Basin Environmental Service Technologies, LLED-ARTESIA

2800 Plains Highway P. O. Box 301 Lovington, New Mexico 88260 cstanley@basinenv.com

Office: (505) 396-2378

Fax: (505) 396-1429

Mr. Mike Bratcher New Mexico Oil Conservation Division 1301 W. Grand Avenue Artesia, New Mexico 88210

Re: Fairway Resources Operating, LLC South Red Lake II Unit #59 Reserve Pit Closure

30-015-36131

Mr. Bratcher,

Basin Environmental Service Technologies (Basin), on behalf of Fairway Resources Operating, LLC (Fairway) is submitting reserve pit closure documentation for the above referenced facility.

On May 16, 2008, Fairway submitted a request (Form C-144) to the NMOCD to close a reserve pit at the South Red Lake II Unit #59 (SRLIIU #59) facility located in Unit Letter "C", Section 36, Township 17 South, Range 27 East. The Form C-144 was approved by the NMOCD on May 16, 2008. The facility is located in rural Eddy County, east of Artesia. Closure activities began prior to the implementation of the "New Pit Rules" and Fairway requested a closure under NMOCD Rule 50.

A burial trench was excavated adjacent to and west of the reserve pit. The pit liner was removed from the reserve pit and placed in the burial trench in accordance with NMOCD Rule 50. On June 11, 2008, four (4) soil samples (SE-Floor, NW-Floor, SE-Floor and SW-Floor) were collected from the soil beneath the liner (approximately six feet below ground surface) and submitted to the laboratory for determination of BTEX, TPH and chloride concentrations using EPA method 8021b, SW-8015M and EPA 300, respectively.

The analytical results indicated the four (4) soil samples exhibited BTEX and TPH concentrations less than the laboratory detection limit and a chloride concentrations ranging from 128 mg/Kg (SE-Floor) to 1,050 mg/Kg (SW-Floor).

Following the sampling event, four (4) test trenches were excavated to a depth of approximately ten (10) feet below ground surface in the corners of the reserve pit. On June 26, 2008, soil samples NE-2, SE-2, NW-2 and SW-2 were collected from the floor of the test trenches and submitted to the laboratory.

Accepted for record NMOCD Final Closure Report

1

The analytical results indicated BTEX and TPH concentrations were below the laboratory method detection level in the four soil samples. Chloride concentrations ranged from 183 mg/Kg in soil sample SE-2 to 594 mg/Kg in soil sample SW-1.

Following discussion with a NMOCD representative in the Artesia District Office, the NMOCD approved the excavation of additional quantities of chloride impacted soil in the southwestern quarter of the reserve pit, to the extent the soil could be placed in the burial trench.

When the burial trench was at capacity, the NMOCD approved the backfilling of the reserve pit with locally purchased caliche and closed the burial trench per NMOCD Rule 50 guidelines.

Attached are NMOCD Form C-144, a site map, a table summarizing the concentrations of BTEX, TPH and chlorides in Soil and laboratory analytical reports.

If you have any questions, please contact me at 575-441-2244.

Respectfully,

Curt D. Stanley Project Manager Basin Environmental 575-396-2378 575-441-2244 cstanley@basinenv.com District 1
1625 N French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S St. Francis Dr., Santa Fe, NM 87505

submitted to OCD prior to back-filling.

State of New Mexico Energy Minerals and Natural Resources

Form C-144 June 1, 2004

S

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 For drilling and production facilities, submit to appropriate NMOCD District Office.
For downstream facilities, submit to Santa Fe office

MAY 16 2008

Pit or Below-Grade Tank Registration or Closure
Is pit or below-grade tank covered by a "general plan"? Yes No 🛛
Type of action. Registration of a pit or below-grade tank \(\subseteq \) Closure of a pit or below-grade tank \(\subseteq \)

Operator _Fairway Resources Operating LLCTelephone:	817-416-1946 e-ms	il address knearce@fainu	OCD-ARTESIA
Address538 Silicon Drive, Suite 101 Southlake, TX 76092		-	rj - 200 til 200 VUIII
Facility or well nameSouth Red Lake II Unit #59API #:			T 17S R 27E
County Eddy Latitude			****
Surface Owner, Federal State Private Indian			
Pit	Below-grade tank		
Type: Drilling ☑ Production ☐ Disposal ☐	Volume:bbl Type of fluid:		
Workover	Construction material:		
Lined 🖾 Unlined 🗀	Double-walled, with leak detection	Yes 🔲 If not, explain why i	not.
Liner type: Synthetic ☑ Thickness _12_mil Clay ☐			
Pit Volume _5,000_bbl			
Depth to ground water (vertical distance from bottom of pit to seasonal	Less than 50 feet	(20 points)	
high water elevation of ground water.) >100'	50 feet or more, but less than 100 fe	et (10 points)	
	100 feet or more	(0 points)	0 .
Wellhead protection area (Less than 200 feet from a private domestic	Yes	(20 points)	
water source, or less than 1000 feet from all other water sources.)	No	(0 points)	0
	Less than 200 feet	(20 points)	
Distance to surface water (horizontal distance to all wetlands, playas,	200 feet or more, but less than 1000	[' ' '	
irrigation canals, ditches, and perennial and ephemeral watercourses)	1000 feet or more	(10 points)	0
		(v points)	0
	Ranking Score (Total Points)		· · · · · · · · · · · · · · · · · · ·
mediation start date and end date. (4) Groundwater encountered: No i) Attach soil sample results and a diagram of sample locations and excava Additional Comments Deep trench bury		nd surface ft. a	nd attach sample results
As per NMOCD Rule 50			
Encapsulate using 12 mil plastic in pit, 20 mil pla	astic cover		Anna and a second secon
Place 3' clean top soil on top			
Seed area with specified seed mixture			
Estimated start date May 21, 2008			
I hereby certify that the information above is true and complete to the best			
has been/will be constructed or closed according to NMOCD guidelin	es ⊠, a general permit □, or an (at		roved plan [.].
DateMay 16, 2008		ΔV_{α}	
Printed Name/Title _Kenneth Pearce - Engineer	Signature \Signature	2 Slava	and the contract of the contra
Your certification and NMOCD approval of this application/closure does otherwise endanger public health or the environment. Nor does it relieve regulations	not relieve the operator of liability sho the operator of its responsibility for co	uld the contents of the pit or tamphiance with any other federa	nk contaminate ground water of il, state, or local laws and/or
Approval:	Signed By M.	he Branner	Date MAY 1 6 2008
eginning closure and 24 HOURS PRIOR in pit an and anal	trench is to be constructed en, samples are to be obtained lyses submitted to OCD to lining trench.		

CONCENTRATIONS of BTEX, TPH and CHLORIDE IN SOIL Fairway Resources - South Red Lake II Unit #59 API # 30-015-36131 EDDY COUNTY, NEW MEXICO

All measurments recorded in ma/ka

						All II		s recorded ir								
							Methods	. EPA SW 84	6-8021B, 503	30			Methods.	SW 846-8015M		EPA 300
SAMPLE DATE	SAMPLE LOCATION	SAMPLE DEPTH	SAMPLE TYPE	SOIL STATUS	BENZENE (mg/Kg)	TOLUENE mg/Kg)	ETHYL- BENZENE (mg/Kg)	m,p- XYLENE (mg/Kg)	o-XYLENE (mg/Kg)	TOTAL XYLENE (mg/Kg)	TOTAL BTEX (mg/Kg)	GRO C ₆ -C ₁₂ (mg/Kg)	DRO C ₁₂ -C ₂₈ (mg/Kg)	ORO C ₂₈ -C ₃₅ (mg/Kg)	TOTAL TPH C ₆ -C ₃₅ (mg/Kg)	Chloride (mg/Kg)
06/11/08	NE-Floor	6 feet bgs	Soil	Excavated	<0 0010	<0 0020	<0 0010	< 0.0020	<0 0010	<0 0020	<0.0020	<166	<16 6	<16 6	<16.6	623
06/11/08	NW-Floor	6 feet bgs	Soil	Excavated	<0 0010	<0 0020	<0 0010	<0.0020	<0 0010	<0 0020	<0 0020	<18 1	<18 1	<181	<18 1	367
06/11/08	SE-Floor	6 feet bgs	Soil	Excavated	<0 0010	<0 0020	< 0 0010	<0.0020	<0.0010	<0 0020	<0 0020	<175	31 7	<175	31 7	128
06/11/08	SW-Floor	6 feet bgs	Soil	Excavated	<0 0010	<0 0020	<0 0010	<0.0020	<0 0010	<0 0020	<0 0020	<17.5	100	<17.5	100	1,050
15 65,5 40	Elit Bright South And The Market	1. The Control of the	20世代 大学・	4500	1 10 300	- 1 th 17% and	· - 5 938"	the of their	2 A + 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 . No of 1	~\$ 17 M. Se.	of " to	Party Same	* 26 m 1 /2.	A A SA SA	عدلا وسنطرو
06/26/08	NE-2	10 feet bgs	Soil	In-Situ	< 0.0012	<0 0023	< 0.0012	<0.0023	<0 0012	<0 0023	<0.0023	<17.4	<17.4	<17 4	<17.4	413
06/26/08	SE-2	10 feet bgs	Soil	In-Situ	<0 0011	<0.0023	<0.0011	<0 0023	<0.0011	<0 0023	<0 0023	<17 2	17 9	<17 2	<17 9	183
06/26/08	NW-1	10 feet bgs	Soil	In-Situ	<0 0012	<0 0023	<0.0012	<0 0023	<0 0012	<0 0023	<0 0023	<175	<17.5	<17.5	<17.5	253
06/28/08	SW-1	10 feet bgs	Soil	In-Situ	<0 0012	<0.0024	<0.0012	<0 0024	<0 0012	<0 0024	<0 0024	<17.8	20.5	<178	20 5	594
PRATUINGS	BURN ATHREE TO	Se 20 1/2 1 Ag	计多数码器	144 1 3 C	學家鄉籍	Seg 4	Township I the	067 G 1-538	1966 F. C.	老	· · · · · · · · · · · · · · · · · · ·	2-m 2 12	-15 B. C. C.	The Both An	衛河。西部學	1975/1878
	NMOCD REGULATORY STA	NDARD			10						50				1,000	-

BOLD indicates concentration exceeding NMOCD regulatory standards

Legend:

Grab Soll Sample Location

Figure X
Site and Sample
Location Map
Fairway Resources
South Red Lake II Unit
#59
Eddy County, NM

Basin Environmental Services

Scale 1" = 20"	CAD By CDS	Checked By: CDS
October 20, 2008	_	

Analytical Report 305663

for

Basin Enivronmental Services

Project Manager: Curt Stanley

South Red Lake II Unit # 59
Fairway Operating

17-JUN-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers:
Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675
Norcross(Atlanta), GA E87429

South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

17-JUN-08

Project Manager: Curt Stanley Basin Enivronmental Services

P.O. Box 301

Lovington, NM 88260

Reference: XENCO Report No: 305663

South Red Lake II Unit # 59 Project Address: Lea County, NM

Curt Stanley:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 305663. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 305663 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 305663

Basin Enivronmental Services, Lovington, NM

South Red Lake II Unit # 59

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
NE-Floor	S	Jun-11-08 14:00		305663-001
NW-Floor	S	Jun-11-08 14:05		305663-002
SE-Floor	S	Jun-11-08 14:10		305663-003
SW-Floor	S	Jun-11-08 14:15		305663-004

Certificate of Analysis Summary 305663

Basin Enivronmental Services, Lovington, NM

Project Name: South Red Lake II Unit #59

Project Id: Fairway Operating
Contact: Curt Stanley

Project Location: Lea County, NM

Date Received in Lab: Thu Jun-12-08 08:30 am

Report Date: 17-JUN-08

Project Manager: Brent Barron, II

- 							rroject Mi	mager:	bieni banon, n	
Lab Id:	305663-0	001	305663-0	002	305663-0	003	305663-	004		
Field Id:	NE-Floo	or	NW-Flo	or	SE-Floo	or	SW-Flo	oor		
Depth:										
Matrix:	SOIL		SOIL		SOIL		SOII	,		
Sampled:	Jun-11-08 1	4.00	Jun-11-08	14.05	Jun-11-08	14.10	Jun-11-08	14.15		
Extracted:	Jun-12-08 (09:39	Jun-12-08 (09:39	Jun-12-08	09.39	Jun-12-08	09:39		
Analyzed:	Jun-12-08	14:05	Jun-12-08	14.29	Jun-12-08	14:52	Jun-12-08	15:16		
Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
	ND	0 0010	ND	0.0010			ND	0.0010		
							1			
		0 0010		0.0010	ND	0.0010		0 0010		
	ND		ND		ND		0 0045			
	ND		ND		ND		0.0056			
Extracted:										
Analyzed:	Jun-12-08	16.51	Jun-12-08	16·51	Jun-12-08	16:51	Jun-12-08	16.51		
Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
	623	25.0	367	25.0	128	25.0	1050	50.0		
Extracted:										
Analyzed:	Jun-13-08 (09:09	Jun-13-08 (09·10	Jun-13-08	09:00	Jun-13-08	09 00		
Units/RL:	%	RL	%	RL	%	RL	%	RL		
	9.87	1.00	170	1.00	14.3	1.00	144	1.00		
Extracted:	Jun-12-08	12:15	Jun-12-08	12.15	Jun-12-08	12.15	Jun-12-08	12.15		
Analyzed:	Jun-12-08	18:11	Jun-12-08	18.40	Jun-12-08	19:39	Jun-12-08	20.08		-
Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	L	
	ND	166	ND	18.1	ND	17.5	ND	17 5		
	30.8	16.6	ND	181	31.7	175	100	17.5		
	ND	16.6	ND	18.1	ND	17.5	ND	17 5		
	308		ND		31.7		100			
	Field Id: Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Analyzed: Analyzed: Analyzed:	Field Id: Depth: Matrix: Sampled: Jun-11-08 Extracted: Jun-12-08 MnD ND ND ND ND ND ND ND ND ND	Field Id:	Number N	Field Id: NE-Floor NW-Floor Matrix: SOIL SOIL	NW-Floor NW-Floor SE-Floor	NE-Floor	Lab Id:	Lab Id: 305663-001 305663-002 305663-003 305663-004 Field Id: NE-Floor NW-Floor SE-Floor SW-Floor Matrix: SOIL SOIL SOIL SOIL SOIL Sampled: Jun-11-08 14·00 Jun-11-08 14·05 Jun-11-08 14·10 Jun-11-08 14·15 Extracted: Jun-12-08 09:39 Jun-12-08 09:39 Jun-12-08 09:39 Jun-12-08 09:39 Jun-12-08 09:39 Jun-12-08 14:52 Jun-12-08 15:16 Units/RL: mg/kg RL mg/kg RL	Field Id. NE-Floor NW-Floor SE-Floor SW-Floor SW-Floor

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of KENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron
Odessa Laboratory Director

XENCO Laboratories

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

11381 Meadowglen Lane Suite L Houston, Tx 77082-2647 (281) 589-0692 (281) 589-0695 (214) 902 0300 (214) 351-9139 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, Suite 104, San Antonio, TX 78238 (210) 509-3334 (210) 509-3335 (813) 620-2000 (813) 620-2033 2505 N Falkenburg Rd., Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 (305) 823-8500 (305) 823-8555 6017 Financial Dr., Norcross, GA 30071 (770) 449-8800 (770) 449-5477

Project Name: South Red Lake II Unit # 59

Work Order #: 305663

Project ID: Fairway Operating

Lab Batch #: 725340

Sample: 305635-003 S/MS

Matrix: Soil Batch:

. Units: mg/kg	Units: mg/kg SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]	ļ	
1,4-Dıfluorobenzene	0.0280	0.0300	93	80-120	
4-Bromofluorobenzene	0.0325	0.0300	108	80-120	

Lab Batch #: 725340

Sample: 305635-003 SD / MSD

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
Analytes			(2)						
1,4-Dıfluorobenzene	0.0255	0.0300	85	80-120					
4-Bromofluorobenzene	0.0295	0.0300	98	80-120					

Lab Batch #: 725340

Sample: 305663-001 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
Analytes 1.4-Diffuorobenzene	0.0252	0.0200		90.120			
	0.0352	0.0300	117	80-120			
4-Bromofluorobenzene	0.0312	0.0300	104	80-120			

Lab Batch #: 725340

Sample: 305663-002 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes	, ,]	[D]					
I,4-Dıfluorobenzene	0.0345	0.0300	115	80-120				
4-Bromofluorobenzene	0.0312	0.0300	104	80-120				

Lab Batch #: 725340

Sample: 305663-003 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes	1		[D]					
1,4-Difluorobenzene	0.0343	0.0300	114	80-120				
4-Bromofluorobenzene	0.0352	0.0300	117	80-120				

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: South Red Lake II Unit # 59

Work Order #: 305663

Project ID: Fairway Operating

Lab Batch #: 725340

Sample: 305663-004 / SMP

Matrix: Soil Batch: 1

Units: mg/kg	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes		,	[D]					
1,4-Difluorobenzenc	0.0338	0.0300	113	80-120				
4-Bromofluorobenzene	0.0356	0.0300	119	80-120				

Lab Batch #: 725340

Sample: 510556-1-BKS / BKS

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0275	0.0300	92	80-120		
4-Bromofluorobenzene	0,0309	0.0300	103	80-120		

Lab Batch #: 725340

Sample: 510556-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	(4-)	'-'	[D]			
1,4-Difluorobenzenc	0.0336	0.0300	112	80-120		
4-Bromofluorobenzene	0.0299	0.0300	100	80-120		

Lab Batch #: 725340

Sample: 510556-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
			[D]			
1,4-Dıfluorobenzene	0.0279	0.0300	93	80-120		
4-Bromofluorobenzene	0.0311	0.0300	104	80-120		

Lab Batch #: 725343

Sample: 305635-003 S / MS

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	86.4	100	86	70-135		
o-Terphenyl	46.9	50.0	94	70-135		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: South Red Lake II Unit # 59

Work Order #: 305663

Project ID: Fairway Operating

Lab Batch #: 725343

Sample: 305635-003 SD / MSD

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
			[D]			
1-Chlorooctane	83 1	100	83	70-135		
o-Terphenyl	45.8	50.0	92	70-135		

Lab Batch #: 725343

Sample: 305663-001 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	100	100	100	70-135		
o-Terphenyl	54.3	50.0	109	70-135		

Lab Batch #: 725343

Sample: 305663-002 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	85.0	100	85	70-135		
o-Terphenyl	47.6	50 0	95	70-135		

Lab Batch #: 725343

Sample: 305663-003 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	80.2	100	80	70-135	
o-Terphenyl	45.4	50.0	91	70-135	

Lab Batch #: 725343

Sample: 305663-004 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	84.6	100	85	70-135		
o-Terphenyl	47.5	50.0	95	70-135		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Work Order #: 305663

Project ID: Fairway Operating

Lab Batch #: 725343

Sample: 510554-1-BKS / BKS

Batch: 1 Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		1	[D]			
1-Chlorooctane	94.0	100	94	70-135		
o-Terphenyl	51.0	50.0	102	70-135		

Lab Batch #: 725343

Sample: 510554-1-BLK / BLK

Batch: 1 Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
			[D]			
1-Chlorooctane	77.6	100	78	70-135	-	
o-Terphenyl	44.0	50.0	88	70-135		

Lab Batch #: 725343

Sample: 510554-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
			[D]			
1-Chlorooctane	83.5	100	84	70-135		
o-Terphenyl	46.4	50.0	93	70-135		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B

Blank Spike Recovery

Project Name: South Red Lake II Unit # 59

Work Order #: 305663

Project ID:

Fairway Operating

Lab Batch #: 725309

Sample: 725309-1-BKS

Matrix: Solid

Date Analyzed: 06/12/2008

Date Prepared: 06/12/2008

Analyst: IRO

Reporting Units: mg/kg

Batch #: 1 BLANK/BLANK SPIKE RECOVERY STUDY

Inorganic Anions by EPA 300	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes	ND	10.0	[C]	[D]	75-125	

BS / BSD Recoveries

Project Name: South Red Lake II Unit # 59

Work Order #: 305663 Analyst: SHE

Date Prepared: 06/12/2008

Project ID: Fairway Operating

Date Analyzed: 06/12/2008

Lab Batch ID: 725340

Sample: 510556-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg				SPIKE / I		SPIKE DUPI	LICATE	RECOVI	ERY STUD		· · · · · · · · · · · · · · · · · · ·
BTEX by EPA 8021B	Blank Sample Result [A]	Spike	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	ND	0.1000	0.1027	103	0.1	0.1012	101	1	70-130	35	
Toluene	ND	0.1000	0.1061	106	0.1	0.1045	105	2	70-130	35	
Ethylbenzene	ND	0.1000	0.1144	114	0.1	0.1127	113	1	71-129	35	
m,p-Xylenes	ND	0.2000	0.2340	117	0.2	0.2301	115	2	70-135	35	
o-Xylene	ND	0.1000	0.1156	116	0.1	0.1136	114	2	71-133	35	

Analyst: ASA

Date Prepared: 06/12/2008

Date Analyzed: 06/12/2008

Lab Batch ID: 725343

Sample: 510554-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg	BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY														
TPH by SW8015 Mod Analytes	Blank Spike Sample Result Added [A] [B]		Added Spike Result		Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag				
C6-C12 Gasoline Range Hydrocarbons	ND	1000	932	93	1000	854	85	9	70-135	35					
C12-C28 Diesel Range Hydrocarbons	ND	1000	919	92	1000	850	85	8	70-135	35					

Relative Percent Difference RPD = 200*|(D-F)/(D+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: South Red Lake II Unit # 59

Work Order #: 305663

Lab Batch #: 725309

Date Analyzed: 06/12/2008

QC- Sample ID: 305635-001 S

Date Prepared: 06/12/2008

Project ID: Fairway Operating

06/12/2008 Analyst: IRO

Batch #: 1 Matrix: Soil

Reporting Units: mg/kg	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
						
Chloride	13800	4000	19900	153	75-125	X

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B) All Results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: South Red Lake II Unit # 59

Work Order #: 305663

Project ID: Fairway Operating

Lab Batch ID: 725340

QC- Sample ID: 305635-003 S

Batch #:

Matrix: Soil

Date Analyzed: 06/12/2008

Date Prepared: 06/12/2008

Analyst: SHE

Penarting Unite: ma/kg

Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	ND	0.1000	0.0945	95	0.1000	0.0870	87	9	70-130	35	
Toluene	ND	0.1000	0.0948	95	0.1000	0.0875	88	8	70-130	35	
Ethylbenzene	ND	0.1000	0.1004	100	0.1000	0.0915	92	8	71-129	35	
m,p-Xylenes	ND	0.2000	0.2068	103	0.2000	0.1895	95	8	70-135	35	
o-Xylene	ND	0.1000	0.1053	105	0 1000	0.0952	95	10	71-133	35	

Lab Batch ID: 725343

QC- Sample ID: 305635-003 S

Batch #:

Matrix: Soil

Date Analyzed: 06/12/2008

Date Prepared: 06/12/2008

Analyst: ASA

Reporting Units: mg/kg		MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY														
TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample		Duplicate Spiked Sample	•	RPD	Control Limits	Control Limits	Flag					
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD						
C6-C12 Gasoline Range Hydrocarbons	ND	1140	1010	89	1140	968	85	5	70-135	35						
C12-C28 Diesel Range Hydrocarbons	ND	1140	1020	89	1140	976	86	3	70-135	35						

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G) Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Chloride

Sample Duplicate Recovery

Project Name: South Red Lake II Unit # 59

Work Order #: 305663

Lab Batch #: 725309

Project ID: Fairway Operating

Date Analyzed: 06/12/2008

Inorganic Anions by EPA 300

Analyte

Percent Moisture

Analyte

Date Prepared: 06/12/2008

Analyst: IRO

QC- Sample ID: 305635-001 D

Batch #:

Matrix: Soil

Reporting Units: mg/kg

 SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
12000	14200	7	20	

Lab Batch #: 725377

Date Analyzed: 06/13/2008

Date Prepared: 06/13/2008

Analyst: IRO

QC- Sample ID: 305635-001 D

Batch #:

Matrix: Soil

Reporting Units: %

Percent Moisture

 SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
10.6	9.26	13	20	

U
D)
o.
Φ
_
Ġ
g,
_

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fex: 432-563-1713

	Project Manager.	Curt Stanley			PAGE 01 C)F 01									_	P	raje	ct Nz	me.	So	uth	Rec	j La	ke l	l Un	11 t #	59			_
	Company Name	Basin Environmental Se	rvice T	echno	logies, LLC												F	rajo	ct #	Fal	rwa	ay O	per	atin	9					
	Company Address	P O Box 301															Pro	ject I	Loc.	Les	Cou	unty,	, NM							
	City/State/Zip	Lovington, NM 88260																P	O#											
	Telephone No	(505) 441-2244				Fax No		(50	15) 3:	36- 1 <i>4</i>	429					Repo	nt F	orma	,	X	Star	ndard	,		TE	RP			NPDE:	s
	Sampler Signature	(X/-X-	\mathcal{I}			e-mail·		cs	tan	ley	@b	asi	nen	v co	m															
(lab use	anh)			$\overline{}$		•		_						***			F		_		LP	Ana	ilyze	For	_		_		Τ,	1
			7														上			TOT		士	士	士	1			ıl	72 hrs	
ORDER	305C	1 (194	т		1	_	,		87	serv	ation	18.4	of Co	ntam	_	Matnx			П		T	å		5	3			iΙ	₩ ≈	
	İ			İ						-	-				H	51-5ludg 5-5olt/501	:h	ŢΣ		í.		Ŧ.		ě	1			. 1		
# (lab vae only)	•		£		_	_		ers			-						AIR I ROISE	2	4 ×	1		8		Ž	ሰ		1	1	ž	
	1		å	Depth	P	Sampled		Contaners		ı	ļ	1			G _Y	EW OF	٦	7× 1005	3	3	CFC	88	Ι,	. Jê	0		Ä	i I	ĮĚ	¥
- E			eguning Depth	2	Date Sampled	S.	eld Filtered	6				ا.	. 0	1	Other L Specify)	Drinking Water Groundwater			흥	9	FSP.	\$	8 1	8 8		3	š	/ 1	Ĭ	puer
1 8	FIEI	LD CODE	Beg.	Ending	Oate	Ē	į	Tolal #	ادا	Š	힟	OS'H	Nu,S,O,	None	ОФ	DW - Drinking Water CW - Groundwater NP - Mondonania S	ž	Ŧ	Cations (Ca. Mg, Na, K)	Anions (Cl. 504 Alkahnity)	SAR ' FSP / CFC	Metals As Ag Ba Cd Cr Pb Hg Se	Notes	Sonvolates	RC:	NORM	Chlondes (E - 300)	I = I	RUSH TAT (Pre-Scredule)	Standard TAT
७१	NE	- Floor			6/11/2008	1400		1	х	Ī			T			SOIL	7					\perp	I	X			X	\Box	Ι	x
02	NW	- Floor			6/11/2008	1405		1	х							SOIL	b	(\Box	$oldsymbol{oldsymbol{oldsymbol{oldsymbol{\Box}}}$	X	<u>. </u>	I	х	\Box	\perp	X
တ်	SE	- Floor			6/11/2008	1410		1	х			I	\perp			SOIL)	<u>. </u>				\perp	\perp	×	<u>. </u>	L	x	Ц	\perp	x
24	sw	- Floor		<u> </u>	6/11/2008	1415	Ц	1	x	\Box		1	1	Ш	Ц	SOIL	1	4	Ц	_	_	4	┵	×	4_	丄	х	4	4	X
			<u> </u>				L	L	Ц	_	4	4	4	Ш	Ц		1	┺	Ц	4	4	\downarrow	4	ᆚ	╄	\perp	Ш	4	4	╄
ļ			<u> </u>				ļ.,			_	4	4	+	\sqcup	\dashv		╀	╀	Ц	4	4	\bot	\perp	4	4	\perp	Н		_	╄
ļ					 		ļ.,	Н	\vdash	4	+	+	+	┦┤	\dashv		+	╁-	\sqcup	4	4	4	+	+	+	↓	Н	\dashv		╀
ļ			-	┢	ļ		-	Н	\vdash	+	+	+	+	₩	\dashv		╀	╁	Н	+	+	+	+	+	┿	╀	Н	\dashv	+	╁
			-	├	<u> </u>		H	H	Н	+	+	+	+-	+	\dashv		╀	╁	Н	+	+	+	+	╁	╁	╁	Н	\dashv	+	╁
Special	nstructions.		<u> </u>	<u> </u>			L.	LJ	1			_	٠.	ш					Lab	orat	orv	Com	mer	nts.	ــــــــــــــــــــــــــــــــــــــ			긁		
	Bill to Basin Enviro	onmental																	Sen	ple	Con	talne	ens In	tact			۶	¥	N	
Refinquis	for for	Pate	72	mę	Received by									T	Date	e	Tir	ne	Lab	ets o	n co	of He ontain	ner(s	1)			1	2000	2228	
ليت		12/08		30															Cus	tody	sea	ıls en ıls en	1 000	der(s				<u>ک</u>	Ġ	
Relinquist	hed by	Date	Ti	me	Received by										Dat	•	Tir	ne				d De /er/Cl			?			5	N	
Retinquish	ned by	Date	<u> </u>	me	Received by E-LO	OT 4. 4 (*)								⊢	Det	_	Tr	ne.		by C	ourie	40	U	PS	DH	iL	Fed	E× I	Lone S	
- Sour Addist			"		1/3,	Dela	чa		_					6/	12/			- 70	Tem	pela	ature	y).	on Re	eceir	ol.			1.0	7 <i>0</i> •c	
								-						_ /		<u>۔</u>													_	

Environmental Lab of Texas
Variance/ Corrective Action Report- Sample Log-In

<u>.</u>	Basin Env.
Client:	=
Date/ Time	6 12:08 8:30
Lab ID#	305663
Initials:	(JL

Sample Bassint Charlist

	Sample Receipt	Checklist			
				Client In	itials
#1	Temperature of container/ cooler?	(Yes)	No		
#2	Shipping container in good condition?	€ 68	No	L	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	}
#4	Custody Seals intact on sample bottles/ container?	*Es	No	Not Present	
#5	Chain of Custody present?	₹es	No		
#6	Sample instructions complete of Chain of Custody?	Yes	No		
#7	Chain of Custody signed when relinquished/ received?	(Yes)	No		
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont / Lld	
#9	Container label(s) legible and intact?	A gg	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No		
#11	Containers supplied by ELOT?	(es)	No		
#12	Samples in proper container/ bottle?	¥es	No	See Below	
#13	Samples properly preserved?	(es)	No	See Below	
#14	Sample bottles intact?	Yes)	No		
#15	Preservations documented on Chain of Custody?	(Yes)	No		
#16	Containers documented on Chain of Custody?	Yes	No		
#17	Sufficient sample amount for indicated test(s)?	(fes)	No	See Below	
#18	All samples received within sufficient hold time?	X(es)	No	See Below	
#19	Subcontract of sample(s)?	Yes_	No	Not Applicable	
#20	VOC samples have zero headspace?	(Yes)	No	Not Applicable	

Variance Documentation

Contact		Contacted by:	Date/ Time.
Corrective Action Taken. Check all that Apply: See attached e-mail/ fex			
Check all that Apply		See attached e-mail/ fex Client understands and would like to proceed with an Cooling process had begun shortly after sampling ex	

Analytical Report 306754

for

Basin Enivronmental Services

Project Manager: Curt Stanley

Fairway- South Red Lake II Unit # 59

08-JUL-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers:
Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675
Norcross(Atlanta), GA E87429

South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

08-JUL-08

Project Manager: Curt Stanley Basin Enivronmental Services

P.O. Box 301

Lovington, NM 88260

Reference: XENCO Report No: 306754

Fairway- South Red Lake II Unit #.59 Project Address: Eddy County, NM

Curt Stanley:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 306754. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 306754 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 306754

Basin Enivronmental Services, Lovington, NM

Fairway- South Red Lake II Unit # 59

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
NE-2	S	Jun-26-08 10:00		306754-001
SE-2	S	Jun-26-08 10:05		306754-002
NW-2	S	Jun-26-08 10:10		306754-003
SW-2	S	Jun-26-08 10:15		306754-004

Project Id:

Certificate of Analysis Summary 306754

Basin Enivronmental Services, Lovington, NM

Project Name: Fairway-South Red Lake II Unit # 59

Contact: Curt Stanley

Project Location: Eddy County, NM

Date Received in Lab: Fri Jun-27-08 09:03 am

Report Date: 08-JUL-08

oject Eduadon. Eduay County, 1442								Project Mar	nager:	Brent Barron, Il	
	Lab Id:	306754-0	001	306754-0	02	306754-0	03	306754-0	04		
Associate Donos and A	Field Id:	NE-2		SE-2		NW-2		SW-2			
Analysis Requested	Depth:										
	Matrix:	SOIL	•	SOIL		SOIL		SOIL			
	Sampled:	Jun-26-08	10:00	Jun-26-08 1	0.05	Jun-26-08 1	0.10	Jun-26-08 1	0:15		
BTEX by EPA 8021B	Extracted:	Jun-27-08	09.25	Jun-27-08 0	9.25	Jun-27-08 (09·25	Jun-27-08 0	9:25		
DIEM by Ex M 00215	Analyzed:	Jun-29-08	18.38	Jun-29-08 1	9.02	Jun-29-08 1	19·26	Jun-29-08 2	20:37		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		ND	0.0012	ND	0.0011	ND	0.0012	ND	0.0012		
Toluene		ND	0.0023	ND	0.0023	ND	0.0023	ND	0.0024		
Ethylbenzene		ND	0.0012	ND	0.0011	ND	0 0012	ND	0.0012		
m,p-Xylenes		ND	0 0023	ND	0.0023	ND	0.0023	ND	0.0024		
o-Xylene		ND	0.0012	ND	0 0011	ND	0.0012	ND	0.0012		
Total Xylenes		ND		ND		ND		ND			
Total BTEX		ND		ND		ND		ND			
Inorganic Anions by EPA 300	Extracted:										
inorganic rantons by 111 11 500	Analyzed:	Jul-01-08 ()8·51	Jul-01-08 0	8:51	Jul-01-08 0	8:51	Jul-01-08 0	8:51		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		413	58 1	183	57.2	253	58.2	594	59.4		
Percent Moisture	Extracted:										
1 of continuous at the	Analyzed:	Jun-27-08	17:00	Jun-27-08 1	7:00	Jun-27-08 1	7.00	Jun-27-08 1	7.00		
	Units/RL:	%	RL	%	RL	%	RL	%	RL		
Percent Moisture		14		12.6		141	-	15.8			
TPH by SW8015 Mod	Extracted:	Jul-01-08	16:05	Jul-01-08 1	6:05	Jul-01-08 I	6.05	Jul-01-08 1	6.05		
1111 by 5 W6013 W10a	Analyzed:	Jul-03-08	13:18	Jul-03-08 1	5:06	Jul-07-08 1	5.41	Jul-03-08 1	6.01		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
C6-C12 Gasoline Range Hydrocarbons		ND	17.4	ND	17.2	ND	17.5	ND	17.8		
C12-C28 Diesel Range Hydrocarbons		ND	17.4	17.9	17.2	ND	17.5	20.5	17.8		
C28-C35 Oil Range Hydrocarbons	-	ND	174	ND	17.2	ND	17.5	ND	17.8		
Total TPH		ND		179		ND		20.5			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XEV.CO Laboratories assumes to responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron
Odessa Laboratory Director

XENCO Laboratories

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte.

 The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Pnone	rax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

Project Name: Fairway-South Red Lake II Unit # 59

Work Order #: 306754

Project ID:

Lab Batch #: 726690

Sample: 306745-009 S / MS

Matrix: Soil Batch:

Units: mg/kg	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0295	0.0300	98	80-120			
4-Bromofluorobenzene	0.0338	0.0300	113	80-120			

Lab Batch #: 726690

Sample: 306745-009 SD / MSD

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Dıfluorobenzene	0.0310	0.0300	103	80-120			
4-Bromofluorobenzene	0 0288	0.0300	96	80-120			

Lab Batch #: 726690

Sample: 306754-001 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Dıfluorobenzene	0.0332	0.0300	111	80-120			
4-Bromofluorobenzene	0.0309	0.0300	103	80-120			

Lab Batch #: 726690

Sample: 306754-002 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes		'-'	[D]				
1,4-Difluorobenzene	0.0333	0.0300	111	80-120			
4-Bromofluorobenzene	0.0317	0.0300	106	80-120			

Lab Batch #: 726690

Sample: 306754-003 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes	(1-2)		[D]	/410			
1,4-Difluorobenzene	0.0335	0.0300	112	80-120			
4-Bromofluorobenzene	0.0322	0.0300	107	80-120			

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Work Order #: 306754

Project ID:

Lab Batch #: 726690

Sample: 306754-004 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0335	0.0300	112	80-120			
4-Bromofluorobenzene	0.0307	0.0300	102	80-120			

Lab Batch #: 726690

Sample: 511311-1-BKS/BKS

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0283	0.0300	94	80-120			
4-Bromofluorobenzene	0.0326	0.0300	109	80-120			

Lab Batch #: 726690

Sample: 511311-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]	1				
1,4-Difluorobenzene	0.0337	0.0300	112	80-120				
4-Bromofluorobenzene	0.0297	0.0300	99	80-120				

Lab Batch #: 726690

Sample: 511311-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		1	[D]					
1,4-Dıfluorobenzene	0.0276	0.0300	92	80-120				
4-Bromofluorobenzene	0.0317	0.0300	106	80-120				

Lab Batch #: 727132

Sample: 306754-001 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	78.8	100	79	70-135				
o-Terphenyl	43.9	50.0	88	70-135				

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Work Order #: 306754

Project ID:

Lab Batch #: 727132

Sample: 306754-001 S / MS

Matrix: Soil Batch:

Units: mg/kg	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod	Amount Found [A]	Control Limits %R	Flags					
Analytes			[D]					
1-Chlorooctane	92.6	100	93	70-135				
o-Terphenyl	49.0	50.0	98	70-135				

Lab Batch #: 727132

Sample: 306754-001 SD / MSD

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	82.5	100	83	70-135					
o-Terphenyl	45.1	50.0	90	70-135					

Lab Batch #: 727132

Sample: 306754-002 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
Analytes 1-Chlorooctane	78.1	100	78	70-135				
o-Terphenyl	43.6	50.0	87	70-135				

Lab Batch #: 727132

Sample: 306754-003 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1-Chlorooctane	82.0	100	82	70-135				
o-Terphenyl	45.8	50.0	92	70-135				

Lab Batch #: 727132

Sample: 306754-004 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY						
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1-Chlorooctane	75.5	100	76	70-135				
o-Terphenyl	42.4	50.0	85	70-135				

^{**} Surrogates outside limits, data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Work Order #: 306754

Project ID:

Lab Batch #: 727132

Sample: 511576-1-BKS / BKS

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1-Chlorooctanc	91.7	100	92	70-135				
o-Terphenyl	50.3	50.0	101	70-135				

Lab Batch #: 727132

Sample: 511576-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY								
TPH by SW8015 Mod Analytes -Chlorooctane	Amount Found [A]								
Analytes			[D]						
1-Chlorooctane	89.2	100	89	70-135					
o-Terphenyl	49.2	50.0	98	70-135					

Lab Batch #: 727132

Sample: 511576-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1-Chlorooctane	95.4	100	95	70-135				
o-Terphenyl	52.0	50.0	104	70-135				

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: Fairway-South Red Lake II Unit # 59

Work Order #: 306754

Project ID:

Lab Batch #: 726918

Sample: 726918-1-BKS

Matrix: Solid

Date Analyzed: 07/01/2008

Date Prepared: 07/01/2008

Analyst: LATCOR

Reporting Units

Reporting Units: mg/kg	mg/kg Batch#: 1 BLANK/BLANK SPIKE RECOVERY STU					
Inorganic Anions by EPA 300	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes	[A]	[B]	Result [C]	%R [D]	%R	
Chloride	ND	10.0	10.8	108	75-125	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: Fairway-South Red Lake II Unit # 59

Work Order #: 306754

Project ID:

Analyst: BRB

Date Prepared: 06/27/2008

Date Analyzed: 06/29/2008

Lab Batch ID: 726690

Sample: 511311-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY									
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	(E)	Result [F]	[G]				
Benzene	ND	0.1000	0.0953	95	0.1	0.1024	102	7	70-130	35	
Toluene	ND	0.1000	0.0913	91	0.1	0.0978	98	7	70-130	35	
Ethylbenzene	ND	0.1000	0.0977	98	0.1	0.1057	106	8	71-129	35	
m,p-Xylenes	ND	0.2000	0.1962	98	0.2	0.2122	106	8	70-135	35	
o-Xylene	ND	0.1000	0.0982	98	0.1	0.1063	106	8	71-133	35	

Analyst: ASA

Date Prepared: 07/01/2008

Date Analyzed: 07/03/2008

Lab Batch ID: 727132

Sample: 511576-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg		BLAN	K/BLANK	SPIKE / I	BLANK S	PIKE DUPI	ICATE	RECOVI	ERY STUD	Y	
TPH by SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Bik. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1000	822	82	1000	846	85	3	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	803	80	1000	830	83	3	70-135	35	

Relative Percent Difference RPD = 200*|(D-F)/(D+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: Fairway-South Red Lake II Unit # 59

Work Order #: 306754

Lab Batch #: 726918 **Date Analyzed:** 07/01/2008

QC- Sample ID: 306754-001 S

Date Prepared: 07/01/2008

Project ID:

Analyst: LATCOR

Batch #:

Matrix: Soil

Reporting Units: mg/kg	MATI	MATRIX / MATRIX SPIKE RECOVERY STUDY										
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag						
Chloride	413	1160	1840	123	75-125							

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B) All Results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Fairway- South Red Lake II Unit # 59

Work Order #: 306754

Project ID:

Lab Batch ID: 726690

QC- Sample ID: 306745-009 S

Batch #:

Matrix: Soil

Date Analyzed: 06/29/2008

Date Prepared: 06/27/2008

Analyst: BRB

Reporting Units: mg/kg		N	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	ND	0.1014	0.0645	64	0.1014	0.0286	28	78	70-130	78	X
Toluene	ND	0.1014	0.0572	56	0.1014	0.0275	27	70	70-130	70	Х
Ethylbenzene	ND	0.1014	0.0537	53	0.1014	0.0254	25	72	71-129	72	Х
m,p-Xylenes	ND	0.2028	0.1066	53	0.2028	0.0489	24	75	70-135	75	Х
o-Xylene	ND	0.1014	0.0532	52	0.1014	0.0301	30	54	71-133	54	Х

Lab Batch ID: 727132

QC-Sample ID: 306754-001 S

Batch #:

Matrix: Soil

Date Analyzed: 07/03/2008

Date Prepared: 07/01/2008

Analyst: ASA

antina Uniter ma/ka

Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		1
TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample		Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
C6-C12 Gasoline Range Hydrocarbons	ND	1160	949	82	1160	861	74	10	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1160	911	79	1160	831	72	9	70-135	35	

Sample Duplicate Recovery

Project Name: Fairway-South Red Lake II Unit # 59

Work Order #: 306754

Lab Batch #: 726918

Date Analyzed: 07/01/2008

Project ID:

Date Prepared: 07/01/2008

Analyst: LATCOR

QC- Sample ID: 306754-001 D

Batch #: 1

Matrix: Soil

Reporting Units: mg/kg	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	413	407	1	20	

Lab Batch #: 726607

Date Analyzed: 06/27/2008

Date Prepared: 06/27/2008

Analyst: JLG

QC- Sample ID: 306745-015 D

Batch #:

Matrix: Soil

Reporting Units: %	SAMPLE / SAMPLE DUPLICATE RECOVERY									
Percent Moisture	Parent Sample Result [A]	Duplicate Result	RPD	Control Limits %RPD	Flag					
Analyte		[B]								
Percent Moisture	1.07	ND	NC	20						

·U
G)
Ö
æ
_
5
₫,

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West i-20 Enst Odessa, Texas 78765 Phone 432-863-1800 Fax. 432-563-1713

	Project Manager <u>Cu</u>	art Stanley			PAGE 01 O	F 01									_	Pro	oject	Nan	ne _l	Fairv	vay	S04	rth	Red	امـا ا	kə (1	Unit	#59	
	Company Name Ba	ısin Environmental Şe	rvice T	chnol	logies, LLC										_		Pr	ojec	t#:_										
	Company Address: 28	00 Pjeins Hwy													_		Proje	ict Li	oc <u>l</u>	ddy	Cour	ty, N	M						
	City/State/Zip Lo	vington, NM 88260													_			PO	#										_
	Telephone No: (60	25) 441-2244	A			Fax No	_) 396 an le			sine	env e	com	_	Repor	t For	met:	: [St	anda	rd		7	RRP	ı		NPDE:	s
//ab	se only)		7	~			-			-				nee.						TCU		alyzi	Fo	-	- ₇ -	$\overline{-}$	_	П.	1
	10000	.1						_												TOTAL			\dashv	X				25	}
CAB # (lab use ont))	FRELD C		Beginning Depth	Ending Depth	Date Sampled	Time Sampled		Total 8 of Continuers	Pri	CA X 2)			Ha ₂ O ₂ O ₃	Other (Specify)	S. Sudon	CW - Groundwater St. Sod/Seifa in R	TPH 4181 (8015M) 8015B		Cabars (Ca, Mg, No K)	Anions (Cl. BOA Alkalimity) SAR / ESP / CEC	Metals As Ag Bu Cd Cr Pb Hg Se	Voletiles	Serrivolatiles	BTIX 80218/6039 or BTEX 8260	KORM	Chloridge E 300)	RUSH TAT (*** Schedule) 24 48.	
01	NE-	2			6/26/2008	1000	-	-	x	x		П			5	Soll	x		\top					x		х			x
01	, SE-	2			6/26/2008	1005		1	x	X				\perp		Soil	X						I	x	Ι	x		\perp	x
01	NW-	-2			6/28/2008	1010		1	x	X					5	3oi)	х			L	L			x	Ι	x		\perp	x
0	∆ sw-	2			6/26/2008	1015	_	1	x	Х		Ц	Ц	丄	_5	Boll	X		\perp	4_		\perp	\perp	x	1	x	Ц	_	×
—			-				4	4	4	4_	L	Ц	4	┸	L		Ц		4	1	H	4	4	4	4-	╄-	\square	_	\dashv
-	 						+	4	+	+-	ļ.,	\vdash	-+		├-		Н	\dashv	+	+	Н	\dashv		+	+	┾┤	╌	+	Н
-	+		-				-	+	+	+-	Н	\vdash	+	+	╀╌		Н	\dashv	+	+	Н	+		+	╁	┰	-+	+	Н
<u> </u>	 						-	+	+	+-	Н	H	+	+	╁		Н	-	+	+-	+	\dashv	_	十	+	+	\vdash	十	Н
			 - 				\dashv	\dagger	╁	+	Н	H	+	+	┢		H	寸	Ŧ	+	Н	十		+	╈	+-	\vdash	十	Ħ
Specia	il Instructions.	to Basin Environme	ental		· · · · · · · · · · · · · · · · · · ·		J-					<u></u>						,	Sami VOC	ele Co	ntair of H	nme	ntaci pace	t?		5	2	N N	٦
	shed by	- (, 27) D	G G	25	Received by								1		ate ate		Time	_ ;	Cust Cust	dy se dy se	els c	iner(i n cor n cor eliver	nletı Dele	er(s)		Ć	88 BOB	z (<u>8</u>) z z	
																		╛	b	y Cou	ner?	tnekt J	JP\$	O	HL	Fed	ξ, ι	N Lane S	tær
Relinqu	ished by	Date	Tir	ne	Received by ELC	יי	δv	vn	U_			_	į	o. Z	ale 7 0		7 C	13	Tem	a al	16. G	on R	Sec.	pt.	9	e e		°C	

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client	Basin Env.			
ate/ Time	6.77.08 9:03			
ab ID#	300754			
ntials	ar			
	Sample Receipt	Checklist		Client initials
1 Tempera	ature of container/ cooler?	T VOR	No	5.5 °C
	container in good condition?	Yes	No	
	Seals intact on shipping container/ cooler?	Yes	No	And Present
	Seals intact on sample bottles/ container?	Tes !	No	Not Present
	Custody present?	(e)	No	
	instructions complete of Chain of Custody?	Vei	No	
	Custody signed when relinquished/ received?	Ves	No	
	Custody agrees with sample label(s)?	(e)	No	ID written on Cont / Lid
S Containe	er label(s) legible and intact?	Ves	No	Not Applicable
10 Sample	matrix/ properties agree with Chain of Custody?	Xes	No	TTO Applicable
	ners supplied by ELOT?	Ves	No	
	es in proper container/ bottle?	Yes	No	See Below
	es properly preserved?	Yes	No	See Below
	e bottles intact?	Vas	No	OEG BEIOW
	vations documented on Chain of Custody?	(6)	No	
		Yes	No	
	ners documented on Chain of Custody? ent sample amount for indicated test(s)?	1	No	}
			No	See Selow
	ples received within sufficient hold time?	Yes	No	See Below
	ntract of sample(s)?	Yes Yes		Alot Applicable
#20 VOC 88	amples have zero headspace?	765	No	Not Applicable
Contact Regarding	Variance Docui	mentation	•	Date/ Time
Corrective A	oction Taken:			
Check all the	at Apply: \(\sigma\) See attached e-maii/ fax			
Check all th	Client understands and wou	id like to pro-	reed with	n analysie
	Cooling process had begun			