NEW MEXICO OIL CONSERVATION COMMISSION One-point Back Pressure Test for Gas Wells (Deliverability) RECEIVE Porm C-122-C 4-1-54 Formation Permsylvenian County Eddy p 29 100

Initial 📕	Annual	Special	Date of test	- Sebcamper 14' That
Company Mallard	Petroleum, Inc.	Lease Meyer-Hol	t	Will office later.
Unit Sec.	28 Twp 18-8	Rge. 26-E Furch	aser Undecided.	Will stylle later.
Casing 4 1/2" Wt.	11.64 I.D. 4.000	Set at 9,284	Perf. 9,057'	To 9,189'
Tubing 2 3/8" Wt.	4.74 I.D. 1.995	Set at 9,115"	Ferf	To
Gas Pay: From 9.	057' To 9,189'	L 9,115 x G	.641 = GL 5	Bar.Press. 13.2
Producing Thru: (CasingTubi	ng X Type Well	· Single	
			gle- Bradenhead-(G.G. or G.O. Dual
			0	

Pool _

				FLOW D	ATA					· · · .
Sta:	rted Taken		Duration	Type	Line	Orfice	Static	Differ-	Flow	
Date	time	Date	time	Hours	Taps	Size	Size	Press.	ential	Temp.
9-13-61	1:30 AM	9-14-61	1:30 AM	24	71ange	4"	2 3/4"	715	13	680
	PM		PM							

FLOW CALCULATIONS									
Static	Differ-	Meter	24-Hour	Gravity	Temp.	Compress-	Rate of Flow		
Pressure	ential	Extension	Coeff-	Factor	Factor	ability	MCF/Da. @ 15.025	psia	
p_{f}	h _w	Vpf hw	icient	Fg	Ft	Fpv	Q		
728.2	13	97.3	53.05	. 9918	. 9933	1.065	5414		

			FLOW DATA					
Shu	t-in	Press	Taken	Duration		l Pressure		Pressure
Date	Time	Date	Time	Hours	(^P c) I	osia	(^{P}w) and $(^{P}t$)psia
					Tubing	Casing	Tubing	Casing
	AM		AM				P _t = 2012.2	
9-9-61	1:00 PM	9-12-61	1:00 PM	72	2877.2	Packer	P _w = 2237	Packer
				•	•••••••••••••••••••••			

FRICTION CALCULATIONS(if necessary)		SUMMARY			
$\frac{Pv^2 = Pt^2 + (FeQ)^2(1-e^{-6}) = (2012.2)^2 + 9.936 (5414) (.331)}{Pv^2 = 5006}$	P.	= 2877.2	psia		
	Q	=	MCF/Da.		
DELIVERABILITY CALCULATIONS	P	= 2237	psia		
P _w 2237 P _c 2877.2 P _w + P _c 0.77749	P	= 2301.2	psia		
$1 - \frac{P_{w}}{P_{c}} - \frac{22251}{.36 + M} = \frac{1 + \frac{P_{w}}{P_{c}}}{1 - \frac{1.77749}{P_{c}}} \left(1 - \frac{P_{w}}{P_{c}}\right) \left(1 + \frac{P_{w}}{P_{c}}\right) = M - \frac{0.39551}{0.77622}$	ם	= 4994	_MCF/Da.		
.36 + M .90101 Log 9.95472-10 x (n) 0.77622	······································	= 9.96486-	10+ +		
COMPANY Mellard Petroloum, Inc.	Log Q	3,7336	9		
ADDRESS 304 Gulf Building, Midland, Taxas AGENT and TITLE R. W. Kesner, Petroleum Engineer		= 13.6984			
WITNESSED	Antilog	= 4994	** D		

This form is to be used for reporting deliverability tests in the designated Dry Gas Pools of Lea County as ordered by New Mexico Oil Conservation Commission Directive dated March 15, 1954, which directly was provided for by Orders R-365-A through R-376-A. For details regarding this test please refer to the above mentioned Directive.

NOMENCLATURE

- Q = Actual flow at end of flow period at W. H. working pressure (P.). MCF/da. @ 15.025 psia and 60° F.
- $P_c = 72$ hour wellhead shut-in casing (or tubing) pressure whichever is greater, psia
- P_d = Deliverability pressure; 80 % of 72 hour individual wellhead shutin pressure (P_c). psia
- Pw = Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt = Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing). psia
- D = Deliverability at Deliverability pressure (P_d) MCF/da. @ 15.025 psia and 60° F.
- Pf = Static meter pressure, psia.
- $h_w = Differential meter pressure, inches water.$
- Fg = Gravity correction factor.

 F_t = Flowing temperature correction factor.

F _ Supercompressability factor.

n = Slope of back pressure curve.

DELIVERABILITY FORMULA

$$D = Q \qquad \left[\frac{-36}{1 - \frac{P_w}{P_c} \left(1 + \frac{P_w}{P_c} \right)} \right]^n$$

Note: If P_w cannot be taken because of manner of completion or condition of well, then P_w must be calculated by adding the pressure drop due to friction within the flow string to P_{\pm} .