828
Drift	Standard	Yield Strength in Tenslon, (klbs)	641
CONNECTION PARAMETERS		Min. Internal Yield Pressure, (psi)	12 640
		Collapse Pressure, (psi)	11 110
Connection OD (inch)	6.05		
Connection ID, (inch)	4.778	ំ នោះជាវាម កែករបាត	
Make-Up Loss, (inch)	4.122		
Connection Critical Area, (sq inch)	5.828		
Yield Strength in Tension, (klbs)	641	Too Martin The State	and the second
Yeld Strength in Compression, (klbs)	641		
Tension Efficiency	100%		

100%

12 640

11 110


91.7

20 600

11 600

12 900

14 100

Fate

NOTE: The content of this Technical Dep Sheet is for general information only and does not guarantee performance or imply filness for a particular purpose, which only a competent drilling professional can determine concidering the specific installation and operation parameters. This information subcreases all prior versions for this connection. Information that is privince or devinteded is no longer controlled by TAK and might not be the tates information. Arrivan suring the information for does not interviny that you have the lates: interhisteral information on please contact PAO *TMK* Technicul Sales in Russia (Tel +1 (281) 949-1044, Emult techsales@knk (psico nom)

Print date: 12/07/2017 18:09

Compression Efficiency

Collapse Pressure, (psi)

MAKE-UP TORQUES

Min. Internal Yield Pressure, (psi)

Uniaxial Bending (deg/100ft)

Minimum Make-Up Torque, (ft-lb)

Optimum Make-Up Torque, (ft-lb)

Maximum Make-Up Torque, (ft-lb)

PERFORMANCE DATA

5.500 in

lin

lbs/ft

lbs/ft

lin

lin

lin

lin²

5.500

20.00

P110 HC

19.81

0.361

4.778

4.653

5.828

TMK UP SF TORQ™

Tubular Parameters

Nominal Weight

Size

Grade

PE Weight

Drift Diameter

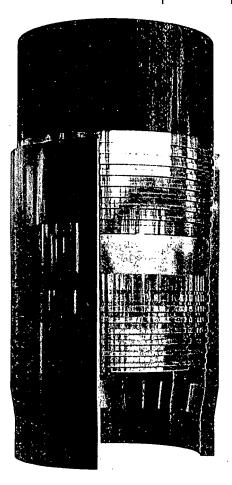
Technical Data Sheet

Wall Thickness Nominal ID

Connection Parameters

Nom. Pipe Body Area

		· · · · · · · · · · · · · · · · · · ·
Connection OD	5.777	in
Connection ID	4.734	in
Make-Up Loss	5.823	in
Critical Section Area	5.875	in²
Tension Efficiency	90.0	%
Compression Efficiency	90.0	%
Yield Load In Tension	576,000	lbś
^V Min. Internal Yield Pressure	12,640	psi
Collapse Pressure	12,780	psi
Uniaxial Bending	83	°/ 100 ft
		-


Make-Up Torques

Min. Make-Up Torque	15,700	ft-lbs
Opt. Make-Up Torque	19,600	ft-lbs
Max. Make-Up Torque	21,600	ft-lbs
Operating Torque	29,000	ft-Ibs
Yield Torque	36.000	ft-lbs

Minimum Yield 110,000 psi Minimum Tensile 125,000 psi Yield Load 641.000 lbs **Tensile Load** 728,000 lbs Min. Internal Yield Pressure 12,640 psi **Collapse Pressure** 12,780 psi

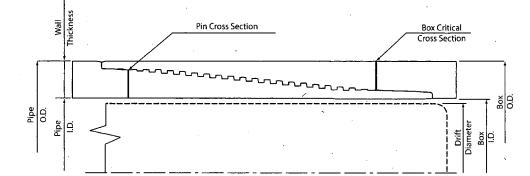
P110 HC

20.00 lbs/ft

Printed on: February-22-2018

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.



TECHNICAL DATA SHEET TMK UP FJ 7.625 X 26.4 L80 HC

TUBULAR PARAMETERS		PIPE BODY PROPERTIES
Nominal OD, (inch)	, 7.625	PE Weight, (lbs/ft) ['] 25.56
Wall Thickness, (inch)	0.328	Nominal Weight, (lbs/ft) 26.40
Pipe Grade	L80 HC	Nominal ID, (inch) 6.969
Drift	Standard	Drift Diameter, (inch) 6.844
		Nominal Pipe Body Area, (sq inch) 7.519
CONNECTION PARAMETERS		Yield Strength in Tension, (klbs) 601
Connection OD (inch)	7.63	Min. Internal Yield Pressure, (psi) 6 020
Connection ID, (inch)	6.975	Collapse Pressure, (psi) 3 910
Make-Up Loss, (inch)	4.165	
Connection Critical Area, (sq inch)	2.520	Internal Pressure
Yield Strength in Tension, (klbs)	347	
Yeld Strength in Compression, (klbs)	347	
Tension Efficiency	58%	100% (P15C7/15Q
Compression Efficiency	58%	
Min. Internal Yield Pressure, (psi)	6 020	
Collapse Pressure, (psi)	3 910	
Uniaxial Bending (deg/100ft)	28.0	
MAKE-UP TORQUES		
Yield Torque, (ft-lb)	22 200	
Minimum Make-Up Torque, (ft-lb)	12 500	

External Pressure

Convector Monitrity

13 900

15 300

NOTE: The content of this Technical Data Sheer is for general information only and does not guarantee performance or imply 1 trees for a particular purpose, which only a competent drilling professional nan determine considering the specific installation and operation parameters. This information supersedd, all provide storage controlled by TNK and regiment he the latest information. Anyone using the information releads by TNK and might not be the latest information. Anyone using the information supersed all provide the latest incomation please notact PAO. TMPT Technical Sales in Russia (Tel. 41 (201)/94/-1044, Email technicaleg/Intri-pleads on the second of the s

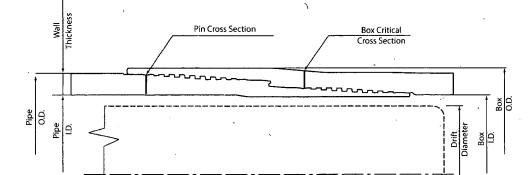
Print date: 07/10/2018 20:11

Optimum Make-Up Torque, (ft-lb)

Maximum Make-Up Torque, (ft-lb)

TECHNICAL DATA SHEET TMK UP SF 7.625 X 26.4 L80 HC

TUBULAR PARAMETERS		PIPE BODY PROPERTIES
Nominal OD, (inch)	7.625	PE Weight, (lbs/ft) 25.56
Wall Thickness, (inch)	0.328	Nominal Weight, (lbs/ft) 26.40
Pipe Grade	L80 HC	Nominal ID, (inch) 6.969
Drift	Standard	Drift Diameter, (inch) 6.844
		Nominal Pipe Body Area, (sq inch) 7.519
CONNECTION PARAMETERS		_Yield Strength in Tension, (klbs) 601
Connection OD (inch)	7.79	Min. Internal Yield Pressure, (psi) 6 020
Connection ID, (inch)	6.938	Collapse Pressure, (psi) 3 910
Make-Up Loss, (inch)	6.029	
Connection Critical Area, (sq inch)	5.948	Internal Pressure
Yield Strength in Tension, (klbs)	533	
Yeld Strength in Compression, (klbs)	533	
Tension Efficiency	89%	1000 11150
Compression Efficiency	89%	
Min. Internal Yield Pressure, (psi)	6 020	
Collapse Pressure, (psi)	3 910	
Uniaxial Bending (deg/100ft)	42.7	
MAKE-UP TORQUES		
Yield Torque. (ft-lb)	22 600	


Yield Torque, (ft-lb)	22 600
Minimum Make-Up Torque, (ft-lb)	15 000 '
Optimum Make-Up Torque, (ft-lb)	16 500
Maximum Make-Up Torque, (ft-lb)	18 200

External Pressure

- 11

Ч. т.

Corport I

NOTE: The content of this Technical Data Shee: is for general information only and does not quarantee performance or imply 1 threes for a particular purpose, which only a competent drilling profectional condetermine considering the specific installation and operator tearanteers. This information supersed all provide users on to this connection. Information supersed all provide users for this connection information that is ariticed or downloaded is no known controlled by TML and nagmi not be the latest technical information for users the latest technical information purpose which only a competent drilling profection dependent on the stant end on the same of the controlled by TML and nagmi not be the latest technical information for users to the controlled by TML and nagmi not be the latest technical information for the same of the controlled by TML and nagmi not be the latest technical information for the same of the controlled by TML and nagmi not be the latest technical information for the same of the controlled by TML and nagmi not be the latest technical information nations are not been written to the latest technical information for the same of the controlled by TML and nagmi not be technical same of technical same of the latest technical information please contact PAO. "TML" Technical Sales in Russia (Tel. +1 (491) 7: 5-76-00. Email technical satisfies the information of the same of the control of technical field in (281) 949-1044. Email technical satisfies com

Print date: 07/10/2018 20:00

<u>(</u>_____

OXY

PRD NM DIRECTIONAL PLANS (NAD 1983) PLATINUM MDP1 34-3 FED COM PLATINUM MDP1 34-3 FED COM 177H

Wellbore #1

Plan: Permitting Plan

Standard Planning Report

20 May, 2019

Oxy Planning Report

Database Company Project Site: Well Wellbore Design:	PRD NM	ERING DESIGNS DIRECTIONAL F JM MDP1 34-3 FE JM MDP1 34-3 FE #1	PLANS (NAD 1983) ED COM	Local Co-ordinate TVD Reference MD Reference North Reference Survey Calculatio		Well PLATINUM M RKB=26.5' @ 345 RKB=26.5' @ 345 Grid Minimum Curvatu	3.40ft 3.40ft	D COM 177H
Project 4	🔅 PRD NM	DIRECTIONAL P	LANS (NAD 1983)	nen er en	20 2000 - 2000 - 2010 -	ana ang ang ang ang ang ang ang ang ang	an an an an sao sao sao. Sanan sao sao	a an
Map System:	US State P			System Datum:	М	lean Sea Level		
Geo Datum:		rican Datum 1983		.,				
Map Zone:	New Mexic	o Eastern Zone			U	sing geodetic scale	e factor	
R MARKAR PARTING	j	1	a design and the first of the state of the s	r a betrara i quantizzaria adal arzonazia que sura	LA INGA MARCINE, SHIR IS "LANDAR	and states of the second	-that is a the factor	
Site		M MDP1 34-3 FE	D COM Schartenbergen der Schartenbergen) () () (LANKLING, TAT (27.5)	5026235 /VOIR TURANT 1	ياجران الجاهد محرره	a a charaite	e neer e le ger g
Site Position:			Northing:	461,352.44 u			:	32° 16' 1.502765 N
From:	Мар		Easting:	714,923.95 u	-		103	° 46' 18.211063 W
Position Uncertair	nty:	50.00 ft	Slot Radius:	13.200	in Grid Conve	rgence:		0.30 °
Well	PLATINU	M MDP1 34-3 FEI	D COM 177H	men din service and an in the second of the		Talan Karana	·	···· 2 · · · · · · · · · · · · · · · ·
12.279.022.991288568987.8912.96209				in el managina i de la véne. Ana pa	ornasi santa maosan. An An Airtí	ಮೇ ಬಿಲ್ಲೆ ಕ್ರೂ. ಶ್ರಷ್ಟ ಆ ಪರಿಸಿ ಕೊಟ್ಟುಗಳು	en ivitan den de la seconda de la seconda La seconda de la seconda de	200 ACL 2 000400 N
Well Position	+N/-S	190.25 ft 1,789.10 ft				titude:		32° 16' 3.292168 N ° 45' 57.363455 W
Decition Unrest 1	+E/-W		5			ngitude: ound Level:	103	45 57.363455 W 3,426.90 ft
			Mollhoad Elova					
Position Uncertain	nty Wellbore	2.00 ft		ation: 		and Lover An and a second second		о, ноко к
Wellbore Magnetics	Wellbore	#1 IName HDGM	Wellhead Eleva	Ation: Declination	Dip	Angle: 59.97	Field Str	angth 47,954
Weilbore	Wellbore	#1 IName HDGM	Sample Date	Declination	Dip	Angle	Field Str	angth Ag
Wellbore Magnetics	Wellbore	#1 IName HDGM	Sample Date	Declination	Dip	Angle	Fiéld Stř (nT	angth Ag
Wellbore Magnetics	Wellbore	#1 IName HDGM	Sample Date 5/20/2019	Declination	Dip	Angle 59.97	Field Str. (n1	angth Ag
Wellbore Magnetics Design Audit Notes:	Wellbore	#1 IName HDGM	Sample Date 5/20/2019	Declination (i) 6.7	Dip 77	Angle 59.97		angth Ag
Wellbore Magnetics Design Audit Notes: Version:	Wellbore	#1 IName HDGM	Sample Date 5/20/2019 Phase: F	Declination 6.7 PROTOTYPE	Dip 77	Angle 59.97 0.		angth Ag
Wellbore Magnetics Design Audit Notes: Version: Vertical Section:	Wellbore	#1 HDGM Plan Depthif	Sample Date 5/20/2019 Phase: F	Declination 6.7 PROTOTYPE	Dip 77	Angle 59.97 0.	tion (A.	angth Ag
Wellbore Magnetics Design Audit Notes: Version: Vertical Section:	Wellbore Model Permitting	#1 HDGM Plan Depthif	Sample.Date 5/20/2019 Phase: F rom (TVD)	Declination ()) 6.7 PROTOTYPE +N/S (ft)	77 Tie On Depth: 1E/-W (n) 0.00 g Build Rate n) (:/100ft)	Angle 59.97 0. Direct (?) 184. Turn',	81	47,954
Wellbore Magnetics Design Audit Notes: Version: Vertical:Section: Vertical:Sections Plan Sections Measured Depth Inc (ft) 0.00	Vellbore Model Permitting	#1 HDGM Plan Plan Vert zimuth () 0.00	Sample.Date 5/20/2019 Phase: F rom (TVD) (ft) 0.00 Ical thh +N/-S 0(ft) 0.00 0.00	(Declination (i) 6.7 PROTOTYPE +N/S (ft) 0.00 +E/W (ft) 0.00	Dip 77 Tie On Depth: 1 E/-W (rt) 0.00 g g Build 'Rate ft) ('/100ft) 0.00 0.00	Angle 59.97 0, Direc (i) 184. Turn Rate (r/100ft) +	tion, 81 	47,954
Wellbore Magnetics Design Audit Notes: Version: Vertical Sections Vertical Sections Measured Depth Inc (ft) 0.00 3,720.00	Vellbore	#1 HDGM Plan Plan Vert žimuth Oepthif 0.00 0.00 0.00 3,7	Sample.Date 5/20/2019 Phase: F rom (TVD) (ft) 0.00 Ical ital 0.00 itcal 0.00 0.00 0.00 0.00	Declination 6.7 PROTOTYPE +N/S (ft) 0.00 +E/W/ Rate (ft) 0.00 0.00	Dip 77 Tie On Depth: 1E/-W (ft) 0.00 g Build (?ate ft) (?/100ft) 0.00 0.00 0.00	Angle 59.97 0, Direc (f) 184. Turn (Rate (r/100ft)) 9 0,000	tion, 81 57FO 57(1) 0.00 0.00	47,954
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Vertical Sections Measured Depth Inc (ft) 0.00 3,720.00 4,220.14	Vellbore Model Permitting	#1 HDGM Plan Plan Depthif žimuth (i) 1 0.00 0.00 3,7 309.45 4,2	Sample.Date 5/20/2019 Phase: F rom (TVD) (ft) 0.00 Lcal (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Declination 6.7 PROTOTYPE +N/S (ft) 0.00 (Pogle +E/-W, Rate (ft) 0.00 0.00 0.00 0.00 0.00	Dip 77 Tie On Depth: 1.E/-W (ft) 0.00 g Build Rate t) (:/100rt) 0.00 0.00 0.00 0.00 0.00	Angle 59.97 0, Direct (f) 184 Turn (Rate (*/100ft) 0, 0,00 0, 0,00	tion, 81 -TFO 0.00 0.00 0.00 309.45	47,954
Wellbore Magnetics Design Audit Notes: Version: Vertical Sections Plan Sections Measured Depth Inc (tt) 0.00 3,720.00 4,220.14 10,377.81	Wellbore	#1 HDGM Plan Plan Vert zimuth 0.00 0.00 3,7 309.45 4,2 309.45 10,2	Sample-Date 5/20/2019 Phase: F rom (TVD) (ft) 0.00 Lcal 0.00 (ft) 0.00 0.00 (ft) 0.00 0.00 0.00 0.00 20.00 0.00 217.61 27.67 281.67 707.31	Declination 6.7 PROTOTYPE +N/S (ft) 0.00 (Pogle +E/-W, Rate (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Dip 77 Tie On Depth: +E/-W (ft) 0.00 g Build Rate t) (.700rt) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Angle 59.97 0,1 Direct (1) 184 Turn (Rater ('/100ft)) 0,00 0,00 0,000	tion, 81 81 TFO: 0.00 0.00 309.45 0.00	47,954
Wellbore Magnetics Design Audit Notes: Version: Vertical Sections Measured Depth inc (ft) 0.00 3,720.00 4,220.14 10,377.81 11,282.35	Wellbore	#1 HDGM HDGM Plan Depthif Zimuth 0.00 0.00 0.00 0.00 3.09.45 4.2 309.45 10.2 179.74 11,1	Sample-Date 5/20/2019 Phase: F rom (TVD) (ft) 0.00 Lcal (ft) 0.00 0.00 0.00 (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Declination 6.7 PROTOTYPE +N/S (ft) 0.00 (/100 (/100 (/100 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Dip 77 Tie On Depth: 1 E/-W (ft) 0.00 g Build Rate t) (.700 m) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 2.00 0.00	Angle 59.97 0,1 Direct (1) 184 Turn (Rate (7/100ft)) 0,000 0,000 0,000 0,000 0,000 0,000 0,000	tion, 81 TFO 0.00 0.00 309.45 0.00 -154.52	47,954 47.954
Wellbore Magnetics Design Audit Notes: Version: Vertical Sections Plan Sections Measured Depth Inc (tt) 0.00 3,720.00 4,220.14 10,377.81	Wellbore	#1 HDGM HDGM Plan Plan Vent zimuth () 0.00 0.00 0.00 3.7 309.45 4.2 309.45 1.2 179.74 11,1 179.74 11,6	Sample-Date 5/20/2019 Phase: F rom (TVD) (ft) 0.00 Lcal 0.00 (ft) 0.00 0.00 (ft) 0.00 0.00 0.00 0.00 20.00 0.00 217.61 27.67 281.67 707.31	Declination 6.7 PROTOTYPE +N/S (ft) 0.00 +E/W (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Dip 77 Tie On Depth: +E/-W (ft) 0.00 g Build Rate t) (.700rt) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Angle 59.97 0, Direct (i) 184. Turn (r/100ft) 0, 0,00 0, 0,00 0, 0,00 0, 0,00 0, 0,00 0, 0,00 0, 0,00 0, 0,00	tion, 4 81 TFO 0.00 0.00 309.45 0.00 -154.52 0.00 FT	47,954

.

Оху Planning Report

5

iatabase: HOPSPP HOPSPP Well PLATINUM MDP1 34-3 FED COM 177H ompany: ENGINEERING DESIGNS TVD Reference: RKB=26.5'@ 3453.40ft roject: PRD NM DIRECTIONAL PLANS (NAD 1983) MD Reference: RKB=26.5'@ 3453.40ft ite: PLATINUM MDP1 34-3 FED COM North Reference: Grid vell: PLATINUM MDP1 34-3 FED COM 177H Survey: Calculation Method: Minimum Curvature vellbore: Wellbore #1 Domiting Dian Minimum Curvature		5
atabase: HOPSPP Local Co-ordinate Reference: Well PLATINUM MDP1 34-3 FED COM 177H ompany: ENGINEERING DESIGNS TVD Reference: RKB=26.5' @ 3453.40ft roject: PRD NM DIRECTIONAL PLANS (NAD 1983) MD'Reference: RKB=26.5' @ 3453.40ft roject: PLATINUM MDP1 34-3 FED COM Moth Reference: Grid vell: PLATINUM MDP1 34-3 FED COM 177H Survey: Calculation Method: Minimum Curvature	ا از الاستخلاف المحاليات العلي الحالية المالية المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحالية المحالية الم	
company: ENGINEERING DESIGNS TVD Reference: RKB=26.5' @ 3453.40ft roject: PRD NM DIRECTIONAL PLANS (NAD 1983) MD Reference: RKB=26.5' @ 3453.40ft ite: PLATINUM MDP1 34-3 FED COM North Reference: Grid vell: PLATINUM MDP1 34-3 FED COM 177H Survey: Calculation Method: Minimum Curvature		"你们我们的你?""我说:"你们我们我们还有什么?""你们我们还有什么?""你们我们还有什么?""你们我们我们不是你。""你们我们我们不是你。""你们我们我们不是
roject: PRD NM DIRECTIONAL PLANS (NAD 1983) MD Reference RKB=26.5' @ 3453.40ft ite: PLATINUM MDP1 34-3 FED COM North Reference: Grid vell: PLATINUM MDP1 34-3 FED COM 177H Survey: Calculation Method: Minimum Curvature vellbore: Wellbore #1 Wellbore RKB=26.5' @ 3453.40ft	and the second	1947日本。1947年4月1日日,1949年4月1日日本部門1948年4月1日日,1949年1月1日日日,1949年1月1日日日,1949年1月1日日日,1949年1月1日日日,1949年1月1日日日,1949年1月1日日
Ite: PLATINUM MDP1 34-3 FED COM North Reference: Grid PLATINUM MDP1 34-3 FED COM 177H Survey Calculation Method: Minimum Curvature Wellbore #1	이상 김 지수는 것은 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	KKB=26.5 @ 3453.40π
Vell: PLATINUM MDP1 34-3 FED COM 177H Survey: Calculation Method: Minimum Curvature Vellbore #1	roject: PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference: RKB=26.5' @ 3453.40ft
Vellbore: Wellbore #1	Ite: PLATINUM MDP1 34-3 FED COM	North Reference:
	Vell: PLATINUM MDP1 34-3 FED COM 177H	Survey Calculation Method
Demitting Dian	Vellbore: Wellbore #1	
	Design:	
	Робально (2001). При Примении и Грании страниции и страни и на страни и при системи составляет со име и на и на При при страни страни и при при страни и страни и страни и при страни страни страни страни и страни и страни и п	nel de la construction de la construction La construction de la construction d
	Diannod Survey, several a concentration of the second several several several several several several several s	n naarar se kanan kanan kanan nankan na kanan kanan kanan kanan ana ana
		an a

	67.5%						
an the states of the		建设是一个国际 中		35 6 2	10.1410.000.2		20
Measured da	REAL STREET	S. 44-23	Vertical 3	347 N 197	1.我们们的 网络教育学校	Vertical	² D
Depth	Inclination A	imith	Depth	+N/-S	A FERMA	Section	÷.
The second s	A Way Lat - Way the	NOVE DWAR	(ff)	C. Tarba		and the state	1:1
		1	Tends T. St. St.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		e letter south	
0.00	0.00	0.00	0.00	. 0.	00 0.00	0.00	
100.00	0.00	0.00	100.00		00 0.00		

. Measured			Vertical 2.			Vertical	Dogleg.	Build	
Depth	ination 1	Azimuth	Vertical Depth	+N/-S	+F/-W	Section	Rate	Rate	Turn Rate
Depth 4 / incl (ft)	()	(°) 7 % F	(ft)	(ft)影响。影	₩.(ft)	69° (ft) 1481 (188	(?/100ft) }	(°/100ft)	("/100ft)) (*****
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	0.00	0.00	400,00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00 700.00	0.00	0.00 0.00	600.00 700.00	0.00 0.00	0.00 0,00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
1,200.00	0.00	0.00	1,200.00	0.00	0.00	0.00	0.00	0.00	0.00
1,300.00	0.00	0.00	1,300.00	0.00	0.00	0.00	0.00	0.00	0.00
1,400.00	0.00	0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00 `	0.00	0.00
1,600.00	0.00	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	0.00
1,700.00	0.00	0.00	1,700.00	0.00	0.00	0.00	0.00	0.00	0.00
1,800.00 1,900.00	0.00 0.00	0.00 0.00	1,800.00 1,900.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00
2,000.00 2,100.00	0.00 0.00	0.00	2,000.00 2,100.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00
2,100.00	0.00	0.00	2,100.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00
2,300.00	0.00	0.00	2,300.00	0.00	0.00	0.00	0.00	0.00	0.00
2,400.00	0.00	0.00	2,400.00	0.00	0.00	0.00	0.00	0.00	0.00
2,500.00	0.00	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.00
2,600.00	0.00	0.00	2,600.00	0.00	0.00	0.00	0.00	0.00	0.00
2,700.00	0.00	1 0.00	2,700.00	0.00	0.00	0.00	0.00	0.00	0.00
2,800.00	0.00	0.00	2,800.00	0.00	0.00	0.00	0.00	0.00	0.00
2,900.00	0.00		2,900.00	0.00	0.00	0.00	0.00	0.00	0.00
3,000.00	0.00	0.00	3,000.00	0.00	0.00	0.00	0.00	0.00	0.00
3,100.00 3,200.00	0.00 0.00	0.00 0.00	3,100.00 3,200.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00
3,300.00	0.00	0.00	3,200.00	0.00	0.00	0.00	0.00	0.00	0.00
3,400.00	0.00	0.00	3,400.00	0.00	0.00	0.00	0.00	0.00	0.00
3,500.00	0.00	0.00	3,500.00	0.00	0.00	0.00	0.00	0.00	0.00
3,600.00	0.00	0.00	3,600.00	0.00	0.00	0.00	0.00	0.00	0.00
3,700.00	0.00	0.00	3,700.00	0.00	0.00	0.00	0.00	0.00	0.00
3,720.00	0.00	0.00	3,720.00	0.00	0.00	0.00	0.00	0.00	0.00
3,800.00	1.60	309.45	3,799.99	0.71	-0.86	-0.63	2.00	2.00	0.00
3,900.00	3.60	309.45	3,899.88	3.59	-4.37	-3.21	2.00	2.00	0.00
4,000.00	5.60	309.45	3,999.55		-10.56	-7.77	2.00	2.00	0.00
4,100.00	7.60	309.45	4,098.89	15.99	-19.43	-14.30	2.00	2.00	0.00
4,200.00 4,220.14	9.60 10.00	309.45 309.45	4,197.76 4,217.61	25.49 27.67	-30.98 -33.63	-22.80 -24.75	2.00 2.00	2.00 2.00	0.00 0.00
4,300.00 4,400.00	10.00 10.00	309.45 309.45	4,296.25 4,394.73	36.49 47.52	-44.34 -57.75	-32.64 -42.51	0.00 0.00	0.00 0.00	0.00 0.00
4,400.00	10.00	309.45	4,394.73 4,493.21	47.52 58.56	-57.75 -71.16	-42.51	0.00	0.00	0.00
4,600.00	10.00	309.45	4,591.69	69.60	-84.57	-62.26	0.00	0.00	0.00
4,700.00	10.00	309.45	4,690.17	80.63	-97.98	-72.13	0.00	0.00	0.00
4,800.00	10.00	309.45	4,788.65	91.67	-111.40	-82.00	0.00	0.00	0.00
4,900.00	10.00	309.45	4,887.13	102.71	-124.81	-91.88	0.00	0.00	0.00
5,000.00	10.00	309.45	4,985.61	113.75	-138.22	-101.75	0.00	0.00	0.00
5,100.00	10.00	309.45	5,084.09	124.78	-151.63	-111.62	0.00	0.00	. 0.00

COMPASS 5000.1 Build 74

Оху Planning Report

Database Company Project: Site Well: Wellbore Design: Planned		HOPSPP ENGINEERING PRD NM DIREC PLATINUM MDF PLATINUM MDF Wellbore #1 Permitting Plan	TIONAL PL/ 21 34-3 FED		Local Co-ordinate Reference: TVD Reference: MD.Reference: North Reference: Survey Calculation Method: KE = 26.5' @ 3453.40ft Grid Minimum Curvature					ED COM 177H
ST TON THE	fleasured Depth	nclination A	zimuth (°)	Verticall' Depthi (ft) #	N/-S	+F/-W	Vertical Section (ft)	Dogleg Rate (°/100ft).***	Build Rate /100ft)	Turn Rate (/100ft)
1000-0000000	5,200.00	10.00	309.45	5,182.57	135.82	-165.05	-121.50	0.00	0.00	0.00
				•						
	5,300.00 5,400.00	10.00 10.00	309.45 309.45	5,281.05 5,379.53	146.86 157.90	-178.46 -191.87	-131.37 -141.24	0.00 0.00	0.00 0.00	0.00
	5,500.00	10.00	309.45	5,478.01	168.93	-205.28	-151.12	0.00	0.00	0.00
	5,600.00	10.00	309.45	5,576,49	179.97	-218.69	-160.99	0.00	0.00	0.00
	5,700.00	10.00	309.45	5,674.97	191.01	-232.11	-170.86	0.00	0.00	0.00
	5,800.00	10.00	309.45	5,773.45	202.05	-245.52	-180.74	0.00	0.00	0.00
	5,900.00	10.00	309.45	5,871.93	213.08	-258.93	-190.61	0.00	0.00	0.00
1	6,000.00	10.00	309.45	5,970.41	224.12	-272.34	-200.48	0.00	0.00	0.00
	6,100.00	10.00	309.45	6,068.89	235.16	-285.75	-210.36	0.00	0.00	0.00
	6,200.00	10.00	309.45	6,167.37	246.19	-299.17	-220.23	0.00	0.00	0.00
	6,300.00	10.00	309.45	6,265.85	257.23	-312.58	-230.10	0.00	0.00	0.00
	6,400.00	10.00	309.45	6,364.33	268.27	-325.99	-239.98	0.00	0.00	0.00
	6,500.00	10.00	309.45	6,462.81	279.31	-339.40	-249,85	0.00	0.00	0.00
	6,600.00	10.00	309.45	6,561.29	290.34	-352.81	-259.72	0.00	0.00	0.00
	6,700.00	10.00	309.45	6,659.77	301.38	-366,23	-269.60	0.00	0.00	0.00
	6,800.00	10.00	309.45	6,758.25	312.42	-379.64	-279.47	0.00	0.00	0.00
	6,900.00	10.00	309.45	6,856.73	323.46	-393.05	-289.34	0.00	0.00	0.00
	7,000.00	10.00	309.45	6,955.21	334.49	-406.46	-299.22	0.00	0.00	0.00
	7,100.00 7,200.00	10.00 10.00	309.45 309.45	7,053.69 7,152.17	345.53 356.57	-419.88 -433.29	-309.09 -318.96	0.00 0.00	0.00 0.00	0.00
										0.00
1	7,300.00	10.00	309.45	7,250.65	367.60	-446.70	-328.84	0.00	0.00	0.00
1	7, 4 00.00 7,500.00	10.00	309.45 309.45	7,349.13 7,447.61	378.64	-460.11	-338.71	0.00	0.00	0.00
1	7,600.00	10.00 10.00	309.45	7,546.09	389.68 400.72	-473.52 -486.94	-348.58 -358.46	0.00 0.00	0.00 0.00	0.00 0.00
	7,700.00	10.00	309.45	7,644.57	411.75	-500.35	-368.33	0.00	0.00	0.00
	7,800.00 7,900.00	10.00 10.00	309.45 309.45	7,743.05 7,841.53	422.79 433.83	-513.76 -527.17	-378.20 -388.08	0.00 0.00	0.00 0.00	0.00
	8,000.00	10.00	309.45	7,940.01	444.87	-540.58	-397.95	0.00	0.00	0.00
	8,100.00	10.00	309,45	8,038.49	455.90	-554.00	-407.82	0.00	0.00	0.00
	8,200.00	10.00	309.45	8,136.97	466.94	-567.41	-417.70	0.00	0.00	0.00
	8,300.00	10.00	309.45	8,235.45	477.98	-580.82	-427.57	0.00	0.00	0.00
	8,400.00	10.00	309.45	8,333.93	489.02	-594.23	-437.44	0.00	0.00	0.00
	8,500.00	10.00	309.45	8,432.41	500.05	-607.65	-447.32	0.00 -	0.00	0.00
	8,600.00	10.00	309.45	8,530.89	511.09	-621.06	-457.19	0.00	0.00	0.00
	8,700.00	10.00	309.45	8,629.37	522.13	-634.47	-467.06	0.00	0.00	0.00
	8,800.00	10.00	309.45	8,727.85	533.16	-647.88	-476.94	0.00	0.00	0.00
	8,900.00	10.00	309.45	8,826.33	544.20	-661.29	-486.81	0.00	0.00	0.00
	9,000.00	10.00	309.45	8,924.81	555.24	-674.71	-496.68	0.00	0.00	0.00
	9,100.00 9,200.00	10.00 10.00	309.45 309.45	9,023.29 9,121.77	566.28 577 31	-688.12 -701.53	-506.56	0.00	0.00 0.00	0.00
					577.31		-516.43	0.00		0.00
	9,300.00	10.00	309.45	9,220.24	588.35	-714.94	-526.30	0.00	0.00	0.00
	9,400.00 9,500.00	10.00 10.00	309.45 309 <i>.</i> 45	9,318.72 9,417.20	599.39 610.43	-728.35 -741.77	-536.18 -546.05	0.00 0.00	0.00	0.00 0.00
	9,600.00	10.00	309.45	9,515.68	621.46	-755.18	-546.05	0.00	0.00	0.00
	9,700.00	10.00	309.45	9,614.16	632.50	-768.59	-565.80	0.00	0.00	0.00
	9,800.00	10.00	309.45	9,712.64	643.54	-782.00	-575.67		0.00	0.00
	9,800.00	10.00	309.45 309.45	9,712.04 9,811.12	654.57	-782.00	-575.57	0.00 0.00	0.00	0.00
	10,000.00	10.00	309.45	9,909.60	665.61	-808.83	-595.42	0.00	0.00	0.00
	10,100.00	10.00	309.45	10,008.08	676.65	-822.24	-605.29	0.00	0.00	0.00
	10,200.00	10.00	309.45	10,106.56	687.69	-835.65	-615.16	0.00	0.00	0.00
	10,300.00	10.00	309.45	10,205.04	698.72	-849.06	-625.04	0.00	0.00	0.00
1	10,377.81	10.00	309.45	10,281.67	707.31	-859.50	-632.72	0.00	0.00	0.00
	10,400.00	9.60	308.31	10,303.54	709.68	-862.44	-634.84	2.00	-1.80	-5.16

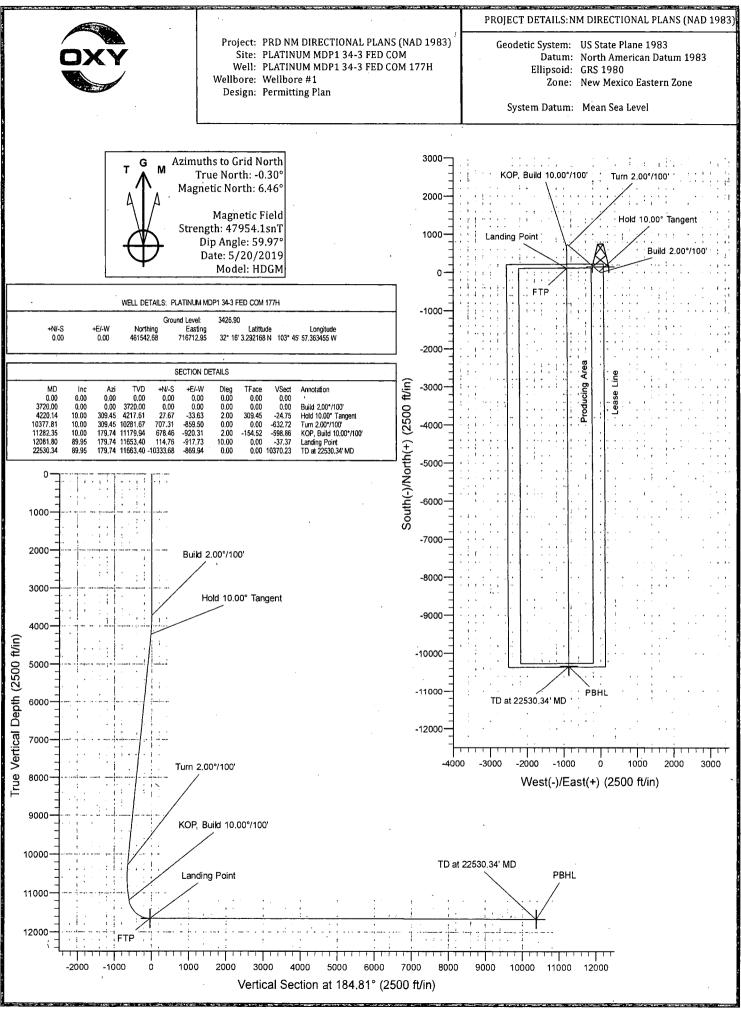
Оху Planning Report

ompany roject ite Vell Vellbore esign:	HOPSPP ENGINEERING PRD NM DIREC PLATINUM MDF PLATINUM MDF Wellbore #1 Permitting Plan	TIONAL PL		TVDIRe MDIRe Northif Survey	erence Reference Calculation N	eference: Aethod:	Well PLATINU RKB=26.5' @ 3 RKB=26.5' @ 3 Grid Minimum Curva	M MDP1 34-3 3453,40ft 3453,40ft	53.40ft			
Planned Survey: Measured Depth (tt)	nclination	Azimuth (°)	Vertical Depth ((ti)		+E/-W/ (ft)	Vertical Section (4)	Dogleg	Rate (***) (*/100ft)	Rate/ (°/100ft)			
10,500.00 10,600.00	· 7.87 6.29	301.75 291.73	10,402.38 10,501.61	718.46 724.09	-874.81 -885.71	-642.54 -647.24	2.00 2.00	-1.74 -1.58	-6.56 -10.02			
10,700.00	5.01	275.91	10,601,13	726.56	-895.14	-648.91	2.00	-1.27	-15.82			
10,800.00	4.33	252.61	10,700.81	725.88	-903.09	-647.57	2.00	-0.69	-23.30			
10,900.00	4.51	226.52	10,800.52	722.05	-909.54	-643.21	2.00	0.18	-26.09			
11,000.00	5.47	206.13	10,900.15	715.07	-914.49	-635.84	2.00	0.96	-20.39			
11,100.00	6.89	192.93	10,999.57	704.95	-917.93	-625.47	2.00	1.42	-13.20			
11,200.00	8.54	184.52	11,098.67	691.70	-919.86	-612.10	2.00	1.66	-8.42			
11,282.35	10.00	179.74 179.74	11,179.94	678.46 675.12	-920.31 -920.29	-598.86 -595.5 4	2.00	1.77 10.00	-5.80			
11,300.00 11,400.00	11.77 21.77	179.74	11,197.27 11,292.90	646.31	-920.29	-595.54	10.00 10.00	10.00	0.00 0.00			
11,500.00	31.77	179.74	11,382.07	601.34	-919.96	-522.05	10.00	10.00	0.00			
11,600.00	41.77	179.74	11,462.08	541.56	-919.69	-462.50	10.00	10.00	0.00			
11,700.00	51.77	179.74	11,530.49	468.80	-919.36	-390.03	10.00	10.00	0.00			
11,800.00	61.77	179.74	11,585.23	385.26	-918.98	-306.82	10.00	10.00	0.00			
11,900.00	71.77	179.74	11,624.63	293.49	-918.56	-215.40	10.00	10.00	0.00			
12,000.00	81.77	179.74	11,647.49	196.27	-918.12	-118.56	10.00	10.00	0.00			
12,081.80	89.95	179.74	11,653.40	114.76	-917.73	-37.37	10.00	10.00	0.00			
12,100.00	89.95	179.74	11,653.42	96.55	-917.65	-19.24	0.00	0.00	0.00			
12,200.00 12,300.00	89.95 89.95	179.74 · 179.74	11,653.51 11,653.61	-3.45 -103.44	-917.19 -916.73	80.37 179.98	0.00 0.00	0.00 0.00	0.00 0.00			
12,300.00	89.95	179.74	11,653.70	-103.44 -203.44	-916.73	279.59	0.00	0.00	0.00			
12,500.00	89.95	179.74	11,653.80	-303.44	-915.82	379.20	0.00	0.00	0.00			
12,600.00	89.95	179.74	11,653.90	-303.44 -403.44	-915.82	379.20 478.80	0.00	0.00	0.00			
12,700.00	89.95	179.74	11,653.99	-503.44	-914.91	578.41	0.00	0.00	0.00			
12,800.00	89.95	179.74	11,654.09	-603.44	-914.45	678.02	0.00	0.00	0.00			
12,900.00	89.95	179.74	11,654.18	-703.44	-913.99	777.63	0.00	o.00 ر	0.00			
13,000.00	89.95	179.74	11,654.28	-803.44	-913.53	877.24	0.00	0.00	0.00			
13,100.00	89.95	179.74	11,654.37	-903.44	-913.08	976.84	0.00	0.00	0.00			
13,200.00	89.95	179,74	11,654.47	-1,003.43	-912.62	1,076.45	0.00	0.00	0.00			
13,300.00 13,400.00	89.95 89.95	179.74	11,654.57 11,654.66	-1,103.43 -1,203.43	-912.16 -911.70	1,176.06 1,275.67	0.00 0.00	0.00 0.00	0.00			
13,500.00 13,600.00	89.95 89.95	179.74 179.74	11,654.76 11,654.85	-1,303.43 -1,403.43	-911.25 -910.79	1,375.28 1,474.88	0.00	0.00 0.00	0.00 0.00			
13,700.00	89.95	179.74	11,654.95	-1,503.43	-910.33	1,574.49	0.00	0.00	0.00			
13,800.00	89.95	179.74	11,655.04	-1,603.43	-909.87	1,674.10	0.00	0.00	0.00			
13,900.00	89.95	179.74	11,655.14	-1,703.43	-909.42	1,773.71	0.00	0.00	0.00			
14,000.00	89,95	179.74	11,655.24	-1,803.43	-908.96	1,873.32	0.00	0.00	0.00			
14,100.00	89.95 ^	179.74	11,655.33	-1,903.42	-908.50	1,972.92	0.00	0.00	0.00			
14,200.00	89.95	179.74	11,655.43	-2,003.42	-908.04	2,072.53	0.00	0.00	0.00			
14,300.00 14,400.00	89.95 89.95	179.74 179.74	11,655.52 11,655.62	-2,103.42 -2,203.42	-907.59 -907.13	2,172.14 2,271.75	0.00 0.00	0.00 0.00	`0.00			
									0.00			
14,500.00	89.95	179.74	11,655.71	-2,303.42	-906.67	2,371.36	0.00	0.00	0.00			
14,600.00 14,700.00	89.95 89.95	179.74 179.74	11,655.81 11,655.91	-2,403.42 -2,503.42	-906.21 -905.76	2,470.97 2,570.57	0.00 0.00	0.00	0.00 0.00			
14,800.00	89.95	179.74	11,656.00	-2,603.42	-905.30	2,570.57	0.00	0.00	0.00			
14,900.00	89.95	179.74	11,656.10	-2,703.42	-904.84	2,769.79	0.00	0.00	0.00			
15,000.00	89.95	179.74	11,656.19	-2,803.41	-904.38	2,869.40	0.00	0.00	0.00			
15,100.00	89.95	179.74	11,656.29	-2,903.41	-903.93	2,869.40	0.00	0.00	0.00			
15,200.00	89.95	179.74	11,656.38	-3,003.41	-903.47	3,068.61	0.00	0.00	0.00			
15,300.00	8 9 .95 ′	179.74	11,656.48	-3,103.41	-903.01	3,168.22	0.00	0.00	0.00			
15,400.00	89.95	179.74	11,656.58	-3,203.41	-902.56	3,267.83	0.00	0.00	0.00			
15,500.00	89.95	179.74	11,656.67	-3,303.41	-902.10	3,367.44	0.00	0.00	0.00			
	89.95	179.74	11,656.77	-3,403.41	-901.64	3,467.05	0.00	0.00	0.00			

`

Oxy Planning Report

....


C P S Y S	atabase ompany: E oject: P te: P ell: P ellbore: V psign: P	HOPSPP NGINEERING PRD NM DIREC PLATINUM MD PLATINUM MD Vellbore #1 Permitting Plan	DESIGNS CTIONAL PL/ P1 34-3 FED	COM 177H	TVD/F MD/R North Surve	Co-ordinate R Reference: ofference Reference y Calculation	Viethod.	Well PLATINUM MDP1 34-3 FED COM 177H RKB=26.5' @ 3453.40ft RKB=26.5' @ 3453.40ft Grid Minimum Curvature			
Personal	lanned Survey Measured Depth (ft)	clination	Azimuth	Vertical Depthi	+N/-S		Vertical Section (ft)	Dogleg Rate	.Build Rate (?/100ft)	Turñ (Rate (/100ft)	
4	and the second	(1)			(ff) (3)					a the state of the second	
	15,700.00	89.95	179.74	11,656.86	-3,503.41	-901.18	3,566.65	0.00	0.00	0.00	
	15,800.00 15,900.00	89.95 89.95	179.74 179.74	11,656.96 11,657.05	-3,603.41 -3,703.40	-900.73 -900.27	3,666.26 3,765.87	0.00 0.00	0.00 0.00	0.00 0.00	
	16,000.00	89.95	179.74	11,657.15	-3,803.40	-899,81		,			
	16,100.00	89.95	179.74	11,657.15	-3,903.40	-899.35	3,865.48 3,965.09	0.00 0.00	0.00 0.00	0.00 0.00	
	16,200.00	89.95	179.74	11,657.34	-4,003.40	-898.90	4,064.69	0.00	0.00	0.00	
	16,300.00	89.95	179.74	11,657.44	-4,103.40	-898.44	4,164.30	0.00	0.00	0.00	
	16,400.00	89.95	179.74	11,657.53	-4,203.40	-897.98	4,263.91	0.00	0.00	0.00	
	16,500.00	89.95	179.74	11,657.63	-4,303.40	-897.52	4,363.52	0.00	0.00	0.00	
	16,600.00	89.95	179.74	11,657.72	-4,403.40	-897.07	4,463.13	0.00	0.00	0.00	
	16,700.00	89.95	179.74	11,657.82	-4,503.40	-896.61	4,562.74	0.00	0.00	0.00	
	16,800.00 16,900.00	89.95 89.95	179.74 179.74	11,657.92 11,658.01	-4,603.39 -4,703.39	-896.15 -895.69	4,662.34 4,761.95	0.00 0.00	0.00	0.00	
									0.00	0.00	
	17,000.00	89.95	179.74	11,658.11	-4,803.39	-895.24	4,861.56	0.00	0.00	0.00	
	17,100.00 17,200.00	89.95 89.95	179.74 179.74	11,658,20 11,658,30	-4,903.39 -5,003.39	-894.78 -894,32	4,961.17 5,060.78	0.00 0.00	0.00 0.00	0.00 0.00	
	17,300.00	89.95	179.74	11,658.39	-5,103.39	-893.86	5,160.38	0.00	0.00	0.00	
	17,400.00	89.95	179.74	11,658.49	-5,203.39	-893.41	5,259.99	0.00	0.00	0.00	
	17,500.00	89.95	179.74	11,658.59	-5,303.39	-892.95	5,359.60	0.00	0.00	0.00	
	17,600.00	89.95	179.74	11,658.68	-5,403.39	-892,49	5,459.21	0.00	0.00	0.00	
	17,700.00	89.95	179.74	11,658.78	-5,503.39	-892.03	5,558.82	0.00	0.00	0.00	
	17,800.00	89.95	179.74	11,658.87	-5,603.38	-891.58	5,658.42	0.00	0.00	0.00	
	17,900.00	89.95	179.74	11,658.97	-5,703.38	-891.12	5,758.03	0.00	0.00	0.00	
	18,000.00	89.95	179.74	11,659.06	-5,803.38	-890.66	5,857.64	0.00	0.00	0.00	
	18,100.00	89.95	179.74	11,659.16	-5,903.38	-890.21	5,957.25	0.00	0.00	0.00	
	18,200.00 18,300.00	89.95 89.95	179.74 179.74	11,659.26 11,659.35	-6,003.38 -6,103.38	-889.75 -889.29	6,056.86 6,156.46	0.00 0.00	0.00 0.00	0.00 0.00	
	18,400.00	89.95	179.74	11,659.45	-6,203.38	-888.83	6,256.07	0.00	0.00	0.00	
	18,500.00	89.95	179.74	11,659,54	-6,303.38	-888.38	6,355.68	0.00	0.00	0.00	
	18,600.00	. 89.95	179.74	11,659.64	-6,403.38	-887.92	6,455.29	0.00	0.00	0.00	
	18,700.00	89.95	179.74	11,659.73	-6,503.37	-887.46	6,554.90	0.00	0.00	0.00	
	18,800.00	89.95	179.74	11,659.83	-6,603.37	-887.00	6,654.51	0.00	0.00	0.00	
	18,900.00	89.95	179.74	11,659.93	-6,703.37	-886.55	6,754.11	0.00	0.00	0.00	
	19,000.00	89.95	179.74	11,660.02	-6,803.37	-886.09	6,853.72	0.00	0.00	0.00	
	19,100.00	89.95	179.74	11,660.12	-6,903.37	-885.63	6,953.33	0.00	0.00	0.00	
	19,200.00 19,300.00	89.95 89.95	179.74 179.74	11,660.21 11,660.31	-7,003.37 -7,103.37	-885.17 -884.72	7,052.94 7,152.55	0.00 0.00	0.00 0.00	0.00 0.00	
	19,400.00	89.95	179.74	11,660.40	-7,203.37	-884.26	7,252.15	0.00	0.00	0.00	
	19,500.00	89.95	179.74	11,660,50	-7,303.37	-883.80	7,351.76	0.00	0.00	0.00	
	19,600.00	89.95	179.74	11,660.60	-7,403.36	-883.34	7,451.37	0.00	0.00	0.00	
	19,700.00	89.95	179.74	11,660.69	-7,503.36	-882.89	7,550.98	0.00	0.00	0.00	
	19,800.00	89.95	179.74	11,660.79	-7,603.36	-882.43	7,650.59	0.00	0.00	0.00	
	19,900.00	89.95	179.74	11,660.88	-7,703.36	-881.97	7,750.19	0.00	0.00	0.00	
	20,000.00	89.95	179.74	11,660.98	-7,803.36	-881.51	7,849.80	0.00	0.00	0.00	
	20,100.00 20,200.00	89.95 89,95	179.74 179.74	11,661.07 11,661.17	-7,903.36	-881.06	7,949.41	0.00	0.00	0.00	
	20,200.00	89,95 89.95	179.74	11,661.17	-8,003.36 -8,103.36	-880.60 -880.14	8,049.02 8,148.63	0.00 0.00	0.00 0.00	0.00 0.00	
	20,400.00	89.95	179.74	11,661.36	-8,203.36	-879.68	8,248.23	0.00	0.00	0.00	
	20,500.00	89.95	179.74	11,661.46	-8,303.35	-879.23	8,347.84	0.00	0.00	0.00	
	20,600.00	89.95	179.74	11,661.55	-8,303.35	-878.77	0,347.04 8,447.45	0.00	0.00	0.00	
	20,700.00	89.95	179.74	11,661.65	-8,503.35	-878.31	8,547.06	0.00	0.00	0.00	
	20,800.00	89.95	179.74	11,661.74	-8,603.35	-877.85	8,646.67	0.00	0.00	0.00	
	20,900.00	89.95	179.74	11,661.84	-8,703.35	-877.40	8,746.28	0.00	0.00	0.00	
	21,000.00	89.95	179.74	11,661.94	-8,803.35	-876.94	8,845.88	0.00	0.00	0.00	
-	0/2040 44:42:22414										

1

Oxy Planning Report

ompany: EN(roject: PR(ite: PL4	PSPP GINEERING DI D NM DIRECTI TINUM MDP1 TINUM MDP1	ONAL PLA 34-3 FED	COM	83) MD/Re North/	io-ordinate.R ference: erence: Reference: Calculation		Well PLATINU RKB=26.5' @ 3 RKB=26.5' @ 3 Grid Minimum Curva	3453.40ft 3453.40ft	ED COM 177H
/ellbore: Wel	llbore #1 mitting Plan	34-3 FCU		SUIVEY		Metricd.		aluie ,	անագահությունը համարությունը, սությունները
		imuth (* s	Vertical Depth	+N/S ((t)	∕+Ē/≟₩ (ft)	· Vertical Section (ft)		Build Rate (°/100ft)	Turn Rate (\$/100ft)
21,100.00	89.95	179.74	11,662.03	-8,903.35	-876.48	8,945.49	0.00	88 vəl 2001. Məl 0.00	0.00
21,200.00	89.95	179.74	11,662.13	-9,003.35	-876.03	9,045.10	0.00	0.00	0.00
21,300.00	89.95	179.74	11,662.22	-9,103.35	-875.57	9,144.71	0.00	0.00	0.00
21,400.00	89.95	179.74	11,662.32	-9,203.34	-875.11	9,244.32	0.00	0:00	0.00
21,500.00	89.95	179.74	11,662.41	-9,303.34	-874.65	9,343.92	0.00	0.00	0.00
21,600.00	89.95	179.74	11,662.51	-9,403.34	-874.20	9,443.53	0.00	0.00	0.00
21,700.00	89.95	179.74	11,662.61		-873.74	9,543.14	0.00	0.00	0.00
21,800.00	89.95 89.95	179.74 179.74	11,662.70	-9,603.34	-873,28 -872,82	9,642.75	0.00	0.00	0.00
, 21,900.00			11,662.80	-9,703.34		9,742.36	0.00	0.00	0.00
22,000.00	89.95	179.74	11,662.89	-9,803.34	-872.37	9,841.96	0.00	0.00	0.00
22,100.00	89.95	179.74	11,662.99		-871.91	9,941.57	0.00	0.00	0.00
22,200.00 22,300.00	89.95 89.95	179.7 4 179.74	11,663.08 11,663.18	,	-871.45 -870.99	10,041.18 10,140.79	0.00	0.00 0.00	0.00
22,300.00	89.95	179.74	11,663.28		-870.99 -870.54	10,140.79	0.00 0.00	0.00	0.00 0.00
22,500.00 22,530.34	89.95 89.95	179.74 179.74	11,663.37 11,663.40	-10,303.33	-870.08 -869.94	10,340.00 10,370.23	0.00	0.00	0.00
vesign Targets arget Name hiumiss target - Di Shape	ɔ,Angle, ,Dip (ŝ)	1. L. F. H. C. A	/D () ()	//S // i+E/.W/ t)	Northi (usft))) [[]] [] [] [] [] [] [] [] [] [] [] [] [ting; sit)	atitude 33	Longitude 4
TP (Platinum MDP1 - plan hits target center - Point	0.00	0.00 11,6	53.40	114.76 -917.7	73 461,6	657.43 71	5,795.27 32° 1	6' 4.475565∍N	103° 46' 8.0444
BHL (Platinum MDP1 - plan hits target center - Point	0.00	0.01 11,6	63.40 -10,	333.68 -869.9	94 451,2	209.60 71	5,843.06 32° 14	21.086190 N	103° 46' 8.127
lan Annotations Measured Depth (ft)	Vertical Depth (ft)		- (Ľocal Coc v∠S (ft)	rrdinates (+E/-W (ft))	Commen	Sec. 121. 181 66. 1			
CALLER & CALCERSON STOCKED AND A SUBSCIENCES	3,720.0	0	0.00	0.00	Build 2.00	0°/100'	en statemen fan de state	1 . T. C.M. P. 1 / 45	un proven 2021a - 1923
3,720.00			27.67	-33.63		0° Tangent			
3,720.00 4,220.14	4,217.6					•			
4,220.14 10,377.81	10,281.6	7	707.31	-859.50	Turn 2.00				
4,220.14 10,377.81 11,282.35	10,281.6 11,179.9	7 4	678.46	-920.31	KOP, Buil	ld 10.00°/100'	· /		
4,220.14 10,377.81	10,281.6 11,179.9 11,653.4	7 4 0 _. ,			KOP, Buil Landing F	ld 10.00°/100'	· /		

- 1

1. Geologic Formations

TVD of target	11678'	Pilot Hole Depth	N/A
MD at TD:	22514'	Deepest Expected fresh water:	647'

Delaware Basin

Formation	TVD - RKB	Expected Fluids
Rustler	570	
Salado	898	Brine
Castile	2,855	Brine
Lamar/Delaware	4,320	Brine
Bell Canyon	4,347	Oil/Gas
Cherry Canyon	5,232	Oil/Gas
Brushy Canyon	6,496	Losses
Bone Spring	8,158	Oil/Gas
1st Bone Spring	9,218	Oil/Gas
2nd Bone Spring	9,811	Oil/Gas
3rd Bone Spring	11,037	Oil/Gas
Wolfcamp	11,491	Oil/Gas

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program , see (OA

									Buoyant	Buoyant	_
Hole Size (in)	🗶 🦳 Casing Int	erval	Csg. Size	·Weight	Grade	Com	SF	SF Burst	Body SF	Joint SF.	1
note size (iii)	E Prom (ft)	To (ft)	(in)	(lbs) 5	renaue renau	Comes	Collapse	or bust	Tension	Tension	
17.5	0	620 633	13.375	54.5	J-55	BTC	1.125	1.2	1.4	1.4	×ر
12.25	0	4370 4395	9.625	43.5	L-80	BTC	1.125	1.2	1.4	1.4	
8.5	0	11182	7.625	26.4	L-80 HC	SF (0 ft to 4000 ft) FJ (4000 ft to 11182 ft)	1.125	1.2	1.4	1.4	
6.75	0	22530	5.5	20	P-110	DQX	1.125	1.2	1.4	1.4	1
							SF Value	s will meet	or Exceed		1

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

*Oxy requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool may be run in case hole conditions merit pumping a second stage cement job to comply with permitted top of cement. If cement circulated to surface during first stage, we will drop a cancelation cone and not pump the second stage.

*Oxy requests the option to run production casing with DQX, SF TORQ, and/or DQW TORQ connections to accommodate hole conditions or drilling operations.

Annular Clearance Variance Request

As per the agreement reached in the Oxy/BLM face-to-face meeting on Feb 22, 2018, Oxy requests permission to allow deviation from the 0.422" annular clearance requirement from Onshore Order #2 under the following conditions:

- 1. Annular clearance to meet or exceed 0.422" between intermediate casing ID and production casing coupling only on the first 500' overlap between both casings.
- 2. Annular clearance less than 0.422" is acceptable for the curve and lateral portions of the production open hole section.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y-
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	Y
If yes, are the first three strings cemented to surface?	Y
Is 2 nd string set 100' to 600' below the base of salt?	Y
	10000000000000000000000000000000000000
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program RINP , see co P

Casing String	#/Sks	Wt. (lb/gal)	Yid (ft3/sack)	(gal/sk)	500# Cómp. Strength (hours)	Slurry Description
Surface (Lead)	N/A ·	. N/A	N/A	N/A	N/A	N/A
Surface (Tail)	659	14.8	1.33	6.365	5:26	Class C Cement, Accelerator
Intermediate (Lead)	932	12.9	1.88	10.130	14:22	Pozzolan Cement, Retarder
Intermediate (Tail)	155	14.8	1.33	6.370	12:45	Class C Cement, Accelerator
Intermediate II 1st Stage (Lead)	N/A	N/A	N/A	N/A	N/A	N/A
Intermediate II 1st Stage (Tail)	218	13.2	1.65	8.640	11:54	Class H Cement, Retarder, Dispersant, Salt
Intermediate II 2nd Stage	(Tail Slurry) to	o be pumped	as Bradenhea	d Squeeze fro	om surface, de	own the Intermediate annulus
Intermediate II 2nd Stage (Lead)	N/A	N/A	N/A	N/A	N/A	N/A
Intermediate II 2nd Stage (Tail)	355	12.9	1.92	10.410	23:10	Class C Cement, Accelerator
Production (Lead)	N/A	N/A	N/A	N/A	N/A	N/A
Production (Tail)	868	13.2	1.38	6.686	3:49	Class H Cement, Retarder, Dispersant, Salt

Casing String	Top (ft)	Bottom (ft)	% Excess	
Surface (Lead)	N/A	N/A	N/A	
Surface (Tail)	0	620	100%	
Intermediate (Lead)	· 0	3870	50%	
Intermediate (Tail)	3870	4370	20%	
Intermediate II 1st Stage (Lead)	N/A	N/A	N/A	5K
Intermediate II 1st Stage (Tail)	6746	11182	5%	
Intermediate II 2nd Stage (Lead)	N/A	N/A	N/A	
Intermediate II 2nd Stage (Tail)	0	6746	25%	
Production (Lead)	N/A	N/A	N/A	
Production (Tail)	10682	22530	20%	

Offline Cementing 🔗

Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365.

The summarized operational sequence will be as follows:

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe).
- 2. Land casing.
- 3. Fill pipe with kill weight fluid, and confirm well is static.
 - a. If well is not static notify BLM and kill well.
 - b. Once well is static notify BLM with intent to proceed with nipple down and offline cementing.
- 4. Set and pressure test annular packoff.
- 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed.

- 6. Skid rig to next well on pad.
- 7. Confirm well is static before removing cap flange.
- 8. If well is not static notify BLM and kill well prior to cementing or nippling up for further remediation.
- 9. Install offline cement tool.
- 10. Rig up cement equipment.
 - a. Notify BLM prior to cement job.
- 11. Perform cement job.
- 12. Confirm well is static and floats are holding after cement job.
- 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge for monitoring.

5K

)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре			Tested to:								
		3M	Annula	ır	1	70% of working pressure								
10.05% Hale	13-5/8"		Blind Ra	am	✓	70% of working pressure 250 psi / 3000 psi 70% of working pressure 250 psi / 5000 psi								
12.25" Hole	13-3/8	3M	Pipe Ra	m		250 mai / 2000 mai								
		21/1	Double F	Ram	· •	230 psi / 3000 psi								
			Other*											
		5M	Annular		1									
0.5111-1-	12 5/0"		Blind Ram		 ✓ 									
8.5" Hole	13-5/8"	514	Pipe Ram			250 mai / 5000 mai								
		5M	21/1	5111	5111	5111	21/1	21/1	21/1	21/1	Double Ram		 ✓ 	250 psi / 5000 psi
			Other*		า									
		5M	Annula	ır	✓ ¹	70% of working								
6.75" Hole	12 5/02		Blind Ram		✓									
	13-5/8"	1014	Pipe Ram			250 mai / 10000 mai								
		10M	Double F	Ram	1	250 psi / 10000 psi								
			Other*											

4. Pressure Control Equipment

*Specify if additional ram is utilized.

Per BLM's Memorandum No. NM-2017-008: *Decision and Rationale for a Variance Allowing the Use of a 5M Annular Preventer with a 10M BOP Stack*, Oxy requests to employ a 5M annular with a 10M BOPE stack in the pilot and lateral sections of the well and will ensure that two barriers to flow are maintained at all times. Please see attached Well Control Plan.

Oxy will utilize a 5M annular with a 10M BOPE stack. The BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.				
		ance is requested for the use of a flexible choke line from the BOP to Choke old. See attached for specs and hydrostatic test chart.			
	Y Are anchors required by manufacturer?				
-	A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015. See attached schematics.				

BOP Break Testing Request

As per the agreement reached in the Oxy/BLM face-to-face meeting on Feb 22, 2018, Oxy requests permission to allow BOP Break Testing under the following conditions:

- After a full BOP test is conducted on the first well on the pad.
- When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.
- Full BOP test will be required prior to drilling any production hole.

- Break	testing	is	allowed	only	for	the	15. 375"	Cassing
- Break	J	and	9.625"	casing			• •	

see

COA

Oxy USA Inc. - Platinum MDP1 34-3 Federal Com 177H

- Depth Weight Water Los Viscosity Туре To (ft) From (ft) (ppĝ) 620 Water-Based Mud N/C 0 8.6-8.8 40-60 Saturated Brine-9.8-10.0 620 4370 35-45 N/C Based Mud Water-Based or Oil-4370 8.0-9.6 38-50 N/C 11182 Based Mud Water-Based or Oil-22530 38-50 N/C 11182 9.5-12.0 Based Mud
- 5. Mud Program 💞

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

What will be used to monitor the loss or gain	PVT/MD Totco/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	Logging, Coring and Testing.					
Yes	Will run GR from TD to surface (horizontal well – vertical portion of hole). Stated logs					
	run will be in the Comp	letion Report and submitted to the BLM.				
No	Logs are planned based	on well control or offset log information.				
No	Drill stem test? If yes, explain					
No	Coring? If yes, explain					
Addi	tional logs planned	Interval				
No	Resistivity					
No	Density					
No	CBL					
Yes	Mud log	ICP - TD				
No	PEX					

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	7288 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	174°F

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

8. Other facets of operation

	Yes/No
Will the well be drilled with a walking/skidding operation? If yes, describe.	Yes
• We plan to drill the three well pad in batch by section: all surface sections,	
intermediate sections and production sections. The wellhead will be	
secured with a night cap whenever the rig is not over the well.	
Will more than one drilling rig be used for drilling operations? If yes, describe.	Yes
• Oxy requests the option to contract a Surface Rig to drill, set surface	
casing, and cement for this well. If the timing between rigs is such that	
Oxy would not be able to preset surface, the Primary Rig will MIRU and	
drill the well in its entirety per the APD. Please see the attached document	
for information on the spudder rig.	

Total estimated cuttings volume: <u>1724.7 bbls</u>.

Attachments

- _x__ Directional Plan
- x H2S Contingency Plan
- x Flex III Attachments
- x Spudder Rig Attachment
- x Premium Connection Specs

9. Company Personnel

Name	Title	Office Phone	Mobile Phone
Lucas Garibaldi	Drilling Engineer	713-366-5763	281-795-9270
Margaret Giltner	Drilling Engineer Supervisor	713-366-5026	210-683-8480
Simon Benavides	Drilling Superintendent	713-522-8652	281-684-6897
Diego Tellez	Drilling Manager	713-350-4602	713-303-4932

Oxy Well Control Plan

A. Component and Preventer Compatibility Table

The table below, which covers the drilling and casing of the >5M MASP portion of the well, outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Component	OD.	Preventer	RWP
Drillpipe	4-1/2"-5"	Lower 3-1/2 - 5-1/2" VBR	10M
		Upper 3-1/2 - 5-1/2" VBR	
HWDP	4-1/2"-5"	Lower 3-1/2 - 5-1/2" VBR	10M
		Upper 3-1/2 - 5-1/2" VBR	
Drill collars and MWD tools	4-3/4" - 5-1/2"	Lower 3-1/2 - 5-1/2" VBR	10M
	-	Upper 3-1/2 - 5-1/2" VBR	
Mud Motor	4-3/4"	Lower 3-1/2 - 5-1/2" VBR	10M
		Upper 3-1/2 - 5-1/2" VBR	
Production casing	5-1/2"	Lower 3-1/2 - 5-1/2" VBR	10M
		Upper 3-1/2 - 5-1/2" VBR	
ALL	0" - 13-5/8"	Annular	5M
Open-hole	6-3/4"	Blind Rams	10M

Pilot hole and Lateral sections, 10M requirement

VBR = Variable Bore Ram. Compatible range listed in chart.

HWDP = Heavy Weight Drill Pipe

MWD = Measurement While Drilling

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the Bottom Hole Assembly (BHA) through the Blowout Preventers (BOP). The pressure at which control is swapped from the annular to another compatible ram will occur when the anticipated pressure is approaching or envisioned to exceed 70% of the 5M annular Rated Working Pressure (RWP) or 3500 PSI.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. The Hydraulic Control Remote (HCR) valve and choke will already be in the closed position).
- 5. Confirm shut-in
- 6. Notify tool pusher/company representative

- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or expected to reach 70% of the annular RWP during kill operations, crew will reconfirm spacing and swap to the upper pipe ram

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. The HCR and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher/company representative
- 7. Read and record the following
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan
 - e. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. The HCR and choke will already be in the closed position).
- 5. Confirm shut-in
- 6. Notify tool pusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan.
 - e. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to compatible pipe ram.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams or BSR. (The HCR and choke will already be in the closed position)
- 3. Confirm shut-in
- 4. Notify tool pusher/company representative

- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drill pipe thru the stack.
 - a. Perform flow check, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper pipe ram
 - e. Shut-in using upper pipe ram. (The HCR and choke will already be in the closed position)
 - f. Confirm shut-in
 - g. Notify tool pusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - iv. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the compatible pipe ram
 - d. Shut-in using compatible pipe ram. (The HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify tool pusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - iv. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario
 - c. If impossible to pick up high enough to pull the string clear of the stack
 - d. Stab crossover, make up one joint/stand of drill pipe, and full opening safety valve and close
 - e. Space out drill string with tool joint just beneath the upper pipe ram

- f. Shut-in using upper pipe ram. (The HCR and choke will already be in the closed position)
- g. Confirm shut-in
- h. Notify tool pusher/company representative
- i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
- j. Regroup and identify forward plan