District I
1625 N French Dr , Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S St Francis Dr , Santa Fe, NM 87505

State of New Mexico

Energy Minerals and Natural Resources
Department
Oil Conservation Division
1220 South St. Francis Dr.
Santa Fe, NM 87505

State of New Mexico

WMOCD
For temporary pits
below-grade tanks.
NMOCD District O
For permanent pits
the Santa Fe Enviro
provide a copy to th
District Office

Form C-144 July 21, 2008

For temporary pits, closed-loop systems, and below-grade tanks, submit to the appropriate NMOCD District Office.

For permanent pits and exceptions submit to the Santa Fe Environmental Bureau office and provide a copy to the appropriate NMOCD District Office.

Pit, Closed-Loop System, Below-Grade Tank, or Proposed Alternative Method Permit or Closure Plan Application

Type of action: Permit of a pit, closed-loop system, below-grade tank, or proposed alternative method X Closure of a pit, closed-loop system, below-grade tank, or proposed alternative method Modification to an existing permit Closure plan only submitted for an existing permitted or non-permitted pit, closed-loop system, below-grade tank, or proposed alternative method
Instructions: Please submit one application (Form C-144) per individual pit, closed-loop system, below-grade tank or alternative request
Please be advised that approval of this request does not relieve the operator of liability should operations result in pollution of surface water, ground water or the environment. Nor does approval relieve the operator of its responsibility to comply with any other applicable governmental authority's rules, regulations or ordinances.
Operator:MEWBOURNE OIL COMPANYOGRID#:_14744
Address: PO BOX 5270 HOBBS NEW MEXICO 88241
Facility or well name: Dos Hermanos 6 Fed Com #1
API Number: 30-015-36402OCD Permit Number:
U/L or Qtr/Qtr W Section 6 Township 21S Range 29E County: Eddy
Center of Proposed Design: Latitude 32° 50' 22" Longitude 104° 03' 01" NAD: X 1927 🗌 1983
Surface Owner: X Federal State Private Tribal Trust or Indian Allotment
2.
X Pit: Subsection F or G of 19.15.17.11 NMAC
Temporary: X Drilling X Workover
Permanent Emergency Cavitation P&A
X Lined Unlined Liner type: Thickness20mil X LLDPE HDPE PVC Other
X String-Reinforced
Liner Seams: Welded X Factory Other Volume: 13500 bbl Dimensions: L 120 x W_100_x D_8_
3
Closed-loop System: Subsection H of 19.15.17.11 NMAC
Type of Operation. P&A Drilling a new well Workover or Drilling (Applies to activities which require prior approval of a permit or notice of intent)
☐ Drying Pad ☐ Above Ground Steel Tanks ☐ Haul-off Bins ☐ Other
Lined Unlined Liner type: Thickness mil LLDPE HDPE PVC Other
Liner Seams. Welded Factory Other
4.
Below-grade tank: Subsection I of 19.15.17.11 NMAC
Volume:bbl Type of fluid:
Tank Construction material:
Secondary containment with leak detection Visible sidewalls, liner, 6-inch lift and automatic overflow shut-off
☐ Visible sidewalls and liner ☐ Visible sidewalls only ☐ Other
Liner type: Thickness mil HDPE PVC Other
5.
Alternative Method:
Submittal of an exception request is required. Exceptions must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.

Form C-144 Find Cosum Oil Conservation Division

Page 1 of 5

6.								
Fencing: Subsection D of 19.15.17.11 NMAC (Applies to permanent pits, temporary pits, and below-grade tanks)								
Chain link, six feet in height, two strands of barbed wire at top (Required if located within 1000 feet of a permanent residence, school, institution or church)	hospital,							
Four foot height, four strands of barbed wire evenly spaced between one and four feet								
Alternate. Please specify								
7.								
Netting: Subsection E of 19.15.17.11 NMAC (Applies to permanent pits and permanent open top tanks)								
Screen Netting Other								
☐ Monthly inspections (If netting or screening is not physically feasible)								
8								
Signs: Subsection C of 19.15.17.11 NMAC								
12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers								
☐ Signed in compliance with 19.15.3.103 NMAC								
9. Administrative Approvals and Exceptions:								
Justifications and/or demonstrations of equivalency are required. Please refer to 19.15.17 NMAC for guidance.								
Please check a box if one or more of the following is requested, if not leave blank: Administrative approval(s): Requests must be submitted to the appropriate division district or the Santa Fe Environmental Bureau	office for							
consideration of approval.	office for							
Exception(s): Requests must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.								
10. Siting Criteria (regarding permitting): 19.15.17.10 NMAC								
Instructions: The applicant must demonstrate compliance for each siting criteria below in the application. Recommendations of accept	ptable source							
material are provided below. Requests regarding changes to certain siting criteria may require administrative approval from the appro-	priate district							
office or may be considered an exception which must be submitted to the Santa Fe Environmental Bureau office for consideration of a Applicant must attach justification for request. Please refer to 19.15.17.10 NMAC for guidance. Siting criteria does not apply to dry								
above-grade tanks associated with a closed-loop system.	ing pads of							
Ground water is less than 50 feet below the bottom of the temporary pit, permanent pit, or below-grade tank. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	☐ Yes ☐ No							
Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse or lakebed, sinkhole, or playa	Yes No							
lake (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site								
Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application.	Yes No							
(Applies to temporary, emergency, or cavitation pits and below-grade tanks)	□ NA □							
 Visual inspection (certification) of the proposed site; Aerial photo; Satellite image 								
Within 1000 feet from a permanent residence, school, hospital. institution, or church in existence at the time of initial application.	Yes No							
 (Applies to permanent pits) Visual inspection (certification) of the proposed site, Aerial photo; Satellite image 								
Within 500 horizontal feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock	☐ Yes ☐ No							
watering purposes, or within 1000 horizontal feet of any other fresh water well or spring, in existence at the time of initial application								
- NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site								
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended.	Yes No							
 Written confirmation or verification from the municipality; Written approval obtained from the municipality 								
Within 500 feet of a wetland.								
- US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	Yes No							
Within the area overlying a subsurface mine.	☐ Yes ☐ No							
 Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division 								
Within an unstable area.	☐ Yes ☐ No							
 Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map 								
Within a 100-year floodplain.	Vac C Na							
- FEMA map	Yes No							

Temporary Pits, Emergency Pits, and Below-grade Tanks Permit Application Attachment Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached. Hydrogeologic Report (Below-grade Tanks) - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC Hydrogeologic Data (Temporary and Emergency Pits) - based upon the requirements of Paragraph (2) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Design Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC Previously Approved Design (attach copy of design) API Number: or Permit Number:
Closed-loop Systems Permit Application Attachment Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached. Geologic and Hydrogeologic Data (only for on-site closure) - based upon the requirements of Paragraph (3) of Subsection B of 19.15.17.9 Siting Criteria Compliance Demonstrations (only for on-site closure) - based upon the appropriate requirements of 19.15.17.11 NMAC Design Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC Previously Approved Design (attach copy of design) API Number: (Applies only to closed-loop system that use above ground steel tanks or haul-off bins and propose to implement waste removal for closure)
Permanent Pits Permit Application Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached. Hydrogeologic Report - based upon the requirements of Paragraph (1) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Climatological Factors Assessment Certified Engineering Design Plans - based upon the appropriate requirements of 19.15.17.11 NMAC Dike Protection and Structural Integrity Design - based upon the appropriate requirements of 19.15.17.11 NMAC Leak Detection Design - based upon the appropriate requirements of 19.15.17.11 NMAC Liner Specifications and Compatibility Assessment - based upon the appropriate requirements of 19.15.17.11 NMAC Quality Control/Quality Assurance Construction and Installation Plan Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Freeboard and Overtopping Prevention Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Nuisance or Hazardous Odors. including H ₂ S, Prevention Plan Emergency Response Plan Oil Field Waste Stream Characterization Monitoring and Inspection Plan Erosion Control Plan Closure Plan - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC
Proposed Closure: 19.15.17.13 NMAC Instructions: Please complete the applicable boxes, Boxes 14 through 18, in regards to the proposed closure plan. Type: Drilling Workover Emergency Cavitation P&A Permanent Pit Below-grade Tank Closed-loop System Alternative Proposed Closure Method: Waste Excavation and Removal Waste Removal (Closed-loop systems only) On-site Closure Method (Only for temporary pits and closed-loop systems) In-place Burnal On-site Trench Burial Alternative Closure Method (Exceptions must be submitted to the Santa Fe Environmental Bureau for consideration)
Waste Excavation and Removal Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the closure plan. Please indicate, by a check mark in the box, that the documents are attached. Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings) Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC

Waste Removal Closure For Closed-loop Systems That Utilize Above Ground Steel Tanks or Haul-off Bins Only: (19.15.17.13.1 Instructions: Please indentify the facility or facilities for the disposal of liquids, drilling fluids and drill cuttings. Use attachment if facilities are required.								
Disposal Facility Name: Disposal Facility Permit Number:								
Disposal Facility Name: Disposal Facility Permit Number:								
Will any of the proposed closed-loop system operations and associated activities occur on or in areas that will not be used for future service and operations? Yes (If yes, please provide the information below) No								
Required for impacted areas which will not be used for future service and operations: Soil Backfill and Cover Design Specifications based upon the appropriate requirements of Subsection H of 19.15.17.13 NMA Re-vegetation Plan - based upon the appropriate requirements of Subsection I of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC	С							
Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable sour provided below. Requests regarding changes to certain siting criteria may require administrative approval from the appropriate dist considered an exception which must be submitted to the Santa Fe Environmental Bureau office for consideration of approval. Justi demonstrations of equivalency are required. Please refer to 19.15.17.10 NMAC for guidance.	rict office or may be							
Ground water is less than 50 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search: USGS; Data obtained from nearby wells	Yes No							
Ground water is between 50 and 100 feet below the bottom of the buried waste - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	Yes No							
Ground water is more than 100 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS: Data obtained from nearby wells	Yes No							
Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No							
Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	☐ Yes ☐ No							
Within 500 horizontal feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock watering purposes, or within 1000 horizontal feet of any other fresh water well or spring, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site	Yes No							
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. - Written confirmation or verification from the municipality; Written approval obtained from the municipality	Yes No							
Within 500 feet of a wetland US Fish and Wildlife Wetland Identification map: Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No							
Within the area overlying a subsurface mine Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division	☐ Yes ☐ No							
Within an unstable area - Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources: USGS: NM Geological Society; Topographic map	☐ Yes ☐ No							
Within a 100-year floodplain FEMA map	☐ Yes ☐ No							
On-Site Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the closure plan. Please indicate, by a check mark in the box, that the documents are attached. Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Proof of Surface Owner Notice - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Construction/Design Plan of Burial Trench (if applicable) based upon the appropriate requirements of 19.15.17.11 NMAC Construction/Design Plan of Temporary Pit (for in-place burial of a drying pad) - based upon the appropriate requirements of 19.15.17.13 NMAC Protocols and Procedures - based upon the appropriate requirements of 5.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Waste Material Sampling Plan - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings or in case on-site closure standards cannot be achieved) Soil Cover Design - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC								

Operator Application Certification: I hereby certify that the information submitted with this application.	cation is true. accurate and complete to the best of my knowledge and belief.
Name (Print):	Title:
Signature:	Date:
e-mail address:	Telephone:
20.	lan)
OCD Representative Signature:	Approval Date:
Title:	OCD Permit Number:
21. <u>Closure Report (required within 60 days of closure completed instructions: Operators are required to obtain an approved completed in the completed in the</u>	tion): Subsection K of 19.15.17.13 NMAC Closure plan prior to implementing any closure activities and submitting the closure report, within 60 days of the completion of the closure activities. Please do not complete this obtained and the closure activities have been completed.
	X Closure Completion Date: _2/10/2009
22. Closure Method: Waste Excavation and Removal X On-Site Closure Met If different from approved plan. please explain.	thod Alternative Closure Method Waste Removal (Closed-loop systems only)
	osed-loop Systems That Utilize Above Ground Steel Tanks or Haul-off Bins Only: are the liquids, drilling fluids and drill cuttings were disposed. Use attachment if more than
Disposal Facility Name:	Disposal Facility Permit Number:
Disposal Facility Name:	Disposal Facility Permit Number:
Were the closed-loop system operations and associated activities Yes (If yes, please demonstrate compliance to the items)	es performed on or in areas that $will$ not be used for future service and operations? below) \square No
Required for impacted areas which will not be used for future s Site Reclamation (Photo Documentation) Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique	
24.	
	Longitude 104° 01.536' WNAD: X 1927 🗌 1983
es. Operator Closure Certification:	
hereby certify that the information and attachments submitted belief. I also certify that the closure complies with all applicable	with this closure report is true, accurate and complete to the best of my knowledge and e closure requirements and conditions specified in the approved closure plan.
Name (Print): Charles Martin	Title: Engineer
signature: Macla L. Martin	Date: $\frac{\cancel{7}-\cancel{10}}{\cancel{0}}$
-mail address: CM-cs-fin 6 Me. ObcerNe	Telephone: (5/5) 373 5965
to the record	APR 27 2003

Accepted for record NMOCD

February 16, 2009

FIGURE 100 PROBLEM FOR THE PRO

Mike Bratcher New Mexico Oil Conservation Division District 2 office 1301 W. Grand Avenue Artesia, New Mexico 88210

RE: Request for closure of the DOS HERMANOS 6 Fed. Com #1.

AUSTIN

GOVERNMEN Gary User

Delighing Choice

To hid Rook, Topic (1864)

Topic 5 Rook, 3420

For a 2010,3440

In December 2008, Talon/LPE was contracted by the Mewbourne Oil Company to perform the pit closure activities at the DOS HERMANOS 6 Fed. Com #1, API# 30-015-36402, Unit C Sec 6-T21S-R29E, in Eddy county New Mexico. The C-144 for this pit closure was submitted to Tim Gum and approved on July 29, 2008.

Michael Michael (1994) 1994 Fuot Indused (1997) 1995 Millary (1997) 1995 1995 (1997) 1995 1995 (1997)

\$10 MV828 WER \$20 MV83 \$20 MV83 \$20 ET 10 MV83 \$20 ET 10 MV83 \$20 ET 10 MV84 \$20 ET 10 M

Yak 250,868,000

16.30 5 Lu In 16.20 Save, 375, 6 16.85, On 17.40 Pous 9 17.10 Cee 6, 11.42 us 72

> 10888 Gir tur Ti Jangne Hebbo, New Menua area Planc 203,499, 17 On 408,313 Febra

Talon/LPE contacted Mike Bratcher on December 18, 2008 to give forty eight hour notification of intent to proceed with trench burial and was given verbal permission to proceed. Talon/LPE mixed all drill cuttings from the reserve pit at a ratio not more than 3:1 to stabilize the soil in preparation for trench burial. Up on completion of mixing the drill cuttings, Eb Taylor with Talon/LPE contacted Sherry Bonham on December 30, 2008 to notify of the planed sampling of the drill cuttings on January 5, 2009. A five point composite sample was collected from the drill cuttings and the samples were sent to Trace Analysis and analyzed in compliance with 19.15.17.13NMAC for official analytical results. When analytical results were reviewed, it was determined that the drill cuttings meet the NMOCD standards set for trench burial. Talon/LPE excavated a burial cell in the south side of the reserve pit approximately 150'x40'x20', and lined it with a 20 mil liner. Once the drill cuttings were placed in the burial cell, a 20 mil cap was placed on top to seal the burial cell. On January 7, 2009 Eb Taylor with Talon/LPE collected a five point composite sample from the pit floor and sent them to Trace Analysis to be analyzed in compliance with 19.15.17.13 NMAC for official analytical (see attached analytical). After review of the analytical it was determined that the reserve pit area could be backfilled. The area was backfilled and contoured to the surrounding area.

No deed amendment is required for this closure due to the fact this is Federal land, Mewbourne Oil Company will place the burial marker at 32° 31.234 N 104° 01.536 W.

After review of attached documents and analysis by the NMOCD, Talon/LPE, and Mewbourne Oil Company we are requesting that this pit be considered properly closed.

E TYPONIGEN A CONSULTE CO CARLACTRALE CARLACTRACT CONSULTANCE CONSULTANCE CONSULTANCE

Sincerely,

EL Saylor

Eb Taylor

New Mexico Division Manager

Talon/LPE

Toll Free: 886 742,0742 www.uratonies.com DISTRICT I 1625 N. French Dr., Hobbs, NM 68240 DISTRICT II 1301 W. Grand Avenue, Artesia, NM 68210

DISTRICT III

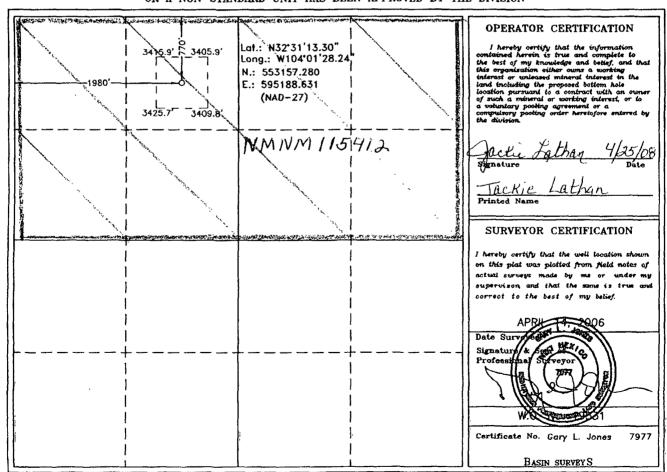
State of New Mexico Energy, Minerals and Natural Resources Department

Form C-102 Revised October 12, 2005

OIL CONSERVATION DIVISION
1220 South St. Francis Dr.

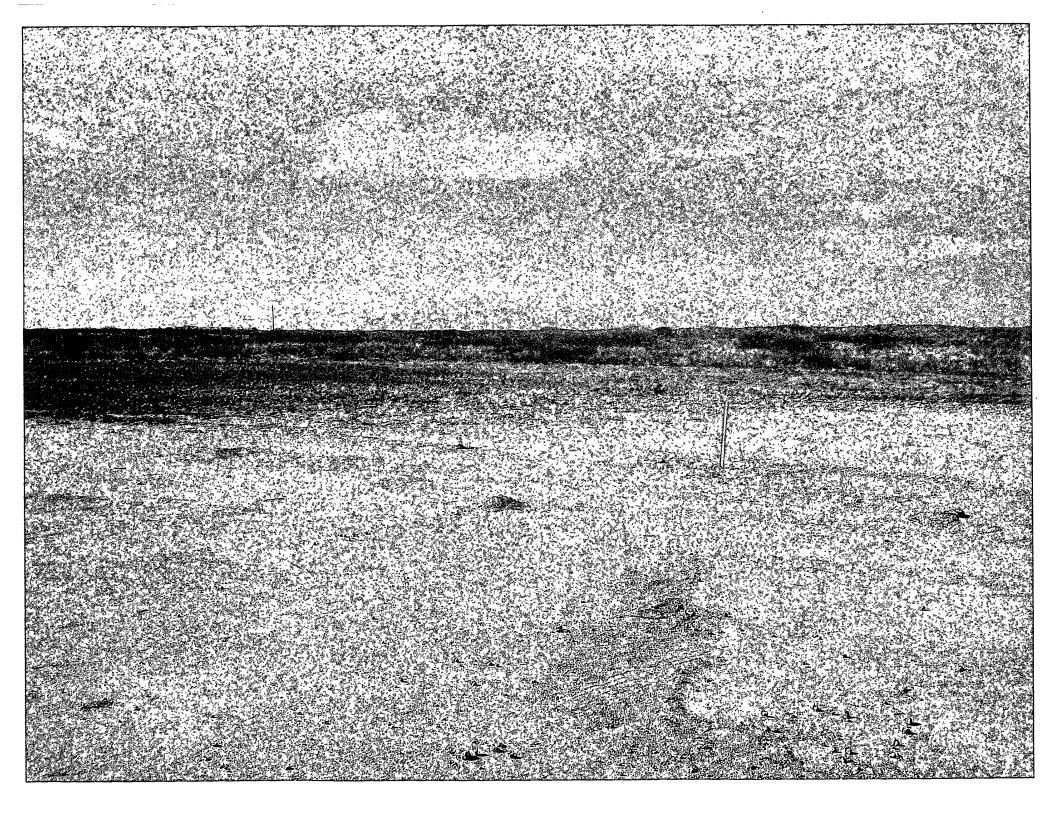
Santa Fe, New Mexico 87505

Submit to Appropriate District Office
State Lease - 4 Copies
Fee Lease - 3 Copies


1000 Rio Brazos Rd., Artec, NM 87410 DISTRICT IV 1220 S. St. Francic Dr., Santa Fc. NM 87506

AMENDED REPORT .

WELL LOCATION AND ACREAGE DEDICATION PLAT


API	Number	,	77	Pool Code	601	den La	Pool Name	row V			
Property	Code				Property Nam			Well No	ımber		
13/20	3	<u> </u>		DOS H	ERMANOS "6	" FEDERAL		1			
OGRID N	o.				Operator Nam		•	Rieva			
1419	7			MEWB	OURNE OIL	COMPANY		341	7		
	Surface Location										
UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County		
LOT 3	6	21 S	29 E		770	NORTH	1980	WEST	EDDY		
	Bottom Hole Location If Different From Surface										
UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County		
		l						Ĺ			
Dedicated Acres	Joint o	r Infill Con	nsolidation (Code Or	der No.						

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

4 Reason for filing COMPLETION REPORT (Fill in boxe) C-144 CLOSURE ATTACHMENT (Fill in boxe) 33, attach this and the plat to the C-144 close Type of Completion NEW WELL WORKOVER 8 Name of Operator				boxes f Γ (Fill closure	State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 R RECOMPLETION REPORT AND LOG Res #1 through #31 for State and Fee wells only) (Fill in boxes #1 through #9, #15 Date Rig Released and #32 and/or obsure report in accordance with 19 15.17 13 K NMAC) DEEPENING PLUGBACK DIFFERENT RESERVOIR DIL COMPANY					6 1-ED Com#1								
12.Location	Unit Ltr	S	Section		Towns	hip	Range	Lot	······································		Feet from t	he	N/S Line	Feet	from the	E/W Line	2	County
Surface:		_						ļ			···					 		
BH: 13 Date Spudded			Reach	ied ()	11 ÷	Released 03 - 08						(Ready to Prod		_ R	7 Elevation	`	
18 Total Measure	еа Џертп	or wei			19 1	lug Bac	k Measured De	pth		20.	Was Direct	iona	l Survey Made?		21 ly	se Electric a	nd Ot	her Logs Run
22 Producing Int	erval(s),	of this o	complet	ion - T				ΔDI						- 11\				
CASING SIZ	7F	W	/EIGHT	LB/F		CAS	DEPTH SET	UKJ) (K		LE SIZE	LIII	gs set in we		CORD	AMO	INT	PULLED
			1310111	55.71	-		DEFTITOET	$\neg \dagger$		110	LE SIEL		CLIMEIVIIIV	O ICL	- CORD		<u> </u>	. 02223
24.		L				LIN	ER RECORD					25	T	URIN	NG REC	ORD		
SIZE	TOP			BOT	TOM		SACKS CEM	ENT	SCR	EEN		SIZ			PTH SE		ACKI	ER SET
	4					_								1				
26 Perforation	record ()	nterval	size ar	d nun	her)	_	<u> </u>		27	ACI	D CHOT	ED	ACTURE, CE	MEN	T SOL	EEZE ET	<u>~</u>	
20 Terroration	record (r	mer var,	, 31ZC, ar	ia nan	iocij						NTERVAL		AMOUNT A					
													<u> </u>					
								DD		<u> </u>	CYON		<u> </u>					
Date First Produc	ion		Pr	oduction	on Meth	od (Fla	wing, gas lift, p				TION)	Well Status	(Prog	l. or Shu	(-in)		
							3.0 3.1		,		JF-117			,				
Date of Test	Hours	s Tested	<u> </u>	Chol	ke Size		Prod'n For Test Period		Oil -	Bbl		Gas	s - MCF	W	ater - Bbl	G	as - C	ol Ratio
Flow Tubing Press	Casın	g Press	иге		ulated 2 r Rate	4-	Oil - Bbl.		1	Jas -	MCF	1	Water - Bbl		Oil Gra	avity - API -	(Cor	r)
29 Disposition of	Gas (So	ld, used	for fuel	, vente	ed, etc)	-	<u> </u>							30 T	est Witn	essed By		
31 List Attachme	nts		····					_			<u> </u>				,			
32, If a temporary								_		it								
33 If an on-site b															٠			
I hereby certif	, tl- ~ + ·	lao isa		017		E - 12	Latitude 3	<u>₹2°</u>	31	6.	<u>1341 r</u>	<u>v</u>	Longitude	04	01.	536	NA	D 1927 1983
					own o	n both I	rinted 👝 ,	jorm j	is tri	ue c					knowle	age and b	enef	
Signature 🕰							Printed Chai	rles	Alca	rt.	Tit	le a	Enginee	-			Date	1
E-mail Addres	SCM	art	tine	P M	ewl	our	ne com									4-2	0-	09

E-mail Address CMartin@ Mewbourne, Com

Certifications

WBENC: 237019

HUB:

1752439743100-86536

DBE: VN 20657

NCTRCA WFWB38444Y0909

NELAP Certifications

T104704219-08-TX Lubbock:

El Paso: T104704221-08-TX

Midland: T104704392-08-TX

LELAP-02003

LELAP-02002

Kansas E-10317

Analytical and Quality Control Report

Eb Taylor Talon LPE-Hobbs 318 E Taylor Hobbs, NM, 88240

Report Date. February 2, 2009

Work Order: 9012801

Project Location: Eddy Co., NM

Project Name:

Dos Hermanos 6 Fed. Com. #1

Project Number:

MEWBOU034PIT

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
185904	Floor Comp.	soil	2009-01-27	11:00	2009-01-28

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 13 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael april

Dr. Blair Leftwich, Director

Standard Flags

 $\, B \,$ - $\,$ The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project Dos Hermanos 6 Fed. Com. #1 were received by TraceAnalysis, Inc. on 2009-01-28 and assigned to work order 9012801. Samples for work order 9012801 were received intact at a temperature of 4.0 deg. C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	48254	2009-01-29 at 11:17	56465	2009-01-29 at 11:17
Chloride (Titration)	SM 4500-Cl B	48202	2009-01-28 at $13:05$	56456	2009-01-29 at $15:28$
TPH 418.1	E 418.1	48259	2009-01-30 at 08:00	56475	2009-01-30 at 10:10
TPH DRO	Mod. 8015B	48203	2009-01-28 at 13:30	56414	2009-01-28 at $14:20$
TPH GRO	S 8015B	48254	2009-01-29 at 11:17	56469	2009-01-29 at 11:17

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9012801 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

MEWBOU034PIT

Work Order: 9012801 Dos Hermanos 6 Fed. Com. #1 Page Number: 4 of 13 Eddy Co., NM

Analytical Report

Sample: 185904 - Floor Comp.

Laboratory: Analysis:

Prep Batch: 48254

QC Batch:

Midland BTEX 56465

Analytical Method: Date Analyzed:

S 8021B 2009 - 01 - 292009-01-29 Sample Preparation:

Prep Method: S 5035

Analyzed By: MEPrepared By: ME

ΒI

		$\kappa_{ m L}$			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		0.117	mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	mg/Kg	1	0.0100
Xylene		< 0.0100	m mg/Kg	1	0.0100

					Spike	$\operatorname{Percent}$	$\operatorname{Recovery}$
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.924	mg/Kg	1	1.00	92	49 - 129.7
4-Bromofluorobenzene (4-BFB)		1.01	mg/Kg	1	1.00	101	45.2 - 144.3

Sample: 185904 - Floor Comp.

Laboratory: Midland

Chloride (Titration) Analysis: QC Batch: 56456 Prep Batch: 48202

Analytical Method: Date Analyzed:

Sample Preparation:

SM 4500-Cl B 2009-01-29 2009-01-28

Prep Method: N/A Analyzed By: ARPrepared By:

RL

Parameter	Flag	Result	Units	Dilution	RL
Chloride		<200	mg/Kg	50	4.00

Sample: 185904 - Floor Comp.

Laboratory: Lubbock Analysis:

QC Batch:

TPH 418.1 56475 Prep Batch: 48259

Analytical Method: Date Analyzed:

E 418.1 2009-01-30 Sample Preparation: 2009-01-30 Prep Method: N/A Analyzed By: CMPrepared By: CM

RL

Parameter	Flag	Result	Units	Dilution	RL
TRPHC		<10.0	mg/Kg	1	10.0

MEWBOU034PIT

Work Order: 9012801 Dos Hermanos 6 Fed. Com. #1 Page Number: 5 of 13 Eddy Co., NM

Sample: 185904 - Floor Comp.

48203

Laboratory:

Midland

Analysis: QC Batch:

Prep Batch:

TPH DRO 56414

Analytical Method:

Mod. 8015B

Date Analyzed: Sample Preparation: 2009-01-28 2009-01-28 Prep Method: N/A Analyzed By: LD

Prepared By: LD

RL

Parameter	
DRO	

Flag	Result
	< 50.0

Units mg/Kg

Spike

Amount

100

Dilution 1

RL50.0

Surrogate	Flag	Result
n-Triacontane		90.7

Units Dilution mg/Kg

Percent Recovery 91

Recovery Limits 10 - 250.4

Sample: 185904 - Floor Comp.

48254

Laboratory:

Prep Batch:

GRO

Midland

Analysis: TPH GRO QC Batch: 56469

Analytical Method: Date Analyzed:

S 8015B 2009-01-29 2009-01-29

Units

mg/Kg

Prep Method: Analyzed By:

S 5035 MEPrepared By: ME

RL

Parameter	Flag

Result 5.36

Sample Preparation:

Dilution RL

Surrogate	Flag	Result	Units	Dilution	$\begin{array}{c} {\rm Spike} \\ {\rm Amount} \end{array}$	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		0.957	mg/Kg	1	1.00	96	75 - 117.2
4-Bromofluorobenzene (4-BFB)		0.847	${ m mg/Kg}$	1	1.00	85	56 - 142.8

Method Blank (1)

QC Batch: 56414

QC Batch:

56414

Date Analyzed:

2009-01-28

Analyzed By: LD

1.00

Prep Batch:

48203

QC Preparation:

2009-01-28

Prepared By:

LD

MDL

Parameter Flag $\overline{\mathrm{DRO}}$

Result <12.0

Unitsmg/Kg

50

RL

Spike Percent Recovery Dilution Surrogate Flag Result Units Amount Recovery Limits n-Triacontane 82.0 mg/Kg 1 100 82 30.9 - 146.4

Report Date: February 2, 2009 Work Order: 9012801 Page Number: 6 of 13 MEWBOU034PIT Dos Hermanos 6 Fed. Com. #1 Eddy Co., NM Method Blank (1) QC Batch: 56456 QC Batch: 56456 Date Analyzed: 2009-01-29 Analyzed By: AR QC Preparation: 2009-01-28 Prep Batch: 48202 Prepared By: ARMDLUnits RLParameter Result Flag Chloride < 2.01 mg/Kg 4 Method Blank (1) QC Batch: 56465 QC Batch: 56465 2009-01-29 Analyzed By: ME Date Analyzed: 2009-01-29 Prepared By: MEPrep Batch: 48254 QC Preparation: MDL Parameter Flag Result Units RLBenzene < 0.00800 mg/Kg 0.01 Toluene < 0.00800 mg/Kg 0.01 Ethylbenzene < 0.00820 mg/Kg 0.01 Xvlene < 0.00960 mg/Kg 0.01 Spike Percent Recovery Surrogate Flag Result Units Dilution Amount Recovery Limits 65.6 - 130.6 Trifluorotoluene (TFT) 0.960 mg/Kg 1 1.00 96 1.00 73 51.9 - 128.1 4-Bromofluorobenzene (4-BFB) 0.731mg/Kg 1 Method Blank (1) QC Batch: 56469 QC Batch: 56469 Date Analyzed: 2009-01-29 Analyzed By: ME Prep Batch: 48254 QC Preparation: 2009-01-29 Prepared By: MEMDL Parameter Flag Result Units RL< 0.171 \overline{GRO} mg/Kg 1 Spike Percent Recovery UnitsDilution Surrogate Flag Result Amount Recovery Limits Trifluorotoluene (TFT) 0.922 mg/Kg 58.3 - 129.3 1 1.00 92 4-Bromofluorobenzene (4-BFB) 0.607mg/Kg 1 1.00 61 57 - 124.9

2009-01-30

2009-01-30

Analyzed By: CM

Prepared By:

Date Analyzed:

QC Preparation:

Method Blank (1)

56475

48259

QC Batch:

Prep Batch:

QC Batch: 56475

MEWBOU034PIT

Work Order: 9012801 Dos Hermanos 6 Fed. Com. #1 Page Number: 7 of 13 Eddy Co., NM

		MDL		
Parameter	Flag	Result	Units	RL
TRPHC		< 5.28	mg/Kg	10

Laboratory Control Spike (LCS-1)

QC Batch: 56414 Prep Batch: 48203 Date Analyzed: 2009-01-28 QC Preparation: 2009-01-28 Analyzed By: LD Prepared By: LD

	LCS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}
DRO	272	mg/Kg	1	250	<12.0	109	27.8 - 152.1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	270	mg/Kg	1	250	<12.0	108	27.8 - 152.1	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			$_{ m Spike}$	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	84.7	84.4	mg/Kg	1	100	85	84	38 - 130.4

Laboratory Control Spike (LCS-1)

QC Batch: 56456 Prep Batch: 48202

Date Analyzed: 2009-01-29 QC Preparation: 2009-01-28 Analyzed By: AR Prepared By: AR

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	99.2	mg/Kg	1	100	< 2.01	99	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	100	mg/Kg	1	100	< 2.01	100	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 56465 Prep Batch: 48254 Date Analyzed: 2009-01-29 QC Preparation: 2009-01-29 Analyzed By: ME Prepared By: ME

 ${\bf MEWBOU034PIT}$

Work Order: 9012801 Dos Hermanos 6 Fed. Com. #1 Page Number: 8 of 13 Eddy Co., NM

Param	LCS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit
Benzene	0.761	mg/Kg	1	1.00	< 0.00800	76	72.7 - 129.8
Toluene	0.903	mg/Kg	1	1.00	< 0.00800	90	71.6 - 129.6
Ethylbenzene	1.20	mg/Kg	1	1.00	< 0.00820	120	70.8 - 129.7
Xylene	3.68	mg/Kg	1	3.00	< 0.00960	123	70.9 - 129.4

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	0.800	mg/Kg	1	1.00	< 0.00800	80	72.7 - 129.8	5	20
Toluene	0.956	mg/Kg	1	1.00	< 0.00800	96	71.6 - 129.6	6	20
Ethylbenzene	0.997	mg/Kg	1	1.00	< 0.00820	100	70.8 - 129.7	18	20
Xylene	3.03	mg/Kg	1	3.00	< 0.00960	101	70.9 - 129.4	19	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.903	0.943	mg/Kg	1	1.00	90	94	65.9 - 132
4-Bromofluorobenzene (4-BFB)	1.08	0.812	mg/Kg	1	1.00	108	81	55.2 - 128.9

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 48254

56469

Date Analyzed:

2009-01-29 QC Preparation: 2009-01-29

Analyzed By: ME Prepared By: ME

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	7.78	mg/Kg	1	10.0	< 0.171	78	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	7.83	mg/Kg	1	10.0	< 0.171	78	70 - 130	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	$rac{ ext{LCS}}{ ext{Result}}$	LCSD Result	Units	Dil.	$rac{ ext{Spike}}{ ext{Amount}}$	LCS Rec.	LCSD Rec.	${ m Rec.} \ { m Limit}$
Trifluorotoluene (TFT)	0.982	0.937	mg/Kg	1	1.00	98	94	70 - 130
4-Bromofluorobenzene (4-BFB)	0.728	0.744	mg/Kg	1	1.00	73	74	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch: 56475Prep Batch: 48259 Date Analyzed: 2009-01-30 QC Preparation: 2009-01-30 Analyzed By: CM Prepared By: CM

MEWBOU034PIT

Work Order: 9012801 Dos Hermanos 6 Fed. Com. #1 Page Number: 9 of 13 Eddy Co., NM

De	LCS	Units	Dil.	Spike	Matrix	Rec.	Rec. Limit
Param TRPHC	Result 249	mg/Kg	1	Amount 250	Result <5.28	100	75.5 - 136
	d on the child result PPD		the emilee			100	.0.0 100

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	Result	Units	Dil.	$\mathbf{A}\mathbf{mount}$	Result	Rec.	Limit	RPD	Limit
TRPHC	255	mg/Kg	1	250	< 5.28	102	75.5 - 136	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 185904

QC Batch: Prep Batch: 48203

56414

Date Analyzed:

2009-01-28 QC Preparation: 2009-01-28 Analyzed By: LD

Prepared By: LD

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	244	mg/Kg	1	250	<12.0	98	18 - 179.5

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
DRO	256	mg/Kg	1	250	<12.0	102	18 - 179.5	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

•	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	78.3	79.1	mg/Kg	1	100	78	79	34.1 - 158

Matrix Spike (MS-1) Spiked Sample: 185904

QC Batch:

56456 Prep Batch: 48202 Date Analyzed:

2009-01-29 QC Preparation: 2009-01-28 Analyzed By: AR Prepared By: AR

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	5110	${ m mg/Kg}$	50	5000	193	98	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			$_{ m Spike}$	Matrix		Rec .		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	5190	mg/Kg	50	5000	193	100	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

MEWBOU034PIT

Work Order: 9012801 Dos Hermanos 6 Fed. Com. #1 Page Number: 10 of 13 Eddy Co., NM

Matrix Spike (MS-1)

Spiked Sample: 185904

QC Batch: Prep Batch: 48254

56465

Date Analyzed:

2009-01-29

Analyzed By: ME

QC Preparation: 2009-01-29

Prepared By: ME

	MS			$_{ m Spike}$	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene	0.894	mg/Kg	1	1.00	< 0.00800	89	58.6 - 165.2
Toluene	1.08	mg/Kg	1	1.00	0.1169	96	64.2 - 153.8
Ethylbenzene	1.14	mg/Kg	1	1.00	< 0.00820	114	61.6 - 159.4
Xylene	3.44	mg/Kg	1	3.00	< 0.00960	115	64.4 - 155.3

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	0.864	mg/Kg	1	1.00	< 0.00800	86	58.6 - 165.2	3	20
Toluene	1.04	mg/Kg	1	1.00	0.1169	92	64.2 - 153.8	4	20
Ethylbenzene	1.07	mg/Kg	1	1.00	< 0.00820	107	61.6 - 159.4	6	20
Xylene	3.27	mg/Kg	1	3.00	< 0.00960	109	64.4 - 155.3	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.942	0.942	mg/Kg	1	1	94	94	76 - 127.9
4-Bromofluorobenzene (4-BFB)	0.991	1.06	$_{ m mg/Kg}$	1	1	99	106	72 - 127.8

Matrix Spike (MS-1)

Prep Batch: 48254

Spiked Sample: 185450

QC Batch:

56469

Date Analyzed:

2009-01-29

QC Preparation: 2009-01-29 Analyzed By: ME

Prepared By: ME

		MS			Spike	Matrix		$\mathrm{Rec}.$
Param		Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}
GRO	1	120	mg/Kg	2	20.0	87.9226	160	22.3 - 134.6

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
GRO	2	142	mg/Kg	2	20.0	87.9226	270	22.3 - 134.6	17	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

¹Matrix spike recovery out of control limits due to peak interference. Use LCS to demonstrate analysis is under control.

²Matrix spike recovery out of control limits due to peak interference. Use LCSD to demonstrate analysis is under control.

MEWBOU034PIT

Work Order: 9012801 Dos Hermanos 6 Fed. Com. #1 Page Number: 11 of 13

Eddy Co., NM

Surrogate		$rac{MS}{Result}$	${ m MSD}$ Result	Units	Dil.	$\begin{array}{c} {\rm Spike} \\ {\rm Amount} \end{array}$	MS Rec.	$\frac{\mathrm{MSD}}{\mathrm{Rec.}}$	Rec. Limit
Triffuorotoluene (TFT)		1.97	1.64	mg/Kg		2	98	82	68.4 - 113.1
4-Bromofluorobenzene (4-BFB)	3 4	3.16	3.44	mg/Kg	2	2	158	172	66.7 - 134.3

Matrix Spike (MS-1)

Spiked Sample: 185781

QC Batch: Prep Batch: 48259

56475

Date Analyzed: QC Preparation: 2009-01-30

2009-01-30

Analyzed By: CM

Prepared By: CM

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil .	Amount	Result	Rec.	Limit
TRPHC	274	mg/Kg	1	250	< 5.28	110	10 - 354

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			$_{ m Spike}$	Matrix		Rec .		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
TRPHC	275	mg/Kg	1	250	< 5.28	110	10 - 354	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (ICV-1)

QC Batch: 56414

Date Analyzed: 2009-01-28

Analyzed By: LD

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	275	110	85 - 115	2009-01-28

Standard (CCV-1)

QC Batch: 56414

Date Analyzed: 2009-01-28

Analyzed By: LD

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	272	109	85 - 115	2009-01-28

Standard (ICV-1)

QC Batch: 56456

Date Analyzed: 2009-01-29

Analyzed By: AR

³High surrogate recovery due to peak interference.

⁴High surrogate recovery due to peak interference.

MEWBOU034PIT

Work Order: 9012801 Dos Hermanos 6 Fed. Com. #1 Page Number: 12 of 13

Eddy Co., NM

			$rac{ ext{ICVs}}{ ext{True}}$	ICVs Found	${ m ICVs} \ { m Percent}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	99.8	100	85 - 115	2009-01-29

Standard (CCV-1)

QC Batch: 56456

Date Analyzed: 2009-01-29

Analyzed By: AR

			CCVs True	CCVs Found	$\begin{array}{c} { m CCVs} \\ { m Percent} \end{array}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	100	100	85 - 115	2009-01-29

Standard (ICV-1)

QC Batch: 56465

Date Analyzed: 2009-01-29

Analyzed By: ME

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0856	86	85 - 115	2009-01-29
Toluene		${ m mg/Kg}$	0.100	0.102	102	85 - 115	2009-01-29
Ethylbenzene		mg/Kg	0.100	0.104	104	85 - 115	2009-01-29
Xylene		mg/Kg	0.300	0.293	98	85 - 115	2009-01-29

Standard (CCV-1)

QC Batch: 56465

Date Analyzed: 2009-01-29

Analyzed By: ME

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0910	91	85 - 115	2009-01-29
Toluene		mg/Kg	0.100	0.108	108	85 - 115	2009-01-29
Ethylbenzene		mg/Kg	0.100	0.111	111	85 - 115	2009-01-29
Xylene		mg/Kg	0.300	0.339	113	85 - 115	2009-01-29

Standard (CCV-1)

QC Batch: 56469

 $Date\ Analyzed:\ \ 2009\text{-}01\text{-}29$

Analyzed By: ME

Report Date: February 2, 2009 MEWBOU034PIT Work Order: 9012801 Dos Hermanos 6 Fed. Com. #1 Page Number: 13 of 13 Eddy Co., NM

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
GRO		mg/Kg	1.00	1.01	101	85 - 115	2009-01-29

Standard (CCV-2)

QC Batch: 56469

Date Analyzed: 2009-01-29

Analyzed By: ME

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	1.10	110	85 - 115	2009-01-29

Standard (ICV-1)

QC Batch: 56475

Date Analyzed: 2009-01-30

Analyzed By: CM

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		$\mathrm{mg/Kg}$	100	103	103	80 - 120	2009-01-30

Standard (CCV-1)

QC Batch: 56475

Date Analyzed: 2009-01-30

Analyzed By: CM

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	${f Analyzed}$
TRPHC		mg/Kg	100	88.0	88	80 - 120	2009-01-30

>	a	3	е			

of

TraceAnalysis, Inc.

email: lab@traceanalysis.com

6701 Aberdeen Avenue, Suite 9 **Lubbock, Texas 79424** Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296 5002 Basin Street, Suite A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313 200 East Sunset Rd , Suite E El Paso, Texas 79922 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 6015 Harris Pkwy , Suite 110 Ft. Worth, Texas 76132 Tel (817) 201-5260

Company Name:	_ 						Pi	hone	#:							т																		
TAIN'S							110	2		8	6	85	8							10								UES			~ \			
Address: (Street	i, City, Zip)	4000	17		S	702	΄Fε /∧	9X #:							_					رور	HEC	:ie	or	3 [ec	EITY	W	leth	100	N IN	O.)			
COMMUNICATION:		_//////////////////////////////////////	<u> </u>	2000	_0	1009	り E・	mail		····									1	200													9	
ER TAMA	WT						, <u> </u>									1		35)		, 6010B/200 7	운												standard	
(If different from above) MELLIR	1000	. ,	າໂ.		12	アナル	, .		143	501	ī.	>	mari	در زس	24	4	읤	1	99	Se							1			-		1 sta	
Project #:	42.4 0.						Pi	rojec	t Nan	ne:	-	<u></u>			<u></u>	B/6	/ 62	2 S	ادِ	Se Hg					202	3			000				from	
(If different from above Project #: MSU BOU Project Location (inclu	OSG P)	<i>T</i>				205	_ <i>H</i> 5	A Pr	<u>n A</u> er Sid	NO.	<u>ک ک</u>	1.1	20	Cor	17	8260B / 624	8260B / 624	TX1005 Ext(C35)	≥	9 P	Ba Cd Cr Pb				_ 2	3			13				different	
EDOY CO	NEW	mexi	CO				ΣĬ									1-1	ω,		3	g	Ba	۱.,		3	924	5	8	i		!			diffe	
			_	onut		MATE	RIX		PF	MET	RVAT HOD		-	SAME	LING	l m	Z 602	TX1005	25 25 25	As Ba (Ag As	Solatiles	des	400	8260B /	808	81A / 6	- - -					Time if	
LAB# LAB:USE) ONLY	FIELD CODE		# CONTAINERS	Volume / Amount	WATER	SOIL	SLUDGE	i DH	HNO3	H₂SO₄	NaCH ICE	NONE		DATE	TIME	MTBE 8021	3021	TPH 418.1	PAH 8270C / 625	Total Metals Ag As	TCLP Metals Ag As	TCLP Volatiles	TCLP Pesticides		GC/MS Vol 8	PCB's 8082 / 608	esticides 80	BOD, TSS, pH	WILDS CONTRACTOR				Turn Around	Hold
85904F1001	<u> </u>		1	<u> </u>		X	+++	+	+-		ν	+		<u> </u>	·	+ +	_ 1	41		+-		+	-	<u> </u>	7	1	1	<u> </u>		}_	+		7	<u>-</u>
BUNUTIF 100Y	comp		<u> </u>			7		-			_ X			1/27	11:00	f	-	7 7				+			-	-	H		\mathcal{I}_{+}		1	+	1	-
																	\top					-			-					\Box				
								十						,								1	†			\top					+			
																							1								\top			
												T		1				_		П	\top	1	 		\top	\top	1-1		T	$\top \top$	1			
								\top	1			T					1					+	T		1				 	H	-			
				 			11	十				+				$\dagger \dagger$	+		+	\vdash		+	-	-	+	-	H		+-	\vdash	+	+		-
				 	ļ							1						+	+	+		+	+		+	+		\vdash		\vdash	-	+		_
								十				-						-	+			_	+		\top	-	H		+		+	+		_
								+	+	\Box							+		\dashv	f		-			\dagger	_	H	\Box		\vdash	-	+		
Relinquished by:	Date:	Time:	Rec	eived	by:	LL				Date		1	Γime	! :	L			Δ	Βl	181			RE	MAI	RKS	:	لسلم			<u></u>		٠,		n. 11
90.74	1/20	6:00	1			1	IJ	,	<u>-</u>	0	ms.		<i>,</i> .	ء معرور	Ada			erels)NL	. 250 . 5 . 1 1 4 2				É	372	ÇΧ,	G	RO:	DF	30.0	מת ב	pride	25~/	lida
Relinguished by:	Daye:	Time:	Ret	cived	by:			/_		Date	17 _	4	Time	<u>05 p</u>					Υ <i>(</i>					4	4/8	g. /	′-,	Lub	bo	ck				
1) 1. 1	1/-	1.9.	,, d	1.).	\square	7,		1.	28)~	4*** 11 4	1 . 526 4 4		₩ X		. 61	5			•	_		asis Re		ed				
Refineuished by:	Date	Time:	Rec	eived	그 at L	aborati	ory by	/2		Date		ア 	ime	بالا رث			aus mp		Δ^-			6						Requi						
		M														177	me e		view						Cher Limit	ck If t	Speci Nes	ial Rej eded	portin	ıg				
Submittal of samples c	onstitutes agree	ement to Ter	ms an	nd Conc	dition	ns listed	d on re	evers	e sid	e of (c. o	С				Car	rrier		E	VK	IL	1	r	`										
					_)DICI	RIAL	\sim	DV									_			~		.4	<u> </u>										

2609 North River Road, Port Allen, Louisiana 70767

1 (800) 401-4277 FAX (225) 381-2996

ARS Sample Delivery Group: ARS1-09-00194

Request or PO Number:

9010718

Client Sample ID: 184110

ARS Sample ID:

ARS1-09-00194-001

Sample Collection Date: 01/05/09 13:00

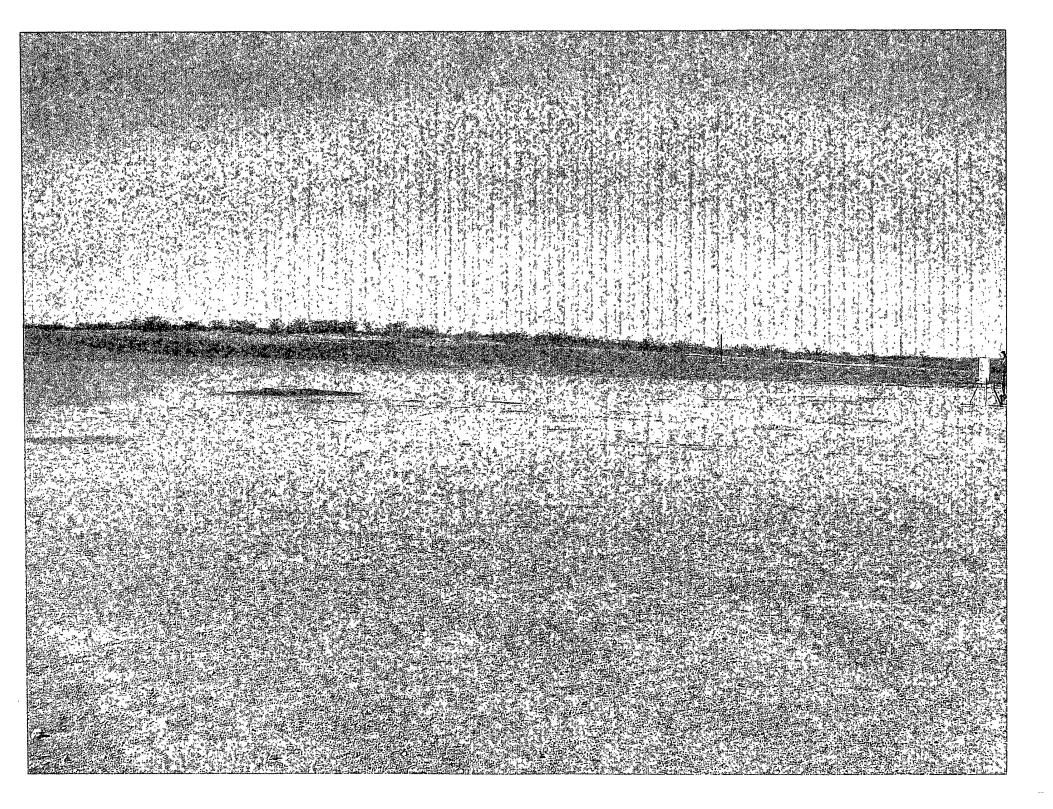
Date Received:

1/15/2009

Sample Matrix: Aqueous

Report Date:

01/28/09 13:29


Analysis Description	Analysis Results	Analysis Error +/- 2 s	MDC	DLC	Analysis Units	Analysis Test Method	Analysis Date/Time	Analysis Technician	Tracer/Chem Recovery
RA-226	0.708	0.726	0.382	0.138	pCI/L	ARS-010/EPA 904.0	1/23/09 15:48	JB	108.00%
RA 228	0 859	1.051	1 712	0 796	pCi/L	ARS-010/EPA 904.0	1/23/09 11:44	JB.	107.57%
		!		1					
NOTES:		innere in Contraditionalities for an own is assu							·

Project Manager Review

Notes. American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.

LELAP Certificate# 30658

NELAP Certificate # E87558

Certifications

WBENC: 237019

HUB: 1752439743100-86536

DBE: VN 20657

NCTRCA . WFWB38444Y0909

NELAP Certifications

Lubbock: T104704219-08-TX

LELAP-02003 Kansas E-10317 El Paso: T104704221-08-TX LELAP-02002

Midland: T104704392-08-TX

Analytical and Quality Control Report

Eb Taylor Talon LPE-Hobbs 318 E Taylor Hobbs, NM, 88240

Report Date: January 28, 2009

Work Order:

Project Location: Eddy Co., NM

Project Name:

Dos Hermanos 6 Fed. Com. #1

Project Number:

MEWBOU034PIT

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	rime	Date
Sample	Description	Matrix	Taken	Taken	Received
184110	Drill Cuttings	soil	2009-01-05	13:00	2009-01-07

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 32 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael abel

Standard Flags

 ${\bf B}$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project Dos Hermanos 6 Fed. Com. #1 were received by TraceAnalysis, Inc. on 2009-01-07 and assigned to work order 9010718. Samples for work order 9010718 were received intact at a temperature of 3.7 deg. C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	$_{ m QC}$	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	47699	2009-01-07 at 10:57	55804	2009-01-07 at 10:57
Chloride (Titration)	$\mathrm{SM}\ 4500\text{-}\mathrm{Cl}\ \mathrm{B}$	47683	2009-01-07 at 09:22	55790	2009-01-07 at 15:05
SPLP Ag	S 6010B	47893	2009-01-16 at 10:18	56044	2009-01-16 at 11:19
SPLP As	S 6010B	47893	2009-01-16 at 10:18	56044	2009-01-16 at $11:19$
SPLP Ba	S 6010B	47893	2009-01-16 at 10:18	56044	2009-01-16 at 11:19
SPLP Cd	S 6010B	47893	2009-01-16 at 10:18	56044	2009-01-16 at 11:19
SPLP Cl	E 300.0	48000	2009-01-20 at 15:00	56161	2009-01-20 at 15:59
SPLP Cr	S 6010B	47893	2009-01-16 at 10:18	56044	2009-01-16 at 11:19
SPLP Cyanide	SM 4500 -CN C,E	48102	2009-01-23 at 14:09	56293	2009-01-23 at $17:00$
SPLP Hg	S 7470A	47838	2009-01-14 at 10:54	55967	2009-01-14 at 12:36
SPLP PAH	S 8270C	47949	2009-01-16 at 15:00	56105	2009-01-19 at 14:49
SPLP Pb	S 6010B	47893	2009-01-16 at 10:18	56044	2009-01-16 at 11:19
SPLP PCB	S 8082	47987	2009-01-20 at 15:00	56156	2009-01-21 at 03:00
SPLP Se	S 6010B	47893	2009-01-16 at 10:18	56044	2009-01-16 at 11:19
SPLP U	S 6010B	47893	2009-01-16 at 10:18	56044	2009-01-16 at 11:19
SPLP Volatiles	S 8260B	47833	2009-01-13 at 12:00	55959	2009-01-13 at $12:00$
TPH 418.1	E 418.1	47781	2009-01-12 at 09:30	55900	2009-01-12 at $11:36$
TPH DRO	Mod. 8015B	47729	2009-01-08 at 15:30	55839	2009-01-08 at 16:47
TPH GRO	S 8015B	47728	2009-01-09 at 08:03	55836	2009-01-08 at 09:28

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9010718 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: January 28, 2009 MEWBOU034PIT Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1

Page Number: 4 of 32 Eddy Co., NM

Analytical Report

Sample: 184110 - Drill Cuttings

Laboratory: Midland

Analysis: BTEX QC Batch: 55804 Prep Batch: 47699 Analytical Method: S 8021B
Date Analyzed: 2009-01-07
Sample Preparation: 2009-01-07

Prep Method: S 5035 Analyzed By: ME Prepared By: ME

		RL	•		
Parameter	Flag	Result	Units	Dilution	RL
Benzene		0.0510	mg/Kg	1	0.0100
Toluene		0.223	mg/Kg	1	0.0100
Ethylbenzene		0.132	mg/Kg	1	0.0100
Xylene		0.520	m mg/Kg	1	0.0100

					$_{ m Spike}$	$\operatorname{Percent}$	$\operatorname{Recovery}$
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.02	mg/Kg	1	. 1.00	102	68 - 136.9
4-Bromofluorobenzene (4-BFB)		1.09	${ m mg/Kg}$	1	1.00	109	48.2 - 155

Sample: 184110 - Drill Cuttings

Laboratory: Midland

Analysis: Chloride (Titration) QC Batch: 55790 Prep Batch. 47683 Analytical Method: SM 4500-Cl B
Date Analyzed: 2009-01-07
Sample Preparation: 2009-01-07

Prep Method: N/A Analyzed By: AR Prepared By: AR

Sample: 184110 - Drill Cuttings

Laboratory: Lubbock

Analysis: SPLP Cl QC Batch: 56161 Prep Batch: 48000 Analytical Method: E 300.0

Date Analyzed: 2009-01-20

SPLP Extraction: 2009-01-16

Sample Preparation: 2009-01-20

Prep Method: SPLP 1312
Analyzed By: ER
Proposed Proposed

P Extraction: 2009-01-16 Prepared By: ER ple Preparation: 2009-01-20 Prepared By: ER

 Report Date: January 28, 2009

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 5 of 32 Eddy Co., NM

Sample: 184110 - Drill Cuttings

Laboratory: Lubbock

Analysis: SPLP Cyanide

QC Batch: 56293Prep Batch: 48102

Analytical Method: SM 4500-CN C,E

Date Analyzed: SPLP Extraction: 2009-01-22 Sample Preparation: 2009-01-23

2009 - 01 - 23Analyzed By: SS

Prepared By: SS SS Prepared By:

Prep Method: SPLP 1312

RL

Parameter	Flag	Result	Units	Dilution	RL
SPLP Cyanide		< 0.0150	mg/Kg	1	0.0150

Sample: 184110 - Drill Cuttings

Laboratory: Lubbock

Analysis: SPLP PAH QC Batch:

56105 Prep Batch: 47949

Analytical Method: S 8270C 2009 - 01 - 19Date Analyzed:

SPLP Extraction: 2009-01-15Sample Preparation: 2009-01-16 Prep Method: SPLP 1312

Analyzed By: MNPrepared By: MN Prepared By: MN

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Naphthalene		0.000327	mg/L	1	0.000200
Acenaphthylene		< 0.000200	m mg/L	1	0.000200
Acenaphthene		< 0.000200	m mg/L	1	0.000200
Dibenzofuran		< 0.000200	m mg/L	1	0.000200
Fluorene		< 0.000200	$\mathrm{mg/L}$	1	0.000200
Anthracene		< 0.000200	m mg/L	1	0.000200
Phenanthrene		0.000209	m mg/L	1	0.000200
Fluoranthene		< 0.000200	m mg/L	1	0.000200
Pyrene		< 0.000200	$\mathrm{mg/L}$	1	0.000200
Benzo(a)anthracene		< 0.000200	m mg/L	1	0.000200
Chrysene		< 0.000200	m mg/L	1	0.000200
Benzo(b)fluoranthene		< 0.000200	m mg/L	1	0.000200
Benzo(k)fluoranthene		< 0.000200	mg/L	1	0.000200
Benzo(a)pyrene		< 0.000200	$\mathrm{mg/L}$	1	0.000200
Indeno(1,2,3-cd)pyrene		< 0.000200	$\mathrm{mg/L}$	1	0.000200
Dibenzo(a,h)anthracene		< 0.000200	${ m mg/L}$	1	0.000200
Benzo(g,h,i)perylene		< 0.000200	mg/L	1	0.000200

Surrogate	Flag	Result	$_{ m Units}$	Dilution	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	Percent Recovery	$egin{array}{c} { m Recovery} \\ { m Limits} \end{array}$
2-Fluorobiphenyl		0.0470	mg/L	1	0.0800	59	37.4 - 123
Nitrobenzene-d5		0.0519	mg/L	1	0.0800	65	34.3 - 130
Terphenyl-d14		0.0547	${ m mg/L}$	1	0.0800	68	10 - 252

Report Date: January 28, 2009 Work Order: 9010718 Page Number: 6 of 32 MEWBOU034PIT Dos Hermanos 6 Fed. Com. #1 Eddy Co., NM

Sample: 184110 - Drill Cuttings

Laboratory: Lubbock

Analysis: SPLP PCB Analytical Method: S 8082 Prep Method: SPLP 1312

QC Batch: 56156 Date Analyzed: 2009-01-21 Analyzed By: DS Prep Batch: 47987 SPLP Extraction: 2009-01-19 Prepared By: DS Sample Preparation: 2009-01-20 Prepared By: DS

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Total PCB		< 0.000500	mg/L	1	0.000500
Aroclor 1016 (PCB-1016)		< 0.000500	m mg/L	1	0.000500
Aroclor 1221 (PCB-1221)		< 0.000500	$\mathrm{mg/L}$	1	0.000500
Aroclor 1232 (PCB-1232)		< 0.000500	$\mathrm{mg/L}$	1	0.000500
Aroclor 1242 (PCB-1242)		< 0.000500	mg/L	1	0.000500
Aroclor 1248 (PCB-1248)		< 0.000500	m mg/L	1	0.000500
Aroclor 1254 (PCB-1254)		< 0.000500	m mg/L	1	0.000500
Aroclor 1260 (PCB-1260)		< 0.000500	m mg/L	. 1	0.000500
Aroclor 1268 (PCB-1268)		< 0.000500	${ m mg/L}$	1	0.000500

	•				\mathbf{S} pike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
Deca chlorobiphenyl	1	0.000664	mg/L	1	0.000500	133	10 - 128

Sample: 184110 - Drill Cuttings

Laboratory:	Lubbock				
Analysis:	SPLP Total 8 Metals	Analytical Method:	S 7470A	Prep Method:	N/A
OC D + 1	FF0.07	Th. (. A . 1 1	0000 01 14	A 1 1 TO	mn.

TPQC Batch: 55967 Date Analyzed: 2009-01-14 Analyzed By: TP Prep Batch: 47838 Sample Preparation: 2009-01-14 Prepared By:

Laboratory: Lubbock

Analytical Method: **SPLP 1312** Analysis: SPLP Total 8 Metals S 6010B Prep Method: QC Batch: 56044 Date Analyzed: 2009-01-16 Analyzed By: RRPrep Batch: 47893 SPLP Extraction: 2009-01-15 Prepared By: KVSample Preparation: 2009-01-16 Prepared By: KV

		RL			
Parameter	Flag	Result	Units	Dilution	RL
SPLP Silver		< 0.00300	mg/L	1	0.00300
SPLP Arsenic		< 0.0100	$\mathrm{mg/L}$	1	0.0100
SPLP Barium		0.281	$\mathrm{mg/L}$	1	0.100
SPLP Cadmium		< 0.00500	$\mathrm{mg/L}$	1	0.00500
SPLP Chromium		< 0.00500	mg/L	1	0.00500
SPLP Mercury		0.000982	$\mathrm{mg/L}$	1	0.000200
SPLP Lead		< 0.0100	m mg/L	1	0.0100
SPLP Selenium		< 0.0500	mg/L	1	0.0500

¹High surrogate recovery. Sample non-detect, result bias high.

Report Date: January 28, 2009

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 7 of 32 Eddy Co., NM

Sample: 184110 - Drill Cuttings

Laboratory: Lubbock

SPLP U Analysis: QC Batch: 56044

Analytical Method: S 6010B Date Analyzed: 2009-01-16

Prep Method: SPLP 1312 Analyzed By: RRPrepared By: KV

Prep Batch: 47893

SPLP Extraction: 2009-01-15 Sample Preparation: 2009-01-16

Prepared By: KV

RL

Parameter	Flag	Result	Units	Dilution	RL
SPLP U		< 0.0500	mg/L	1	0.0500

Sample: 184110 - Drill Cuttings

Laboratory: Lubbock

Analysis: SPLP Volatiles

55959

Analytical Method:

S 8260B

Prep Method: SPLP 1312

QC Batch: Prep Batch: 47833

o-Xylene

1,1,2,2-Tetrachloroethane

Date Analyzed: SPLP Extraction: Sample Preparation:

2009-01-13 2009-01-13 2009-01-13

 $\mu g/L$

 $\mu g/L$

Analyzed By: KBPrepared By: KBPrepared By: KB

1

1

1.00

1.00

RLParameter Flag Result Units Dilution RLVinyl Chloride < 1.00 $\mu g/L$ 1.00 1 < 1.00 1,1-Dichloroethene 1 1.00 $\mu g/L$ Methylene chloride 6.82 1 5.00 $\mu g/L$ 1.1-Dichloroethane < 1.00 $\mu g/L$ 1 1.00 1,2-Dichloroethane (EDC) < 1.00 $\mu g/L$ 1 1.00 Chloroform < 1.00 $\mu g/L$ 1 1.00 1,1,1-Trichloroethane < 1.00 $\mu g/L$ 1 1.00 Benzene 1.84 $\mu g/L$ 1 1.00 Carbon Tetrachloride < 1.001.00 $\mu g/L$ Trichloroethene (TCE) < 1.00 $\mu g/L$ 1 1.00 Toluene 25.41.00 $\mu \mathrm{g/L}$ 1,1,2-Trichloroethane < 1.00 $\mu g/L$ 1.00 1 1,2-Dibromoethane (EDB) < 1.00 $\mu g/L$ 1 1.00 Tetrachloroethene (PCE) < 1.00 $\mu g/L$ 1.00 Ethylbenzene 13.4 1.00 $\mu \mathrm{g/L}$ 1 m,p-Xylene 38.8 1 1.00 $\mu g/L$

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane		53.2	$\mu { m g/L}$	1	50.0	106	70 - 130
Toluene-d8		49.8	$\mu { m g}/{ m L}$	1	50.0	100	70 - 130
4-Bromofluorobenzene (4-BFB)		50.1	$\mu { m g}/{ m L}$	1	50.0	100	70 - 130

14.2

< 1.00

Report Date: January 28, 2009 MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 8 of 32 Eddy Co., NM

Sample: 184110 - Drill Cuttings

Laboratory: Lubbock

Analysis: TPH 418.1 QC Batch: 55900 Prep Batch: 47781

Analytical Method: $\to 418.1$ Date Analyzed: 2009-01-12 Sample Preparation: 2009-01-12 Prep Method: N/A Analyzed By: CMPrepared By: CM

RL

Parameter	Flag	Result	Units	Dilution	RL
TRPHC		97.7	mg/Kg	1	10.0

Sample: 184110 - Drill Cuttings

Laboratory: Analysis:

Prep Batch: 47729

QC Batch:

Midland TPH DRO 55839

Analytical Method: Date Analyzed:

Mod. 8015B 2009-01-08 Sample Preparation: 2008-01-08

Prep Method: N/A Analyzed By: AGPrepared By: AG

RL

Parameter	Flag	Result	Units	Dilution	RL
DRO		124	mg/Kg	1	50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		109	mg/Kg	1	100	109	10 - 250.4

Sample: 184110 - Drill Cuttings

Midland Laboratory:

TPH GRO Analysis: 55836 QC Batch: Prep Batch: 47728

Analytical Method: $\le 8015B$ Date Analyzed: 2009-01-08 Sample Preparation: 2009-01-08

Prep Method: S 5035 Analyzed By: MEPrepared By: ME

RL

Parameter	Flag	Result	Units	Dilution	RL
GRO		37.4	mg/Kg	1	1.00

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.04	mg/Kg	1	1.00	104	67.5 - 135.2
4-Bromofluorobenzene (4-BFB)		1.14	mg/Kg	1	1.00	114	63.8 - 141

Work Order: 9010718 Page Number: 9 of 32 Report Date: January 28, 2009 MEWBOU034PIT Eddy Co., NM Dos Hermanos 6 Fed. Com. #1 Method Blank (1) QC Batch: 55790 55790 QC Batch: Date Analyzed: 2009-01-07 Analyzed By: AR Prep Batch: 47683 2009-01-07 QC Preparation: Prepared By: ARMDLRLParameter Flag Result Units Chloride < 2.01mg/Kg 4 Method Blank (1) QC Batch: 55804 QC Batch: 2009-01-07 Analyzed By: 55804 Date Analyzed: MEPrep Batch: 47699 QC Preparation: 2009-01-07 Prepared By: MEMDL Flag Parameter Result Units RLBenzene < 0.00580 mg/Kg 0.01 Toluene < 0.00470 mg/Kg 0.01Ethylbenzene < 0.00530 mg/Kg 0.01 Xylene < 0.0136 mg/Kg 0.01 Spike Percent Recovery Flag Result Units Dilution Surrogate Amount Recovery Limits Trifluorotoluene (TFT) 1.00 mg/Kg 1 1.00 100 48.3 - 132.5 4-Bromofluorobenzene (4-BFB) 0.968 mg/Kg 1 1.00 97 37.7 - 128.9Method Blank (1) QC Batch: 55836 Analyzed By: ME QC Batch: 55836 Date Analyzed: 2009-01-08 Prep Batch: 47728 QC Preparation: 2009-01-09 Prepared By: ME MDL Parameter Flag Result Units RL

Surrogate	Flag	Result	Units	Dilution	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	Percent Recovery	$\begin{array}{c} {\rm Recovery} \\ {\rm Limits} \end{array}$
Trifluorotoluene (TFT)		0.962	mg/Kg	1	1.00	96	39.2 - 135.2
4-Bromofluorobenzene (4-BFB)		0.916	mg/Kg	1	1.00	92	16.8 - 138.1

0.912

mg/Kg

Method Blank (1) QC Batch: 55839

GRO

QC Batch: 55839 Date Analyzed: 2009-01-08 Analyzed By: AG
Prep Batch: 47729 QC Preparation: 2009-01-08 Prepared By: AG

Report Date: January 28, 2009

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 10 of 32 Eddy Co., NM

Parameter		Flag	Re	IDL sult		Units		RL
DRO			<.	15.8		mg/Kg		50
Surrogate	Flag	Result	Units I	Dilution	Spike Amount	Percent Recovery		overy nits
n-Triacontane		71.6	mg/Kg	1	100	72	30.9 -	146.4
Method Blank (1) QC Batch: 55900	,	Batch: 55900	Date Analyzed:	2009-01-12		4	Analyzed By:	
Prep Batch: 47781			QC Preparation:	2009-01-12			Prepared By:	CM CM
Prep Batch: 47781		F)	M	DL		I		CM
•		Flag	M Re					

Method Blank	(1)	QC	Batch:	55959
--------------	-----	----	--------	-------

QC Batch: 55959 Date Analyzed: 2009-01-13 Analyzed By: KB Prep Batch: 47833 QC Preparation: 2009-01-13 Prepared By: KB

		MDL		
Parameter	Flag	Result	Units	RL
Bromochloromethane		< 0.177	$\mu \mathrm{g}/\mathrm{L}$	1
Dichlorodifluoromethane		< 0.208	$\mu \mathrm{g}/\mathrm{L}$	1
Chloromethane (methyl chloride)		< 0.134	$\mu { m g}/{ m L}$	1
Vinyl Chloride		< 0.135	$\mu { m g}/{ m L}$	1
Bromomethane (methyl bromide)		< 1.23	$\mu { m g}/{ m L}$	5
Chloroethane		< 0.182	$\mu { m g}/{ m L}$	1
Trichlorofluoromethane		< 0.0610	$\mu { m g}/{ m L}$	1
Acetone		< 5.50	$\mu { m g}/{ m L}$	10
Iodomethane (methyl iodide)		< 0.107	$\mu { m g}/{ m L}$	5
Carbon Disulfide		0.0600	$\mu { m g}/{ m L}$	1
Acrylonitrile		< 0.0970	$\mu { m g/L}$	1
2-Butanone (MEK)		< 0.531	$\mu { m g}/{ m L}$	5
4-Methyl-2-pentanone (MIBK)		< 0.421	$\mu \mathrm{g/L}$	5
2-Hexanone		< 0.168	$\mu \mathrm{g}/\mathrm{L}$	5
trans 1,4-Dichloro-2-butene		< 0.517	$\mu { m g/L}$.	10
1,1-Dichloroethene		< 0.136	$\mu \mathrm{g}/\mathrm{L}$	1
Methylene chloride		< 0.649	$\mu { m g}/{ m L}$	5
MTBE		< 0.123	$\mu { m g}/{ m L}$	1
trans-1,2-Dichloroethene		< 0.126	$\mu { m g}/{ m L}$	1
1,1-Dichloroethane		< 0.0600	$\mu { m g}/{ m L}$	1

continued ...

Report Date: January 28, 2009 MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 11 of 32 Eddy Co., NM

mentoa tiank commuea		MDL		
Parameter	Flag	Result	Units	RL
cis-1,2-Dichloroethene		< 0.151	$\mu \mathrm{g/L}$	1
2,2-Dichloropropane		< 0.180	$\mu \mathrm{g}/\mathrm{L}$.	1
1,2-Dichloroethane (EDC)		< 0.113	$\mu { m g}/{ m L}$	1
Chloroform		< 0.141	$\mu { m g}/{ m L}$	1
1,1,1-Trichloroethane		< 0.116	$\mu \mathrm{g}/\mathrm{L}$	1
1,1-Dichloropropene		< 0.0540	$\mu \mathrm{g}/\mathrm{L}$	1
Benzene	*	< 0.146	$\mu\mathrm{g}/\mathrm{L}$	1
Carbon Tetrachloride		< 0.0790	$\mu { m g}/{ m L}$	1
1,2-Dichloropropane		< 0.111	$\mu\mathrm{g}/\mathrm{L}$	1
Trichloroethene (TCE)		< 0.117	$\mu { m g}/{ m L}$	1
Dibromomethane (methylene bromide)		< 0.140	$\mu { m g}/{ m L}$	1
Bromodichloromethane		< 0.161	$\mu \mathrm{g}/\mathrm{L}$	1
2-Chloroethyl vinyl ether		< 0.388	$\mu { m g}/{ m L}$	5
cis-1,3-Dichloropropene		< 0.0890	$\mu { m g}/{ m L}$	1
trans-1,3-Dichloropropene		< 0.0760	$\mu \mathrm{g}/\mathrm{L}$	1
Toluene		< 0.0600	$\mu \mathrm{g}/\mathrm{L}$	1
1,1,2-Trichloroethane		< 0.135	$\mu \mathrm{g}/\mathrm{L}$	1
1,3-Dichloropropane		< 0.0990	$\mu \mathrm{g}/\mathrm{L}$	1
Dibromochloromethane		< 0.0900	$\mu \mathrm{g}/\mathrm{L}$	1
1,2-Dibromoethane (EDB)		< 0.0700	$\mu \mathrm{g}/\mathrm{L}$	1
Tetrachloroethene (PCE)		< 0.270	$\mu_{ m g}/{ m L}$	1
Chlorobenzene		< 0.0540	$\mu \mathrm{g}/\mathrm{L}$	1
1,1,1,2-Tetrachloroethane		< 0.0990	$\mu \mathrm{g}/\mathrm{L}$	1
Ethylbenzene		0.0400	$\mu { m g/L}$	1
m,p-Xylene		< 0.0940	$\mu \mathrm{g}/\mathrm{L}$	1
Bromoform		< 0.0570	$\mu \mathrm{g}/\mathrm{L}$	1
Styrene		< 0.0910	$\mu \mathrm{g}/\mathrm{L}$	1
o-Xylene		< 0.0960	$\mu \mathrm{g/L}$	1
1,1,2,2-Tetrachloroethane		< 0.125	$\mu { m g/L}$	1
2-Chlorotoluene		0.0600	$\mu \mathrm{g}/\mathrm{L}$	1
1,2,3-Trichloropropane		< 0.458	$\mu \mathrm{g}/\mathrm{L}$	1
Isopropylbenzene		< 0.0850	$\mu \mathrm{g/L}$	1
Bromobenzene		< 0.106	$\mu \mathrm{g}/\mathrm{L}$	1
n-Propylbenzene		0.0800	$\mu \mathrm{g}/\mathrm{L}$	1
1,3,5-Trimethylbenzene		0.0700	$\mu \mathrm{g}/\mathrm{L}$	1
tert-Butylbenzene		< 0.107	$\mu \mathrm{g}/\mathrm{L}$	1
1,2,4-Trimethylbenzene		< 0.0990	$\mu \mathrm{g}/\mathrm{L}$	1
1,4-Dichlorobenzene (para)		< 0.217	$\mu \mathrm{g}/\mathrm{L}$	1
sec-Butylbenzene		0.110	$\mu \mathrm{g}/\mathrm{L}$	1
1,3-Dichlorobenzene (meta)		0.0800	$\mu \mathrm{g}/\mathrm{L}$	1
p-Isopropyltoluene		0.120	$\mu_{ m g/L}$	1
4-Chlorotoluene		< 0.0940	$\mu_{ m g/L}$	1
1,2-Dichlorobenzene (ortho)		< 0.100	$\mu_{ m g}/{ m L}$	1
n-Butylbenzene		0.180	$_{ m \mu g/L}^{ m \mu g/L}$	1

 $continued \dots$

SPLP Arsenic

SPLP Barium

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1

Page Number: 12 of 32 Eddy Co., NM

method blank continued	<i>l</i>			MDI	-			
Parameter		Flag	o r	MDI Resul		Units		RL
1,2-Dibromo-3-chloropr	opane	1100		< 0.69		$\mu g/L$		5
1,2,3-Trichlorobenzene				0.150		$\mu \mathrm{g}/\mathrm{L}$		5
1,2.4-Trichlorobenzene				< 0.15	5	$\mu \mathrm{g}/\mathrm{L}$		5
Naphthalene				< 0.59		$\mu \mathrm{g}/\mathrm{L}$		5
Hexachlorobutadiene				0.26	0	$\mu \mathrm{g}/\mathrm{L}$		5
					Spike	Percent	Re	covery
Surrogate	Flag	Result	Units	s Dilution	$\overline{\text{Amount}}$	Recovery	$_{\rm L}$	imits
Dibromofluoromethane		53.8	$\mu \mathrm{g/I}$	1	50.0	108	70	- 130
Toluene-d8		49.6	$\mu { m g}/{ m I}$	1	50.0	99	70	- 130
4-Bromofluorobenzene	(4-BFB)	49.6	$\mu \mathrm{g/I}$. 1	50.0	99	70	- 130
Method Blank (1)	QC Batch: 55967							
QC Batch: 55967		Date Analy	zed:	2009-01-14		Analyz	ed Bv.	TP
Prep Batch: 47838		QC Prepara		2009-01-14		Prepare		
•		•				•	·	
Danamatan	Flag			MDL Result	Units			RL
Parameter SPLP Mercury	Flag			000329	mg/L			$\frac{\mathrm{RL}}{0.0002}$
St Et Mercury			<u> </u>	000323	mg/L			0.0002
Method Blank (1)	QC Batch: 56044							
QC Batch: 56044		Date Analys	zed·	2009-01-16		Analyze	ed By:	RR
Prep Batch: 47893		QC Prepara		2009-01-16		Prepare		KV
			M	IDL				
Parameter	Flag		Re	sult	Units			RL
SPLP U			< 0.0	105	mg/L			0.05
Method Blank (1)	QC Batch: 56044			†				
QC Batch: 56044		Date Analys	zed:	2009-01-16		Analyze	ed By:	RR
Prep Batch: 47893		QC Prepara		2009-01-16		Prepare	-	KV
				MDL				
Parameter	Flag			Result	Units			RL
SPLP Silver				0.00210	mg/L			0.003
CDI D Argonia				0.00430	mæ/I			0.01

< 0.00430

< 0.00170

 $\frac{0.1}{continued \dots}$

0.01

mg/L

mg/L

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 13 of 32 Eddy Co., NM

method	blank	continued

Parameter	Flag	Result	Units	RL
SPLP Cadmium		< 0.00140	mg/L	0.005
SPLP Chromium		< 0.000900	${ m mg/L}$	0.005
SPLP Lead		< 0.00320	m mg/L	0.01
SPLP Selenium		< 0.0131	$\mathrm{mg/L}$	0.05

Method Blank (1) QC Batch: 56105

QC Batch: 56105 Date Analyzed: 2009-01-19 Analyzed By: MN
Prep Batch: 47949 QC Preparation: 2009-01-16 Prepared By: MN

		MDL		
Parameter	Flag	Result	Units	RL
Naphthalene		< 0.0000853	mg/L	0.0002
Acenaphthylene		< 0.0000768	mg/L	0.0002
Acenaphthene		< 0.000103	mg/L	0.0002
Dibenzofuran		< 0.000200	mg/L	0.0002
Fluorene		< 0.0000861	$\mathrm{mg/L}$	0.0002
Anthracene		< 0.000170	$\mathrm{mg/L}$	0.0002
Phenanthrene		< 0.0000884	$\mathrm{mg/L}$	0.0002
Fluoranthene		< 0.0000969	$\mathrm{mg/L}$	0.0002
Pyrene		, <0.0000855	mg/L	0.0002
Benzo(a)anthracene		< 0.0000703	mg/L	0.0002
Chrysene		< 0.000113	$\mathrm{mg/L}$	0.0002
Benzo(b)fluoranthene		< 0.000134	mg/L	0.0002
Benzo(k)fluoranthene	1	< 0.000227	mg/L	0.0002
Benzo(a)pyrene		< 0.000200	mg/L	0.0002
Indeno(1,2,3-cd)pyrene		< 0.000253	$\mathrm{mg/L}$	0.0002
Dibenzo(a,h)anthracene		< 0.000180	m mg/L	0.0002
Benzo(g,h,i)perylene		< 0.000158	${ m mg/L}$	0.0002

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
2-Fluorobiphenyl		0.0458	mg/L	1	0.0800	57	10 - 146
Nitrobenzene-d5		0.0542	mg/L	1	0.0800	68	10 - 141
Terphenyl-d14		0.0528	${ m mg/L}$	1	0.0800	66	10 - 266

Method Blank (1) QC Batch: 56156

QC Batch: 56156 Date Analyzed: 2009-01-21 Analyzed By: DS Prep Batch: 47987 QC Preparation: 2009-01-20 Prepared By: DS

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 14 of 32

0.				
	Eddy	Co.,	NM	

				MDL			
Parameter		Flag		Result		Units	RL
Total PCB				< 0.000125		mg/L	0.0005
Aroclor 1016 (PCB-10	016)			< 0.000122		mg/L	0.0005
Aroclor 1221 (PCB-12	221)			< 0.000118		mg/L	0.0005
Aroclor 1232 (PCB-12	232)			< 0.0000459		mg/L	0.0005
Aroclor 1242 (PCB-12	242)			< 0.000125		mg/L	0.0005
Aroclor 1248 (PCB-12	248)			< 0.0000546		mg/L	0.0005
Aroclor 1254 (PCB-12	254)			< 0.0000569		mg/L	0.0005
Aroclor 1260 (PCB-12	260)			< 0.0000331		mg/L	0.0005
Aroclor 1268 (PCB-13	268)			< 0.0000282		mg/L	
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits

Method Blank (1) QC Batch: 56293

QC Batch: 56293 Prep Batch: 48102

Deca chlorobiphenyl

0.000557

Date Analyzed: 2009-01-23 QC Preparation: 2009-01-23

mg/L

Analyzed By: SS Prepared By: SS

10 - 128

111

MDL Flag Result Units RLParameter < 0.0148 0.015 SPLP Cyanide mg/Kg

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 47683

55790

Date Analyzed: QC Preparation:

2009-01-07 2009-01-07 0.000500

Analyzed By: AR Prepared By: AR

LCS Spike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit Chloride 98.9 100 < 2.01 99 85 - 115 mg/Kg 1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	99.8	mg/Kg	1	100	<2.01	100	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 55804Prep Batch: 47699 Date Analyzed: 2009-01-07 QC Preparation: 2009-01-07

Analyzed By: ME Prepared By: ME

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1

Param	$rac{ ext{LCS}}{ ext{Result}}$	Units	Dil.	$\begin{array}{c} {\rm Spike} \\ {\rm Amount} \end{array}$	Matrix Result	Rec.	$egin{array}{l} { m Rec.} \\ { m Limit} \end{array}$
Benzene	0.981	mg/Kg	1	1.00	< 0.00580	98	73.3 - 116.6
Toluene	0.959	mg/Kg	1	1.00	< 0.00470	96	78.6 - 115.1
Ethylbenzene	0.922	mg/Kg	1	1.00	< 0.00530	92	77.4 - 114.9
Xylene	2.78	mg/Kg	1	3.00	< 0.0136	93	78.2 - 114.7

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	1.02	mg/Kg	1	1.00	< 0.00580	102	73.3 - 116.6	4	20
Toluene	1.00	mg/Kg	1	1.00	< 0.00470	100	78.6 - 115.1	4	20
Ethylbenzene	0.994	mg/Kg	1	1.00	< 0.00530	99	77.4 - 114.9	8	20
Xylene	3.01	mg/Kg	1	3.00	< 0.0136	100	78.2 - 114.7	8	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			$_{ m Spike}$	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.998	1.05	mg/Kg	1	1.00	100	105	45 - 124.2
4-Bromofluorobenzene (4-BFB)	0.992	1.04	mg/Kg	1	1.00	99	104	47.2 - 130.4

Laboratory Control Spike (LCS-1)

QC Batch: 55836 Prep Batch: 47728

Date Analyzed:

2009-01-08 QC Preparation: 2009-01-09 Analyzed By: ME Prepared By: ME

Page Number: 15 of 32

Eddy Co., NM

	LCS			$_{ m Spike}$	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	8.72	mg/Kg	1	10.0	< 0.442	87	57.5 - 106.4

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	9.09	mg/Kg	1	10.0	< 0.442	91	57.5 - 106.4	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			$_{ m Spike}$	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.05	1.05	mg/Kg	1	1.00	105	105	63.8 - 134.3
4-Bromofluorobenzene (4-BFB)	1.05	1.02	mg/Kg	1	1.00	105	102	53.3 - 123.6

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 16 of 32

Eddy Co., NM

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 47729

55839

Date Analyzed:

2009-01-08 QC Preparation: 2009-01-08 Analyzed By: AG

Prepared By: AG

	LCS			Spike	Matrix		Rec.
Param	Result	$_{ m Units}$	Dil.	Amount	Result	Rec.	Limit
DRO	272	mg/Kg	1	250	<15.8	109	27.8 - 152.1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO ·	285	mg/Kg	1	250	<15.8	114	27.8 - 152.1	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	90.5	91.4	mg/Kg	1	100	90	91	38 - 130.4

Laboratory Control Spike (LCS-1)

QC Batch:

55900

Date Analyzed:

2009-01-12

Analyzed By: CM

Prep Batch: 47781 QC Preparation: 2009-01-12 Prepared By: CM

	LCS			$_{ m Spike}$	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
TRPHC	270	mg/Kg	1	250	< 5.28	108	75.5 - 136

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
TRPHC	275	mg/Kg	1	250	< 5.28	110	75.5 - 136		20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:

Date Analyzed:

2009-01-13

Analyzed By: KB

Prep Batch: 47833

QC Preparation: 2009-01-13 Prepared By: KB

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
1,1-Dichloroethene	51.8	$\mu { m g/L}$	1	50.0	< 0.136	104	70 - 130
Benzene	51.9	$\mu { m g/L}$	1	50.0	< 0.146	104	70 - 130

continued ...

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 17 of 32 Eddy Co., NM

control	snikes	continued		

	LCS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Trichloroethene (TCE)	53.8	$\mu \mathrm{g/L}$	1	50.0	< 0.117	108	70 - 130
Toluene	52.2	$\mu\mathrm{g}/\mathrm{L}$	1	50.0	< 0.0600	104	70 - 130
Chlorobenzene	49.3	$\mu { m g}/{ m L}$	1	50.0	< 0.0540	99	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec .	Limit	RPD	Limit
1,1-Dichloroethene .	49.3	$\mu g/L$	1	50.0	< 0.136	99	70 - 130	5	
Benzene	50.4	$\mu { m g/L}$	1	50.0	< 0.146	101	70 - 130	3	
Trichloroethene (TCE)	54.0	$\mu { m g/L}$	1	50.0	< 0.117	108	70 - 130	0	
Toluene	50.6	$\mu { m g}/{ m L}$	1	50.0	< 0.0600	101	70 - 130	3	
Chlorobenzene	48.1	$\mu { m g/L}$	1	50.0	< 0.0540	96	70 - 130	2	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			$_{ m Spike}$	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	${f Amount}$	$\mathrm{Rec}.$	Rec.	Limit
Dibromofluoromethane	52.7	52.8	$\mu \mathrm{g/L}$	1	50.0	105	106	70 - 130
Toluene-d8	49.9	49.4	$\mu { m g}/{ m L}$	1	50.0	100	99	70 - 130
4-Bromofluorobenzene (4-BFB)	50.1	50.4	$\mu { m g}/{ m L}$	1	50.0	100	101	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 47838

Date Analyzed:

2009-01-14 QC Preparation: 2009-01-14 Analyzed By: TP

Prepared By: TP

	LCS			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
SPLP Mercury	0.00101	mg/L	1	0.00100	< 0.0000329	101	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Mercury	0.000923	mg/L	1	0.00100	< 0.0000329	92	85 - 115	9	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 56044 Prep Batch: 47893 Date Analyzed: 2009-01-16 QC Preparation: 2009-01-16

Analyzed By: RR Prepared By: KV

MEWBQU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 18 of 32 Eddy Co., NM

•	LCS			Spike	Matrix		Rec.
Param	Result	$_{ m Units}$	Dil.	${f Amount}$	Result	Rec.	Limit
SPLP U	0.506	mg/L	1	0.500	< 0.0105	101	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	\mathbf{A} mount	Result	Rec.	Limit	RPD	Limit
SPLP U	0.529	$_{ m mg/L}$	1	0.500	< 0.0105	106	90 - 110	4	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 56044 Prep Batch: 47893 Date Analyzed: 2009-01-16 QC Preparation: 2009-01-16 Analyzed By: RR Prepared By: KV

	LCS			$_{ m Spike}$	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$
SPLP Silver	0.115	mg/L	1	0.125	< 0.00210	92	85 - 115
SPLP Arsenic	0.469	mg/L	1	0.500	< 0.00430	94	85 - 115
SPLP Barium	0.966	mg/L	1	1.00	< 0.00170	97	85 - 115
SPLP Cadmium	0.249	mg/L	1	0.250	< 0.00140	100	85 - 115
SPLP Chromium	0.0870	$_{ m mg/L}$	1	0.100	< 0.000900	87	85 - 115
SPLP Lead	0.498	m mg/L	1	0.500	< 0.00320	100	85 - 115
SPLP Selenium	0.460	mg/L	1	0.500	< 0.0131	92	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Silver	0.116	mg/L	1	0.125	< 0.00210	93	85 - 115	1	20
SPLP Arsenic	0.485	m mg/L	1	0.500	< 0.00430	97	85 - 115	3	20
SPLP Barium	0.993	mg/L	1	1.00	< 0.00170	99	85 - 115	3	20
SPLP Cadmium	0.258	mg/L	1	0.250	< 0.00140	103	85 - 115	4	20
SPLP Chromium	0.0900	mg/L	1	0.100	< 0.000900	90	85 - 115	3	20
SPLP Lead	0.514	mg/L	1	0.500	< 0.00320	103	85 - 115	3	20
SPLP Selenium	0.467	mg/L	1	0.500	< 0.0131	93	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 56105 Prep Batch: 47949 Date Analyzed: 2009-01-19 QC Preparation: 2009-01-16 Analyzed By: MN Prepared By: MN

continued ...

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 19 of 32 Eddy Co., NM

control spikes continued							
	LCS			$_{ m Spike}$	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Naphthalene	0.0493	mg/L	1	0.0800	< 0.0000853	62	10 - 141
Acenaphthylene	0.0591	mg/L	1	0.0800	< 0.0000768	74	10 - 152
Acenaphthene	0.0580	mg/L	1	0.0800	< 0.000103	72	10 - 151
Dibenzofuran	0.0519	mg/L	1	0.0800	< 0.000200	65	10 - 148
Fluorene	0.0609	mg/L	1	0.0800	< 0.0000861	76	10 - 172
Anthracene	0.0636	mg/L	1	0.0800	< 0.000170	80	19.6 - 172
Phenanthrene	0.0623	mg/L	1	0.0800	< 0.0000884	78	22.5 - 172
Fluoranthene	0.0644	mg/L	1	0.0800	< 0.0000969	80	17.3 - 187
Pyrene	0.0682	$\mathrm{mg/L}$	1	0.0800	< 0.0000855	85	14.9 - 199
Benzo(a)anthracene	0.0636	mg/L	1	0.0800	< 0.0000703	80	19.4 - 185
Chrysene	0.0668	mg/L	1	0.0800	< 0.000113	84	18.4 - 188
Benzo(b)fluoranthene	0.0632	mg/L	1	0.0800	< 0.000134	79	10 - 193
Benzo(k)fluoranthene	0.0662	mg/L	1	0.0800	< 0.000227	83	27.8 - 196
Benzo(a)pyrene	0.0720	mg/L	1	0.0800	< 0.000200	90	12.4 - 205
Indeno(1,2,3-cd)pyrene	0.0623	mg/L	1	0.0800	< 0.000253	78	10 - 198
Dibenzo(a,h)anthracene	0.0612	m mg/L	1	0.0800	< 0.000180	76	10 - 172
Benzo(g,h,i)perylene	0.0705	mg/L	1	0.0800	< 0.000158	88	10 - 186

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Naphthalene	0.0481	mg/L	1	0.0800	< 0.0000853	60	10 - 141	2	20
Acenaphthylene	0.0580	mg/L	1	0.0800	< 0.0000768	72	10 - 152	2	20
Acenaphthene	0.0567	$\mathrm{mg/L}$	1	0.0800	< 0.000103	71	10 - 151	2	20
Dibenzofuran	0.0510	mg/L	1	0.0800	< 0.000200	64	10 - 148	2	20
Fluorene	0.0601	$\mathrm{mg/L}$	1	0.0800	< 0.0000861	75	10 - 172	1	20
Anthracene	0.0625	mg/L	1	0.0800	< 0.000170	78	19.6 - 172	2	20
Phenanthrene	0.0606	mg/L	1	0.0800	< 0.0000884	76	22.5 - 172	3	20
Fluoranthene	0.0642	mg/L	1	0.0800	< 0.0000969	80	17.3 - 187	0	20
Pyrene	0.0686	mg/L	1	0.0800	< 0.0000855	86	14.9 - 199	1	20
Benzo(a)anthracene	0.0634	$\mathrm{mg/L}$	1	0.0800	< 0.0000703	79	19.4 - 185	0	20
Chrysene	0.0660	mg/L	1	0.0800	< 0.000113	82	18.4 - 188	1	20
Benzo(b)fluoranthene	0.0631	mg/L	1	0.0800	< 0.000134	79	10 - 193	0	20
Benzo(k)fluoranthene	0.0656	mg/L	1	0.0800	< 0.000227	82	27.8 - 196	1	20
Benzo(a)pyrene	0.0702	mg/L	1	0.0800	< 0.000200	88	12.4 - 205	2	20
Indeno(1,2,3-cd)pyrene	0.0618	mg/L	1	0.0800	< 0.000253	77	10 - 198	1	20
Dibenzo(a,h)anthracene	0.0601	mg/L	1	0.0800	< 0.000180	75	10 - 172	2	20
Benzo(g,h,i)perylene	0.0699	mg/L	1	0.0800	< 0.000158	87	10 - 186	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 20 of 32 Eddy Co., NM

Surrogate	LCS Result	LCSD Result	Units	Dil.	$\begin{array}{c} {\rm Spike} \\ {\rm Amount} \end{array}$	LCS Rec.	LCSD Rec.	Rec. Limit
2-Fluorobiphenyl	0.0485	0.0473	mg/L	1	0.0800	61	59	10 - 165
Nitrobenzene-d5	0.0547	0.0530	mg/L	1	0.0800	68	66	10 - 157
Terphenyl-d14	0.0678	0.0685	$\mathrm{mg/L}$	1	0.0800	85	86	10 - 220

Laboratory Control Spike (LCS-1)

QC Batch:

Date Analyzed:

2009-01-21

Analyzed By: DS

Prep Batch: 47987

QC Preparation: 2009-01-20

Prepared By: DS

	LCS			$_{ m Spike}$	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Aroclor 1260 (PCB-1260)	0.00208	mg/L	1	0.00200	< 0.0000331	104	10 - 128

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Aroclor 1260 (PCB-1260)	0.00214	mg/L	1	0.00200	< 0.0000331	107	10 - 128	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			$_{ m Spike}$	LCS	LCSD	$\mathrm{Rec.}$
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	$\mathrm{Rec.}$	Limit
Deca chlorobiphenyl	0.000559	0.000560	mg/L	1	0.000500	112	112	10 - 128

Laboratory Control Spike (LCS-1)

QC Batch:

56161

Date Analyzed: Prep Batch: 48000 QC Preparation: 2009-01-20

2009-01-20

Analyzed By: ER Prepared By: ER

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
SPLP Chloride	11.8	mg/L	1	12.5	< 0.137	94	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	$_{ m Limit}$	RPD	$_{ m Limit}$
SPLP Chloride	12.0	mg/L	1	12.5	< 0.137	96	90 - 110	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:

Prep Batch: 48102

Date Analyzed:

2009 - 01 - 23QC Preparation: 2009-01-23 Analyzed By: SS Prepared By: SS

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 21 of 32 Eddy Co., NM

	LCS			$_{ m Spike}$	Matrix		Rec.
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
SPLP Cyanide	11.4	mg/Kg	1	12.0	< 0.0148	95	80 - 120

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Cyanide	11.5	mg/Kg	1	12.0	< 0.0148	96	80 - 120	ĺ	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample: 184074

QC Batch: 55790

2009-01-07 Date Analyzed:

Analyzed By: AR Prepared By: AR

Prep Batch: 47683

QC Preparation: 2009-01-07

	MS			$_{ m Spike}$	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	5200	mg/Kg	50	5000	124	102	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			$_{ m Spike}$	Matrix		Rec .		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	5130	mg/Kg	50	5000	124	100	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 184110

55804 QC Batch: Prep Batch: 47699 Date Analyzed: 2009-01-07 QC Preparation: 2009-01-07

Analyzed By: ME Prepared By: ME

	MS			$_{ m Spike}$	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	${f Limit}$
Benzene	1.02	mg/Kg	1	1.00	0.051	97	62.2 - 134.3
Toluene	1.25	mg/Kg	1	1.00	0.2229	103	62.6 - 145.4
Ethylbenzene	1.13	mg/Kg	1	1.00	0.1325	100	64.6 - 146.4
Xylene	3.67	mg/Kg	1	3.00	0.5205	105	64.3 - 148.8

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Param	MSD $ Result$	Units	Dil.	$\begin{array}{c} {\rm Spike} \\ {\rm Amount} \end{array}$	Matrix Result	Rec.	${ m Rec.} \ { m Limit}$	RPD	$\begin{array}{c} \text{RPD} \\ \text{Limit} \end{array}$
Benzene	1.01	mg/Kg	1	1.00	0.051	96	62.2 - 134.3	1	20
Toluene	1.28	mg/Kg	1	1.00	0.2229	106	62.6 - 145.4	2	20
Ethylbenzene	1.14	mg/Kg	1	1.00	0.1325	101	64.6 - 146.4	1	20
Xylene	3.67	mg/Kg	1	3.00	0.5205	105	64.3 - 148.8	0	20

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 22 of 32 Eddy Co., NM

Percent recovery is base	d on the spike result.	RPD is based on	the spike and	spike duplicate result.

	MS	MSD			$_{ m Spike}$	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.980	0.952	mg/Kg	1	1	98	95	38.8 - 127.5
4-Bromofluorobenzene (4-BFB)	1.07	1.06	${ m mg/Kg}$	1	1	107	106	49.3 - 142.4

Matrix Spike (MS-1) Spiked Sample: 184088

QC Batch: 55836 Prep Batch: 47728 Date Analyzed: 2009-01-08 QC Preparation: 2009-01-09 Analyzed By: ME Prepared By: ME

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	 10.7	mg/Kg	1	10.0	1.9377	88	10 - 139.3

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	10.0	mg/Kg	1	10.0	1.9377	81	10 - 139.3	7	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Currogata	$rac{ ext{MS}}{ ext{Result}}$	MSD Result	Units	Dil.	Spike	$rac{MS}{Rec.}$	MSD $ Rec.$	${ m Rec.} \ { m Limit}$
Surrogate	nesun	nesure	Units	D_{11} .	Amount	nec.	nec.	PHHII
Trifluorotoluene (TFT)	1.00	0.964	mg/Kg	1	1	100	96	21.3 - 119
4-Bromofluorobenzene (4-BFB)	1.05	1.03	$_{ m mg/Kg}$	1	1	105	103	52.5 - 154

Matrix Spike (MS-1) Spiked Sample: 184088

QC Batch: 55839 Prep Batch: 47729 Date Analyzed: 2009-01-08 QC Preparation: 2009-01-08

Analyzed By: AG Prepared By: AG

	MS			$_{ m Spike}$	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	282	mg/Kg	1	250	<15.8	113	18 - 179.5

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil .	Amount	Result	Rec.	\mathbf{Limit}	RPD	Limit
DRO	269	mg/Kg	1	250	<15.8	108	18 - 179.5	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

 $continued \dots$

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 23 of 32 Eddy Co., NM

matrix spikes contin	$ued \dots$							
•	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	\mathbf{Result}	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	83.4	82.9	mg/Kg	1	100	83	83	34.1 - 158

Matrix Spike (MS-1) Spiked Sample: 184122

QC Batch: 55900 Prep Batch: 47781

Date Analyzed: QC Preparation: 2009-01-12

2009-01-12

Analyzed By: CM Prepared By: CM

	MS			$_{ m Spike}$	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec .	$_{ m Limit}$
TRPHC	272	mg/Kg	1	250	< 5.28	109	10 - 354

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	$_{ m Limit}$	RPD	Limit
TRPHC	277	mg/Kg	1	250	< 5.28	111	10 - 354	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 184110

55959 QC Batch: Prep Batch: 47833 Date Analyzed: 2009-01-13 QC Preparation: 2009-01-13

Analyzed By: KB Prepared By: KB

		MS			$_{ m Spike}$	Matrix		Rec.
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit
1,1-Dichloroethene		52.4	$\mu \mathrm{g/L}$	1	50.0	< 0.136	105	70 - 130
Benzene		54.0	$\mu { m g}/{ m L}$	1	50.0	1.84	104	70 - 130
Trichloroethene (TCE)	2	88.6	$\mu { m g}/{ m L}$	1	50.0	< 0.117	177	70 - 130
Toluene		75.8	$\mu { m g}/{ m L}$	1	50.0	25.4	101	70 - 130
Chlorobenzene		49.8	$\mu { m g}/{ m L}$	1	50.0	< 0.0540	100	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
1,1-Dichloroethene		49.3	$\mu \mathrm{g/L}$	1	50.0	< 0.136	99	70 - 130	6	
Benzene		52.0	$\mu { m g}/{ m L}$	1	50.0	1.84	100	70 - 130	4	
Trichloroethene (TCE)	3	86.2	$\mu { m g}/{ m L}$	1	50.0	< 0.117	172	70 - 130	3	
continued										

²Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

³Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control. RPD within

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 24 of 32 Eddy Co., NM

matrix spikes conti	nued			
---------------------	------	--	--	--

•	MSD			$_{ m Spike}$	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Toluene	73.6	$\mu \mathrm{g/L}$	1	50.0	25.4.	96	70 - 130	3	
Chlorobenzene	47.5	$\mu { m g}/{ m L}$	1	50.0	< 0.0540	95	70 - 130	5	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			$_{ m Spike}$	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Dibromofluoromethane	53.8	52.3	$\mu \mathrm{g/L}$	1	50	108	105	70 - 130
Toluene-d8	50.8	49.8	$\mu { m g}/{ m L}$	1	50	102	100	70 - 130
4-Bromofluorobenzene (4-BFB)	51.4	50.5	$\mu \mathrm{g}/\mathrm{L}$	1	50	103	101	70 - 130

Matrix Spike (MS-1) Spiked Sample:

QC Batch: 55967 Prep Batch: 47838

Date Analyzed:

2009-01-14 QC Preparation: 2009-01-14

Analyzed By: TP

Prepared By: TP

Rec.

Limit

75 - 125

MS Spike Matrix Result Units Dil. Amount Result Rec. Param

SPLP Mercury 0.00197mg/L 0.00100 0.00098299

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

•	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Mercury	0.00196	mg/L	1	0.00100	0.000982	98	75 - 125	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 184110

QC Batch: 56044 Prep Batch: 47893 Date Analyzed: 2009-01-16 QC Preparation: 2009-01-16 Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		Rec.
Param	Result	$_{ m Units}$	Dil.	Amount	Result	Rec.	Limit
SPLP U	0.536	$_{ m mg/L}$	1	0.500	< 0.0105	107	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP U	0.466	mg/L	1	0.500	< 0.0105	93	90 - 110	14	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

RPD limits.

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 25 of 32 Eddy Co., NM

Matrix Spike (MS-1)

Spiked Sample: 184110

QC Batch: Prep Batch: 47893

56044

Date Analyzed: 2009-01-16 QC Preparation: 2009-01-16

Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		Rec.
Param	Result '	Units	$\mathrm{Dil}.$	Amount	Result	Rec.	Limit
SPLP Silver	0.114	mg/L	1	0.125	< 0.00210	91	75 - 125
SPLP Arsenic	0.490	$_{ m mg/L}$	1	0.500	< 0.00430	98	75 - 125
SPLP Barium	1.23	mg/L	1	1.00	0.281	95	75 - 125
SPLP Cadmium	0.247	mg/L	1	0.250	< 0.00140	99	75 - 125
SPLP Chromium	0.0900	mg/L	1	0.100	0.003	87	75 - 125
SPLP Lead	0.484	mg/L	1	0.500	< 0.00320	97	75 - 125
SPLP Selenium	0.483	$\mathrm{mg/L}$	1	0.500	< 0.0131	97	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Silver	0.115	mg/L	1	0.125	< 0.00210	92	75 - 125	1	20
SPLP Arsenic	0.489	mg/L	1	0.500	< 0.00430	98	75 - 125	0	20
SPLP Barium	1.24	mg/L	1	1.00	0.281	96	75 - 125	1	20
SPLP Cadmium	0.247	mg/L	1	0.250	< 0.00140	99	75 - 125	0	20
SPLP Chromium	0.0900	mg/L	1	0.100	0.003	87	75 - 125	0	20
SPLP Lead	0.483	mg/L	1	0.500	< 0.00320	97	75 - 125	0	20
SPLP Selenium	0.481	mg/L	1	0.500	< 0.0131	96	75 - 125	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample: 185032

QC Batch: Prep Batch: 47987

56156

Date Analyzed: 2009-01-21 QC Preparation:

2009-01-20

Analyzed By: DS Prepared By: DS

MS Spike Matrix Rec. Dil. Result Rec. Limit Param Result Units Amount Aroclor 1260 (PCB-1260) 0.00169 0.00200 < 0.0000331 84 10 - 128 mg/L 1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			$_{ m Spike}$	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Aroclor 1260 (PCB-1260)	0.00166	mg/L	1	0.00200	< 0.0000331	83	10 - 128	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

continued ...

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 26 of 32

Eddy Co., NM

matrix spikes continued								
•	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	$\overline{ ext{Amount}}$	Rec.	Rec.	Limit
Deca chlorobiphenyl 4 5	0.000710	0.000709	$\mathrm{mg/L}$	1	0.0005	142	142	10 - 128

Matrix Spike (MS-1) Spiked Sample: 184569

QC Batch:

56161

Date Analyzed:

2009-01-20

Analyzed By: ER

Prep Batch: 48000

QC Preparation:

2009-01-20

Prepared By: ER

		MS			Spike	Matrix		Rec.
Param		Result	$_{ m Units}$	Dil.	$\mathbf{A}\mathbf{mount}$	Result	Rec.	Limit
SPLP Chloride	6	2190	mg/L	50	625	280	306	49.8 - 149

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Chloride	7	868	mg/L	50	625	280	94	49.8 - 149	86	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 184110

QC Batch:

Param

SPLP Cyanide

56293

Date Analyzed:

Units

mg/Kg

2009-01-23

Dil.

Spike

Amount

12.0

< 0.0148

Analyzed By: SS

Prepared By: SS

80 - 120

Prep Batch: 48102

QC Preparation: 2009-01-23

> Matrix Rec. Result Rec. Limit

> > 42

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

MS

Result

5.10

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	$_{ m Limit}$	RPD	$_{ m Limit}$
SPLP Cyanide	4.84	mg/Kg	1	12.0	< 0.0148	40	80 - 120	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

⁴Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

⁵Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

⁶Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

⁷Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 27 of 32 Eddy Co., NM

Standard (ICV-1)

QC Batch: 55790

Date Analyzed: 2009-01-07

Analyzed By: AR

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	101	101	85 - 115	2009-01-07

Standard (CCV-1)

QC Batch: 55790

Date Analyzed: 2009-01-07

Analyzed By. AR

			CCVs True	CCVs Found	${ m CCVs} \ { m Percent}$	Percent Recovery	Date
Param	Flag	\mathbf{U} nits	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	98.8	99	85 - 115	2009-01-07

Standard (ICV-1)

QC Batch: 55804

Date Analyzed: 2009-01-07

Analyzed By: ME

D	ru.	T7 **	ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0958	96	85 - 115	2009-01-07
Toluene		mg/Kg	0.100	0.0941 .	94	85 - 115	2009-01-07
Ethylbenzene		mg/Kg	0.100	0.0903	90	85 - 115	2009-01-07
Xylene		mg/Kg	0.300	0.274	91	85 - 115	2009-01-07

Standard (CCV-1)

QC Batch: 55804

Date Analyzed: 2009-01-07

Analyzed By: ME

Analyzed By: ME

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0936	94	85 - 115	2009-01-07
Toluene		mg/Kg	0.100	0.0936	94	85 - 115	2009-01-07
Ethylbenzene		mg/Kg	0.100	0.0910	91	85 - 115	2009-01-07
Xylene		$\mathrm{mg/Kg}$	0.300	0.276	92	85 - 115	2009-01-07

Standard (ICV-1)

QC Batch: 55836

 $Date\ Analyzed:\ \ 2009\text{-}01\text{-}08$

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 28 of 32 Eddy Co., NM

			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	1.14	114	85 - 115	2009-01-08

Standard (CCV-1)

QC Batch: 55836

Date Analyzed: 2009-01-08

Analyzed By: ME

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	1.08	108	85 - 115	2009-01-08

Standard (CCV-1)

QC Batch: 55839

Date Analyzed: 2009-01-08

Analyzed By: AG

			CCVs True	$\begin{array}{c} { m CCVs} \\ { m Found} \end{array}$	$rac{ ext{CCVs}}{ ext{Percent}}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	269	108	85 - 115	2009-01-08

Standard (CCV-2)

QC Batch: 55839

Date Analyzed: 2009-01-08

Analyzed By: AG

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	259	104	85 - 115	2009-01-08

Standard (ICV-1)

QC Batch: 55900

 $Date\ Analyzed:\ \ 2009\text{-}01\text{-}12$

Analyzed By: CM

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		mg/Kg	100	113	113	80 - 120	2009-01-12

Standard (CCV-1)

QC Batch: 55900

Date Analyzed: 2009-01-12

Analyzed By: CM

 ${\bf MEWBOU034PIT}$

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 29 of 32 Eddy Co., NM

			$rac{ ext{CCVs}}{ ext{True}}$	${ m CCVs} \ { m Found}$	$rac{ ext{CCVs}}{ ext{Percent}}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC		${ m mg/Kg}$	100	96.2	96	80 - 120	2009-01-12

Standard (CCV-1)

QC Batch: 55959

Date Analyzed: 2009-01-13

Analyzed By: KB

			CCVs True	$\begin{array}{c} \text{CCVs} \\ \text{Found} \end{array}$	$\begin{array}{c} { m CCVs} \\ { m Percent} \end{array}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Vinyl Chloride		$\mu \mathrm{g/L}$	50.0	39.8	80	80 - 120	2009-01-13
1,1-Dichloroethene		$\mu { m g}/{ m L}$	50.0	48.2	96	80 - 120	2009-01-13
Chloroform		$\mu { m g}/{ m L}$	50.0	51.8	104	80 - 120	2009-01-13
1,2-Dichloropropane		$\mu { m g}/{ m L}$	50.0	48.2	96	80 - 120	2009-01-13
Toluene		$\mu { m g}/{ m L}$	50.0	50.1	100	80 - 120	2009-01-13
Chlorobenzene		$\mu { m g}/{ m L}$	50.0	47.0	94	80 - 120	2009-01-13
Ethylbenzene		$\mu { m g}/{ m L}$	50.0	48.0	96	80 - 120	2009-01-13

Standard (ICV-1)

QC Batch: 55967

Date Analyzed: 2009-01-14

Analyzed By: TP

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Mercury		mg/L	0.00100	0.000964	96	90 - 110	2009-01-14

Standard (CCV-1)

QC Batch: 55967

Date Analyzed: 2009-01-14

Analyzed By: TP

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Mercury		mg/L	0.00100	0.000947	95	90 - 110	2009-01-14

Standard (ICV-1)

QC Batch: 56044

Date Analyzed: 2009-01-16

Analyzed By: RR

 ${\bf MEWBOU034PIT}$

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 30 of 32 Eddy Co., NM

			$rac{ ext{ICVs}}{ ext{True}}$	ICVs Found	${\rm ICVs} \\ {\rm Percent}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	${ m Analyzed}$
SPLP U		mg/L	1.00	0.996	100	90 - 110	2009-01-16

Standard (ICV-1)

QC Batch: 56044

Date Analyzed: 2009-01-16

Analyzed By: RR

Param	Flag	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed
SPLP Silver		mg/L	0.125	0.123	98	90 - 110	2009-01-16
SPLP Arsenic		mg/L	1.00	0.992	99	90 - 110	2009-01-16
SPLP Barium		$_{ m mg/L}$	1.00	1.02	102	90 - 110	2009-01-16
SPLP Cadmium		mg/L	1.00	. 1.03	103	90 - 110	2009-01-16
SPLP Chromium		mg/L	1.00	1.02	102	90 - 110	2009-01-16
SPLP Lead		mg/L	1.00	0.973	97	90 - 110	2009-01-16
SPLP Selenium		mg/L	1.00	0.997	100	90 - 110	2009-01-16

Standard (CCV-1)

QC Batch: 56044

Date Analyzed: 2009-01-16

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP U		mg/L	1.00	1.01	101	90 - 110	2009-01-16

Standard (CCV-1)

QC Batch: 456044

Date Analyzed: 2009-01-16

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	$_{ m Units}$	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Silver		mg/L	0.125	0.124	99	90 - 110	2009-01-16
SPLP Arsenic		${ m mg/L}$	1.00	0.992	99	90 - 110	2009-01-16
SPLP Barium		$\mathrm{mg/L}$	1.00	1.04	104	90 - 110	2009-01-16
SPLP Cadmium		mg/L	1.00	1.01	$^{-}101$	90 - 110	2009-01-16
SPLP Chromium		mg/L	1.00	1.03	103	90 - 110	2009-01-16
SPLP Lead		mg/L	1.00	0.986	99	90 - 110	2009-01-16
SPLP Selenium		$_{ m mg/L}$	1.00	1.00	100	90 - 110	2009-01-16

٠, '

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 31 of 32 Eddy Co., NM

Standard (CCV-1)

QC Batch: 56105

Date Analyzed: 2009-01-19

Analyzed By: MN

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Naphthalene		mg/L	60.0	60.4	101	80 - 120	2009-01-19
Acenaphthylene		mg/L	60.0	60.4	101	80 - 120	2009-01-19
Acenaphthene		mg/L	60.0	61.2	102	80 - 120	2009-01-19
Dibenzofuran		mg/L	60.0	63.4	106	80 - 120	2009-01-19
Fluorene		mg/L	60.0	67.6	113	80 - 120	2009-01-19
Anthracene		mg/L	60.0	61.9	103	80 - 120	2009-01-19
Phenanthrene		mg/L	60.0	59.8	100	80 - 120	2009-01-19
Fluoranthene		mg/L	60.0	58.1	97	80 - 120	2009-01-19
Pyrene		${ m mg/L}$	60.0	62.2	104	80 - 120	2009-01-19
Benzo(a)anthracene		$\mathrm{mg/L}$	60.0	57.5	96	80 - 120	2009-01-19
Chrysene		${ m mg/L}$	60.0	60.2	100	80 - 120	2009-01-19
Benzo(b)fluoranthene		$_{ m mg/L}$	60.0	58.6	98	80 - 120	2009-01-19
Benzo(k)fluoranthene		mg/L	60.0	59.1	98	80 - 120	2009-01-19
Benzo(a)pyrene		mg/L	60.0	64.0	107	80 - 120	2009-01-19
Indeno(1,2,3-cd)pyrene		$_{ m mg/L}$	60.0	57.7	96	80 - 120	2009-01-19
Dibenzo(a,h)anthracene		m mg/L	60.0	58.2	97	80 - 120	2009-01-19
Benzo(g,h,i)perylene		${ m mg/L}$	60.0	64.5	108	80 - 120	2009-01-19

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limit
2-Fluorobiphenyl		56.0	mg/L	1	60.0	93	80 - 120
Nitrobenzene-d5		66.5	mg/L	1	60.0	111	80 - 120
Terphenyl-d14		59.4	$\mathrm{mg/L}$	1	60.0	99	80 - 120

Standard (ICV-1)

QC Batch: 56156

Date Analyzed: 2009-01-21

Analyzed By: DS

			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
	1 1ag						
Aroclor 1242 (PCB-1242)		$_{ m mg/L}$	0.400	0.396	99	85 - 115	2009-01-21
Aroclor 1254 (PCB-1254)		$_{ m mg/L}$	0.400	0.366	92	85 - 115	2009-01-21
Aroclor 1260 (PCB-1260)		$_{ m mg/L}$	0.400	0.414	104	85 - 115	2009-01-21

Standard (CCV-1)

QC Batch: 56156

Date Analyzed: 2009-01-21

Analyzed By:, DS

MEWBOU034PIT

Work Order: 9010718 Dos Hermanos 6 Fed. Com. #1 Page Number: 32 of 32

Eddy Co., NM

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Aroclor 1242 (PCB-1242)		mg/L	0.400	0.402	100	85 - 115	2009-01-21
Aroclor 1254 (PCB-1254)		$_{ m mg/L}$	0.400	0.357	89	85 - 115	2009-01-21
Aroclor 1260 (PCB-1260)		m mg/L	0.400	0.417	104	85 - 115	2009-01-21

Standard (CCV-1)

QC Batch: 56161

Date Analyzed: 2009-01-20

Analyzed By: ER

			$rac{ ext{CCVs}}{ ext{True}}$	${ m CCVs} \ { m Found}$	$rac{ ext{CCVs}}{ ext{Percent}}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Chloride		mg/L	12.5	11.7	94	90 - 110	2009-01-20

Standard (CCV-2)

QC Batch: 56161

Date Analyzed: 2009-01-20

Analyzed By: ER

			CCVs	CCVs	CCVs	Percent	
			True	\mathbf{Found}	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Chloride		mg/L	12.5	11.7	94	90 - 110	2009-01-20

Standard (ICV-1)

QC Batch: 56293

Date Analyzed: 2009-01-23

Analyzed By: SS

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Cyanide		mg/Kg	0.120	< 0.0148	0	80 - 120	2009-01-23

Standard (CCV-1)

QC Batch: 56293

Date Analyzed: 2009-01-23

Analyzed By: SS

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Cyanide		mg/Kg	0.120	< 0.0148	0	80 - 120	2009-01-23

Page	_ of
------	------

TraceAnalysis, Inc.

email: lab@traceanalysis.com

6701 Aberdeen Avenue, Suite 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296

5002 Basin Street, Suite A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313

200 East Sunset Rd., Suite E
EI Paso, Texas 79922
Tel (915) 585-3443
Fax (915) 585-4944
1 (888) 588-3443

8808 Camp Bowie Blvd West, Suite 180
Ft. Worth, Texas 76116
Tel (817) 201-5260
Fax (817) 560-4336

	et, City, Zip)		Phone #: 432 238-6288 Fax #:														(C	iro	:le							ES1		N	o.)						
Contact Person: R T/4-/10 Invoice to: (If different from abo	MENBOUTHE HERMANOS 6 Founding state):				477	<u>ئريز</u>	roje	Hr	9- <i>R</i> . me:	45S		<i>ק</i> (איי	12	Tinl		0B / 624	8021₱1 602 / 8260B / 624	/ TX1005 Ext(C35)) 	b Se Hg 6010B/200 7	Ag As Ba Cd Cr Pb Se Hg					625				45.00	4			nt from standard	
Project Location (inc	uding state):	<u>~ (1)</u>	<u>~-</u>	<i></i>	باريد	<u>د. دی</u> ۶	Samp Fl	oler S	igna	ture:					····	2 / 8260B	/ 8260	005 / TX1005	3	Sd Cr P	Ba Cd				624	8270C /	900	202		2	2PL			differe	
		RS	onut		MAT	RIX		F		ETH		VΕ		SAMP	LING	B / 602	1,602	TX1005		As Ba (Ag As	S	olatiles		260E	9	-	[2	tent .	d	4			Ime If	
LAB# (LAB USE) (CONLY)	FIELD CODE	# CONTAINERS	Volume / Amount	WATER	SOIL	SLUDGE		HCI	H.SO.	NaOH	ICE	NONE		DATE	TIME	MTBE 8021B	BTEX 8021B	TPH (418 1) T	1 PH 8015 GRB /	Total Metals Ag	TCLP Metals Ag As	TCLP Volatiles	TCLP Semi Volatiles	RCI	GC/MS Vol. 8260B / 624	GC/MS Semi.	PCB's 8082 / 608	ides	Moisture Content	H loribo	EPA 13/2			Turn Around Time if different from	Hold
184110 bris	1 Cutting 1	2			×				I		Ý			1/5/09	1:00			メヽ	4										1	X	X			Х	
						-			-			_	-			-			_	-	-	-		-		\dashv	_	_	_	-		_	_		
						-			+	-						-					-		_	-		-	-	-	-	-		+	-	-	4-1
								\dashv	+	-			\dashv						+		-	\dashv	+	+			+	-		+-	\vdash	-	-	+-	+
									-		-		\dashv			+		\dashv	+	+	-		+	+		-	-	+		-				-	
									\dagger							-				-				+				\dashv	\top	-					+-
									+	1									\top	\dagger	 						\top	+	+-	\top	$ \cdot $				\top
									 	T	T								\top	\dagger			\top	1			7		\top	1		1			
																	 						T						1	1					
Relinquished by: Relinquished by:	Company: Date: TAINN 117/05 Company: Date:	8 /1	me: _40 me:	4	eceive	<u>Ú</u>	ļ.		مر مرد npar	2	1-	ate: 7-(ate:	7	Time:	0	3.7 emp°	<u>c:</u>	lntac	C (Y	B U NI)_\	Y			SEM.	5	4	ο, (eight	رد (۵ (۵ (Bas	18.		S Z	1216	and k,se	PLP	Lubb
Relinquished by:	Company: Date:	Ti	me:	Re	eceive	d by:		Con	npar	ıy:	С	ate:		Time:	: Te	emp°		Tolk		ce y 7, eviev	7				TF Cł	RP.	Repo	ort F	Requi	red					
Submittal of sample	constitutes agreement to Te				ns liste		reve	erse s	ide	of C.	0. () .				С	arrie	er #			Ca	17	<u>-, · · · </u>			===									