District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III

I

State of New Mexico Energy Minerals and Natural Resources Department n:..: ' 0.1 0 +;

OCT 0 5 2009

Form C-144 July 21, 2008

District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505	Department Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505	For temporary pits, closed-loop systems, and below-grade tanks, submit to the appropriate NMOCD District Office. For permanent pits and exceptions submit to the Santa Fe Environmental Bureau office and provide a copy to the appropriate NMOCD District Office.
	osed-Loop System, Below-Grade 1 native Method Permit or Closure P	
<mark>⊠-Closure</mark> ☐ Modific	of a pit, closed-loop system, below-grade tank, o of a pit, closed-loop system, below-grade tank, o ation to an existing permit plan only submitted for an existing permitted or d alternative method	or proposed alternative method
0 / 1 /	on (Form C-144) per individual pit, closed-loop syste	em. below-grade tank or alternative request
Please be advised that approval of this request does not a	relieve the operator of liability should operations result in its responsibility to comply with any other applicable go	n pollution of surface water, ground water or the
1. Operator: <u>Sovereign Eagle, LLC</u>	OGRID #:	263940
	8	
Facility or well name: <u>Barnard "3b" #1</u>		
API Number. <u>30-005-63654</u>	OCD Permit Number:	
U/L or Qtr/Qtr Section3	Township <u>3S</u> Range <u>29E</u>	County: <u>Chaves</u>
Center of Proposed Design: Latitude	Longitude	NAD: 1927 1983
Surface Owner: 🛛 Federal 🛄 State 🛄 Private 🛄	Tribal Trust or Indian Allotment	i
2. Pit: Subsection F or G of 19.15.17.11 NMAC Temporary: Drilling □ Workover Permanent □ Emergency □ Cavitation Permanent □ Unlined Liner type: Thickness String-Reinforced Liner Seams: □ Welded □ Factory □ Other	&A 20mil 🔲 LLDPE 🗌 HDPE 🗌 PVC 🛄 Otl	her Dimensions: L25'x W_25'x D8'
intent)	II 🗍 Workover or Drilling (Applies to activities whi	Other
4. Below-grade tank: Subsection I of 19.15.17.1 Volume:bbl Type of flu Tank Construction material: Secondary containment with leak detection [] Visible sidewalls and liner [] Visible sidewall	11 NMAC id:	erflow shut-off
Alternative Method:		

Submittal of an exception request is required. Exceptions must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.

11. Temporary Pits, Emergency Pits, and Below-grade Tanks Permit Application Attachment Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached. Hydrogeologic Report (Below-grade Tanks) - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC Hydrogeologic Data (Temporary and Emergency Pits) - based upon the requirements of Paragraph (2) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Design Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC Previously Approved Design (attach copy of design) API Number: or Permit Number:
12. Closed-loop Systems Permit Application Attachment Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached. Geologic and Hydrogeologic Data (only for on-site closure) - based upon the requirements of Paragraph (3) of Subsection B of 19.15.17.9 Siting Criteria Compliance Demonstrations (only for on-site closure) - based upon the appropriate requirements of 19.15.17.10 NMAC Design Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC
Previously Approved Design (attach copy of design) API Number:
Previously Approved Operating and Maintenance Plan API Number:
13. Permanent Pits Permit Application Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached. Hydrogeologic Report - based upon the requirements of Paragraph (1) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Climatological Factors Assessment Certified Engineering Design Plans - based upon the appropriate requirements of 19.15.17.11 NMAC Dike Protection and Structural Integrity Design - based upon the appropriate requirements of 19.15.17.11 NMAC Leak Detection Design - based upon the appropriate requirements of 19.15.17.11 NMAC Quality Control/Quality Assurance Construction and Installation Plan Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Nuisance or Hazardous Odors, including H ₂ S, Prevention Plan Difield Waste Stream Characterization Monitoring and Inspection Plan Errosion Control Plan Closure Plan - based upon the appropriate requirements of 19.15.17.9 NMAC and 19.15.17.13 NMAC
Proposed Closure: 19.15.17.13 NMAC Instructions: Please complete the applicable boxes, Boxes 14 through 18, in regards to the proposed closure plan. Type: Drilling Workover Emergency Cavitation P&A Permanent Pit Below-grade Tank Closed-loop System Alternative Proposed Closure Method: Waste Excavation and Removal Waste Removal (Closed-loop systems only) On-site Closure Method (Only for temporary pits and closed-loop systems) In-place Burial On-site Trench Burial Alternative Closure Method (Exceptions must be submitted to the Santa Fe Environmental Bureau for consideration) Image: Closure Method (Exceptions must be submitted to the Santa Fe Environmental Bureau for consideration)
 ^{15.} Waste Excavation and Removal Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the closure plan. Please indicate, by a check mark in the box, that the documents are attached. Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings) Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC

.

Fencing: Subsection D of 19.15.17.11 NMAC (Applies to permanent pits, temporary pits, and below-grade tanks)

Chain link, six feet in height, two strands of barbed wire at top (Required if located within 1000 feet of a permanent residence, school, hospital, institution or church)

Four foot height, four strands of barbed wire evenly spaced between one and four feet

Alternate. Please specify

6

7

8

10.

Netting: Subsection E of 19.15.17.11 NMAC (Applies to permanent pits and permanent open top tanks)

Screen 🗌 Netting 🗌 Other

Monthly inspections (If netting or screening is not physically feasible)

Signs: Subsection C of 19.15.17.11 NMAC

12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers

Signed in compliance with 19.15.3.103 NMAC

Administrative Approvals and Exceptions:

Justifications and/or demonstrations of equivalency are required. Please refer to 19.15.17 NMAC for guidance.

Please check a box if one or more of the following is requested, if not leave blank:

Administrative approval(s): Requests must be submitted to the appropriate division district or the Santa Fe Environmental Bureau office for consideration of approval.

Exception(s): Requests must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.

Siting Criteria (regarding permitting): 19.15.17.10 NMAC

Instructions: The applicant must demonstrate compliance for each siting criteria below in the application. Recommendations of acceptable source material are provided below. Requests regarding changes to certain siting criteria may require administrative approval from the appropriate district office or may be considered an exception which must be submitted to the Santa Fe Environmental Bureau office for consideration of approval. Applicant must attach justification for request. Please refer to 19.15.17.10 NMAC for guidance. Siting criteria does not apply to drying pads or above-grade tanks associated with a closed-loop system.

Ground water is less than 50 feet below the bottom of the temporary pit, permanent pit, or below-grade tank. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	🗌 Yes 🗌 No
Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site	🗋 Yes 🗌 No
 Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. (Applies to temporary, emergency, or cavitation pits and below-grade tanks) Visual inspection (certification) of the proposed site; Aerial photo; Satellite image 	☐ Yes ☐ No ☐ NA
 Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. (Applies to permanent pits) Visual inspection (certification) of the proposed site; Aerial photo; Satellite image 	☐ Yes ☐ No ☐ NA
 Within 500 horizontal feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock watering purposes, or within 1000 horizontal feet of any other fresh water well or spring, in existence at the time of initial application. NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site 	🗌 Yes 🗌 No
 Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. Written confirmation or verification from the municipality; Written approval obtained from the municipality 	🗌 Yes 🗌 No
 Within 500 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site 	🗌 Yes 🗌 No
 Within the area overlying a subsurface mine. Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division 	🗌 Yes 🗌 No
 Within an unstable area. Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map 	🗌 Yes 🗌 No
Within a 100-year floodplain. - FEMA map	🗋 Yes 🗌 No

^{16,} Waste Removal Closure For Closed-loop Systems That Utilize Above Ground Steel Tanks or Haul-off Bins Only: (19.15.17.13.)								
Instructions: Please indentify the facility or facilities for the disposal of liquids, drilling fluids and drill cuttings. Use attachment if								
facilities are required.								
Disposal Facility Name: Disposal Facility Permit Number:								
Disposal Facility Name: Disposal Facility Permit Number:								
Will any of the proposed closed-loop system operations and associated activities occur on or in areas that <i>will not</i> be used for future service and operation Yes (If yes, please provide the information below) No								
Required for impacted areas which will not be used for future service and operations: Soil Backfill and Cover Design Specifications based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection I of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC	С							
^{17.} <u>Siting Criteria (regarding on-site closure methods only)</u> : 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable sour provided below. Requests regarding changes to certain siting criteria may require administrative approval from the appropriate dist considered an exception which must be submitted to the Santa Fe Environmental Bureau office for consideration of approval. Just demonstrations of equivalency are required. Please refer to 19.15.17.10 NMAC for guidance.	rict office or may be							
Ground water is less than 50 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	☐ Yes ⊠ No ☐ NA							
Ground water is between 50 and 100 feet below the bottom of the buried waste - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	□ Yes ⊠ No □ NA							
Ground water is more than 100 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	⊠ Yes □ No □ NA							
 Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site 	🗌 Yes 🛛 No							
 Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; Aerial photo; Satellite image 	🗌 Yes 🛛 No							
 Within 500 horizontal feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock watering purposes, or within 1000 horizontal feet of any other fresh water well or spring, in existence at the time of initial application. NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site 	🗌 Yes 🛛 No							
 Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. Written confirmation or verification from the municipality; Written approval obtained from the municipality 	🗋 Yes 🛛 No							
 Within 500 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site 	🗌 Yes 🛛 No							
 Within the area overlying a subsurface mine. Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division 	🗌 Yes 🛛 No							
 Within an unstable area. Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map 	🗌 Yes 🛛 No							
Within a 100-year floodplain. - FEMA map	🗌 Yes 🛛 No							
 18. On-Site Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the closure play a check mark in the box, that the documents are attached. Sting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Proof of Surface Owner Notice - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Construction/Design Plan of Burial Trench (if applicable) based upon the appropriate requirements of 19.15.17.11 NMAC Construction/Design Plan of Temporary Pit (for in-place burial of a drying pad) - based upon the appropriate requirements of 19. Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC 								

Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC
 Waste Material Sampling Plan - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC
 Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings or in case on-site closure standards cannot be achieved)
 Soil Cover Design - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC

Re-vegetation Plan - based upon the appropriate requirements of Subsection I of 19.15.17.13 NMAC
 Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC

19. Operator Application Certification:
I hereby certify that the information submitted with this application is true, accurate and complete to the best of my knowledge and belief.
Name (Print): _ TRAALC S. NORGAAL Title: _ Vice - Har,
Signature: Frank My Date: 10/19/09
Name (Print): FRANCE S. MORYAN Title: Dice- Proc. Signature: France Maryan Date: 10/19/09 e-mail address: FMORYAN & Standa NM. com Telephone: (S75) 622-(127 FXT-14)
20. OCD Approval: Permit Application (including closure plan) 🕅 Closure Plan (only) 🔲 OCD Conditions (see attachment)
OCD Representative Signature: Approval Date: OCT 1 9 2009
Title: OCD Permit Number:
21. Closure Report (required within 60 days of closure completion): Subsection K of 19.15.17.13 NMAC Instructions: Operators are required to obtain an approved closure plan prior to implementing any closure activities and submitting the closure report. The closure report is required to be submitted to the division within 60 days of the completion of the closure activities. Please do not complete this section of the form until an approved closure plan has been obtained and the closure activities have been completed.
22. Closure Method: Waste Excavation and Removal On-Site Closure Method Alternative Closure Method Waste Removal (Closed-loop systems only) If different from approved plan, please explain.
^{23.} <u>Closure Report Regarding Waste Removal Closure For Closed-loop Systems That Utilize Above Ground Steel Tanks or Haul-off Bins Only:</u> Instructions: Please indentify the facility or facilities for where the liquids, drilling fluids and drill cuttings were disposed. Use attachment if more than two facilities were utilized.
Disposal Facility Name: Disposal Facility Permit Number:
Disposal Facility Name: Disposal Facility Permit Number:
Were the closed-loop system operations and associated activities performed on or in areas that <i>will not</i> be used for future service and operations? Yes (If yes, please demonstrate compliance to the items below) No
Required for impacted areas which will not be used for future service and operations: Site Reclamation (Photo Documentation) Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique
24 Closure Report Attachment Checklist: Instructions: Each of the following items must be attached to the closure report. Please indicate, by a check mark in the box, that the documents are attached. Proof of Closure Notice (surface owner and division) Proof of Deed Notice (required for on-site closure) Plot Plan (for on-site closures and temporary pits) Confirmation Sampling Analytical Results (required for on-site closure) Disposal Facility Name and Permit Number Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique Site Reclamation (Photo Documentation)
On-site Closure Location: Latitude Longitude NAD: 1927 1983 25.
25. <u>Operator Closure Certification</u> : I hereby certify that the information and attachments submitted with this closure report is true, accurate and complete to the best of my knowledge and belief. I also certify that the closure complies with all applicable closure requirements and conditions specified in the approved closure plan.
Name (Print): Title:
Signature: Date:
e-mail address: Telephone:

.

New Mexico Energy, Minerals and Natural Resources Department

Bill Richardson Governor

Joanna Prukop Cabinet Secretary Mark Fesmire Division Director Oil Conservation Division

Conditions of approval for onsite disposal of drilling pit contents:

Samples are to be obtained from pit contents and analyses ran per 19.15.17.13. Paragraph F [NMAC]. In the event the analytical requirements are not met, onsite disposal will not be permitted and the alternative closure method will be required.

Sample analyses of pit contents are to be submitted to NMOCD and approval granted prior to closure of burial trench.

Per 19.15.17 NMAC, Operator shall notify the District Office at least 72 hours, but not more than one week, prior to commencement of closure operations. The notice shall include the operator's name and the location to be closed by unit letter, section, township and range. The notice shall also include the well name, number and API number.

Notify NMOCD District 2 Office 48 hours prior to obtaining samples from drilling pit contents.

Notify NMOCD District 2 Office 48 hours prior to obtaining samples from drilling pit bottom.

Adherence to all requirements per 19.15.17 [NMAC]

SOVEREIGN EAGLE, LLC

OCT 0 5 2009

P.O. BOX 968

ROSWELL, NM 88202-0968 575-623-1957 TEL 575-623-3533 FAX

October 5, 2009

Oil Conservation Division

Re: Plugging Procedure on the Barnard "3b" #1

To Whom It May Concern:

Sovereign Eagle, LLC is submitting a C-103 for Plugging Procedure with a diagram for the Barnard "3B" #1. Sovereign Eagle, LLC is also submitting a C-105 & C-144 for the on-site closure for the Barnard "3B" #1. Information enclosed meets with Siting Criteria: 19.15.17.10 NMAC.

Attachments Included:

- 1) Proof of Closure Notice
- 2) Proof of Deed Notice
- 3) Plot Plane (On-site closure)
- 4) Confirmation Sampling Analytical Results
- 5) Soil back filling and cover installation
- 6) Re-Vegetation Application and Seeding
- 7) Site Reclamation (photo documentation)

If you require additional information please contact me at the number above extension 12.

Sincerely,

Alm

Frank S. Morgan Manager of Operations

Submit To Appropriate District Office Two Copies District I				En		State of Ne							Form C-105 July 17, 2008					
1625 N. French Dr. District II				EII	ergy, I	Minerals and	u na	urz	ii Ke	sources		1. WELL API NO.						
District III				Oil Conservation Division						30-005-63654 2 Type of Lease								
1000 R10 Brazos R District IV						20 South St				r.		3. State Oil		FE		FED/IND	IAN	
1220 S. St. Francis						Santa Fe, N						3. State Oli				1999 (March 1997)	Manager 3) 1 .	
4. Reason for fili		LETIO	NOR	REUL	JNIPL	ETION REI	PUF	(1)	AND	LUG		5. Lease Nar						
COMPLETI	U		l in hora	#1 throw	ah #21	for State and Eas	oollo	anti	<u>م</u>			Barnard 3	В					
					-							6. Well Num	iber:					
C-144 CLOS #33; attach this at 7. Type of Comp	nd the pla										d/or	001						
	VELL [WORK	OVER [DEEPH	ENING		<u>K 🗆 I</u>	DIFF	EREN	T RESER	VOIR							
8. Name of Opera SOVEREIGN EA		LC										9. OGRID 263940						
10 Address of O	perator		000 00/0				- 10		-			11. Pool nam	e or W	lldcat				
P.O. BOX 968, R	Unit Lti			Towns	hip	Range	Lot			Feet from	the	N/S Line	Fee	t from th	ne E/W	Line	County	
Surface:	В	3		35		29E				660		N	198	30	E		CHAVES	
BH:																		
13. Date Spudded 4/28/04	14. E 05-12	Date T.D. R 2-04	eached	15. I 05-1		Released				Date Comp 18-04	oleted	(Ready to Pro	duce)			ations (DF , etc.) KB	and RKB, 4360'	
18. Total Measure 3444'	ed Depth	of Well		19. F	lug Bac	k Measured Dep	oth		20. NO	Was Direc	tiona	l Survey Made	?				ther Logs Run	
22. Producing Int GLORIETA 7			-	Top, Bot	tom, Na	me	-		<u> </u>					1	<u> </u>	·		
23.	0.071	111 KO	571		CAS	ING RECO	ORI) (I	Repo	ort all st	ring	zs set in w	vell)					
CASING SI	ZE	WEI	GHT LB./	ΈT.	DEPTH SET HOLE SIZE				CEMENTING RECORD AMOUNT PULLED									
<u>8 5/8"</u> <u>5 ¹/2"</u>			<u>24#</u> 15.5#	354'			<u>12 ¼"</u> 7 7/8"			260 SX "C" 2%KCI 525 SX 35/65 "C"				CIRC 1	<u>O PIT</u>			
3 72			15.5#	3444'			1 1/8			250 SX TAIL			CIRC TO PIT		O PIT			
					INT	ER RECORD					25.			NC DE			<u></u>	
24. SIZE	TOP		BO	ттом	LINI	SACKS CEME	ENT	SC	REEN	<u> </u>	25. SIZ			NG RE EPTH SI		PACK	ER SET	
											23	3/8"	8	00'		800'		
26 Perforation	record (i	nterval su	e and nu	mber)				27	ACI	D SHOT	FP	ACTURE, CI			IEEZE			
3266-3292 (24 H	OLES) .4	12 HOLES	o, and nu	moery						NTERVAI		AMOUNT A						
3205-3220 (30 H 3117-3121 (20 H										ONES		1500 GAL 15% NEFE W/ BALL SEALERS						
2951-3001 (100 H			5	EACH				CH										
805-910 (70 HOL						<u></u>												
28 Date First Produc	tion		Decidence	tion M-1	and (FI	wing, gas lift, pu				TION	<u></u>	Well Statu	. (D	d or ci	et int			
					iou (<i>F 10</i>	ming, gus iiji, pu	smping	5 - 51.	20 unu	sype pump	'		5 (1 70	u. or sm	<i>.n</i> j			
6/11/04 Date of Test	Hour	s Tested	FLOW	ING oke Size	I	Prod'n For		Oil	– Bbl		Gas	SI S - MCF	W	ater - Bł	ol.	Gas - C	Dil Ratio	
6/11/04	24 HI	RS	1/2			Test Period		0			50		25					
Flow Tubing Press.	Casin	g Pressure		culated 2 ur Rate	24-	Oil - Bbl. 0		I	Gas - 30	MCF		Water - Bbl. 25		Oil G	ravity - A	API - (Cor	r.)	
75 29. Disposition of	0	Id used for							50				1.20	Test Witi	named P			
VENTED	Jas (30	ia, usea joi	juei, ven	ieu, elC.)									50.	1 CSL W III	nessea B	y		
31. List Attachme					•								•					
PLATES & C-14 32. If a temporary	t pit was	used at the	well, atta	ich a plat	with the	e location of the	tempo	rary	pit.									
33. If an on-site b	urial was	used at th	e well, rej	port the e	xact loca	ation of the on-si	ite bur	ial:	-									
I hereby certif	y that t	he inforn	nation s	hown o			N34 form	4446 is t	<u>8</u> rue a	nd comp	lete	Longitude to the best of	<u>W103</u> of my	5342.2 knowl	edge ai	NAD 192 nd belief	7 1983	
Signature) Denni	m				rinted Name FRAN	K M	OR	GAN	Title N	MAN	AGER OF	OPE	RATIO	ONS E	Date 10/0	5/09	
E-mail Addres		organ@:	stratann	n.com														
1																		

INSTRUCTIONS

This form is to be filed with the appropriate District Office of the Division not later than 20 days after the completion of any newly-drilled or deepened well and not later than 60 days after completion of closure. When submitted as a completion report, this shall be accompanied by one copy of all electrical and radio-activity logs run on the well and a summary of all special tests conducted, including drill stem tests. All depths reported shall be measured depths. In the case of directionally drilled wells, true vertical depths shall also be reported. For multiple completions, items 11, 12 and 26-31 shall be reported for each zone.

INDICATE FORMATION TOPS IN CONFORMANCE WITH GEOGRAPHICAL SECTION OF STATE

Southea	astern New Mexico	Northv	vestern New Mexico
T. Anhy	T. Canyon	T. Ojo Alamo	T. Penn A"
T. Salt	T. Strawn	T. Kirtland	T. Penn. "B"
B. Salt	T. Atoka	T. Fruitland	T. Penn. "C"
T. Yates <u>1165'</u>	T. Miss	T. Pictured Cliffs	T. Penn. "D"
T. 7 Rivers	T. Devonian	T. Cliff House	T. Leadville
T. Queen <u>1773'</u>	T. Silurian	T. Menefee	T. Madison
T. Grayburg	T. Montoya	T. Point Lookout	T. Elbert
T. San Andres <u>2070'</u>	T. Simpson	T. Mancos	T. McCracken
T. Glorieta <u>3250'</u>	T. McKee	T. Gallup_	T. Ignacio Otzte
T. Paddock	T. Ellenburger	Base Greenhorn	T.Granite
T. Blinebry	T. Gr. Wash	T. Dakota	
T.Tubb	T. Delaware Sand	T. Morrison	
T. Drinkard	T. Bone Springs_	T.Todilto_	
T. Abo	T	T. Entrada	
T. Wolfcamp	T	T. Wingate	
T. Penn	T	T. Chinle_	
T. Cisco (Bough C)	T	T. Permian	

OIL OR GAS SANDS OR ZONES

No. 1, from	No. 3, fromtoto

IMPORTANT WATER SANDS

Include data on rate of water inflow and elevation to which water rose in hole.

LITHOLOGY RECORD (Attach additional sheet if necessary)

From	То	Thickness In Feet	Lithology	From	То	Thickness In Feet	Lithology
920 1120 1810 2070 2950 3050 3250	920 1120 1810 2070 2950 3050 3250 3310 3450	920 200 690 260 880 100 200 60 140	RED SHALE AND SAND RED SHALE AND SANDSTONE ANY, SALT RED SHALE & SILTSTONE RED SHALE AND SILTSTONE ANYH, SALT AND DOLOMITE POROUS DOLOMITE AND ANYH LIMESTONE, DOLOMITE AND ANYH WHITE SANDSTONE ANYH, SALT AND RED SHALE				

District I PO Box 1988, Hobbs. NM 35241-1980 District II PO Drawer DD, Artenia. NM 85211-9719 District III 1008 Rio Brazos Rd., Azzec, NM 87410 District IV PO Box 2088, Santa Fe, NM 87504-2088

(

1

State of New Mexico Energy, Minerals & Natural Resources Department

• .*

1. . . .

OIL CONSERVATION DIVISION PO Box 2088 Santa Fe, NM 87504-2088

Form C-102 Revised February 10, 1994 Instructions on back Submit to Appropriate District Office State Lease - 4 Copies Fee Lease - 3 Copies

AMENDED REPORT

		WE	LL LO	CATION	I AND A	\C R	REAGE DEDI	CATION P	LAT					
API Number ³ Pool Code							Pool Name UND Glorieta							
										Well Number				
FEE BARNARD 3B										1				
'OGRID					* Operator Name * Elevation									
182843 Eagle Resources, LP POBOX 3900 ROSWELL NM 88202										4	354			
		يودي والمراجع			¹⁰ Surfa	ace	Location ·							
UL or lot no. B	Section 3	Township 35	Range 29e	Lot ida	Feet from t 660	be	North/South ine North	Feet from the 1980	East/Wei Eas		County Chaves			
			¹¹ Bot	tom Hol	e Locatio	n I	f Different Fro	om Surface						
UL or lot no.	Section	Township	Range	Lot Ida	Feet from t	be	North/South Eac	Feet from the	East/Wes	t line	County			
" Dedicated Act 40	teiet " Jeist	or Jafill " C	Consolidatio	a Code ¹⁶ C	hrder No.						1			
NO ALLO	WABLE	WILL BE A	SSIGNE	D ТО ТН	IS COMPL	ETI	ON UNTIL ALL	INTERESTS	HAVE BE	en con	SOLIDATED			
		OR A	NON-ST	ANDARD	UNIT HA	<u>s b</u>	EEN APPROVED	and the second se			سه الارام المراجع الم			
16					- 09	·		14			IFICATION			
					(D) It is and complete to the best of my knowledge as									
					ò	{	1980'							
											•			
									n' la	n /				
								Signature	04					
								Printed Na	cou	IER				
		1							. .	PS				
								Title		74.4				
								Date	RIL 16	,200	<u>4</u>			
	-							¹⁸ SUR	VEYOR	CERT	IFICATION			
	ν.										n shown on this plat			
								me or unde	r my supervis	ion, and the	i surveys made by at the same is true			
								and correct	to the best of	my ballef.				
							ъ	Date of Sus	vey kp	A	362			
<u> </u> −−−−−					<u>.</u>			Signature a	ad Scal of Pro					
								5	A.	N QBA	AZ T			
1														
1						1		8112		A PROFESS	LIND -			
								Certificate	Number	\sim				

SOVEREIGN EAGLE, LLC

P.O. BOX 968 ROSWELL, NM 88202-0968 575-623-1957 TEL 575-623-3533 FAX

DEED NOTIFICATION

Drill cutting produced by Sovereign Eagle, LLC in drilling the Barnard "3B" #1 Located in Section 3, Township 3S, Range 29E, Unit Letter "B", 660' FNL & 1980' FEL are buried on this property.

Steel marker on burial site lined with 20 mil string reinforced LLDPE liner. Contents encapsulated w/ 20 mil string reinforced LLDPE liner at a depth of 4'-8'. Coordinates: Latitude (N340446.8) and Longitude (W1035342.2), 11' South & 11' North, 40' East & 40' West.

Signed,

Frank S. Morgan Manager of Operations

ary Signature This sworn before me on this the 5+4 day of C_{1} My commission expires: 02-

NEW MEXICO OIL CONSERVATION DIVISION SANTA FE, NEW MEXIO

AFFIDAVIT OF RESPONSIBILITY CONVERSION TO WATER WELL

STATE OF NEW MEXIO)			
) SS.			
COUNTY OF CHAVES)			

MARK B. MURPHY, being first duly sworn according to law, upon his oath deposes and says:

- 1. That he is Manager of Sovereign Eagle, LLC, whose address is P.O. Box 968; Roswell, New Mexico 88202-0968
- That Sovereign Eagle, LLC is the operator of a well drilled on land belonging to Rose Marie Caldwell, whose address is 1102 South Michigan Avenue; Roswell, New Mexico 88201, said well being drilled to test for hydrocarbons and/or carbon dioxide gas and described as the Barnard #1, being located 660 feet from the North line and 1980 feet from the East line of Section 3, Township 3-South, Range 29-East, NMPM Chaves County, New Mexico API #30-005-63654.

3. That said well was drilled to a total depth of 3,440 feet and that casing has been set and cemented as follows:

8-5/8" 24.00#, J-55, LT&C, Range III set @ 354 feet with cement circulated to surface. 5-1/2" 15.50#, J-55, LT&C, Range III set @ 3,440 feet with cement circulated to surface

4. That operator and landowner have made an agreement whereby operator is to back fill pits, level location, and clear it of all junk. The agreement further provides that operator is to plug said well back to the plugged back total depth of 300 feet and transfers to landowner for his use as a water-well. Operator will leave casing in well as follows:

(As described in Paragraph 3 above)

5. That when operator has complied with the provisions of Paragraph 4 above, it will so notify the Oil Conservation Division of the State of New Mexico on Form C-103, together with the signed statement from the landowner that the provisions of Paragraph 4 above have been complied with to his satisfaction.

ON-SITE TRENCH DESIGN AND CONSTRUCTION

- On-site Trench for Closure:
 - Fold the outer edges of the trench liner to overlap the waste material in the trench prior to the installation of the geomembrane cover.
 - Install a geomembrane cover over the waste material in the lined trench.
 - Install in a manner that prevents the collection of infiltration water in the lined trench and on the geomembrane cover after the soil cover is in place.
 - Consist of a 20-mil string reinforced LLDPE liner or equivalent cover.
 - Composed of an impervious, synthetic material that is resistant to petroleum hydrocarbons, salts and acidic and alkaline solutions.
 - Cover compatibility shall comply with EPA SW-846 method 9090A.
 New Mexico Ol Conservation Division

ON-SITE TRENCH DESIGN AND CONSTRUCTION 19.15.17.11.J NMAC

Step 1. Trench Construction

ON-SITE TRENCH ON-SITE TRENCH DESIGN AND CONSTRUCTION DESIGN AND CONSTRUCTION 19.15.17.11.J NMAC 19.15.17.11.J NMAC Step 2. Filling with Pit Wastes Step 3. Final liner configuration 4 feet for soil cover Trench liner folded over waste AND additional 20 mil string reinforced LLDPE cover Pit Waste Materia Pit Waste Material New Mexico Oil Conservation Division 67 New Mexico Oil Conservation Division

OPERATIONAL REQUIREMENTS

- · General Specifications:
 - If any pit liner's integrity is compromised, or if any penetration of the liner occurs above the liquid's surface:
 - The operator shall notify the appropriate division district office within 48 hours of the discovery

New Mexico Oil Conservation Division

- The operator shall repair the damage or replace the liner.
- · Includes during the implementation of in-place closure.

OPERATIONAL REQUIREMENTS

- General Specifications:
 - Operator shall operate and maintain a pit, closed-loop system, below-grade tank or sump to contain liquids and solids and maintain the integrity of the liner, liner system or secondary containment system.
 - Operator shall recycle, reuse or reclaim or dispose of all drilling fluids in a manner approved by division rules.
 - Operator shall <u>not</u> discharge into or store any hazardous waste in a pit, closed-loop system, below-grade tank or sump.

OPERATIONAL REQUIREMENTS

New Mexico Oil Conservation Divisio

- General Specifications:
 - If a pit, below-grade tank, closed-loop system or sump develops a leak, or if any penetration of the pit liner, belowgrade tank, closed-loop system or sump occurs below the liquid's surface:
 - The operator shall remove all liquid above the damage or leak line within 48 hours.
 - The operator shall notify the appropriate division district office within 48 hours of the discovery.
 - The operator shall repair the damage or replace the pit liner, below-grade tank, closed-loop system or sump.

72

• Applies during the implementation of in-place closure.

2609 North River Road, Port Allen, Louisiana 70767

1 (800) 401-4277 FAX (225) 381-2996

ARS Sample Delivery Group ARS1-09-02087 Request or PO Number: 9072713 **Client Sample ID:** 203832 ARS Sample ID: ARS1-09-02087-001 Sample Collection Date: 07/24/09 Date Received: 07/29/09 Sample Matrix: 09/16/09 Aqueous **Report Date:** Analysis Descriptio Analysis Results Analysis Error +/- 2 s Analysis Tracer/Chem Analysis Analysis Analysis MDC DLC 1 Qual Test Method Units Date/Time Technician Recovery RA-226 0 245 0.645 1.200 0 487 U pCi/L ARS-010/EPA 904 0 1 09/04/09 00 00 ເວ 40%

RA-226 -0 706 1.745 3 267 1 517 ARS-010/EPA 904 0 09/04/09 00 00 GJ 38% U pCi/L NOTES Ra-228 activity is below the MDC Tracer recovery is biased low by 2%

À Project Manager Review

, 4

Notes American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis liself. Reproduction of this report in less than full requires the written consent of the American Radiation Services, Inc.

LELAP Certificate# 01949

NELAP Certificate # E87558

QC Results per Analytical Batch

.....

 Analytical Batch
 ARS1-B09-02948

 . SDG
 Multiple SDGs

 Analysis
 Radium-228/226 in (Water [Aqueous, AQ])

 Analysis Test Method
 ARS-010/Gas Proportional Counter

 Analysis Code
 GPC-A-057

 Report Units
 pCi/L

Acceptable QC Performance Ranges nple Typ QC S Performance Items Laboratory Control Sample Recovery (%): > 75 < 125 Matrix Spike Recovery (%): > 30 < 110 Replicate Error Ratio (RER): < 1 Duplicate Error Ration (DER): Duplicate < 3 Relative Percent Difference (RPD %): ≤ 25

Laboratory Contro			Analysis Date		Analysis Technician	GJONES			
Analysis Batch Samplo ID	QC Type	Analyte	Results	CSU (15)	Expected Value	LCS Rec (%)	MDC		
ARS1-B09-02948-01	LCS	RA-226	30 4	26	29 24	104	0 49		
ARS1-B09-02948-01	LCS	RA-228	13 6	1.3	17.63	77	14		

Duplicate RER/DER		Anaiysis Date		Analysis Techniclan	GJ	ONES	1	
Analysis Batch Samplo ID	QC Type	Analyte	Results	CSU (1s)	RER	DER	RPD	
ARS1-809-02948-02	LCSD	RA-226	25 6	2 2	0 51	1 41	17 1	
ARS1-B09-02948-02	LCSD	RA-228	12 9	1.2	0 14	0 40	53	

Method Blank	Analysis Date		Analysis Technician		ONES	
Analysis Batch Sample ID	QC Type	Analyto	Results	CSU (1 s)	MDC	Qual
ARS1-B09-02948-03	MBL	RA-226	0.203	0 088	0 25	U
ARS1-B09-02948-03	MBL	RA-228	0 17	0 23	0 77	U

Katherine Savoie

Notes American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.

LELAP Certificate# 01949

NELAP Certificate # E87558

2609 North River Road	•	Port Allen, Louisiana	70767
-----------------------	---	-----------------------	-------

`ñ

1 (800) 401-4277 • Fax (225) 381-2996

Notes:

Comments:

- 1 0) Soil and Sludge analysis are reported on a wet basis or an as received basis unless otherwise indicated
- 2 0) Data in this report are within the limits of uncertainty specified in the reference method unless otherwise specified
- 3.0) Modified analysis procedures are procedures that are modified to meet the certain specifications. An example may be the use of a water method to analyze a solid matrix due to the tack of an officially recognized procedure for the analysis of the solid matrix. Modified analyses are indicated by the subsequent addition of "m" to the procedure number (i.e. 900.0M).
- 4 0) Derived Air Concentrations and Effluent Release Concentrations are obtained from 10 CFR 20 Appendix B
- 5.0) Total activity is actually total gamma activity and is determined utilizing the prominent gamma emitters from the naturally occurring radioactive decay chains and other prominent radioactive nuclides. Total activity may be lower than the actual total activity due to the extent of secular equilibrium achieved in the various decay chains at the time of analysis. The total activity is not representative of nuclides that emit solely alpha or beta particles.
- 6 0) Ra-228 is determined via secular equilibrium with its daughter, Actinium 228 (Gamma Spectroscopy only).
- 7 0) U-238 is determined via secular equilibrium with its daughter, Thonum 234 (Gamma Spectroscopy only).
- 8 0) All gamma spectroscopy was performed utilizing high punty germanium detectors (HPGe)
- 9 0) ARS makes every attempt to match sample density to calibrated density, however, in some cases, it is not practical or possible to do so and data results may be affected

Method References:

- 1 0) EPA 600/4-80-032, Prescribed Procedures for the Measurements of Radioactivity in Drinking Water, August 1980
- 2 0) Standard Methods for Examination of Water and Waste Water, 18th, 1992
- 3.0) EPA SW-846, Test Methods for Evaluating Solid Waste, Third Edition, (9/86) (Updated through 1995)
- 4 0) EPA 600/4/79-020, Methods for Chemical Analysis of Water and Waste, March 1983
- 5.0) HASL 300
- 6.0) ARS-040, An LCSD is not reported with this process. The criteria for the LCS/LCSD analysis for reproducibility have not been established for Low Level Tritium analysis. A prepared standard for Low Level Tritium has not been developed. As a result, the standard we use is based on the dilution of a verified conventional tritium standard. The volume required for Low Level Tritium analysis, in addition to the lack of an available Low Level Tritium standard, introduce variability into the LCS/LCSD analysis that does not represent the actual sample analysis. The preferred measure for reproducibility is to run a duplicate analysis of a sample.

Definitions:

10)	ND	Not detected above the detection limit (non-detect)
2 0)	MDC	(Minimum Detectable Concentration) minimum concentration of the analyte that ARS can detect utilizing the
		specific analysis
30)	MBL	Method Blank
4 0)	DO	Duplicate Original
50)	DUP	Method Duplicate
60)	MS/MSD	Matrix Spike/Matrix Spike Duplicate
70)	S	Spike
8 0)	RS	Reference Spike
9 0)	*SC	Subcontracted out to another qualified laboratory
10.0)	NR	Not Referenced
11 0)	N/A	Not Applicable
12.0)	•	Reported as a calculated value
13 0)	**	False Positive due to interference from Bi-214
14 0)	U	Activity is below the MDC
15.0)	LCS/LCSD	Laboratory Control Standard/Laboratory Control Standard Duplicate

Notes ARS International assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of ARS International

LELAP Cert# 01949

NELAP Cert# E87558

9072713	LAB Order ID #	9072713	Page of
TraceAnalysis, I	C: 6701 Aberdeen Avenue, Suite 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1296 1 (800) 378-1296	Midland, Texas 79703 El Pas Tel (432) 689-6301 Tel (Fax (432) 689 6313 Fax	Sunset Rd. Suite E 8808 Camp Bowie Bivd West Solid 180 so, Texas 79922 Ft Worth, Texas 76116 (915) 585-3443 Tel (817) 201-5260 (915) 585-4944 Fax (817) 560-4336
		Z (Circle	ANALYSIS REQUEST
Company Name <u>Fagle Resources</u> , <u>Jac</u> - Address (Street, City, Zip) <u>PO BOX 1030 BASWELL, NM 88202</u> Contact Person. <u>Frank MORGAN</u> Invoice to:	-1030 575 - 623 - 35 E-mail	33	1 Harris and the second s
Invoice to	FMORGANCSTRITE	NW Com 4 4	He Me
(If different from above) Project #: Pan 200 3R # / 2	Project Name.	A A A A B	625 625 1.1.1 1 from nt from nt from nt
Project Location (including state). Cheves C Unit Lefter & Sec. 3 T. 3 S. R. 2	9 - MAY Sampler Signatures	182609 182609 182609 182609 171/100 171/100 171/100	608 608 608 618 618 618 618 618 618 618 618 618 61
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MATRIX PRESERVATIVE SAM	Signal Signal<	Minimum Minimum oil 8260B / emi Vol emi Vol 82 608 82 608 82 608 82 608 82 608 82 608 82 608 82 608 82 608 82 608 82 608 82 608 82 608 82 608 82 608 82 608 82 608 82 608 83 1 84 1 84 1 85 1 86 1 87 1 87 1 87 1 87 1 88 1 87 1 87 1
LAB # FIELD CODE (CONTANT A DATE OF		TIME Time <th< td=""><td>TCLP Pesticides TCLP Pesticides RCI GC/MS Vol 8260B / 624 GC/MS Semi Vol 8270C / 625 PCB's 8082 / 608 Pesticides 8081A / 608 BDD TSS, pH Molsture Content Molsture Content</td></th<>	TCLP Pesticides TCLP Pesticides RCI GC/MS Vol 8260B / 624 GC/MS Semi Vol 8270C / 625 PCB's 8082 / 608 Pesticides 8081A / 608 BDD TSS, pH Molsture Content Molsture Content
	X 07/24		
208 Banard 3B#/ 2 40% 203832 Composite Pit Sample -			
Sample-			
Ing and	Received by: Company: Date Time		REMARKS: ANY QUISTIONS PLEALE
Reingüished by: Company: Date: Time: F	Received by: Company: Date: Time	: Temp°c: Intac N Headspace Y/N	Cell Frank Morgan © 575-703-6866 Dry Weight Basis Required
Relinquished by: Company: Date: Time: F	Received by: Company: Date: 09 Time TOWOTFOX Trace 7-27-09 19:1		TRRP Report Required Called' French (A Check If Special Reporting Mt 7/27 69 SCAT Martis Are Needed 5-409
Submittal of samples constitutes agreement to Terms and Conditi	ions listed on reverse side of C O C	Earner # GLI 3	053733507 **
イ (学) (学) (学) (学) (学) (学) (学) (学) (学) (学) (学) (学)		a man Dillac - Del n	K # 1117 5- 41007 11 110 - 2009 CT

Analytical and Quality Control Report

Frank Morgan Eagle Resources, Inc

P O Box 1030 Roswell, NM, 88202 Report Date: August 4, 2009

Work Order: 9072713

Project LocationUnit B, Sec. 3, T3SR29E, Chaves Co., NMProject Name:Banard Pit ClosureProject Number:Banard 3B #1

Enclosed ar	e the Analytical Report and Quality Control F	Report for the fo	llowing sample(s) su	ibmitted to Tra	aceAnalysis, Inc.
		-	Date	\mathbf{T} ime	Date
Sample	Description	Matrix	Taken	Taken	Received
203832	Banard 3B #1 Composite Pit Sample	soil	2009-07-24	09:00	2009-07-27

These results represent only the samples received in the laboratory The Quality Control Report is generated on a batch basis All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 46 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael abel

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

,

444 1911

Case Narrative

Samples for project Banard Pit Closure were received by TraceAnalysis, Inc. on 2009-07-27 and assigned to work order 9072713 Samples for work order 9072713 were received intact at a temperature of 2.8 deg. C

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	52814	2009-07-28 at 14:58	61916	2009-07-28 at 14.58
Chloride (Titration)	SM 4500-Cl B	52941	2009-07-31 at $14:30$	62064	2009-07-31 at 15:30
SPLP Ag	S 6010B	52868	2009-07-30 at $09:51$	62003	2009-07-30 at 14:11
SPLP As	S 6010B	52868	2009-07-30 at $09:51$	62003	2009-07-30 at 14:11
SPLP Ba	S 6010B	52868	2009-07-30 at 09.51	62003	2009-07-30 at 14:11
SPLP Cd	S 6010B	52868	2009-07-30 at $09~51$	62003	2009-07-30 at 14.11
SPLP Cl	E 300 0	52928	2009-07-30 at 14:22	62048	2009-07-31 at $06:14$
SPLP Cr	S 6010B	52868	2009-07-30 at $09:51$	62003	2009-07-30 at 14:11
SPLP Cu	S 6010B	52868	2009-07-30 at $09:51$	62003	2009-07-30 at 14:11
SPLP Cyanıde	SM 4500-CN C,E	52939	2009-07-31 at $10:30$	62062	2009-07-31 at 12:00
SPLP Fluoride	E 300.0	52928	2009-07-30 at $14:22$	62048	2009-07-31 at $06:14$
SPLP Hg	S 7470A	52833	2009-07-29 at $10:00$	61942	2009-07-29 at $14:07$
SPLP Mn	S 6010B	52868	2009-07-30 at $09:51$	62003	2009-07-30 at 14:11
SPLP NO3 (IC)	E 300.0	52928	2009-07-30 at $14:22$	62048	2009-07-31 at $06:14$
SPLP PAH	S 8270C	52915	2009-07-29 at $15:00$	62035	2009-07-31 at $09:36$
SPLP Pb	S 6010B	52868	2009-07-30 at $09:51$	62003	2009-07-30 at 14:11
SPLP PCB	S 8082	52859	2009-07-29 at 17:00	61963	2009-07-29 at 17:22
SPLP Se	S 6010B	52868	2009-07-30 at 09:51	62003	2009-07-30 at 14:11
SPLP U	S 6010B	52868	2009-07-30 at $09~51$	62003	2009-07-30 at 14:11
SPLP Volatiles	S 8260B	52923	2009-07-30 at 12:00	62041	2009-07-30 at 12:00
TPH 418 1	E 418.1	53021	2009-08-04 at 16:00	62157	2009-08-04 at 17:03
TPH DRO	Mod. 8015B	52821	2009-07-28 at 15.00	61923	2009-07-28 at $20:00$
TPH GRO	S 8015B	52814	2009-07-28 at $14{\cdot}58$	61917	2009-07-28 at 14:58

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9072713 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 203832 - Banard 3B..#1 Composite Pit Sample

٢

Laboratory Analysis QC Batch Prep Batch	Lubbock BTEX 61916 52814			Analytical I Date Analy Sample Pre	zed:	S 8021B 2009-07-28 2009-07-28		Prep Meth Analyzed Prepared 1	By: MT
				RL					
Parameter		Flag		Result		Units	D	ilution	\mathbf{RL}
Benzene				<0 0200		mg/Kg		1	0.0200
Toluene				< 0.0200		mg/Kg		1	0.0200
Ethylbenzen	е			< 0.0200		mg/Kg		1	0.0200
Xylene				0.0585		mg/Kg		1	0.0200
				D 1	TT b .	<i><i><i><i></i></i></i></i> <i></i>	Spike	Percent	Recovery
Surrogate			Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolu	· · ·			1.70	mg/Kg	1	2.00	85	71.8 - 112
4-Bromofluor	obenzene (4-I	BFB)		2.02	mg/Kg	1	2.00	101	72.8 - 115

Sample: 203832 - Banard 3B #1 Composite Pit Sample

Laboratory	Lubbock				
Analysis	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch	62064	Date Analyzed:	2009-07-31	Analyzed By	AH
Prep Batch	52941	Sample Preparation:	2009-07-31	Prepared By:	\mathbf{AH}
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		2310	mg/Kg	100	3.25

Sample: 203832 - Banard 3B #1 Composite Pit Sample

Laboratory Analysis QC Batch. Prep Batch	Lubbock SPLP Ag 62003 52868		Analytical Method: Date Analyzed SPLP Extraction	S 6010B 2009-07-30 2009-07-28	Prep Method Analyzed By: Prepared By:	SPLP 1312 RR KV
			Sample Preparation:	2009-07-30	Prepared By	KV
			RL			
Parameter		Flag	Result	Units	Dilution	RL
SPLP Silver		····	< 0.00300	mg/L	1	0.00300

書語

重要

Report Date August 4, 2009 Banard 3B #1		Work Order: 90727 Banard Pit Closure		Page Number: 5 of Unit B, Sec. 3, T3SR29E, Chaves Co., N		
Sample: 20)3832 - Bana	rd 3B #1 (Composite Pit Sample	9		
aboratory	Lubbock	-		_		x.
Analysis	SPLP As		Analytical Method:	S 6010B	Prep Method:	SPLP 1312
QC Batch	62003		Date Analyzed	2009-07-30	Analyzed By:	RR
Prep Batch	52868		SPLP Extraction Sample Preparation:	2009-07-28 2009-07-30	Prepared By: Prepared By:	KV KV
			RL			
Parameter		Flag	Result	Units	Dilution	RL
SPLP Arsen	10		<0 0100	mg/L	1	0.0100
O D stel	62002		Data Analyzadi	2000 07 20	A	סס
QC Batch Yiep Batch	62003 52868		Date Analyzed: SPLP Extraction: Sample Preparation:	2009-07-30 2009-07-28 2009-07-30	Analyzed By Prepared By: Prepared By:	RR KV KV
hep Batch			SPLP Extraction: Sample Preparation: RL	2009-07-28 2009-07-30	Prepared By: Prepared By:	KV KV
Prep Batch Parameter	52868	Flag	SPLP Extraction: Sample Preparation: RL Result	2009-07-28 2009-07-30 Units	Prepared By: Prepared By: Dilution	KV KV RL
Parameter PLP Bariun	52868 m		SPLP Extraction: Sample Preparation: RL	2009-07-28 2009-07-30 Units mg/L	Prepared By: Prepared By:	KV KV RL
Parameter PLP Bariun	52868 m		SPLP Extraction: Sample Preparation: RL Result 0.709	2009-07-28 2009-07-30 Units mg/L	Prepared By: Prepared By: Dilution	KV KV RL
Parameter PLP Barium Sample: 20 Jaboratory	52868 m 3832 - Bana		SPLP Extraction: Sample Preparation: RL Result 0.709 Composite Pit Sample Analytical Method.	2009-07-28 2009-07-30 Units mg/L	Prepared By: Prepared By: Dilution	KV KV
Parameter PLP Barium Gample: 20 Laboratory Analysis QC Batch	52868 m 3832 - Bana Lubbock		SPLP Extraction: Sample Preparation: RL Result 0.709 Composite Pit Sample Analytical Method. Date Analyzed·	2009-07-28 2009-07-30 Units mg/L	Prepared By: Prepared By: Dilution 1	KV KV
Parameter PLP Barium Gample: 20 Jaboratory Analysis QC Batch	52868 m 3832 - Bana Lubbock SPLP Cd		SPLP Extraction: Sample Preparation: RL Result 0.709 Composite Pit Sample Analytical Method. Date Analyzed SPLP Extraction:	2009-07-28 2009-07-30 Units mg/L S 6010B 2009-07-30 2009-07-28	Prepared By: Prepared By: Dilution 1 Prep Method: Analyzed By. Prepared By.	KV KV 0.100 SPLP 1312 RR KV
Parameter PLP Barium Sample: 20 Jaboratory	52868 m 3832 - Bana Lubbock SPLP Cd 62003		SPLP Extraction: Sample Preparation: RL Result 0.709 Composite Pit Sample Analytical Method. Date Analyzed·	2009-07-28 2009-07-30 Units mg/L S 6010B 2009-07-30	Prepared By: Prepared By: Dilution 1 Prep Method: Analyzed By.	KV KV 0.100 SPLP 1312 RR
Parameter PLP Barium Gample: 20 Laboratory Analysis QC Batch	52868 m 3832 - Bana Lubbock SPLP Cd 62003		SPLP Extraction: Sample Preparation: RL Result 0.709 Composite Pit Sample Analytical Method. Date Analyzed SPLP Extraction:	2009-07-28 2009-07-30 Units mg/L S 6010B 2009-07-30 2009-07-28	Prepared By: Prepared By: Dilution 1 Prep Method: Analyzed By. Prepared By.	KV KV 0.100 SPLP 1312 RR KV
Parameter PLP Barium Gample: 20 Laboratory Analysis QC Batch	52868 m 3832 - Bana Lubbock SPLP Cd 62003		SPLP Extraction: Sample Preparation: RL Result 0.709 Composite Pit Sample Analytical Method. Date Analyzed SPLP Extraction: Sample Preparation	2009-07-28 2009-07-30 Units mg/L S 6010B 2009-07-30 2009-07-28	Prepared By: Prepared By: Dilution 1 Prep Method: Analyzed By. Prepared By.	KV KV 0.100 SPLP 1312 RR KV

X

Laboratory Analysis	Lubbock SPLP Cl	Analytical Method:	E 300.0	Prep Method:	
QC Batch	62048	Date Analyzed:	2009-07-31	Analyzed By:	SS
Prep Batch	52928	SPLP Extraction	2009-07-29	Prepared By	SS
		Sample Preparation:	2009-07-30	Prepared By:	SS

546 1

Report Date August 4, 2009 Banard 3B #1		Work Order 9072713 Banard Pıt Closure	0		umber 6 of 46 haves Co., NM	
Parameter	Flag	RL Result	Units	Dilution	RL	
SPLP Chloride		591	mg/L	50	0.500	

Analysis QC Batch	Lubbock SPLP C1 62003 52868		Analytical Method: Date Analyzed: SPLP Extraction Sample Preparation	S 6010B 2009-07-30 2009-07-28 2009-07-30	Prep Method Analyzed By: Prepared By: Prepared By:	RR KV
			RL			
Parameter		Flag	Result	Units	Dilution	RL
SPLP Chromi	um		< 0.00500	mg/L	1	0.00500

Sample: 203832 - Banard 3B #1 Composite Pit Sample

Laboratory Analysis QC Batch Piep Batch	Lubbock SPLP Cu 62003 52868		Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	S 6010B 2009-07-30 2009-07-28 2009-07-30	Prep Method: Analyzed By: Prepared By Prepared By:	RR KV
			RL			
Parameter		\mathbf{Flag}	Result	Units	Dilution	\mathbf{RL}
SPLP Coppe	21		< 0.0250	mg/L	1	0.0250

Sample: 203832 - Banard 3B #1 Composite Pit Sample

.

Laboratory Analysis QC Batch Prep Batch	Lubbock SPLP Cyanide 62062 52939	Analytical Method. Date Analyzed. SPLP Extraction [.] Sample Preparation [.]	SM 4500-CN C,E 2009-07-31	Prep Method. Analyzed By: Prepared By: Prepared By:	AH AH
		\mathbf{RL}			
Parameter	Flag	Result	Units	Dilution	RL
SPLP Cyanic	de	< 0.0150	mg/L	1	0 0150

-

Report Date August 4, 2009	Work Order 9072713	Page Number: 7 of 46
Banard 3B $\#1$	Banard Pit Closure	Unit B, Sec. 3, T3SR29E, Chaves Co., NM

Laboratory.	Lubbock					
Analysis	SPLP Fluoride	where a	Analytical Method:	E 300.0	Prep Method:	SPLP 1312
QC Batch	62048		Date Analyzed.	2009-07-31	Analyzed By:	SS
Prep Batch	52928		SPLP Extraction.	2009-07-29	Prepared By:	SS
			Sample Preparation	2009-07-30	Prepared By:	SS
			RL			
Parameter		Flag	Result	Units	Dilution	\mathbf{RL}
SPLP Fluon	de	_	<1 00	mg/L	5	0.200

Sample: 203832 - Banard 3B #1 Composite Pit Sample

Laboratory Analysis QC Batch Prep Batch	Lubbock SPLP Hg 61942 52833		Analytical Method: Date Analyzed: Sample Preparation:	S 7470A 2009-07-29 2009-07-29	Anal	Method: N/A yzed By: TP ared By: TP
			RL			
Parameter		Flag	Result	Units	Dilution	RL
SPLP Mercu	ry		0.000466	mg/L	1	0.000200

Sample: 203832 - Banard 3B #1 Composite Pit Sample

Laboratory:	Lubbock					
Analysıs	SPLP Mn		Analytical Method:	S 6010B	Prep Method:	SPLP 1312
QC Batch	62003		Date Analyzed:	2009-07-30	Analyzed By	RR 🗸
Prep Batch.	52868		SPLP Extraction:	2009-07-28	Prepared By:	KV
			Sample Preparation	2009-07-30	Prepared By:	KV
			RL			
Parameter		Flag	Result	Units	Dilution	\mathbf{RL}
SPLP Manga	inese		0.0360	mg/L	1	0.00250

Sample: 203832 - Banard 3B #1 Composite Pit Sample

Laboratory [.] Analysis: QC Batch Prep Batch	Lubbock SPLP NO3 (IC) 62048 52928	Analytical Method: Date Analyzed: SPLP Extraction:	E 300 0 2009-07-31 2009-07-29	Prep Method: Analyzed By: Prepared By:	SS SS
1		Sample Preparation:	2009-07-30	Prepared By:	

本語

漸

Report Date August 4, 2009 Banard 3B #1		Work Order 9072713 Banard Pit Closure	Work Order 9072713 Banard Pit Closure		umber: 8 of 46 naves Co., NM
Parameter	Flag	RL Result	Units	Dilution	RL
Nitrate-N		<1.00	mg/L	5	0.200

Laboratory Analysis QC Batch Prep Batch	Lubbock SPLP PAH 62035 52915		Analytical Method: Date Analyzed SPLP Extraction: Sample Preparation [.]	S 8270C 2009-07-31 2009-07-29 2009-07-29	Prep Method: Analyzed By. Prepared By: Prepared By:	SPLP 1312 MN MN MN
			RL			
Parameter		Flag	Result	Unit	s Dilution	RL
Naphthalene	and the second		0.000214	mg/l	L 1	0.000200
Acenaphthyle	ene		<0 000200	mg/l	Ĺ 1	0.000200
Acenaphthen	e		<0 000200	mg/l	Ĺ 1	0.000200
Dibenzofuian			< 0.000200	mg/l	ն 1	0.000200
· Fluorene			< 0.000200	mg/I	L 1	0.000200
Anthracene			<0 000200	mg/l	L 1	0.000200
Phenanthrene	9		0.000308	mg/l	L 1	0.000200
Fluoranthene			<0 000200	mg/l	L 1	0.000200
Pyrene			< 0.000200	mg/l	L 1	0.000200
Benzo(a)anth	racene		< 0.000200	mg/l	L 1	0.000200
Chrysene			< 0.000200	mg/l	L 1	0.000200
Benzo(b)fluor	ranthene		< 0.000200	mg/l	L 1	0.000200
Benzo(k)fluor	anthene		< 0.000200	mg/I	L 1	0.000200
Benzo(a)pyre	ne		< 0.000200	mg/I	1	0.000200
Indeno(1,2,3-	cd)pyrene		< 0.000200	mg/I		0.000200
Dibenzo(a,h)a	anthracene		< 0.000200	mg/I		0.000200
Benzo(g,h,i)p	erylene		< 0.000200	mg/I		0.000200
					Spike Percent	Recovery
Surrogate	Flag	Result	Units I	Dilution .	Amount Recovery	Limits
2-Fluorobiphe	enyl	0.0343	B mg/L	1	0 0800 43	37.4 - 123
Nitrobenzene	-d5	0.0350) mg/L	1	0.0800 44	34 3 - 130
Terphenyl-d1	4	0 0431	mg/L	1	0.0800 54	10 - 252

Sample: 203832 - Banard 3B #1 Composite Pit Sample

Laboratory Analysis	Lubbock SPLP Pb	Analytical Method.	S 6010B	Prep Method:	SPLP 1312
QC Batch	62003 ,	Date Analyzed:	2009-07-30	Analyzed By:	\mathbf{RR}
Prep Batch	52868	SPLP Extraction:	2009-07-28	Prepared By:	KV
		Sample Preparation:	2009-07-30	Prepared By.	KV

南南

14 14

.

Report Date Aug Banard 3B #1	ust 4, 2009	Work Order: 9072713 Banard Pit Closure		Page Number: 9 of 46 Unit B, Sec. 3, T3SR29E, Chaves Co, NM			
Parameter	Flag	RL Result	Units	Dilution	RL		
SPLP Lead		<0 0100	mg/L	1	0.0100		

Analysis S QC Batch 6	Lubbock SPLP PCB 51963 52859		Analytical Method: Date Analyzed SPLP Extraction: Sample Preparation	S 8082 2009-07-29 2009-07-28 2009-07-29		Prep Method: Analyzed By: Prepared By: Prepared By:	SPLP 1312 DS DS DS DS
			RL				
Parameter		Flag	Result		Units	Dilution	\mathbf{RL}
Total PCB			< 0.000500		mg/L	1	0.000500
Aroclor 1016 (I	PCB-1016)		< 0.000500		$\mathrm{mg/L}$	1	0.000500
Aroclor 1221 (H	PCB-1221)		< 0.000500		mg/L	1	0.000500
Aroclor 1232 (I	PCB-1232)		< 0.000500		mg/L	1	0 000500
Aroclor 1242 (H	PCB-1242)		<0 000500		mg/L	1	0 000500
Aroclor 1248 (H	PCB-1248)		$<0\ 000500$		mg/L	1	0.000500
Aroclor 1254 (F	PCB-1254)		< 0.000500		mg/L	1	0.000500
Aroclor 1260 (F	PCB-1260)		<0 000500		mg/L	1	0.000500
<u>Atoclor 1268 (F</u>	PCB-1268)		< 0.000500		mg/L	1	0.000500
					Spike	Percent	Recovery
Surrogate	Flag	Re	esult Units	Dilution	Amount	Recovery	Limits
Deca chlorobipl	henyl	0.00	0502 mg/L	1	0.000500	100	10 - 128

Sample: 203832 - Banard 3B #1 Composite Pit Sample

Laboratory Analysis QC Batch Piep Batch	Lubbock SPLP Se 62003 52868		Analytical Method: Date Analyzed. SPLP Extraction: Sample Preparation:	S 6010B 2009-07-30 2009-07-28 2009-07-30	Prep Method: Analyzed By: Prepared By: Prepared By:	RR KV
			RL			
Parameter		Flag	Result	\mathbf{Units}	Dilution	\mathbf{RL}
SPLP Selen	um		< 0.0500	mg/L	1	0.0500

Laboratory Analysis QC Batch Prep Batch	Lubbock SPLP U 62003 52868		Analytical Method: Date Analyzed. SPLP Extraction Sample Preparation:	S 6010B 2009-07-30 2009-07-28 2009-07-30	Prep Method: Analyzed By: Prepared By: Prepared By:	RR KV
			\mathbf{RL}			
Parameter		Flag	Result	\mathbf{Units}	Dilution	\mathbf{RL}
SPLP U			< 0.0500	mg/L	1	0.0500

Sample: 203832 - Banard 3B #1 Composite Pit Sample

Laboratory Lubbock Analysis SPLP Volatiles QC Batch 62041 Prep Batch 52923		Analytical I Date Analy SPLP Extra Sample Pre	zed: action·	S 8260B 2009-07-30 2009-07-30 2009-07-30		Prep Method: Analyzed By: Prepared By: Prepared By:	SPLP 1312 KB KB KB
		bampic 11c	paration.	2005-01-50		Tepared by.	КD
			RL				
Parameter	Flag		Result	Units		Dilution	RL
Vmyl Chloride			<1 00	$\mu { m g/L}$		1	1.00
1,1-Dichloroethene			< 1.00	$\mu { m g}/{ m L}$		1	1.00
Methylene chl or ide	1		58.3	$\mu { m g} / { m L}$		1	5.00
1,1-Dichloroethane			< 1.00	$\mu { m g/L}$		1	1.00
1,2-Dichloroethane (EDC)			< 1.00	$\mu { m g/L}$		1	1.00
Chloroform			< 1.00	$\mu{ m g}/{ m L}$		1	1.00
1,1,1-Trichloroethane			< 1.00	$\mu { m g/L}$		1	1.00
Benzene			< 1.00	$\mu { m g/L}$		1	1.00
Carbon Tetrachloride			< 1.00	$\mu { m g/L}$		1	1.00
Tuchloroethene (TCE)			< 1.00	$\mu g/L$		1	1.00
Toluene			< 1.00	$\mu { m g/L}$		1	1 00
1,1,2-Trichloroethane			$< 1\ 00$	$\mu { m g/L}$		1	1.00
1,2-Dibromoethane (EDB)			< 1.00	$\mu { m g/L}$		1	1.00
Tetrachloroethene (PCE)			< 1.00	$\mu { m g/L}$		1	1.00
Ethylbenzene			< 1.00	$\mu { m g/L}$		1	1.00
m,p-Xylene			< 1.00	$\mu { m g}/{ m L}$		1	1.00
o-Xylene			< 1.00	$\mu { m g} / { m L}$		1	1.00
1, 1, 2, 2-Tetrachloroethane			< 1.00	$\mu { m g/L}$		1	1.00
					a .:	-	
0			 .		Spike	Percent	Recovery
Suriogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane		52 1	$\mu g/L$	1	50.0	104	70 - 130
Toluene-d8		50.3	$\mu { m g/L}$	1	50.0	101	70 - 130
						(continued

ς.

 $^{1}\mathrm{Estimated}$ value \bullet

Report Date August 4, 2009 Banard 3B #1		Work Order Banard Pıt		Page Number: 11 of 46 Unit B, Sec. 3, T3SR29E, Chaves Co., NM				
sample continued					Spike	Percent	Recovery	
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits	
4-Bromofluorobenzene (4-BFB)		49.2	$\mu g/L$	1	50.0	98	70 - 130	

ł

Laboratory Analysis QC Batch Prep Batch	Lubbock TPH 418 1 62157 53021	Analytical Method Date Analyzed: Sample Preparation:	E 418 1 2009-08-04 2009-08-04	Prep Method Analyzed By: Prepared By:	N/A
D	Plan.	RL Describ	TT - '/ -		DT
Parameter TRPHC	Flag2	Result 1720	Units mg/Kg	Dilution 2	$\frac{\text{RL}}{10.0}$

Sample: 203832 - Banard 3B #1 Composite Pit Sample

Laboratory Analysis QC Batch Prep Batch	Analysis TPH DRO QC Batch 61923		Analytical Method:Mod. 8015BDate Analyzed·2009-07-28Sample Preparation:2009-07-28		Analyz	Method. N/A zed By: red By:	
Parameter	Fla	g	RL Result	Un		Dilution	RL
DRO			337	mg/I	Кg	1	50.0
Sunogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane	e	113	mg/Kg	1	100	113	46.6 - 172

Sample: 203832 - Banard 3B #1 Composite Pit Sample

Laboratory Analysis QC Batch Prep Batch	Lubbock TPH GRO 61917 52814	Analytical Method. Date Analyzed: Sample Preparation:	S 8015B 2009-07-28 2009-07-28	Prep Method: Analyzed By: Prepared By:	\mathbf{MT}
		\mathbf{RL}			
Parameter	Flag	Result	Units	Dilution	RL
GRO		14.6	mg/Kg	1	2.00

²Sample can not be re-extracted and re-ran because there is not enough sample remaining to analyze.

Report Date: August 4, 2009 Banard 3B #1		Work Order: 9072713 Banard Pit Closure			Page Number: 12 of 46 Unit B, Sec. 3, T3SR29E, Chaves Co., NM			
Suriogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotoluene (TFT)	*-	1.84	mg/Kg	1	2.00	92	86.9 - 113	
4-B10mofluorobenzene (4-BFB)		1 84	mg/Kg	1	2.00	92	56.2 - 130	
Method Blank (1) QC Bat	ch. 61916							
QC Batch 61916		Date Ana	ulvzed: 200	9-07-28		Analyze	ed By: MT	
Prep Batch 52814		QC Prepa	v	9-07-28		Prepare		
	Flag		MDI Resul	t	Unit	-	RL	
Benzene			< 0.0050		mg/ŀ		0.02	
Toluene			< 0.0061	-	mg/Kg		0.02	
Ethylbenzene			< 0.0063	-	mg/k		0.02	
Xylene			< 0.0067	3	mg/ŀ	\g	0.02	
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotoluene (TFT)		1.83	mg/Kg	1	2.00	91	71.8 - 112	
4-Bromofluorobenzene (4-BFB)		1 79	mg/Kg	1	2.00	90	72.8 - 115	
Method Blank (1) QC Bate	ch 61917							

.

Method	Blank	(1)	QU	Batch	01917	

QC Batch 61917 Prep Batch 52814			Date Analyzed. 2009-07-28 QC Preparation. 2009-07-28			Analyzed By: D Prepared By: D		
			MDL					
Parameter Flag		\mathbf{Result}			\mathbf{Units}		RL	
GRO			< 0.403		mg/K	g	2	
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Tuffuorotoluene (TFT)		1 93	mg/Kg	1	2.00	96	86.9 - 113	
4-Bromofluorobenzene (4	-BFB)	1.64	mg/Kg	1	2.00	82	56.2 - 130	

Method Blank (1) QC Batch. 61923

QC Batch:	61923	Date Analyzed:	2009-07-28	Analyzed By:
Prep Batch	52821	QC Preparation:	2009-07-28	Prepared By:

Report Date August Banard 3B #1			umber: 13 of 46 Chaves Co., NM				
D	т	21		DL		ŤŤ : +	DI
Parameter DRO	F	lag	Result <5.66			Units ng/Kg	RL 50
			<u> </u>		<u>I</u> .	iig/ Kg	
Surrogate I	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane		93.4	mg/Kg	1	100	93	46.6 - 172
Method Blank (1) QC Batch 61942 Prep Batch 52833 Parameter SPLP Mercury		Flag	Date Analyzed QC Preparation·	2009-07-29 2009-07-29 MDL Result 2000329			alyzed By: TP pared By: TP RL 0.0002
QC Batch 61963	QC Bate	ch: 61963	Date Analyzed: OC Preparation:	2009-07-29			alyzed By: DS
QC Batch 61963	QC Bate	ch: 61963	Date Analyzed: QC Preparation:				alyzed By: DS epared By. DS
QC Batch 61963 Prep Batch 52859	QC Bate		QC Preparation:	2009-07-29 MDL		Pre	epared By. DS
QC Batch 61963 Prep Batch 52859 Parameter	QC Bate	ch: 61963 Fla	QC Preparation:	2009-07-29 MDL Result		Pre	epared By. DS RL
QC Batch 61963 Prep Batch 52859 Parameter Fotal PCB			QC Preparation:	2009-07-29 MDL Result <0.000125		Pre Units mg/L	2012 Pared By. DS RL 0 0005
QC Batch 61963 Prep Batch 52859 Parameter Fotal PCB Aroclor 1016 (PCB-10)	16)		QC Preparation:	2009-07-29 MDL Result <0.000125 <0.000122		Pre Units mg/L mg/L	RL 0 0005 0.0005
QC Batch 61963 Prep Batch 52859 Parameter Fotal PCB Aroclor 1016 (PCB-10) Aroclor 1221 (PCB-12)	16) 21)		QC Preparation:	2009-07-29 MDL <0.000125 <0.000122 <0.000118		Pre Units mg/L mg/L mg/L	Pared By. DS RL 0 0005 0.0005 0.0005
QC Batch 61963 Prep Batch 52859 Parameter Fotal PCB Aroclor 1016 (PCB-10) Aroclor 1221 (PCB-12) Aroclor 1222 (PCB-12)	16) 21) 32)		QC Preparation:	2009-07-29 MDL Result <0.000125 <0.000122 <0.000118 <0.0000459		Pre Units mg/L mg/L mg/L mg/L	RL 0 0005 0.0005 0.0005 0.0005 0.0005
QC Batch 61963 Prep Batch 52859 Parameter Fotal PCB Aroclor 1016 (PCB-10) Aroclor 1221 (PCB-12) Aroclor 1232 (PCB-12) Aroclor 1242 (PCB-12)	16) 21) 32) 42)		QC Preparation:	2009-07-29 MDL Result <0.000125 <0.000122 <0.000118 <0.0000459 <0.000125		Pre Units mg/L mg/L mg/L mg/L mg/L	RL 0 0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
QC Batch 61963 Prep Batch 52859 Parameter Fotal PCB Aroclor 1016 (PCB-10) Aroclor 1221 (PCB-12) Aroclor 1232 (PCB-12) Aroclor 1242 (PCB-12) Aroclor 1248 (PCB-12)	16) 21) 32) 42) 48)		QC Preparation:	2009-07-29 MDL Result <0.000125 <0.000122 <0.000118 <0.0000459 <0.000125 <0.000125 <0.0000546		Pre Units mg/L mg/L mg/L mg/L mg/L mg/L	Pared By. DS RL 0 0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
QC Batch 61963 Prep Batch 52859 Parameter Fotal PCB Aroclor 1016 (PCB-10) Aroclor 1221 (PCB-12) Aroclor 1222 (PCB-12) Aroclor 1242 (PCB-12) Aroclor 1248 (PCB-12) Aroclor 1254 (PCB-12)	16) 21) 32) 42) 48) 54)		QC Preparation:	2009-07-29 MDL Result <0.000125 <0.000122 <0.000118 <0.0000459 <0.000025 <0.0000546 <0.0000569		Pre Units mg/L mg/L mg/L mg/L mg/L mg/L	Pared By. DS RL 0 0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
QC Batch 61963 Prep Batch 52859 Parameter Total PCB Aroclor 1016 (PCB-10) Aroclor 1221 (PCB-12) Aroclor 1232 (PCB-12) Aroclor 1242 (PCB-12) Aroclor 1248 (PCB-12) Aroclor 1254 (PCB-12) Aroclor 1260 (PCB-12)	16) 21) 32) 42) 48) 54) 60)		QC Preparation:	2009-07-29 MDL Result <0.000125 <0.000122 <0.000118 <0.0000459 <0.0000546 <0.0000569 <0.000031		Pre Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	RL 0 0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
QC Batch 61963 Prep Batch 52859 Parameter Total PCB Aroclor 1016 (PCB-10) Aroclor 1221 (PCB-12) Aroclor 1232 (PCB-12) Aroclor 1242 (PCB-12) Aroclor 1248 (PCB-12) Aroclor 1254 (PCB-12) Aroclor 1254 (PCB-12) Aroclor 1260 (PCB-12)	16) 21) 32) 42) 48) 54) 60)		QC Preparation:	2009-07-29 MDL Result <0.000125 <0.000122 <0.000118 <0.0000459 <0.000025 <0.0000546 <0.0000569		Pre Units mg/L mg/L mg/L mg/L mg/L mg/L	RL 0 0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
Prep Batch 52859 Parameter Total PCB Aroclor 1016 (PCB-10) Aroclor 1221 (PCB-12) Aroclor 1222 (PCB-12) Aroclor 1242 (PCB-12) Aroclor 1248 (PCB-12) Aroclor 1254 (PCB-12) Aroclor 1260 (PCB-12) Aroclor 1268 (PCB-12)	16) 21) 32) 42) 48) 54) 60) 68)	Fla	QC Preparation:	2009-07-29 MDL Result <0.000125 <0.000122 <0.000118 <0.0000459 <0.0000546 <0.0000569 <0.0000331 <0.0000282	Spike	Pre Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	RL 0 0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
QC Batch 61963 Prep Batch 52859 Parameter Total PCB Aroclor 1016 (PCB-10) Aroclor 1221 (PCB-12) Aroclor 1232 (PCB-12) Aroclor 1242 (PCB-12) Aroclor 1248 (PCB-12) Aroclor 1254 (PCB-12) Aroclor 1254 (PCB-12) Aroclor 1260 (PCB-12)	16) 21) 32) 42) 48) 54) 60)		QC Preparation: gt Units	2009-07-29 MDL Result <0.000125 <0.000122 <0.000118 <0.0000459 <0.0000546 <0.0000569 <0.000031	Spike Amount 0.000500	Pre Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	RL 0 0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

Method Blank (1) QC Batch 62003

QC Batch	62003	Date Analyzed	2009-07-30	Analyzed By:	$\mathbf{R}\mathbf{R}$
Prep Batch	52868	QC Preparation:	2009-07-30	Prepared By:	KV

重要

Report Date August 4, 2009 Banard 3B #1		Work Order: 90727 Banard Pit Closur		Page Number: 14 Unit B, Sec. 3, T3SR29E, Chaves Co.		
_			MDL			~ ~
Parameter	Flag		Result	Units		RL
SPLP Cadmium	(gene, eq., a	<	0.00140	m mg/L		0.005
Method Blank (1)	QC Batch 62003					
QC Batch 62003		Date Analyzed:	2009-07-30		Analyzed By	\mathbf{RR}
Prep Batch 52868		QC Preparation	2009-07-30		Prepared By	KV
	(MDL			
Parameter	\mathbf{Flag}		Result	Units		\mathbf{RL}
SPLP Lead		<0.0	00320	mg/L		0.01
Method Blank (1)	QC Batch. 62003					
QC Batch 62003		Date Analyzed:	2009-07-30		Analyzed By:	\mathbf{RR}
Prep Batch 52868		QC Preparation:	2009-07-30		Prepared By:	KV
			MDL			
Parameter	Flag		Result	Units		RL
SPLP Selenium	· · · · · · · · · · · · · · · · · · ·	<	(0.0131	mg/L		0.05
Method Blank (1)	QC Batch 62003					
QC Batch 62003		Date Analyzed	2009-07-30		Analyzed By:	\mathbf{RR}
Prep Batch 52868		QC Preparation	2009-07-30		Prepared By:	KV
			MDL			
Parameter	Flag		Result	Units	· · · · · · · · · · · · · · · · · · ·	RL
SPLP Aisenic		<0	00430	mg/L		0.01
Method Blank (1)	QC Batch: 62003					
QC Batch 62003		Date Analyzed:	2009-07-30		Analyzed By:	\mathbf{RR}
Prep Batch 52868		QC Preparation:	2009-07-30		Prepared By:	KV
			MDL			
Parameter	Flag		Result	Units		RL
SPLP Barium		<(0.00170	mg/L		0.1

٦

,

Method Blank (1) QC Batch 62003 Prep Batch 52868	QC Batch: 62003			
Trep Battern 52000	-	Date Analyzed: 2009-07-3 QC Preparation: 2009-07-3		Analyzed By: RR Prepared By KV
_		MDL		
Parameter SPLP Chromium	Flag	Result <0.000900	Units mg/L	
		0.000300	IIIg/L	0.005
Method Blank (1)	QC Batch. 62003			
QC Batch 62003		Date Analyzed: 2009-07-3	30	Analyzed By: RR
Prep Batch 52868		QC Preparation: 2009-07-3	30	Prepared By: KV
_		MDL		
Parameter SPLP Copper	Flag	Result <0.00140	Units	
SILI Copper		<0.00140	mg/L	0.023
				٠
Method Blank (1)	QC Batch \cdot 62003			
QC Batch 62003		Date Analyzed: 2009-07-3	30	Analyzed By: RR
Prep Batch: 52868		QC Preparation: 2009-07-3	30	Prepared By: KV
		MDL		
Parameter	Flag	Result	Units	RL
SPLP Silver	·	< 0.00210	mg/L	0.003
	,			
Method Blank (1)	QC Batch: 62003			
QC Batch 62003		Date Analyzed: 2009-07-3	80	Analyzed By: RR
Prep Batch 52868		QC Preparation: 2009-07-3	30	Prepared By· KV
		MDL		
Parameter	Flag	Result	Units	RL
SPLP U		< 0.0105	mg/L	0.05

ς.

QC Batch	62003	Date Analyzed:	2009-07-30	Analyzed By.	\mathbf{RR}
Prep Batch	52868	QC Preparation:	2009-07-30	Prepared By:	KV

		Work Order: 9072713 Banard Pit Closure		Page Number Unit B, Sec. 3, T3SR29E, Chaves		e Number: 16 of 46 E, Chaves Co., NM
	Flag		MDL Result		Units	RL
1970- a.u.		<	0.000305		mg/L	0.0025
QC Batch	62035					
		Date Analyzed:	2009-07-31		А	nalyzed By: MN
		QC Preparation:	2009-07-29			repared By: MN
			MDL			
	Fla_{i}	g	Result		Units	RL
			< 0.0000853		mg/L	0.0002
			< 0.0000768			0.0002
			< 0.000103			0.0002
					÷,	0.0002
					0/	0.0002
						0.0002
						0.0002
						0.0002
						0.0002
						0.0002
						0.0002
						0.0002
						0.0002
						0.0002
						0.0002
					0,	0.0002
		<u></u>	<0.000158		mg/L	0.0002
				Spike	Percen	~
Flag	Result	Units	Dilution	Amount		
		mg/L	1		39	10 - 146
	0.0320				40	10 - 141
	0 0500	mg/L	1	0.0800	62	10 - 266
QC Batch	62041					
		Date Analyzed: OC Preparation:	2009-07-30 2009-07-30			nalyzed By KB repared By: KB
	QC Batch	Flag QC Batch 62035 Fla, Flag Flag Result 0 0310	Banard Pit Closur Flag Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colspan="2	MDL Result Flag MDL Result QC Batch 62035 Date Analyzed: 2009-07-31 QC Preparation: 2009-07-29 MDL Flag MDL Result <0.0000853	Banard Pit Closure Unit B, Se MDL Flag Result	Banard Pit Closure Unit B, Sec. 3, T3SR20 MDL MDL Flag Result Units <0.000305

~

		MDL		
Parameter	\mathbf{Flag}	Result	\mathbf{Units}	RL
Bromochloromethane		< 0.177	$\mu g/L$	1
Dichlorodifluoromethane		<0 208	$\mu { m g}/{ m L}$	1

.

continued ...

_

Report Date August 4 2009 Banard 3B #1

Work Order 9072713 Banard Pit Closure

Page Number 17 of 46 Unit B, Sec. 3, T3SR29E, Chaves Co., NM

method blank continued

method blank continued		MDL		
Parameter	Flag	Result	Units	\mathbf{RL}
Chloromethane (methyl chloride)		< 0.134	$\mu g/L$	1
Vınyl Chloride		< 0.135	$\mu g/L$	1
Bromomethane (methyl bromide)		< 1.23	$\mu \mathrm{g/L}$	5
Chloroethane		< 0.182	$\mu { m g}/{ m L}$	1
Tuchlorofluoromethane		<0 0610	$\mu { m g}/{ m L}$	1
Acetone		$<\!5.50$	$\mu { m g/L}$	10
Iodomethane (methyl iodide)		$<0\ 107$	$\mu { m g}/{ m L}$	5
Carbon Disulfide		<0.0360	$\mu { m g}/{ m L}$	1
Acrylonitiile		< 0.0970	$\mu { m g/L}$	1
2-Butanone (MEK)		<0.531	$\mu { m g/L}$	5
4-Methyl-2-pentanone (MIBK)		$<0\ 421$	$\mu { m g/L}$	5
2-Hexanone		< 0.168	$\mu { m g/L}$	5
trans 1,4-Dichloro-2-butene		< 0.517	$\mu { m g/L}$	10
1,1-Dichloroethene		< 0.136	$\mu { m g}/{ m L}$	1
Methylene chloride		<0.649	$\mu { m g} / { m L}$	5
MTBE		<0.123	$\mu { m g}/{ m L}$	1
trans-1,2-Dichloroethene		< 0.126	$\mu { m g}/{ m L}$	1
1,1-Dichloroethane		< 0.0600	$\mu { m g}/{ m L}$	1
cis-1 2-Dichloroethene		< 0.151	$\mu \mathrm{g/L}$	1
2,2-Dichloropropane		< 0.180	$\mu { m g}/{ m L}$	1
1,2-Dichloroethane (EDC)		< 0.113	$\mu { m g} / { m L}$	1
Chloroform		< 0.141	$\mu { m g}/{ m L}$	1
1,1,1-Trichloroethane		< 0.116	$\mu { m g}/{ m L}$	1
1,1-Dichloropropene		< 0.0540	$\mu \mathrm{g/L}$	1
Benzene		< 0.146	$\mu { m g}/{ m L}$	1
Carbon Tetrachloride		< 0.0790	$\mu { m g}/{ m L}$	1
1,2-Dichloropropane		< 0.111	$\mu { m g}/{ m L}$	1
Tuchloroethene (TCE)		< 0.117	$\mu { m g}/{ m L}$	1
Dibromomethane (methylene bromide)		< 0.140	$\mu { m g}/{ m L}$	1
Bromodichloromethane		<0.161	$\mu { m g}/{ m L}$	1
2-Chloroethyl vinyl ether		<0.388	$\mu { m g}/{ m L}$	5
cıs-1,3-Dıchloropropene		< 0.0890	$\mu { m g}/{ m L}$	1
trans-1,3-Dichloropropene		<0 0760	$\mu { m g/L}$	1
Toluene		< 0.0600	$\mu { m g}/{ m L}$	1
1.1,2-Trichloroethane		< 0.135	$\mu { m g}/{ m L}$	1
1,3-Dichloropropane		< 0.0990	$\mu { m g}/{ m L}$	1
Dibiomochloromethane		<0 0900	$\mu { m g}/{ m L}$	1
1 2-Dibromoethanc (EDB)		<0 0700	$\mu { m g}/{ m L}$	1
Tetrachloroethene (PCE)		0.370	$\mu g/L$	1
Chlorobenzene		< 0.0540	$\mu \mathrm{g}/\mathrm{L}$	1
1,1,1,2-Tetrachloroethane		< 0.0990	$\mu \mathrm{g/L}$	1
Ethylbenzene		< 0.0360	$\mu g/L$	1
m,p-Xylene		<0 0940	$\mu g/L$	· 1
Bromoform		<0.0570	$\mu g/L$	1
				atimied

continued ..

衝艇

 $method \ blank \ continued \ .$

metnoa olank continuea .				
		MDL		
Parameter	Flag	Result	\mathbf{Units}	\mathbf{RL}
Styrene	· · · · · · · · · · · · · · · · · · ·	< 0.0910	$\mu { m g/L}$	1
o-Xylene		< 0.0960	$\mu { m g}/{ m L}$	1
1, 1, 2, 2-Tetrachloroethane		< 0.125	$\mu { m g}/{ m L}$	1
2-Chlorotoluene		< 0.0570	$\mu g/L$	1
1,2,3-Trichloropropane		< 0.458	$\mu { m g}/{ m L}$	1
Isopropylbenzene		< 0.0850	$\mu { m g}/{ m L}$	1
Bromobenzene		< 0.106	$\mu { m g/L}$	1
n-Propylbenzene		<0.0590	$\mu { m g/L}$	1
1,3,5-Trimethylbenzene		< 0.0250	$\mu { m g/L}$	1
tert-Butylbenzene		< 0.107	$\mu { m g/L}$	1
1 2 4-Tumethylbenzene		< 0.0990	$\mu { m g/L}$	1
l 4-Dichlorobenzene (para)		$<0\ 217$	$\mu { m g} / { m L}$	1
sec-Butylbenzene		0.130	$\mu { m g}/{ m L}$	1
1,3-Dichlorobenzene (meta)		< 0.0690	$\mu { m g} / { m L}$	1
p-Isopropyltoluene		0.140	$\mu { m g}/{ m L}$	1
4-Chlorotoluene		<0~0940	$\mu { m g/L}$	1
1,2-Dichlorobenzene (ortho)		<0 100	$\mu { m g/L}$	1
n-Butylbenzene		0.220	$\mu { m g} / { m L}$	1
1,2-Dibromo-3-chloropropane		< 0.690	$\mu { m g/L}$	5
1,2,3-Trichlorobenzene		< 0.135	$\mu { m g/L}$	5
1,2,4-Trichlorobenzene		< 0.155	$\mu { m g}/{ m L}$	5
Naphthalene		< 0.594	$\mu { m g}/{ m L}$	5
Hexachlorobutadiene		< 0.248	$\mu { m g}/{ m L}$	5

Surrogate	Flag	Result	$\mathbf{U}\mathbf{n}\mathbf{i}\mathbf{t}\mathbf{s}$	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Dibromofluoromethane		50.2	$\mu g/L$	1	50.0	100	70 - 130
Toluene-d8		49.2	$\mu { m g/L}$	1	50.0	98	70 - 130
4-Bromofluorobenzene (4-BFB)		49.5	$\mu { m g}/{ m L}$	1	50.0	99	70 - 130

Method Blank (1) QC Batch 62048

QC Batch Prep Batch	62048 52928		Date Analyzed QC Preparation.	2009-07-31 2009-07-30		Analyzed By: Prepared By:	
			N	1DL			
Parameter		Flag	Re	sult	Units		\mathbf{RL}
Nitrate-N		-	<00	0700	mg/L		02

....

.
: 9072713 Page Number Closure Unit B, Sec. 3, T3SR29E, Chaves	
alyzed:2009-07-31Analyzed Earation:2009-07-30Prepared E	
MDL Describe	م
Result Units <0.137	$\frac{\mathbf{R}}{0}$
alyzed. 2009-07-31 Analyzed E	
aration: 2009-07-30 Prepared B	y: SS
MDL	
Result Units	RI
<0.0889 mg/L	0.:
lyzed: 2009-07-31 Analyzed B	: AH
ration. 2009-07-31 Prepared By	
MDL	
Result Units	\mathbf{RL}
<0.0148 mg/L	0.01
lyzed: 2009-07-31 Analyzed By	: AH
utation. 2009-07-31 Prepared By	
MDL Result Units	חד
<pre> Result Units </pre> <pre> <pre></pre></pre>	RL 3.2

Method Blank (1) QC Batch 62157

~

QC Batch	62157	Date Analyzed:	2009-08-04	Analyzed By:	
Prep Batch	53021	QC Preparation	2009-08-04	Prepared By:	CM

14 ,律

「「「「」」

Report Date August 4, 2009 Banard 3B #1		Work Order 9072713 Banard Pit Closure	Page Number 20 of Unit B, Sec. 3, T3SR29E, Chaves Co., 1				
Parameter	Flag	$egin{array}{c} \mathrm{MDL} \ \mathrm{Result} \end{array}$	Units	RL			
TRPHC		<5 28	mg/Kg	10			

Laboratory Control Spike (LCS-1)

QC Batch	61916	Date Analyzed:	2009-07-28	Analyzed By:	\mathbf{MT}
Prep Batch:	52814	QC Preparation:	2009-07-28	Prepared By:	\mathbf{MT}

	LCS			Spike	Matrix		Rec
Param	Result	Units	Dıl	Amount	Result	Rec	Lımit
Benzene	1 83	mg/Kg	1	2 00	< 0.00505	92	78.9 - 113
Toluene	1.86	mg/Kg	1	200	< 0.00611	93	78.3 - 116
Ethylbenzene	1.82	mg/Kg	1	2.00	< 0.00630	91	79.1 - 117
Xylene	5.64	mg/Kg	1	6.00	< 0.00673	94	79.6 - 116

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	1 90	mg/Kg	1	2 00	<0 00505	95	78.9 - 113	4	20
Toluene	1.88	mg/Kg	1	2.00	< 0.00611	94	78.3 - 116	1	20
Ethylbenzene	1.84	mg/Kg	1	2.00	< 0.00630	92	79.1 - 117	1	20
Xylene	568	mg/Kg	1	6.00	$<0\ 00673$	95	79.6 - 116	1	20

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result.

Surrogate	$\begin{array}{c} { m LCS} \\ { m Result} \end{array}$	$\begin{array}{c} \mathrm{LCSD} \\ \mathrm{Result} \end{array}$	Units	Dil.	Spike Amount	LCS Rec.	$\begin{array}{c} \mathrm{LCSD} \\ \mathrm{Rec} \end{array}$	Rec. Limit
Trifluorotoluene (TFT)	1.82	1.87	mg/Kg	1	2.00	91	94	70.8 - 111
4-Bromofluorobenzene (4-BFB)	1.83	1.87	mg/Kg	1	2.00	92	93	68.3 - 117

Laboratory Control Spike (LCS-1)

QC Batch	61917	Date Analyzed:	2009-07-28	Analyzed By:	MT
Piep Batch	52814	QC Preparation:	2009-07-28	Prepared By:	\mathbf{MT}

	LCS			Spike	Matrix		Rec.
Param	Result	Units	∠ Dil.	Amount	Result	Rec.	Limit
GRO	19.0	mg/Kg	1	20.0	< 0.403	95	72.6 - 121

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dıl.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	19.0	mg/Kg	1	20.0	< 0.403	95	72.6 - 121	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date August 4, 20 Banard 3B #1	09		Work Order [.] 9072713 Banard Pıt Closure				Page Number: 21 Unit B, Sec. 3, T3SR29E, Chaves Co					
Surrogate		LCS Resul		CSD esult	Units	Dil.	Spi Amo		LCS Rec.	LCSI Rec.		Rec. Limit
Trifluorotoluene (TFT)		1.90			mg/Kg	1	2.0		95	93		.2 - 112
4-Bromofluorobenzene (4-B	FB)	1.78	1	72	mg/Kg	1	2.0)0	89	86	54	.9 - 133
Laboratory Control Spi	ke (LCS	5-1)										
QC Batch 61923			Date	Analyze	d: 2009	-07-28				А	nalyzed	l By:
Prep Batch 52821				reparati		-07-28					repared	•
		LCS	5			S	pike	Mat	trix			Rec.
Param		Resu		Units	Dil.		nount	Res		Rec.		Limit
DRO		243		mg/Kg	1		250	<5		97	71	.2 - 159
Percent recovery is based o	n the spi	ke result	RPD 15	based or	n the spike	e and s	pike du	plicate	result.			
		LCSD			Spike	М	atrix		R	ec.		RPD
Param		Result	Units	Dıl.	Amoun		esult	Rec.		mit	RPD	Limit
DRO		259	mg/Kg	g 1	250	<	5.66	104	71.2	- 159	6	20
Surrogate n-Triacontane	LCS Result 94.7	LCSD Result 102		Units ig/Kg	Dil.	Am	oike iount .00	LCS Rec 95		LCSD Rec 102		Rec. Limit .6 - 172
Laboratory Control Spil QC Batch 61942 Prep Batch 52833	ke (LCS			nalyzed: eparation							yzed By ared By	
Param		LCS Resul		Units	Dil.	Spik Amou		Matr Resu		Rec.		Rec. Limit
SPLP Mercury		0.0010		ng/L	1	0.0010		< 0.000		103		.8 - 111
Percent recovery is based or	n the spi		,									
,	1				-		-	1				~~~
Param		LCSD Result	Units	Dıl	Spike Amount		atrıx sult	Rec.		lec. Imit	RPD	RPD Limit
SPLP Mercury			mg/L	$\frac{DI}{1}$	0.00100		$\frac{\mathrm{suft}}{000329}$	101 rec.		- 111	$\frac{\text{RPD}}{2}$	$\frac{1}{20}$
Percent recovery is based of					· · · · · · · · · · · · · · · · · · ·							
Laboratory Control Spil	ke (LCS	-1)										
QC Batch 61963			Date A	nalyzed:	2009-0	7-29				Anal	yzed By	r: DS
Prep Batch. 52859				eparation							ared By	

3

がい

Report Date August 4, 2009 Banard 3B #1		Work Ord Banard	ler 9072 Pıt Closu		Unit B	, Sec. 3,	Page N T3SR29E,		: 22 of 46 Co., NM
	LC	CS			Spike	Matri	x		Rec.
Param	Res		Units	Dil.	Amount	Resul		ec.	Limit
Arocloi 1260 (PCB-1260)		175	mg/L	1	0 00200	< 0.0000)331 8	8	10 - 128
Percent recovery is based on t	he spike result	RPD 18	based or	n the spike	and spike dup	olicate re	sult.		
	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit	\mathbf{RPD}	Limit
Aroclor 1260 (PCB-1260)	0.00176	mg/L	1	0.00200	< 0.0000331	88	10 - 128	1	20
Percent recovery 1s based on t	he spike result	. RPD is	based or	n the spike	and spike dup	licate re	sult.		
	LCS	LCSD			Spike	L	CS LC	SD	Rec.
Surrogate	Result	Result	Un	nits Di	•				Limit
Deca chlorobiphenyl	0 000520	0.00051	9 mg	g/L 1	0.00050	0 10)4 10	4	10 - 128
Prep Batch 52868	Γ	CS	eparation		Spike	Matri	ix	bared B	Rec.
Param		sult	Units	Dil.	Amount	Resu			Limit
SPLP Cadmium	0 2	249	$\mathrm{mg/L}$	1	0 250	< 0.001	140 10	0	85 - 115
Percent recovery is based on the	ne spike result	RPD 18	based or	1 the spike	and spike dup	licate re	sult.		
	, LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{Result}	Units	Dıl	Amount	\mathbf{Result}	Rec.	Limit	RPD	Limit
SPLP Cadmium	0.240	mg/L	1	$0\ 250$	< 0.00140	96	85 - 115	4	20
Percent recovery is based on the Laboratory Control Spike		RPD is	based or	1 the spike	and spike dup	licate res	sult.		
QC Batch 62003 Prep Batch 52868			nalyzed: eparation	2009-07 : 2009-07				lyzed B bared B	•
	$\mathbf{L}($	CS			Spike	Matri	x		Rec.
Рагаш	Res		Units	Dıl	Amount	Resul		c.	Limit
SPLP Lead	0 5	15	mg/L	1	0.500	< 0.003	320 10	3	85 - 115
Percent recovery is based on th	ne spike result	RPD 15	based or	the spike	and spike dup	licate res	sult		
ï	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Lead	0.493								

7

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

,

Report Date August 4, 2009 Banard 3B #1			ler [.] 90727 Pit Closur		Unit B	, Sec. 3,	Page I T3SR29E,		23 of 46 Co., NM
Laboratory Control Spike (L	CS-1)								
QC Batch 62003 Prep Batch 52868			nalyzed: eparation:	2009-07- 2009-07-				alyzed B pared B	
	LC	S			Spike	Mat	rix		Rec.
Param	Res		Units	Dil.	Amount	Res		ec.	Limit
SPLP Selenium	0.44	40	mg/L	1	0.500	< 0.0	131 8	8	85 - 115
Percent recovery is based on the	spike result	RPD is	based on	the spike :	and spike dup	olicate re	esult.		
	LCSD			Spike	Matrix		Rec		RPD
Patam	Result	Units	Dıl	Amount	\mathbf{Result}	Rec.	Limit	RPD	Limit
SPLP Selenium	$0\ 442$	mg/L	1	0 500	< 0.0131	88	85 - 115	0	20
Percent recovery is based on the	spike result	RPD 15	based on	the spike	and spike dup	olicate re	sult.		
Laboratory Control Spike (L	CS-1)								
QC Batch 62003 Prep Batch. 52868			nalyzed: eparation:	2009-07- 2009-07-				alyzed B pared B	
	LC	S			Spike	Mati	·ix		Rec.
	D	1+	Units	Dıl	Amount	Resi	lt R	ec.	Limit
	Resi								
	0.47		mg/L	1	0.500	< 0.00	430 9		85 - 115
SPLP Arsenic	0.47	75	mg/L	1	0.500	< 0.00			
PLP Arsenic	0.47	75	mg/L	1 the spike	0.500	< 0.00			
PLP Arsenic Percent recovery is based on the	0.47 spike result	75	mg/L	1	0.500 and spike dup	< 0.00	esult.		85 - 115
PLP Arsenic Percent recovery is based on the Param	0.47 spike result LCSD	75 RPD 15	mg/L based on	1 the spike Spike	0.500 and spike dur Matrix	<0.00 olicate re	esult. Rec.	95	85 - 115 RPD
PLP Arsenic Percent recovery is based on the Param SPLP Arsenic Percent recovery is based on the	0.47 spike result LCSD Result 0.456 spike result.	75 RPD 18 Units mg/L	mg/L based on Dil. 1	1 the spike Spike Amount 0.500	0.500 and spike dup Matrix Result <0.00430	<0.00 blicate re Rec. 91	esult. Rec. Limit 85 - 115	95 RPD	85 - 115 RPD Limit
SPLP Arsenic Percent recovery is based on the Param SPLP Arsenic Percent recovery is based on the	0.47 spike result LCSD Result 0.456 spike result.	75 RPD 18 Units mg/L	mg/L based on Dil. 1	1 the spike Spike Amount 0.500	0.500 and spike dup Matrix Result <0.00430	<0.00 blicate re Rec. 91	esult. Rec. Limit 85 - 115	95 RPD	85 - 115 RPD Limit
PLP Arsenic Percent recovery is based on the Param SPLP Arsenic Percent recovery is based on the Caboratory Control Spike (L QC Batch 62003	0.47 spike result LCSD Result 0.456 spike result.	75 RPD is Units mg/L RPD is Date A	mg/L based on Dil. 1	1 the spike Spike Amount 0.500	0.500 and spike dup Matrix Result <0.00430 and spike dup 30	<0.00 blicate re Rec. 91	esult. Rec. Limit 85 - 115 esult. Ana	95 RPD	85 - 115 RPD Limit 20 y. RR
PLP Arsenic Percent recovery is based on the Param PLP Arsenic Percent recovery is based on the Caboratory Control Spike (L QC Batch 62003 Prep Batch 52868	0.47 spike result LCSD Result 0.456 spike result. CS-1)	75 RPD is <u>mg/L</u> RPD is Date A QC Pre	mg/L based on Dil. 1 based on nalyzed: eparation.	1 the spike Amount 0.500 the spike s 2009-07- 2009-07-	0.500 and spike dup Matrix Result <0.00430 and spike dup 30	<0.00 ohcate re Rec. 91 olicate re	esult. Rec. Limit 85 - 115 esult. Ana Pre	RPD 4 alyzed B pared B	85 - 115 RPD Limit 20 y. RR y: KV Rec
PLP Arsenic Percent recovery is based on the Param PLP Arsenic Percent recovery is based on the Caboratory Control Spike (L QC Batch 62003 Prep Batch 52868 Param	0.47 spike result LCSD Result 0.456 spike result. CS-1) LC Resu	75 RPD is <u>mg/L</u> RPD is Date A QC Pre S ilt	mg/L based on Dil. 1 based on nalyzed: eparation: Units	1 the spike Amount 0.500 the spike s 2009-07- 2009-07- 2009-07- Dil.	0.500 and spike dup Matrix Result <0.00430 and spike dup 30 30 Spike Amount	<0.00 ohcate re Rec. 91 olicate re Matu Resu	esult. Rec. Limit 85 - 115 esult. Ana Pre- tix et Ra	RPD 4 alyzed B pared B ec.	85 - 115 RPD Limit 20 y. RR y: KV Rec Limit
PLP Arsenic Percent recovery is based on the Param PLP Arsenic Percent recovery is based on the Caboratory Control Spike (L QC Batch 62003 Prep Batch 52868	0.47 spike result LCSD Result 0.456 spike result. CS-1)	75 RPD is <u>mg/L</u> RPD is Date A QC Pre S ilt	mg/L based on Dil. 1 based on nalyzed: eparation.	1 the spike Amount 0.500 the spike s 2009-07- 2009-07-	0.500 and spike dup Matrix Result <0.00430 and spike dup 30 30 Spike	<0.00 ohcate re Rec. 91 olicate re	esult. Rec. Limit 85 - 115 esult. Ana Pre- tix et Ra	RPD 4 alyzed B pared B ec.	85 - 115 RPD Limit 20 y. RR y: KV Rec
PLP Arsenic Percent recovery is based on the Param PPLP Arsenic Percent recovery is based on the Caboratory Control Spike (L QC Batch 62003 Prep Batch 52868 Param PLP Barium	0.47 spike result LCSD Result 0.456 spike result. CS-1) LC: Resu 1.0	75 RPD is <u>mg/L</u> RPD is Date A QC Pre Silt 2	mg/L based on Dil. 1 based on nalyzed: eparation Units mg/L	1 the spike Amount 0.500 the spike 2009-07- 2009-07- Dil. 1	0.500 and spike dup Matrix Result <0.00430 and spike dup 30 30 30 Spike Amount 1.00	<0.00 ohcate re 91 olicate re Mata Resu <0.00	esult. Rec. Limit 85 - 115 esult. Ana Pre ix lt Ra 170 10	RPD 4 alyzed B pared B ec.	85 - 115 RPD Limit 20 y. RR y: KV Rec Limit
PLP Arsenic Percent recovery is based on the Param PLP Arsenic Percent recovery is based on the Caboratory Control Spike (L QC Batch 62003 Prep Batch 52868 Param PLP Barium	0.47 spike result LCSD Result 0.456 spike result. CS-1) LCG Resu 1.0 spike result LCSD	75 RPD is <u>mg/L</u> RPD is Date A QC Pre Silt 2 RPD is	mg/L based on Dil. 1 based on nalyzed: eparation Units mg/L	1 the spike Amount 0.500 the spike 2009-07- 2009-07- Dil. 1	0.500 and spike dup Matrix Result <0.00430 and spike dup 30 30 30 Spike Amount 1.00	<0.00 ohcate re 91 olicate re Mata Resu <0.00	esult. Rec. Limit 85 - 115 esult. Ana Pre ix lt Ra 170 10	RPD 4 alyzed B pared B ec.	85 - 115 RPD Limit 20 y. RR y: KV Rec Limit
PLP Arsenic Percent recovery is based on the Param PLP Arsenic Percent recovery is based on the Caboratory Control Spike (L 2C Batch 62003 Prep Batch 52868 Param PLP Barium Percent recovery is based on the Param	0.47 spike result LCSD Result 0.456 spike result. CS-1) LCS Result LCSD Result	75 RPD is <u>mg/L</u> RPD is Date A QC Pre Silt 2	mg/L based on Dil. 1 based on nalyzed: eparation Units mg/L	1 the spike Amount 0.500 the spike 2009-07- 2009-07- Dil. 1 the spike a	0.500 and spike dup Matrix Result <0.00430 and spike dup 30 30 30 Spike Amount 1.00 and spike dup	<0.00 ohcate re Rec. 91 olicate re Math Resu <0.00 olicate re Rec.	esult. Rec. Limit 85 - 115 esult. Ana Pre ix lt Ra 170 10 esult	RPD 4 alyzed B pared B ec.	85 - 115 RPD Limit 20 y. RR y: KV Rec Limit 85 - 115
	0.47 spike result LCSD Result 0.456 spike result. CS-1) LCG Resu 1.0 spike result LCSD	75 RPD is <u>mg/L</u> RPD is Date A QC Pre Silt 2 RPD is	mg/L based on Dil. 1 based on nalyzed: eparation Units mg/L based on	1 the spike Amount 0.500 the spike 2009-07- 2009-07- Dil. 1 the spike Spike	0.500 and spike dup Matrix Result <0.00430 and spike dup and spike dup 30 30 30 Spike Amount 1.00 and spike dup Matrix	<0.00 ohcate re Rec. 91 olicate re Math Resu <0.00 olicate re	esult. Rec. Limit 85 - 115 esult. Ana Pre ix lit Rec.	RPD 4 alyzed B pared B pared B	85 - 115 RPD Limit 20 y. RR y: KV Rec Limit 85 - 115 RPD

事事

•

Report Date August 4, 2009 Banard 3B #1		ork Ord anard I	Pıt Closuı	re	Unit B	, Sec. 3	, T3SR29	E, Chaves	Co., NM
aboratory Control Spike (L	CS-1)								
QC Batch· 62003			nalyzed:	2009-07	-30			Analyzed H	•
rep Batch: 52868	(QC Pre	eparation:	: 2009-07	7-30		F	Prepared E	sy: KV
	LCS				Spike	Mat	rix		Rec.
Param	Result		Units	Dil.	Amount	Resu		Rec.	Limit
PLP Chromium	0 0950)	mg/L	1	0.100	< 0.00	0900	95	85 - 115
ercent recovery is based on the	spike result F	RPD is	based on	the spike	and spike du	olicate r	esult.		
	LCSD			\mathbf{Spike}	Matrix		Rec		RPD
aram		Units	Dıl	Amount	Result	Rec.	Limit		Lımit
PLP Chromium	0.0910	mg/L	1	0.100	< 0.000900	91	85 - 11	.5 4	20
aboratory Control Spike (L	CS-1)			-					
2C Batch 62003	Ι	Date A	nalyzed	2009-07	'-3 0		A	Analyzed H	By: RR
									•
rep Batch 52868	(QC Pre	eparation:	: 2009-07	'-3 0		F	Prepared E	y: KV
rep Batch 52868	(QC Pre	eparation:	: 2009-07	-30		F	Prepared E	y: KV
rep Batch 52868			eparation:	: 2009-07		Mat		repared E	
	LCS Resul	-	eparation: Units	: 2009-07 Dil	7-30 Spike Amount	Mat Resi	rıx	Prepared E Rec.	y: KV Rec. Limit
aram	LCS	t	-		Spike		rıx ılt	-	Rec. Limit
aram PLP Coppei	LCS Resul 0.125	t	Units mg/L	Dil 1	Spike Amount 0.125	Rest <0.00	rıx ılt)140	Rec.	Rec. Limit
aram PLP Copper	LCS Resul 0.125	t	Units mg/L	Dil 1	Spike Amount 0.125	Rest <0.00	rıx ılt)140	Rec.	Rec.
aram PLP Copper ercent recovery is based on the s	LCS Resul 0.125 spike result F LCSD	t	Units mg/L	Dil 1 the spike	Spike Amount 0.125 and spike dup	Rest <0.00	rıx ult 0140 esult.	Rec.	Rec. Limit 85 - 115 RPD
aram PLP Copper ercent recovery is based on the s aram	LCS Resul 0.125 spike result F LCSD Result	t RPD is	Units mg/L based on	Dil 1 the spike Spike	Spike Amount 0.125 and spike dup Matrix	Rest <0.00 plicate re	rıx 11t 1140 esult. Rec.	Rec. 100 RPD	Rec. Limit 85 - 115
aram PLP Copper ercent recovery is based on the s aram PLP Copper	LCS Resul 0.125 spike result F LCSD Result 0 122	t RPD is Units mg/L	Units mg/L based on Dil. 1	Dil 1 the spike Spike Amount 0 125	Spike Amount 0.125 and spike dup Matrix Result <0.00140	Rest <0.00 plicate re Rec. 98	rıx alt 1140 esult. Rec. Limit 85 - 11	Rec. 100 RPD	Rec. Limit 85 - 115 RPD Limit
PLP Copper Percent recovery is based on the second	LCS Resul 0.125 spike result F LCSD Result 0 122 spike result. F	t RPD is Units mg/L	Units mg/L based on Dil. 1	Dil 1 the spike Spike Amount 0 125	Spike Amount 0.125 and spike dup Matrix Result <0.00140	Rest <0.00 plicate re Rec. 98	rıx alt 1140 esult. Rec. Limit 85 - 11	Rec. 100 RPD	Rec. Limit 85 - 115 RPD Limit
aram PLP Copper ercent recovery is based on the s aram PLP Copper ercent recovery is based on the s aboratory Control Spike (Le	LCS Resul 0.125 spike result F LCSD Result 0 122 spike result. F CS-1)	t PD is <u>Units</u> mg/L PD is Date A	Units mg/L based on Dil. 1 based on nalyzed	Dil 1 the spike Spike Amount 0 125	Spike Amount 0.125 and spike dup Matrix Result <0.00140 and spike dup	Rest <0.00 plicate re Rec. 98	rıx alt 0140 esult. Rec. Limit 85 - 11 esult.	Rec. 100 RPD	Rec. Limit 85 - 115 RPD Limit 20
PLP Copper Percent recovery is based on the second recovery is	LCS Resul 0.125 spike result F LCSD Result 0 122 spike result. F CS-1)	t PD is <u>Units</u> mg/L PD is Date A	Units mg/L based on Dil. 1 based on	Dil 1 the spike Spike Amount 0 125 the spike	Spike Amount 0.125 and spike dup Matrix Result <0.00140 and spike dup	Rest <0.00 plicate re Rec. 98	rıx alt 0140 esult. Rec. Limit 85 - 11 esult.	Rec. 100 RPD 5 2	Rec. Limit 85 - 115 RPD Limit 20
PLP Copper Percent recovery is based on the second recovery is	LCS Resul 0.125 spike result F LCSD Result 0 122 spike result. F CS-1)	t PD is <u>Units</u> mg/L PD is Date A	Units mg/L based on Dil. 1 based on nalyzed	Dil 1 the spike Spike Amount 0 125 the spike 2009-07	Spike Amount 0.125 and spike dup Matrix Result <0.00140 and spike dup -30 -30	Resn <0.00 Olicate re <u>Rec.</u> <u>98</u> Olicate re	rıx alt 0140 esult. Rec. Limit 85 - 11 esult.	Rec. 100 RPD 5 2	Rec. Limit 85 - 115 RPD Limit 20 By: RR y' KV
aram PLP Copper ercent recovery is based on the s aram PLP Copper ercent recovery is based on the s aboratory Control Spike (Le C Batch 62003 rep Batch 52868	LCS Resul 0.125 spike result F LCSD Result 0 122 spike result. F CS-1)	t PD is <u>Units</u> mg/L PD is Date A QC Pre	Units mg/L based on Dil. 1 based on nalyzed	Dil 1 the spike Spike Amount 0 125 the spike 2009-07	Spike Amount 0.125 and spike dup Matrix Result <0.00140 and spike dup	Rest <0.00 plicate re Rec. 98	rıx 1lt 1140 esult. Rec. Limit 85 - 11 esult. A F	Rec. 100 RPD 5 2	Rec. Limit 85 - 115 RPD Limit 20
aram PLP Copper ercent recovery is based on the s aram PLP Copper ercent recovery is based on the s aboratory Control Spike (Le C Batch 62003 rep Batch 52868	LCS Resul 0.125 spike result F LCSD Result 0 122 spike result. F CS-1)	t IPD is Mg/L IPD is Date A QC Pre-	Units mg/L based on Dil. 1 based on nalyzed eparation	Dil 1 the spike Amount 0 125 the spike 2009-07 2009-07	Spike Amount 0.125 and spike dup Matrix Result <0.00140 and spike dup -30 -30 Spike	Resn <0.00 Olicate re <u>98</u> Olicate re	rıx 1lt 1140 esult. Rec. Limit 85 - 11 esult. A F	Rec. 100 RPD 5 2 Analyzed F Prepared F	Rec. Limit 85 - 115 RPD Limit 20 By: RR sy: RR sy: KV Rec.
aram PLP Copper ercent recovery is based on the s aram PLP Copper ercent recovery is based on the s aboratory Control Spike (Le C Batch 62003 rep Batch 52868 Atam PLP Silver	LCS Resul 0.125 spike result F LCSD Result 0 122 spike result. F CS-1) I LCS Result 0.123	t Units mg/L PD is PD is Date A QC Pre	Units mg/L based on Dil. 1 based on nalyzed eparation Units mg/L	Dil 1 the spike Amount 0 125 the spike 2009-07 2009-07 2009-07	Spike Amount 0.125 and spike dup Matrix Result <0.00140 and spike dup 7-30 7-30 Spike Amount 0.125	Ress <0.00 Dilicate re 98 Dilicate re Matt Ress <0.00	rix alt 1140 esult. Rec. Limit 85 - 11 esult. A F rix alt 2210	Rec. 100 RPD 5 2 Analyzed F Prepared F Rec.	Rec. Limit 85 - 115 RPD Limit 20 By: RR sy: RR sy: KV Rec. Limit
aram PLP Copper ercent recovery is based on the second s	LCS Resul 0.125 spike result F LCSD Result 0 122 spike result. F CS-1) I LCS Result 0.123	t Units mg/L PD is PD is Date A QC Pre	Units mg/L based on Dil. 1 based on nalyzed eparation Units mg/L	Dil 1 the spike Amount 0 125 the spike 2009-07 2009-07 2009-07	Spike Amount 0.125 and spike dup Matrix Result <0.00140 and spike dup 7-30 7-30 Spike Amount 0.125	Ress <0.00 Dilicate re 98 Dilicate re Matt Ress <0.00	rix alt 1140 esult. Rec. Limit 85 - 11 esult. A F rix alt 2210	Rec. 100 RPD 5 2 Analyzed F Prepared F Rec.	Rec. Limit 85 - 115 RPD Limit 20 By: RR y' KV Rec. Limit 85 - 115
aram PLP Copper ercent recovery is based on the s aram PLP Copper ercent recovery is based on the s aboratory Control Spike (Le 2C Batch 62003 rep Batch 52868 Atam PLP Silver	LCS Resul 0.125 spike result F LCSD Result 0 122 spike result. F CS-1) I CS-1) I LCS Result 0.123 spike result R LCSD Result	t Units mg/L PD is PD is Date A QC Pre	Units mg/L based on Dil. 1 based on nalyzed eparation Units mg/L	Dil 1 the spike Amount 0 125 the spike 2009-07 2009-07 2009-07 Dil. 1 the spike	Spike Amount 0.125 and spike dup Matrix Result <0.00140 and spike dup 7-30 7-30 5-30 Spike Amount 0.125 and spike dup	Ress <0.00 Dilicate re 98 Dilicate re Matt Ress <0.00	rix lt l140 esult. Rec. Limit 85 - 11 esult. A F rix lt l210 esult	Rec. 100 RPD 5 2 Analyzed E Prepared E Rec. 98 RPD	Rec. Limit 85 - 115 RPD Limit 20 By: RR sy: RR sy: KV Rec. Limit

王子

相關

Report Date August 4, 2009 Banard 3B #1		Order 90727 d Pıt Closur		Unit 1	B, Sec. 3, T			25 of 46 Co., NM
Laboratory Control Spike (I	LCS-1)							
QC Batch 62003 Prep Batch 52868		Analyzed: Preparation:	2009-07- 2009-07-				yzed By ared By	
	LCS			Spike	Matrix			Rec.
Param SPLP U	Result	Units	 	Amount	Result	Rec		Limit
	1.04	mg/L		1.00	< 0.010		± :	90 - 110
Percent recovery is based on the	spike result. RPD	is based on	the spike	and spike du	iplicate resu	lt.		
	LCSD		Spike	Matrix		Rec.		RPD
Param	Result Un		Amount	Result		Limit	RPD	Limit
SPLP U	0 995 mg		1.00	< 0.0105		0 - 110	4	
Percent recovery is based on the	spike result RPD	is based on	the spike	and spike du	iplicate resu	lt		•
Laboratory Control Spike (I	LCS-1)							
QC Batch 62003	Date	Analyzed:	. 2009-07-	-30		Anal	yzed By	: RR
Prep Batch 52868		Preparation.					ared By	
	U -							
	LCS			Spike	Matrix			Rec
Param	Result	Units	Dıl.	Amount	Result	\mathbf{Re}	c.	Limit
SPLP Manganese	0 248	mg/L	1	0.250	< 0.00030			35 - 115
Percent recovery is based on the	spike result RPD		the spike	and spike du	plicate resu	lt.		
			-	_	-			000
Param	LCSD Result Unit	s Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limıt	RPD	RPD Limit
SPLP Manganese	1000000000000000000000000000000000000		$\frac{\text{Amount}}{0.250}$	<0 000305		$\frac{111111}{35 - 115}$	4	$\frac{1.11111}{20}$
					·····			20
Percent recovery is based on the	spike result. RPD	is based on	the spike	and spike du	ipiicate resu	11.		
Laboratory Control Spike (I	$\mathcal{L}CS-1)$							
		م مرکز میں م	2000 07	01		A 1-		NANT
QC Batch 62035 Prep Batch 52915		Analyzed Preparation	2009-07- 2009-07-				vzed By ared By	
110p Dattin - 52515	QU I	reparation	2009-07-	-29		1 repa	пец ру	
	r ca			~				_
Param	$\begin{array}{c} \mathrm{LCS} \\ \mathrm{Result} \end{array}$	Unito	ו:ח	Spike	Matrix	D -		Rec.
Naphthalene	0.0370	Units mg/L		1 mount 0 0800	Result <0.0000853	Rec 46		Limit 0 - 141
Acenaphthylene	0.0370	mg/L mg/L		0.0800	<0.0000853			0 - 141 0 - 152
Acenaphthene	0.0403 0.0456	mg/L		0.0800	< 0.000103	58 57) - 152) - 151
Dibenzofuran	0 0420	mg/L		0.0800	< 0.000103	57 52) - 151) - 148
	0 0420	+нъ/ ш	T 1	0.0000	<0.000200	52	1,	J - 140
Fluorene	0.0515	mg/L	1	0.0800	<0.0000861	64	14	1 - 179
Fluorene Anthracene	$\begin{array}{c} 0 \ 0515 \\ 0 \ 0530 \end{array}$	mg/L mg/L		0.0800 0.0800	$< 0.0000861 \\ < 0.000170$	64 66		0 - 172 .6 - 172

continued

```

-

1495 1485 1485

Work Order. 9072713 Banard Pit Closure

control spikes continued ...

Banard 3B #1

Report Date August 4, 2009

| -                           | LCS       |                 |      | Spike  | Matrix            |      | $\operatorname{Rec}$ |
|-----------------------------|-----------|-----------------|------|--------|-------------------|------|----------------------|
| Param                       | Result    | Units           | Dıl. | Amount | $\mathbf{Result}$ | Rec. | Limit                |
| Phenanthrene                | 0 0514    | mg/L            | 1    | 0.0800 | < 0.0000884       | 64   | 22.5 - 172           |
| Fluoranthene                | $0\ 0576$ | $\mathrm{mg/L}$ | 1    | 0.0800 | < 0.0000969       | 72   | 17.3 - 187           |
| Pyrene                      | $0\ 0557$ | mg/L            | 1    | 0.0800 | < 0.0000855       | 70   | 14.9 - 199           |
| Benzo(a)anthracene          | $0\ 0523$ | $\mathrm{mg/L}$ | 1    | 0.0800 | < 0.0000703       | 65   | 19.4 - 185           |
| Chrysene                    | 0.0504    | $\mathrm{mg/L}$ | 1    | 0.0800 | < 0.000113        | 63   | 18.4 - 188           |
| Benzo(b)fluoranthene        | 0.0602    | m mg/L          | 1    | 0.0800 | < 0.000134        | 75   | 10 - 193             |
| Benzo(k)fluoranthene        | 0.0722    | m mg/L          | 1    | 0.0800 | < 0.000227        | 90   | 27.8 - 196           |
| Benzo(a)pyrene              | 0.0668    | m mg/L          | 1    | 0.0800 | < 0.000200        | 84   | 12.4 - 205           |
| Indeno(1,2,3-cd)pyrene      | 0.0577    | $\mathrm{mg/L}$ | 1    | 0.0800 | < 0.000253        | 72   | 10 - 198             |
| $D_{1}benzo(a,h)anthracene$ | $0\ 0557$ | mg/L            | 1    | 0 0800 | < 0.000180        | 70   | 10 - 172             |
| Benzo(g,h,ı)perylene        | 0 0571    | mg/L            | 1    | 0 0800 | < 0.000158        | 71   | 10 - 186             |

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result.

| /                      | LCSD                    |                 |          | Spike     | Matrix            |           | Rec.       |                | RPD       |
|------------------------|-------------------------|-----------------|----------|-----------|-------------------|-----------|------------|----------------|-----------|
| Param                  | $\operatorname{Result}$ | Units           | Dıl      | Amount    | $\mathbf{Result}$ | Rec.      | Limit      | $\mathbf{RPD}$ | Limit     |
| Naphthalene            | 0.0368                  | mg/L            | 1        | 0.0800    | <0 0000853        | 46        | 10 - 141   | 0              | 20        |
| Acenaphthylene         | 0.0458                  | m mg/L          | 1        | 0.0800    | < 0.0000768       | 57        | 10 - 152   | 1              | 20        |
| Acenaphthene           | $0\ 0453$               | $\mathrm{mg/L}$ | 1        | $0\ 0800$ | < 0.000103        | 57        | 10 - 151   | 1              | 20        |
| Dıbenzofuran           | 0.0414                  | $\mathrm{mg/L}$ | 1        | 0.0800    | < 0.000200        | 52        | 10 - 148   | 1              | 20        |
| Fluorene               | 0.0503                  | _ mg/L          | 1        | 0.0800    | < 0.0000861       | 63        | 10 - 172   | $^{2}$         | 20        |
| Anthracene             | $0\ 0529$               | mg/L            | <b>1</b> | 0.0800    | < 0.000170        | 66        | 19.6 - 172 | 0              | <b>20</b> |
| Phenanthrene           | 0.0511                  | $\mathrm{mg/L}$ | 1        | 0 0800    | < 0.0000884       | 64        | 22.5 - 172 | 1              | 20        |
| Fluoranthene           | $0\ 0582$               | $\mathrm{mg/L}$ | 1        | 0 0800    | < 0.0000969       | 73        | 17.3 - 187 | 1              | 20        |
| Pyrene ,               | $0\ 0548$               | mg/L            | 1        | 0.0800    | $<0\ 0000855$     | 68        | 14.9 - 199 | $^{2}$         | 20        |
| Benzo(a)anthracene     | $0\ 0510$               | $\mathrm{mg/L}$ | 1        | 0.0800    | < 0.0000703       | <b>64</b> | 19.4 - 185 | $^{2}$         | 20        |
| Chrysene               | $0\ 0503$               | $\mathrm{mg/L}$ | 1        | 0.0800    | < 0.000113        | 63        | 18.4 - 188 | 0              | 20        |
| Benzo(b)fluoranthene   | $0\ 0572$               | mg/L            | 1        | 0.0800    | < 0.000134        | 72        | 10 - 193   | 5              | 20        |
| Benzo(k)fluoranthene   | 0.0673                  | $\mathrm{mg/L}$ | 1        | 0.0800    | < 0.000227        | 84        | 27.8 - 196 | 7              | 20        |
| Benzo(a)pyrene         | 0.0681                  | $\mathrm{mg/L}$ | 1        | 0.0800    | < 0.000200        | 85        | 12.4 - 205 | $^{2}$         | 20        |
| Indeno(1,2,3-cd)pyrene | 0.0561                  | $\mathrm{mg/L}$ | 1        | 0.0800    | < 0.000253        | 70        | 10 - 198   | 3              | 20        |
| Dibenzo(a,h)anthracene | 0.0551                  | mg/L            | 1        | 0.0800    | < 0.000180        | 69        | 10 - 172   | 1              | 20        |
| Benzo(g,h,1)perylene   | 0 0563                  | mg/L            | 1        | 0.0800    | < 0.000158        | 70        | 10 - 186   | 1              | 20        |

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result

|                  | LCS       | LCSD                    |                 |     | Spike  | LCS                  | LCSD                 | Rec.                   |
|------------------|-----------|-------------------------|-----------------|-----|--------|----------------------|----------------------|------------------------|
| Surrogate        | Result    | $\operatorname{Result}$ | Units           | Dıl | Amount | $\operatorname{Rec}$ | $\operatorname{Rec}$ | $\operatorname{Limit}$ |
| 2-Fluorobiphenyl | 0 0390    | 0 0396                  | mg/L            | 1   | 0.0800 | 49                   | 50                   | 10 - 165               |
| Nitrobenzene-d5  | $0\ 0395$ | 0.0386                  | $\mathrm{mg/L}$ | 1   | 0.0800 | 49                   | 48                   | 10 - 157               |
| Terphenyl-d14    | 0.0526    | 0.0522                  | $\mathrm{mg/L}$ | 1   | 0.0800 | 66                   | 65                   | 10 - 220               |

### Laboratory Control Spike (LCS-1)

| QC Batch   | 62041 | Date Analyzed   | 2009-07-30 | Analyzed By: | KB            |
|------------|-------|-----------------|------------|--------------|---------------|
| Prep Batch | 52923 | QC Preparation: | 2009-07-30 | Prepared By: | $\mathbf{KB}$ |

~ · · · · · · · ·

| Report Date August 4, 2009<br>Banard 3B #1 |              | Work Order 9072713<br>Banard Pit Closure |                     |               | Unit I          | 3, Sec. 3  | Page<br>, T3SR291 | : 27 of 46<br>5 Co , NM |               |
|--------------------------------------------|--------------|------------------------------------------|---------------------|---------------|-----------------|------------|-------------------|-------------------------|---------------|
| Param                                      |              | CS<br>sult                               | Units               | Dil.          | Spike<br>Amount | Mat<br>Res |                   | Rec.                    | Rec.<br>Limit |
| 1,1-Dichloroethene                         | 49           | 0.1                                      | $\mu g/L$           | 1             | 50.0            | <0.        | 136               | 98                      | 70 - 130      |
| Benzene                                    | 51           | 1                                        | $\mu { m g}/{ m L}$ | 1             | 50.0            | <0.        | 146               | 102                     | 70 - 130      |
| Trichloroethene (TCE)                      | 51           | 7                                        | $\mu g/L$           | 1             | 50.0            | <0.        | 117               | 103                     | 70 - 130      |
| Toluene                                    | 52           | 2.3                                      | $\mu g/L$           | 1             | 50.0            | <0.0       | 0600              | 105                     | 70 - 130      |
| Chlorobenzene                              | 51           | .1                                       | $\mu { m g/L}$      | 1             | 50.0            | <0.0       | 0540              | 102                     | 70 - 130      |
| Percent recovery is based on the s         | spike result | RPD 15                                   | based o             | n the spike a | and spike du    | plicate r  | result.           |                         |               |
|                                            | LCSD         |                                          |                     | Spike         | Matrix          |            | Rec.              |                         | RPD           |
| Param                                      | Result       | Units                                    | Dıl                 | Amount        | Result          | Rec.       | Limit             | $\operatorname{RPD}$    | Limit         |
| 1.1-Dichloroethene                         | 48 1         | $\mu g/L$                                | 1                   | 50 0          | < 0.136         | 96         | 70 - 130          | 2                       |               |
| Ronzono                                    | 50.5         |                                          | 1                   | 50.0          | <0.146          | 101        | 70 120            | 1                       |               |

| Tatam                 | nesun    | Omus                | $D_{\Pi}$ | Amount  | nesuu    | nec. | LIIIII   | M D | 1.111111 |
|-----------------------|----------|---------------------|-----------|---------|----------|------|----------|-----|----------|
| 1.1-Dichloroethene    | 48 1     | $\mu g/L$           | 1         | 50 0    | < 0.136  | 96   | 70 - 130 | 2   |          |
| Benzene               | $50 \ 5$ | $\mu g/L$           | 1         | $50\ 0$ | < 0.146  | 101  | 70 - 130 | 1   |          |
| Trichloroethene (TCE) | 49.7     | $\mu { m g}/{ m L}$ | 1         | $50\ 0$ | < 0.117  | 99   | 70 - 130 | 4   |          |
| Toluene               | 52.2     | $\mu \mathrm{g/L}$  | 1         | 50.0    | < 0.0600 | 104  | 70 - 130 | 0   |          |
| Chlorobenzene         | 49.5     | $\mu { m g}/{ m L}$ | 1         | 50.0    | < 0.0540 | 99   | 70 - 130 | 3   |          |

|                              | LCS                     | LCSD    |                     |     | Spike                   | LCS | LCSD | Rec.                   |
|------------------------------|-------------------------|---------|---------------------|-----|-------------------------|-----|------|------------------------|
| Surrogate                    | $\operatorname{Result}$ | Result  | Units               | Dil | $\operatorname{Amount}$ | Rec | Rec. | $\operatorname{Limit}$ |
| Dibromothoromethane          | 49 3                    | 48 1    | $\mu g/L$           | 1   | 50.0                    | 99  | 96   | 70 - 130               |
| Toluene-d8                   | 50.6                    | $50\ 2$ | $\mu { m g}/{ m L}$ | 1   | 50.0                    | 101 | 100  | 70 - 130               |
| 4-Bromofluorobenzene (4-BFB) | 50 7                    | 49.3    | $\mu { m g}/{ m L}$ | 1   | 50.0                    | 101 | 99   | 70 - 130               |

### Laboratory Control Spike (LCS-1)

| QC Batch   | 62048 | Date Analyzed:  | 2009-07-31 | Analyzed By  | $\mathbf{SS}$ |
|------------|-------|-----------------|------------|--------------|---------------|
| Prep Batch | 52928 | QC Preparation: | 2009-07-30 | Prepared By: | $\mathbf{SS}$ |

|           | LCS    |       |     | Spike  | Matrix            |      | Rec.                   |
|-----------|--------|-------|-----|--------|-------------------|------|------------------------|
| Param     | Result | Units | Dil | Amount | $\mathbf{Result}$ | Rec. | $\operatorname{Limit}$ |
| Nitrate-N | 4.83   | mg/L  | 1   | 5.00   | < 0.0700          | 97   | 90 - 110               |

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result.

|           | LCSD   |       |                      | Spike   | Matrix                  |                      | Rec              |                      | RPD   |
|-----------|--------|-------|----------------------|---------|-------------------------|----------------------|------------------|----------------------|-------|
| Param     | Result | Units | $\operatorname{Dil}$ | Amount  | $\operatorname{Result}$ | $\operatorname{Rec}$ | $\mathbf{Limit}$ | $\operatorname{RPD}$ | Limit |
| Nitrate-N | 4.88   | mg/L  | 1                    | $5\ 00$ | < 0.0700                | 98                   | 90 - 110         | 1                    | 20    |

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result.

### Laboratory Control Spike (LCS-1)

| QC Batch   | 62048 | Date Analyzed: | 2009-07-31 | Analyzed By  | SS            |
|------------|-------|----------------|------------|--------------|---------------|
| Piep Batch | 52928 | QC Preparation | 2009-07-30 | Prepared By: | $\mathbf{SS}$ |

| Report Date August 4, 2009<br>Banard 3B #1 |          |               | Order: 90727<br>d Pıt Closur |           | Page Number. 28 of 46<br>Unit B, Sec. 3, T3SR29E, Chaves Co., NM |                  |      |               |  |
|--------------------------------------------|----------|---------------|------------------------------|-----------|------------------------------------------------------------------|------------------|------|---------------|--|
| Param                                      |          | LCS<br>Result | Units                        | Dıl       | Spike<br>Amount                                                  | Matrix<br>Result | Rec. | Rec.<br>Limit |  |
| SPLP Chloride                              |          | 23 1          | mg/L                         | 1         | 25.0                                                             | < 0.137          | 92   | 90 - 110      |  |
| Percent recovery is based on t             | he spike | result RPD    | is based on                  | the spike | and spike dup                                                    | licate result.   |      |               |  |

|               | LCSD                    |       |      | Spike              | Matrix  |      | Rec.             |     | $\operatorname{RPD}$ |
|---------------|-------------------------|-------|------|--------------------|---------|------|------------------|-----|----------------------|
| Param         | $\operatorname{Result}$ | Units | Dıl. | $\mathbf{A}$ mount | Result  | Rec. | $\mathbf{Limit}$ | RPD | Limit                |
| SPLP Chloride | 23 6                    | mg/L  | 1    | $25\ 0$            | < 0.137 | 94   | 90 - 110         | 2   | 20                   |

### Laboratory Control Spike (LCS-1)

| QC Batch<br>Prep Batch | $62048 \\ 52928$ |                           | Analyzed:<br>Preparation: | 2009-0<br>2009-0 |                 |                  | Analyze<br>Prepare |               |  |
|------------------------|------------------|---------------------------|---------------------------|------------------|-----------------|------------------|--------------------|---------------|--|
| Param                  |                  | $\mathcal{LCS}$<br>Result | Units                     | Dil.             | Spike<br>Amount | Matrix<br>Result | Rec.               | Rec.<br>Limit |  |
| SPLP Fluori            | de               | 5.44                      | $\rm mg/L$                | 1                | 5.00            | < 0.0889         | 109                | 90 - 110      |  |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

|               | LCSD   |       |     | Spike   | Matrix            |                      | Rec.                   |     | $\mathbf{RPD}$ |
|---------------|--------|-------|-----|---------|-------------------|----------------------|------------------------|-----|----------------|
| Param         | Result | Units | Dıl | Amount  | $\mathbf{Result}$ | $\operatorname{Rec}$ | $\operatorname{Limit}$ | RPD | Limit          |
| SPLP Fluoride | 5 42   | mg/L  | 1   | $5\ 00$ | < 0.0889          | 108                  | 90 - 110               | 0   | 20             |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

#### Laboratory Control Spike (LCS-1)

| QC Batch<br>Prep Batch | $62157 \\ 53021$ |        | e Analyzed:<br>Preparation: | 2009-08<br>2009-08     | -                       |                         | Analyze<br>Prepare    | ed By:<br>ed By: CM    |
|------------------------|------------------|--------|-----------------------------|------------------------|-------------------------|-------------------------|-----------------------|------------------------|
|                        |                  | LCS    |                             |                        | Spike                   | Matrix                  |                       | Rec                    |
| Param                  |                  | Result | Units                       | $\mathbf{D}\mathbf{l}$ | $\operatorname{Amount}$ | $\operatorname{Result}$ | $\operatorname{Rec.}$ | $\operatorname{Limit}$ |
| TRPHC                  |                  | 259    | mg/Kg                       | 1                      | 250                     | < 5.28                  | 104                   | 84.9 - 124             |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

| ,     | LCSD   |       |      | Spike  | Matrix |      | Rec.                   |     | $\operatorname{RPD}$ |
|-------|--------|-------|------|--------|--------|------|------------------------|-----|----------------------|
| Param | Result | Units | Dil. | Amount | Result | Rec. | $\operatorname{Limit}$ | RPD | $\mathbf{Limit}$     |
| TRPHC | 266    | mg/Kg | 1    | 250    | <5.28  | 106  | 84.9 - 124             | 3   | 20                   |
|       |        |       |      |        |        | _    |                        |     |                      |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

### Matrix Spike (MS-1) Spiked Sample 203832

| QC Batch:  | 61916 | Date Analyzed <sup>.</sup> | 2009-07-28 | Analyzed By | MT |
|------------|-------|----------------------------|------------|-------------|----|
| Prep Batch | 52814 | QC Preparation:            | 2009-07-28 | Prepared By | MT |

| Report Date August 4, 2009<br>Banard 3B #1 |                       | Order: 9072<br>ard Pit Closu |      | Page Number: 29 of 46<br>Unit B, Sec. 3, T3SR29E, Chaves Co., NM |                  |      |               |  |
|--------------------------------------------|-----------------------|------------------------------|------|------------------------------------------------------------------|------------------|------|---------------|--|
| Param                                      | ${ m MS} { m Result}$ | Units                        | Dil. | Spike<br>Amount                                                  | Matrix<br>Result | Rec. | Rec.<br>Limit |  |
| Benzene                                    | 1.59                  | mg/Kg                        | 1    | 2 00                                                             | < 0.00505        | 80   | 61.5 - 134    |  |
| Toluene                                    | 1.69                  | mg/Kg                        | 1    | 2.00                                                             | < 0.00611        | 84   | 64.2 - 143    |  |
| Ethylbenzene                               | 1.83                  | mg/Kg                        | 1    | 2.00                                                             | < 0.00630        | 92   | 67.7 - 152    |  |
| Xylene                                     | 5 66                  | mg/Kg                        | 1    | 6.00                                                             | < 0.00673        | 94   | 67.8 - 152    |  |

|              | MSD     |                  |     | Spike   | Matrix            |      | $\operatorname{Rec}$   |     | RPD   |
|--------------|---------|------------------|-----|---------|-------------------|------|------------------------|-----|-------|
| Param        | Result  | Units            | Dil | Amount  | $\mathbf{Result}$ | Rec. | $\operatorname{Limit}$ | RPD | Limit |
| Benzene      | 1 58    | mg/Kg            | 1   | $2\ 00$ | < 0.00505         | 79   | 61.5 - 134             | 1   | 20    |
| Toluene      | 1.68    | $\mathrm{mg/Kg}$ | 1   | 2.00    | < 0.00611         | 84   | 64.2 - 143             | 1   | 20    |
| Ethylbenzene | 1.78    | mg/Kg            | 1   | 200     | < 0.00630         | 89   | 67.7 - 152             | 3   | 20    |
| Xylene       | $5\ 61$ | mg/Kg            | 1   | 6.00    | < 0.00673         | 94   | 67.8 - 152             | 1   | 20    |

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result.

|                              | MS                      | MSD                     |       |      | Spike  | MS   | MSD  | Rec.                   |
|------------------------------|-------------------------|-------------------------|-------|------|--------|------|------|------------------------|
| Surrogate                    | $\operatorname{Result}$ | $\operatorname{Result}$ | Units | Dil. | Amount | Rec. | Rec. | $\operatorname{Limit}$ |
| Trifluorotoluene (TFT)       | 1 83                    | 1 94                    | mg/Kg | 1    | 2      | 92   | 97   | 65.3 - 134             |
| 4-Bromoffuorobenzene (4-BFB) | 1.96                    | 203                     | mg/Kg | 1    | 2      | 98   | 102  | 61.9 - 143             |

#### Matrix Spike (MS-1) Spiked Sample: 203832

| $\rm QC~Batch^{.}$ | 61917 | Date Analyzed:  | 2009-07-28 | Analyzed By: | $\mathbf{MT}$ |
|--------------------|-------|-----------------|------------|--------------|---------------|
| Prep Batch:        | 52814 | QC Preparation: | 2009-07-28 | Prepared By: | $\mathbf{MT}$ |

|       | MS     |       |      | Spike  | Matrix            |      | Rec.                   |
|-------|--------|-------|------|--------|-------------------|------|------------------------|
| Param | Result | Units | Dıl. | Amount | $\mathbf{Result}$ | Rec. | $\operatorname{Limit}$ |
| GRO   | 43 6   | mg/Kg | 1    | 20.0   | 14.6              | 145  | 34.1 - 160             |

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result.

|       | MSD                     |       |                | Spike                   | Matrix            |      | Rec.             |     | $\mathbf{RPD}$ |
|-------|-------------------------|-------|----------------|-------------------------|-------------------|------|------------------|-----|----------------|
| Param | $\operatorname{Result}$ | Units | $\mathbf{Dil}$ | $\operatorname{Amount}$ | $\mathbf{Result}$ | Rec. | $\mathbf{Limit}$ | RPD | Limit          |
| GRO   | 35.9                    | mg/Kg | 1              | 20.0                    | 14.6              | 106  | 34.1 - 160       | 19  | 20             |

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result.

|                              | MS     | MSD    |       |     | Spike                   | MS  | MSD  | Rec.                   |
|------------------------------|--------|--------|-------|-----|-------------------------|-----|------|------------------------|
| Surrogate                    | Result | Result | Units | Dıl | $\operatorname{Amount}$ | Rec | Rec. | $\operatorname{Limit}$ |
| Trifluorotoluene (TFT)       | 1 85   | 1 85   | mg/Kg | 1   | 2                       | 92  | 92   | 56.9 - 137             |
| 4-Bromofluorobenzene (4-BFB) | 1 90   | 2.31   | mg/Kg | 1   | 2                       | 95  | 116  | 42.1 - 171             |

#### Matrix Spike (MS-1) Spiked Sample. 203832

| QC Batch:   | 61923 | Date Analyzed.  | 2009-07-28 | Analyzed By: |
|-------------|-------|-----------------|------------|--------------|
| Prep Batch: | 52821 | QC Preparation: | 2009-07-28 | Prepared By: |

| Report Date August 4, 1<br>Banard 3B #1                                                                                                                                                                     | 2009       |                                                                             |                                                                        | der: 90727<br>Pit Closu                                             |                                                                                       | Unit B                                                                                     | 3, Sec. 3,                                      | Page N<br>T3SR29E,                                     |                                | 30 of 46<br>Co., NM                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|--------------------------------|---------------------------------------------------|
| Param                                                                                                                                                                                                       |            | •M<br>Res                                                                   | ult                                                                    | Units                                                               | Dil.                                                                                  | Spike<br>Amount                                                                            | Mat<br>Res                                      | ult Re                                                 |                                | Rec.                                              |
| DRO                                                                                                                                                                                                         |            | 51                                                                          |                                                                        | mg/Kg                                                               | 1                                                                                     | 250                                                                                        | 33                                              |                                                        | 2                              | 10 - 218                                          |
| Percent recovery is based                                                                                                                                                                                   | on the spi | ke result.                                                                  | RPD 18                                                                 | based on                                                            | the spike a                                                                           | and spike du                                                                               | plicate re                                      | esult.                                                 |                                |                                                   |
|                                                                                                                                                                                                             |            | MSD                                                                         |                                                                        |                                                                     | Spike                                                                                 | Matrix                                                                                     |                                                 | Rec                                                    |                                | RPD                                               |
| Param                                                                                                                                                                                                       | 3          | Result                                                                      | Unit                                                                   |                                                                     | Amount                                                                                |                                                                                            | Rec.                                            | Limit                                                  | RPD                            | Limit                                             |
| DRO                                                                                                                                                                                                         |            | 497                                                                         | mg/K                                                                   |                                                                     | 250                                                                                   | 337                                                                                        | 64                                              | 10 - 218                                               | 4                              | 20                                                |
| Percent recovery is based                                                                                                                                                                                   | on the spi | ke result                                                                   | RPD 18                                                                 | based on                                                            | the spike a                                                                           | and spike du                                                                               | plicate re                                      | esult.                                                 |                                |                                                   |
|                                                                                                                                                                                                             | MS         | MSD                                                                         | )                                                                      |                                                                     |                                                                                       | Spike                                                                                      | MS                                              | MSD                                                    |                                | Rec.                                              |
| Surrogate                                                                                                                                                                                                   | Result     | Resul                                                                       |                                                                        | Units                                                               | Dil.                                                                                  | Amount                                                                                     | Rec.                                            |                                                        |                                | Limit                                             |
| n-Triacontane                                                                                                                                                                                               | 111        | 108                                                                         | ]                                                                      | mg/Kg                                                               | 1                                                                                     | 100                                                                                        | 111                                             | 108                                                    | 46                             | 5.6 - 172                                         |
| QC Batch 61942<br>Prep Batch 52833                                                                                                                                                                          |            | M                                                                           | QC Pt                                                                  | Analyzed:<br>eparation                                              | 2009-07-<br>2009-07-                                                                  |                                                                                            | Matri                                           | Prej                                                   | lyzed B<br>pared B             |                                                   |
| Param                                                                                                                                                                                                       |            | Res                                                                         |                                                                        | Units                                                               | Dil.                                                                                  | Amount                                                                                     | Resul                                           |                                                        | •                              | Limit                                             |
| SPLP Mercury                                                                                                                                                                                                |            | 0 00                                                                        | 144                                                                    | mg/L                                                                | 1                                                                                     | 0.00100                                                                                    | 0.0004                                          | 66 97                                                  | 83                             | 3.8 - 120                                         |
| Percent recovery is based                                                                                                                                                                                   | on the spi | ke result.                                                                  | RPD is                                                                 | based on                                                            | the spike a                                                                           | und spike du                                                                               | plicate re                                      | esult.                                                 |                                |                                                   |
|                                                                                                                                                                                                             |            | MSD                                                                         |                                                                        |                                                                     | Spike                                                                                 | Matrix                                                                                     |                                                 | Rec.                                                   |                                | RPD                                               |
|                                                                                                                                                                                                             |            |                                                                             |                                                                        | Dil.                                                                | Amount                                                                                | Result                                                                                     | Rec.                                            | Limit                                                  | RPD                            | Limit                                             |
| Param                                                                                                                                                                                                       |            | Result                                                                      | Units                                                                  | $D_{\Pi}$ .                                                         | Amount                                                                                | nesun                                                                                      | 20000                                           |                                                        |                                |                                                   |
| SPLP Mercury                                                                                                                                                                                                |            | 0 00146                                                                     | mg/L                                                                   | 1                                                                   | 0.00100                                                                               | 0.000466                                                                                   | 99                                              | 83.8 - 120                                             | 1                              | 20                                                |
| Param<br>SPLP Mercury<br>Percent recovery is based<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868                                                                                             | -          | 0 00146                                                                     | mg/L<br>RPD 1s<br>03832<br>Date A                                      | 1                                                                   | 0.00100<br>the spike a<br>2009-07-5                                                   | 0.000466<br>and spike du<br>30                                                             | 99                                              | sult.<br>Ana                                           | 1<br>lyzed B<br>pared By       | y: RR                                             |
| SPLP Mercury<br>Percent recovery is based<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868                                                                                                      | -          | 0 00146<br>ke result<br>Sample 20                                           | mg/L<br>RPD 1s<br>03832<br>Date A<br>QC Pr<br>S                        | 1<br>based on<br>nalyzed<br>eparation                               | 0.00100<br>the spike a<br>2009-07-2<br>2009-07-2                                      | 0.000466<br>and spike du<br>30<br>30<br>Spike                                              | 99<br>plicate re<br>Matu                        | sult.<br>Ana<br>Prep                                   | lyzed By<br>bared By           | y: RR<br>7: KV<br>Rec                             |
| SPLP Mercury<br>Percent recovery is based<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868<br>Param                                                                                             | -          | 0 00146<br>ke result<br>Sample 20<br>MS<br>Resu                             | mg/L<br>RPD 18<br>03832<br>Date A<br>QC Pr<br>S<br>ult                 | 1<br>based on<br>analyzed<br>eparation<br>Units                     | 0.00100<br>the spike a<br>2009-07<br>2009-07<br>Dul.                                  | 0.000466<br>and spike du<br>30<br>30<br>Spike<br>Amount                                    | 99<br>plicate re<br>Matu<br>Resu                | esult.<br>Ana<br>Prép<br>ix<br>llt Re                  | lyzed By<br>pared By           | y: RR<br>y: KV<br>Rec<br>Lımit                    |
| SPLP Mercury<br>Percent recovery is based<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868<br>Param<br>SPLP Cadmium                                                                             | Spiked S   | 0 00146<br>ke result<br>Sample 20<br>MS<br>Rest<br>0 23                     | mg/L<br>RPD 1s<br>03832<br>Date A<br>QC Pr<br>S<br>ult<br>37           | 1<br>based on<br>nalyzed<br>eparation<br>Units<br>mg/L              | 0.00100<br>the spike a<br>2009-07-4<br>2009-07-4<br>Dul.                              | 0.000466<br>and spike du<br>30<br>30<br>Spike<br>Amount<br>0.250                           | 99<br>plicate re<br>Matr<br>Resu<br><0.00       | Ana<br>Prép<br>ix<br>lt Re<br>140 9                    | lyzed By<br>pared By           | y: RR<br>7: KV<br>Rec                             |
| SPLP Mercury<br>Percent recovery is based<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868<br>Param<br>SPLP Cadmium                                                                             | Spiked S   | 0 00146<br>ke result<br>Sample 20<br>MS<br>Resu<br>0 22<br>ke result        | mg/L<br>RPD 1s<br>03832<br>Date A<br>QC Pr<br>S<br>ult<br>37           | 1<br>based on<br>nalyzed<br>eparation<br>Units<br>mg/L              | 0.00100<br>the spike a<br>2009-07<br>2009-07<br>Dul.<br>1<br>the spike a              | 0.000466<br>and spike du<br>30<br>30<br>Spike<br>Amount<br>0.250<br>and spike du           | 99<br>plicate re<br>Matr<br>Resu<br><0.00       | Ana<br>Prép<br>ix<br>lt Re<br>140 9.<br>esult.         | lyzed By<br>pared By           | y: RR<br>7: KV<br>Rec<br>Limit<br>75 - 125        |
| SPLP Mercury         Percent recovery is based         Matrix Spike (MS-1)         QC Batch       62003         Prep Batch       52868         Param         SPLP Cadmium         Percent recovery is based | Spiked S   | 0 00146<br>ke result<br>Sample 20<br>MS<br>Resu<br>0 22<br>ke result<br>MSD | mg/L<br>RPD 18<br>03832<br>Date A<br>QC Pr<br>S<br>ult<br>37<br>RPD 18 | 1<br>based on<br>analyzed<br>eparation<br>Units<br>mg/L<br>based on | 0.00100<br>the spike a<br>2009-07-2<br>2009-07-2<br>Dul.<br>1<br>the spike a<br>Spike | 0.000466<br>and spike du<br>30<br>30<br>Spike<br>Amount<br>0.250<br>and spike du<br>Matrix | 99<br>plicate re<br>Resu<br><0.00<br>plicate re | Ana<br>Prép<br>ix<br>ilt Re<br>140 94<br>esult.<br>Rec | lyzed B<br>bared By<br>c.<br>5 | y: RR<br>7: KV<br>Rec<br>Limit<br>75 - 125<br>RPD |
| SPLP Mercury<br>Percent recovery is based<br>Matrix Spike (MS-1)<br>QC Batch 62003                                                                                                                          | Spiked S   | 0 00146<br>ke result<br>Sample 20<br>MS<br>Resu<br>0 22<br>ke result        | mg/L<br>RPD 1s<br>03832<br>Date A<br>QC Pr<br>S<br>ult<br>37           | 1<br>based on<br>nalyzed<br>eparation<br>Units<br>mg/L              | 0.00100<br>the spike a<br>2009-07<br>2009-07<br>Dul.<br>1<br>the spike a              | 0.000466<br>and spike du<br>30<br>30<br>Spike<br>Amount<br>0.250<br>and spike du           | 99<br>plicate re<br>Matr<br>Resu<br><0.00       | Ana<br>Prép<br>ix<br>lt Re<br>140 9.<br>esult.         | lyzed By<br>pared By           | y: RR<br>7: KV<br>Rec<br>Limit<br>75 - 125        |

,

<sup>3</sup>Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

| Report Date August 4, 20<br>Banard 3B #1                                                                                                                                                               |                                                                                                                                |                                                                                                            | der: 90727<br>Pit Closu                                                                          |                                                                                                         | Unit B                                                                                                                              | , Sec. 3,                                                                         | Page I<br>T3SR29E,                                                                                                                 |                                            | 31 of 46<br>Co., NM                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------|
| Matrix Spike (MS-1)                                                                                                                                                                                    | Spiked Sample: 2                                                                                                               | 03832                                                                                                      |                                                                                                  |                                                                                                         |                                                                                                                                     |                                                                                   |                                                                                                                                    |                                            |                                                                                    |
| QC Batch 62003<br>Prep Batch 52868                                                                                                                                                                     |                                                                                                                                |                                                                                                            | Analyzed:<br>reparation:                                                                         | 2009-07-<br>2009-07-                                                                                    |                                                                                                                                     |                                                                                   |                                                                                                                                    | alyzed B<br>pared B                        |                                                                                    |
| Param                                                                                                                                                                                                  | M<br>Res                                                                                                                       | ult                                                                                                        | Units                                                                                            | Dıl                                                                                                     | Spike<br>Amount                                                                                                                     | Matı<br>Resu                                                                      | ılt R                                                                                                                              | ec.                                        | Rec.<br>Limıt                                                                      |
| SPLP Lead                                                                                                                                                                                              | 0.4                                                                                                                            |                                                                                                            | mg/L                                                                                             | 1                                                                                                       | 0.500                                                                                                                               | < 0.00                                                                            |                                                                                                                                    | 9                                          | 75 - 125                                                                           |
| Percent recovery is based of                                                                                                                                                                           | on the spike result.                                                                                                           | RPD 18                                                                                                     | s based on                                                                                       | the spike                                                                                               | and spike dup                                                                                                                       | olicate re                                                                        | esult.                                                                                                                             |                                            |                                                                                    |
| Param                                                                                                                                                                                                  | MSD<br>Result                                                                                                                  | Units                                                                                                      | Dil                                                                                              | Spike<br>Amount                                                                                         | Matrix<br>Result                                                                                                                    | Rec.                                                                              | Rec.                                                                                                                               | RPD                                        | RPD<br>Limit                                                                       |
| SPLP Lead<br>Percent recovery is based o                                                                                                                                                               | 0.485                                                                                                                          | mg/L                                                                                                       | 1                                                                                                | 0.500                                                                                                   | < 0.00320                                                                                                                           | 97                                                                                | 75 - 125                                                                                                                           | 2                                          | 20                                                                                 |
| QC Batch 62003<br>Prep Batch 52868                                                                                                                                                                     |                                                                                                                                |                                                                                                            | Analyzed:<br>reparation:                                                                         | 2009-07-<br>2009-07-                                                                                    |                                                                                                                                     |                                                                                   |                                                                                                                                    | alyzed B<br>pared B                        |                                                                                    |
|                                                                                                                                                                                                        |                                                                                                                                | -                                                                                                          | *                                                                                                |                                                                                                         |                                                                                                                                     |                                                                                   |                                                                                                                                    |                                            | -                                                                                  |
|                                                                                                                                                                                                        | M<br>Res                                                                                                                       | S                                                                                                          | -                                                                                                |                                                                                                         | Spike                                                                                                                               | Mata<br>Resi                                                                      | rix                                                                                                                                |                                            | Rec.                                                                               |
| Param                                                                                                                                                                                                  | M<br>Res<br>0.4                                                                                                                | S                                                                                                          | Units<br>mg/L                                                                                    |                                                                                                         |                                                                                                                                     | Mati<br>Resi                                                                      | rix<br>ılt R                                                                                                                       |                                            | -                                                                                  |
| Param<br>SPLP Selenium                                                                                                                                                                                 | Res<br>0.4                                                                                                                     | S<br>sult<br>47                                                                                            | Units<br>mg/L                                                                                    | Dil1                                                                                                    | Spike<br>Amount<br>0.500                                                                                                            | Rest<br><0.0                                                                      | rix<br>ılt Ra<br>131 8                                                                                                             | ec.                                        | Rec.<br>Limit                                                                      |
| Param<br>SPLP Selenium                                                                                                                                                                                 | Res<br>0.4                                                                                                                     | S<br>sult<br>47                                                                                            | Units<br>mg/L                                                                                    | Dil.<br>1<br>the spike                                                                                  | Spike<br>Amount<br>0.500                                                                                                            | Rest<br><0.0                                                                      | rix<br>ılt Ra<br>131 8                                                                                                             | ec.                                        | Rec.<br>Limit                                                                      |
| Param<br>SPLP Selenium<br>Percent recovery is based o<br>Param                                                                                                                                         | Res<br>0.4<br>on the spike result<br>MSD<br>Result                                                                             | S<br>sult<br>47<br>RPD 18<br>Units                                                                         | Units<br>mg/L<br>based on<br>Dil                                                                 | Dil.<br>1<br>the spike<br>Spike<br>Amount                                                               | Spike<br>Amount<br>0.500<br>and spike dup<br>Matrix<br>Result                                                                       | Resu<br><0.0<br>olicate re<br>Rec.                                                | rix<br>1lt Ra<br>131 8<br>sult.<br>Rec.<br>Limit                                                                                   | ec.<br>9<br>RPD                            | Rec.<br>Limit<br>75 - 125<br>RPD<br>Limit                                          |
| Param<br>SPLP Selenium<br>Percent recovery is based o<br>Param<br>SPLP Selenium                                                                                                                        | Res<br>0.4<br>on the spike result<br>MSD<br>Result<br>0 441                                                                    | S<br>sult<br>47<br>RPD is<br>Units<br>mg/L                                                                 | Units<br>mg/L<br>5 based on<br>Dil<br>1                                                          | Dil.<br>1<br>the spike<br>Spike<br>Amount<br>0 500                                                      | Spike<br>Amount<br>0.500<br>and spike dup<br>Matrix<br>Result<br><0.0131                                                            | Resu<br><0.0<br>plicate re<br>Rec.<br>88                                          | rix<br>11t Ra<br>131 8<br>ssult.<br>Rec.<br>Limit<br>75 - 125                                                                      | ec.<br>9                                   | Rec.<br>Limit<br>75 - 125<br>RPD                                                   |
| Param<br>SPLP Selenium<br>Percent recovery is based of<br>Param<br>SPLP Selenium<br>Percent recovery is based of<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868                          | Res<br>0.4<br>on the spike result<br>MSD<br>Result<br>0 441                                                                    | S<br>sult<br>.47<br>RPD is<br><u>Units</u><br>mg/L<br>RPD is<br>03832<br>Date A                            | Units<br>mg/L<br>5 based on<br>Dil<br>1                                                          | Dil.<br>1<br>the spike<br>Spike<br>Amount<br>0 500                                                      | Spike<br>Amount<br>0.500<br>and spike dup<br>Matrix<br>Result<br><0.0131<br>and spike dup                                           | Resu<br><0.0<br>plicate re<br>Rec.<br>88                                          | rix<br>11 Ra<br>131 8<br>ssult.<br>Rec.<br>Limit<br>75 - 125<br>ssult.<br>Ana                                                      | ec.<br>9<br>RPD                            | Rec.<br>Limit<br>75 - 125<br>RPD<br>Limit<br>20<br>y: RR                           |
| Param<br>SPLP Selenium<br>Percent recovery is based of<br>Param<br>SPLP Selenium<br>Percent recovery is based of<br>Matrix Spike (MS-1)<br>QC Batch 62003                                              | Res<br>0.4<br>on the spike result<br>MSD<br>Result<br>0 441<br>on the spike result.                                            | S<br>sult<br>47<br>RPD is<br><u>Units</u><br>mg/L<br>RPD is<br>03832<br>Date A<br>QC Pr                    | Units<br>mg/L<br>based on<br>Dil<br>1<br>based on                                                | Dil.<br>1<br>the spike<br>Spike<br>Amount<br>0 500<br>the spike<br>2009-07-                             | Spike<br>Amount<br>0.500<br>and spike dup<br>Matrix<br>Result<br><0.0131<br>and spike dup<br>-30                                    | Resu<br><0.0<br>plicate re<br>Rec.<br>88                                          | rix<br>11 Ra<br>131 8<br>ssult.<br>Rec.<br>Limit<br>75 - 125<br>ssult.<br>Ana<br>Pre                                               | ec.<br>9<br>RPD<br>1                       | Rec.<br>Limit<br>75 - 125<br>RPD<br>Limit<br>20<br>y: RR<br>y: KV                  |
| Param<br>SPLP Selenium<br>Percent recovery is based of<br>Param<br>SPLP Selenium<br>Percent recovery is based of<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868<br>Param                 | Res<br>0.4<br>0 the spike result<br>MSD<br>Result<br>0 441<br>on the spike result.<br>Spiked Sample 2<br>M<br>Res              | S<br>ault<br>47<br>RPD is<br><u>mg/L</u><br>RPD is<br>03832<br>Date A<br>QC Pr<br>S<br>ult                 | Units<br>mg/L<br>s based on<br>Dil<br>1<br>s based on<br>analyzed:<br>eparation<br>Units         | Dil.<br>1<br>the spike<br>Spike<br>Amount<br>0 500<br>the spike<br>2009-07-                             | Spike<br>Amount<br>0.500<br>and spike dup<br>Matrix<br>Result<br><0.0131<br>and spike dup<br>-30<br>-30<br>Spike<br>Amount          | Resu<br><pre>     Rec.     88     blicate re     Matr     Resu </pre>             | rix<br><u>ilt Ra</u><br>131 8<br>sult.<br><u>Rec.</u><br><u>Limit</u><br>75 - 125<br>sult.<br>Ana<br>Pre-<br>ix<br>lt Ra           | ec.<br>9<br>RPD<br>1<br>lyzed B<br>pared B | Rec.<br>Limit<br>75 - 125<br>RPD<br>Limit<br>20<br>y: RR<br>y: KV<br>Rec.<br>Limit |
| Param<br>SPLP Selenium<br>Percent recovery is based of<br>Param<br>SPLP Selenium<br>Percent recovery is based of<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868<br>Param<br>SPLP Arsenic | Res<br>0.4<br>0.4<br>0 the spike result<br>MSD<br>Result<br>0 441<br>0 the spike result.<br>Spiked Sample 2<br>M<br>Res<br>0 4 | S<br>sult<br>47<br>RPD is<br><u>Units</u><br>mg/L<br>RPD is<br>03832<br>Date A<br>QC Pro<br>S<br>ult<br>83 | Units<br>mg/L<br>s based on<br>Dil<br>1<br>s based on<br>analyzed:<br>eparation<br>Units<br>mg/L | Dil.<br>1<br>the spike<br>Amount<br>0 500<br>the spike<br>2009-07-<br>2009-07-<br>2009-07-<br>Dil.<br>1 | Spike<br>Amount<br>0.500<br>and spike dup<br>Matrix<br>Result<br><0.0131<br>and spike dup<br>-30<br>-30<br>Spike<br>Amount<br>0.500 | Resu<br><0.0<br>Plicate res<br>Rec.<br>88<br>Plicate res<br>Matr<br>Resu<br><0.00 | rix<br><u>ilt Ra</u><br>131 8<br>ssult.<br><u>Rec.</u><br>Limit<br>75 - 125<br>ssult.<br>Ana<br>Pre<br>ix<br><u>lt Ra</u><br>430 9 | ec.<br>9<br>RPD<br>1<br>lyzed B<br>pared B | Rec.<br>Limit<br>75 - 125<br>RPD<br>Limit<br>20<br>y: RR<br>y: KV<br>Rec.          |
| Param<br>SPLP Selenium<br>Percent recovery is based of<br>Param<br>SPLP Selenium<br>Percent recovery is based of<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868<br>Param<br>SPLP Arsenic | Res<br>0.4<br>0.4<br>0 the spike result<br>MSD<br>Result<br>0 441<br>0 the spike result.<br>Spiked Sample 2<br>M<br>Res<br>0 4 | S<br>sult<br>47<br>RPD is<br><u>Units</u><br>mg/L<br>RPD is<br>03832<br>Date A<br>QC Pro<br>S<br>ult<br>83 | Units<br>mg/L<br>s based on<br>Dil<br>1<br>s based on<br>analyzed:<br>eparation<br>Units<br>mg/L | Dil.<br>1<br>the spike<br>Amount<br>0 500<br>the spike<br>2009-07-<br>2009-07-<br>2009-07-<br>Dil.<br>1 | Spike<br>Amount<br>0.500<br>and spike dup<br>Matrix<br>Result<br><0.0131<br>and spike dup<br>-30<br>-30<br>Spike<br>Amount<br>0.500 | Resu<br><0.0<br>Plicate res<br>Rec.<br>88<br>Plicate res<br>Matr<br>Resu<br><0.00 | rix<br><u>ilt Ra</u><br>131 8<br>ssult.<br><u>Rec.</u><br>Limit<br>75 - 125<br>ssult.<br>Ana<br>Pre<br>ix<br><u>lt Ra</u><br>430 9 | ec.<br>9<br>RPD<br>1<br>lyzed B<br>pared B | Rec.<br>Limit<br>75 - 125<br>RPD<br>Limit<br>20<br>y: RR<br>y: KV<br>Rec.<br>Limit |
| Param<br>SPLP Selenium<br>Percent recovery is based of<br>Param<br>SPLP Selenium<br>Percent recovery is based of<br>Matrix Spike (MS-1)<br>QC Batch 62003                                              | Res<br>0.4<br>0.4<br>0 the spike result<br>MSD<br>Result<br>0 441<br>0 the spike result.<br>Spiked Sample 2<br>M<br>Res<br>0 4 | S<br>sult<br>47<br>RPD is<br><u>Units</u><br>mg/L<br>RPD is<br>03832<br>Date A<br>QC Pro<br>S<br>ult<br>83 | Units<br>mg/L<br>s based on<br>Dil<br>1<br>s based on<br>analyzed:<br>eparation<br>Units<br>mg/L | Dil.<br>1<br>the spike<br>Amount<br>0 500<br>the spike<br>2009-07-<br>2009-07-<br>2009-07-<br>Dil.<br>1 | Spike<br>Amount<br>0.500<br>and spike dup<br>Matrix<br>Result<br><0.0131<br>and spike dup<br>-30<br>-30<br>Spike<br>Amount<br>0.500 | Resu<br><0.0<br>Plicate res<br>Rec.<br>88<br>Plicate res<br>Matr<br>Resu<br><0.00 | rix<br><u>ilt Ra</u><br>131 8<br>ssult.<br><u>Rec.</u><br>Limit<br>75 - 125<br>ssult.<br>Ana<br>Pre<br>ix<br><u>lt Ra</u><br>430 9 | ec.<br>9<br>RPD<br>1<br>lyzed B<br>pared B | Rec.<br>Limit<br>75 - 125<br>RPD<br>Limit<br>20<br>y: RR<br>y: KV<br>Rec.<br>Limit |

,

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result.

調

| Banard 3B #1                                                                                                                                                                             |                                                                                                    |                                                                                   | ler. 90727<br>Pit Closur                                                         |                                                                                                                      | Unit B                                                                                                                                      | 8, Sec. 3,                                                 |                                                                       | ge Number:<br>9E, Chaves                                        |                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|
| Matrix Spike (MS-1) Spik                                                                                                                                                                 | ed Sample 2                                                                                        | 03832                                                                             |                                                                                  |                                                                                                                      |                                                                                                                                             |                                                            |                                                                       |                                                                 |                                                                  |
| QC Batch 62003<br>Prep Batch. 52868                                                                                                                                                      | VP-194-                                                                                            |                                                                                   | nalyzed:<br>eparation:                                                           | 2009-07-3<br>2009-07-3                                                                                               |                                                                                                                                             |                                                            |                                                                       | Analyzed B<br>Prepared B                                        |                                                                  |
|                                                                                                                                                                                          | M                                                                                                  | IS                                                                                |                                                                                  |                                                                                                                      | Spike                                                                                                                                       | Mat                                                        | rix                                                                   |                                                                 | Rec.                                                             |
| Param                                                                                                                                                                                    |                                                                                                    | sult                                                                              | Units                                                                            | Dil.                                                                                                                 | Amount                                                                                                                                      | Res                                                        |                                                                       | Rec.                                                            | Limit                                                            |
| SPLP Barium                                                                                                                                                                              | 1                                                                                                  | 71                                                                                | m mg/L                                                                           | 1                                                                                                                    | 1.00                                                                                                                                        | 0.7                                                        | 09                                                                    | 100                                                             | 75 - 125                                                         |
| Percent recovery is based on the                                                                                                                                                         | e spike result                                                                                     | RPD is                                                                            | based on                                                                         | the spike a                                                                                                          | nd spike du                                                                                                                                 | plicate re                                                 | esult.                                                                |                                                                 |                                                                  |
|                                                                                                                                                                                          | MSD                                                                                                |                                                                                   |                                                                                  | Spike                                                                                                                | Matrix                                                                                                                                      |                                                            | Rec                                                                   |                                                                 | RPD                                                              |
| Param                                                                                                                                                                                    | Result                                                                                             | Units                                                                             | Dıl                                                                              | Amount                                                                                                               | Result                                                                                                                                      | Rec.                                                       | Limit                                                                 | RPD                                                             | Limit                                                            |
| SPLP Barium                                                                                                                                                                              | 1.70                                                                                               | mg/L                                                                              | 1                                                                                | 1.00                                                                                                                 | 0.709                                                                                                                                       | 99                                                         | 75 - 12                                                               | 5 1                                                             | 20                                                               |
| Percent recovery is based on the                                                                                                                                                         | e spike result                                                                                     | RPD is                                                                            | based on                                                                         | the spike a                                                                                                          | nd spike du                                                                                                                                 | plicate re                                                 | esult                                                                 | ,                                                               |                                                                  |
|                                                                                                                                                                                          |                                                                                                    |                                                                                   |                                                                                  |                                                                                                                      |                                                                                                                                             |                                                            |                                                                       |                                                                 |                                                                  |
| Matrix Spike (MS-1) Spik                                                                                                                                                                 | red Sample 2                                                                                       | 03832                                                                             |                                                                                  |                                                                                                                      |                                                                                                                                             |                                                            |                                                                       |                                                                 |                                                                  |
| QC Batch 62003                                                                                                                                                                           |                                                                                                    | Date A                                                                            | nalyzed                                                                          | 2009-07-3                                                                                                            | 30                                                                                                                                          |                                                            | ,                                                                     | Analyzed B                                                      | y: RR                                                            |
| Prep Batch 52868                                                                                                                                                                         |                                                                                                    |                                                                                   | eparation                                                                        | 2009-07-3                                                                                                            |                                                                                                                                             |                                                            |                                                                       | Prepared B                                                      | -                                                                |
|                                                                                                                                                                                          |                                                                                                    | 40                                                                                | op ar aoron                                                                      | 2000 01 0                                                                                                            |                                                                                                                                             |                                                            | -                                                                     | roparoa a                                                       | J                                                                |
|                                                                                                                                                                                          | MS                                                                                                 | 3                                                                                 |                                                                                  |                                                                                                                      | Spike                                                                                                                                       | Matr                                                       | rix                                                                   |                                                                 | Rec                                                              |
| Param                                                                                                                                                                                    | Res                                                                                                | ılt                                                                               | Units                                                                            | Dil.                                                                                                                 | Amount                                                                                                                                      | Resu                                                       | lt                                                                    | Rec.                                                            | Limit                                                            |
| SPLP Chromium                                                                                                                                                                            | 0.09                                                                                               | 35                                                                                | mg/L                                                                             | 1                                                                                                                    | 0 100                                                                                                                                       | < 0.000                                                    | 900                                                                   | 94                                                              | 75 - 125                                                         |
| ·····                                                                                                                                                                                    | spike result                                                                                       | RPD is                                                                            | based on                                                                         | the spike a                                                                                                          | nd spike du                                                                                                                                 | plicate re                                                 | esult.                                                                |                                                                 |                                                                  |
| Percent recovery is based on the                                                                                                                                                         | spine result                                                                                       |                                                                                   |                                                                                  | one opine a                                                                                                          |                                                                                                                                             |                                                            |                                                                       |                                                                 |                                                                  |
| Percent recovery is based on the                                                                                                                                                         | -                                                                                                  |                                                                                   |                                                                                  | -                                                                                                                    |                                                                                                                                             | pinease r                                                  | Rec                                                                   |                                                                 | RPD                                                              |
|                                                                                                                                                                                          | MSD                                                                                                |                                                                                   |                                                                                  | Spike                                                                                                                | Matrix                                                                                                                                      | -                                                          | Rec.<br>Limit                                                         |                                                                 | RPD<br>Limit                                                     |
| Param                                                                                                                                                                                    | MSD<br>Result                                                                                      | Units                                                                             |                                                                                  | Spike<br>Amount                                                                                                      | Matrix<br>Result                                                                                                                            | Rec                                                        | Limit                                                                 | t RPD                                                           | Limit                                                            |
| Param<br>SPLP Chromium                                                                                                                                                                   | MSD<br>Result<br>0.0920                                                                            | Units<br>mg/L                                                                     | Dil. 1                                                                           | Spike<br>Amount<br>0.100                                                                                             | Matrix<br>Result<br><0.000900                                                                                                               | Rec<br>92                                                  | Limit<br>75 - 12                                                      | t RPD                                                           |                                                                  |
| Param<br>SPLP Chromium                                                                                                                                                                   | MSD<br>Result<br>0.0920                                                                            | Units<br>mg/L                                                                     | Dil. 1                                                                           | Spike<br>Amount<br>0.100                                                                                             | Matrix<br>Result<br><0.000900                                                                                                               | Rec<br>92                                                  | Limit<br>75 - 12                                                      | t RPD                                                           | Limit                                                            |
| Param<br>SPLP Chromium<br>Percent recovery is based on the                                                                                                                               | MSD<br>Result<br>0.0920<br>e spike result.                                                         | Units<br>mg/L<br>RPD 1s                                                           | Dil. 1                                                                           | Spike<br>Amount<br>0.100                                                                                             | Matrix<br>Result<br><0.000900                                                                                                               | Rec<br>92                                                  | Limit<br>75 - 12                                                      | t RPD                                                           | Limit                                                            |
| , -                                                                                                                                                                                      | MSD<br>Result<br>0.0920                                                                            | Units<br>mg/L<br>RPD 1s<br>03832                                                  | Dil. 1<br>based on                                                               | Spike<br>Amount<br>0.100<br>the spike a                                                                              | Matrix<br>Result<br><0.000900<br>nd spike du                                                                                                | Rec<br>92                                                  | Limit<br>75 - 12<br>esult.                                            | t RPD<br>25 2                                                   | Limit<br>20                                                      |
| Param<br>SPLP Chromium<br>Percent recovery is based on the<br>Matrix Spike (MS-1) Spik<br>QC Batch 62003                                                                                 | MSD<br>Result<br>0.0920<br>e spike result.                                                         | Units<br>mg/L<br>RPD 1s<br>03832<br>Date A                                        | Dil. 1<br>based on<br>nalyzed:                                                   | Spike<br>Amount<br>0.100<br>the spike at<br>2009-07-3                                                                | Matrix<br>Result<br><0.000900<br>nd spike dup                                                                                               | Rec<br>92                                                  | Limit<br>75 - 12<br>esult.                                            | t RPD<br>25 2<br>Analyzed B                                     | Limit<br>20                                                      |
| Param<br>SPLP Chromium<br>Percent recovery is based on the<br>Matrix Spike (MS-1) Spik                                                                                                   | MSD<br>Result<br>0.0920<br>e spike result.                                                         | Units<br>mg/L<br>RPD 1s<br>03832<br>Date A                                        | Dil. 1<br>based on                                                               | Spike<br>Amount<br>0.100<br>the spike at<br>2009-07-3                                                                | Matrix<br>Result<br><0.000900<br>nd spike dup                                                                                               | Rec<br>92                                                  | Limit<br>75 - 12<br>esult.                                            | t RPD<br>25 2                                                   | Limit<br>20                                                      |
| Param<br><u>SPLP Chromium</u><br>Percent recovery is based on the<br>Matrix Spike (MS-1) Spike<br>QC Batch ` 62003                                                                       | MSD<br>Result<br>0.0920<br>e spike result.<br>aed Sample 2                                         | Units<br>mg/L<br>RPD 1s<br>03832<br>Date A<br>QC Pre                              | Dil. 1<br>based on<br>nalyzed:                                                   | Spike<br>Amount<br>0.100<br>the spike at<br>2009-07-3                                                                | Matrix<br>Result<br><0.000900<br>nd spike duy                                                                                               | Rec<br>92<br>plicate re                                    | Limit<br>75 - 12<br>esult.                                            | t RPD<br>25 2<br>Analyzed B                                     | Limit<br>20<br>y: RR<br>y: KV                                    |
| Param<br>SPLP Chromium<br>Percent recovery is based on the<br>Matrix Spike (MS-1) Spik<br>QC Batch ` 62003<br>Prep Batch 52868                                                           | MSD<br>Result<br>0.0920<br>e spike result.<br>aed Sample 2                                         | Units<br>mg/L<br>RPD 1s<br>03832<br>Date A<br>QC Pre                              | Dil. 1<br>based on<br>nalyzed:<br>eparation                                      | Spike<br>Amount<br>0.100<br>the spike at<br>2009-07-3<br>2009-07-3                                                   | Matrix<br>Result<br><0.000900<br>nd spike dup<br>0<br>0<br>50<br>Spike                                                                      | Rec<br>92<br>plicate re<br>Mat                             | Limit<br>75 - 12<br>esult.<br>I                                       | t RPD<br>25 2<br>Analyzed B<br>Prepared B                       | Limit<br>20<br>y: RR<br>y: KV<br>Rec                             |
| Param<br>SPLP Chromium<br>Percent recovery is based on the<br>Matrix Spike (MS-1) Spik<br>QC Batch ` 62003<br>Prep Batch 52868<br>Param                                                  | MSD<br>Result<br>0.0920<br>e spike result.<br>aed Sample 2<br>M<br>Res                             | Units<br>mg/L<br>RPD 1s<br>03832<br>Date A<br>QC Pre                              | Dil.<br>1<br>based on<br>nalyzed:<br>eparation.<br>Units                         | Spike<br>Amount<br>0.100<br>the spike at<br>2009-07-3<br>2009-07-3<br>Dıl                                            | Matrix<br>Result<br><0.000900<br>nd spike dup<br>0<br>0<br>0<br>50<br>Spike<br>Amount                                                       | Rec<br>92<br>plicate re<br>Mat<br>Res                      | Limit<br>75 - 12<br>esult.<br>I<br>rıx<br>ult                         | t RPD<br>25 2<br>Analyzed B<br>Prepared B<br>Rec.               | Limit<br>20<br>y: RR<br>y: KV<br>Rec<br>Limit                    |
| Param<br>SPLP Chromium<br>Percent recovery is based on the<br>Matrix Spike (MS-1) Spik<br>QC Batch 62003<br>Prep Batch 52868<br>Param<br>SPLP Copper                                     | MSD<br>Result<br>0.0920<br>e spike result.<br>xed Sample 2<br>M<br>Res<br>0 1                      | Units<br>mg/L<br>RPD 1s<br>03832<br>Date A<br>QC Press<br>Sult<br>35              | Dil. 1<br>based on<br>nalyzed:<br>eparation:<br>Units<br>mg/L                    | Spike<br>Amount<br>0.100<br>the spike at<br>2009-07-3<br>2009-07-3<br>Dul<br>1                                       | Matrix<br>Result<br><0.000900<br>nd spike du<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                  | Rec<br>92<br>plicate re<br>Mat<br>Res<br>0.0               | Limit<br>75 - 12<br>esult.<br>I<br>rix<br>ult<br>03                   | t RPD<br>25 2<br>Analyzed B<br>Prepared B                       | Limit<br>20<br>y: RR<br>y: KV<br>Rec                             |
| Param<br>SPLP Chromium<br>Percent recovery is based on the<br>Matrix Spike (MS-1) Spik<br>QC Batch ` 62003                                                                               | MSD<br>Result<br>0.0920<br>e spike result.<br>aed Sample 2<br>M<br>Res<br>0 1<br>e spike result    | Units<br>mg/L<br>RPD 1s<br>03832<br>Date A<br>QC Press<br>Sult<br>35              | Dil. 1<br>based on<br>nalyzed:<br>eparation:<br>Units<br>mg/L                    | Spike<br>Amount<br>0.100<br>the spike at<br>2009-07-3<br>2009-07-3<br>Dul<br>1<br>the spike at                       | Matrix<br>Result<br><0.000900<br>nd spike du<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Rec<br>92<br>plicate re<br>Mat<br>Res<br>0.0               | Limit<br>75 - 12<br>esult.<br>I<br>rix<br>ult<br>03<br>esult.         | t RPD<br>25 2<br>Analyzed B<br>Prepared B<br>Rec.               | Limit<br>20<br>y: RR<br>y: KV<br>Rec<br>Limit<br>75 - 125        |
| Param<br>SPLP Chromium<br>Percent recovery is based on the<br>Matrix Spike (MS-1) Spik<br>QC Batch 62003<br>Prep Batch 52868<br>Param<br>SPLP Copper<br>Percent recovery is based on the | MSD<br>Result<br>0.0920<br>e spike result.<br>and Sample 2<br>MRes<br>0 1<br>e spike result<br>MSD | Units<br>mg/L<br>RPD 18<br>03832<br>Date A<br>QC Pre<br>S<br>sult<br>35<br>RPD 18 | Dil. 1<br>based on<br>nalyzed:<br>eparation:<br>Units<br>mg/L<br>based on        | Spike<br>Amount<br>0.100<br>the spike at<br>2009-07-3<br>2009-07-3<br>2009-07-3<br>Dıl<br>1<br>the spike at<br>Spike | Matrix<br>Result<br><0.000900<br>nd spike dup<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                 | Rec<br>92<br>plicate re<br>Mat<br>Res<br>0.0<br>plicate re | Limit<br>75 - 12<br>esult.<br>I<br>rix<br>ult<br>03<br>esult.<br>Rec. | t RPD<br>25 2<br>Analyzed B<br>Prepared B<br>Rec.<br>106        | Limit<br>20<br>y: RR<br>y: KV<br>Rec<br>Limit<br>75 - 125<br>RPD |
| Param<br>SPLP Chromium<br>Percent recovery is based on the<br>Matrix Spike (MS-1) Spik<br>QC Batch 62003<br>Prep Batch 52868<br>Param<br>SPLP Copper                                     | MSD<br>Result<br>0.0920<br>e spike result.<br>aed Sample 2<br>M<br>Res<br>0 1<br>e spike result    | Units<br>mg/L<br>RPD 1s<br>03832<br>Date A<br>QC Press<br>Sult<br>35              | Dil. 1<br>based on<br>nalyzed:<br>eparation:<br>Units<br>mg/L<br>based on<br>Dil | Spike<br>Amount<br>0.100<br>the spike at<br>2009-07-3<br>2009-07-3<br>Dul<br>1<br>the spike at                       | Matrix<br>Result<br><0.000900<br>nd spike du<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Rec<br>92<br>plicate re<br>Mat<br>Res<br>0.0               | Limit<br>75 - 12<br>esult.<br>I<br>rix<br>ult<br>03<br>esult.         | t RPD<br>25 2<br>Analyzed B<br>Prepared B<br>Rec.<br>106<br>RPD | Limit<br>20<br>y: RR<br>y: KV<br>Rec<br>Limit<br>75 - 125        |

.

| Report Date. August 4, 2<br>Banard 3B #1                                                                                           |                                                                                                      |                                                                | ler. 90727<br>Pıt Closur                                                  |                                                                                   | Unit E                                                                                      | s, Sec. 3,                               | Page I<br>T3SR29E,                                                         |                                  | 33 of 46<br>Co., NM                                  |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|----------------------------------|------------------------------------------------------|
| Matrix Spike (MS-1)                                                                                                                | Spiked Sample: 20                                                                                    | 03832                                                          |                                                                           |                                                                                   |                                                                                             |                                          |                                                                            |                                  |                                                      |
| QC Batch 62003<br>Prep Batch 52868                                                                                                 |                                                                                                      |                                                                | .nalyzed:<br>eparation.                                                   | 2009-07-<br>2009-07-                                                              |                                                                                             |                                          |                                                                            | alyzed B<br>pared B              | -                                                    |
|                                                                                                                                    | M                                                                                                    | 5                                                              |                                                                           |                                                                                   | Spike                                                                                       | Matr                                     | ix                                                                         |                                  | Rec.                                                 |
| Param                                                                                                                              | Res                                                                                                  |                                                                | Units                                                                     | Dil.                                                                              | Amount                                                                                      | Resu                                     |                                                                            | ec.                              | Limit                                                |
| SPLP Silver                                                                                                                        | 0.15                                                                                                 | 28                                                             | mg/L                                                                      | 1                                                                                 | 0.125                                                                                       | < 0.00                                   | 210 1                                                                      | 02                               | 75 - 125                                             |
| Percent recovery is based of                                                                                                       | on the spike result                                                                                  | RPD 18                                                         | based on                                                                  | the spike a                                                                       | and spike du                                                                                | plicate re                               | sult.                                                                      |                                  |                                                      |
|                                                                                                                                    | MSD                                                                                                  |                                                                |                                                                           | Spike                                                                             | Matrix                                                                                      |                                          | Rec                                                                        |                                  | RPD                                                  |
| Param                                                                                                                              | Result                                                                                               | Units                                                          | Dıl                                                                       | Amount                                                                            | Result                                                                                      | Rec.                                     | Limit                                                                      | RPD                              | Limit                                                |
| SPLP Silver<br>Percent recovery is based of                                                                                        | 0.127                                                                                                | mg/L                                                           | 1                                                                         | 0.125                                                                             | < 0.00210                                                                                   | 102                                      | 75 - 125                                                                   | 1                                | 20                                                   |
| Matrix Spike (MS-1)<br>QC Batch 62003                                                                                              | Spiked Sample 20                                                                                     |                                                                | nalyzed.                                                                  | 2009-07-                                                                          | 30                                                                                          |                                          | Δn                                                                         | alyzed B                         | y: RR                                                |
| Prep Batch 52868                                                                                                                   |                                                                                                      |                                                                | eparation.                                                                | 2009-07-                                                                          |                                                                                             |                                          |                                                                            | pared B                          | •                                                    |
|                                                                                                                                    | М                                                                                                    | S                                                              |                                                                           |                                                                                   | Spike                                                                                       | Mati                                     | ix                                                                         |                                  | Rec.                                                 |
| Param                                                                                                                              | Res                                                                                                  | ult                                                            | Units                                                                     | Dıl.                                                                              | Amount                                                                                      | Resu                                     | lt R                                                                       | ec.                              | Limit                                                |
| SPLP U                                                                                                                             | 1 0                                                                                                  | )7                                                             | mg/L                                                                      | 1                                                                                 | 1.00                                                                                        | < 0.0                                    | .05 10                                                                     | 07                               | 90 - 110                                             |
| Percent recovery is based of                                                                                                       | on the spike result.                                                                                 | RPD 15                                                         | based on                                                                  | the spike a                                                                       | and spike du                                                                                | plicate re                               | sult.                                                                      |                                  |                                                      |
|                                                                                                                                    |                                                                                                      |                                                                |                                                                           | a .1                                                                              | Matuin                                                                                      |                                          | Rec.                                                                       |                                  | DDD                                                  |
|                                                                                                                                    | MSD                                                                                                  |                                                                |                                                                           | $\mathbf{Spike}$                                                                  | Matrix                                                                                      |                                          |                                                                            |                                  | $\operatorname{RPD}$                                 |
|                                                                                                                                    | Result                                                                                               | Units                                                          | Dil                                                                       | Amount                                                                            | Result                                                                                      | Rec.                                     | Limit                                                                      | RPD                              | Limit                                                |
| SPLP U                                                                                                                             | Result<br>1.04                                                                                       | mg/L                                                           | 1                                                                         | Amount<br>1.00                                                                    | Result<br><0.0105                                                                           | 104                                      | Limit<br>90 - 110                                                          | RPD<br>3                         |                                                      |
| Param<br>SPLP U<br>Percent recovery is based of<br>Matrix Spike (MS-1)                                                             | Result<br>1.04                                                                                       | mg/L<br>RPD is                                                 | 1                                                                         | Amount<br>1.00                                                                    | Result<br><0.0105                                                                           | 104                                      | Limit<br>90 - 110                                                          |                                  |                                                      |
| SPLP U<br>Percent recovery is based o<br>Matrix Spike (MS-1)                                                                       | Result<br>1.04<br>on the spike result.                                                               | mg/L<br>RPD is<br>03832                                        | 1<br>based on                                                             | Amount<br>1.00<br>the spike a                                                     | Result<br><0.0105<br>and spike du                                                           | 104                                      | Limit<br>90 - 110<br>sult.                                                 | 3                                | Limit                                                |
| SPLP U<br>Percent recovery is based o<br>Matrix Spike (MS-1)<br>QC Batch 62003                                                     | Result<br>1.04<br>on the spike result.                                                               | mg/L<br>RPD is<br>03832<br>Date A                              | 1<br>based on<br>nalyzed                                                  | Amount<br>1.00<br>the spike =<br>2009-07-                                         | Result<br><0.0105<br>and spike du                                                           | 104                                      | Limit<br>90 - 110<br>sult.<br>Ana                                          | 3<br>alyzed B                    | <br><br>y· RR                                        |
| SPLP U<br>Percent recovery is based o<br>Matrix Spike (MS-1)<br>QC Batch 62003                                                     | Result<br>1.04<br>on the spike result.                                                               | mg/L<br>RPD is<br>03832<br>Date A                              | 1<br>based on                                                             | Amount<br>1.00<br>the spike a                                                     | Result<br><0.0105<br>and spike du                                                           | 104                                      | Limit<br>90 - 110<br>sult.<br>Ana                                          | 3                                | <br><br>y· RR                                        |
| SPLP U<br>Percent recovery is based o<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868                                 | Result<br>1.04<br>on the spike result.                                                               | mg/L<br>RPD is<br>03832<br>Date A<br>QC Pre                    | 1<br>based on<br>nalyzed                                                  | Amount<br>1.00<br>the spike =<br>2009-07-                                         | Result<br><0.0105<br>and spike du                                                           | 104                                      | Limit<br>90 - 110<br>sult.<br>Ana<br>Pre                                   | 3<br>alyzed B                    | <br><br>y· RR                                        |
| SPLP U<br>Percent recovery is based o<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868                                 | Result<br>1.04<br>on the spike result.<br>Spiked Sample 20<br>M<br>Res                               | mg/L<br>RPD is<br>03832<br>Date A<br>QC Pre<br>S<br>ult        | 1<br>based on<br>nalyzed                                                  | Amount<br>1.00<br>the spike =<br>2009-07-                                         | Result<br><0.0105<br>and spike du<br>30<br>30                                               | 104<br>plicate re                        | Limit<br>90 - 110<br>sult.<br>Ana<br>Pre                                   | 3<br>alyzed B<br>pared B         | Limit<br>y· RR<br>y: KV                              |
| SPLP U<br>Percent recovery is based o<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868<br>3<br>Param                   | Result<br>1.04<br>on the spike result.<br>Spiked Sample 20<br>M                                      | mg/L<br>RPD is<br>03832<br>Date A<br>QC Pre<br>S<br>ult        | 1<br>based on<br>nalyzed<br>eparation                                     | Amount<br>1.00<br>the spike a<br>2009-07-<br>2009-07-                             | Result<br><0.0105<br>and spike du<br>30<br>30<br>Spike                                      | 104<br>plicate re<br>Mat                 | Limit<br>90 - 110<br>sult.<br>Ana<br>Pre<br>rix<br>alt Re                  | 3<br>alyzed B<br>pared By<br>ec. | Limit<br>y <sup>.</sup> RR<br>y: KV<br>Rec.          |
| SPLP U<br>Percent recovery is based o<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868<br>1<br>Param<br>SPLP Manganese | Result<br>1.04<br>on the spike result.<br>Spiked Sample 20<br>M<br>Res<br>0.2                        | mg/L<br>RPD is<br>03832<br>Date A<br>QC Pro<br>S<br>sult<br>74 | 1<br>based on<br>nalyzed<br>eparation<br>Units<br>mg/L                    | Amount<br>1.00<br>the spike a<br>2009-07-<br>2009-07-<br>Dil.<br>1                | Result<br><0.0105<br>and spike duy<br>30<br>30<br>Spike<br>Amount<br>0.250                  | 104<br>plicate re<br>Mat<br>Resu<br>0.03 | Limit<br>90 - 110<br>sult.<br>Ana<br>Pre<br>rix<br>alt Re<br>6 9           | 3<br>alyzed B<br>pared By<br>ec. | Limit<br>y. RR<br>y: KV<br>Rec.<br>Limit             |
| SPLP U<br>Percent recovery is based o<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868<br>3<br>Param<br>SPLP Manganese | Result<br>1.04<br>on the spike result.<br>Spiked Sample 20<br>M<br>Res<br>0.2                        | mg/L<br>RPD is<br>03832<br>Date A<br>QC Pro<br>S<br>sult<br>74 | 1<br>based on<br>nalyzed<br>eparation<br>Units<br>mg/L                    | Amount<br>1.00<br>the spike a<br>2009-07-<br>2009-07-<br>Dil.<br>1                | Result<br><0.0105<br>and spike duy<br>30<br>30<br>Spike<br>Amount<br>0.250                  | 104<br>plicate re<br>Mat<br>Resu<br>0.03 | Limit<br>90 - 110<br>sult.<br>Ana<br>Pre<br>rix<br>alt Re<br>66 9<br>sult. | 3<br>alyzed B<br>pared By<br>ec. | Limit<br>y. RR<br>y: KV<br>Rec.<br>Limit             |
| SPLP U<br>Percent recovery is based o<br>Matrix Spike (MS-1)<br>QC Batch 62003<br>Prep Batch 52868                                 | Result<br>1.04<br>on the spike result.<br>Spiked Sample 20<br>M<br>Res<br>0.2<br>on the spike result | mg/L<br>RPD is<br>03832<br>Date A<br>QC Pro<br>S<br>sult<br>74 | 1<br>based on<br>nalyzed<br>eparation<br>Units<br>mg/L<br>based on<br>Dıl | Amount<br>1.00<br>the spike a<br>2009-07-<br>2009-07-<br>Dil.<br>1<br>the spike a | Result<br><0.0105<br>and spike duy<br>30<br>30<br>Spike<br>Amount<br>0.250<br>and spike duy | 104<br>plicate re<br>Mat<br>Resu<br>0.03 | Limit<br>90 - 110<br>sult.<br>Ana<br>Pre<br>rix<br>alt Re<br>6 9           | 3<br>alyzed B<br>pared By<br>ec. | Limit<br>y· RR<br>y: KV<br>Rec.<br>Limit<br>75 - 125 |

·\*\*

### Matrix Spike (xMS-1) Spiked Sample:

| •              | 62041<br>52923 |   |                         | Analyzed:<br>Preparation:   |     |                         |                         | Analyzed By: 1<br>Prepared By: 1 |                        |  |  |
|----------------|----------------|---|-------------------------|-----------------------------|-----|-------------------------|-------------------------|----------------------------------|------------------------|--|--|
|                |                |   | MS                      |                             |     | Spike                   | Matrix                  |                                  | Rec.                   |  |  |
| Param          |                |   | $\operatorname{Result}$ | Units                       | Dil | $\operatorname{Amount}$ | $\operatorname{Result}$ | Rec.                             | $\operatorname{Limit}$ |  |  |
| 1,1-Dichloroet | hene           | • | 47 7                    | $\mu g/L$                   | 1   | 50.0                    | <0 136                  | 95                               | 70 - 130               |  |  |
| Benzene        |                |   | $51 \ 9$                | $\mu \mathrm{g}/\mathrm{L}$ | 1   | 50.0                    | < 0.146                 | 104                              | <b>70 - 13</b> 0       |  |  |
| Trichloroethen | ie (TCE)       |   | 49 5                    | $\mu g/L$                   | 1   | $50\ 0$                 | < 0.117                 | 99                               | 70 - 130               |  |  |
| Toluene        |                |   | $50 \ 7$                | $\mu g/L$                   | 1   | 50.0                    | <0 0600                 | 101                              | 70 - 130               |  |  |
| Chlorobenzene  | 3              |   | 50 7                    | $\mu g/L$                   | 1   | 50.0                    | < 0.0540                | 101                              | 70 - 130               |  |  |

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result.

|                       | MSD                     |                     |     | Spike   | Matrix            |      | Rec.                   |          | $\mathbf{RPD}$   |
|-----------------------|-------------------------|---------------------|-----|---------|-------------------|------|------------------------|----------|------------------|
| Param                 | $\operatorname{Result}$ | Units               | Dıl | Amount  | $\mathbf{Result}$ | Rec. | $\operatorname{Limit}$ | RPD      | $\mathbf{Limit}$ |
| 1,1-Dichloroethene    | 48.3                    | $\mu g/L$           | 1   | 50.0    | < 0.136           | 97   | 70 - 130               | 1        |                  |
| Benzene               | 51.3                    | $\mu { m g}/{ m L}$ | 1   | 50.0    | < 0.146           | 103  | 70 - 130               | 1        |                  |
| Trichloroethene (TCE) | 48 6                    | $\mu { m g/L}$      | 1   | 50.0    | < 0.117           | 97   | 70 - 130               | <b>2</b> |                  |
| Toluene               | $49\ 4$                 | $\mu { m g}/{ m L}$ | 1   | 50.0    | < 0.0600          | 99   | 70 - 130               | 3        |                  |
| Chlorobenzene         | 49 6                    | $\mu { m g}/{ m L}$ | 1   | $50\ 0$ | <0 0540           | 99   | 70 - 130               | 2        |                  |

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result.

|                              | $\mathbf{MS}$ | MSD    |                     |      | Spike                   | MS   | MSD  | Rec.                   |
|------------------------------|---------------|--------|---------------------|------|-------------------------|------|------|------------------------|
| Surrogate                    | Result        | Result | Units               | Dil. | $\operatorname{Amount}$ | Rec. | Rec. | $\operatorname{Limit}$ |
| Dibromofluoromethane         | 44.9          | 45.7   | $\mu g/L$           | 1    | 50                      | 90   | 91   | 70 - 130               |
| Toluene-d8                   | 50.7          | 49.4   | $\mu { m g}/{ m L}$ | 1    | 50                      | 101  | 99   | 70 - 130               |
| 4-Bromofluorobenzene (4-BFB) | 44.7          | 43.3   | $\mu { m g}/{ m L}$ | 1    | 50                      | 89   | 87   | 70 - 130               |

#### Matrix Spike (MS-1) Spiked Sample 203832

| QC Batch<br>Prep Batch | 62048<br>52928         |                |        | Analyzed<br>reparation | 2009-07<br>1 2009-07 |                         |                                 |               | alyzed l<br>epared l | U                          |
|------------------------|------------------------|----------------|--------|------------------------|----------------------|-------------------------|---------------------------------|---------------|----------------------|----------------------------|
| Param<br>Nitrate-N     |                        | M<br>Res<br>24 | ult    | Units<br>mg/L          | ,<br>                | Spike<br>Amount<br>250  | $\frac{\text{Mat}}{\text{Res}}$ | ult Rec.      |                      | Rec.<br>Limit<br>3.6 - 122 |
| Percent recov          | very is based on the s | pike result    | RPD 18 |                        | the spike            | and spike d             | uplicate                        | result.       |                      |                            |
|                        |                        | MSD            |        |                        | Spike                | Matrix                  |                                 | Rec.          |                      | RPD                        |
| Param                  |                        | Result         | Units  | Dıl                    | Amount               | $\operatorname{Result}$ | Rec.                            | $L_{1}m_{1}t$ | RPD                  | $\mathbf{Limit}$           |
| Nitrate-N              |                        | 249            | mg/L   | 50                     | 250                  | <3 50                   | 100                             | 73.6 - 122    | 0                    | 20                         |

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result.

|                                                                                                       |                         |                           |                         |                        |                   |                   |                   |                      | Co., NM                          |
|-------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|-------------------------|------------------------|-------------------|-------------------|-------------------|----------------------|----------------------------------|
|                                                                                                       | d Sample: 2             | 03832                     |                         |                        |                   |                   |                   |                      |                                  |
| QC Batch 62048<br>Prep Batch 52928                                                                    |                         |                           | Analyzed:<br>reparation | 2009-07-<br>. 2009-07- |                   |                   |                   | alyzed E<br>epared E |                                  |
|                                                                                                       | M                       |                           | TT,                     |                        | Spike             | Mat               |                   |                      | Rec.                             |
| Param<br>SPLP Chlonde                                                                                 | Res                     |                           | Units<br>mg/L           | Dıl<br>50              | Amount<br>1250    | Res<br>59         |                   |                      | $\frac{\text{Limit}}{9.8 - 149}$ |
| Percent recovery is based on the s                                                                    |                         |                           |                         | ··                     |                   |                   |                   |                      |                                  |
|                                                                                                       | MSD                     |                           |                         | Spike                  | Matrix            |                   | Rec.              |                      | RPD                              |
| Param                                                                                                 | Result                  | Units                     | Dıl                     | Amount                 | Result            | Rec.              | Limit             | RPD                  | Limit                            |
| SPLP Chloride                                                                                         | 1840                    | mg/L                      | 50                      | 1250                   | 591               | 100               | 49.8 - 149        | 0                    | 20                               |
| Percent recovery is based on the a                                                                    | -                       |                           | based on                | the spike a            | and spike di      | uplicate          | result.           |                      |                                  |
| Matrix Spike (MS-1) Spike                                                                             | d Sample <sup>.</sup> 2 | 03832                     |                         |                        |                   |                   |                   |                      |                                  |
| QC Batch 62048<br>Prep Batch 52928                                                                    |                         |                           | Analyzed<br>eparation   | 2009-07<br>: 2009-07   |                   |                   |                   | alyzed H<br>epared H |                                  |
|                                                                                                       |                         | QC 11                     | operation               | . 2005 01              | 00                |                   | 11                | opared L             | ·j 55                            |
|                                                                                                       | М                       | S                         |                         |                        | Spike             | Mat               | rix               |                      | Rec.                             |
| Param                                                                                                 | Res                     |                           | Units                   | Dil.                   | Amount            | Res               | ult Rec           |                      | Limit                            |
| SPLP Fluoride                                                                                         | 27                      | 9                         | $\mathrm{mg/L}$         | 50                     | 250               | <4.               | 44 112            | 63                   | 3.5 - 12                         |
| Percent recovery is based on the s                                                                    | spike result.           | RPD is                    | based on                | the spike a            | and spike d       | uplicate          | result.           |                      | ۰<br>۱                           |
|                                                                                                       | MSD                     |                           |                         | Spike                  | Matrix            |                   | Rec               |                      | $\operatorname{RPD}$             |
| Param                                                                                                 | Result                  | Units                     | Dil                     | Amount                 | Result            | Rec.              | Limit             | RPD                  | Limi                             |
| BPLP Fluoride                                                                                         | 275                     | mg/L                      | 50                      | 250                    | <4.44             | 110               | 63 5 - 127        | 1                    | 20                               |
| Percent recovery is based on the s<br>Matrix Spike (MS-1) Spike<br>QC Batch 62062<br>Prep Batch 52939 | d Sample. 2             | 03832<br>Date A           | nalyzed:                | 2009-07-               | 31                |                   | Ana               | lyzed B<br>pared By  |                                  |
| Param                                                                                                 | M<br>Res                |                           | Units                   | Dil                    | Spike<br>Amount   |                   | trıx<br>sult Re   |                      | Rec.<br>Limıt                    |
| BPLP Cyanide                                                                                          | 10                      |                           | mg/L                    | 1                      | 12.0              |                   | 0148 9            |                      | $\frac{11111}{80 - 120}$         |
| Percent recovery is based on the a                                                                    |                         |                           |                         |                        |                   |                   |                   | -                    |                                  |
| Davar                                                                                                 | MSD<br>Bogult           | <b>Ť</b> T <sup>*</sup> ± | <u>٦</u> .1             | Spike                  | Matrix            | n, a              | Rec.              | מתת                  | RPD<br>Limi                      |
| Param<br>SPLP Cyanide                                                                                 | Result<br>10.9          | Units<br>mg/L             |                         | Amount<br>12.0         | Result<br><0.0148 | <u>Rec.</u><br>91 | Limit<br>80 - 120 | RPD<br>1             | Limi<br>20                       |
| Percent recovery is based on the s                                                                    |                         |                           |                         |                        |                   |                   |                   | 1                    | 20                               |

.

| Report Date<br>Banard 3B #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | August 4, 20                              |                                                                        | Vork Order<br>Banard Pıt                                                            |                                                                                                          |                                                                                                    | Unit B,                                                                         | Sec. 3, T                                                                   |                                                                                         |                                         | 36 of 46<br>Co., NM                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|
| Matrix Spik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e (MS-1)                                  | Spiked Sample 2                                                        | 04269                                                                               |                                                                                                          |                                                                                                    |                                                                                 |                                                                             |                                                                                         |                                         |                                                                |
| QC Batch<br>Prep Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $62064 \\ 52941$                          |                                                                        | Date Ana<br>QC Prepa                                                                |                                                                                                          | 2009-07-31<br>2009-07-31                                                                           |                                                                                 |                                                                             |                                                                                         | yzed By<br>ared By                      |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | M                                                                      |                                                                                     |                                                                                                          |                                                                                                    | Spike                                                                           | Matrix                                                                      | ĸ                                                                                       |                                         | Rec.                                                           |
| Param                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                        |                                                                                     | Jnits                                                                                                    | Dil.                                                                                               | Amount                                                                          | Result                                                                      |                                                                                         |                                         | Limit                                                          |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                        |                                                                                     | g/Kg                                                                                                     | 1                                                                                                  | 500                                                                             | 394.99                                                                      |                                                                                         | )                                       | 80 - 120                                                       |
| ercent recov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ery is based o                            | on the spike result                                                    | RPD is ba                                                                           | used on                                                                                                  | the spike and                                                                                      | l spike dup                                                                     | licate resu                                                                 | lt                                                                                      |                                         |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | MSD                                                                    |                                                                                     |                                                                                                          | Spike                                                                                              | Matrix                                                                          |                                                                             | Rec                                                                                     |                                         | RPD                                                            |
| aram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | Result                                                                 | Units                                                                               | Dıl                                                                                                      | Amount                                                                                             | Result                                                                          | Rec                                                                         | Limit                                                                                   | RPD                                     | Limit                                                          |
| Thlonde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | <sup>5</sup> 583                                                       | mg/Kg                                                                               | 1                                                                                                        | 500                                                                                                | 394.99                                                                          | 38 8                                                                        | 0 - 120                                                                                 | 1                                       | 20                                                             |
| Percent recov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | erv is based o                            | on the spike result                                                    | RPD is ba                                                                           | used on                                                                                                  | the spike and                                                                                      | spike dup                                                                       | licate resu                                                                 | lt                                                                                      |                                         |                                                                |
| C Batch<br>rep Batch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62157<br>53021                            |                                                                        | Date Ana<br>QC Prepa                                                                |                                                                                                          | 2009-08-04<br>2009-08-04                                                                           |                                                                                 |                                                                             |                                                                                         | yzed By<br>ared By                      |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | M                                                                      |                                                                                     | 7 .                                                                                                      | D I                                                                                                | Spike                                                                           | Matrix                                                                      |                                                                                         |                                         | Rec.                                                           |
| 'aram<br>`RPHC'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | Res<br>41                                                              |                                                                                     | Jnits<br>g/Kg                                                                                            |                                                                                                    | Amount<br>250                                                                   | Result<br>120                                                               | ; Ree<br>120                                                                            |                                         | Limit<br>10 - 196                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                                                        |                                                                                     |                                                                                                          | 1                                                                                                  | 200                                                                             | 120                                                                         |                                                                                         |                                         | 10 - 190                                                       |
| ercent recov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 1                                                                      |                                                                                     |                                                                                                          | (1                                                                                                 | 1 1                                                                             | · ·                                                                         | 1.                                                                                      |                                         |                                                                |
| creens recov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ery is based o                            | on the spike result                                                    | RPD is ba                                                                           | used on                                                                                                  | the spike and                                                                                      | spike dup                                                                       | licate resu                                                                 | lt.                                                                                     |                                         |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ery is based o                            | on the spike result<br>MSD                                             | RPD is da                                                                           | ased on                                                                                                  | the spike and<br>Spike                                                                             | spike dup<br>Matrix                                                             | licate resu                                                                 | lt.<br>Rec.                                                                             |                                         | RPD                                                            |
| aram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ery is based o                            | MSD<br>Result                                                          | Units                                                                               | Dil.                                                                                                     | Spike<br>Amount                                                                                    | Matrix<br>Result                                                                | Rec.                                                                        | Rec.<br>Limit                                                                           | RPD                                     | Limit                                                          |
| aram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ery is based o                            | MSD                                                                    |                                                                                     |                                                                                                          | Spike                                                                                              | Matrix                                                                          | Rec.                                                                        | Rec.                                                                                    | RPD<br>2                                |                                                                |
| aram<br>TRPHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | MSD<br>Result                                                          | Units<br>mg/Kg                                                                      | Dil.                                                                                                     | Spike<br>Amount<br>250                                                                             | Matrix<br>Result<br>120                                                         | Rec.                                                                        | Rec.<br>Limit<br>0 - 196                                                                |                                         | Limit                                                          |
| Param<br>CRPHC<br>Percent recov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ery is based o                            | MSD<br>Result<br>429                                                   | Units<br>mg/Kg                                                                      | Dil.                                                                                                     | Spike<br>Amount<br>250                                                                             | Matrix<br>Result<br>120                                                         | Rec.                                                                        | Rec.<br>Limit<br>0 - 196                                                                |                                         | Limit<br>20                                                    |
| 'aram<br>'RPHC<br>'ercent recov<br>'tandard (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ery is based o                            | MSD<br>Result<br>429                                                   | Units<br>mg/Kg                                                                      | Dil.<br>1<br>used on                                                                                     | Spike<br>Amount<br>250                                                                             | Matrix<br>Result<br>120                                                         | Rec.                                                                        | Rec.<br>Limit<br>0 - 196<br>lt.                                                         |                                         | Limit<br>20                                                    |
| 'aram<br>'RPHC<br>'ercent recov<br>tandard (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ery is based o<br>CCV-1)                  | MSD<br>Result<br>429                                                   | Units<br>mg/Kg<br>RPD is ba<br>Date Anal<br>CCVs                                    | Dil.<br>1<br>used on                                                                                     | Spike<br>Amount<br>250<br>the spike and                                                            | Matrix<br>Result<br>120                                                         | Rec.<br>124 1<br>licate resu                                                | Rec.<br>Limit<br>0 - 196<br>lt.                                                         | 2                                       | Limit<br>20                                                    |
| Param<br>PRPHC<br>Percent recov<br>Standard (C<br>QC Batch 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ery is based o<br>CCV-1)<br>51916         | MSD<br>Result<br>429<br>on the spike result                            | Units<br>mg/Kg<br>RPD is ba<br>Date Anal<br>CCVs<br>True                            | Dil.<br>1<br>used on<br>lyzed                                                                            | Spike<br>Amount<br>250<br>the spike and<br>2009-07-28<br>CCVs<br>Found                             | Matrix<br>Result<br>120<br>spike dup<br>CCVs<br>Percent                         | Rec.<br>124 1<br>licate resu<br>Pe<br>Re                                    | Rec.<br>Limit<br>0 - 196<br>lt.<br>Analy<br>ercent<br>covery                            | 2<br>yzed By                            | Limit<br>20<br>. MT<br>Date                                    |
| Param<br>Percent recov<br>tandard (C<br>PC Barch 6<br>Param                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ery is based o<br>CCV-1)                  | MSD<br>Result<br>429<br>on the spike result<br>Units                   | Units<br>mg/Kg<br>RPD is ba<br>Date Anal<br>CCVs<br>True<br>Conc.                   | Dil.<br>1<br>used on<br>lyzed                                                                            | Spike<br>Amount<br>250<br>the spike and<br>2009-07-28<br>CCVs<br>Found<br>Conc                     | Matrix<br>Result<br>120<br>spike dup<br>CCVs<br>Percent<br>Recovery             | Rec.<br>124 1<br>licate resu<br>Pe<br>Re<br>L                               | Rec.<br>Limit<br>0 - 196<br>It.<br>Analy<br>ercent<br>covery<br>imits                   | 2<br>yzed By<br>Ar                      | Limit<br>20<br>. MT<br>Date<br>nalyzed                         |
| Param<br>Percent recov<br>tandard (C<br>PC Barch (C<br>Param<br>Param                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ery is based o<br>CCV-1)<br>51916         | MSD<br>Result<br>429<br>on the spike result<br>Units<br>mg/Kg          | Units<br>mg/Kg<br>RPD is ba<br>Date Anal<br>CCVs<br>True<br>Conc.<br>0.100          | Dil.<br>1<br>ased on<br>lyzed                                                                            | Spike<br>Amount<br>250<br>the spike and<br>2009-07-28<br>CCVs<br>Found<br>Conc<br>0 0944           | Matrix<br>Result<br>120<br>spike dup<br>CCVs<br>Percent<br>Recovery<br>94       | Rec.<br>124 1<br>licate resu<br>Pe<br>Re<br>L<br>80                         | Rec.<br>Limit<br>0 - 196<br>It.<br>Analy<br>ercent<br>covery<br>imits<br>- 120          | 2<br>yzed By<br>Ar<br>200               | Limit<br>20<br>. MT<br>Date<br>nalyzed<br>09-07-28             |
| Param<br>TRPHC<br>Percent recov<br>Standard (C<br>Standard (C)<br>Standard (C)<br>Standar | ery is based o<br>CCV-1)<br>51916<br>Flag | MSD<br>Result<br>429<br>on the spike result<br>Units<br>mg/Kg<br>mg/Kg | Units<br>mg/Kg<br>RPD is ba<br>Date Anal<br>CCVs<br>True<br>Conc.<br>0.100<br>0 100 | Dil.<br>1<br>used on<br>lyzed<br>(<br>1<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>( | Spike<br>Amount<br>250<br>the spike and<br>2009-07-28<br>CCVs<br>Found<br>Conc<br>0 0944<br>0.0932 | Matrix<br>Result<br>120<br>spike dup<br>CCVs<br>Percent<br>Recovery<br>94<br>93 | Rec.<br>124 1<br>licate resu<br>Pe<br>Re<br>L<br>80<br>80                   | Rec.<br>Limit<br>0 - 196<br>lt.<br>Analy<br>ercent<br>covery<br>imits<br>- 120<br>- 120 | 2<br>yzed By<br>Ar<br>200<br>200        | Limit<br>20<br>. MT<br>Date<br>nalyzed<br>09-07-28<br>09-07-28 |
| Param<br>Percent recov<br>Standard (C<br>QC Batch (C<br>Param<br>Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ery is based o<br>CCV-1)<br>51916<br>Flag | MSD<br>Result<br>429<br>on the spike result<br>Units<br>mg/Kg          | Units<br>mg/Kg<br>RPD is ba<br>Date Anal<br>CCVs<br>True<br>Conc.<br>0.100          | Dil.<br>1<br>used on<br>lyzed<br>(<br>1<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>( | Spike<br>Amount<br>250<br>the spike and<br>2009-07-28<br>CCVs<br>Found<br>Conc<br>0 0944           | Matrix<br>Result<br>120<br>spike dup<br>CCVs<br>Percent<br>Recovery<br>94       | Rec.<br>124 1<br>licate resu<br>Pe<br>Re<br>L<br>80<br>80<br>80<br>80<br>80 | Rec.<br>Limit<br>0 - 196<br>It.<br>Analy<br>ercent<br>covery<br>imits<br>- 120          | 2<br>yzed By<br>Ar<br>200<br>200<br>200 | Limit<br>20<br>. MT<br>Date<br>nalyzed<br>09-07-28             |

-

<sup>1</sup>Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control <sup>5</sup>Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

.

| Report Da<br>Banard 3B | te August 4, 20<br>8 #1 | 009       | Work Order:<br>Banard Pit ( |                 | Unit B, Se            | Page Number<br>Unit B, Sec 3, T3SR29E, Chave |                  |  |
|------------------------|-------------------------|-----------|-----------------------------|-----------------|-----------------------|----------------------------------------------|------------------|--|
| Standard               | (CCV-2)                 |           |                             |                 |                       |                                              |                  |  |
| QC Batch               | 61916                   | and a set | Date Analy                  | zed. 2009-07-   | 28                    | Anal                                         | yzed By: MT      |  |
|                        |                         |           | CCVs                        | CCVs            | $\operatorname{CCVs}$ | Percent                                      |                  |  |
|                        |                         |           | True                        | Found           | Percent               | Recovery                                     | Date             |  |
| Param                  | Flag                    | Units     | Conc.                       | Conc.           | Recovery              | Limits                                       | Analyzed         |  |
| Benzene                |                         | mg/Kg     | 0.100                       | 0.0933          | 93                    | 80 - 120                                     | 2009-07-28       |  |
| Toluene                |                         | m mg/Kg   | 0.100                       | 0.0915          | 92                    | 80 - 120                                     | 2009-07-28       |  |
| Ethylbenze             | ene                     | m mg/Kg   | 0.100                       | 0.0894          | 89                    | 80 - 120                                     | 2009-07-28       |  |
| Xylene                 |                         | mg/Kg     | 0.300                       | 0.276           | 92                    | 80 - 120                                     | 2009-07-28       |  |
| Standard               | (CCV-1)                 |           |                             |                 |                       |                                              |                  |  |
| QC'Batch               | 61917                   |           | Date Analy                  | zed 2009-07-    | 28                    | Anal                                         | yzed By: MT      |  |
|                        |                         |           | CCVs                        | CCVs            | CCVs                  | Percent                                      |                  |  |
|                        |                         |           | True                        | Found           | Percent               | Recovery                                     | Date             |  |
| Param                  | Flag                    | Units     | Conc                        | Conc.           | Recovery              | Limits                                       | Analyzed         |  |
| GRO                    |                         | mg/Kg     | 1 00                        | 0.974           | 97                    | 80 - 120                                     | 2009-07-28       |  |
|                        | (COL 2)                 |           |                             |                 |                       |                                              |                  |  |
| Standard               |                         |           |                             |                 |                       |                                              |                  |  |
| QC Batch               | 61917                   |           | Date Analy                  | zed 2009-07-    | 28                    | Anal                                         | yzed By: MT      |  |
|                        |                         |           | CCVs                        | CCVs            | CCVs                  | Percent                                      |                  |  |
|                        |                         |           | True                        | Found           | Percent               | Recovery                                     | Date             |  |
| Param                  | Flag                    | Units     | Conc.                       | Conc.           | Recovery              | Limits                                       | Analyzed         |  |
| GRO                    |                         | mg/Kg     | 1 00                        | 0.884           | 88                    | 80 - 120                                     | 2009-07-28       |  |
| Standard               | (CCV-1)                 |           |                             |                 |                       |                                              |                  |  |
| QC Batch               | 61923                   |           | Date Ana                    | lyzed: 2009-0   | 7-28                  | A                                            | nalyzed By:      |  |
|                        |                         |           | CCVs                        | $\mathrm{CCVs}$ | CCVs                  | Percent                                      |                  |  |
|                        |                         |           | True                        | Found           | Percent               |                                              | Data             |  |
| Param                  | Flag                    | Units     | Conc.                       | Found<br>Conc   |                       | Recovery<br>Limits                           | Date<br>Analyzed |  |
| i aram                 | <u>1 lag</u>            | mg/Kg     | 250                         | 238             | Recovery<br>95        | 80 - 120                                     | 2009-07-28       |  |

# Standard (CCV-2)

QC Batch 61923

,

Date Analyzed. 2009-07-28

Analyzed By:

| Report Date: August 4, 2009<br>Banard 3B $\#1$ |      |                | Work Order<br>Banard Pi |               | Page Number: 38 of 46<br>Unit B, Sec. 3, T3SR29E, Chaves Co., NM |                     |                        |
|------------------------------------------------|------|----------------|-------------------------|---------------|------------------------------------------------------------------|---------------------|------------------------|
| Ď.,                                            | E1   | Theite         | CCVs<br>True<br>Conc    | CCVs<br>Found | CCVs<br>Percent                                                  | Percent<br>Recovery | Date                   |
| Param<br>DRO                                   | Flag | Units<br>mg/Kg | 250                     | Conc.<br>236  | Recovery<br>94                                                   | Limits<br>80 - 120  | Analyzed<br>2009-07-28 |

# Standard (ICV-1)

| QC Batch   | 61942 |      |       | Date Analyzed | 2009-07-29 |                    | Analyzed By. TP         |            |  |
|------------|-------|------|-------|---------------|------------|--------------------|-------------------------|------------|--|
|            |       |      |       | ICVs          | ICVs       | ICVs               | Percent                 |            |  |
|            |       |      |       | True          | Found      | $\mathbf{Percent}$ | Recovery                | Date       |  |
| Param      |       | Flag | Units | Conc          | Conc       | Recovery           | $\operatorname{Limits}$ | Analyzed   |  |
| SPLP Mercu | ш у   |      | mg/L  | 0 00100       | 0 00101    | 101                | 90 - 110                | 2009-07-29 |  |

### Standard (CCV-1)

| QC Batch  | 61942 |      |       | Date Analyzed: | 2009-07-29     |                     | Analy              | yzed By: TP      |
|-----------|-------|------|-------|----------------|----------------|---------------------|--------------------|------------------|
|           |       |      | г     | CCVs           | CCVs           | CCVs<br>Democrat    | Percent            | Data             |
| Param     |       | Flag | Units | True<br>Conc   | Found<br>Conc. | Percent<br>Recoverv | Recovery<br>Limits | Date<br>Analyzed |
|           |       | Tag  |       |                |                | v                   |                    |                  |
| SPLP Merc | cury  |      | mg/L  | 0 00100        | 0.000987       | 99                  | 90 - 110           | 2009-07-29       |

### Standard (ICV-1)

| QC Batch 61963          |      | Date  | Analyzed     | 2009-07-29                  |                 | Analy               | zed By∙ DS |
|-------------------------|------|-------|--------------|-----------------------------|-----------------|---------------------|------------|
|                         |      |       | ICVs<br>True | $\operatorname{ICVs}$ Found | ICVs<br>Percent | Percent<br>Recovery | Date       |
| Param                   | Flag | Units | Conc         | Conc.                       | Recovery        | Limits              | Analyzed   |
| Atoclor 1242 (PCB-1242) |      | mg/L  | 0 400        | 0 366                       | 92              | 85 - 115            | 2009-07-29 |
| Aroclor 1254 (PCB-1254) |      | mg/L  | 0 400        | $0\ 340$                    | 85              | 85 - 115            | 2009-07-29 |
| Aroclor 1260 (PCB-1260) |      | mg/L  | 0.400        | 0.375                       | 94              | 85 - 115            | 2009-07-29 |

# Standard (CCV-1)

| QC Batch 61963          |      | Date            | Analyzed:             | 2009-07-29                  |                       | Analy                   | zed By: DS |
|-------------------------|------|-----------------|-----------------------|-----------------------------|-----------------------|-------------------------|------------|
|                         |      |                 | CCVs<br>True          | $\operatorname{CCVs}$ Found | $\operatorname{CCVs}$ | Percent                 | Date       |
| -                       |      |                 |                       |                             |                       | Recovery                |            |
| Parani                  | Flag | Units           | $\operatorname{Conc}$ | Conc.                       | Recovery              | $\operatorname{Limits}$ | Analyzed   |
| A10clor 1242 (PCB-1242) |      | · mg/L          | 0.400                 | 0.412                       | 103                   | 85 - 115                | 2009-07-29 |
| Aroclor 1254 (PCB-1254) |      | $\mathrm{mg/L}$ | 0.400                 | 0.366                       | 92                    | 85 - 115                | 2009-07-29 |
| Aroclor 1260 (PCB-1260) |      | mg/L            | 0 400                 | 0.405                       | 101                   | 85 - 115                | 2009-07-29 |

| Report Date Augus<br>Banard 3B #1         | st 4, 2009 |               | Work Order:<br>Banard Pit (         |                                        | Unit B, Se      | Page Nu<br>c. 3, T3SR29E, C           | umber: 39 of 4<br>Chaves Co., NI |
|-------------------------------------------|------------|---------------|-------------------------------------|----------------------------------------|-----------------|---------------------------------------|----------------------------------|
| Standard (ICV-1)                          |            |               |                                     |                                        |                 |                                       |                                  |
| QC Batch 62003                            |            |               | Date Analy                          | zed: 2009-07-3                         | 30              | Anal                                  | yzed By: RR                      |
|                                           |            |               | ICVs                                | ICVs                                   | ICVs            | Percent                               |                                  |
|                                           |            |               | True                                | Found                                  | Percent         | Recovery                              | Date                             |
| Param                                     | Flag       | Units         | Conc.                               | Conc.                                  | Recovery        | Limits                                | Analyzed                         |
| SPLP Cadmium                              |            | mg/L          | 1 00                                | 1.02                                   | 102             | 90 - 110                              | 2009-07-3                        |
| Standard (ICV-1)                          |            |               |                                     |                                        |                 |                                       |                                  |
| QC Batch 62003                            |            |               | Date Analy                          | zed· 2009-07-3                         | 30              | Anal                                  | yzed By: RR                      |
|                                           |            |               | ICVs                                | ICVs                                   | ICVs            | Percent                               |                                  |
|                                           |            |               | True                                | Found                                  | Percent         | Recovery                              | Date                             |
| Param I                                   | Flag       | Units         | Conc                                | Conc.                                  | Recovery        | Limits                                | Analyzed                         |
| SPLP Lead                                 |            | mg/L          | 2.00                                | 1.99                                   | 100             | 90 - 110                              | 2009-07-3                        |
| Standard (ICV-1)<br>QC Batch. 62003       |            |               | Date Analy                          | zed. 2009-07-3                         | 30              | Anal                                  | yzed By: RR                      |
|                                           |            |               | ICVs                                | ICVs                                   | $\mathbf{ICVs}$ | Percent                               |                                  |
|                                           |            |               | True                                | Found                                  | Percent         | Recovery                              | Date                             |
| Param                                     | Flag       | Units         | Conc.                               | Conc.                                  | Recovery        | Limits                                | Analyzed                         |
| SPLP Selenium                             |            | mg/L          | 1 00                                | 1.01                                   | 101             | 90 - 110                              | 2009-07-3                        |
| Standard (ICV-1)                          |            |               |                                     |                                        |                 |                                       |                                  |
| QC Batch 62003                            |            |               | Date Analy                          | zed 2009-07-3                          | 30              | Anal                                  | yzed By: RR                      |
| -                                         |            |               | ICVs                                | ICVs                                   | ICVs            | Percent                               |                                  |
|                                           |            |               |                                     | Found                                  |                 | Recovery                              | $\mathbf{Date}$                  |
|                                           |            |               | True                                | rouna                                  | Percent         | /                                     |                                  |
| Param                                     | Flag       | Units         | True<br>Conc.                       | Conc.                                  | Recovery        | Limits                                |                                  |
| Param                                     | Flag       | Units<br>mg/L |                                     |                                        |                 | -                                     |                                  |
| Param<br>SPLP Arsenic                     | Flag       |               | Conc.                               | Conc.                                  | Recovery        | Limits                                | Analyzed<br>2009-07-3            |
| Param<br>SPLP Arsenic<br>Standard (ICV-1) | Flag       |               | Conc.                               | Conc.<br>1 98                          | Recovery<br>99  | Limits<br>90 - 110                    | 2009-07-3                        |
| Param<br>SPLP Arsenic<br>Standard (ICV-1) | Flag       |               | Conc.<br>2 00                       | Conc.<br>1 98                          | Recovery<br>99  | Limits<br>90 - 110                    | 2009-07-3                        |
| Param<br>SPLP Arsenic<br>Standard (ICV-1) | Flag       |               | Conc.<br>2 00<br>Date Analy         | Conc.<br>1 98<br>zed 2009-07-3         | Recovery<br>99  | Limits<br>90 - 110<br>Analy           | 2009-07-3                        |
| Param<br>SPLP Arsenic<br>Standard (ICV-1) | Flag       |               | Conc.<br>2 00<br>Date Analy<br>ICVs | Conc.<br>1 98<br>zed 2009-07-3<br>ICVs | Recovery<br>99  | Limits<br>90 - 110<br>Anal<br>Percent | 2009-07-3<br>yzed By: RR         |

turia Marina Marina

| t Date<br>d 3B #<br> | August<br>#1    | 4, 2009 |               | Work Order 907<br>Banard Pit Clos |                                                  | Unit B, Se                  | Page Nu<br>c. 3, T3SR29E, C   | umber: 40 of 46<br>Thaves Co., NM |
|----------------------|-----------------|---------|---------------|-----------------------------------|--------------------------------------------------|-----------------------------|-------------------------------|-----------------------------------|
| ard (I               | (CV-1)          |         |               |                                   |                                                  |                             |                               |                                   |
| tch (                | 62003           |         | <b>26</b>     | Date Analyzed                     | l· 2009-07-30                                    |                             | Analy                         | yzed By: RR                       |
|                      |                 | Flore   | Units         | ICVs<br>True<br>Conc.             | ICVs<br>Found<br>Conc.                           | ICVs<br>Percent<br>Recovery | Percent<br>Recovery<br>Limits | Date                              |
| Chrom                | uum             | Flag    | mg/L          | 1 00                              | 1.05                                             | 105                         | <u>90 - 110</u>               | Analyzed 2009-07-30               |
|                      |                 |         | IIIg/ L       | 100                               | 1.00                                             | 100                         |                               | 2003-01-50                        |
|                      | (CV-1)          |         |               | Date Analyzed                     | l 2009-07-30                                     |                             | Anal                          | yzed By: RR                       |
|                      |                 |         |               | -                                 |                                                  |                             |                               | ,,,                               |
|                      |                 |         |               | ICVs                              | ICVs                                             | ICVs                        | Percent                       | _                                 |
|                      |                 |         | <b>TT 1</b>   | True                              | Found                                            | Percent                     | Recovery                      | Date                              |
| Coppe                |                 | Flag    | Units<br>mg/L | Conc<br>1.00                      | Conc.<br>1.01                                    | Recovery<br>101             | Limits<br>90 - 110            | Analyzed 2009-07-30               |
| ard (I               | (CV-1)          |         |               |                                   |                                                  |                             |                               |                                   |
| tch                  | 62003           |         |               | Date Analyzed                     | l 200 <b>9-</b> 07-30                            |                             | Anal                          | yzed By: RR                       |
|                      |                 |         |               | ICVs                              | ICVs                                             | ICVs                        | Percent                       |                                   |
|                      |                 |         |               | True                              | Found                                            | Percent                     | Recovery                      | Date                              |
|                      | F               | lag     | Units         | Conc.                             | Conc.                                            | Recovery                    | Limits                        | Analyzed                          |
| Silver               |                 |         | mg/L          | 0.250                             | 0.252                                            | 101                         | 90 - 110                      | 2009-07-30                        |
| ard (I               | (CV-1)          |         |               |                                   |                                                  |                             |                               |                                   |
| ıtch                 | 62003           |         |               | Date Analyzed                     | ł 2009-07-30                                     |                             | Analy                         | yzed By: RR                       |
|                      |                 |         |               |                                   | ICVs                                             | ICVs                        | Percent                       |                                   |
|                      |                 |         | <b>TT</b>     |                                   | Found                                            | Percent                     | Recovery                      | Date                              |
|                      | <b>1</b>        |         | Units         |                                   |                                                  | Recovery                    | Limits                        | Analyzed                          |
| T T                  | Flag            |         |               | 2.50                              | 2.54                                             | 102                         | 90 - 110                      | 2009-07-30                        |
| <u>U</u>             |                 |         | mg/L          |                                   |                                                  |                             |                               |                                   |
| ard (I               | (CV-1)          |         | mg/L          |                                   | <u>An an an</u> |                             |                               |                                   |
| ard (I               |                 |         | mg/L          | Date Analyzed                     | ŀ 2009-07-30                                     |                             | Anal                          | yzed By: RR                       |
| ard (I               | (CV-1)          |         | mg/L          |                                   | ŀ 2009-07-30<br>ICVs                             | ICVs                        | Analy                         | yzed By: RR                       |
| ard (I               | (CV-1)          |         | ,             | Date Analyzed<br>ICVs<br>True     | ICVs<br>Found                                    | Percent                     | Percent<br>Recovery           | Date                              |
| ard (I               | (CV-1)<br>62003 | Flag    | Units<br>mg/L | Date Analyzed<br>ICVs             | ICVs                                             |                             | Percent                       | ·                                 |

/

| Report Date Augus<br>Banard 3B #1                           | t 4, 2009       |               | Work Order 9072<br>Banard Pit Closu                   |                                                       | Unit B, Sec                       | Page Nu<br>3, T3SR29E, C                                      | mber: 41 of 46<br>haves Co., NM               |
|-------------------------------------------------------------|-----------------|---------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------|---------------------------------------------------------------|-----------------------------------------------|
| Standard (CCV-1)                                            | ì               |               |                                                       |                                                       |                                   |                                                               |                                               |
| QC Batch 62003                                              |                 |               | Date Analyzed                                         | 2009-07-30                                            |                                   | Analy                                                         | vzed By: RR                                   |
|                                                             |                 |               | CCVs                                                  | CCVs                                                  | CCVs                              | Percent                                                       |                                               |
|                                                             |                 |               | True                                                  | Found                                                 | Percent                           | Recovery                                                      | Date                                          |
| Param                                                       | Flag            | Units         | Conc                                                  | Conc.                                                 | Recovery                          | Limits                                                        | Analyzed                                      |
| SPLP Cadmium                                                |                 | m mg/L        | 1.00                                                  | 0.999                                                 | 100                               | 90 - 110                                                      | <b>2009-07-3</b> 0                            |
| Standard (CCV-1)                                            | )               |               |                                                       |                                                       |                                   |                                                               |                                               |
| QC Batch 62003                                              |                 |               | Date Analyzed:                                        | 2009-07-30                                            |                                   | Analy                                                         | vzed By: RR                                   |
|                                                             |                 |               | CCVs                                                  | CCVs                                                  | CCVs                              | Percent                                                       |                                               |
|                                                             |                 |               |                                                       | Found                                                 | Percent                           | Recovery                                                      | Date                                          |
| Param F                                                     | Plag            | Units         |                                                       | Conc.                                                 | Recovery                          | Limits                                                        | Analyzed                                      |
| SPLP Lead                                                   | ra <sub>b</sub> | mg/L          | 1.00                                                  | 1.01                                                  | 101                               | 90 - 110                                                      | 2009-07-30                                    |
|                                                             |                 |               |                                                       |                                                       |                                   |                                                               |                                               |
| Standard (CCV-1)                                            | )               |               |                                                       |                                                       |                                   |                                                               |                                               |
| QC Batch 62003                                              |                 |               | Date Analyzed                                         | 2009-07-30                                            |                                   | Analy                                                         | zed By: RR                                    |
|                                                             |                 |               | $\mathrm{CCVs}$                                       | CCVs                                                  | CCVs                              | Percent                                                       |                                               |
|                                                             |                 |               | True                                                  | Found                                                 | Percent                           | Recovery                                                      | Date                                          |
| Param                                                       | Flag            | Units         | Conc                                                  | Conc.                                                 | Recovery                          | Limits                                                        | Analyzed                                      |
| SPLP Selenium                                               | 0               | mg/L          | 1.00                                                  | 0 992                                                 | 99                                | 90 - 110                                                      | 2009-07-30                                    |
| Standard (CCV-1)                                            |                 |               |                                                       |                                                       |                                   |                                                               |                                               |
|                                                             |                 |               | Date Analyzed:                                        | 2009-07-30                                            |                                   | Analy                                                         | zed By: RR                                    |
| QC Batch 62003                                              |                 |               | Date Analyzed                                         |                                                       | aau                               |                                                               | vzed By: RR                                   |
|                                                             |                 |               | CCVs                                                  | CCVs                                                  | CCVs                              | Percent                                                       |                                               |
| QC Batch 62003                                              |                 | TI to         | CCVs<br>True                                          | CCVs<br>Found                                         | Percent                           | Percent<br>Recovery                                           | Date                                          |
| QC Batch 62003<br>Param                                     | Flag            | Units         | CCVs<br>True<br>Conc                                  | CCVs<br>Found<br>Conc.                                | Percent<br>Recovery               | Percent<br>Recovery<br>Limits                                 | Date<br>Analyzed                              |
|                                                             |                 | Units<br>mg/L | CCVs<br>True                                          | CCVs<br>Found                                         | Percent                           | Percent<br>Recovery                                           | Date                                          |
| QC Batch 62003<br>Param<br>SPLP Arsenic                     | Flag            |               | CCVs<br>True<br>Conc                                  | CCVs<br>Found<br>Conc.                                | Percent<br>Recovery               | Percent<br>Recovery<br>Limits                                 | Date<br>Analyzed                              |
| QC Batch 62003<br>Param<br>SPLP Arsenic<br>Standard (CCV-1) | Flag            |               | CCVs<br>True<br>Conc                                  | CCVs<br>Found<br>Conc.                                | Percent<br>Recovery               | Percent<br>Recovery<br>Limits<br>90 - 110                     | Date<br>Analyzed                              |
| QC Batch 62003 Param SPLP Arsenic Standard (CCV-1)          | Flag            |               | CCVs<br>True<br>Conc<br>1.00                          | CCVs<br>Found<br>Conc.<br>0.985                       | Percent<br>Recovery               | Percent<br>Recovery<br>Limits<br>90 - 110                     | Date<br>Analyzed<br>2009-07-30                |
| QC Batch 62003 Param SPLP Arsenic Standard (CCV-1)          | Flag            |               | CCVs<br>True<br>Conc<br>1.00<br>Date Analyzed         | CCVs<br>Found<br>Conc.<br>0.985<br>2009-07-30         | Percent<br>Recovery<br>98         | Percent<br>Recovery<br>Limits<br>90 - 110<br>Analy            | Date<br>Analyzed<br>2009-07-30                |
| QC Batch 62003 Param SPLP Arsenic Standard (CCV-1)          | Flag            |               | CCVs<br>True<br>Conc<br>1.00<br>Date Analyzed<br>CCVs | CCVs<br>Found<br>Conc.<br>0.985<br>2009-07-30<br>CCVs | Percent<br>Recovery<br>98<br>CCVs | Percent<br>Recovery<br>Limits<br>90 - 110<br>Analy<br>Percent | Date<br>Analyzed<br>2009-07-30<br>vzed By: RR |

`

| Report Date August 4,<br>Banard 3B #1 | 2009                       | Work Order 9072713<br>Banard Pit Closure |                        |                             | Page Number: 42 of 46<br>Unit B, Sec. 3, T3SR29E, Chaves Co., NM |                        |  |
|---------------------------------------|----------------------------|------------------------------------------|------------------------|-----------------------------|------------------------------------------------------------------|------------------------|--|
| Standard (CCV-1)                      |                            |                                          |                        |                             |                                                                  |                        |  |
| QC Batch 62003                        | <b>₩</b> <sup>a</sup> ntan | Date Analyze                             | d 2009-07-30           |                             | Anal                                                             | yzed By· RR            |  |
|                                       | Flag Units                 |                                          | CCVs<br>Found<br>Conc. | CCVs<br>Percent<br>Recovery | Percent<br>Recovery<br>Limits                                    | Date<br>Analyzed       |  |
| SPLP Chromium                         | mg/L                       | 1.00                                     | 1.02                   | 102                         | 90 - 110                                                         | 2009-07-30             |  |
| Standard (CCV-1)                      |                            |                                          |                        |                             |                                                                  |                        |  |
| QC Batch 62003                        |                            | Date Analyze                             | d: 2009-07-30          |                             | Anal                                                             | yzed By: RR            |  |
| Param Fla                             | ug Units                   | CCVs<br>True<br>Conc.                    | CCVs<br>Found<br>Conc. | CCVs<br>Percent             | Percent<br>Recovery<br>Limits                                    | Date                   |  |
| SPLP Copper                           | mg/L                       | 1.00                                     | 1.01                   | Recovery<br>101             | <u>90 - 110</u>                                                  | Analyzed<br>2009-07-30 |  |
| QC Batch 62003                        |                            | Date Analyze<br>CCVs<br>True             | CCVs                   | $\operatorname{CCVs}$       | Percent                                                          | yzed By: RR            |  |
|                                       | TT. ba                     | True                                     | Found                  | Percent                     | Recovery                                                         | Date                   |  |
| Param Flag<br>SPLP Silver             | Units<br>mg/L              | Conc<br>0 125                            | Conc.<br>0.126         | Recovery<br>101             | Limits<br>90 - 110                                               | Analyzed<br>2009-07-30 |  |
| Standard (CCV-1)<br>QC Batch 62003    |                            | '<br>Date Analyzed                       |                        |                             |                                                                  | yzed By: RR            |  |
|                                       |                            |                                          | CCVs<br>Found          | CCVs<br>Percent             | Percent                                                          | Date                   |  |
| Param Flag                            | Units                      | Conc                                     | Conc.                  | Recovery                    | Recovery<br>Limits                                               | Analyzed               |  |
| SPLP U                                | mg/L                       | 1 00                                     | 1 03                   | 103                         | 90 - 110                                                         | 2009-07-30             |  |
| Standard (CCV-1)<br>QC Batch 62003    |                            | Date Analyzed                            | l: 2009-07-30          |                             | Anal                                                             | vzed By: RR            |  |
|                                       |                            | CCVs                                     | CCVs                   | CCVs                        | Percent                                                          |                        |  |
|                                       |                            | True                                     | Found                  | Percent                     | Recovery                                                         | Date                   |  |
| Param                                 | Flag Units                 |                                          | Conc                   | Recovery                    | Limits                                                           | Analyzed               |  |
| SPLP Manganese                        | mg/L                       | 1 00                                     | 0 986                  | 99                          | 90 - 110                                                         | 2009-07-30             |  |

~

で、東京

| Report Date. August 4, 2009 | Work C |
|-----------------------------|--------|
| Banard 3B #1                | Banar  |

### Standard (CCV-1)

| QC Batch 62035         | 10 <b>7-</b> 0 | Dat             | e Analyzed | 2009-07-31 |                 | Analyz   | ed By: MN          |
|------------------------|----------------|-----------------|------------|------------|-----------------|----------|--------------------|
|                        |                |                 | CCVs       | CCVs       | $\mathrm{CCVs}$ | Percent  |                    |
|                        |                |                 | True       | Found      | Percent         | Recovery | Date               |
| Param                  | Flag           | Units           | Conc       | Conc.      | Recovery        | Limits   | Analyzed           |
| Naphthalene            |                | mg/L            | 60.0       | 57.8       | 96              | 80 - 120 | 2009-07-31         |
| Acenaphthylene         |                | mg/L            | 60.0       | 58.7       | 98              | 80 - 120 | 2009-07-31         |
| Acenaphthene           |                | mg/L            | 60.0       | 58.7       | 98              | 80 - 120 | 2009-07-31         |
| Dibenzofuran           |                | mg/L            | 60.0       | 61.0       | 102             | 80 - 120 | 2009-07-31         |
| Fluorenc               |                | mg/L            | 60 0       | 63.7       | 106             | 80 - 120 | 2009-07-31         |
| Anthracene             |                | mg/L            | 60.0       | 58.2       | 97              | 80 - 120 | 2009-07-31         |
| Phenanthiene           |                | mg/L            | 60 0       | $56\ 5$    | 94              | 80 - 120 | 2009-07-31         |
| Fluoranthene           |                | mg/L            | 60 0       | 56.0       | 93              | 80 - 120 | 2009-07-31         |
| Pyrene '               |                | mg/L            | $60 \ 0$   | 59.3       | 99              | 80 - 120 | 2009-07-31         |
| Benzo(a)anthracene     |                | $\mathrm{mg/L}$ | $60\ 0$    | 57.0       | 95              | 80 - 120 | 2009-07-31         |
| Chrysene               |                | mg/L            | 60.0       | 56.7       | 94              | 80 - 120 | 2009-07-31         |
| Benzo(b)fluoranthene   |                | $\mathrm{mg/L}$ | 60 0       | 48 8       | 81              | 80 - 120 | 2009-07-31         |
| Benzo(k)fluoranthene   |                | mg/L            | 60.0       | 65.4       | 109             | 80 - 120 | 2009-07-31         |
| Benzo(a)pyrene         |                | $\mathrm{mg/L}$ | 60.0       | 55.0       | 92              | 80 - 120 | 2009-07-31         |
| Indeno(1 2,3-cd)pyrene |                | $\mathrm{mg/L}$ | 60.0       | 57.9       | 96              | 80 - 120 | <b>2009-07-3</b> 1 |
| Dibenzo(a,h)anthracene |                | mg/L            | $60 \ 0$   | 58.3       | 97              | 80 - 120 | 2009-07-31         |
| Benzo(g,ha)perylene    |                | mg/L            | 60 0       | 57 0       | 95              | 80 - 120 | 2009-07-31         |
|                        |                |                 |            |            | Spike           | Percent  | Recovery           |
| Surrogate Fla          | ag             | Result          | Units      | Dilution   | Amount          | Recovery | Limit              |
| 2-Fluorobiphenyl       |                | 54.9            | mg/L       | 1          | 60.0            | 92       | 80 - 120           |
| Nıtrobenzene-d5        |                | 62.6            | mg/L       | 1          | 60.0            | 104      | 80 - 120           |
| Terphenyl-d14          |                | 55.1            | mg/L       | 1          | 60.0            | 92       | 80 - 120           |

# Standard (CCV-1)

| QC Batch 62041      |      | Date Analyzed: 2009-07-30 |              |               |                 | Analyzed By: KB     |                    |  |
|---------------------|------|---------------------------|--------------|---------------|-----------------|---------------------|--------------------|--|
|                     |      |                           | CCVs<br>True | CCVs<br>Found | CCVs<br>Percent | Percent<br>Recovery | Date               |  |
| Parani              | Flag | Units                     | Conc         | Conc.         | Recovery        | Limits              | Analyzed           |  |
| Vınyl Chloride      |      | $\mu g/L$                 | 50.0         | 55.1          | 110             | 80 - 120            | <b>2009-07-3</b> 0 |  |
| 1,1-Dichloroethene  |      | $\mu g/L$                 | $50\ 0$      | 50.2          | 100             | 80 - 120            | <b>2009-07-3</b> 0 |  |
| Chloroform          |      | $\mu g/L$                 | 50.0         | 50.3          | 101             | 80 - 120            | <b>2009-07-3</b> 0 |  |
| 1 2-Dichloropropane |      | $\mu g/L$                 | 50.0         | 52.2          | 104             | 80 - 120            | <b>2009-07-3</b> 0 |  |
| Toluene             |      | $\mu g/L$                 | $50 \ 0$     | 525           | 105             | 80 - 120            | <b>2009-07-3</b> 0 |  |
| Chlorobenzene       |      | $\mu g/L$                 | $50\ 0$      | $50\ 4$       | 101             | 80 - 120            | <b>2009-07-3</b> 0 |  |
| Ethylbenzene        |      | $\mu { m g}/{ m L}$       | 50 0         | 51.8          | 104             | 80 - 120            | <b>2009-07-3</b> 0 |  |

| Report Date<br>Banard 3B 7 | 4ugust 4, 2009<br>#1 | 9               | Work Order<br>Banard Pit ( |                     | Unit B, Se      | Page No. 3, T3SR29E, C | umber 44 of 4<br>Chaves Co., NN |
|----------------------------|----------------------|-----------------|----------------------------|---------------------|-----------------|------------------------|---------------------------------|
| Standard (                 | CCV-1)               |                 |                            |                     |                 |                        |                                 |
| QC Batch                   | 62048                | **-***          | Date Anal                  | yzed: 2009-07       | -31             | Ana                    | lyzed By. SS                    |
|                            |                      |                 | CCVs                       | CCVs                | CCVs            | Percent                |                                 |
| Ð                          |                      | <b>TT</b> .     | True                       | Found               | Percent         | Recovery               | Date                            |
| Param<br>Nitrate-N         | Flag                 | Units           | Conc                       | Conc                | Recovery        | Limits                 | Analyzed                        |
| NH al C-ix                 |                      | mg/L            | 5 00                       | 4 87                | 97              | 90 - 110               | 2009-07-3                       |
| Standard (                 | CCV-1)               |                 |                            |                     |                 |                        |                                 |
| QC Batch                   | 62048                |                 | Date Analy                 | yzed. 2009-07       | -31             | Ana                    | lyzed By: SS                    |
|                            |                      |                 | CCVs                       | CCVs                | $\rm CCVs$      | Percent                |                                 |
|                            |                      |                 | True                       | Found               | Percent         | Recovery               | Date                            |
| Parain                     | Flag                 | Units           | Conc.                      | Conc.               | Recovery        | Limits                 | Analyzed                        |
| SPLP Chlori                |                      | mg/L            | $25\ 0$                    | 23.3                | 93              | 90 - 110               | 2009-07-3                       |
| QC Batch                   | 62048                |                 | Date Analy                 |                     |                 |                        | lyzed By: SS                    |
|                            |                      |                 | CCVs                       | CCVs                | CCVs            | Percent                | <b>D</b> .                      |
| Param                      | Eler                 | Units           | True                       | Found               | Percent         | Recovery               | Date                            |
| SPLP Fluori                | Flag                 | mg/L            | <u> </u>                   | <u>Conc</u><br>5.43 | Recovery<br>109 | Limits<br>90 - 110     | Analyzed<br>2009-07-31          |
| Standard (<br>QC Batch     | CCV-2)<br>62048      |                 | Date Analy                 | vzed 2009-07        | -31             | Ana                    | lyzed By: SS                    |
|                            |                      |                 | CCVs                       | CCVs                | CCVs            | Percent                |                                 |
|                            |                      |                 | True                       | Found               | Percent         | Recovery               | Date                            |
| Param                      | Flag                 | Units           | Conc                       | Conc.               | Recovery        | Limits                 | Analyzed                        |
| Nitrate-N                  |                      | mg/L            | 5.00                       | 4.82                | 96              | 90 - 110               | 2009-07-31                      |
| Standard (                 | CCV-2)               |                 |                            |                     |                 |                        | 1 . <sub>12</sub>               |
| QC Batch                   | 62048                |                 | Date Analy                 | vzed: 2009-07-      | -31             | Anal                   | lyzed By: SS                    |
|                            |                      |                 | CCVs                       | CCVs                | CCVs            | Percent                |                                 |
| D                          |                      | <b>-</b>        | True                       | Found               | Percent         | Recovery               | Date                            |
| Param<br>SPLP Chlorn       | Flag                 | Units           | Conc                       | Conc.               | Recovery        | Limits                 | Analyzed                        |
| - ULLI (blow)              | de                   | $\mathrm{mg/L}$ | 25.0                       | 23.2                | 93              | 90 - 110               | 2009-07-31                      |

i

+

ζ

| Report Da<br>Banard 3B |         | t 4, 200 | €          | Work Order <sup>,</sup> 9<br>Banard Pıt Cl |               | Unit B, Se      | Page No. 3, T3SR29E, C | umber· 45 of 46<br>Chaves Co., NM |
|------------------------|---------|----------|------------|--------------------------------------------|---------------|-----------------|------------------------|-----------------------------------|
| Standard               | (CCV-2) |          |            |                                            |               |                 |                        |                                   |
| QC Batch               | 62048   |          | موجات موجع | Date Analyz                                | ed: 2009-07-  | -31             | Ana                    | lyzed By: SS                      |
|                        |         |          |            | CCVs                                       | CCVs          | $\mathrm{CCVs}$ | Percent                |                                   |
|                        |         |          |            | True                                       | Found         | Percent         | Recovery               | Date                              |
| Param                  |         | Flag     | Units      | Conc                                       | Conc          | Recovery        | Limits                 | Analyzed                          |
| SPLP Fluo              | rıde    |          | mg/L       | 5 00                                       | 5.41          | 108             | 90 - 110               | 2009-07-31                        |
| Standard               | (ICV-1) |          |            |                                            |               |                 |                        |                                   |
| QC Batch               | 62062   |          |            | Date Analyz                                | ed 2009-07-   | 31              | Anal                   | yzed By: AH                       |
|                        |         |          |            | ICVs                                       | ICVs          | ICVs            | Percent                |                                   |
|                        |         |          |            | True                                       | Found         | Percent         | Recovery               | Date                              |
| Param                  |         | Flag     | Units      | Conc.                                      | Conc.         | Recovery        | Limits                 | Analyzed                          |
| SPLP Cyar              | nide    |          | m mg/L     | 0.120                                      | 0.125         | 104             | 80 - 120               | 2009-07-31                        |
|                        |         |          |            |                                            |               |                 |                        |                                   |
| Standard               | (CCV-1) |          |            |                                            |               |                 |                        |                                   |
| QC Batch               | 62062   |          |            | Date Analyze                               | ed 2009-07-   | 31              | Anal                   | yzed By: AH                       |
|                        | •       |          |            | CCVs                                       | CCVs          | CCVs            | Percent                |                                   |
|                        |         |          |            | True                                       | Found         | Percent         | Recovery               | Date                              |
| Puam                   |         | Flag     | Units      | Conc                                       | Conc          | Recovery        | Limits                 | Analyzed                          |
| SPLP Cyan              | nde     |          | mg/L       | 0 120                                      | 0.122         | 102             | 80 - 120               | 2009-07-31                        |
| Standard               | (ICV-1) |          |            |                                            |               |                 |                        |                                   |
| QC Batch               | 62064   |          |            | Data Analyza                               | ed 2009-07-3  | 21              | A                      | wood Bw. AU                       |
| குட மல்ய               | 02004   |          |            | Date Analyze                               | 5u 2009-07-6  | J1              | Anar                   | yzed By: AH                       |
|                        |         |          |            | ICVs                                       | ICVs          | $\mathbf{ICVs}$ | Percent                |                                   |
| _                      |         |          |            | True                                       | Found         | Percent         | Recovery               | Date                              |
| Param                  | Flag    |          | Units      | Conc                                       | Conc.         | Recovery        | Limits                 | Analyzed                          |
| Chlonde                |         |          | mg/Kg      | 100                                        | 100           | 100             | 85 - 115               | 2009-07-31                        |
| Standard               |         |          |            |                                            |               |                 |                        |                                   |
| standard               | (001)   |          |            |                                            |               |                 |                        |                                   |
| QC Batch               | 62064   |          |            | Date Analyze                               | ed: 2009-07-3 | 31              | Analy                  | yzed By: AH                       |
|                        |         |          |            | $\mathrm{CCVs}$                            | CCVs          | CCVs            | Percent                |                                   |
| _                      |         |          |            | True                                       | Found         | Percent         | Recovery               | Date                              |
| Param                  | Flag    |          | Units      | Conc                                       | Conc          | Recovery        | Limits                 | Analyzed                          |
| Chlonde                |         |          | mg/Kg      | 100                                        | 99.8          | 100             | 85 - 115               | 2009-07-31                        |

,

.

• •

.

青崎

| Report Date August 4, 2009<br>Banard 3B #1 |                                       |             | Work Order: 9072713<br>Banard Pit Closure |               | Page Number: 46 of<br>Unit B, Sec. 3, T3SR29E, Chaves Co., N |          |              |
|--------------------------------------------|---------------------------------------|-------------|-------------------------------------------|---------------|--------------------------------------------------------------|----------|--------------|
| Standard                                   | (ICV-1)                               |             |                                           |               |                                                              |          |              |
| QC Batch                                   | 62157                                 | (190-1-610- | Date Ar                                   | nalyzed 2009- | 08-04                                                        |          | Analyzed By: |
|                                            |                                       |             | ICVs                                      | ICVs          | ICVs                                                         | Percent  |              |
|                                            |                                       |             | True                                      | Found         | Percent                                                      | Recovery | Date         |
| Param                                      | Flag                                  | Units       | Conc                                      | Conc          | Recovery                                                     | Limits   | Analyzed     |
| TRPHC                                      | · · · · · · · · · · · · · · · · · · · | mg/Kg       | 100                                       | 109           | 109                                                          | 80 - 120 | 2009-08-04   |
| Standard                                   | (CCV-1)                               |             |                                           |               |                                                              |          |              |
| QC Batch                                   | 62157                                 |             | Date Analyzed 2009-08-04                  |               |                                                              |          | Analyzed By. |
|                                            |                                       |             | CCVs                                      | CCVs          | CCVs                                                         | Percent  |              |
|                                            |                                       |             | True                                      | Found         | Percent                                                      | Recovery | Date         |
| Param                                      | Flag                                  | Units       | Conc                                      | Conc.         | Recovery                                                     | Limits   | Analyzed     |
| TRPHC                                      |                                       | mg/Kg       | 100                                       | 115           | 115                                                          | 80 - 120 | 2009-08-04   |

11日日

| 9072713                                                                                                                                             |                                                   | LAB Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ID # 907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2713                                                                                                                                                                                                   | Pa                                                                                                 | age of (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TraceAnalysis,<br>email lab@traceanalysis.co                                                                                                        |                                                   | 701 Aberdeen Avenue<br>Lubbock, Texas 794<br>Tel (806) 794-129<br>Fax (806) 794-129<br>1 (800) 378-1296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 424 · Midland, T<br>6 Tel (432)<br>18 Fax (432)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 689-6301 Tel(9<br>689-6313 Fax (                                                                                                                                                                       | Sunset Rd Suite E 88<br>o, Texas 79922<br>915) 585-3443<br>915) 585-4944<br>88) 588-3443           | 63 Camp Bovne Bivd West Sona 180<br>Ft Worth, Texas 76116<br>Te , 3:7, 201-5260<br>Fax (817) 560-4336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Company Name<br>39/C Resources, Inc.<br>Address (Street, City, Zin)<br>20 BOX 1030 Koswell, NIM 882<br>Contact Person<br>Frank MORGAN<br>Invoice to | Phone #<br>575<br>Fax #<br>02-1030 575<br>E-mail. | - 622 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1127<br>3533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Circle                                                                                                                                                                                                | analysis requ<br>or Specify M                                                                      | ethod (ge.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>Hg 60<br>b Se                                                                                                                                                                                    | 625                                                                                                | Sector<br>eetter<br>1. V.C.<br>1. V.C.<br>trom standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project #<br>Project #<br>Project Location (including state):<br>Mi Fra. 5 Sec. 3 T. 3 S. M<br>N. 340446-8<br>W. 1035 342, 2<br>UNI                 | Ca - Mar Sampler 9<br>29E - P<br>MATRIX           | PRESERVATIVE<br>METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLING 80978 / 209 / 81208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | / 602 / 82<br>X1005 / T<br>K0 MDRO<br>625<br>As Ba Cd C<br>Ag As Ba (<br>and these                                                                                                                     | 21des<br>8260B / 624<br>11 Vol 8270C /<br>1608<br>081A / 608                                       | TSS, pH<br>ture Content<br>H B D N I W - See<br>H B D N I W - See<br>H B D N I W - See<br>H B D I W - See<br>H B D - See |
| LAB # FIELD CODE / Junion                                                                                                                           | WATER<br>SOIL<br>AIR<br>SLUDGE<br>SLUDGE<br>HNO,  | H <sub>2</sub> SO <sub>4</sub><br>NaOH<br>ICE<br>NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DATE<br>TIME<br>MTBE 802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>BTEX 8021B / 602 /<br/>TPH 418 1 / ITX1005<br/>TPH 8015 GRO %DR<br/>CPAH 8270C 7625<br/>Crual Metals Ag As Ba Co<br/>TCLP Metals Ag As B<br/>TCLP Volatiles<br/>TCLP Sem Volatiles</li> </ul> | TCLP Pesticides<br>RCI<br>GC/MS Vol 8260<br>GC/MS Semi Vol<br>PCB's 8082 / 608<br>Pesticides 8081A | Moisture Conte<br>Moisture Conte<br>Analys<br>Hyshin<br>Hum Around Tu<br>Hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 208 anard 3B#/2 4m<br>203832 Composite P.T<br>Sample -                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07/24/ <sub>99</sub> 0900°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                        |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                        |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                        |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rétinguished by: Company: Date: Time:                                                                                                               |                                                   | apany: Date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time: Temp <sup>°</sup> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LABUSE                                                                                                                                                                                                 | REMARKS: AN                                                                                        | y Questions Please                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Relinquished by: Company: Date: Time:<br>Relinquished by. Company: Date: Time:                                                                      | Received by: Com                                  | npany: Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time: Temp <sup>o</sup> c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Headenace Y ( N( NA)                                                                                                                                                                                   | Dry Weight Bas                                                                                     | An K Morgan<br>5-703-6866<br>Required Called Frank (A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Submittal of samples constitutes agreement to Terms and Cor                                                                                         |                                                   | $\frac{1}{2} \frac{1}{2} \frac{1}$ | P Time: Temp°c:<br>10:10 2<br>10:10 2<br>10:100 |                                                                                                                                                                                                        | Check If Special<br>5017 Whits Are Need<br>5017 1701/11 St<br>5373350                              | al Reporting MAT 7/200 /09<br>ded 8-4-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 46.15.                                                                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                        |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

### TULE FIELD AREA DEPTH TO LIVESTOCK WATER

1

Township 2 South, Range 29 East N.M.P.M. Survey Roosevelt County, New Mexico

| WELL LOCATION   | SURFACE OWNERSHIP      | CONTACT PERSON               | DATE CONTACTED | DEPTH |
|-----------------|------------------------|------------------------------|----------------|-------|
| SW/4 Section 27 | McGee Ranches          | Sid Price, Owner             | Sept. 11, 2006 | 100'  |
| NW/4 Section 24 | Monte Best Ranch       | Sid Price (helped pull well) | Sept. 11, 2006 | 120'  |
| SE/4 Section 27 | Woody Investments, LLC | Ron Crenshaw, Foreman        | Sept. 7, 2006  | 95' + |
| N/2 Section 20  | Woody Investments, LLC | Ron Crenshaw, Foreman        | Sept. 7, 2006  | 95' + |
| N/2 Section 20  | Woody Investments, LLC | Ron Crenshaw, Foreman        | Sept. 7, 2006  | 95' + |
| S/2 Section 17  | Woody Investments, LLC | Ron Crenshaw, Foreman        | Sept. 7, 2006  | 95' + |

### PECOS DISTRICT, BLM SEED MIX FOR

### The following Soils or Soil Associations may represent these ecological sites: Amarillo loamy fine sand Amarillo loamy fine sand eroded Arvana loamy fine sand Patricia fine sand Gomez loamy fine sand Clovis fine sandy loam Drake loamy fine sand

### Range Site: Sandy Plains HP-3 April 4, 2006

| Common Name<br>and Preferred Variety     | Scientific Name                         | Pounds of Pure<br>Live Seed Per Acre |
|------------------------------------------|-----------------------------------------|--------------------------------------|
| Sideoats grama<br>var. Vaughn or El Reno | (Bouteloua curtipendula)                | 2.0                                  |
| Little bluestem                          | (Andropogon scoparium)                  | 2.5                                  |
| Sand bluestem                            | (Andropogon hallı)                      | 1.5                                  |
| Sand dropseed                            | (Sporobolus cryptandrus)                | 1.0                                  |
| Bush penstemon                           | (Penstemon ambiguous)                   | 1.0                                  |
| Desert or Scarlet<br>Globernallow        | (Sphaeralcea ambigua<br>or S. coccinea) | 1.0                                  |
| TOTAL POUNDS PURE LIVE SE                | 9.0                                     |                                      |

Certified Weed Free Seed

### IF ONE SPECIES IS NOT AVAILABLE, INCREASE ALL OTHERS PROPORTIONATELY Mix must include a minimum of 4 species, including one forb species.

No less than 9.0 pounds pls per acre shall be applied

APPROVED: <u>/s/ Douglas J. Burger</u> District Manager, Pecos District





# **Cheri Rogers**

From: Saved by Windows Internet Explorer 7

Sent: Wednesday, June 03, 2009 3:13 PM

Subject: MyTopo Map Print

