

Re: Addendum Pipeline Spill Remediation and Investigation Report, Dynegy Midstream Services, L.P., Unit Letter N, Section 29, Township 21 South, Range 37 East, Lea County, New Mexico Zmi W EuNice

Dear Mr. Johnson:

This report presents the results of remedial actions and additional investigation of a release of natural gas liquids (NGL) from a pipeline drip owned by Dynegy Midstream Services, L.P. (Dynegy), and located in the SE/4, SW/4 (Unit Letter N), Section 29, Township 21 South, Range 37 East, Lea County, New Mexico. In a letter dated February 19, 2001, Larson and Associates, Inc. (LA) summarized the results of field and laboratory analysis of soil samples collected from the Site, and proposed remedial actions to reduce the remaining total petroleum hydrocarbons (TPH) below the New Mexico Oil Conservation Division (NMOCD), Recommended Remediation Action Level (RRAL) of 1,000 milligrams per kilogram (mg/Kg). No samples exceeded the NMOCD RRAL for benzene (10 mg/Kg) and total BTEX (50 mg/Kg). The remedial action was approved by the NMOCD, and included removal of additional soil from the bottom and south side of the excavation, and scraping a section of the lease road where TPH in a previous sample (Comp. #1) exceeded the RRAL. Figure 1 presents a location map. Figure 2 presents a Site drawing.

On March 21, 2002, LA supervised removal of additional soil from the bottom and south side of the excavation, and scraped additional soil from a section of lease road located south of the Site. The excavation was deepened to about 8 feet BGS, and extended to the south between 5 and 10 feet. Soil removed from the excavation, scraped from the roadway, and soil previously excavated from the Site was disposed at an NMOCD approved facility. LA collected samples from the bottom and south side of the excavation following removal of the soil, and a composite sample from the roadway. The samples were collected in clean glass sample jars, secured with ®Teflon lined lids, labeled, chilled in an ice chest, delivered under chain-of-custody control to Environmental Lab of Texas, Ltd., located in Odessa, Texas, and were analyzed for TPH using method SW-846-8015 for gasoline range organics (GRO) and diesel range organics (DRO). Table 1 presents a summary of the laboratory analysis. Appendix A presents the laboratory report. No TPH was reported above method detection limits in samples from the bottom and south side of the excavation. The TPH concentration reported in the composite sample from the roadway was 83.5 mg/Kg. These results are well below the RRAL of 1,000 mg/Kg, and the excavation was filled with clean soil obtained from the landowner. Mr. Larry Johnson August 18, 2004 Page 2

On June 24, 2004, LA supervised collection of soil samples from a boring (BH-1) installed in the excavated area adjacent to the pipeline near the release. Scarborough Drilling, Inc., located in Lamesa, Texas, advanced the boring to about 31 feet below ground surface (BGS) using an air-rotary drilling rig. Soil samples were collected every two (2) feet (i.e., 0' to 2', 2' to 4' and 4' to 6', etc.) to approximately 8 feet BGS, and every five (5) feet beginning at about 10 feet BGS using 1-foot long core sampler. The drill rig, rods and bit were thoroughly cleaned before drilling using a high-pressure hot water washer. The split-spoon and core samplers and hand tools were thoroughly cleaned between samples using a solution of potable water and laboratory-grade detergent, and rinsed with distilled water. The soil samples were placed in clean glass sample jars, secured with ®Teflon-lined lids, labeled, chilled in an ice chest, and delivered under chain-of-custody control to Environmental Lab of Texas, Ltd. (ELTI), located in Odessa, Texas. Duplicate samples were collected for headspace analysis in accordance with NMOCD procedures, and no headspace readings exceeded 100 parts per million (ppm). Therefore, the laboratory analyzed select samples for TPH and chloride. Table 2 presents a summary of field and laboratory analysis of the soil samples. Appendix A presents the laboratory analysis.

Referring to Table 2, TPH was below the RRAL (1,000 mg/Kg) in all soil samples. Chloride was less than 100 mg/Kg in all samples, except BH-1, 8 to 8.2 feet (106 mg/Kg) and BH-1, 10 to 11 feet (1,170 mg/Kg). The sample from BH-1, 10 to 11 feet BGS was analyzed for chloride using the synthetic precipitation leaching procedure (SPLP), and the result was 62 milligrams per liter (mg/L). The boring was plugged in accordance with New Mexico State Engineer requirements. Dynegy requests the NMOCD consider no further action and closure for the Site. Please call Mr. Cal Wrangham with Dynegy at (432) 688-0555 or myself at (432) 687-0901 if you have questions. We may also be contacted by email at <u>cal.wrangham@dynegy.com</u> or mark@Laenvironmental.com. Respectfully yours,

Larson and Associates, Inc.

Mark J. Larson, CPG, CGWP President

Encl.

cc: Mr. Cal Wrangham - Dynegy Mr. Dave Harris – Dynegy Mr. Bill Olson – NMOCD – Santa Fe TABLES

Summary of Headspace and Laboratory Analyses of Soil Samples From Excavation, Spill Area and Soil Pile Table 1: **Dynegy Midstream Services, L.P.**

SE/4, SW/4 Section 29, Township 21 South, Range 37 East

<u>Lea</u> County, New Mexic	0
------------------------------	---

	Lea County	, New Mexi	co		_								Page 1 of 1
Site Number	Sample Area	Sample Number	Sample Date	PID (ppm)	GRO (mg/kg)	DRO (mg/kg)	TPH (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylene (mg/kg)	BTEX (mg/kg)	Chloride (mg/kg)
7	Excavation	North	06-Dec-00	1 7 3.3	<5	149	149	<0.05	<0.05	<0.05	<0.05	<0.20	16
		South	06-Dec-00	501.2	113	884	997	0.055	1. 76	0.477	7.89	10.1 82	28
		East	06-Dec-00	14.2	<5	<50	<55	-		-		-	22
, ,		West	06-Dec-00	137.5	<5	211	211	<0.05	<0.05	<0.05	0.61	0.61	17
8		Bottom	~06-Dec-00	187.4	293	1,620	1,913	0.46	10.6	1.33	30.2	42.59	430
0	Charles and the second se	Bottom	21-Mar-02	-	<10	<10	<20			-	-	-	
		South	21-Mar-02		<10	<10	<20	-		-			
	Lease Road	Comp. #1	06-Dec-00	38.6	73.3	4050	4,123.3			-	-		110
		Comp. #2	06-Dec-00	43.3	20.2	424	444.2						80
		Composite	21-Mar-02		<10	83.5	83.5			-			
	Pile	Pile	06-Dec-00	470.3	353	6,990	7,343] 0.137	7.42	2.22	32.7	42.477	83

Analysis of samples collected on Decemmber 6, 2000, performed by Trace Analysis, Inc., Lubbock, Texas. All others performed by Environmental Lab Notes: of Texas, Ltd., Odessa, Texas.

- 1. PID: Measurement by photoionization detector
- Parts per million 2. ppm:
- 3. DRO: Diesel-range petroleum hydrocarbons
- 4. GRO: Gasoline-range petroleum hydrocarbons
- 5. TPH: Total petroleum hydrocarbons (Sum of DRO + GRO)
- 6. mg/kg: Milligrams per kilogram
- 7. --: No data available
- 8. <: Below method detection limit

	Lea County,		whiship 21 St	Auti, Range J	/ 1/450		Page 1 of 1
Soil Boring Number	Sample Depth (feet bgs)	Sample Date	PID (ppm)	GRO (C6-C12) mg/kg	DRO (>C12-C35) mg/kg	TPH (C6-C35) mg/kg	Chloride mg/kg
RRAL:						1,000	
BH-1	0 - 2	24-Jun-04	0.9				<20
	2 - 4	24-Jun-04	2.5	<10	<10	<20	<20
	4 - 6	24-Jun-04	0.7				<20
	6 - 8	24-Jun-04	73.3	307	650	957	<20
	8 - 8.2	24-Jun-04					106
	10 - 11	24-Jun-04	19.1	<10	8.01	8.01 🔹	1170
	15 - 16	24-Jun-04	9.8	<10	<10	<20	42.5
	20 - 21	24-Jun-04	2.2				56.7
	25 - 26	24-Jun-04	10.0				88.6
	30 - 31	24-Jun-04	2.2				56.7
SPLP (mg	/L)						
BH -1	10 - 11	24- Jun- 04					62.0

Table 2:Summary of Headspace and Laboratory Analysis of Soil Samples from Boring
Dynegy Midstream Services, L. P., Site No. 7
SE/4, SW/4, Section 29, Township 21 South, Range 37 East
Lea County, New Mexico

Notes: Analyses performed by Environmental Lab of Texas I, Ltd., Odessa, Texas

1. BGS: Depth in feet below ground surface

2. PID: Photoionization detector

3. ppm: Parts per million

4. GRO: Gasoline-range organics

5. DRO: Diesel-range organics

6. TPH: Total petroleum hydrocarbons (Sum of GRO + DRO)

7. mg/Kg: Milligrams per kilogram

8. ---: No data available

9. <: Below method detection limit

10. RRAL NMOCD Recommended Remediation Action Level

11. SPLP: Synthetic Precipitation Leaching Procedure

12. mg/L: Milligrams per liter

FIGURES

APPENDIX A

Laboratory Reports

ANALYTICAL REPORT

Prepared for:

MARK LARSON LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710

 Project:
 Dynegy-Site #7

 Order#:
 G0202900

 Report Date:
 03/26/2002

<u>Certificates</u> US EPA Laboratory Code TX00158

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710 915-687-0456

Order#: G0202900 **Project:** 0-0100-07 Project Name: Dynegy-Site #7 Location: Lea County, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas.

<u>Lab ID:</u> 0202900-01	<u>Sample :</u> Bottom	<u>Matrix:</u> SOIL	Date / Time <u>Collected</u> 3/21/02 15:55	Date / Time <u>Received</u> 3/22/02 16:55	<u>Container</u> 8 oz glass	Preservative Ice
	<i>Testing:</i> 8015M	Rejected: No	Tem	p: 4.0 C		
0202900-02	South	SOIL	3/21/02 16:00	3/22/02 16:55	8 oz glass	Ice
	<i>Testing:</i> 8015M	Rejected: No	Tem	р: 4.0 C		
0202900-03	Composite	SOIL	3/21/02 16:15	3/22/02 16:55	8 oz glass	Ice
	<u>Testing:</u> 8015M	Rejected: No	Tem	р: 4.0 C		

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

P.O. BOX 50685 Project Name: Dynegy-Site #7 MIDLAND, TX 79710 Location: Lea County, NM	MARK LARSON LARSON AND ASSOCIATES, INC.	Order#: Project:	G0202900 0-0100-07
MIDLAND, TX 79710 Location: Lea County, NM	P.O. BOX 50685	Project Name:	Dynegy-Site #7
	MIDLAND, TX 79710	Location:	Lea County, NM

Lab ID:	
Sample ID:	

0202900-01 Bottom

			8015M			
Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 3/25/02 21:52	Sample <u>Amount</u> 1	Dilution <u>Factor</u> 1	<u>Analyst</u> CK	<u>Method</u> 8015M
	Parameter		Resu mg/k		RL	
	GRO, C6-C12		<10		10.0	
	DRO, >C12-C35		<10)	10.0	
	TOTAL, C6-C35		<10)	10.0	

Lab ID: Sample ID:

D:

0202900-02

South

			8015M			
Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 3/25/02 22:05	Sample <u>Amount</u> 1	Dilution <u>Factor</u> 1	<u>Analyst</u> CK	<u>Method</u> 8015M
	Parameter		Resu mg/k		RL	
	GRO, C6-C12		<1()	10.0	
	DRO, >C12-C35		<1()	10.0	
	TOTAL, C6-C35	;	<10)	10.0	

N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

Order#:

Project:

Location:

Project Name:

G0202900

0-0100-07

Dynegy-Site #7

Lea County, NM

MARK LARSON LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710

Lab ID: Sample ID:

0202900-03 Composite

			8015M			
Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 3/25/02 22:17	Sample <u>Amount</u> 1	Dilution <u>Factor</u> 1	<u>Analyst</u> CK	<u>Method</u> 8015M
	Parameter		Resu mg/k		RL	
	GRO, C6-C12		<10		10.0	
	DRO, >C12-C35		83.5	5	10.0	
	TOTAL, C6-C35		83.5	5	10.0	

ene 3/28/02 Approval:

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS

QUALITY CONTROL REPORT

8015M

Order#: G0202900

BLANK SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0000970-02			<10		
CONTROL SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0000970-03		952	813	85.4%	<u></u>
CONTROL DUP	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0000970-04		952	880	92.4%	7.9%
SRM SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0000970-05		1000	1053	105.3%	

Environn 12600 West I-20 East Odessa, Texas 7976	t	b of T Phone: 915- Fax: 915-	563-1800	Inc.				l]			СНА	IN OF	- CU:	STOL) DY RE	ECOR	D AN	D AI	VAL Y	/SIS R	REQUE	EST		·
Project M	anager: <u>Ho</u> w	h	Lanor	<u>~</u>										Pr	ojeci	t Nar	ne:	0 _×	<u>ش ۲</u>	д.Л	<u> </u>	人	<u>sita</u>	Ħ	<u>i </u>	
Compan	y Name Lav	<u>xm a</u>	nd (Masero	<u>tes. 11</u>	r							-					•		- 1		07				
Company A	ddress: <u>507</u>	N -	M	Kuri-mi	and b	<u>t.</u>	-	St	<u> </u>	202	•		-	1	Proje	ect L	oc:	L	مم	1	\underline{C}	<u>منہ</u>	sty	<u></u>	117	
City/St	ate/Zip: Mdd	lland	, Ţ	X L	797	<u>ci</u>							-			PC)#:									-
	one No: (915) 6	87-00	101		Fax No): <u>(</u> (115)	68	7-	CA	5(,	-													
Sampler Sig	nature:			<u></u>									-						Ana	alyze	For					
																	TCLI TOTA		\vdash	-+-	-					
				<u></u>	1		F	P	reserva	ative		-	Matr	ix 				fg Se		Τ	7				e l	,
LAB # (fab use only)	and the second secon	LD CODE		Date Sampled	Time Sampled	No. of Containers	lce	HNO,	NaOH ·	H _. SO ₄	None Other (Specify)	Water	Sludge	Other (specify)	TDS/CL/SAR/EC	1 814 HAT	TPH TX 1005/1006 TPH 8015M GRO/DRO	Metals: As Ag Ba Cd Cr Pb Hg	Volatiles	Emivoluties HTFX 80218/5030					RUSH TAT (Pre-Schedule	Standard TA1
0202900-01	Bottern			32/02	1	1	\mathbb{M}		_		_			·			<u>}</u>			╞		$\downarrow \downarrow$				\square
OZ	Santh			<u> </u>	1600	<u> i</u>	\square			\square							<u> </u>			\downarrow	\perp	\square	+	\downarrow		
4 03	Cemperi	te		0	1615	1-	$\mathbf{\hat{F}}$	_							┨─┤		+	+	_	+	_	\vdash		┝╌┝		┝╌┤
				<u></u>			┝─┼	+		┠─┼	-{-	$\left - \right $			┠╌┤	-+		╀╌┨	+	╋	╋	┼╌┼		╞╌┼	+-	\mathbb{H}
		••••••••••••••••••••••••••••••••••••••					\vdash		┥┥	┢╼┼╴		┢		+	┠─┤	-+		┼┤	+	+	+-	┼┼	+	\vdash		\vdash
								-†-		┝╼┼╴		$\left \right $		+	╏─┤			┼╼┤	+	+	┼─	┼╌┼	+		+-	Η
											T							\square		T	+	\square				
																				\Box	\Box	П			T	\Box
				L														\square								
Relinquished by:	<u> </u>	3 Date 22/02	Time 165ち	Received by:								Da	ite		Time		empe	e Con rature atory	Upol	n Re meni	ceipt: fs:		ک ا	<i>,</i> , ,		
Relinquished by:		Date	Time	Received by EL		rw	معہ				3		ta 2-2		rime ISS											

U

τ

12600 West I-20 East - Odessa, Texas 79765

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Dynegy Project Number: 0-0100-07 Location: Site #7

Lab Order Number: 4F25003

Report Date: 06/29/04

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

Project: Dynegy Project Number: 0-0100-07 Project Manager: Mark Larson

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-1 0-2'	4F25003-01	Soil	06/24/04 08:30	06/25/04 09:45
BH-1 2-4'	4F25003-02	Soil	06/24/04 08:40	06/25/04 09:45
BH-1 4-6'	4F25003-03	Soil	06/24/04 08:45	06/25/04 09:45
BH-1 6-8'	4F25003-04	Soil	06/24/04 08:48	06/25/04 09:45
BH-1 10-11'	4F25003-05	Soil	06/24/04 09:00	06/25/04 09:45
BH-1 15-16'	4F25003-06	Soil	06/24/04 09:10	06/25/04 09:45
BH-1 20-21'	4F25003-07	Soil	06/24/04 09:15	06/25/04 09:45
BH-1 25-26'	4F25003-08	Soil	06/24/04 09:23	06/25/04 09:45
BH-1 30-31'	4F25003-09	Soil	06/24/04 09:30	06/25/04 09:45
BH-1 8-8.2	4F25003-10	Soil	06/24/04 08:50	06/25/04 09:45

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Project: Dynegy Project Number: 0-0100-07 Project Manager: Mark Larson

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-1 2-4' (4F25003-02) Soil			<u> </u>			- <u>.</u>			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EF42801	06/25/04	06/26/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	11			*			
Total Hydrocarbon C6-C35	ND	10.0	Ħ						
Surrogate: 1-Chlorooctane		71.2 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		70.6 %	7 0	130	"	"	"	"	
BH-1 6-8' (4F25003-04) Soil									
Gasoline Range Organics C6-C12	307	10.0	mg/kg dry	ì	EF42801	06/25/04	06/26/04	EPA 8015M	
Diesel Range Organics >C12-C35	650	10.0	Ħ	H	•	M		•	
Total Hydrocarbon C6-C35	957	10.0	"			м		н	
Surrogate: 1-Chlorooctane		86.0 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		79.8 %	70-	130	"	**	77	#	
BH-1 10-11' (4F25003-05) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EF42801	06/25/04	06/26/04	EPA 8015M	
Diesel Range Organics >C12-C35	J [8.01]	10.0			"		۳	"	
Total Hydrocarbon C6-C35	ND	10.0			•	۳	*		
Surrogate: 1-Chlorooctane		75.0 %	70-	130	. 11	н	"	· #	
Surrogate: 1-Chlorooctadecane		72.6 %	70-	130	**	"		"	
BH-1 15-16' (4F25003-06) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EF42803	06/28/04	06/28/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	н		•	н	Ħ	*	
Total Hydrocarbon C6-C35	ND	10.0	н				•	n	
Surrogate: 1-Chlorooctane		91.4 %	70-	130	n	"	"	"	
Surrogate: 1-Chlorooctadecane		91.0 %	70-	130	· "	rt	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 2 of 9

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

Project: Dynegy Project Number: 0-0100-07 Project Manager: Mark Larson

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-1 0-2' (4F25003-01) Soil		- <u>,</u>		· . · .					<u></u>
Chloride	ND	20.0	mg/kg Wet	2	EF42503	06/25/04	06/26/04	SW 846 9253	
BH-1 2-4' (4F25003-02) Soil									
Chloride	ND	20.0	mg/kg Wet	2	EF42503	06/25/04	06/26/04	SW 846 9253	
% Solids	98.0		%	1	EF42601	06/25/04	06/26/04	% calculation	
BH-1 4-6' (4F25003-03) Soil									
Chloride	ND	20.0	mg/kg Wet	2	EF42503	06/25/04	06/26/04	SW 846 9253	
BH-1 6-8' (4F25003-04) Soil									
Chloride	ND	20.0	mg/kg Wet	2	EF42503	06/25/04	06/26/04	SW 846 9253	
% Solids	87.0		%	1	EF42601	06/25/04	06/26/04	% calculation	
BH-1 10-11' (4F25003-05) Soil									
Chloride	1170	20.0	mg/kg Wet	2	EF42503	06/25/04	06/26/04	SW 846 9253	
% Solids	92.0		%	1	EF42601	06/25/04	06/26/04	% calculation	
BH-1 15-16' (4F25003-06) Soil									
Chloride	42.5	20.0	mg/kg Wet	2	EF42503	06/25/04	06/26/04	SW 846 9253	
% Solids	93.0		%	1	EF42601	06/25/04	06/26/04	% calculation	•
BH-1 20-21' (4F25003-07) Soil									
Chloride	56.7	20.0	mg/kg Wet	2	EF42503	06/25/04	06/26/04	SW 846 9253	
BH-1 25-26' (4F25003-08) Soil									
Chloride	88.6	20.0	mg/kg Wet	2	EF42503	06/25/04	06/26/04	SW 846 9253	
BH-1 30-31' (4F25003-09) Soil									
Chloride	56.7	20.0	mg/kg Wet	2	EF42503	06/25/04	06/26/04	SW 846 9253	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Larson & Associates, Inc.
P.O. Box 50685
Midland TX, 79710

Notes

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas Analyte Result Reporting Limit Units Dilution Batch Prepared Analyzed Method BH-1 8-8.2 (4F25003-10) Soil Cbloride 106 26.0 mg/kg Wet 2 EF42503 06725/04 06726/04 SW 846 9253	Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710				Nu	oject: Dyr mber: 0-0 nager: Mar	100-07				Fax: (432) Repor 06/29/04	rted:
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method BH-1 8-8.2 (4F25003-10) Soil 06/25/04 SW 846 9253 06/25/04 06/25/04 SW 846 9253 Chloride 106 20,0 mg/kg Wet 2 EF42503 06/25/04 06/25/04 SW 846 9253	Leng	Gener			i				ard Meth	ods	·	
Chloride 106 20.0 mg/kg Wet 2 EF42503 06725/04 06726/04 SW 846 9253	Analyte		Result	Reporti Lir	ing mit	Units	Dilution	Batch	Prepared	Analyzed	Method]
	BH-1 8-8.2 (4F25003-10) Soil										· · · · · · · · · · · · · · · · · · ·	
	Chloride		106	20	0.0	mg/kg Wet	2	EF42503	06/25/04	06/26/04	SW 846 9253	
					1							
					1							
											· .	
					1							
							. '					
					Į							
			,									
		·									- - -	
					1							
					; ,		·		·			
					:							
					•							
					ļ							
					•							
					ł							
					1			·				

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 9

Project: Dynegy Project Number: 0-0100-07 Project Manager: Mark Larson

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF42801 - Solvent Extraction (GC)									
Blank (EF42801-BLK1)				Prepared	& Analyze	ed: 06/25/	04			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0								
Total Hydrocarbon C6-C35	ND	10.0								
Surrogate: 1-Chlorooctane	36.1		mg/kg	50.0		72.2	70-130			
Surrogate: 1-Chlorooctadecane	36.4		a	50.0		72.8	70-130			
LCS (EF42801-BS1)				Prepared	& Analyz	ed: 06/25/	04			
Gasoline Range Organics C6-C12	420	10.0	mg/kg wet	500		84.0	75-125			
Diesel Range Organics >C12-C35	414	10.0	"	500		82.8	75-125			
Total Hydrocarbon C6-C35	834	10.0	n	1000		83.4	75-125			
Surrogate: I-Chlorooctane	45.2		mg/kg	50.0		90.4	70-130			
Surrogate: 1-Chlorooctadecane	37.2		"	50.0		74.4	70-130			
LCS Dup (EF42801-BSD1)				Prepared	& Analyz	ed: 06/25/	04			
Gasoline Range Organics C6-C12	416	10.0	mg/kg wet	500		83.2	75-125	0.957	20	
Diesel Range Organics >C12-C35	423	10.0	n	500		84.6	75-125	2.15	20	
Total Hydrocarbon C6-C35	839	10.0	и	1000		83.9	75-125	0.598	20	
Surrogate: 1-Chlorooctane	45.2		mg/kg	50.0		90.4	70-130		· · · · · ·	
Surrogate: 1-Chlorooctadecane	37.7		"	50.0		75.4	70-130			
Calibration Check (EF42801-CCV1)				Prepared	& Analyz	ed: 06/25	/04			
Gasoline Range Organics C6-C12	426	······	mg/kg	500		85.2	80-120			
Diesel Range Organics >C12-C35	474	I	п	500		94.8	80-120			
Total Hydrocarbon C6-C35	900	ι.	п	1000		90.0	80-120			
Surrogate: 1-Chlorooctane	51.4	·	<i>n</i>	50.0		103	70-130			
Surrogate: 1-Chlorooctadecane	37.6	1	"	50.0		75. 2	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Dynegy Project Number: 0-0100-07 Project Manager: Mark Larson

Organics by GC - Quality Control

Environmental Lab of Texas

Batch EF42803 - Solvent Extraction (GC) Blank (EF42803-BLK1) Prepared & Analyzed: 06/28/04 Gasoline Range Organics >C12-C35 ND 10.0 " Diesel Range Organics >C12-C35 ND 10.0 " Surrogate: 1-Chlorooctane 37.0 mg/kg 50.0 74.0 70-130 Surrogate: 1-Chlorooctane 37.0 " 50.0 74.0 70-130 Surrogate: 1-Chlorooctadecane 37.0 " 50.0 74.0 70-130 Casoline Range Organics >C12-C35 424 10.0 " 50.0 82.2 75-125 Diesel Range Organics >C12-C35 424 10.0 " 50.0 81.2 T5-125 Surrogate: 1-Chlorooctane 48.6 mg/kg 50.0 71.2 70-130 Surrogate: 1-Chlorooctane 35.6 " 50.0 71.2 70-130 Surrogate: 1-Chlorooctane 35.6 " 50.0 70.2 70-130 Surrogate: 1-Chlorooctane 35.6 " 50.0 73.2 70-130	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Mank (EF42803-BLK1) Prepared & Analyzed: 06/28/04 iasoline Range Organics C6-C12 ND 10.0 mg/kg wet vised Range Organics C12-C35 ND 10.0 " virrogate: 1-Chlorooctane 37.0 mg/kg 50.0 74.0 70-130 virrogate: 1-Chlorooctadecane 37.0 " 50.0 74.0 70-130 CS (EF42803-BS1) Prepared & Analyzed: 06/28/04 - - - - Jasoline Range Organics C6-C12 411 10.0 mg/kg 50.0 82.2 75-125 Visel Range Organics C6-C12 411 10.0 mg/kg 50.0 84.8 75-125 Visel Range Organics C6-C12 410.0 * 50.0 97.2 70-130 virrogate: 1-Chlorooctadecane 35.6 " 50.0 97.2 70-130 virrogate: 1-Chlorooctadecane 35.6 " 50.0 97.0 80-120 Obseel Range Organics C6-C12 445 mg/kg 50.0 97.0 80-120 Diesel Range Organics C6-C12 <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th>	· · · · · · · · · · · · · · · · · · ·										
Jasoline Range Organics C6-C12 ND 10.0 mg/kg wet Joisel Range Organics C12-C35 ND 10.0 " Gotal Hydrocarbon C6-C35 ND 10.0 " Surrogate: 1-Chlorooctane 37.0 mg/kg 50.0 74.0 70-730 Surrogate: 1-Chlorooctadecane 37.0 " 50.0 74.0 70-730 CS (EF42803-BS1) Prepared & Analyzed: 06/28/04			· · ·		Prepared	& Analyz	ed: 06/28/	0.4			
Diesel Range Organics >C12-C35 ND 10.0 Surrogate: 1-Chlorooctame 37.0 mg/kg 50.0 74.0 70-130 Surrogate: 1-Chlorooctame 37.0 "50.0 74.0 70-130 Surrogate: 1-Chlorooctame 37.0 "50.0 74.0 70-130 LCS (EF42803-BS1) Prepared & Analyzed: 06/28/04 Gasoline Range Organics >C12-C35 424 10.0 "500 84.8 75-125 Diesel Range Organics >C12-C35 424 10.0 "500 84.8 75-125 Surrogate: 1-Chlorooctame 48.6 mg/kg 50.0 97.2 70-130 Surrogate: 1-Chlorooctame 35.6 "50.0 97.2 70-130 Surrogate: 1-Chlorooctame 35.6 "50.0 97.0 80-120 Diesel Range Organics C6-C12 445 mg/kg 500 97.0 80-120 Surrogate: 1-Chlorooctame 51.8 "50.0 73.2 70-130 Surrogate: 1-Chlorooctame 51.8 "50.0 73.2 70-130 Surrogate: 1-Chlorooctame	· · · · · · · · · · · · · · · · · · ·	ND	10.0		Tiepaicu	& Analyz					
Total Hydrocarbon C6-C35 ND 10.0 " Surrogate: 1-Chlorooctane 37.0 mg/kg 50.0 74.0 70-130 Surrogate: 1-Chlorooctadecane 37.0 " 50.0 74.0 70-130 Surrogate: 1-Chlorooctadecane 37.0 " 50.0 74.0 70-130 LCS (EF42803-BS1) Prepared & Analyzed: 06/28/04 Gaosline Range Organics C6-C12 411 10.0 mg/kg wet 500 82.2 75-125 Disel Range Organics C6-C12 411 10.0 " 500 84.8 75-125 Surrogate: 1-Chlorooctane 48.6 mg/kg 30.0 97.2 70-130 Surrogate: 1-Chlorooctane 48.6 mg/kg 500 89.0 80-120 Disel Range Organics C6-C12 445 mg/kg 500 80.120 Total Hydrocarbon C6-C35 930 1000 93.0 80-120 Disel Range Organics C6-C12 445 mg/kg 50.0 73.2 70-130 Surrogate: 1-Chlorooctane 51.8 " 50.0	• -			mg/kg wei							
Surrogate: 1-Chlorooctane 37.0 mg/kg 50.0 74.0 70.130 Surrogate: 1-Chlorooctadecane 37.0 " 50.0 74.0 70-130 LCS (EF42803-BS1) Prepared & Analyzed: 06/28/04 Gasoline Range Organics C6-C12 411 10.0 mg/kg wet 500 82.2 75-125 Diesel Range Organics C12-C35 424 10.0 " 500 84.8 75-125 Surrogate: 1-Chlorooctane 48.6 mg/kg 30.0 97.2 70-130 Surrogate: 1-Chlorooctane 48.6 mg/kg 50.0 89.0 80-120 Surrogate: 1-Chlorooctane 35.6 " 50.0 89.0 80-120 Calibration Check (EF42803-CCV1) Prepared & Analyzed: 06/28/04 70-130 Surrogate: 1-Chlorooctane 51.8 " 50.0 89.0 80-120 Diesel Range Organics C4-C12 445 mg/kg 50.0 73.	5 6			"							
Surrogate: 1-Chlorooctadecane 37.0 " 50.0 74.0 70-130 LCS (EF42803-BS1) Prepared & Analyzed: 06/28/04 75-125 75-125	•.			malka	- 50.0		7/0-	70 720		<u></u>	
LCS (EF42803-BS1) Prepared & Analyzed: 06/28/04 Gasoline Range Organics >C12-C35 411 10.0 mg/kg wet 500 82.2 75-125 Diesel Range Organics >C12-C35 424 10.0 " 500 84.8 75-125 Total Hydrocarbon C6-C35 835 10.0 " 1000 83.5 75-125 Surrogate: 1-Chlorooctane 48.6 mg/kg 30.0 97.2 70-130 Surrogate: 1-Chlorooctadecane 35.6 " 50.0 71.2 70-130 Calibration Check (EF42803-CCV1) Prepared & Analyzed: 06/28/04 Gasoline Range Organics C6-C12 445 mg/kg 500 89.0 80-120 Diesel Range Organics >C12-C35 485 " 50.0 97.0 80-120 Diesel Range Organics >C12-C35 485 " 50.0 73.2 70-130 Surrogate: 1-Chlorooctane 51.8 " 50.0 73.2 70-130 Surrogate: 1-Chlorooctane 51.8 " 50.0 73.2 70-130 Surrogate: 1-Chlorooctane 57.6 10.0 " 538 ND 99.	0			т <u>е</u> /к <u>е</u> "							
Gasoline Range Organics C6-C12 411 10.0 mg/kg wet 500 82.2 75-125 Diesel Range Organics >C12-C35 424 10.0 " 500 84.8 75-125 Diesel Range Organics >C12-C35 835 10.0 " 1000 83.5 75-125 Surrogate: 1-Chlorooctane 48.6 mg/kg 50.0 97.2 70-130 Surrogate: 1-Chlorooctadecane 35.6 " 50.0 71.2 70-130 Calibration Check (EF42803-CCV1) Prepared & Analyzed: 06/28/04 Gasoline Range Organics <c12-c35< td=""> 485 " 500 97.0 80-120 Diesel Range Organics >C12-C35 485 " 500 97.0 80-120 Total Hydrocarbon C6-C35 930 " 1000 93.0 80-120 Total Hydrocarbon C6-C35 930 " 1000 93.0 80-120 Total Hydrocarbon C6-C35 930 " 1000 93.0 80-120 Total Hydrocarbon C6-C35 10.0 " 50.0 7.2 70-130 Surrogate: 1-Chlorooctane<td>LCS (EF42803-BS1)</td><td></td><td>l</td><td></td><td>Prenared</td><td>& Analyz</td><td>ed: 06/28/</td><td>04</td><td></td><td></td><td></td></c12-c35<>	LCS (EF42803-BS1)		l		Prenared	& Analyz	ed: 06/28/	04			
Diesel Range Organics >C12-C35 424 10.0 * 500 84.8 75-125 Total Hydrocarbon C6-C35 835 10.0 * 1000 83.5 75-125 Surrogate: 1-Chlorooctane 48.6 mg/kg 50.0 97.2 70-130 Surrogate: 1-Chlorooctadecane 35.6 * 50.0 71.2 70-130 Calibration Check (EF42803-CCV1) Prepared & Analyzed: 06/28/04 Gasoline Range Organics C6-C12 445 mg/kg 500 89.0 80-120 Diesel Range Organics -C12-C35 485 * 500 97.0 80-120 Surrogate: 1-Chlorooctane 51.8 * 50.0 73.2 70-130 Surrogate: 1-Chlorooctane 36.6 * 50.0 73.2 70-130 Matrix Spike (EF42803-MS1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 Gasoline Range Organics >C12-C35 576 10.0 * 538 ND 99.1 75-125 Diesel Range Organics >C12-C35 576 10.0 * 538 ND 97.1	. ,	411	10.0	mg/kg wet	-					· · · · · · · · · · · · · · · · · · ·	
Total Hydrocarbon C6-C35 835 10.0 1000 83.5 75-125 Surrogate: 1-Chlorooctane 48.6 mg/kg 50.0 97.2 70-130 Surrogate: 1-Chlorooctane 35.6 " 50.0 71.2 70-130 Calibration Check (EF42803-CCV1) Prepared & Analyzed: 06/28/04 Gasoline Range Organics C6-C12 445 mg/kg 500 89.0 80-120 Diesel Range Organics >C12-C35 485 " 500 97.0 80-120 Surrogate: 1-Chlorooctane 31.8 " 50.0 73.2 70-130 Surrogate: 1-Chlorooctane 31.8 " 50.0 73.2 70-130 Matrix Spike (EF42803-MS1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 Gasoline Range Organics >C12-C35 576 10.0 " 538 ND 99.1 75-125 Diesel Range Organics >C12-C35 576 10.0 " 538 ND 97.1 70-130 Surrogate: 1-Chlorooctane 37.1 <											
Surrogate: 1-Chlorooctane 48.6 mg/kg 50.0 97.2 70-130 Surrogate: 1-Chlorooctadecane 35.6 " 50.0 71.2 70-130 Calibration Check (EF42803-CCV1) Prepared & Analyzed: 06/28/04 Gasoline Range Organics C6-C12 445 mg/kg 500 97.0 80-120 Diesel Range Organics >C12-C35 485 " 500 97.0 80-120 Total Hydrocarbon C6-C35 930 " 1000 93.0 80-120 Surrogate: 1-Chlorooctane 51.8 " 50.0 73.2 70-130 Surrogate: 1-Chlorooctadecane 36.6 " 50.0 73.2 70-130 Matrix Spike (EF42803-MS1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 Gasoline Range Organics >C12-C35 576 10.0 " 538 ND 99.1 75-125 Diesel Range Organics >C6-C12 533 10.0 " 1080 ND 103 <t< td=""><td>• •</td><td></td><td></td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	• •			"							
Surrogate: 1-Chlorooctadecane 35.6 " 50.0 71.2 70-130 Calibration Check (EF42803-CCV1) Prepared & Analyzed: 06/28/04 Gasoline Range Organics C6-C12 445 mg/kg 500 89.0 80-120 Diesel Range Organics >C12-C35 485 " 50.0 97.0 80-120 Surrogate: 1-Chlorooctane 31.8 " 50.0 73.2 70-130 Surrogate: 1-Chlorooctadecane 36.6 " 50.0 73.2 70-130 Matrix Spike (EF42803-MS1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 Gasoline Range Organics >C12-C35 576 10.0 " 538 ND 99.1 75-125 Diesel Range Organics >C12-C35 576 10.0 " 1080 ND 103 75-125 Diesel Range Organics >C12-C35 57.7 mg/kg 50.0 97.2 70-130 Surrogate: 1-Chlorooctane 57.7 mg/kg 50.0 97.2 70-130 Surrogate: 1-Chlorooctane 57.7 mg/kg 50.0 <	•	48.6		mg/kg							
Gasoline Range Organics C6-C12 445 mg/kg 500 89.0 80-120 Diesel Range Organics >C12-C35 485 " 500 97.0 80-120 Total Hydrocarbon C6-C35 930 " 1000 93.0 80-120 Surrogate: 1-Chlorooctane 51.8 " 50.0 73.2 70-130 Surrogate: 1-Chlorooctadecane 36.6 " 50.0 73.2 70-130 Matrix Spike (EF42803-MS1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 66/28/04 Gasoline Range Organics C6-C12 533 10.0 mg/kg 538 ND 99.1 75-125 Diesel Range Organics >C12-C35 576 10.0 " 538 ND 107 75-125 Surrogate: 1-Chlorooctane 57.1 mg/kg 50.0 114 70-130 Surrogate: 1-Chlorooctane 48.6 " 50.0 97.2 70-130 Matrix Spike Dup (EF42803-MSD1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 66/28/04 Gasoline Range Organics >C6-C12 517 10.0 mg/kg dry 538 ND 96.	0										
Gasoline Range Organics C6-C12 445 mg/kg 500 89.0 80-120 Diesel Range Organics >C12-C35 485 " 500 97.0 80-120 Total Hydrocarbon C6-C35 930 " 1000 93.0 80-120 Surrogate: 1-Chlorooctane 51.8 " 50.0 73.2 70-130 Surrogate: 1-Chlorooctadecane 36.6 " 50.0 73.2 70-130 Matrix Spike (EF42803-MS1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 66/28/04 Gasoline Range Organics C6-C12 533 10.0 mg/kg 538 ND 99.1 75-125 Diesel Range Organics >C12-C35 576 10.0 " 538 ND 107 75-125 Surrogate: 1-Chlorooctane 57.1 mg/kg 50.0 114 70-130 Surrogate: 1-Chlorooctane 48.6 " 50.0 97.2 70-130 Matrix Spike Dup (EF42803-MSD1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 66/28/04 Gasoline Range Organics C6-C12 517 10.0 mg/kg dry 538 ND 96.1	Calibration Check (EF42803-CCV1)				Prepared	& Analyz	ed: 06/28/	′04			
Diesel Range Organics >C12-C35 485 " 500 97.0 80-120 Total Hydrocarbon C6-C35 930 " 1000 93.0 80-120 Surrogate: 1-Chlorooctane 51.8 " 50.0 70.4 70-130 Surrogate: 1-Chlorooctane 36.6 " 50.0 73.2 70-130 Matrix Spike (EF42803-MS1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04		445		mg/kg	-						
Surrogate: 1-Chlorooctane 51.8 " 50.0 104 70-130 Surrogate: 1-Chlorooctadecane 36.6 " 50.0 73.2 70-130 Matrix Spike (EF42803-MS1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 Gasoline Range Organics C6-C12 533 10.0 mg/kg for 538 ND 99.1 75-125 Diesel Range Organics >C12-C35 576 10.0 " 538 ND 107 75-125 Surrogate: 1-Chlorooctane 57.1 mg/kg 50.0 114 70-130 Surrogate: 1-Chlorooctane 57.1 mg/kg 50.0 114 70-130 Surrogate: 1-Chlorooctane 57.1 mg/kg 50.0 114 70-130 Surrogate: 1-Chlorooctane 51.7 mg/kg 50.0 97.2 70-130 Matrix Spike Dup (EF42803-MSD1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 C Gasoline Range Organics >C12-C35 517 10.0 mg/kg ND 96.1 75-125 3.05 20 Diesel Range Organics >C12-C35 577 10.0 " 538 ND 96.1 75-125		485			500						
Surrogate: 1-Chlorooctadecane 36.6 " 50.0 73.2 70-130 Matrix Spike (EF42803-MS1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 Gasoline Range Organics C6-C12 533 10.0 mg/kg dry 538 ND 99.1 75-125 Diesel Range Organics >C12-C35 576 10.0 " 538 ND 107 75-125 Total Hydrocarbon C6-C35 1110 10.0 " 1080 ND 103 75-125 Surrogate: 1-Chlorooctane 57.1 mg/kg 50.0 114 70-130 Surrogate: 1-Chlorooctadecane 48.6 " 50.0 97.2 70-130 Matrix Spike Dup (EF42803-MSD1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 C Gasoline Range Organics >C12-C35 517 10.0 mg/kg dry 538 ND 96.1 75-125 3.05 20 Diesel Range Organics >C12-C35 577 10.0 " 538 ND 96.1 75-125 0.173 20 Obsel Range Organics >C12-C35 577 10.0 " 538 ND <t< td=""><td>Total Hydrocarbon C6-C35</td><td>930</td><td>÷</td><td></td><td>1000</td><td></td><td>93.0</td><td>80-120</td><td></td><td></td><td></td></t<>	Total Hydrocarbon C6-C35	930	÷		1000		93.0	80-120			
Matrix Spike (EF42803-MS1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 Gasoline Range Organics C6-C12 533 10.0 mg/kg dry 538 ND 99.1 75-125 Diesel Range Organics >C12-C35 576 10.0 " 538 ND 107 75-125 Total Hydrocarbon C6-C35 1110 10.0 " 1080 ND 103 75-125 Surrogate: 1-Chlorooctane 57.1 mg/kg 50.0 114 70-130 Surrogate: 1-Chlorooctane 48.6 " 50.0 97.2 70-130 Matrix Spike Dup (EF42803-MSD1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 Gasoline Range Organics >C12-C35 517 10.0 mg/kg dry 538 ND 96.1 75-125 3.05 20 Matrix Spike Dup (EF42803-MSD1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 C C C C Gasoline Range Organics >C12-C35 517 10.0 " 538 ND 107 75-125 0.173 20 Diesel Range Organics >C12-C35 577 10.0 " 53	Surrogate: 1-Chlorooctane	51.8			50.0		104	70-130			
Gasoline Range Organics C6-C12 533 10.0 mg/kg dry 538 ND 99.1 75-125 Diesel Range Organics >C12-C35 576 10.0 " 538 ND 107 75-125 Total Hydrocarbon C6-C35 1110 10.0 " 1080 ND 103 75-125 Surrogate: 1-Chlorooctane 57.1 mg/kg 50.0 114 70-130 Surrogate: 1-Chlorooctadecane 48.6 " 50.0 97.2 70-130 Matrix Spike Dup (EF42803-MSD1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 06/28/04 Gasoline Range Organics >C12-C35 517 10.0 mg/kg dry 538 ND 96.1 75-125 3.05 20 Diesel Range Organics >C12-C35 577 10.0 " 538 ND 107 75-125 0.173 20 Diesel Range Organics >C12-C35 577 10.0 " 538 ND 107 75-125 0.173 20 Total Hydrocarbon C6-C35 1090 10.0 " 1080 ND 101 75-125 1.82 <td< td=""><td>Surrogate: 1-Chlorooctadecane</td><td>36.6</td><td></td><td>"</td><td>50.0</td><td></td><td>73.2</td><td>70-130</td><td></td><td></td><td></td></td<>	Surrogate: 1-Chlorooctadecane	36.6		"	50.0		73.2	70-130			
Diesel Range Organics >C12-C35 576 10.0 " 538 ND 107 75-125 Total Hydrocarbon C6-C35 1110 10.0 " 1080 ND 103 75-125 Surrogate: 1-Chlorooctane 57.1 mg/kg 50.0 114 70-130 Surrogate: 1-Chlorooctadecane 48.6 " 50.0 97.2 70-130 Matrix Spike Dup (EF42803-MSD1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 Gasoline Range Organics >C12-C35 517 10.0 mg/kg dry 538 ND 96.1 75-125 3.05 20 Diesel Range Organics >C12-C35 577 10.0 " 538 ND 107 75-125 0.173 20 Total Hydrocarbon C6-C35 1090 10.0 " 1080 ND 101 75-125 1.82 20 Surrogate: 1-Chlorooctane 55.3 mg/kg 50.0 111 70-130	Matrix Spike (EF42803-MS1)	So	urce: 4F250	03-06	Prepared	& Analyz	ed: 06/28	/04			
Total Hydrocarbon C6-C35 1110 10.0 " 1080 ND 103 75-125 Surrogate: I-Chlorooctane 37.1 mg/kg 50.0 114 70-130 Surrogate: I-Chlorooctadecane 48.6 " 50.0 97.2 70-130 Matrix Spike Dup (EF42803-MSD1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 06/28/04 Gasoline Range Organics C6-C12 517 10.0 mg/kg dry 538 ND 96.1 75-125 3.05 20 Diesel Range Organics >C12-C35 577 10.0 " 538 ND 107 75-125 0.173 20 Total Hydrocarbon C6-C35 1090 10.0 " 1080 ND 101 75-125 1.82 20 Surrogate: I-Chlorooctane 55.3 mg/kg 50.0 111 70-130	Gasoline Range Organics C6-C12	533	10.0	mg/kg dry	538	ND	99.1	75-125		<u> </u>	
Surrogate: 1-Chlorooctane 57.1 mg/kg 50.0 114 70-130 Surrogate: 1-Chlorooctadecane 48.6 " 50.0 97.2 70-130 Matrix Spike Dup (EF42803-MSD1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 Gasoline Range Organics C6-C12 517 10.0 mg/kg dry 538 ND 96.1 75-125 3.05 20 Diesel Range Organics >C12-C35 577 10.0 " 538 ND 107 75-125 0.173 20 Total Hydrocarbon C6-C35 1090 10.0 " 1080 ND 101 75-125 1.82 20 Surrogate: 1-Chlorooctane 55.3 mg/kg 50.0 111 70-130	Diesel Range Organics >C12-C35	576	10.0	n	538	ND	107	75-125			
Surrogate: 1-Chlorooctadecane 48.6 " 50.0 97.2 70-130 Matrix Spike Dup (EF42803-MSD1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 Gasoline Range Organics C6-C12 517 10.0 mg/kg dry 538 ND 96.1 75-125 3.05 20 Diesel Range Organics >C12-C35 577 10.0 " 538 ND 107 75-125 0.173 20 Total Hydrocarbon C6-C35 1090 10.0 " 1080 ND 101 75-125 1.82 20 Surrogate: 1-Chlorooctane 55.3 mg/kg 50.0 111 70-130	Total Hydrocarbon C6-C35	1110	10.0	n	1080	ND	103	75-125			
Matrix Spike Dup (EF42803-MSD1) Source: 4F25003-06 Prepared & Analyzed: 06/28/04 Gasoline Range Organics C6-C12 517 10.0 mg/kg dry 538 ND 96.1 75-125 3.05 20 Diesel Range Organics >C12-C35 577 10.0 " 538 ND 107 75-125 0.173 20 Total Hydrocarbon C6-C35 1090 10.0 " 1080 ND 101 75-125 1.82 20 Surrogate: I-Chlorooctane 55.3 mg/kg 50.0 111 70-130	Surrogate: 1-Chlorooctane	57.1		mg/kg	50.0			70-130			
Gasoline Range Organics C6-C12 517 10.0 mg/kg dry 538 ND 96.1 75-125 3.05 20 Diesel Range Organics >C12-C35 577 10.0 " 538 ND 107 75-125 0.173 20 Total Hydrocarbon C6-C35 1090 10.0 " 1080 ND 101 75-125 1.82 20 Surrogate: 1-Chlorooctane 55.3 mg/kg 50.0 111 70-130	Surrogate: 1-Chlorooctadecane	48.6	I I	u	50.0		97.2	70-130			
Diesel Range Organics >C12-C35 577 10.0 " 538 ND 107 75-125 0.173 20 Total Hydrocarbon C6-C35 1090 10.0 " 1080 ND 101 75-125 1.82 20 Surrogate: T-Chlorooctane 55.3 mg/kg 50.0 111 70-130	Matrix Spike Dup (EF42803-MSD1)	So	urce: 4F250	03-06	Prepared	& Analyz	zed: 06/28	/04			
Total Hydrocarbon C6-C35 1090 10.0 " 1080 ND 101 75-125 1.82 20 Surrogate: T-Chlorooctane 55.3 mg/kg 50.0 111 70-130	Gasoline Range Organics C6-C12	517	10.0	mg/kg dry	538	ND	96.1	75-125	3.05	20	
Surrogate: 1-Chlorooctane 55.3 mg/kg 50.0 111 70-130	Diesel Range Organics >C12-C35	577	10.0	*	538	ND	107	75-125	0.173	20	
	Total Hydrocarbon C6-C35	1090	10.0	'n	1080	ND	101	75-125	1.82	20	
Surrogate: 1 Chloropetadegang 48 1 " 50.0 06.2 70.130	Surrogate: 1-Chlorooctane	55.3		mg/kg	50.0			70-130		· · · ·	
Surrogae. 1-Critoroccuaecune 70.1 50.0 90.2 /0-130	Surrogate: 1-Chlorooctadecane	48.1		"	50.0		96.2	70-130			
			l i								

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 6 of 9

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF42503 - Water Extraction										
Blank (EF42503-BLK1)				Prepared:	06/25/04	Analyzed	: 06/26/04			
Chloride	ND	20.0	mg/kg Wet							
Blank (EF42503-BLK2)				Prepared:	06/25/04	Analyzed	: 06/26/04			
Chloride	ND	20.0	mg/kg Wet							
Blank (EF42503-BLK3)				Prepared:	06/25/04	Analyzed	: 06/26/04			
Chloride	ND	20.0	mg/kg Wet	<u>-</u>						
Matrix Spike (EF42503-MS1)	Sou	arce: 4F250	02-01	Prepared:	06/25/04	Analyzed	: 06/26/04			
Chloride	851	20.0	mg/kg Wet	-	319	106	80-120			
Matrix Spike (EF42503-MS2)	Sou	irce: 4F250	02-21	Prepared:	06/25/04	Analyzed	: 06/26/04			
Chloride	1170	1	mg/kg Wet	-	659	102	80-120			
Matrix Spike (EF42503-MS3)	Sou	ırce: 4F250	04-04	Prepared:	06/25/04	Analyzed	: 06/26/04			
Chloride	581		mg/kg Wet	-	99.3	96.3	80-120			
Matrix Spike Dup (EF42503-MSD1)	Soi	ırce: 4F250	02-01	Prenared	06/25/04	Analyzed	: 06/26/04			
Chloride	840		mg/kg Wet		319	104	80-120	1.30	20	
Matrix Spike Dup (EF42503-MSD2)	Sa	ırce: 4F250	07-21	Prenared	06/25/04	Analyzed	: 06/26/04			
Chloride	1160		mg/kg Wet	-	659	100	80-120	0.858	20	
Matrix Spike Dup (EF42503-MSD3)	So	urce: 4F25(06/25/04	Analyzed	1: 06/26/04			
Chloride	588	1	mg/kg Wet	-	99.3	97.7	80-120	1.20	20	
Reference (EF42503-SRM1)				Prenared	& Analyz	ed: 06/26/	04			
Chloride	5000	<u> </u>	mg/kg	5000		100	80-120			
		1 -		* .						
		1								
		:								
										•
		i		· ·						
								•		
									· ·	
		l								

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Pr Project Nu Project Mar		0100-07					Fax: (432) Repor 06/29/04	ted:
General Chemis	-	meters by Environm				nods - Q	Quality (Contro		
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF42503 - Water Extraction										
Reference (EF42503-SRM2)				Prepared &	& Analyz		04			
Chloride	5000		mg/kg	5000		100	80-120			
Reference (EF42503-SRM3)				Prepared a	& Analyz					
Chloride Batch EF42601 - General Preparation	5000 n (Pren)		mg/kg	5000		100	80-120			
Blank (EF42601-BLK1)	- (~ • • • • •			Prepared:	06/25/04	Analyzed	: 06/26/04			
% Solids	0.0		%							
Duplicate (EF42601-DUP1)		urce: 4F240		Prepared:		Analyzed	I: 06/26/04	Ļ		
6 Solids	95.0		%		95.0			0.00	20	
н. Талана (1997)										
	·									
								÷		
							-	•		
	×				• •				· ·	
								•		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 8 of 9

Project: Dynegy Project Number: 0-0100-07 Project Manager: Mark Larson

Notes and Definitions

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

- RPD **Relative Percent Difference**
- LCS Laboratory Control Spike
- MS Matrix Spike

Duplicate Dup

Jush alandk Date: Report Approved By: 6-29-05

Raland K. Tuttle, QA Officer Celey D. Keene, Lab Director, Org. Tech Director Jeanne Mc Murrey, Inorg. Tech Director

James L. Hawkins, Chemist/Geologist Sara Molina, Chemist Sandra Biezugbe, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 9

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	Larson
Date/Time:	6/25/04 9:45
Order #:	4F25003
Initials	CITY-

Sample Receipt Checklist

Temperature of container/cooler? Yes No 3.5 C Shipping container/cooler in good condition? Yes No Not present Custody Seals intact on sample bottles? Yes No Not present Custody Seals intact on sample bottles? Yes No Not present Custody Seals intact on sample bottles? Yes No Not present Chain of custody present? Yes No Not present Sample Instructions complete on Chain of Custody? Yes No Chain of Custody signed when relinquished and received? Yes No Container labels legible and intact? Yes No Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Samples bottles intact? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes	Shipping container/cooler in good condition? Yes No Custody Seals intact on shipping container/cooler? Yes No Not present Custody Seals intact on sample bottles? Yes No Not present Chain of custody present? Yes No Not present Chain of custody present? Yes No No Sample Instructions complete on Chain of Custody? Yes No Chain of Custody signed when relinquished and received? Yes No Chain of custody agrees with sample label(s) Yes No Container labels legible and intact? Yes No Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Sample bottles intact? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes No Not Applicable <th></th> <th>Unechi</th> <th>131</th> <th></th>		Unechi	131	
Custody Seals intact on shipping container/cooler? Yes No Not present Custody Seals intact on sample bottles? Yes No Not present Chain of custody present? Yes No No Sample Instructions complete on Chain of Custody? Yes No Chain of Custody signed when relinquished and received? Yes No Chain of custody agrees with sample label(s) Yes No Container labels legible and intact? Yes No Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes No Not Applicable	Custody Seals intact on shipping container/cooler? Yes No Not present Custody Seals intact on sample bottles? Yes No Not present Chain of custody present? Yes No No Sample Instructions complete on Chain of Custody? Yes No No Chain of Custody signed when relinquished and received? Yes No No Chain of custody agrees with sample label(s) Yes No No Container labels legible and intact? Yes No ID ror. Hen on Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Sample bottles intact? Yes No Sample bottles intact? No Preservations documented on Chain of Custody? Yes No Sample bottles intact? No Sufficient sample amount for indicated test? Yes No No Samples no proceived within sufficient hold time? VOC samples have zero headspace? Yes No Not Applicable	Temperature of container/cooler?	Yes	No	3.5 C
Custody Seals intact on sample bottles? Yes No Kot present Chain of custody present? Yes No Sample Instructions complete on Chain of Custody? Yes No Sample Instructions complete on Chain of Custody? Yes No Sample Instructions complete on Chain of Custody? Yes No Chain of Custody signed when relinquished and received? Yes No Sample Instructions complete and intact? Yes No Container labels legible and intact? Yes No TD wr. Hen on Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Sample bottles intact? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes No Not Applicable	Custody Seals intact on sample bottles? Yes No Not present Chain of custody present? Yes No Sample Instructions complete on Chain of Custody? Yes No Chain of Custody signed when relinquished and received? Yes No Chain of Custody agrees with sample label(s) Yes No Container labels legible and intact? Yes No Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes No Not Applicable	Shipping container/cooler in good condition?	(Jes	No	
Custody Seals intact on sample bottles? Yes No Not present Chain of custody present? Yes No No Sample Instructions complete on Chain of Custody? Yes No No Chain of Custody signed when relinquished and received? Yes No No Chain of Custody agrees with sample label(s) Yes No No Container labels legible and intact? Yes No ID wr. Hew on Sample Matrix and properties same as on chain of custody? Yes No No Samples in proper container/bottle? Yes No No Sample bottles intact? No Sample bottles intact? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No No Sample amount for indicated test? No All samples received within sufficient hold time? Yes No No Not Applicable	Custody Seals intact on sample bottles? Yes No Not present Chain of custody present? Yes No No Sample Instructions complete on Chain of Custody? Yes No Chain of Custody signed when relinquished and received? Yes No Chain of Custody agrees with sample label(s) Yes No Container labels legible and intact? Yes No Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes Not Applicable	Custody Seals intact on shipping container/cooler?	Yes	No	(Not present)
Sample Instructions complete on Chain of Custody? Yes No Chain of Custody signed when relinquished and received? Yes No Chain of custody agrees with sample label(s) Yes No Container labels legible and intact? Yes No Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Samples properly preserved? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes No	Sample Instructions complete on Chain of Custody? Yes No Chain of Custody signed when relinquished and received? Yes No Chain of custody agrees with sample label(s) Yes No Container labels legible and intact? Yes No Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Samples properly preserved? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples neceived within sufficient hold time? Yes No VOC samples have zero headspace? Yes No Not Applicable	Custody Seals intact on sample bottles?	Yes	No	
Chain of Custody signed when relinquished and received? Yes No Chain of custody agrees with sample label(s) Yes No Container labels legible and intact? Yes No Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Samples properly preserved? Yes No Sample bottles intact? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Containers documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes Not Applicable	Chain of Custody signed when relinquished and received? Yes No Chain of custody agrees with sample label(s) Yes No Container labels legible and intact? Yes No Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Samples properly preserved? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Containers documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples have zero headspace? Yes No		(Yes)	No	
Chain of custody agrees with sample label(s) Yes No Container labels legible and intact? Yes No JD ror. Hen on Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Samples properly preserved? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Containers documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes No Not Applicable	Chain of custody agrees with sample label(s) Yes No Container labels legible and intact? Yes No JD wr. Hen on Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Samples properly preserved? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Containers documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes Not Applicable		(Yes)	No	
Container labels legible and intact? Yes No ID wr. Hen on Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Samples properly preserved? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Containers documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes No Not Applicable	Container labels legible and intact? Yes No JD wr. Hen on Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Samples properly preserved? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Containers documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples have zero headspace? Yes No Not Applicable			No	
Sample Matrix and properties same as on chain of custody? Image: Samples in proper container/bottle? No Samples in proper container/bottle? Image: Samples in proper container/bottle? No Samples properly preserved? Image: Sample container/bottle? No Sample bottles intact? Image: Sample container/bottle? No Preservations documented on Chain of Custody? Image: Sample container/bottle? No Containers documented on Chain of Custody? Image: Sample container/bottle? No Sufficient sample amount for indicated test? Image: Sample container? No All samples received within sufficient hold time? Image: Sample container? No VOC samples have zero headspace? Yes No Not Applicable	Sample Matrix and properties same as on chain of custody? Ves No Samples in proper container/bottle? Ves No Samples properly preserved? Ves No Sample bottles intact? Ves No Preservations documented on Chain of Custody? Ves No Containers documented on Chain of Custody? Ves No Sufficient sample amount for indicated test? Voc No All samples received within sufficient hold time? Ves No VOC samples have zero headspace? Yes No	Chain of custody agrees with sample label(s)	(Yes)		
Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Samples properly preserved? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Containers documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes No	Sample Matrix and properties same as on chain of custody? Yes No Samples in proper container/bottle? Yes No Samples properly preserved? Yes No Sample bottles intact? Yes No Preservations documented on Chain of Custody? Yes No Containers documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? Yes No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes No		Yes	(NO)	ID wr. Henon
Samples properly preserved? Ves No Sample bottles intact? Ves No Preservations documented on Chain of Custody? Ves No Containers documented on Chain of Custody? Ves No Sufficient sample amount for indicated test? Ves No All samples received within sufficient hold time? Ves No VOC samples have zero headspace? Yes No	Samples properly preserved? Ves No Sample bottles intact? Ves No Preservations documented on Chain of Custody? Ves No Containers documented on Chain of Custody? Ves No Sufficient sample amount for indicated test? Ves No All samples received within sufficient hold time? Ves No VOC samples have zero headspace? Yes No	Sample Matrix and properties same as on chain of custody?	(res)	No	
Sample bottles intact? (es) No Preservations documented on Chain of Custody? (es) No Containers documented on Chain of Custody? (es) No Sufficient sample amount for indicated test? (es) No All samples received within sufficient hold time? (es) No VOC samples have zero headspace? Yes	Sample bottles intact? Ves No Preservations documented on Chain of Custody? Ves No Containers documented on Chain of Custody? Ves No Sufficient sample amount for indicated test? Ves No All samples received within sufficient hold time? Ves No VOC samples have zero headspace? Yes No	Samples in proper container/bottle?	Ves 2	No	
Preservations documented on Chain of Custody? Ves No Containers documented on Chain of Custody? Ves No Sufficient sample amount for indicated test? Ves No All samples received within sufficient hold time? Ves No VOC samples have zero headspace? Yes No	Preservations documented on Chain of Custody? Ves No Containers documented on Chain of Custody? Ves No Sufficient sample amount for indicated test? Ves No All samples received within sufficient hold time? Ves No VOC samples have zero headspace? Yes No Not Applicable	Samples properly preserved?	(Yes)	No	
Containers documented on Chain of Custody? Yes No Sufficient sample amount for indicated test? No No All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes No	Containers documented on Chain of Custody? Ves No Sufficient sample amount for indicated test? No No All samples received within sufficient hold time? Ves No VOC samples have zero headspace? Yes No	Sample bottles intact?	Jes	No	
Sufficient sample amount for indicated test? Ves No All samples received within sufficient hold time? Ves No VOC samples have zero headspace? Yes No	Sufficient sample amount for indicated test? Ves No All samples received within sufficient hold time? Ves No VOC samples have zero headspace? Yes No	Preservations documented on Chain of Custody?	Ves	No	
All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes Not Applicable	All samples received within sufficient hold time? Yes No VOC samples have zero headspace? Yes Not Applicable		(eg.	No	
VOC samples have zero headspace? Yes Not Applicable	VOC samples have zero headspace? Yes Not Applicable	Sufficient sample amount for indicated test?	Kes	No	
		All samples received within sufficient hold time?	(Yes)		
Other observations:	Other observations:	VOC samples have zero headspace?	Yes		 Not Applicable
		Other observations:			
		Variance Decu	montotio		

Variance Documentation:

Contact Person: Regarding:	Date/Time:	Contacted by:
Corrective Action Taken:		· · · · · · · · · · · · · · · · · · ·
······································		
-		

	IAME:		2-11-28-4-19-6-	a a la segur de la		ANAGER:	nter gebele Nagentaan Kota Brellin, werde d		F	PARAN	NETERS	/MET	HOD	NUMBER	CHAIN-	-OFCL	ISTODY RECORD	
	Ynog	¥				H.L	jures in					1						
PROJECT				1		T NAME:		INER	(ORD+ CRO						A arsor	ates, Inc.	Fax: 432-687-0456	
	- 010	<u> </u>			2	rt +7		ONTA	X	-7					Environme	ntal Consultants	432-687-0901	
PAGE	1 OF			LAB.	PO #			OF CONTAINERS	9	hland					507 N. Mari	enfeld, Ste. 2	02 • Midland, TX 79701	
Dang	Inte	HUIED	Sol 1	OTHER	SAMPL	e identification	4	NUMBER	Sics	UP U					LAB. I.D. NUMBER (LAB USE ONLY)	PRE	REMARKS , Filtered, Unfiltered, Served, Unpreserved, Grab Composite)	
424ki	0830		\times		Bi	1-1	0-21	1							4F25003-01			
Í	0840						2-41	1	\sim	\sim					57			
	6345						4-61	Ï		$\overline{}$					03			
	G3/4 3						6-8'	1	\succ						04			
	20902						10-11		<u>≻</u>	\sim					05	1		
	510			L			15-16		\geq	\					06			
 _	GA 15						20-21'	1		\geq					07			
	G123						25.26	 							07			
L Ţ	ଫ୍ୟୁ						30-31'	ļ	<u> </u> ;	\geq					09			
· ·	6350		\mathbf{V}		<u> </u>	ć	3-8.2			\mathbf{P}					10		· · · · · · · · · · · ·	
									<u> </u>			$\left \right $						
												+						
									1		-							
												1						
											-						······································	
		-															······································	
SAMPLE	BY (Sign			*		DATE: 6/24/C	REHINQUISHE	DBY:	(Signo	iture)			DAT TIM	E: (./224/ E:Ki ^c /An	RECEIVED BY: (Sign	ature)	DATE: TIME:	
RELINQU	JISHED BY:	(Signa	iture)			DATE:	RECEIVED BY:	(Signe	ature)				DAT		SAMPLE SHIPPED B	Y: (Circle)	· · · · · · · · · · · · · · · · · · ·	
	RELINQUISHED BY: (Signature) DATE: RECEIVED BY: (Signature) DATE: TIME: TIME: TIME:													FEDEX BUS AIRBILL #:				
COMM	COMMENTS:												E NEEDED	HAND DELIVERED	HAND DELIVERED UPS OTHER:			
														WHITERECEIVIN				
RECEIVING LABORATORY: ECIVING LAB (TO BE RETURNED TO LA AFTER RECEIPT)												RETURNED TO						
ADDRES	s 120	0G	\sim	1-	- <u>Zo</u>	<u> </u>		Ci	lux		ine		. .	·	1	T MANAGER		
CITY: CONTA(Dela T. hola	nd T	UTT	La	PHONE	: 432-5	P-79765 D	ATE: _	62	510	¥ TIME	9:	49	5	GOLD - QA/QC	COORDINATOR		
	ONDITION WH							LA CO		T PERS	ON:				SAMPLE TYPE:	d'a	1.	
			3	.5	ீட					4.		so	ún			Sal	yoz glass	

alia (1993) (1993) (1993) (1993) (1993) (1993) (1993) (1993) (1993)

12600 West I-20 East - Odessa, Texas 79765

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Dynegy Site #7 Project Number: 0-0100-07 Location: None Given

Lab Order Number: 4G12001

Report Date: 07/15/04

Larson & Associates, Inc.	Project: Dynegy Site #7	Fax: (432) 687-0456
P.O. Box 50685	Project Number: 0-0100-07	Reported:
Midland TX, 79710	Project Manager: Mark Larson	07/15/04 15:36

ANALYTICAL REPORT FOR SAMPLES

BH-1 10-11" 4G12001-0	D Matrix Date	Sampled Date Received
	Soil 06/24/	04 09:00 06/25/04 09:4
· · · · · · · · · · · · · · · · · · ·		
	<u> </u>	<u> </u>

Environmental Lab of Texas Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
3H-1 10-11' (4G12001-01) Soil								<u> </u>	
Chloride	62.0	10.0	mg/Ľ	1	EG41510	07/14/04	07/15/04	1312/9253	
		ļ							
						·			
				· .					
Environmental Lab of Texas									

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG41510 - EPA 1312/9253										
					07/14/04		07/16/04			······
Blank (EG41510-BLK1) hloride	0.00	10.0	mg/L	Prepared:	07/14/04	Analyzeo	1: 07/15/04			
Matrix Spike (EG41510-MS1)				Deserved	07/14/04	A	. 07/15/04			
Chloride	292	urce: 4G120 10.0		250	62.0	Analyzed 92.0	1: 07/15/04 80-120	<u></u> .		
Matrix Spike Dup (EG41510-MSD1)		urce: 4G120	_							
Chloride	301	urce: 4G120 10.0		250	62.0	Analyzed 95.6	1: 07/15/04 80-120	3.04	20	
Reference (EG41510-SRM1)			0							
Chloride	4790		mg/L	Prepared 5000		95.8	80-120			
		, 								
								· .		
									,	
Environmental Lab of Texas			The	results in thi. eived in the la	s report ap	ply to the so	amples analy	vzed in ac	cordance wi	th the sam

Notes and Definitions

NR	Not Reported		
dry	Sample results reported on a dry weight basis		
RPD	Relative Percent Difference		
LCS	Laboratory Control Spike		
MS	Matrix Spike		
Dup	Duplicate		
		1	
	0		
Report	Approved By: Kalan & K Two	Date: 7-15-04	_
Raland	K. Tuttle, QA Officer Ja	mes L. Hawkins, Chemist/Geologist	
		ra Molina, Chemist	
Jeanne	Mc Murrey, Inorg. Tech Director Sa	ndra Biezugbe, Lab Tech.	
	aterial is intended only for the use of the individu ation that is privileged and confidential.	al (s) or entity to whom it is addressed, and r	nay contain
If you l	nave received this material in error, please notify	us immediately at 432-563-1800.	
		1	

Environmental Lab of Texas

DET

ND

Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 4 of 4

CLIENT NAME: SITE MANAGER:															. K 11 1 A			СНАМ		TODY RECORD		
Rynegy M. Laroon									AVIET	Ţ	<u> </u>	HOU	NUN	VIBER			-0r	NUDI RECORD				
	ECT NO		-	0-	-1			CT NAME:		NUMBER OF CONTAINERS	(DKot CKo	1	chionicle	07-12-04						Aarson ssocia	& Antes, Inc. Fo	ax: 432-687-0456 432-687-0901
PAGE	1	OF			l	LAB. P	PO #			U U U	B	Ĩž	10	17-1 Ltc						507 N. Marie	enfeld, Ste. 202	• Midland, TX 79701
- Oale			Majep	SQ4		Olites		Le identification		NUMBER (Sois	Chland	SPL P.	5420						LAB. I.D. NUMBER (LAB USE ONLY)	PRESER	Remarks Litered, Unfiltered, Ived, Unpreserved, Ab Composite)
424		3830		\geq	\mathbf{I}		R1	4-1	0-21	1		\sum								F25003-01		
		84G							2-41	1	\geq	\mathbf{N}	ļ							J.	· · · · · · · · · · · · · · · · · · ·	
		845							4-61	1		\mathbb{M}						-+		03		
		8/48				$- \downarrow$			6-8'		<u>×</u>	$\underline{\mathbb{N}}$								04		
		900							10-11		<u>\</u>	\geq	X							05	Resubmit	# 4G12001-01
		710							15-16	1	\geq		ļ							06		
		A15		╞╌┨╴	_				20-21	-	<u> </u>	\searrow	 							07		
		<u>ค</u> 23_							25-26			\geq	<u> </u>							07	<u>.</u>	
Ľ		fi3a		IΨ			}	<u> </u>	30-31			\sum	 							01		
— *	0	1850		1			N	·	8 - 8.2	1		<u>r</u>								10	·····	
				<u> </u>																		· · · · · · · · · · · · · · · · · · ·
SAMPLED BY (Signature) DATE GEARCH RELAQUISHE						D BY:	l_ (Sign	i ature)	L			DAT TIM	E: 6/2	28/0 ar	RECI	EIVED BY: (Signa	iture)	DATE: TIME:				
RELINQUISHED BY: (Signature) DATE: RECEIVED BY: TIME:							(Sign	ature)					dat Tim			SAMPLE SHIPPED BY: (Circle) FEDEXBUS AIRBILL #:						
COMMENTS: COPY								TURNAROUND TIME NEEDED						e need	DED	HAND DELIVERED UPS OTHER: WHITERECEIVING LAB YELLOW - RECEIVING LAB (TO BE RETURNED TO						
ADDI CITY:	RESS:	LABORA C-La D-La	10. 10.	E W	<u>.</u>	1-	ZG	E	79765 -	Cu	lu	K.	ature) ein Y	e	4 !	19:	5		PINH	LA AFTER PROJECT	ig lab (10 be re Receipt) Manager Coordinator	
							LA C	A CONTACT PERSON				IPLE TYPE:	Foil	61.02 6/055								

<u>FAX</u>

DATE:	July 12, 2004	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
TO:	Jeanne McMurrey Environmental Lab of Texas, Inc.	
FAX:	(432) 563-1713	
FROM:	Mark J. Larson Larson and Associates, Inc.	
PAGES (w	rith cover): 1	
Re:	Request for Additional Soil Sample Analysis	

Please analyze the following soil sample for chloride using the SPLP method: Lab Order Number: 4F25003 Lab Sample Number: 4F25003-05 LA Sample Number: BH-1, 10 - 11'

> Larson and Associates, Inc. 507 N. Marienfeld Street Suite 202 Midland, Texas 79701 (432) 687-0901 (office) (432) 556-8656 (mobile) (432) 687-0456 (fax)

www.LAenvironmental.com mark@LAenvironmental.com

Please call (432) 687-0901 if this transmittal is not legible

APPENDIX B

Boring Log

Client: Dynegy Midstream Services, L.P.

Project: Site No. 07

Hole Size: 5"

Project No: 0-0100-07

Location: SE/SW, Sec. 29, T21S, R37E, Lea Co., NM

Log of Borehole: BH-1

Geologist: Mark J Larson

Page: 1 of 1

	SI	JBSURFACE PROFILE	S	AMP	LE		
Depth	Symbol	Description	Number	Type	Recovery	PID Measurement (PPM) 20 40 60	Lab Analysis
0-		Ground Surface					0-2' bgs
- -		Sand 7.5 YR 4/6, strong brown, very fine grained	1			0.9	Chloride: <20 mg/kg
1		quartz sand, fill material, dry.	2			2.5	2-4' bgs TPH: <20 mg/kg
- 5-			3			0.7	Chloride: <20 mg/kg 4-6' bgs
1		Silty, Clayey Sand	4			73.3	6-8' bgs
10_		5 YR 4/6, yellowish red, very fine to fine grained quartz sand, stiff, dry. Becomes 10 YR 7/4, very pale brown at lower contact.	5			19.1	TPH: 957 mg/kg Chloride: <20 mg/kg
10		Caliche 10 YR 7/4, very pale brown, very hard.	6			Ĭ	10-11' bgs TPH: 8.01 mg/kg Chloride: 1,170 mg/kg
15		Silty Sand 7.5 YR 4/6 to 5/6, reddish yellow to strong brown, very fine grained quartz sand, dry. Well cemented zone (caliche) from 23 to 25'.	7			9.8	SPLP Chloride: 62 mg/kg 15-16' bgs TPH: <20 mg/kg Chloride: 42.5 mg/kg
- 20-						2.2	20-21' bgs
			8				Chloride: 56.7 mg/kg
25 -			9			10.0	25-26' bgs Chloride: 88.6 mg/kg
- - 30-						2.2	30 31 ¹ has
		T.D. at 31 ft.	10				30-31' bgs Chloride: 56.7 mg/kg
-							
35- -							
-							
40							
Di	illing N	lethod: Air Rotary Larson a	nd As	soci	ates, l	nc. Cher	cked by: CKC
Da	ate Dril	led: 6/24/04 507 Nort Midland,	h Mar	ienfe	ld St.,	Ste. 202	ed by: Scarborough Drlg.

(915) 687-0901

CONFIRMATION REPORT - MEMORY SEND

Time : SEP-08-04 15:30 Fax number: 15053939758 Name : 8152219

Job	:	984
Date	:	SEP-08 15:29
То	;	14326870456
Doc. pages	:	02
Start time	:	SEP-08 15:29
End time	:	SEP-08 15:30
Pages sent	:	02

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

*** SEND SUCCESSFUL ***

BILL RICHARDSON Governor Joanna Prukop Cabinet Scoretary

FAX

Mark E. Fesmire, P.E. Director Oil Conservation Division

- MARK	432.687.0456
LASTER	
<u>C-141</u>	
<u>9.8.07</u>	
ARK - NEED C.141 ATTACHET	ALL
SUBMITTALS BEST TO 1	NSERT IT
AS THE LAST PAGE	
(Noters)	ES
Lø	128-1
ED THIS AND SO I CAN CLOSE	17-2
MAIL IT & YOUR CARLIEST CONSTRUCT	
NO. OF PAGESINCLUDING COV	ERSHEET
2	LADRY C-141 9.8.07 NEED C-141 ATTACHET SUBMITTALS - BEST TO 1 AS THE LAST FACE, LADRY

Oil Conservation Division * 1625 N. French Drive * Hobbs, New Mexico 88240 Phone: (505) 393-6161 * Fax (505) 393-0720 * <u>http://www.emnrd.state.nm.us</u>

09/09/2004 THU 11:28 FAX 915 687 0456 LARSON & ASSOCIATES INC.

1997 - 1997 - 19 District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 South First, Artesia, NM 88210 District III 1000 Rio Brazos Rosd, Aztec, NM 87410 District IV 2040 South Pacheco, Senta Fc, NM 87505

Oil Conservation Division 2040 South Pacheco Santa Fe, NM 87505

Form C-141 Revised March 17, 1999

Ø002/004

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

•	OPERATOR	🚺 Initial Report 🔀 Final Report
Name: Dynegy Midstream Services, L. P.		l Wrangham @ (915) 688-0542 rris @ (505) 631-7069
Address: PO Box 1909 Eunice, NM 88231	Telephone N	No. (505) 394-2534
Facility Name: Eunice Plant Gathering System	Facility Typ	c: Gas Plant Low Pressure Gathering Lines
Surface Owner: Kennann Ranch	Mineral Owner	Lease No.

Surface Owner: Kennann Ranch

Mineral Owner

....

LOCATION OF RELEASE

Unit Letter N	Section 29	Township T21S	Range 37E	Feet from the	North/South Line	Feet from the	East/West Line	County Lea
		1			i i			

NATURE O	FRELEASE		
Type of Release Crude Oil	Volume of Release 5 bbls	Volume Recovered 1 bbl	
Source of Release Pipeline	Date and Hour of Occurrence PM of 11/29/00	Date and Hour of Discovery Same	
Was Immediate Notice Given? X Yes 🔲 No 🛄 Not Required	lf YES, To Whom? Donna Williams, Chris Williams	(phone messages)	
By Whom? Cal Wrangham, Davo Harris	Date and Hour PM of 11/29/00		
Was a Watercourse Reached?	If YES, Volume Impacting the Wa	lercourse.	
If a Watercourse was Impacted, Describe Fully.*			
Describe Cause of Problem and Remedial Action Taken.* A drip on a 4" low pressure gathering pipeline was discovered leaking	. The line will be repaired PM on t	1/29/60.	
Describe Area Affected and Cleanup Action Taken.* The leak has released some liquid to surrounding soil. Will delineate s Any action/plans will be communicated through Donna Williams of D		neet OCD remediation guidelines.	
Describe General Conditions Prevailing (Temperature, Precipitation			
Mid 60 degree daytime temperatures with dry conditions.			
I hereby certify that the information fiven above is true and complete to the best of my knowledge and belief Signature:	OIL CONSERVATION DIVISION		
Printed Name: Cai Wrangbam	Approved by District Supervisor:		
Title: ES&H Advisor	Approval Date:	Expiration Date:	
Date: Phone: 915 688-0542	Conditions of Approval:	Attached	

* Attach Additional Sheets If Necessary

and the

Ø 001/004

FAX SHEET

DATE: September 9, 2004

TO: Larry Johnson

WITH: New Mexico Oil Conservation Division

FAX: (505) 393-0720

FROM: Cindy Crain

WITH: Larson and Associates, Inc.

PAGES (with cover): 4

RE: Requested C-141 for Dynegy Spill Remediation and Investigation Report, Unit Letter N, Section 29, Township 21 South, Range 37 East, Lea County, NM

> Larson and Associates, Inc. 507 N. Marienfeld Street Suite 202 Midland, Texas 79701 (915) 687-0901

cindy@laenvironmental.com

Please call Cindy Crain at (915) 687-0901 if this transmittal is not legible.

SEP-09-04 THU 10:28 AM FROM:915 687 0456

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary FAX		Mark E. Fesmire, P.E. Director Oil Conservation Division					
TO:	MARK	432.687.0456					
FROM:	LARGER						
RE:	C-141						
DATE:	9.8.04						
4M	RK - NEED C.141 SUBMITTALS - BEST AS THE LAST PAGE						
	LARPY						
(1259	(NEED THIS ONE SO I CAN CLOSE IT)						
E	MAIL IT & YOUR CARLIEST &	20220120CE					
	NO. OF PAGES 2 INCL	UDING COVERSHEET					

Oil Conservation Division * 1625 N. French Drive * Hobbs, New Mexico 88240 Phone: (505) 393-6161 * Fax (505) 393-0720 * <u>http://www.emnrd.state.nm.us</u>

August 18, 2004

Mr. Larry Johnson New Mexico Oil Conservation Division 1625 N. French Drive Hobbs, New Mexico 88240

Re: Addendum Pipeline Spill Remediation and Investigation Report, Dynegy Midstream Services, L.P., Unit Letter N, Section 29, Township 21 South, Range 37 East, Lea County, New Mexico

Dear Mr. Johnson:

This report presents the results of remedial actions and additional investigation of a release of natural gas liquids (NGL) from a pipeline drip owned by Dynegy Midstream Services, L.P. (Dynegy), and located in the SE/4, SW/4 (Unit Letter N); Section 29, Township 21 South, Range 37 East, Lea County, New Mexico. In a letter dated February 19, 2001, Larson and Associates, Inc. (LA) summarized the results of field and laboratory analysis of soil samples collected from the Site, and proposed remedial actions to reduce the remaining total petroleum hydrocarbons (TPH) below the New Mexico Oil Conservation Division (NMOCD), Recommended Remediation Action Level (RRAL) of 1,000 milligrams per kilogram (mg/Kg). No samples exceeded the NMOCD RRAL for benzene (10 mg/Kg) and total BTEX (50 mg/Kg). The remedial action was approved by the NMOCD, and included removal of additional soil from the bottom and south side of the excavation, and scraping a section of the lease road where TPH in a previous sample (Comp. #1) exceeded the RRAL. Figure 1 presents a location map. Figure 2 presents a Site drawing.

On March 21, 2002, LA supervised removal of additional soil from the bottom and south side of the excavation, and scraped additional soil from a section of lease road located south of the Site. The excavation was deepened to about 8 feet BGS, and extended to the south between 5 and 10 feet. Soil removed from the excavation, scraped from the roadway, and soil previously excavated from the Site was disposed at an NMOCD approved facility. LA collected samples from the bottom and south side of the excavation following removal of the soil, and a composite sample from the roadway. The samples were collected in clean glass sample jars, secured with ®Teflon lined lids, labeled, chilled in an ice chest, delivered under chain-of-custody control to Environmental Lab of Texas, Ltd., located in Odessa, Texas, and were analyzed for TPH using method SW-846-8015 for gasoline range organics (GRO) and diesel range organics (DRO). Table 1 presents a summary of the laboratory analysis. Appendix A presents the laboratory report. No TPH was reported above method detection limits in samples from the bottom and south side of the excavation. The TPH concentration reported in the composite sample from the roadway was 83.5 mg/Kg. These results are well below the RRAL of 1,000 mg/Kg, and the excavation was filled with clean soil obtained from the landowner.