

CLOSURE REPORT

TEXAS - NEW MEXICO PIPE LINE COMPANY MONUMENT SITE 13 LEA COUNTY, NEW MEXICO

5309 Wurzbach, Suite 100 San Antonio, Texas 78238 (210) 680-3767 (210) 680-3763 FAX

CLOSURE REPORT

TEXAS - NEW MEXICO PIPE LINE COMPANY MONUMENT SITE 13 LEA COUNTY, NEW MEXICO

PREPARED FOR:

TEXAS - NEW MEXICO PIPE LINE COMPANY P. O. Box 1030 Jal, New Mexico 88252

Mr. Tony Savoie

PREPARED BY:

KEI

í Je

Øaryl Stacey Project Manager

Theresa Nix Project Manager

Pat Bullinger, P.E.

KEI Job No. 610057-2-13

July 24, 1998

PURPOSE AND SCOPE	1
PREVIOUS INVESTIGATION	1
CLOSURE ACTIVITIES CLOSURE STANDARDS EXCAVATION, TREATMENT, AND BACKFILL	2
CLOSURE SUMMARY	3
FIGURES FIG. 1 - SITE LOCATION MAP FIG. 2 - GROUND WATER CONTOURS/CONCENTRATION MAP - NOVEMBER	₹ 1997
TABLESGENERAL NOTESTABLE I- SUMMARY OF SOIL RESULTS - BTEX AND TPHTABLE II- SUMMARY OF GROUND WATER RESULTS - BTEXTABLE III- SUMMARY OF GROUND WATER RESULTS - METALSTABLE IV- SUMMARY OF GROUND WATER RESULTS - MISCELLANEOUS	
APPENDICES APPENDIX A - SOIL LABORATORY REPORTS CHAIN-OF-CUSTODY DOCUMENTATION APPENDIX B - GROUND WATER LABORATORY REPORTS	

- CHAIN-OF-CUSTODY DOCUMENTATION
- APPENDIX C DISPOSAL DOCUMENTATION
- APPENDIX D QA/QC PROCEDURES

PURPOSE AND SCOPE

The objective of the site activities was to obtain closure based on New Mexico Oil Conservation Division (OCD) regulations. The following activities were performed to achieve this objective:

- determination of closure standards
- removal of impacted soil
- characterization of removed impacted soil
- confirmation sampling in the excavated area
- transportation and off-site landfarming of impacted soil
- backfilling with clean soil in the excavated area

PREVIOUS INVESTIGATION

The Texas - New Mexico Pipe Line Company (TNMPL) alleged release site 13 is located in <u>Section 5</u>, <u>Township 20 South</u>, <u>Range 37 East</u> as shown on FIG. 1. A subsurface investigation was conducted at the site in general accordance with the work plan submitted with the Phase I - Preliminary Site Characterization Report dated February 28, 1997. The results of this investigation are summarized in the Comprehensive Assessment Report dated August 20, 1997. The following activities were performed as part of the subsurface investigation:

- sensitive receptor survey, migration pathway analysis, and registered water well search
- installation of 5 soil borings on March 7, 1997
- collection of soil samples from native soils during soil boring installation on March 7, 1997
- conversion of 3 soil borings into monitoring wells and collection of additional soil samples at lower depths on March 24 and 25, 1997
- collection of ground water samples from the monitoring wells for laboratory analyses on May 2, 1997

Soil samples collected during the advancement of soil borings B13-1 through B13-5 were submitted for determination of benzene, toluene, ethylbenzene, and xylene (BTEX) and total petroleum hydrocarbons (TPH) concentrations. Soil samples obtained from borings B13-1 through B13-5 indicated BTEX concentrations below method detection limits (ND). Laboratory results from the soil samples are summarized in TABLE I. Soil laboratory reports and chain-of-custody documentation are presented as APPENDIX A.

Ground water monitoring and sampling events were conducted at the site during the second, third, and fourth quarters of 1997. Ground water samples were submitted for determination of BTEX, polynuclear aromatic hydrocarbons (PAH), metals, total dissolved solids (TDS) and cations/anions. Analytical results for water samples did not indicate hydrocarbon impact. During the fourth quarter event conducted on November 1, 1997, the depth to ground water ranged from (31.38 to 32.02 feet below ground surface). The calculated gradient was approximately 0.003 ft/ft towards the southwest. Ground water

contours are presented on FIG. 2. Ground water results are summarized in TABLES II through IV. Ground water analytical reports and chain-of-custody documentation are presented in APPENDIX B. Location of borings and monitoring wells are shown on FIG. 2.

CLOSURE ACTIVITIES

CLOSURE STANDARDS

The New Mexico OCD Guidelines for Remediation of Leaks, Spills, and Releases contains the standard criteria for remediation activities. A ranking analysis for the site was performed to determine appropriate soil remediation levels. The ranking analysis is as follows:

Depth to Ground Water	Less Than 50 Feet	20 Points
Well Head Protection	Greater Than 1000 Feet to Water Source Greater Than 200 Feet to Private Water Source	20 Points
Surface Water Body	Greater Than 1000 Feet	0 Points
	Total Ranking Score	40 Points

Based on the total ranking score, the closure objectives for this site for concentrations of benzene, BTEX, and TPH are summarized below.

CONSTITUENT	CLOSURE CONCENTRATIONS (mg/kg)
BENZENE	10
BTEX	50
ТРН	100 + Background Concentration

EXCAVATION, TREATMENT, AND BACKFILL

An estimated <u>6,198 cubic yards</u> of impacted soil were removed from Site 13 and transported to an off-site landfarm in December 1997. TNMPL characterized the excavated soil by collecting 1 composite soil sample from the stockpile on December 5, 1997. The sample was submitted for determination of TPH concentration. Laboratory results indicated a TPH concentration of 1,149 mg/kg.

Composite soil samples were collected by Allstate Services Environmental of Midland, Texas on December 12, 1997, from the excavation bottom and sidewall and submitted for determination of BTEX and TPH concentrations. Laboratory results of the composite soil samples indicated the following:

SAMPLE LOCATION	TPH (mg/kg)	BENZENE (mg/kg)	BTEX (mg/kg)
Final Soil Sidewall (mg/kg)	ND	ND	0.744
Soil Bottom (mg/kg)	ND	ND	0.134

Soil laboratory results are summarized in Table I and confirmation soil results are graphically presented on FIG. 3. Soil analytical reports and chain-of-custody documentation are presented in APPENDIX A.

A sample of groundwater, which had seeped into the excavation, was collected by Allstate Services Environmental on December 12, 1997, and submitted for determination of BTEX concentration. The ground water results are presented on Table II. The BTEX concentration was below New Mexico Environmental Department (NMED) Drinking Water Standards. The NMED Drinking Water Standards for BTEX are as follows:

CONSTITUENT	DRINKING WATER STANDARD (mg/l)
BENZENE	0.01
TOLUENE	0.75
ETHYLBENZENE	0.75
XYLENES	0.62

Authorization to transport and landfarm the impacted soils was obtained from OCD The impacted soils were transported to C&C Landfarm Incorporated located approximately 2 miles south of Monument, New Mexico. Disposal documentation is presented in APPENDIX C.

Approximately 4,998 cubic yards of clean fill material was purchased from Mr. Cooper and placed in the excavation. The remaining non-impacted stockpiled soils from the excavation activities were used to complete the backfilling operations.

CLOSURE SUMMARY

The following can be summarized from field and laboratory data:

- Approximately 6,200 cubic yards of impacted soil was excavated, stockpiled, and landfarmed off-site.
- Confirmation soil samples at the site indicated TPH, benzene, and BTEX concentrations below closure standards.
- Groundwater samples obtained through 3 quarters of monitoring at the site indicated no hydrocarbon impact. BTEX concentrations from these samples and a water sample taken from the bottom of the excavation were below NMED Drinking Water Standards.

From the details presented above, we request the site be closed under New Mexico Oil Conservation Division (OCD) regulations.

MONUMENT SITE NO. 13

GENERAL NOTES

ND - Indicates constituent was not detected above the method detection or laboratory reporting limit.

Method detection/reporting limits:

Soil:	BTEX TPH	-	0.001 to 0.100 mg/kg 10 mg/kg
Water:	BTEX TPH Metals PAH	- - -	0.001 to 0.006 mg/l 1 mg/l 0.0010 to 0.25 mg/l 0.002 mg/l

Laboratory test methods:

BTEX	-	EPA Method SW846-8020, 5030
TPH	-	EPA Method 418.1
Metals	-	EPA Method 6010
PAH	-	EPA Method 8100
Bicarbonate	-	SM4500CO2D
Carbonate	-	SM4500CO2D
TDS	-	EPA Method 160.1
Anions	-	EPA Method 300.0
TIC	-	Modified Method 415.1

TABLE I

SUMMARY OF SOIL RESULTS - BTEX AND TPH TEXAS - NEW MEXICO PIPE LINE COMPANY MONUMENT SITE NO. 13 LEA COUNTY, NEW MEXICO

SAMPLE	SAMPLE DATE	BENZENE (mg/kg)	TOLUENE (mg/kg)	ETHYL- BENZENE (mg/kg)	XYLENES (mg/kg)	BTEX (mg/kg)	TPH (mg/kg)
Boring Installation							
B13-1 at 1-2 feet	03/07/97	ND	ND	ND	ND	ND	2,340
B13-1 at 15-16 feet	03/07/97	ND	ND	ND	ND	ND	ND
B13-2 at 1-2 feet	03/07/97	ND	ND	ND	ND	ND	ND
B13-2 at 9-10 feet	03/07/97	ND	ND	ND	ND	ND	ND
B13-2 at 32-33 feet	03/24/97	ND	ND	ND	ND	ND	33.5
B13-3 at 1-2 feet	03/07/97	ND	ND	ND	ND	ND	ND
B13-3 at 14-16 feet	03/07/97	ND	ND	ND	ND	ND	ND
B13-3 at 32-33 feet	03/25/97	ND	ND	ND	ND	ND	19.0
B13-4 at 1-2 feet	03/07/97	ND	ND	ND	ND	ND	ND
B13-4 at 11-12 feet	03/07/97	ND	ND	ND	ND	ND	ND
B13-4 at 31-32 feet	03/24/97	ND	ND	ND	ND	ND	109
B13-5 at 1-2 feet	03/07/97	ND	ND	ND	ND	ND	ND
B13-5 at 12-13 feet	03/07/97	ND	ND	ND	ND	ND	ND
B13-5 at 32-33 feet	03/25/97	ND	ND	ND	ND	ND	1,370
Soil Characterization Samplin		· · · · · · · · · · · · · · · · · · ·		•••••		.	
Stockpile	12/05/97						1,149
Confirmation Sampling							
Final Soil Sidewall	12/12/97	ND	0.169	0.116	0.459	0.744	ND
Soil Bottom	12/12/97	ND	ND	ND	0.134	0.134	ND

TABLE II

SUMMARY OF GROUND WATER RESULTS - BTEX TEXAS - NEW MEXICO PIPE LINE COMPANY MONUMENT SITE NO. 13 LEA COUNTY, NEW MEXICO GROUND

MONITORING WELL NO.	DATE SAMPLED	DEPTH TO WATER (feet)	WATER ELEVATION (feet)	BENZENE (mg/l)	TOLUENE (mg/l)	ETHYL- BENZENE (mg/l)	XYLENES (mg/l)	BTEX (mg/l)
MW13-1	04/30/98	30.60	3526.31		+			
MW13-1	05/02/97			ND	ND	ND	ND	ND
MW13-1	08/15/97			ND	ND	ND	ND	ND
MW13-1	11/01/97			ND	ND	ND	ND	ND
MW13-2	04/30/98	31.04	3526.04					
MW13-2	05/02/97			ND	ND	ND	ND	ND
MW13-2	08/15/97			ND	ND	ND	ND	ND
MW13-2	11/01/97			ND	ND	ND	ND	ND
MW13-3	04/30/98	31.46	3525.84					
MW13-3	05/02/97			ND	ND	ND	ND	ND
MW13-3	08/15/97			ND	ND	ND	ND	ND
MW13-3	11/01/97			ND	ND	ND	ND	ND
Excavation Bottom	12/12/97			ND	ND	ND	0.006	0.006

TABLE III

SUMMARY OF GROUND WATER RESULTS - METALS TEXAS - NEW MEXICO PIPE LINE COMPANY MONUMENT SITE NO. 13 LEA COUNTY, NEW MEXICO

SAMPLE LOCATION	MW13-1	MW13-2	MW13-3				
METALS CONSTITUENT	CONC	CONCENTRATION (mg/l)					
Aluminum	29.0	12.3	76.9				
Barium	0.85	0.22	1.94				
Calcium	447	372	1,120				
Chromium	ND	ND	0.06				
Iron	18.7	7.67	43.6				
Magnesium	56.3	53.3	75.6				
Manganese	0.60	0.54	1.39				
Potassium	10.4	7.65	15.5				
Sodium	142	139	122				
Tin	7.50	2.89	17.8				
Vanadium	0.12	ND	0.25				
Boron	0.28	0.26	0.26				
Silicon	19.3	26.3	15.4				
Strontium	2.24	2.28	2.88				

NOTES:

- 1. Ground water samples were collected on 05/02/97.
- 2. Metals constituents not listed above were below laboratory detection/reporting limits.

TABLE IV

SUMMARY OF GROUND WATER RESULTS - MISCELLANEOUS TEXAS - NEW MEXICO PIPE LINE COMPANY MONUMENT SITE NO. 13 LEA COUNTY, NEW MEXICO

MONITORING WELL NO.	BICARBONATE (mg/l)	CARBONATE (mg/l)	TDS (mg/l)	SULFATE (mg/l)	CHLORIDE (mg/l)	TIC (mg/l)
MW13-1	358	1.8	1,080	125	264	80.0
MW13-2	360	3.7	1,100	127	281	56.6
MW13-3	325	2.9	1,180	145	305	73.3

NOTE:

1. Ground water samples were collected on 05/02/97.

Analysis Requested Field ID: Depth B13-1 1-2' B13-1 15-16' B13-1 1-2' B13-2 9-10' B13-3 1-2' B13-4 14-16' B13-4 1-2' B13-4 11-12' B13-4 11-12'<				K.E.I. (Consultan	ls, Inc.					
Project Location: Site 13 XERCO contact : Carlos Castro/Edward Yonemoto Analysis Requested Lab /D: Field ID: Depth: 170587-001 1-2' 170587-003 110587-004 170587-006 170587-005 170587-007 170587-007 170587-007 1873 170587-007 1873 170587-007 1873 <th>Project ID: 610057-02-13</th> <th></th> <th></th> <th>Project Nan</th> <th>ne: TNMPL N</th> <th>onument</th> <th>Date Re</th> <th>eceived in La</th> <th>ab : Mar 11, 1</th> <th>997 10:30 by</th> <th>RT</th>	Project ID: 610057-02-13			Project Nan	ne: TNMPL N	onument	Date Re	eceived in La	ab : Mar 11, 1	997 10:30 by	RT
Analysis Requested Lab ID: Field ID: Depth: 170587-001 I 170587-001 170587-002 I 170587-003 170587-004 I 170587-006 170587-006 I 170587-007 170587-008 I 170587-008 170587-008 I 170587-007 170587-007 </th <th>Project Manager: Ann Baker</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Date</th> <th>Report Fax</th> <th>(ed: Mar 14, 1</th> <th>997</th> <th></th>	Project Manager: Ann Baker						Date	Report Fax	(ed: Mar 14, 1	997	
Analysis Requested Field ID: Depth: B13-1 B13-1 B13-2 B13-2 B13-3 B13-3 B13-4 B13-4 <t< th=""><th>Project Location: Site 13</th><th></th><th></th><th></th><th></th><th></th><th></th><th>XENCO conta</th><th>act: Carlos Ca</th><th>astro/Edward</th><th>Yonemoto</th></t<>	Project Location: Site 13							XENCO conta	act: Carlos Ca	astro/Edward	Yonemoto
Depth: 1-2' 15-16' 1-2' 9-10' 1-2' 14-16' 1-2' 11-12' 1-2' 11-12' 1-2' 11-12' 1-2' 11-12' 1-2' 11-12' 11-12' 1-2' 11-12' 11-12' 1-2' 11-12' 11-12' 1-2' 11-12' 111-12' 111-12' 111		Lab ID:	170587-001	170587-002	170587-003	170587-004	170587-005	170587-006	170587-007	170587-008	170587-009
BTEX by EPA 8020 Mar 11, 1997 Mar 12, 1	Analysis Requested	Field ID:	B13-1	B13-1	B13-2	B13-2	B13-3	B13-3	B13-4	B13-4	B13-5
BTEX by EPA 8020 Mar 11, 1997 Mar 12, 1997 Mar 12, 1997 Mar 12, 1997 Mar 12, 1997 Mar 13, 1997 Mar 12, 1		Depth:	1-2'	15-16'	1-2'	9-10'	1-2'	14-16'	1-2'	11-12'	1-2'
Mar 11, 1997 Mar 12, 1997<					Date Analy	vzed - Ana	lytical Results	s ppn	n (mg/L - mg	/Kg)	
Benzene < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 <t< td=""><td>BIER BY EFA 8020</td><td></td><td>Mar 11, 1997</td><td>Mar 12, 1997</td><td>Mar 12, 1997</td><td>Mar 12, 1997</td><td>Mar 12, 1997</td><td>Mar 13, 1997</td><td>Mar 12, 1997</td><td>Mar 12, 1997</td><td>Mar 12, 1997</td></t<>	BIER BY EFA 8020		Mar 11, 1997	Mar 12, 1997	Mar 12, 1997	Mar 12, 1997	Mar 12, 1997	Mar 13, 1997	Mar 12, 1997	Mar 12, 1997	Mar 12, 1997
Ethylbenzene < 0.050	Benzene			< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.05
m,p-Xylenes < 0.100	Toluene		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
o-Xylene < 0.050	Ethylbenzene		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.05
Total BTEX < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 < 0.300 <td>m,p-Xylenes</td> <td></td> <td>< 0.100</td> <td>< 0.10</td>	m,p-Xylenes		< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.10
Date Analyzed - Analytical Results ppm (mg/L - mg/Kg) Total Petroleum Hydrocarbons by EPA 418.1 Mar 13, 1997 Mar 13, 19	o-Xylene		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.05
Total Petroleum Hydrocarbons by EPA 418.1 Mar 13, 1997 Mar 13, 1997 </td <td>Total BTEX</td> <td></td> <td>< 0.300</td>	Total BTEX		< 0.300	< 0.300	< 0.300	< 0.300	< 0.300	< 0.300	< 0.300	< 0.300	< 0.300
Mar 13, 1997	T-4-2 D-41			<u></u> **** · · · <u></u> *	Date Analy	/zed - Ana	lytical Result	s ppr	n (mg/L - mg	/Kg)	. <u></u>
	Total Petroleum Hydrocarbons by	CPA 418.1	Mar 13, 1997	Mar 13, 1997	Mar 13, 1997	Mar 13, 1997	Mar 13, 1997	Mar 13, 1997	Mar 13, 1997	Mar 13, 1997	Mar 13, 1997
	Total Petroleum Hydrocarbons			< 10.0	< 10.0			< 10.0	1		< 10.0
			1	1	1	1.	1	l	Ι, .	I	· · · · · · · · · · · · · · · · · · ·
										1	<u>``</u>
									- A		le la
		•					itants, Inc		Edwa		
This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories.	XENCO Laboratories, however, assumes no	responsibility an	d makes no warra	anty to the end us	e of the data here	by presented.				QA/QC Mana	ager

CERTIFICATE OF ANALYSIS SUMMARY 1-70587

			K.E.I.	Consulta	nts, Inc.					
Project ID: 610057-02-13			Project Nan	ne: TNMPL	Monument	Date I	Received in	Lab : Mar 11,	1997 10:30 by	RT
Project Manager: Ann Baker						Dat	te Report Fa	axed: Mar 14,	1997	
Project Location: Site 13							XENCO con	tact : Carlos C	astro/Edward	Yonemoto
	Lab ID:	170587-010								
Analysis Requested	Field ID:	B13-5								
	Depth:	12-13'								
BTEX by EPA 8020				Date Ana	lyzed - An	alytical Resu	its pr	om (mg/L - mg	J/Kg)	
		Mar 12, 1997						1		n nen i s
Benzene		< 0.050								
Toluene		< 0.050								
Ethylbenzene		< 0.050								
m,p-Xylenes		< 0.100								. .
o-Xylene		< 0.050								6 mar 16 m
Total BTEX		< 0.300								
		1	I	Pata Arra	.I	1		· · · · · · · · · · · · · · · · · · ·	.l	· · · · · · · · · · · · · · · · · · ·
Total Petroleum Hydrocarbons by I	EPA 418.1			Date Ana	llyzed - An	alytical Resu	its pr	om (mg/L - mg	J/Kg)	
		Mar 13, 1997								
Total Petroleum Hydrocarbons		< 10.0								
									- a -	
							ı		the second se	for-
This report summary, and the entire report it r The interpretations and results expressed thro	-					ultants, Inc		Edwa	re H. Tonem	oto, Ph.D.
XENCO Laboratories, however, assumes no re		• •						C	QA/QC Mana	

SW- 846 5030/8020 BTEX

Date Validated: Mar 13, 1997 14:45

Analyst: IF

Date Analyzed: Mar 11, 1997 13:51

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			BLANK SPIR	E ANALYS	SIS	de la c	•
	(A)	[8]	[C]	[D]	(E)	[F]	[G]
	Blank	Blank Spike	Blank	Method	QC	(F) LIMITS	
Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
			Amount	Limit	Recovery	Range	
	ppm	ppm	ppm	ppm	%	%	
Benzene	< 0.0010	0.0857	0.1000	0.0010	85.7	65-135	
Toluene	< 0.0010	0.0922	0.1000	0.0010	92.2	65-135	
Ethylbenzene	< 0.0010	0.0857	0.1000	0.0010	85.7	65-135	
m,p-Xylenes	< 0.0020	0.1840	0.2000	0.0020	92.0	65-135	
o-Xylene	< 0.0010	0.0917	0.1000	0.0010	91.7	65-135	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Edward H. Jonemoto, Ph.D. AVQC Manager

SW- 846 5030/8020 BTEX

Date Validated: Mar 13, 1997 14:45

Date Analyzed: Mar 11, 1997 20:30

Analyst: IF

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

•.			MAT	RIX SPIKE	MATRIX	SPIKE DUP	LICATE AND	RECOVERY			
Q.C. Sample ID 170585- 002	[A] Sample Result	[B] Matrix Spike Result	[C] Matrix Spike Duplicate	[D] Matrix Spike	(E) Method Detection	Matrix Limit Relative	[F] QC Spike Relative	[G] QC Matrix Spike	[H] QC M.S.D.	[l] Matrix Spike Recovery	[J] Qualifier
Parameter	ppm	ppm	Result ppm	Amount ppm	Limit ppm	Difference %	Difference %	Recovery %	Recovery %	Range %	
Benzene	< 0.050	1.380	1.430	2.000	0.050	25.0	3.6	69.0	71.5	65-135	i
Toluene	< 0.050	1.925	1.805	2.000	0.050	25.0	6.4	96.3	90.3	65-135	5
Ethylbenzene	< 0.050	1.610	1.605	2.000	0.050	25.0	0.3	80.5	80.3	65-135	5
m,p-Xylenes	< 0.100	3.705	3.580	4.000	0.100	25.0	3.4	92.6	89.5	65-135	5
o-Xylene	< 0.050	1.885	1.870	2.000	0.050	25.0	0.8	94.3	93.5	65-135	j

Spike Relative Difference [F] = 200*(B-C)/(B+C) Matrix Spike Recovery [G] = 100*(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Edward H. Yonemoto, Ph.D. QA/QC Manager

SW- 846 5030/8020 BTEX

Date Validated: Mar 13, 1997 15:30

Date Analyzed: Mar 12, 1997 14:36

Analyst: IF

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			MAT	RIX SPIKE	MATRIX S	SPIKE DUP	LICATE AND	RECOVERY			
Q.C. Sample ID 170587- 002	(A) Sample Result	[B] Matrix Spike Result	[C] Matrix Spike Duplicate	[D] Matrix Spike	[E] Method Detection	Matrix Limit Relative	[F] QC Spike Relative	[G] QC Matrix Spike	[H] QC M.S.D.	[I] Matrix Spike Recovery	[J] Qualifie
Parameter	ppm	ppm	Result ppm	Amount ppm	Limit ppm	Difference %	Difference %	Recovery %	Recovery %	Range %	
Benzene	< 0.050	2.025	1.895	2.000	0.050	25.0	6.6	101.3	94.8	65-135	5
Toluene	< 0.050	2.180	2.110	2.000	0.050	25.0	3.3	109.0	105.5	65-13	5
Ethylbenzene	< 0.050	1.925	1.880	2.000	0.050	25.0	2.4	96.3	94.0	65-13	5
m,p-Xylenes	< 0.100	4.330	4.210	4.000	0.100	25.0	2.8	108.3	105.3	65-13	5
o-Xylene	< 0.050	2.130	2.085	2.000	0.050	25.0	2.1	106.5	104.3	65-13	5

Spike Relative Difference [F] = 200*(B-C)/(B+C) Matrix Spike Recovery [G] = 100*(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Edward H. Venemoto, Ph.D. QA/QC Manager

SW- 846 5030/8020 BTEX

Date Validated: Mar 13, 1997 15:30

Analyst: IF

Date Analyzed: Mar 12, 1997 09:55

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			BLANK SPI				
···	[A]	(B) Disah Sajika	[C] Blank	[D]	(E)	(F)	[G]
Parameter	Blank Result	Blank Spike Result	Spike Amount	Method Detection Limit	QC Blank Spike Recovery	LIMITS Recovery Range	Qualifier
	ppm	ppm	ppm	ppm	%	%	
Benzene	< 0.0010	0.0808	0.1000	0.0010	80.8	65-135	
Toluene	< 0.0010	0.0866	0.1000	0.0010	86.6	65-135	
Ethylbenzene	< 0.0010	0.0806	0.1000	0.0010	80.6	65-135	
m,p-Xylenes	< 0.0020	0.1730	0.2000	0.0020	86.5	65-135	
o-Xylene	< 0.0010	0.0886	0.1000	0.0010	88.6	65-135	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

onemoto, Ph.D. Edward A/QC Manager

SW- 846 5030/8020 BTEX

Date Validated: Mar 13, 1997 16:25

Date Analyzed: Mar 13, 1997 10:27

Analyst: IF

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

•.			BLA	NK SPIKE /	BLANK S	PIKE DUPL	ICATE AND R	ECOVERY			
	[A]	[B]	[C]	[D]	[E]	Blank	(F)	[G]	[H]	[1]	[1]
	Blank	Blank Spike	Blank Spike	Blank	Method	Limit	· QC	QC	QC	Blank Spike	1
Parameter	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Blank Spike	B.\$.D.		Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
	ppm	ppm	ppm	ррт	ppm	%	%	%	%	%	
Benzene	< 0.0010	0.1000	0.0966	0.1000	0.0010	25.0	3.5	100.0	96.6	65-135	i
Toluene	< 0.0010	0.1110	0.1020	0.1000	0.0010	25.0	8.5	111.0	102.0	65-135	,
Ethylbenzene	< 0.0010	0.1070	0.1040	0.1000	0.0010	25.0	2.8	107.0	104.0	65-135	• •
m,p-Xylenes	< 0.0020	0.2110	0.2030	0.2000	0.0020	25.0	3.9	105.5	101.5	65-135	,
o-Xylene	< 0.0010	0.1110	0.0999	0.1000	0.0010	25.0	10.5	111.0	99.9	65-135	į

Spike Relative Difference [F] = 200°(B-C)/(B+C) Blank Spike Recovery [G] = 100°(B-A)/[D] B.S.D. = Blank Spike Duplicate B.S.D. Recovery [H] = 100°(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Edward H. Yonemoto, Ph. QA/QC Manager

Houston - Dallas - San Antonio

1

EPA 418.1 Total Petroleum Hydrocarbons

Date Validated: Mar 14, 1997 10:15

Analyst: CG

Date Analyzed: Mar 13, 1997 17:26

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

		MATRIX E	UPLICATI			
Q.C. Sample ID 170583- 001	[A] Sample Result	[B] Duplicate Result	[C] Method Detection	[D] QC Relative	[E] LIMITS Relative	(F) Qualifier
Parameter	ppm	ppm	Limit ppm	Difference %	Difference %	
Total Petroleum Hydrocarbons	< 7.50	< 7.50	7.50	N.C	30.0	

Relative Difference [D] = 200*(B-A)/(B+A) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Edward & Yonemoto, Ph.D. QA/QC Manager

Total Petroleum Hydrocarbons EPA 418.1

Date Validated: Mar 14, 1997 10:15

Analyst: CG

Date Analyzed: Mar 13, 1997 17:28

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			BLANK SPI	KE ANALYS	SIS		
	[A]	(B)	[C]	[D]	(E)	(F)	[G]
	Blank	Blank Spike	Blank	Method	QC	LIMITS	
Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
			Amount	Limit	Recovery	Range	
	ppm	ppm	ppm	ppm	%	%	
Total Petroleum Hydrocarbons	< 7.50	201	202	7.50	99.5	65-135	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Total Petroleum Hydrocarbons EPA 418.1

Date Validated: Mar 14, 1997 10:10 Date Analyzed: Mar 13, 1997 17:56 Analyst: CG

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			UPLICATI	EANALYS	SIS	
Q.C. Sample ID	[A] Sample	[B] Duplicate	[C] Method	[D] QC	[E] LIMITS	[F]
170587-005	Result	Result	Detection	Relative	Relative	Qualifier
Parameter	ppm	ppm	Limit ppm	Difference %	Difference %	
Total Petroleum Hydrocarbons	< 7.50	< 7.50	7.50	N.C	30.0	

Relative Difference [D] = 200*(B-A)/(B+A) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Edward H. Lonemoto, Ph.D.

Total Petroleum Hydrocarbons EPA 418.1

Date Validated: Mar 14, 1997 10:10

Analyst: CG

Date Analyzed: Mar 13, 1997 17:58

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

		· · · · · · · · · · · · · · · · · · ·	BLANK SPI	(E ANALYS	SIS						
· · · · · · · · · · · · · · · · · · ·	[A]	[B]	[C]	[D]	(E)	(F)	[G]				
	Blank	Blank Spike	Blank	Method	QC	LIMITS					
Parameter	Result	Result	Spike	Detection	Blank Spike						
			Amount	Limit	Recovery	Range					
	ppm	ppm	ppm	ppm	%	%					
Total Petroleum Hydrocarbons	< 7.50	199	202	7.50	98.5	65-135					

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Edward R Schemoto, Ph.D. QAVQC Manager

ANALYTICAL CHAIN OF CUSTODY REPORT CHRONOLOGY OF SAMPLES

K.E.I. Consultants, Inc.

Project Name: TNMPL Monument

XENCO COC#: 1-70587 Date Received in Lab: Mar 11, 1997 10:30 by RT **XENCO contact :** Carlos Castro/Edward Yonemoto

							Date	e and Time	
Field ID	Lab. ID	Method Name	Method ID	Units	Turn Around	Sample Collected	Addition Requested	Extraction	Analysis
B13-1(1-2')	170587-001	BTEX	SW-846	ppm	Standard	Mar 7, 1997 08:30	<u> Derver se van die van </u>	Mar 11, 1997 by IF	Mar 11, 1997 21:40 by IF
2		трн	EPA 418.1	ppm	Standard	Mar 7, 1997 08:30		Mar 13, 1997 by OG	Mar 13, 1997 17:18 by CG
B13-1(15-16')	170587-002	BTEX	SW-846	ppm	Standard	Mar 7, 1997 09:00		Mar 12, 1997 by IF	Mar 12, 1997 10:23 by IF
1		трн	EPA 418.1	ppm	Standard	Mar 7, 1997 09:00		Mar 13, 1997 by OG	Mar 13, 1997 17:20 by CG
B13-2(1-2')	170587-003	BTEX	SW-846	ppm	Standard	Mar 7, 1997 09:10		Mar 12, 1997 by IF	Mar 12, 1997 10:41 by IF
		трн	EPA 418.1	ppm	Standard	Mar 7, 1997 09:10		Mar 13, 1997 by OG	Mar 13, 1997 17:22 by CG
B13-2(9-10')	170587-004	втех	SW-846	ppm	Standard	Mar 7, 1997 09:20		Mar 12, 1997 by IF	Mar 12, 1997 12:52 by IF
		трн	EPA 418.1	ppm	Standard	Mar 7, 1997 09:20		Mar 13, 1997 by OG	Mar 13, 1997 17:24 by CG
B13-3(1-2')	170587-005	BTEX	SW-846	ppm	Standard	Mar 7, 1997 09:40		Mar 12, 1997 by IF	Mar 12, 1997 13:09 by IF
		трн	EPA 418.1	ppm	Standard	Mar 7, 1997 09:40		Mar 13, 1997 by OG	Mar 13, 1997 17:36 by CG
B13-3(14-16')	170587-006	BTEX	SW-846	ppm	Standard	Mar 7, 1997 10:05	· · ·	Mar 13, 1997 by IF	Mar 13, 1997 11:23 by IF
		трн	EPA 418.1	ppm	Standard	Mar 7, 1997 10:05		Mar 13, 1997 by OG	Mar 13, 1997 17:38 by CG
B13-4(1-2')	170587-007	BTEX	SW-846	ppm	Standard	Mar 7, 1997 10:15		Mar 12, 1997 by IF	Mar 12, 1997 13:43 by IF
		трн	EPA 418.1	ppm	Standard	Mar 7, 1997 10:15		Mar 13, 1997 by OG	Mar 13, 1997 17:40 by CG
B13-4(11-12')	170587-008	BTEX	SW-846	ppm	Standard	Mar 7, 1997 10:25		Mar 12, 1997 by IF	Mar 12, 1997 15:33 by IF
		трн	EPA 418.1	ppm	Standard	Mar 7, 1997 10:25	· · ·	Mar 13, 1997 by OG	Mar 13, 1997 17:42 by CG
B13-5(1-2')	170587-009	BTEX	SW-846	ppm	Standard	Mar 7, 1997 10:30		Mar 12, 1997 by IF	Mar 12, 1997 15:50 by IF
		трн	EPA 418.1	ppm	Standard	Mar 7, 1997 10:30		Mar 13, 1997 by OG	Mar 13, 1997 17:44 by CG
B13-5(12-13')	170587-010	BTEX	SW-846	ppm	Standard	Mar 7, 1997 10:45		Mar 12, 1997 by IF	Mar 12, 1997 16:19 by IF
		трн	EPA 418.1	ppm	Standard	Mar 7, 1997 10:45		Mar 13, 1997 by OG	Mar 13, 1997 17:46 by CG

Project ID:610057-02-13Project Manager:Ann BakerProject Location:Site 13

1

NER. Kabora		(71	81 Mead 3) 589-(n Suite	e L I			xas 7708 589-069			CHAIN ND ANA											Pag Lab		f	of *! 71	2587	■ '-H
Contractor K(. <u></u>)) 68			N	ိုင	io. coo arrier: irbill)		is ship	ment	2	2	Con	trac c	tor Juote	∞	>#	000	-]
5309 U Project Name	TNMA	'L M				Ar .		Protoc	L Director いし HA	NTRE	Π			-		77	7	7	$\left[\right]$	//	. /	7	/	••• 	1	(]	LA	
Project Location Semplar Signature		- 17-	1					An Toject	1005		-0	NZ-13			6000	8/		' /				/ /			+ A ⇒ 2	SAP	IB ONLY	
Field ID	SAMPLE Date	Time	· · · · · ·		C O M P	G (R A B S	Contain Ize Ty	er	other	Waste C PIT No.:	il	Ker Unknow Tank No: Description	n R S To	a1 /	BTEX (5030805)					//			Please LL			itenderd		
B13-1 1-2'		0 ₈₃₀	1-2'		++	XЧ	1,8 (B13-	۱,	1-2'	2		X									How			1	
B13 - 1, 15-16'		100	15 - 16'	<u>×</u>		X			 			15-16'													\rightarrow		3	4
B13-2 1-2' B13-2		0910 00	6-	╢_	$\left\{ - \right\}$	$\left \right $	$\left\{ \cdot \right\}$		[-	· · · ·		1-2'		_	$\parallel \downarrow$	$\left \right $			_	<u> </u>		_	_				4	4
9-10' B13-3		09 ₂₀ 0940	`10`		$\left\{ \cdot \right\}$		++	╢	}}	B13	•		-	╀	╢				_			_			-+		5	$\frac{1}{2}$
1-2' B13-3		190 \$005	1- <u>2</u> , 14-	/	+	╢	┼┼	╟		B13-			-	+	$\left\{ \left\ \right\ \right\}$			+						<u> </u>	-		6	-
14-16' B13-4		1015	1_		┼╌┼	┝┼╴	╂╂	┝┼╴				<u>14-16'</u> 1-2 '		+-	H		+	+	+				_			}	7	-
1-2' B13-4 11-12'		· · · · · · · · · · · · · · · · · · ·	2' - 2'	_	┼╌╫		$\left\{ - \right\}$					11-12'	-++						+								8	-
B13-5 1-2			<u>برا</u>		╏	┠┼╴	$\uparrow \uparrow$	\dagger				1-2'			╞┼╂												9	1
B13-5 12-13	1	1645	12- 13' v	1				J				12-131		, , ,	LI I										J		10	
Rollinguistiget	pr (514	ierusten:		DV 3/4	ATE 7/9-7		тмн 730		Roothed		A	gnature) SSS SSS SS		ити 10		ты 07	********	Ren	arks 401	d	50)Z.	ρ	ens	oiz	, TP	944	
					•			Re	Celvind For I	Laboyatopy b	/	_1	3-	1/~	97	10	y 3 0		fe:	รบ 		<u> </u>						

Pink (Contractor), Yellow & White (Lad).

* Pre-scheduling is recommended

Precision Analytical Services

K.E.I. Consultants, Inc. Project Name: TNMPL Monument

Project ID: 610057-2-13 Project Manager: Ann Baker Project Location: Site 13

Date Received in Lab: Mar 28, 1997 09:40 by CC Date Report Faxed: Apr 2, 1997

XENCO contact: Carlos Castro/Edward Yonemoto

Analysis Requested	Lab ID: Field ID: Depth:	170730-001 B-13-2 32-33'	170730-002 B13-3 32-33'	170730-003 B13-4 31-32'	170730-004 B-13-5 32-33'		
BTEX Analyzed by EPA 8020		Da Mar 31, 1997	te Analyzed Mar 31, 1997	- Analytical Mar 31, 1997	Results P F Mar 31, 1997	om (mg/L - n	iy/rg)
Benzene		< 0.020	< 0.040	< 0.040	< 0.10		
Toluene		< 0.020	< 0.040	< 0.040	< 0.10		
Ethylbenzene	<u></u>	< 0.020	< 0.040	< 0.040	< 0.10		
m,p-Xylenes		< 0.040	< 0.080	< 0.080	< 0.20		
o-Xylene		< 0.020	< 0.040	< 0.040	< 0.10		
Total BTEX		< 0.120	< 0.240	< 0.240	< 0.60		
TPH Analyzed by EPA 418.1		Da	te Analyzed	- Analytical	Results pp	om (mg/L - n	ng/Kg)
		Mar 29, 1997	Mar 29, 1997	Mar 29, 1997	Mar 29, 1997		
Total Petroleum Hydrocarbons	,	33.5	19.0	109	1370		

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

SBA Award of Excellence 1994. Certified by AR, KS, OK & Accredited by A2LA

Houston - Dallas - San Antonio

Benzene

Toluene

Ethylbenzene

m,p-Xylenes

o-Xylene

SW- 846 5030/8020 BTEX

Blank Spike

Result

ppm

0.1060

0.1070

0.1080

0.2200

0.1070

[B]

See.

[A]

Blank

Result

ppm

< 0.0010

< 0.0010

< 0.0010

< 0.0020

< 0.0010

Date Validated: Apr 1, 1997 09:00

Analyst: CB

BLANK SPIKE ANALYSIS

[D]

Method

Detection

Limit

ppm

0.0010

0.0010

0.0010

0.0020

0.0010

[C]

Blank

Spike

Amount

ppm

0.1000

0.1000

0.1000

0.2000

0.1000

Date Analyzed: Mar 31, 1997 16:16

Parameter

QA/QC Manager: Edward H. Yonemoto, Ph.D.

Matrix: Solid

200 Se

[E]

QC

Blank Spike

Recovery

%

106.0

107.0

108.0

110.0

107.0

284 G.L. 1

[G]

Qualifier

(F)

LIMITS

Recovery

Range

%

65-135

65-135

65-135

65-135

65-135

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Edward Holonemoto, Ph.D. OA/QC Manager

SW- 846 5030/8020 BTEX

Date Validated: Apr 1, 1997 09:00

Analyst: CB Matrix: Solid

Date Analyzed: Mar 31, 1997 16:34

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			MAT			通知にはそう物も利益すい	LICATE AND	经复数运行计数 经自己利益			
Q.C. Sample ID	[A]	(B)	[C]	[D]	[E]	Matrix	(F)	[G]	(H)	[1]	ไป
170728- 001	Sample	Matrix Spike	Matrix Spike	Matrix	Method	Limit	QC	QC	QC	Matrix Spike]
	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Matrix Spike	M.S.D.	· ·	Qualifier
Parameter			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	· · .
	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	
Benzene	< 0.020	2.500	2.640	2.000	0.020	25.0	5.4	125.0	132.0	65-135	j
Toluene	< 0.020	2.440	2.600	2.000	0.020	25.0	6.3	122.0	130.0	65-135	
Ethylbenzene	< 0.020	2.480	2.600	2.000	0.020	25.0	4.7	124.0	130.0	65-135	
m,p-Xylenes	< 0.040	4.960	5.360	4.000	0.040	25.0	7.8	124.0	134.0	65-135	5
o-Xylene	< 0.020	2.460	2.620	2.000	0.020	25.0	6.3	123.0	131.0	65-135	

Spike Relative Difference [F] = 200°(B-C)/(B+C) Matrix Spike Recovery [G] = 100°(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100°(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Edward Peremoto, Ph.D. QAYOC Manager

1

EPA 418.1 Total Petroleum Hydrocarbons

Date Validated: Mar 31, 1997 15:00

Analyst: HL

Date Analyzed: Mar 29, 1997 16:06

Matrix: Solid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			BLANK SPII	KEANALYS	SIS		
·	[A]	(B)	[C]	[D]	(E)	(F)	[G]
	Blank	Blank Spike	Blank	Method	QC	LIMITS	
Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
			Amount	Limit	Recovery	Range	
	_ ppm	ppm	ppm	ppm	%	%	
Total Petroleum Hydrocarbons	< 7.50	179	198	7.50	90.6	65-135	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Edward I Yonemoto, Ph.D. CRA/QC Manager

EPA 418.1 Total Petroleum Hydrocarbons

Date Validated: Mar 31, 1997 15:00 Date Analyzed: Mar 29, 1997 16:21 QA/QC Manager: Edward H. Yonemoto, Ph.D. Analyst: HL Matrix: Solid

			MAT	RIX SPIKE (MATRIX S	SPIKE DUP	LICATE AND	RECOVERY		Taistei	
Q.C. Sample ID	[A]	[B]	[C]	[D]	[E]	Matrix	[F]	[G]	(H)	Ŋ	្រា
	Sample	Matrix Spike	Matrix Spike	Matrix	Method	Limit	QC	QC	QC	Matrix Spike	1
170729- 003	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Matrix Spike	M.S.D.	Recovery	Qualifier
Parameter	1		Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	· .
Falameter	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	
Total Petroleum Hydrocarbons	16.00	196	188	198	7.50	30.0	4.2	91.1	87.0	65-135	i

Spike Relative Difference [F] = 200*(B-C)/(B+C) Matrix Spike Recovery [G] = 100*(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Edward & Yonemoto, Ph.D. QA/QC Manager

1

K.E.I. Consultants, Inc.

Project Name: TNMPL Monument

XENCO COC#: 1-70730 Date Received in Lab: Mar 28, 1997 09:40 by CC XENCO contact : Carlos Castro/Edward Yonemoto

Project ID: 610057-2-13 Project Manager: Ann Baker Project Location: Site 13

								e and Time	
Field ID	Lab, ID	Method Name	Method ID	Units	Turn Around	Sample Collected	Addition Requested	Extraction	Analysis
1 B-13-2 (32-33')	170730-001	BTEX	SW-846	ppm	Standard	Mar 24, 1997 17:30	•	Mar 31, 1997 by CB	Mar 31, 1997 22:18 by CB
2		трн	EPA 418.1	ppm	Standard	Mar 24, 1997 17:30		Mar 29, 1997 by HL	Mar 29, 1997 16:30 by HL
3 B13-3 (32-33')	170730-002	BTEX	SW-846	ppm	Standard	Mar 25, 1997 09:20		Mar 31, 1997 by CB	Mar 31, 1997 22:36 by CB
4		трн	EPA 418.1	ppm	Standard	Mar 25, 1997 09:20		Mar 29, 1997 by HL	Mar 29, 1997 16:33 by HL
5 B13-4 (31-32')	170730-003	BTEX	SW-846	ppm	Standard	Mar 24, 1997 15:15		Mar 31, 1997 by CB	Mar 31, 1997 22:53 by CB
6	· · · · · ·	трн	EPA 418.1	ppm	Standard	Mar 24, 1997 15:15		Mar 29, 1997 by HL	Mar 29, 1997 16:36 by HL
7 8-13-5 (32-33')	170730-004	BTEX	SW-846	ppm	Standard	Mar 25, 1997 09:40		Mar 31, 1997 by CB	Mar 31, 1997 23:10 by CB
8		ТРН	EPA 418.1	ppm	Standard	Mar 25, 1997 09:40		Mar 29, 1997 by HL	Mar 29, 1997 16:39 by HL

ontractor KCE								Ph		(2,0) 680	3767	No		coole: rier:		shipn 25	lent:	1	(Con	trac		xxx *	#(707 • 002	
5309	WUR	ZBA	Cłf	5	re	0	<u> </u>	S/ Pro	fn bat C	A-v+2	MID	TX	of C	Airl	bill No	× 	<u> </u>	<u> </u>			<u> </u>	F 	P.O. N.	∾ 		T
oject Neme			Mo- Zi	10	me	19		P	ΑU	U H	<u>ART NE</u> KCR	रा			8	7		[]	' /			/		/ /,	um-around	LAB
mpler Signatum	0		y J				<u> </u>	Proi	ect N	0.	2-13							/					/ /		ASAP 24 hrs	ONLY
	SAMPLE	CHARAC	TERIZA						T	servative	Unl Dics	Ker Unknown	E R S			, /		$\left \right $		' /				!	48 hrs	D
Field ID	Date	Time	D E P T	8 0 1 L	W C A D E B	G R A B	Cont Size			Other	Waste Oil PIT No: Samp	Tank No: le Description	Total		THI (418-4) 6030-8020-8021	/ /	/ /			/	/ /	$\left \right $	Please Hold		Standard	#
·13-2, 32.33'	3/24/97	1730	31 - 33	X		K	4,8	G	X		•	32-33'	2	1	X			1	1				1		Foz	1
3-3 32-33		0920	32- 33	X		K	4,8	G	X			32-33'	2	X	X								_	40/d		2
3-4 31-32'	3/24/97		31- 32'	X		Y	۲,8	6	ŧΧ		B13-4,	31-32'	2	X	X									Ho ld	80Z,	3
19-5 32-33'	3/25/97	Ogyo	32- 33'	χ		X	4,8	G	X		B13-5	, 32-33'	2	X	X									Horo	802.	4
																										5
																										6
																										7
																										8
						1			T						\square											9
<u></u>		:				1			t		1								1	T						10
linquished	97 <i>7 /</i> 54	terutan	<u>.</u>		DA11		TUM	:	R		3 4	Signature	D.	NTE.		TIM		Rem	arks		<u>. </u> ,		£			

Pink (Contractor), Yellow & White (Lab).

* Pre-scheduling is recommended

Precision Analytical Services

"Don't Treat Your Soil Like Dirt!"

TEXAS NEW MEXICO PIPE LINE ATTN: MR. TONY SAVOIE P.O. BOX 1030 JAL, NEW MEXICO 88252 FAX: 505-395-2636

Receiving Date: 12/12/97 Sample Type: SOIL Project #: TNM SITE 13 Project Name: PIG TRAP Project Location: 1 MI. SOUTH MONUMENT, N.M.

Analysis Date: 12/14/97 Sampling Date: 12/12/97 Sample Condition: Intact/Iced

ELT#	FIELD CODE	BENZENE (mg/kg)	TOLUENE (mg/kg)	ETHYLBENZENE (mg/kg)	m.p-XYLENE (mg/kg)	o-XYLENE (mg/kg)	TPH (DRO) C10-C28 (mg/kg)
1 3246	12-12-97 BH COMP.	<0.100	<0.100	<0.100	0.134	<0.100	<10
13247	12-12-97 SW COMP.	<0.100	0.169	0.116	0.357	0.102	<10

% IA	108	110	111	110	112	93
% EA	115	117	117	117	118	104
BLANK	<0.001	<0.001	<0.001	<0.001	<0.001	<10

METHODS: EPA SW 846-8020,5030, 8015M DRO

Michael R. Fowler

12-1 Date

"Don't Treat Your Soil Like Dirt!"

TEXAS NEW MEXICO PIPE LINE ATTN: MR. TONY SAVOIE P.O. BOX 1030 JAL, NEW MEXICO 88252 FAX: 505-395-2636

Receiving Date: 12/12/97 Sample Type: WATER Project #: TNM SITE 13 Project Name: PIG TRAP Project Location: 1 MI. SOUTH MONUMENT, N.M.

Analysis Date: 12/15/97 Sampling Date: 12/12/97 Sample Condition: Intact/Iced

ELT#	FIELD CODE	BENZENE (mg/l)	TOLUENE (mg/l)	ETHYLBENZENE (mg/l)	m.p-XYLENE (mg/l)	o-XYLENE (mg/l)	
13248	12-12-97 WATER SAMPLE	<.001	<.001	<.001	0.004	0.002	

% IA	108	110	111	110	112
% EA	102	102	102	100	103
BLANK	<0.001	<0.001	<0.001	<0.001	<0.001

METHODS: EPA SW 846-8020,5030

>

Michael R. Fowler

Date

Envi	ronmental I	Lab of Tex	as,	In	c.									[exas 7: 5) 563-:		СН	LAIM	ł-OF	-CU	STO	DDY	REG	COR	D AI	ND A	NAI	YSI	s re	QUE	ST	•	
Project Mana	Aiton A.	MDon	a lo	/	•	Pi F/	1011e #	• 9 9	15, 15,	/68 /68	82- 82-	-35 -41	4 82	7 2						A	NAL	YSI	S RE	QUI	EST							
Company Naz	e & Address:					•													Τ	Τ			·			T	Τ		\square		\square	
ALL	LSTATE SERV	ICES ENVIRO	MEN	NTAL	- ,	MID	LAN	D,	TE	EXF	1S							Se	ē													
Project#:		•					oject i	Name	::									Cr Pb Hg Se	Cr Pb Hg Se												i	
TN	M_Site	: 13					<u>V:</u>	<u>ej [</u>	1 re	<u>a (</u> .	2							ਹੈ। ਹ	9													
Project Locat	on:			,		Se	umpler	Sign	ature	с;/ /	^	1	7		~			_														
Imil	M Site	Mona	12-2	īt,	\mathcal{M}	<u>M</u>		/	1	<u>]]</u>	10	1	$\frac{1}{2}$	nol	\mathcal{O}			s Ba	Ba		2			Y.								
			1	1		MATF	RIX				RVA' THO	TIVE	E	SAMP	LING	503		A g A	Vg As		otatile			2								
LAB # (LAB USE ONLY	FIELD C	ODE	# CONTAINERS	Volume/Amount	WATER	SOIL	SLUDGE	OTHER	HCL	HNO3	ICE	NONE	OTHER	DATE	TIME	1~1	TPH 418.1	TCLP Metals Ag As	Tolal Melals Ag As Ba Cd	TCLP Volatiles	TCLP Semi Volatiles	TDS	RCI	2012						·		
13246	12-12-977	BH COMO	1	1		X		İ		_	X			Dec12 1997		1					Ì			V		Ť	1	t				
13247	12-12-97	Sty Camp	1,	1		X	1	İ.		T	k			Dec 12 1997	11.22						1		-	X		Ť		-				
13248	12-12-97 W	1 -t as a Sama	2	İ	<u> </u> x			i	X		1	1	- 11	1997	-	1 .1	`			ī						╈		1-			-+	-
	IE I C I I M	2 <u>a 1 e v</u> 2010 fi						İ			<u> </u>			1997	11.20								-			╈		┢				
		· · · · · · · · · · · · · · · · · · ·		<u> </u>												-			-	-						1	+	1	┢─┤		\neg	-
		<u></u>																		-				-†	- -	+	\top	+			-	
		·					1-						1										-	\neg		\uparrow	-	┢				
	- C			<u> </u>																		-	-†	+		╧		┢		-1	-	
	<u> </u>	· · · · · · · · · · · · · · · · · · ·									+				·		-				\neg			\uparrow	- -	+		1-			+	
											\rightarrow											-		+		+	-	<u>†</u>			\rightarrow	\neg
		<u>.</u>			+-1			$\left \cdot \right $		-		+			· .				-					-		┼	┼	┢			-+	
Relinguisted b	r. Amale	Date: 7/2-)2-9		Time		2	0	1	Reco	\sim	l by:		<u> </u>	Just	REMA	I RKS	ł	[]	. .	1	1	1			I	_ <u>_</u>	<u>·</u>]		J1	!		·
Relinquished b		Date:		Time					Reco		_		~)	•.											•						
Relinquished b	j :	Date:		Time	3;				Reco	elved	l by I	Labor	rato																		•	·

. . .
ENVIRONMENTAL LAB OF) , INC.

"Don't Treat Your Soil Like Dirt!"

TEXAS NEW MEXICO PIPE LINE COMPANY ATTN: MR. TONY SAVOIE P.O. BOX 1030 JAL, NM 88252 FAX: 505-395-2636 FAX: 505-397-5125

RECEIVING DATE: 12/05/97 SAMPLE TYPE: SOIL PROJECT #: TNM SITE 13 PROJECT NAME: NONE GIVEN PROJECT LOCATION: 1 MI. SOUTH MONUMENT, N.M ANALYSIS DATE: 12/05/97 SAMPLING DATE: 12/05/97 SAMPLE CONDITION: intact/load

	ST LOCATION: T MI. SOUTH MONOMENT, N	TPH(DRO)	
		C10-C28	
ELT#	FIELD CODE	(mg/kg)	
13204	12-5-97 PARTICLIZED COMP. PILE	1,149	

BLANK % INSTRUMENT ACCURACY % EXTRACTION ACCURACY

Methods: SW 846-8015M DRO

-

· . · ·

-

CERTIFICATE OF ANALYSIS SUMMARY 1-71049

	l	K.E.I. Cons			
		Project Nan	ie: Monume	nt	
Project ID: 610057 Site #13 Project Manager: Ann Baker Project Location: Site #13				eceived in Lab: Mag e Report Faxed: Mag	
		171049-001	171049-002	171049-003	
Analysis Requested	Lab ID: Field ID:	MW-1	MW-2	MW-3	
	Depth:				
	! · · · · · · · · · · · · · · · · ·	Da	te Analyzed	- Analytical Results	ppm (mg/L - mg/Kg)
Mercury, Tot Analyzed by EPA 7	470	May 12, 1997	May 12, 1997	May 12, 1997	
Mercury	-•	< 0.0010		< 0.0010	
			te Analyzed	- Analytical Results	ppm (mg/L - mg/Kg)
BTEX Analyzed by EPA 8020		May 9, 1997	May 9, 1997	May 9, 1997	
Benzene		< 0.001	< 0.001	< 0.001	
Toluene		< 0.001	< 0.001	< 0.001	
Ethylbenzene		< 0.001	< 0.001	< 0.001	
m,p-Xylenes	•••••	< 0.002	< 0.002	< 0.002	
o-Xylene		< 0.001	< 0.001	< 0.001	
Total BTEX		< 0.006	< 0.006	< 0.006	
			te Analyzed	- Analytical Results	ppm (mg/L - mg/Kg)
PAH Analyzed by EPA 8100		May 15, 1997	May 15, 1997	May 15, 1997	
Acenaphthene		< 0.002	< 0.002	< 0.002	
Acenaphthylene		< 0.002	< 0.002	< 0.002	
Anthracene		< 0.002	< 0.002	< 0.002	
Benzo(a)anthracene		< 0.002	< 0.002	< 0.002	
Benzo(a)pyrene		< 0.002	< 0.002	< 0.002	
Benzo(b)fluoranthene		< 0.002	< 0.002	< 0.002	
Benzo(g,h,i)perylene		< 0.002	< 0.002	< 0.002	
Benzo(k)fluoranthene		< 0.002	< 0.002	< 0.002	
Chrysene	···· ·····	< 0.002	< 0.002	< 0.002	
Dibenzo(a,e)pyrene		< 0.002	< 0.002	< 0.002	
Dibenzo(a,h)anthracene		< 0.002	< 0.002	< 0.002	
Dibenz(a,j)acridine		< 0.002	< 0.002	< 0.002	
Fluoranthene		< 0.002	< 0.002	< 0.002	·
Fluorene		< 0.002	< 0.002	< 0.002	

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Edward H. Vonemoto, Ph.D. QA/QC Manager

SBA Award of Excellence 1994. Certified by AR, KS, OK & Accredited by A2LA

100 M

CERTIFICATE OF ANALYSIS SUMMARY 1-71049

K.E.I. Consultants, Inc. Project Name: Monument

Project ID: 610057 Site #13 Project Manager: Ann Baker Project Location: Site #13

Date Received in Lab: May 6, 1997 10:00 by RT Date Report Faxed: May 22, 1997

XENCO Contact: Carlos Castro/Edward Yonemoto

	Lab ID:	171049-001	1	171049-003				
Analysis Requested	Field ID:	MW-1	MW-2	MW-3]			
	Depth:							
Indeno(1,2,3-cd)pyrene		< 0.002	< 0.002	< 0.002	·			
3-Methylcholanthrene		< 0.002	< 0.002	< 0.002				
Naphthalene		< 0.002	< 0.002	< 0.002				
Phenanthrene		< 0.002	< 0.002	< 0.002				_
Pyrene		< 0.002	< 0.002	< 0.002				
Dibenz(a,h)acridine		< 0.002	< 0.002	< 0.002				
Benzo(j)fluoranthene		< 0.002	< 0.002	< 0.002				
7H-Dibenzo(c,g)carbazole		< 0.002	< 0.002	< 0.002				
Dibenzo(a,h)pyrene		< 0.002	< 0.002	< 0.002				
Dibenzo(a,i)pyrene		< 0.002	< 0.002	< 0.002				
· · · · · · · · · · · · · · · · · · ·								
licarbonate Analyzed by SM 450	00CO2D	Da	te Analyzed	- Analytical	Results	PP	om (mg/L -	mg/Kg)
		May 10, 1997	May 10, 1997	May 10, 1997				
Bicarbonate		358	360	325				
arbonate Analyzed by SM45000	CO2D	Da	te Analyzed	- Analytical	Results	pp	om (mg/L -	mg/Kg)
		May 10, 1997	May 10, 1997	May 10, 1997				
		1.8	3.7	2.9				
DS Analyzed by EPA 160.1		Da	te Analyzed	- Analytical	Results	pp	om (mg/L -	mg/Kg)
		May 9, 1997	May 9, 1997	May 9, 1997				
Total Dissolved Solids		1080	1100	1180				
nions Analyzed by EPA 300.0		Dat	te Analyzed	- Analytical	Results	pp	om (mg/L -	mg/Kg)
		May 8, 1997	May 8, 1997	May 8, 1997				
Sulfate		125	127	145				
Chloride		264	281	305				
and the second second second second second second second second second second second second second second second								
IC Mod. Analyzed by Mod. 415.	1	Dat	e Analyzed	- Analytical	Results	pp	om (mg/L -	mg/Kg)
		May 14, 1997	May 14, 1997	May 14, 1997			_	
s report summary, and the entire report it rep	resents. has be	een made for the	exclusive and co	onfidential				
of K.E.I. Consultants, Inc	,				_	l		200
		ical report repres				Edwag		noto, Ph.

SBA Award of Excellence 1994. Certified by AR. KS, OK & Accredited by A2LA

.

Sec. 25 4 1 4 24 2 4 3 CERTIFICATE OF ANALYSIS SUMMARY 1-71049

-

			<u></u>			
		K.E.I. Cons Project Nam				
Project ID: 610057 Site #13		-				
			Date R	eceived in l	ah: May 6	1997 10:00 by RT
Project Manager: Ann Baker						
Project Location: Site #13				Report Fax		
				XENCO CONT	act: Carlos C	astro/Edward Yonemoto
	Lab ID:	171049-001	171049-002	171049-003	·····	1
Analysis Requested	Field ID:	MW-1	MW-2	MW-3		
, maryono requested						
· · · · · · · · · · · · · · · · · · ·	Depth:					
Total Inorganic Carbon		80.0	56.6	73.3		
		• · · · · · · · · · · · · · · · · · · ·				
						·
· · ·						
			•			
This report summary, and the entire report it represe use of K.E.I. Consultants, Inc	nts, has be	en made for the e	exclusive and con	fidential		and a second
The interpretations and results expressed through	this analytic	al report represe	ent the best luda	ment of	Edwa	ard H. Yonemoto, Ph.D.
XENCO Laboratories. Xenco Laboratories, however,						QAVQC Manager
to the end use of the data hereby presented.						www.wanayer
SBA Award of Exc	cellence 19	94. Certified by	AR, KS, OK & A	ccredited by A2	LA	Page 4

EPA 6010 Metals by ICP

Date Validated: May 15, 1997 09:00

Analyst: SA

Matrix: Liquid

Date Analyzed: May 13, 1997 11:30 QA/QC Manager: Edward H. Yonemoto, Ph.D.

			· · ·	-			
	[A] Blank	[B] Blank Spike	[C] Blank	[D] Method		(F) LIMITS	[G]
Parameter	Result	Result	Spike Amount	Detection Limit	Blank Spike Recovery	Recovery Range	Qualifier
	mg/L	mg/L	mg/L	mg/L	%	%	
Aluminum	< 0.01	0.72	1.00	0.01	72.0	70-125	
Arsenic	< 0.050	0.869	1.000	0.050	86.9	70-125	
Barium	< 0.002	• 0.429	0.500	0.002	85.8	70-125	· · · · · ·
Beryllium	< 0.0050	0.1808	0.2000	0.0050	90.4	70-125	
Boron	< 0.03	1.20	1.56	0.03	76.9	70-125	·
Cadmium	< 0.010	0.162	0.200	0.010	81.0	70-125	
Calcium	< 0.01	1.82	2.00	0.01	91.0	70-125	
Chromium	< 0.013	0.433	0.500	0.013	86.6	70-125	
Cobalt	< 0.003	0.423	0.500	0.003	84.6	70-125	
Copper	< 0.008	0.443	0.500	0.008	88.6	70-125	
Iron	< 0.006	0.814	1.000	0.006	81.4	70-125	
Lead	< 0.03	0.85	1.00	0.03	85.0	70-125	
Magnesium	< 0.01	1.79	2.00	0.01	89.5	70-125	
Nickel	< 0.03	0.46	0.50	0.03	92.0	70-125	
Potassium	< 0.0250	2.1275	2.0000	0.0250	106.4	70-125	
Silver	< 0.010	0.334	0.400	0.010	83.5	70-125	
Sodium	< 0.0250	1.8363	2.0000	0.0250	91.8	70-125	
Strontium	< 0.025	1.171	1.560	0.025	75.1	70-125	
Vanadium	< 0.00	0.44	0.50	0.00	88.0	70-125	
Zinc	< 0.008	0.431	0.500	0.008	86.2	70-125	[

Blank Spike Recovery [E] = 100*(B-A)/(C)

I.C. = Not calculated, data below detection limit

N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only

Edward H. Yonemoto, AVQC Manager

Houston - Dallas - San Antonio

Page 1

EPA 6010 Metals by ICP

Date Validated: May 15, 1997 09:00 Date Analyzed: May 13, 1997 19:46

Analyst: SA

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			DUPLICATI		is and the second second second second second second second second second second second second second second se	· · ·
Q.C. Sample ID 171051- 001	[A] Sample Result	[B] Duplicate Result	[C] Method Detection Limit	[D] QC Relative Difference	[E] LIMITS Relative Difference	[F] Qualifier
Parameter	mg/L	mg/L	mg/L	%	%	
Aluminum	21.16	16.94	0.01	22.2	25.0	
Arsenic	< 0.050	< 0.050	0.050	N.C	25.0	
Barium	0.746	0.766	0.002	2.6	25.0	
Beryllium	< 0.0050	< 0.0050	0.0050	N.C	25.0	
Boron	0.148	0.139	0.025	6.3	25.0	
Cadmium	< 0.010	< 0.010	0.010	N.C	25.0	
Calcium	1170	1110	0.01	5.3	25.0	
Chromium	0.039	0.039	0.013	0.0	25.0	
Cobalt	0.011	0.013	0.003	16.7	25.0	
Copper	0.014	0.014	0.008	0.0	25.0	
Iron	13.43	13.26	0.01	1.3	25.0	
Lead	< 0.025	< 0.025	0.025	N.C	25.0	
Magnesium	39.95	37.77	0.01	5.6	25.0	
Manganese	0.291	0.300	0.006	3.0	25.0	
Molybdenum	< 0.025	< 0.025	0.025	N.C	25.0	
Nickel	< 0.025	0.157	0.025	N.C	25.0	
Potassium	7.841	7.730	0.025	1.4	25.0	
Silicon	24.49	16.18	0.03	40.9	25.0	A
Silver	< 0.010	< 0.010	0.010	N.C	25.0	

(A) Variability in duplicate measurement attributed to sample non-homogeneity.
 Relative Difference [D] = 200*(B-A)/(B+A)
 N.C. = Not calculated, data below detection limit
 N.D. = Below detection limit
 All results are based on MDL and validated for QC purposes only

Bdward H. Yonemoto, RH.D

Page

EPA 6010 Metals by ICP

Date Validated: May 15, 1997 09:00 Date Analyzed: May 13, 1997 19:46

Analyst: SA

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

	MATRIX DUPLICATE ANALYSIS									
Q.C. Sample ID		[8]	[0]	[0]	[E]	(F)				
171051- 001	Sample	Duplicate	Method	QC	LIMITS					
	Result	Result	Detection	Relative	Relative	Qualifier				
Parameter	mg/L	mg/L	Limit mg/L	Difference %	Difference %					
Sodium	80.69	76.85	0.03	4.9	25.0					
Strontium	2.164	2.036	0.025	6.1	25.0					
Tin	5.533	5.160	0.025	7.0	25.0	:				
Vanadium	0.054	0.058	0.003	7.1	25.0					
Zinc	0.090	0.087	0.008	3.4	25.0					

(A) Variability in duplicate measurement attributed to sample non-homogeneity.
Relative Difference [D] = 200*(B-A)/(B+A)
N.C. = Not calculated, data below detection limit
N.D. = Below detection limit
All results are based on MDL and validated for QC purposes only

(Edward H. Yonemoto, Ch.C

XENCO Laboratories

Certificate Of Quality Control for Batch: 17A18C05

EPA 6010 Metals by ICP

Date Validated: May 15, 1997 09:00

Date Analyzed: May 13, 1997 11:30

QA/QC Manager: Edward H. Yonemoto, Ph.D.

Analyst: SA

Matrix: Liquid

	N		LICATE AN	IALYSIS			MATRIX	SPIKE ANAL	YSIS	[G] Qualifier						
Q.C. Sample ID 171046- 001	[A] Sample Result	(B) Duplicate Result	[C] Method Detection	[D] QC Relative	[E] LIMITS Relative	[F] Matrix Spike Result	[G] Matrix Spike	(H) QC Matrix Spike	[I] LIMITS Recovery							
Parameter	mg/L	mg/L	Limit mg/L	Difference %	Difference %	mg/L	Amount mg/L	Recovery %	Range %	quantor						
Aluminum	30.68	30.75	0.01	0.2	25.0	40.7	12.5	79.8	70-125							
Arsenic	< 0.050	< 0.050	0.050	N.C	25.0	0.89	1.00	88.7	70-125							
Barium	1.031	1.233	0.002	17.8	25.0	1.25	0.50	44.6	70-125	В						
Beryllium	< 0.0050	< 0.0050	0.0050	N.C	25.0	0.179	0.200	89.3	70-125							
Boron	0.173	0.178	0.025	2.8	25.0	2.51	3.13	74.8	70-125							
Cadmium	< 0.010	< 0.010	0.010	N.C	25.0	0.16	0.20	79.5	70-125							
Calcium	114	134	0.01	16.1	25.0	133	12.5	152.0	70-125	A,B						
Chromium	0.031	0.030	0.013	3.3	25.0	0.44	0.50	81.0	70-125							
Cobalt	0.037	0.032	0.003	14.5	25.0	0.39	0.50	69.8	70-125	В						
Copper	0.026	0.030	0.008	14.3	25.0	0.46	0.50	86.8	70-125							
Iron	38.92	37.58	0.01	3.5	25.0	45.1	12.5	49.5	70-125	A,B						
Lead	< 0.025	< 0.025	0.025	N.C	25.0	0.80	1.00	80.2	70-125							
Magnesium	21.29	23.91	0.01	11.6	25.0	31.9	12.5	85.0	70-125	1						

(A) High analyte concentration affects spike recovery.

(B) Post-digestion spike within acceptance limits.

Relative Difference [D] = 200*(B-A)/(B+A)

Matrix Spike Recovery [H] = 100*(F-A)/[G]

N.C. = Not calculated, data below detection limit

N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only

Edward H. Yonemoto, Ph.E

1

EPA 6010 Metals by ICP

Date Validated: May 15, 1997 09:00

Date Analyzed: May 13, 1997 11:30

QA/QC Manager: Edward H. Yonemoto, Ph.D.

Analyst: SA

Matrix: Liquid

	N	IATRIX DUPI	LICATE AN	IALYSIS			YSIS			
Q.C. Sample ID	[A] Sample	[B] Duplicate	[C] Method	[D] QC	(E) LIMITS	[F] Matrix Spike	[G] Matrix	[H] QC	[I] LIMITS	[G]
171046- 001	Result	Result	Detection	Relative	Relative	Result	Spike	Matrix Spike	Recovery	Qualifier
Parameter	mg/L	mg/L	Limit mg/L	Difference %	Difference %	mg/L	Amount mg/L	Recovery %	Range %	
Manganese	1.263	1.503	0.006	17.4	25.0	12.16	12.50	87.2	70-125	
Molybdenum	< 0.025	< 0.025	0.025	N.C	25.0	0.55	0.63	88.6	70-125	
Nickel	< 0.025	< 0.025	0.025	N.C	25.0	0.40	0.50	80.2	70-125	
Potassium	7.715	8.064	0.025	4.4	25.0	19.08	12.50	90.9	70-125	
Silver	< 0.010	< 0.010	0.010	N.C	25.0	0.33	0.40	81.3	70-125	
Sodium	56.80	67.17	0.03	16.7	25.0	72.3	12.5	123.7	70-125	
Strontium	0.921	1.095	0.025	17.3	25.0	3.05	3.13	68.1	70-125	В
Vanadium	0.128	0.142	0.003	10.4	25.0	0.51	0.50	77.2	70-125	T
Zinc	0.180	0.201	0.008	11.0	25.0	0.57	0.50	78.6	70-125	

(A) High analyte concentration affects spike recovery.

(B) Post-digestion spike within acceptance limits.

Relative Difference [D] = 200*(B-A)/(B+A)

Matrix Spike Recovery [H] = 100*(F-A)/[G]

N.C. = Not calculated, data below detection limit

N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only

Edward H. Yonemo

Edward H. Yonemoto, Ph.D QA/QC Manager

۰.

XENCO Laboratories

SW846- 7470 Total Mercury

• • •

Date Validated: May 15, 1997 14:15 Date Analyzed: May 12, 1997 13:22 Analyst: EZ

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

	N		LICATE AN	IALYSIS			State State of the state of the	(SPIKE ANAL'	YSIS	
Q.C. Sample ID	[A]	[B]	[C]	[D]	[E]	[F]	[G]	(H)	[1]	[G]
171051- 002	Sample Result	Duplicate Result	Method Detection	QC Relative	LIMITS Relative	Matrix Spike Result	Matrix Spike	QC Matrix Spike	LIMITS Recovery	Qualifier
Parameter	mg/L	mg/L	Limit mg/L	Difference %	Difference %	mg/L	Amount mg/L	Recovery %	Range %	
Mercury	< 0.0010	< 0.0010	0.0010	N.C	25.0	0.0025	0.0025	100.0	70-125	

Relative Difference [D] = 200*(B-A)/(B+A) Matrix Spike Recovery [H] = 100*(F-A)/[G] N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Edward H. Yonemoto, Ph.D BQA/QC Manager

Houston - Dallas - San Antonio

SW846- 7470 Total Mercury

Date Validated: May 15, 1997 14:15 Date Analyzed: May 12, 1997 12:58 QA/QC Manager: Edward H. Yonemoto, Ph.D.

MATRIX DUPLICATE ANALYSIS MATRIX SPIKE ANALYSIS [H] [C] [G] [1] [A] [B] [D] [F] [G] (E) Q.C. Sample ID Duplicate Method QC LIMITS Matrix Spike Matrix QC LIMITS Sample 171047-001 Result Result Detection Relative Relative Result Spike Matrix Spike Recovery Qualifier Limit Difference Difference Amount Recovery Range Parameter mg/L mg/L mg/L mg/L mg/L % % % % Mercury < 0.0010 < 0.0010 0.0010 N.C 25.0 0.0026 0.0025 104.0 70-125

Relative Difference [D] = 200*(B-A)/(B+A) Matrix Spike Recovery [H] = 100*(F-A)/[G] N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

/Edward H. Yohemoto, Ph.D. QA/QC Manager

Houston - Dallas - San Antonio

.

Analyst: EZ Matrix: Liquid

SW846-7470 Total Mercury

Date Validated: May 15, 1997 14:15

Analyst: EZ

Date Analyzed: May 12, 1997 12:55

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			BLANK SPI				
	[A]	[8]	[C]	[D]	[E]	(F]	[G]
	Blank	Blank Spike	Blank	Method	QC	LIMITS	
Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
			Amount	Limit	Recovery	Range	
	mg/L	mg/L	mg/L	mg/L	%	%	
Mercury	< 0.0010	0.0022	0.0025	0.0010	88.0	70-125	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

⁽ Edward H. Yonemote, Ph.D. A/QC Manager

Houston - Dailas - San Antonio

1

SW- 846 5030/8020 BTEX

 Date Validated:
 May 12, 1997
 14:50

 Date Analyzed:
 May 9, 1997
 13:42

Analyst: IF

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

				RIX SPIKE /	MATRIX S	SPIKE DUP	LICATE AND I	RECOVERY			
Q.C. Sample ID 171048- 001	[A] Sample Result	[B] Matrix Spike Result	[C] Matrix Spike Duplicate	[D] Matrix Spike	[E] Method Detection	Matrix Limit Relative	[F] QC Spike Relative	[G] QC Matrix Spike	[H] QC M.S.D,	[i] Matrix Spike Recovery	[J] Qualifier
Parameter	ppm	ppm	Result ppm	Amount ppm	Limit ppm	Difference %	Difference %	Recovery %	Recovery %	Range %	
Benzene	< 0.0010		0.0864	0.1000			0.5	86.8	86.4	65-135	j
Toluene	< 0.0010					25.0	3.5	116.0	112.0	65-135	5
Ethylbenzene	< 0.0010		0.1130	0.1000	0.0010	25.0	4.3	118.0	113.0	65-135	5
m,p-Xylenes	< 0.0020						3.8	121.0	116.5	65-135	5
o-Xylene	< 0.0010	0.1160	0.1120	0.1000	0.0010	25.0	3.5	116.0	112.0	65-135	5

Spike Relative Difference [F] = 200*(B-C)/(B+C) Matrix Spike Recovery [G] = 100*(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Edwarden Ponemoto, Ph.D. QA/QC Manager

SW- 846 5030/8020 BTEX

Date Validated: May 12, 1997 14:50 Date Analyzed: May 9, 1997 10:17 Analyst: IF

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.												
	[A]	[B]	[C]	[D]	[E]	(F)	[G]								
	Blank	Blank Spike	Blank	Method	QC	LIMITS									
Parameter	Result	Result	Spike Amount	Detection Limit	Blank Spike Recovery	Recovery Range	Qualifie								
	ppm	ppm	ppm	· ppm	%	%									
Benzene	< 0.0010	0.1130	0.1000	0.0010	113.0	65-135									
Toluene	< 0.0010	0.1160	0.1000	0.0010	116.0	65-135									
Ethylbenzene	< 0.0010	0.1170	0.1000	0.0010	117.0	65-135									
m,p-Xylenes	< 0.0020	0.2410	0.2000	0.0020	120.5	65-135									
o-Xylene	< 0.0010	0.1150	0.1000	0.0010	115.0	65-135									

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

SW-846 8100 PAHs by GC-MS

Analyst: MM

Matrix: Liquid

Date Validated: May 15, 1997 17:56 Date Analyzed: May 14, 1997 22:20 QA/QC Manager: Edward H. Yonemoto, Ph.D.

BLANK SPIKE / BLANK SPIKE DUPLICATE AND RECOVERY [A] **[B]** [C] [D] [E] [F] [G] [H] [I] [J] Blank Blank **Blank Spike Blank Spike** Blank Method Limit <u>OC</u> QC QC Blank Spike Detection **Spike Relative** Parameter Result Result Duplicate Spike Relative **Blank Spike** B.S.D. Recoverv Qualifier Result Amount Limit Difference Difference Recovery Recovery Range mg/L mg/L ma/L mg/L mg/L % % % % % < 0.0020 0.0658 0.0670 0.1000 0.0020 31.0 1.8 65.8 67.0 46-118 Acenaphthene < 0.0020 0.0398 0.0332 42.0 33.2 23-97 0.1000 18.1 4-Chloro-3-Methylphenol 0.0020 39.8 < 0.0020 0.0630 0.0644 0.1000 0.0020 40.0 2.2 64.4 27-123 2-Chlorophenol 63.0 < 0.0020 0.0702 0.0724 0.1000 28.0 3.1 72.4 36-97 1,4-Dichlorobenzene 0.0020 70.2 2.4-Dinitrotoluene < 0.0020 0.0628 0.0632 0.1000 0.0020 38.0 0.6 62.8 63.2 24-96 < 0.0040 0.0742 0.0738 0.1000 73.8 41-116 N-Nitroso-di-n-propylamine 0.0040 38.0 0.5 74.2 < 0.0040 0.0250 0.0248 0.1000 4-Nitrophenol 0.0040 50.5 0.8 25.0 24.8 10-80 Pentachlorophenol < 0.0010 0.0738 0.0706 0.1000 0.0010 50.0 4.4 70.6 9-103 73.8 0.0222 0.0224 0.1000 22.4 < 0.0010 0.0010 42.0 12-89 Phenol 0.9 22.2 < 0.0020 0.0852 0.0840 0.1000 0.0020 31.0 84.0 26-127 Ругепе 1.4 85.2 0.0714 1.2.4-Trichlorobenzene < 0.0010 0.0736 0.1000 0.0010 28.0 71.4 39-98 3.0 73.6

Spike Relative Difference [F] = 200*(B-C)/(B+C) Blank Spike Recovery [G] = 100*(B-A)/[D] B.S.D. = Blank Spike Duplicate B.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Edward Fronemoto, Ph.D. QA/QC Manager

SM4500CO2D Carbonate

Date Validated: May 14, 1997 15:30 Date Analyzed: May 10, 1997 09:20

Analyst: CG

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

		MATRIX	EANALYS	ANALYSIS				
Q.C. Sample ID 171047- 001	[A] Sample Result	[B] Duplicate Result	[C] Method Detection	[D] QC Relative	[E] LIMITS Relative	[F] Qualifier		
Parameter	ppm	ppm	Limit	Difference %	Difference %			
Carbonate	< 1.00	< 1.00	1.00	N.C	25.0	I		

Relative Difference [D] = 200*(B-A)/(B+A) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Edward H. Yonemoto, Ph.D. QA/QC Manager

SM 4500CO2D Bicarbonate

Date Validated: May 14, 1997 15:30 Date Analyzed: May 10, 1997 09:20

Analyst: CG

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

-			DUPLICAT	E ANALYS	SIS	
Q.C. Sample ID	[A]	[B]	[c]	נסן	[E]	नि
171047- 001	Sample	Duplicate	Method	QC	LIMITS	1
1/104/- 001	Result	Result	Detection	Relative	Relative	Qualifier
Parameter			Limit	Difference	Difference	
Falalletel	mg/L	mg/L	mg/L	%	%	
Bicarbonate	127	127	0.5	0.0	25.0	

Relative Difference [D] = 200*(B-A)/(B+A) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Edward H. Yonemoto, Ph.D. QA/QC Manager

EPA 160.1 Total Dissolved Solids

Date Validated: May 9, 1997 13:45 Date Analyzed: May 9, 1997 09:40 Analyst: CG

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

		MATRIX	DUPLICATI	EANALYS	SIS	
Q.C. Sample ID	[A]	[8]	[C]	[0]	[E]	[F]
171046- 001	Sample	Duplicate	Method	QC	LIMITS	Qualifier
	Result	Result	Detection Limit	Relative Difference	Relative Difference	Quaimer
Parameter	mg/L	mg/L	mg/L	%	%	
Total Dissolved Solids	526	504	4.0	4.3	25.0	

Relative Difference [D] = 200*(B-A)/(B+A) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Edward F Fonemoto, Ph.D. AVQC Manager

Page 1

EPA 300.0 Anions by Ion Chromatography

 Date Validated:
 May
 9, 1997
 12:00

 Date Analyzed:
 May
 8, 1997
 12:23

Analyst: JS

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			BLA	NK SPIKE /	BLANK S	PIKE DUPL	ICATE AND R	ECOVERY			
	[A]	[B]	[C]	[D]	(E)	Blank	[F]	[G]	[H]	{!]	[J]
	Blank	Blank Spike	Blank Spike	Blank	Method	Limit	QC	QC	QC	Blank Spike	1
Parameter	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Blank Spike	B.S.D.	Recovery	Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
	mg/L	mg/L	mg/L	mg/L	mg/L	%	%	%	%	%	
Chloride	< 0.050	5.070	5.090	5.000	0.050	20.0	0.4	101.4	101.8	70-12	5
Sulfate	< 0.10	4.97	5.06	5.00	0.10	20.0	1.8	99.4	101.2	70-12	5

Spike Relative Difference [F] = 200*(B-C)/(B+C) Blank Spike Recovery [G] = 100*(B-A)/[D] B.S.D. = Blank Spike Duplicate B.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Edward H. Yonemoto, Ph.D. COAVQC Manager

Page

1

Anions by Ion Chromatography EPA 300.0

Date Validated: May 9, 1997 12:00 Date Analyzed: May 8, 1997 12:55 Analyst: JS

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

•	MATRIX DUPLICATE ANALYSIS											
Q.C. Sample ID 171046- 001	[A] Sample Result	[B] Duplicate Result	[C] Method Detection	[D] QC Relative	[E] LIMITS Relative	[F] Qualifier						
Parameter	mg/L	mg/L	Limit mg/L	Difference %	Difference %							
Chloride	72.400	75.900	0.050	4.7	20.0							
Sulfate	59.60	62.30	0.10	4.4	20.0							

Relative Difference [D] = 200*(B-A)/(B+A) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

QA/QC Manager

Page 1

MOD. 415.1 Total Inorganic Carbon

Date Validated: May 19, 1997 09:00

Analyst: IF

Date Analyzed: May 14, 1997 09:22

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

	·			BLANK SPI				
		[A]	(B)	[C]	[D]	(E)	(F)	[G]
		Blank	Blank Spike	Blank	Method	QC	LIMITS	
	Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
				Amount	Limit	Recovery	Range	
1	•	ppm	ppm	ppm	ppm	%	%	
	Total Inorganic Carbon	< 1.0	20.6	20.0	1.0	103.0	70-120	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

Edward F 4 onemoto, Ph.D. QA/QC Manager

MOD. 415.1 Total Inorganic Carbon

Date Validated: May 19, 1997 09:00 Date Analyzed: May 14, 1997 11:41 QA/QC Manager: Edward H. Yonemoto, Ph.D. Analyst: IF

Matrix: Liquid

	N N		LICATE AN	IALYSIS	*		MATRD	SPIKE ANAL	YSIS	
	[A]	(B)	[C]	[D]	(E)	(F)	[G]	[H]	<u> </u>	[G]
Q.C. Sample ID	Sample	Duplicate	Method	QC	LIMITS	Matrix Spike	Matrix	QC	LIMITS	
171049- 002	Result	Result	Detection	Relative	Relative	Result	Spike	Matrix Spike	Recovery	Qualifier
	1		Limit	Difference	Difference		Amount	Recovery	Range	
Parameter	ppm	ppm	ppm	%	%	ppm	ppm	%	%	
Total Inorganic Carbon	56.61	55.44	1.00	2.1	20.0	74.6	20.0	90.0	70-120	

Relative Difference [D] = 200*(B-A)/(B+A) Matrix Spike Recovery [H] = 100*(F-A)/[G] N.C. = Not calculated, data below detection limit N.D. = Below detection limit All results are based on MDL and validated for QC purposes only

onemoto, Ph.D. Edwa π. DA/QC Manager

Houston - Dallas - San Antonio

Page 1

ANALYTICAL CHAIN OF CUSTODY REPORT CHRONOLOGY OF SAMPLES

K.E.I. Consultants, Inc.

Project Name: Monument

XENCO COC#: 1-71049

Project ID: 610057 Site #13 Project Manager: Ann Baker Project Location: Site #13

Date Received in Lab: May 6, 1997 10:00 by RT xenco contact : Carlos Castro/Edward Yonemoto

							Dat	e and Time	
Field ID	Lab. ID	Method Name	Method ID	Units	Turn Around	Sample Collected	Addition Requested	Extraction	Analysis
MW-1	171049-001	BTEX	SW-846	ррт	Standard	May 2, 1997 15:40		May 9, 1997 by IF	May 9, 1997 12:29 by IF
2		РАН	SW-846 8100	mg/L	Standard	May 2, 1997 15:40		May 9, 1997 by CY	May 15, 1997 04:36 by MM
3		TDS	EPA 160.1	mg/L	Standard	May 2, 1997 15:40		May 8, 1997 by CG	May 9, 1997 10:05 by CG
		Anions	EPA 300.0	mg/L	Standard	May 2, 1997 15:40		May 8, 1997 by JS	May 8, 1997 14:13 by JS
5		Carbonate	SM4500CO2D	ppm	Standard	May 2, 1997 15:40		May 10, 1997 by CG	May 10, 1997 09:40 by CG
5		Bicarbonate	SM 4500CO2D	mg/L	Standard	May 2, 1997 15:40		May 10, 1997 by CG	May 10, 1997 09:40 by CG
7		Metais (ICP)	EPA 6010	mg/L	Standard	May 2, 1997 15:40		May 9, 1997 by EZ	May 13, 1997 18:51 by SA
3		Mercury, Tot	SW846-7470	mg/L	Standard	May 2, 1997 15:40		May 9, 1997 by EZ	May 12, 1997 13:15 by EZ
		TIC Mod.	MOD. 415.1	ppm	Standard	May 2, 1997 15:40		May 14, 1997 by IF	May 14, 1997 14:59 by IF
0 MW-2	171049-002	BTEX	SW-846	ppm	Standard	May 2, 1997 15:55		May 9, 1997 by IF	May 9, 1997 12:47 by IF
1		РАН	SW-846 8100	mg/L	Standard	May 2, 1997 15:55		May 9, 1997 by CY	May 15, 1997 05:22 by MM
2		TDS	EPA 160.1	mg/L	Standard	May 2, 1997 15:55		May 8, 1997 by CG	May 9, 1997 10:10 by CG
3	2 2 1	Anions	EPA 300.0	mg/L	Standard	May 2, 1997 15:55		May 8, 1997 by JS	May 8, 1997 14:22 by JS
		Carbonate	SM4500CO2D	ppm	Standard	May 2, 1997 15:55		May 10, 1997 by CG	May 10, 1997 09:45 by CG
5		Bicarbonate	SM 4500CO2D	mg/L	Standard	May 2, 1997 15:55		May 10, 1997 by CG	May 10, 1997 09:45 by CG
5		Metals (ICP)	EPA 6010	mg/L	Standard	May 2, 1997 15:55		May 9, 1997 by EZ	May 13, 1997 19:19 by SA
7		Mercury, Tot	SW846-7470	mg/L	Standard	May 2, 1997 15:55		May 9, 1997 by EZ	May 12, 1997 13:16 by EZ
3		TIC Mod.	MOD. 415.1	ppm	Standard	May 2, 1997 15:55		May 14, 1997 by IF	May 14, 1997 11:37 by IF
9 MW-3	171049-003	BTEX	SW-846	ppm	Standard	May 2, 1997 16:15		May 9, 1997 by IF	May 9, 1997 13:06 by IF
		РАН	SW-846 8100	mg/L	Standard	May 2, 1997 16:15		May 9, 1997 by CY	May 15, 1997 06:06 by MM
	{	TDS	EPA 160.1	mg/L	Standard	May 2, 1997 16:15		May 8, 1997 by CG	May 9, 1997 10:15 by CG
2		Anions	EPA 300.0	mg/L	Standard	May 2, 1997 16:15		May 8, 1997 by JS	May 8, 1997 14:34 by JS
3		Carbonate	SM4500CO2D	ppm	Standard	May 2, 1997 16:15		May 10, 1997 by CG	May 10, 1997 09:50 by CG
1		Bicarbonate	SM 4500CO2D	mg/L	Standard	May 2, 1997 16:15		May 10, 1997 by CG	May 10, 1997 09:50 by CG •
5		Metals (ICP)	EPA 6010	mg/L	Standard	May 2, 1997_16:15		May 9, 1997 by EZ	May 13, 1997 19:26 by SA
5		Mercury, Tot	SW846-7470	mg/L	Standard	May 2, 1997 16:15		May 9, 1997 by EZ	May 12, 1997 13:17 by EZ
7		TIC Mod.	MOD. 415.1	ppm	Standard	May 2, 1997 16:15		May 14, 1997 by IF	May 14, 1997 12:19 by IF

FA.		113	81 Mea	dowgler	n Suite	∍L H	louston,	Tex	as 77082	2	CHAIN C	FC	CUS	TC)DY	7 R	EC	COF	RD.				Pag	pe / of /		
Labore	torles	2	3) 589	1092			Fax (/	(139)	589-0695		ND ANA	LYS	IS .	RE	QL	JES	ST I	FO	RM 11((-1	1	Lab	. Batch #		
Contractor KEI (c	se It. A	,					PI	non	. 180	0) 253-	0507	No	No	cool	ers ti	nis sh	ipmo							COC #		
Addrees								1	,				Car	rier:	יט	29						Q	luote	# :		
4800 W	Jizbuch	Drive	5.1	te l	00	<u> </u>	an H	nt	nio T	, X			Airl	hill N	ka.							Ŧ	PO N	ło:		
	Vionom	owt							Director <u> Yaj</u> Aeneger _A	Hart	hat	C O N			ิล /	7	7	7			1	7	7	Turn-arou		L A
Project Location	Site	#13				•	-	-	An	Bake	-	TA		/§	8/	L.		/	Ner N		/	\boldsymbol{I}	/	+ ASAP		â
Semplor Signatu	• 1						Pro	jact M	6	10057	site # 13				/ /	Net a	f_{a}	1-7	1 Ø 1	' /		'		+ 24 hra		ONLY
	SAMPLE	CHARAC	THE L	/				Pre	servative		Ker Unknown	R		8	a/	E,	3/26	(iee)						3 48.hrs		ID .
Field ID	Date	Time	D P T H	S W O A I E R	C O M P	G CA R A B Sta	ontainer ze Type P, G	b 00	Other	Waste Oil PTT No: Sample	Tank No: e Description	Tota		THH LAND BORD BORD BORD	H. 1	12		- r	SNAT		/ /	$\left \right $	Peese Hall	Remarks		#
MW-1	5-2-97	1540			\uparrow			/	\square			7		Л	Ζ	7	Ζ	Λ								1
MW-2	5207	10-		17	\mathbf{T}			17				7	17	\square	7	7	7	Λ								2
s mw-C	5-2-97	1555		+	╆┼			$\frac{1}{7}$	$\not\leftarrow$			-	₭7			7	<u> </u>	\leftarrow		+	+		-+		-+	3
MW-3	5-2-97	1615		$\perp V$	\downarrow			\mathbb{V}				7	\square	\square	\angle	\angle	\square	\square								
'																										4
5					╡┤			┢				1	<u>†</u>										-+			5
, <u> </u>	<u> </u>			+	╉╌╂			+				_	-										-+			6
								<u> </u>																		
′ 																										7
6	1				╋╋			\uparrow			····				 							\neg	-+			8
•				++	┼╌┨		_	+					╋	╂	\vdash					\dashv	-					9
		<u> </u>	<u> </u>		+				ļ	ļ			 	 			 									
1																										10
Rolinguined	by, 181	enginged	<u>. </u>	D	ATE	T	IME			9 4	Signature	D	ATE		111	Æ	F	Remar	ka			t			•	
				05	-25-9	7 0	\$600																			
	\mathbb{Z}								<u>^</u>																	
	, <u> </u>							Rec	elved For I	aboratory by	C/."	5.	6-4	งา	(0)	6 0	2 									

ANALYTICAL REPORT 1-71049

for

K.E.I. Consultants, Inc.

Project Manager: Ann Baker

Project Name: Monument

Project ld: 610057 Site #13

May 22, 1997

 11381
 Meadowglen Lane
 Suite L * Houston, Texas 77082-2647

 Phone (281)
 589-0692
 Fax (281)
 589-0695

11381 Meadowglen Suite L Houston, Texas 77082-2647 (281) 589-0692 Fax: (281) 589-0695 Houston - Dallas - San Antonio

May 22, 1997

Project Manager: Ann Baker K.E.I. Consultants, Inc. 5309 Wurzbach Rd., Suite 100 San Antonio, TX 78238

Reference: XENCO Report No.: 1-71049 Project Name: Monument Project ID: 610057 Site #13 Project Address: Site #13

Dear Ann Baker:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with XENCO Chain of Custody Number 1-71049. All results being reported to you apply only to the samples analyzed, properly identified with a Laboratory ID number. This letter documents the official transmission of the contents of the report and validates the information contained within.

All the results for the quality control samples passed thorough examination. Also, all parameters for data reduction and validation checked satisfactorily. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, and completeness.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 3 years in our archives and after that time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. 1-71049 will be filed for 60 days, and after that time they will be properly disposed of without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

XENCO Laboratories is accredited by the American Association for Laboratory Accreditation (A2LA) for technical competence in the field of Environmental Testing (Certificate No. 0343-01). In accordance with A2LA's guidelines, XENCO operates a Quality System that meets ISO/IEC Guide 25 requirements and is strictly implemented and enforced through our standard QA/QC procedures.

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Sincerely,

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified in California, Oklahoma, Kansas, Arkansas, and approved by numerous other States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY!

K.E.I. Consultants, Inc.

Project Name: TNMPL Monument

Project ID: 610057 Project Manager: Mike Hawthorne Project Location: Site 13

Date Received in Lab: Aug 25, 1997 10:15 by LY Date Report Faxed: Aug 27, 1997

XENCO Contact: Carlos Castro/Edward Yonemoto

Analysis Requested	Lab ID: Field ID: Depth:	171967-001 MW-1	171967-002 MW-2	171967-003 MW-3			
BTEX Analyzed by EPA 8020	•	Da	te Analyzed	- Analytical	Results	ppm (mg/	/L - mg/Kg)
		Aug 26, 1997	Aug 26, 1997	Aug 26, 1997	· · · · · · · · · · · · · · · · · · ·		
Benzene		< 0.001	< 0.004	< 0.001			
Toluene		< 0.001	< 0.004	< 0.001			
Ethylbenzene		< 0.001	< 0.004	< 0.001			
m,p-Xylenes		< 0.002	< 0.008	< 0.002			
o-Xylene		< 0.001	< 0.004	< 0.001			
Total BTEX		< 0.006	< 0.024	< 0.006			

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

SBA Award of Excellence 1994. Certified by AR, KS, OK & Accredited by A2LA

Houston - Dallas - San Antonio

SW- 846 5030/8020 BTEX

Date Validated: Aug 26, 1997 11:00

Date Analyzed: Aug 25, 1997 18:17

Analyst: HL

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			. BLA			PIKE DUPL	ICATE AND R	ECOVERY			
	[A]	[8]	[C]	[D]	[E]	Blank	[7]	[G]	[H]	m	្រា
	Blank	Blank Spike	Blank Spike	Blank	Method	Limit	QC	QC	QC	Blank Spike	1
Parameter	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Blank Spike	B.S.D.	Recovery	Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range]
	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	
Benzene	< 0.0010	0.1000	0.1030	0.1000	0.0010	25.0	3.0	100.0	103.0	65-13	5
Toluene	< 0.0010	0.1000	0.1010	0.1000	0.0010	25.0	1.0	100.0	101.0	65-13	5
Ethylbenzene	< 0.0010	0.1030	0.1070	0.1000	0.0010	25.0	3.8	102.9	106.9	65-13	5
m,p-Xylenes	< 0.0020	0.2100	0.2160	0.2000	0.0020	25.0	2.8	104.9	107.9	65-13	5
o-Xylene	< 0.0010	0.1050	0.1050	0.1000	0.0010	25.0	0.0	104.9	104.9	65-13	5

Spike Relative Difference [F] = 200*(B-C)/(B+C) Blank Spike Recovery [G] = 100*(B-A)/[D] B.S.D. = Blank Spike Duplicate B.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Edward HE Fonemoto, Ph.D. QA/QC Manager

K.E.I. Consultants, Inc.

Project Name: TNMPL Monument

XENCO COC#: 1-71967

Project ID:610057Project Manager:Mike HawthorneProject Location:Site 13

Date Received in Lab: Aug 25, 1997 10:15 by LY **XENCO Contact :** Carlos Castro/Edward Yonemoto

								Date and Time	
	Field ID	Lab, ID	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Method ID		Turn Around	Sample Collected	Addition Requested Extraction	Analysis
1	MW-1	171967-001	BTEX	SW-846	ppm	Standard	Aug 15, 1997 13:30	Aug 26, 1997 by HL	Aug 26, 1997 01:14 by HL
2	MW-2	171967-002	BTEX	SW-846	ррт	Standard	Aug 15, 1997 13:45	Aug 26, 1997 by HL	Aug 26, 1997 02:29 by HL
3	MW-3	171967-003	BTEX	SW-846	ppm	Standard	Aug 15, 1997 14:00	Aug 26, 1997 by HL	Aug 26, 1997 01:33 by HL

F.C.		TK TK	381 Mead	towg	jen Sa	ite L	. Hous	iton, 1	Fexa	as 77082		CHAIN											-	Pa	ige	T of T	5,75
LANIA			13) 589-1	0692	2		Fa	ix (71	3) 5	589-0695		AND AN	ALYS	SIS	RE	EQU	JES	ST I	FO	RN	1			La	b. B	of اتا atch #	fic i
Contractor	(onsut	++						Phe	one	(210)680	3767	No	No		lers th	nis ab	ipme	nt:			Co	ntra	cto	r CC	xc #	
Address	CONSUL	19115													rrier:									Quot	to # :		
5309	Wur	zbach	~ S	JI	te	10	50	2	A	Tx	78:	238	of	Air	thill P	No.								PO	No:		
Project Name		<u> </u>								Vinector		<u> </u>	CO		1		7	7				T .			$ \neg $	7	L
Project Location	Site	13		,	/			Proje	ct M	lanager						8/							./			/ Turn-around	A B
Sempler Signatur		11	\square	7				Proja	ct N		057						/ /	/ /	/	/	/	/	/	/	$\left \right $	+ ASAP + 24 hrs	ONLY
	SAMPLE	CHARAC	HEATZA	TIO	N				Pre	servative	Uni Die	Ker Unkno	wn R		8	[]	' /			'/	' /	'	'	'	3/	48 hra	D
Field ID	Date	Time	D E P	8 0 I L	W C A O I	G R	Conta Size	iner	ice.	Other	Waste Oil PTT No:	Tank No:	S Tota	4//	THU (SOODBORNE)										POL BAL	Standard	#
			T H	i	Ë P R	B	Size	Тур е Р, G	~~			ple Description		15	5/Æ		/	/	/	/	/	/	/	/4	1	Remarks	
Mw-1	8-15-17	1330							/	Hel		· · · · · · · · · · · · · · · · · · ·	2		1												1
MW-2	8-15-47	1345			Λ				7	Hel			7	V													2
MW-3	1				/				/	Hel			Z	1													3
							<u> </u>							ľ								1		\square			4
							<u> </u>							+									┼──			·	5
														+									+	+			6
				╉		+									+												7
				+	+	-									+												8
						┢						.,					}										9
				┥	\neg						<u>.</u>			-						┢							10
Relinquished	i Dy Asia	nature)/			DATE		TIME		R	c bevices	n	(Signature)	1D	ATB	<u> </u>	TIN	I AE	R		l riks	<u> </u>	1	_	1	<u> </u>	·····	
-///		\square		B	-72.4	97	160	ъ																			
/ /		/	<u> </u>			_			qce	ved For La	boratory by	by UPS		•				_									
								\	-	ani		kein	5	25	17	101	S	2									

ANALYTICAL REPORT 1-71967

for

SEP - 4 1997

K.E.I. Consultants, Inc.

Project Manager: Mike Hawthorne Project Name: TNMPL Monument Project Id: 610057

August 27, 1997

HOUSTON - DALLAS - SAN ANTONIO

 11381
 Meadowglen Lane
 Suite L * Houston, Texas 77082-2647

 Phone (281) 589-0692
 Fax (281) 589-0695

11381 Meadowglen Suite L Houston, Texas 77082-2647 (281) 589-0692 Fax: (281) 589-0695 Houston - Dallas - San Antonio

August 27, 1997

Project Manager: Mike Hawthorne K.E.I. Consultants, Inc. 5309 Wurzbach Rd. Suite 100 San Antonio, TX 78238

Reference: XENCO Report No.: 1-71967 Project Name: TNMPL Monument Project ID: 610057 Project Address: Site 13

Dear Mike Hawthorne:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with XENCO Chain of Custody Number 1-71967. All results being reported to you apply only to the samples analyzed, properly identified with a Laboratory ID number. This letter documents the official transmission of the contents of the report and validates the information contained within.

All the results for the quality control samples passed thorough examination. Also, all parameters for data reduction and validation checked satisfactorily. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, and completeness.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 3 years in our archives and after that time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. 1-71967 will be filed for 60 days, and after that time they will be properly disposed of without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

XENCO Laboratories is accredited by the American Association for Laboratory Accreditation (A2LA) for technical competence in the field of Environmental Testing (Certificate No. 0343-01). In accordance with A2LA's guidelines, XENCO operates a Quality System that meets ISO/IEC Guide 25 requirements and is strictly implemented and enforced through our standard QA/QC procedures.

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Sincerely,

Eddle 2 paemen QA/QC Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified in California, Oklahoma, Kansas, Arkansas, and approved by numerous other States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY!

K.E.I. Consultants, Inc.

Project Name: TNMPL-Site #13

Project ID: 610057 Project Manager: Theresa Nix Project Location: Monument, NM

Date Received in Lab: Nov 4, 1997 10:30 by CC Date Report Faxed: Nov 5, 1997

XENCO CONTACT: Carlos Castro/Edward Yonemoto

Analysis Requested	Lab ID: Field ID: Depth:	172736-001 MW-1	172736-002 MW-2	172736-003 MW-3			
BTEX Analyzed by EPA 8020		Dat	te Analyzed	- Analytical	Results	ppm (mg/L -	mg/Kg)
		Nov 4, 1997	Nov 4, 1997	Nov 4, 1997	-		
Benzene		< 0.001	< 0.001	< 0.001			
Toluene		< 0.001	< 0.001	< 0.001			
Ethylbenzene		< 0.001	< 0.001	< 0.001			
m,p-Xylenes		< 0.002	< 0.002	< 0.002			
o-Xylene	·	< 0.001	< 0.001	< 0.001			
Total BTEX		< 0.006	< 0.006	< 0.006			

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

SBA Award of Excellence 1994. Certified by AR. KS, OK & Accredited by A2LA

SW- 846 5030/8020 BTEX

Date Validated: Nov 5, 1997 09:00

Date Analyzed: Nov 4, 1997 13:07

Analyst: HL

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			MAT	RIX SPIKE /	MATRIX	SPIKE DUP	LICATE AND I	RECOVERY			
Q.C. Sample ID	[A]	[B]	[C]	[D]	(E)	Matrix	[F]	[G]	[H]	[1]	[1]
	Sample	Matrix Spike	Matrix Spike	Matrix	Method	Limit	QC	QC	QC	Matrix Spike	
172734- 001	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Matrix Spike	M.S.D.	Recovery	Qualifier
Personato a			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
Parameter	ppm	ppm	ppm	ppm	ррт	%	%	%	%	%	
Benzene	< 0.0010	0.0846	0.0855	0.1000	0.0010	25.0	1.1	84.6	85.5	65-135	j
Toluene	< 0.0010	0.0860	0.0857	0.1000	0.0010	25.0	0.3	86.0	85.7	65-135	5
Ethylbenzene	< 0.0010	0.0871	0.0877	0.1000	0.0010	25.0	0.7	87.1	87.7	65-135	5
m,p-Xylenes	< 0.0020	0.1720	0.1730	0.2000	0.0020	25.0	0.6	86.0	86.5	65-135	5
o-Xylene	< 0.0010	0.0893	0.0898	0.1000	0.0010	25.0	0.6	89.3	89.8	65-135	5

Spike Relative Difference [F] = 200*(B-C)/(B+C) Matrix Spike Recovery [G] = 100*(B-A)/[D] M.S.D. = Matrix Spike Duplicate M.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

SW- 846 5030/8020 BTEX

Date Validated: Nov 5, 1997 09:00

Date Analyzed: Nov 4, 1997 12:28

QA/QC Manager: Edward H. Yonemoto, Ph.D.

		I	BLANK SPI		SIS		
	[A] Blank	[B] Blank Spike	[C] Blank	[D] Method	[E] QC	[F] LIMITS	[G]
Parameter	Result	Result	Spike Amount	Detection Limit	Blank Spike Recovery	Recovery Range	Qualifier
	ppm	ppm	ppm	ppm	%	%	
Benzene	< 0.0010	0.0984	0.1000	0.0010	98.4	65-135	
Toluene	< 0.0010	0.1000	0.1000	0.0010	100.0	65-135	
Ethylbenzene	< 0.0010	0.1020	0.1000	0.0010	102.0	65-135	
m.p-Xylenes	< 0.0020	0.2020	0.2000	0.0020	101.0	65-135	
o-Xylene	< 0.0010	0.1040	0.1000	0.0010	104.0	65-135	

Blank Spike Recovery [E] = 100*(B-A)/(C) N.C. = Not calculated, data below detection limit N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only

Analyst: HL Matrix: Liquid

ANALYTICAL CHAIN OF CUSTODY REPORT CHRONOLOGY OF SAMPLES

K.E.I. Consultants, Inc.

Project Name: TNMPL-Site #13

XENCO COC#: 1-72736

Project ID: 610057 Project Manager: Theresa Nix Project Location: Monument, NM

Date Received in Lab: Nov 4, 1997 10:30 by CC **xenco contact :** Carlos Castro/Edward Yonemoto

						· · · · · · · · · · · · · · · · · · ·	Dat	e and Time	
Field ID	Lab. ID	Method Name	Method ID	Units	Turn Around	Sample Collected	Addition Requested	Extraction	Analysis
1 MW-1	172736-001	BTEX	SW-846	ppm	Standard	Nov 1, 1997 13:45	······································	Nov 4, 1997 by HL	Nov 4, 1997 14:43 by HL
2 MW-2	172736-002	втех	SW-846	ppm	Standard	Nov 1, 1997 14:00		Nov 4, 1997 by HL	Nov 4, 1997 18:14 by HL
3 MW-3	172736-003	втех	SW-846	ppm	Standard	Nov 1, 1997 14:15		Nov 4, 1997 by HL	Nov 4, 1997 15:21 by HL

ntractor (+ C + I crees	Cons	ulten	łs					P†		2/0)680	- 3767	No	No. co Carrie			ipmer	nt:		С	ontr	Quo	r COC # 60 # :	
309 1	Jurzb	ach,	Suit	e /	00		San	An	iter	110,	TX 7	8238	of	Airbil	I No.							PO	No: 8130	
ict Name	NMPL	_						Pro	ject [M//	Director K.e. Ha	autho	rn.	C 0 N		1	\Box	7	7	7	\int	Τ	\prod		L
	Monun										NIV		TA					/		/ /		' /	/ Turn-around	A B
	Stanle		/					Pro	ect N	la.		13		(8)/	1		/ /		' /			/ + ASAP	ONLY
	SAMPLE		LUTA IERIZA		N			<u>(e)</u>	-	57 scrvative	Unl Die					/ /	/					/ /	24 hrs	D
			D E	8 0	W		Con	lahar	1		Waste Oil		S	8	H KE	/.		/				/ /	48 hrs Standard Remnalize	#
eld ID	Date	Time	P T H	ľ L	W A T E R	M / P E		Type P. G		Other	PIT No: Same	Tank No: le Description		BIEX GRAD	Ē/	/-	/ /			' /		/4	Remarks	
· 1	11-1-97	1345			7				7	HC1			Z	\square	\uparrow			-1	1	1	1	\uparrow		1
	11-1-57				7	+		-	b	HC]			7	1						+				2
				ť		╈	1	+	F-7					ľ7	+	$\left \right $	╧╋			-+-	+	+		3
,-3	11-1-77	1415			4	+			Ł	(<i>IC</i>)			2	\mathbb{H}					-+			+		4
<u> </u>						\bot	_																	
																								5
						╈		1																6
					-	╋		+-	+			<u></u>		$\left \right $		+			-+	+	╈			7
						╋			┢					┟╌┼					-+		+			8
				$\left - \right $	-	+	+	+-	-															9
<u>-</u>				$\left - \right $	+	╋	+	+	┢	 				$\left \right $				-		+				10
quished I	ny: CSig	nature)	<u> </u>	Ц	DAT	E	TIM	E	R		<u> </u>	Signature	 D		 111	MB	R	emari	 œ	 •				
mley		ver		Ī <i>.</i> ,	-3	- 47	160	D											د ا د روح				cal to	

ANALYTICAL REPORT 1-72736

for

K.E.I. Consultants, Inc.

Project Manager: Theresa Nix Project Name: TNMPL-Site #13

Project Id: 610057

November 5, 1997

HOUSTON - DALLAS - SAN ANTONIO

 11381
 Meadowglen Lane
 Suite L * Houston, Texas 77082-2647

 Phone (281) 589-0692
 Fax (281) 589-0695

11381 Meadowglen Suite L Houston, Texas 77082-2647 (281) 589-0692 Fax: (281) 589-0695 Houston - Dollas - Son Antonio

November 5, 1997

Project Manager: Theresa Nix K.E.I. Consultants, Inc. 5309 Wurzbach Rd. Suite 100 San Antonio, TX 78238

Reference: XENCO Report No.: 1-72736 Project Name: TNMPL-Site #13 Project ID: 610057 Project Address: Monument, NM

Dear Theresa Nix:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with XENCO Chain of Custody Number 1-72736. All results being reported to you apply only to the samples analyzed, properly identified with a Laboratory ID number. This letter documents the official transmission of the contents of the report and validates the information contained within.

All the results for the quality control samples passed thorough examination. Also, all parameters for data reduction and validation checked satisfactorily. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, and completeness.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 3 years in our archives and after that time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. 1-72736 will be filed for 60 days, and after that time they will be properly disposed of without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

XENCO Laboratories is accredited by the American Association for Laboratory Accreditation (A2LA) for technical competence in the field of Environmental Testing (Certificate No. 0343-01). In accordance with A2LA's guidelines, XENCO operates a Quality System that meets ISO/IEC Guide 25 requirements and is strictly implemented and enforced through our standard QA/QC procedures.

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Sincerely,

ddie Ya QAVQC Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified in California, Oklahoma, Kansas, Arkansas, and approved by numerous other States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY!

District I - (505) 393-6161 P. O. Box 1980 Hobbs. NM 88241-1980 District II - (505) 748-1283 811 S. First Artesia, NM 88210 District III - (505) 334-6178 1000 Rio Brazos Road Aztec, NM 87410 District IV - (505) 827-7131 New Mexico Coll Conservation Divisio 2040 South Pacheco Street Santa Fe. New Mexico 87505 (505) 827-7131	DN Submit Origina;
REQUEST FOR APPROVAL TO ACCEPT	SOLID WASTE
1. RCRA Exempt: 🔲 Non-Exempt: 🗹	4. Generator Twin PLCC.
Verbal Approval Received: Yes No	5. Originating Site Corport # 13
2. Management Facility Destination C+C Land Farm	6. Transporter Turney-Trucking
3. Address of Facility Operator 2m. South OF Monunt	8. State New Mexico
7. Location of Material (Street Address or ULSTR) 安けら、T2Cら、R37E	
9. <u>Circle One</u> :	
 A. All requests for approval to accept oilfield exempt wastes will be accepted accept accept of the second s	ompanied by necessary chemical analysis to on of origin. No waste classified hazardous by
All transporters must certify the wastes delivered are only those consigned	d for transport.
BRIEF DESCRIPTION OF MATERIAL: Hydro Carbon Stained Scil Non HAZ OF Process Approval NMOUS	zardous / Knowlodge
Estimated Volume <u></u>	erator at the end of the haul) cy
SIGNATURE: Angeneri Facility Authonzed Agent / CCC for TEL	C.A.A. DATE - 4-9 7 EPHONE NO 397- 2895
(This space for State Use) APPROVED BY: Charles The Mustan	F. Superrism DATE: 12/8/47
APPROVED BY: TITLE:	DATE:
	,

MONUMENT, NEW MEXICO 88265 PHONE: (505) 397-2045 (505) 397-2860 (505) 392-2236 COMPANY NAME <u>Jew Med Autom</u> COMPANY REPRESENTATIVE NAME <u>Jew Med Autom</u> COMPANY REPRESENTATIVE NAME <u>Jew Med Autom</u> LEASE NAME <u>TMM SIGNAL + + 13</u> SEC. TOWNSHIP RANGE 5 19 3 G TRUCKING COMPANY NAME <u>SIGNAL + + 13</u> NEW SIGNATURE <u>19</u> 8 40 TRUCKING COMPANY NAME <u>SIGNAL + + 13</u> COPY OF ANALYSIS ATTACHED, IF REQUIRED <u>Med Autom</u> TYPE OF MATERIAL BEING HAULED AND QUANTITY <u>619</u> 8 40 <u>THOC - 1149</u> BENZENE <u>19</u> 14 40 THOC <u>1149</u> BENZENE <u>19</u> 14 40 THOL <u>1149</u> BENZENE <u>19</u> 14 40 ATTENDANT ON DUTY <u>Med Autom</u>		C & C LAND BOX	x 55	
101.978 (505) 397-2860 (505) 392-2236 COMPANY NAME <u>IMANAL ME</u> <u>Men Made</u> COMPANY REPRESENTATIVE NAME <u>Januar</u> LEASE NAME <u>TMM SIDUATE IS</u> SEC. TOWNSHIP RANGE <u>5 19 36</u> TRUCKING COMPANY NAME <u>Made</u> DRIVERS SIGNATURE <u>MADE</u> DRIVERS SIGNATURE <u>MADE</u> UPE OF MATERIAL BEING HAULED AND QUANTITY <u>619 S G</u> <u>2014</u> <u>Mit</u> COPY OF ANALYSIS ATTACHED, IF REQUIRED <u>Made</u> Made TPHC <u>1149</u> BENZENE <u>INC. 149</u> PARA XYLENE <u>PARA XYLENE</u>				5
COMPANY REPRESENTATIVE NAME <u>Jany</u> <u>Jana</u> LEASE NAME <u>TMM</u> <u>SID 144 - ±1 13</u> SEC. TOWNSHIP RANGE <u>5</u> 19 3 G. TRUCKING COMPANY NAME <u>Jana</u> DRIVERS SIGNATURE <u>MALLED AND QUANTITY</u> <u>619 8 G</u> TYPE OF MATERIAL BEING HAULED AND QUANTITY <u>619 8 G</u> <u>7000</u> <u>Material BEING HAULED AND QUANTITY</u> <u>619 8 G</u> <u>7000</u> <u>7000</u> 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 70000000000	001978		(505) 397-2860	
LEASE NAME TIM SIDNAT - #13 SEC. TOWNSHIP RANGE 5 19 36 TRUCKING COMPANY NAME DRIVERS SIGNATURE DRIVERS SIGNATURE TYPE OF MATERIAL BEING HAULED AND QUANTITY TYPE OF MATERIAL BEING HAULED AND QUANTITY COPY OF ANALYSIS ATTACHED, IF REQUIRED TPHC TPHC TOLUENE ETHYL BENZENE PARA XYLENE PARA XYLENE				Depto
LEASE NAME TIM SIDNAT - #13 SEC. TOWNSHIP RANGE 5 19 36 TRUCKING COMPANY NAME DRIVERS SIGNATURE DRIVERS SIGNATURE TYPE OF MATERIAL BEING HAULED AND QUANTITY TYPE OF MATERIAL BEING HAULED AND QUANTITY COPY OF ANALYSIS ATTACHED, IF REQUIRED TPHC TPHC TOLUENE ETHYL BENZENE PARA XYLENE PARA XYLENE	COMPANYREPRE	SENTATIVE NAME_	James -	lancie.
5 19 36 TRUCKING COMPANY NAME				13
TRUCKING COMPANY NAME	SE			_
DRIVERS SIGNATURE	5	19		3 6
DRIVERS SIGNATURE			1 and an en	
TYPE OF MATERIAL BEING HAULED AND QUANTITY 6 8 4 TILLY Mint COPY OF ANALYSIS ATTACHED, IF REQUIRED Mon Hay TPHC 149 BENZENE TOLUENE ETHYL BENZENE PARA XYLENE		· • •	14 Jon.	n Q ×
TPHC BENZENE TOLUENE ETHYL BENZENE PARA XYLENE			DQUANTITY	6 19 8 Ge
TPHC BENZENE TOLUENE ETHYL BENZENE PARA XYLENE	aly de	it.		
TPHC BENZENE TOLUENE ETHYL BENZENE PARA XYLENE	COPYOFANALYSI	SATTACHED, IF REQ	UIRED MO	en Haze
BENZENE TOLUENE ETHYL BENZENE PARA XYLENE			· · · · · ·	80
TOLUENE				
ETHYL BENZENE			· · · · · · · · · · · · · · · · · · ·	· · · ·
PARA XYLENE		ŻENE I ł	end and	1
ATTENDANT ON DUTY			من المنظنة المنظنة المنظنة المنظنة المنظنة المنظنة المنظنة المنظنة المنظنة المنظنة المنظنة المنظنة المنظنة الم	
	ATTENDANT ON D	UTY	L Total	- fle

•

	HONUMENT, N	IOX 55 NEW MEXICO 8	8265	
001520	PHONE:	(505) 397-20 (505) 397-28 (505) 392-22)45 360	500
COMPANY NAME	24	71 The	1 per	coles .
COMPANYREPRE	SENTATIVENAM		- dage	Emerica
	fete 1	3		
3	••• •••		37	
TRUCKING COMP	JRE		<u>.</u> D	, `
	JRE	ANDQUANTITY	<u>.</u> D	8 yde
DRIVERSSIGNATI	JRE LBEINGHAULED		<u>.</u> D	8 yda
DRIVERSSIGNATI	JRE LBEINGHAULED		<u>.</u> D	8 yda
DRIVERS SIGNATI TYPE OF MATERIA	JRE LBEINGHAULED		<u>.</u> D	8 ytc
DRIVERS SIGNATO	JRE LBEINGHAULED		<u>.</u> D	8 yde
DRIVERS SIGNATO TYPE OF MATERIA Device of Analysi TPHC BENZENE_	JREA		<u>.</u> D	8 yde
DRIVERS SIGNATO TYPE OF MATERIA COPY OF ANALYSI TPHC BENZENE TOLUENE ETHYL BEN	JREA		<u>.</u> D	8 yda
DRIVERS SIGNATO TYPE OF MATERIA COPY OF ANALYSI TPHC BENZENE TOLUENE ETHYL BEN	JRE		<u>.</u> D	8 yda

.

QA/QC PROCEDURES

DECONTAMINATION OF EQUIPMENT

Cleaning of drilling equipment was the responsibility of the drilling company. Prior to collection of each soil sample, sampling equipment was cleaned with Liqui-Nox detergent and rinsed with distilled water.

SOIL SAMPLING

Samples of subsurface soils were obtained by hydraulically pushing a 2-inch stainless steel sampler or a five-foot continuous core sampler. Representative soil samples were divided into two separate portions using clean, disposable gloves and clean sampling tools. One portion of the soil sample was placed in a disposable sample bag. The bag was sealed and labeled for head-space analysis using a photoionization detector (PID) calibrated to a 100 ppm isobutylene standard. Each sample was allowed to volatilize for approximately 30 minutes at ambient temperature prior to conducting the analysis.

The other portion of the soil samples collected were placed in a sterile glass container equipped with a Teflon-lined lid furnished by the analytical laboratory. The container was filled to capacity with soil to limit the amount of head-space present. Each container was labeled and placed on ice in an insulated cooler. The cooler was sealed for shipment to Xenco Laboratories in Houston, Texas or Environmental Lab of Texas, Inc. in Odessa, Texas. Proper chain-of-custody documentation was maintained throughout the sampling process.

GROUND WATER SAMPLING

Ground water samples were collected from the 3 monitoring wells. After measuring the depth to ground water, each well was purged of approximately 3 well volumes of water using a PVC bailer. The bailer was cleaned prior to each use with Liqui-Nox detergent and rinsed with distilled water.

After purging the wells, the water samples were collected with disposable Teflon samplers and polyethylene lines by personnel wearing clean, disposable gloves. Ground water sample containers were filled in the order of decreasing volatility (i.e., BTEX containers were filled first and PAH containers second).

Ground water samples collected for BTEX analyses were placed in sterile, 40 ml glass VOA vials equipped with Teflon-lined caps. Water samples collected for PAH analysis were placed in sterile one liter glass containers equipped with Teflon-lined caps. Water samples collected for metals analysis were placed in 500 ml containers equipped with Teflon-lined caps. The containers were provided by the analytical laboratory. The vials were filled to a positive meniscus, sealed, and visually checked for the presence of air bubbles. If air bubbles were present, the vials were uncapped, additional sample water was added, and the vials were resealed until no air bubbles were present.

The filled containers were labeled and placed on ice in an insulated cooler, and chilled to an approximate temperature of 40°F (4°C). The cooler was sealed for shipment to Xenco Laboratories in Houston, Texas. Proper chain-of-custody documentation was maintained throughout the sampling process. The laboratory was responsible for maintaining proper laboratory analytical QA/QC procedures. These procedures are either transmitted with the laboratory reports or are on file at the laboratory.

SOIL SAMPLES

Soil samples were transported to a certified laboratory for TPH and BTEX analyses using the methods described below. Soil samples were analyzed for TPH and BTEX within 14 days following the collection date.

The soil samples were analyzed for TPH concentrations in accordance with EPA Method 418.1 and for BTEX concentrations in accordance with EPA Method SW846-8020, 5030.

GROUND WATER SAMPLES

Ground water samples from the 3 events and the excavation bottom were submitted for determination of BTEX concentrations. Ground water samples collected during the first event were also submitted for determination of metals, PAH, major cations/anions, total dissolved solids (TDS), and total inorganic carbon (TIC). All PAH constituents were below laboratory detection limits.

The samples were analyzed for BTEX concentrations using EPA Method SW846-8020, 5030.

The water sample was analyzed for PAH in accordance with EPA Method 8100, metals in accordance with EPA Method 6010, for TDS in accordance with EPA Method 160.1, for TIC in accordance with Modified Method 415.1, for anions in accordance with EPA Method 300.0, and for carbonate/bicarbonate in accordance with SM4500CO2D.