	UNITED STATE DEPARTMENT OF THE I BUREAU OF LAND MANA		FORM APPROVED OMB NO. 1004-0137 Expires: January 31, 2018				
SUNDE	RY NOTICES AND REPO		ursad ki	eld O	5. Lease Serial No. NMNM43744		
Do not use abandoned	RY NOTICES AND REPO this form for proposals to well. Use form 3160-3 (AP	o drill of to re- PD) for such g	enter an Roposals	rtesia	6. If Indian, Allotted	e or Tribe	Name
	N TRIPLICATE - Other ins				7. If Unit or CA/Ag	reement, l	Name and/or No.
1. Type of Well			····		8. Well Name and N PLATINUM MD		EDERAL COM 4H
2. Name of Operator	Contact:	DAVID STEV	VART		9. API Well No.	00 ¥1	
OXY USA INCORPORATE 3a. Address	D E-Mail: david_ster		(include area code)		30-015-45229		tory Area
5 GREENWAY PLAZA SU HOUSTON, TX 77046-052		Ph: 432.68			INGLE WELL		
4. Location of Well (Footage, Sec	c., T., R., M., or Survey Description	n)	·		11. County or Paris	h, State	
Sec 34 T23S R31E NENW 32.267086 N Lat, 103.7657					EDDY COUN	TY, NM	
12. CHECK THE	APPROPRIATE BOX(ES)) TO INDICA	TE NATURE OI	F NOTICE, 1	REPORT, OR O	THER D	DATA
TYPE OF SUBMISSION			TYPE OF	ACTION			
	Acidize	🗖 Dee	pen	Producti	on (Start/Resume)	۷۵	Vater Shut-Off
Notice of Intent	Alter Casing	🗖 Hyd	raulic Fracturing	🗖 Reclama	tion	U Well Integrity	Vell Integrity
Subsequent Report	Casing Repair	🗖 New	Construction	🗖 Recomp	ete		Other
Final Abandonment Notice	Change Plans	🗖 Plug	and Abandon	Tempora	rily Abandon	PD	inge to Original A
	. Convert to Injection	🗖 Plug	Back	🖸 Water D	isposal		
following completion of the invo testing has been completed. Fina determined that the site is ready t	work will be performed or provid lved operations. If the operation r I Abandonment Notices must be fi or final inspection. requests to amend the APE	esults in a multipl iled only after all	e completion or recorrequirements, includi	mpletion in a n	ew interval, a Form 3	160-4 mus	st be filed once
1. Request option to possil	bly run a 7-5/8" contingency attached for the amended	intermediate I	I casing string, if	there are changes or	I		
2. See attached for additio	nal detail for the 7-5/8" & 5-	1/2" casing co	nnections. C	SEE / ONDITI	ATTACHED ONS OF AP NM O	PROV	VAL NSERVATION
14. I hereby certify that the foregoin	ng is true and correct.	****			Sustam		
(Electronic Submission a For OXY US Committed to AFMSS for proc		TED. sent to the	Carlsbad	•	NUVI	l 4 2018
Name (Printed/Typed) DAVID	STEWART		Title REGUL	ATORY AD	/ISOR	REC	EIVED
Signature (Electron	nic Submission)		Date 10/29/20	018			
,.	THIS SPACE F	OR FEDERA	L OR STATE	OFFICE US	E		
Approved By Musta	for Hagne				ngineer		Date 11-07-2018
Conditions of approval, if any, are atta certify that the applicant holds legal of which would entitle the applicant to co	equitable title to those rights in the	s not warrant of ne subject lease	Office	ad Fie	Id Office		
Title 18 U.S.C. Section 1001 and Title States any false, fictitious or fraudul	43 U.S.C. Section 1212, make it a ent statements or representations a	a crime for any pe is to any matter w	rson knowingly and ithin its jurisdiction.	willfully to ma	ke to any department	or agency	of the United
(Instructions on page 2)	EVISED ** BLM REVISE	****			** BLM REVIS	ED **	<u></u>

.

RW	11-15	-18
7	• -	•••

1. Geologic Formations

TVD of target	10065'	Pilot Hole Depth	N/A
MD at TD:	20166'	Deepest Expected fresh water:	613'

Delaware Basin

Formation	TVD - RKB	Expected Fluids
Rustler	613	
Salado	939	Brine
Castile	2,897	Brine
Lamar/Delaware	4,343	Brine
Bell Canyon	4,367	Oil/Gas
Cherry Canyon	5,257	Oil/Gas
Brushy Canyon	6,569	Losses
Bone Spring	8,177	Oil/Gas
1st Bone Spring	9,234	Oil/Gas
2nd Bone Spring	9,484	Oil/Gas

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

Primary Plan:

									Buoyant	Buoyant
II.). () ())	Casing Interval		Csg. Size	Weight	Grade	C	SF	SE Burnt	Body SF	Joint SF
Hole Size (in)	From (ft)	To (ft)	(in)	(lbs)	Grade C	Conn.	Collapse	SF Burst	Tension	Tension
17.5	0	663	13.375	54.5	J-55	BTC	1.125	1.2	1.4	1.4
12.25	0	4393	9.625	43.5	L-80	BTC	1.125	1.2	1.4	1.4
8.5	0	20166	5.5	20	P-110	DQX	1.125	1.2	1.4	1.4
	÷						SF V	alues will me	et or Excee	d

SF Values will meet or Exceed

Contingency Plan:

Unin Sine (in)	Casing Interval		Csg. Size	Weight		<u> </u>	SF	CC Dured	Body SF	Joint SI
Hole Size (in)	From (ft)	To (ft)	(in)	(lbs)	Grade	Conn.	Collapse	SF Burst	Tension	Tension
17.5	0	663	13.375	54.5	J-55	BTC	1.125	1.2	1.4	1.4
12.25	0	4393	9.625	43.5	L-80	BTC	1.125	1.2	1.4	1.4
8.5	0	8500	7.625	26.4	HCL-80	SF (0 ft to 4000 ft) FJ (4000 ft to 8500 ft)	1.125	1.2	1.4	1.4
6.75	0	20166	5.5	20	P-110	DQX	1.125	1.2	1.4	1.4
							SF V	alues will me	et or Exceed	đ

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

*Oxy requests the option to run the 7.625" Intermediate II as a contingency string to be run only if severe hole conditions dictate an additional casing string necessary.

*Oxy requests the option to run production casing with DQX and/or SF TORQ connections to accommodate hole conditions or drilling operations.

Annular Clearance Variance Request

As per the agreement reached in the Oxy/BLM meeting on Feb 22, 2018, Oxy requests permission to allow deviation from the 0.422" annular clearance requirement from Onshore Order #2 under the following conditions:

- 1. Annular clearance to meet or exceed 0.422" between intermediate casing ID and production casing coupling only on the first 500' overlap between both casings.
- 2. Annular clearance less than 0.422" is acceptable for the curve and lateral portions of the production open hole section.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	Y
If yes, are the first three strings cemented to surface?	Y
Is 2 nd string set 100' to 600' below the base of salt?	Y
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Primary Plan:

Casing Strin	g	# Sks	Wt. (lb/gal)	Yld (ft3/sack)	H20 (gal/sk	500# Comp. Strength) (hours)	3	escription
Surface (Lead	i)	N/A	N/A	N/A	N/A	N/A	N/A	
Surface (Tail)	707	14.8	1.33	6.365	5:26	Class C Cement, Acc	elerator
Intermediate (Le	ead)	1309	12.9	1.73	8.784	15:26	Pozzolan Cement, Re	tarder
Intermediate (T	'ail)	155	14.8	1.33	6.368	7:11	Class C Cement, Acc	elerator
Production 1st Stage	e (Lead)	660	13.2	1.38	6.692	17:50	Class H Cement, Reta	arder, Dispersant, Sal
Production 1st Stag	e (Tail)	2098	13.2	1.38	6.686	3:49	Class H Cement, Reta	urder, Dispersant, Sal
Production 2nd Stag	-	927	12.9	1.872	10.11	<u>.</u>	wn the Production ar Class C Cement, Acco	
		Casing S	tring	Тор) (ft)	Bottom (ft)	% Excess	
Γ		Surface (I	Lead)	N	/A	N/A	N/A	
		Surface (Tail))	663	100%	
Γ	In				··· - ··	003		
		termediate	(Lead)		<u>у</u> О	3893	100%	
		termediate ntermediate			· · · · · · · · · · · · · · · · · · ·		100% 20%	
	Ir	ntermediat		38))	3893		
-	lr Produ	ntermediate ction 1st S	e (Tail)	38 1) 65) 193	3893 4393	20%	

Contingency Plan:

Casing	String	# Sks	Wt. (lb/gal)	Yld (ft3/sack)	H20 (gal/sk)	500# Comp. Strength (bours)	Slurry Desc	ription
Surface	(Lead)	N/A	N/A	N/A	N/A	N/A	N/A	
Surface	e (Tail)	779	14.8	1.33	6.365	5:26	Class C Cement, Accele	rator
Intermedia	ate (Lead)	1205	12.9	1.88	10.130	14:22	Pozzolan Cement, Retar	der
Intermedi	iate (Tail)	155	14.8	1.33	6.370	12:45	Class C Cement, Accele	rator
Intermediate II	1st Stage (Lead)	N/A	N/A	N/A	N/A	N/A	N/A	
Intermediate II	1st Stage (Tail)	16	13.2	1.65	8.640	11:54	Class H Cement, Retard	er, Dispersant, Salt
	Ind Stage (Lead)	N/A	N/A	N/A	N/A	N/A	n the Intermediate ann	
	2nd Stage (Tail)	427	12.9	1.92	10.410	23:10	Class C Cement, Accele	rator
Productic		N/A	N/A	N/A	N/A	N/A	N/A	
Production	on (Tail)	892	13.2	1.38	6.686	3:49	Class H Cement, Retard	er. Dispersant, Salt
	С	asing Stri	ng	То	p (ft)	Bottom (fi	t) % Excess	
	Sı	urface (Lea	ad)	1	N/A	N/A	N/A	
	S	urface (Ta	uil)		0	663	100%	
	Inter	mediate (I	Lead)		0	3893	100%	
	Inte	rmediate (Tail)	3	893	4393	20%	
	Intermedia	te II 1st S	tage (Lead)]]	N/A	N/A	N/A	
	Intermedia	ate II 1st S	Stage (Tail)) 8	177	8500	5%	
	Intermediat	te II 2nd S	tage (Lead	1) N	N/A	N/A	N/A	
	Intermedia	te II 2nd S	Stage (Tail)	0	8177	25%	
	Pro	duction (L	ead)	1	N/A	N/A	N/A	
	Pro	duction (7	ail)	8	000	20166	20%	

*Contingency design will only be employed if Oxy elects to run 7.625" Intermediate II string]

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		~	Tested to:
			Annula	ar	~	70% of working pressure
10.05% [1.1.	Blind Ram		am	 ✓ 		
12.25" Hole	13-5/8"	5M	Pipe Ram			250/5000
			Double F	Ram	 ✓ 	250/5000psi
			Other*]

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.							
	Manif	ance is requested for the use of a flexible choke line from the BOP to Choke old. See attached for specs and hydrostatic test chart.						
L	Y	Are anchors required by manufacturer?						
	and co per Or requir system that is rotary	tibowl or a unionized multibowl wellhead system will be employed. The wellhead onnection to the BOPE will meet all API 6A requirements. The BOP will be tested ashore Order #2 after installation on the surface casing which will cover testing ements for a maximum of 30 days. If any seal subject to test pressure is broken the a must be tested. We will test the flange connection of the wellhead with a test port directly in the flange. We are proposing that we will run the wellhead through the prior to cementing surface casing as discussed with the BLM on October 8, 2015. tached schematics.						

BOP Break Testing Request

As per the agreement reached in the Oxy/BLM meeting on Feb 22, 2018, Oxy requests permission to allow BOP Break Testing under the following conditions:

- After a full BOP test is conducted on the first well on the pad.
- When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.
- Full BOP test will be required prior to drilling any production hole.

5. Mud Program

De	pth			N72	NV-4T
From (ft)	To (ft)	Туре	Weight (ppg)	Viscosity	Water Loss
0	663	Water-Based Mud	8.6-8.8	40-60 ·	N/C
663	4393	Saturated Brine-Based Mud	9.8-10.0	35-45	N/C
4393	20166	Water-Based or Oil- Based Mud	8.0-9.6	38-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

What will be used to monitor the loss or gain	PVT/MD Totco/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
Yes	Will run GR from TD to surface (horizontal well - vertical portion of hole). Stated logs
	run will be in the Completion Report and submitted to the BLM.
No	Logs are planned based on well control or offset log information.
No	Drill stem test? If yes, explain
No	Coring? If yes, explain

Addi	tional logs planned	Interval
No	Resistivity	
No	Density	
No	CBL	
Yes	Mud log	ICP - TD
No	PEX	

7. Drilling Conditions

Condition	Specify what type and where?		
BH Pressure at deepest TVD	5025 psi		
Abnormal Temperature	No		
BH Temperature at deepest TVD	161°F		

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N	H2S is present
Y	H2S Plan attached

8. Other facets of operation

	Yes/No
Will the well be drilled with a walking/skidding operation? If yes, describe.	Yes
• We plan to drill the two well pad in batch by section: all surface sections,	
intermediate sections and production sections. The wellhead will be	
secured with a night cap whenever the rig is not over the well.	
Will more than one drilling rig be used for drilling operations? If yes, describe.	Yes
• Oxy requests the option to contract a Surface Rig to drill, set surface	
casing, and cement for this well. If the timing between rigs is such that	
Oxy would not be able to preset surface, the Primary Rig will MIRU and	
drill the well in its entirety per the APD. Please see the attached document	
for information on the spudder rig.	

Total estimated cuttings volume: 1848 bbls,

9. Company Personnel

Name	Title	Office Phone	Mobile Phone
Philippe Haffner	Drilling Engineer	713-985-6379	832-767-9047
Diego Tellez	Drilling Engineer Supervisor	713-350-4602	713-303-4932
Simon Benavides	Drilling Superintendent	713-522-8652	281-684-6897
John Willis	Drilling Manager	713-366-5556	713-259-1417

PERFORMANCE DATA

20.00 lbs/ft

P110 HC

psi

psi

lbs

lbs

psi

psi

5.500 in

Technical Data Sheet			
Tubular Parameters			
Size	5.500	in	Minimum Yield
Nominal Weight	20.00	lbs/ft	Minimum Tensile
Grade	P110 HC		Yield Load
PE Weight	19.81	lbs/ft	Tensile Load
Wall Thickness	0.361	in	Min. Internal Yield Pressure
Nominal ID	4.778	in	Collapse Pressure
Drift Diameter	4.653	in	
Nom. Pipe Body Area	5.828	in²	
Connection Parameters			
Connection OD	5.777	in	
Connection ID	4.734	in	
Make-Up Loss	5.823	in	
Critical Section Area	5.875	in²	
Tension Efficiency	90.0	с, ⁰	
Compression Efficiency	90.0	%	
Yield Load In Tension	576.000	lbs	
Min. Internal Yield Pressure	12.640	psi	
Collapse Pressure	12.780	psi	
Uniaxial Bending	83	100 ft	
Make-Up Torques			$\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} + 1$
Min. Make-Up Torque	15.700	fi-lbs	
Opt. Make-Up Torque	19.600	fl-lbs	
Max. Make-Up Torque	21 600	ft-lbs	
Operating Torque	29.000	ft-lbs	
Yield Torque	36.000	ft-lbs	
	•		

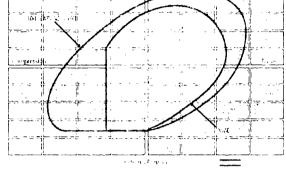
Printed on: February-22-2018

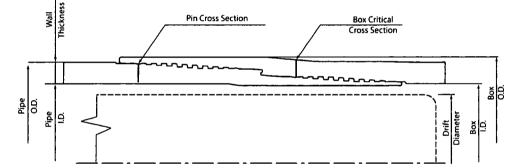
TMK UP SF TORQ™

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

TUBULAR PARAMETERS		PIPE BODY PROPERTIES	
Nominal OD, (inch)	7.625	PE Weight, (lbs/ft)	25.56
Wall Thickness, (inch)	0.328	Nominal Weight, (lbs/ft)	26.40
Pipe Grade	L80 HC	Nominal ID, (inch)	6.969
Drift	Standard	Drift Diameter, (inch)	6.844
		Nominal Pipe Body Area, (sq inch)	7.519
CONNECTION PARAMETERS		Yield Strength in Tension, (klbs)	601
Connection OD (inch)	7.79	Min. Internal Yield Pressure, (psi)	6 020
Connection ID, (inch)	6.938	Collapse Pressure, (psi)	3 910
Make-Up Loss, (inch)	6.029		
Connection Critical Area, (sq inch)	5.948	чаў т. ,	
Yield Strength in Tension, (klbs)	533		
Yeld Strength in Compression, (klbs)	533	the second se	
Tension Efficiency	89%	1.50 ke 2	
Compression Efficiency	89%		· · · · · · · · · · · · · · · · · · ·
Min. Internal Yield Pressure, (psi)	6 020	and the second second second	*


3 910


42.7

MAKE-UP TORQUES

Collapse Pressure, (psi) Uniaxial Bending (deg/100ft)

Yield Torque, (ft-lb)	22 600
Minimum Make-Up Torque, (ft-lb)	15 000
Optimum Make-Up Torque, (ft-lb)	16 500
Maximum Make-Up Torque, (ft-lb)	18 200

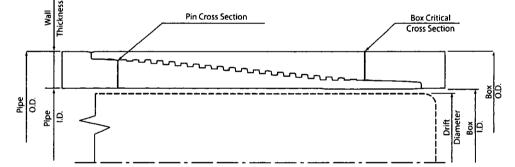
NOTE: The cintrest the state is the memoral minimation enhanced and the net quarantele period or unply times to consider purpose which with a competent and power consider detainment of a competent and power to a state of the antibiation of the antibiation of the state of the st

Print date: 07/10/2018 20:00

.

TUBULAR PARAMETERS		PIPE BODY PROPERTIES		
Nominal OD, (inch)	7.625	PE Weight, (Ibs/ft)		
Wall Thickness, (inch)	0.328	Nominal Weight, (lbs/ft)		
Pipe Grade	L80 HC	Nominal ID, (inch)		
Drift	Standard	Drift Diameter, (inch)		
		Nominal Pipe Body Area, (sq in		
CONNECTION PARAMETERS		Yield Strength in Tension, (klbs		
Connection OD (inch)	7.63	Min. Internal Yield Pressure, (ps		
Connection ID, (inch)	6.975	Collapse Pressure, (psi)		
Make-Up Loss, (inch)	4.165			
Connection Critical Area, (sq inch)	2.520			
Yield Strength in Tension, (klbs)	347			
Yeld Strength in Compression, (klbs)	347			
Tension Efficiency	58%			
Compression Efficiency	58%			
Min. Internal Yield Pressure, (psi)	6 020			
Collapse Pressure, (psi)	3 910			
Uniaxial Bending (deg/100ft)	28.0			

PE Weight, (lbs/ft)25.56Nominal Weight, (lbs/ft)26.40Nominal ID, (inch)6.969Drift Diameter, (inch)6.844Nominal Pipe Body Area, (sq inch)7.519____Yield Strength in Tension, (klbs)601Min. Internal Yield Pressure, (psi)6 020Collapse Pressure, (psi)3 910


					1977 H.		
			1				
	. < '	1	A.E.		122	Ņ	, in the second s
		5	K.		杨子		
S alater of the						/	it poore
	11			(<u> </u>		i and i and i
	Í.		A. A.				
		Š					
			45				
				· · · ·			

MAKE-UP TORQUES

•

.

Yield Torque, (ft-lb)	22 200
Minimum Make-Up Torque, (ft-lb)	12 500
Optimum Make-Up Torque, (ft-lb)	13 900
Maximum Make-Up Torque, (ft-lb)	15 300

NOTE: The construct this Termical Data Steven for general-information or Wart, does not guarantee performance in a completion in the specific installation and care-performance means the speci

Print date: 07/10/2018 20:11

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	OXY USA INCORPORATES
LEASE NO.:	NMNM 043744
WELL NAME & NO.:	4H-Platinum MDP1 34-3 FED COM
SURFACE HOLE FOOTAGE:	400'/N & 2627'/W
BOTTOM HOLE FOOTAGE	180'/S & 2200'/E
LOCATION:	T-23S, R-31E, S-34. NMPM
COUNTY:	EDDY, NM

Potash	C None	C Secretary	© R-111-P
Cave/Karst Potential	© Low	C Medium	
Variance	(None	Flex Hose	∩ Other
Wellhead	Conventional	Multibowl	
Other	□4 String Area	□Capitan Reef	□WIPP

All previous COAs still apply except for the following:

A. CASING

.

- 1. The minimum required fill of cement behind the 7 5/8 inch second intermediate casing is:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Operator has proposed to pump down 9 5/8" X 7 5/8" annulus. Operator must run a CBL from TD of the 7 5/8" casing to surface.

MHH 11062018

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)
 - Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- A. CASING
- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> hours. WOC time will be recorded in the driller's log.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.