UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT SUNDRY NOTICES AND REPORTS ON WELLS ## OCD-ARTESIA | • | |------------------------| | FORM APPROVED | | OM B No 1004-0137 | | Expires: March 31, 200 | | OM B No
Expires: N | |-----------------------| | 5. Lease Serial No. | | | OM B No 1
Expires: Ma | |---|--------------------------| | | 5. Lease Serial No. | |) | NM-102036 | | | 1 | |-----------|-----------------| | | 5. Lease Serial | | 33 | 3734 3 | | OM B N | o 1004- | 0137 | |----------|---------|--------| | Expires: | March | 31, 20 | | | | | | | is form for proposals
ell. Use Form 3160 - 3 | | | 6. If Indian, Allottee | or Tribe Name | |---|--|--|---|---|---| | SUBMIT IN TR | IPLICATE- Other in | structions on reve | erse side. | 7. If Unit or CA/Agr | eement, Name and/or No. | | 1. Type of Well X Oil Well | Gas Well Other | | MAR 2 5 2006 | 8. Well Name and N | | | 2. Name of Operator RKI EXF | LORATION & PROD | UCTION, LLC. | OCD-ARTES | RDX "15" 9. API Well No. | * 4F Z | | 3a Address 3817 NW EXP | RESSWAY | 3b. Phone No. (incl. | | 30-015-36 | 5151 | | SUITE 950 OKLAHOMA | CITY, OK 73112 | 405-996-57 | 748 | 10. Field and Pool, o | Exploratory Area | | 4. Location of Well (Foolage, Sec., 950' FSL & 990' FE | | | | BRUSHY DRAW-
11. County or Parish | -DELAWARE EAST
, State | | | | | | EDDY CO. N | NEW MEXICO | | 12. CHECK AI | PPROPRIATE BOX(ES) | TO INDICATE NATU | JRE OF NOTICE, RE | PORT, OR OTHE | R DATA | | TYPE OF SUBMISSION | | T | YPE OF ACTION | | | | XX Notice of Intent | Acidize Alter Casing | Deepen Fracture Treat | Production (Start | · / | ster Shut-Off
all Integrity | | Subsequent Report | Casing Repair | New Construction | n Recomplete | | er Alter TD from | | Final Abandonment Notice | Change Plans Convert to Injection | Plug and Abandon Plug Back | Temporarily Aba Water Disposal | ndon 75 <u>00</u> | to 8370' | | 2. See attached sh the 5½" product STAGE () - 5½" T-SS 17 | olved operations. If the operational Abandonment Notices shall for final inspection.) & PRODUCTION, If the operation of the properation of the properation of the properation of the properation casing. Will ADDITA | ion results in a multiple corbe filed only after all required to the filed only after all requirements on | repletion or recompletion in rements, including reclamate the approval to $\beta \circ \rho = 3 \text{ M O}$, depths and the $\beta \circ \gamma $ | a new interval, a Form tion, have been completed alter the ne change in | 3160-4 shall be filed once ted, and the operator has depth of their cementing | | 14. I hereby certify that the fore,
Name (Printed/Typed) | going is true and correct | Tina | | | | | Joe T. Janica | $\overline{}$ | Title | Permit Engine | eer | | | Signature Sol | T. Jans | CE Date | 03/19/08 | | | | | THIS SPACE FOR | R FÉDERAL OR | STATE OFFICE U | JSE | | | Approved by | (ORIG. SGD.) LI | | Petroleum I | Engineer MA | R 2 1 2008 | | Conditions of approval, if any, are a certify that the applicant holds legal which would entitle the applicant to | or equitable title to those right | and the state of t | Office | | | | Title 18 U.S.C. Section 1001 and Title
States any false, fictitious or fraudule | 43 U.S.C. Section 1212, make | it a crime for any person in as to any matter within | knowingly and willfully to its jurisdiction. | make to any departm | ent or agency of the United | ## **DRILLING PROGNOSIS RKI Exploration and Production** Ross Draw Brushy Canyon API#: 30-015-36151 8,370 **RDX 15-2 New Mexico** 950' FSL & 990' FEL, Sec. 16-26S-30E Eddy 03/14/08 From US 285 & County Rd. 726 (Whitethorn), go East on Co. Rd. 726 for ~10 miles to Co. Rd. 725A (Tarbush). Go North on Co. Rd. 725A for 0.5 miles to Lease Rd. Go East (northeasterly) for ~9.0 miles to old lease road and proposed lease road. | | , | | | | a loadiony) | | | | | | | | |--------|-----------------|---------------------|----------------------------|--|----------------------------|----------------|------------------|-----------|--------|--|-----------------|---------------| | С | STRING | SIZE | LENGTH | DEPTH | WEIGHT | GRADE | CPLG | THRD | | FROM | ТО | TYPE | | A | | | | | | | | | İ | | | | | S | Surface | 13-3/8" | 800' | 800' | 54.5# | J-55 | ST&C | 8rd | | | | | | N | P | er drilling pe
I | rmit, set su
I | riace casin
I | g 25 into K
I | usuer zon
I | e.
I | I | S | | / | | | G | Intermediate | 9-5/8" | 3,500' | 3,500' | 36# | J-55 | ST&C | 8rd | E | |] | | | | II . | g permit, se | • | | | , | | 1 | c | | 1 | | | P | | | - | | | | 1 | l | 1 | | | } | | R | Production | 5-1/2" | 8,370 | 8,370' | 17# | J-55 | LT&C | 8rd | Α | | | | | 0 | | | | | ol @ ~5,000 | | | | L | | | | | G | | | Actual DV t | ooi locaton | to be deter | mined aft
I | er logs
I | ı | _ | | | | | R | | | | • | | | | <u> </u> | Q | | } | <u> </u> | | M | | | | · | | | | | Ü | | | | | | INTERVAL | T | YPE | | WEIGHT | VISC | W. L. | LCM | 1 | pH | YP | REMARKS | | 1 | | | | ······································ | | | | | | | | 712777110 | | M | 0' - 800' | 1 | ater benton | | < 9.4 | 34-36 | nc | as nee | - 1 | 9-10 | | | | l n | 800' - 3,500' | | d brine sys | | < 10 | 28 | nc | as need | beb | 9-10 | 2-8 | LCM as needed | | D | 3,500' - 8,170' | i . | des > 186,0
ater system | | <9 | 28 | 200 | | 404 | 9-10 | 20 | LCM as pasded | | P | 3,300 - 0,170 | | | | mediate ca | | nc
fresh wa | as need | out v | ا کے ان
vith fresh | µ∠-o
waterto | LCM as needed | | R | | | | | | ht and los | | | | ************************************** | water to | | | 0 | 8,170' - 8,370' | Brine sy: | | | < 10 | 28 | < 12 | as need | ded | 9-10 | 2-8 | | | G | | ł . | des > 186,0 | | | | | | } | | | | | R | | Mudi | ıp ~200' be | tore ID. U | se starch s | ystem, pu | mp swee | ps, spot | visci | ous pill, a | nd perfo | rm short-trip | | A
M | | | A | Add bincide | to mud prid | efore atte | | | 5d 51 | nning cod | ina | · | | " | | | • | | 10 11100 p11 |), 10 iay! | g down d | impipe a | | ming cas | ,,,,g.
 | | | | STRING | | | | RIPTION | | | | 1 | 120 requ | ired | YIELD | | С | | Schlumb | erger - Se | rvice Loca | tion - Artes | sia, NM (| 505) 746 | -9363 | | | | | | M | SURFACE | Lead: 180 | | | | + 5 pps D2 | 24 + 0.12 | !5 | | 9.97 gal/ | sk | 1.95 | | E | | Tail: (100 s | 130 + 3% S
x Class C + | | | 6 S1 mive | d 14 8 m | . I | | 6.29 gal/ | ام | 1.34 | | | INTERMEDIATE | Lead: 930 | | | | | | | | 10.81 gai | | 2.05 | | Т | | D130 - | + 1% S1 mi | xed 12.6 p | pg | | | | | | | | | 1 | | Tail: 100 sx | Class C + | 1% S1 + 0 | .125 pps D | 130 mixed | 14.8 pp | g | | 6.29 gal/ | | 1.33 | | 1 1 | PRODUCTION | Stage 1: l | | | | | | | | 11.18 gal | | 2.04 | | G | ! | | | | D153 + 0.3
eight + 1.33 | | |).125 pp: | | 30 mixed
7.23 gal/: | | - 1 | | Р | | | | _ | ed 13.0 ppg | • | ₩UW) Ŧ | | | r.23 gal/ | or | 1.40 | | R | | Stage 2: I | | | | | bwow) + | 6% | | 11.18 gal | /sk | 2.04 | | 0 | | D20 + | 0.125 pps (| D130 + 0.1 | % D13 mixe | ed 12.6 pp | g | | | ŭ | | l | | G | | 1 | | | 0.2% D13 m | | | - 1 | | 6.3 gal/s | | 1.32 | | R | | | ž: | DV Tool | depth @ ~ | 5,100' (รบ | bject to | change | after | logging |) ** | | | A
M | | | ** Produ | ction casin | g cement vo | nlumee eu | hiect to a | hanaa = | a bal | a calinor: | dictates | | | "" | | | | | umberger o | | | | | | | | | ┝ | | | | | | | z. 0p03a | | Cilali | g 40.00.113. | | | | | | | <u> </u> | URFACE C | ESTUR | | Illustrat | ,,,,,, | |--|--|---|--|---|--|-------------------------------|---|-----------------------| | Size | Grade | #/ft. | Coupling | Fj | Pc | Pi | Length | Reight | | | | | | | | | | | | | | ., | INTE | RMEDIATE | CASING | | · · · · · · · · · · · · · · · · · · · | , | | Size | Grade | #/ft. | Coupling | i Fj | Pc | Pi | Length | Weight | | i
i | | | | | | | | | | | | | | | | | | | | !
 | 1 | <u> </u> | | | in a second | <u> </u>
 | <u> </u> | <u> </u> | | RECU
ON | MMEND STAGE (| ZS SX A
) TO BR | DOITIONAL
ING CONT LI
PROI | ON TAIC
DICTION C | CMT
I O STOC
ASING | Tota | l Weight | | | Size | Grade | #/ft. | Coupling | Fj | Pc | P⅓ | Length | Weight | | 51/2 | J-55 | 17 | LTC | 247M | 4910 | 5320 | 4370 | 142.31 | | 1 | | | | | | | | | | | | <u> </u> | | | | | | | | ı. | • | 1 | 1 | 1 | | | , | į. | | 0 * 0.0
9.5 * 0.0 | 52 * 8371
052 * 8371
(6310) | | psia CASI | NG PARAM JOINT t => 1.6 | W | ET 2.0 1 | l Weight | 142.3 | | g ~(0,224 | (€\$10)
(<u>K)</u> 1. Su
— 2. Ir
(<u>M</u>) 3. Pr
— 1. Su | SFt = Fi
irface _
itermedical
coduction
SFc =
irface _
itermedi | / Wt.; SF ate onDi | JOINT t => 1.6 = (= (= (COLLAPS .052 * _ = (= (= (| (dry) or (dry) or (dry) / (dry | ET 2.0 4 r 1.8(box / (| <pre>247 / f uyant)</pre> | <u> </u> | | © ~(0,223
3 p≈i (3 m
3 sp°
451 g″ | (€310) St
(E) 1. St
2. In
(E) 3. Pr
—1. St
—2. In
(E) 3. Pr
—2. In
—2. In | SFt = Finite of the second | / Wt.; SF ate | JOINT t => 1.6 = (| (dry) or (dry) or (dry) / (f) | ET 2.0 4 r 1.8(box / (| Z47 / 1 uyant) 125 .052 * .052 * .052 * .052 * | √√2.3 * ×(| | 9 ~ (0,229
3 75 1 (3 m
3 50 6
4 5 1 6 "
1 e 51 6 ' | (€310) Su
(€) 1. Su
2. In
(€) 3. Pr
—1. Su
—2. In
(€) 3. Pr
—1. Su
—2. In
(€) 3. Pr | SFC = sirface _ itermedication | ## ## ## ## ## ## ## ## ## ## ## ## ## | JOINT t => 1.6 = (| (dry) or (dry) or (dry) or (dry) / (dr | ET 2.0 $^{\circ}$ 1.8(box / (| 247 / duyant) | 837¢ | | 9 ~ (0,229
3 75 1 (3 m
3 50 6
4 5 1 6 "
1 e 51 6 ' | (€310) Su
(€) 1. Su
2. In
(€) 3. Pr
—1. Su
—2. In
(€) 3. Pr
—1. Su
—2. In
(€) 3. Pr | SFt = Finite inface intermedical coduction in face | / Wt.; SF ate | JOINT t => 1.6 = (| (dry) or (dry) or (dry) / (f) | ET 2.0 4 r 1.8(box / (| zyant) uyant) 125 .052 * .052 * .052 * .052 * .052 * | 837c | | 9 - (0.22) 9 75 1 (3 m 3 50° 215 18" 1 e 510° | -1. Su
-2. In
-2. In | SFt = Finite inface intermedical coduction in face | ## ## ## ## ## ## ## ## ## ## ## ## ## | JOINT t => 1.6 = (| (dry) or (dry) or (dry) or (dry) / (dr | ET 2.0 - r 1.8(box / (| zyant) uyant) 125 .052 * .052 * .052 * .052 * .052 * | 837c | | 3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500
3500 | -1. Su
-2. In
-2. In | SFt = Finite inface intermedical coduction in face | ## ## ## ## ## ## ## ## ## ## ## ## ## | JOINT t => 1.6 = (| (dry) or (dry) or (dry) or (dry) / (dr | ET 2.0 - r 1.8(box / (| zyant) uyant) 125 .052 * .052 * .052 * .052 * .052 * | 8376
8376
8476 |