REACTION-TYPE CONTINGENCY PLAN FOR A HYDROGEN SULFIDE GAS EMERGENCY INVOLVING THE OXY PERMIAN-HOBBS RMT OPERATIONS Prepared 4/21/2003

OCCIDENTAL PERMIAN LTD. HOBBS, NEW MEXICO APRIL 21, 2003

TABLE OF CONTENTS

Hobbs RMT H2S EMERGENCY REACTION-TYPE CONTINGENCY PLAN

Section		Page
١.	Purpose and Scope of Plan Coverage	3
	Hobbs RMT Key Contact Information	4
	Coordination with State Emergency Plan	4-5
11.	Emergency Procedures	
	Discovery and Implementation of Immediate Action Plan	6
	Initial Response	7
	Activation Of Hydrogen Sulfide Contingency Plan	7
	Evacuation of Public Areas	7
	Training and Drills	8
	Physical Properties and Physiological Effects of	9-10
	Hydrogen Sulfide	
	Physical Properties and Physiological Effects of Sulfur Dioxide	11
	"Non-OXY" Emergencies	12
	v	
111.	Roles and Responsibilities of Emergency Response Personnel	13-17
IV.	Appendices	
	A. Map of Hobbs RMT Unit Boundaries	18
	B. List of Hobbs RMT Facilities and 100 & 500 ppm ROEs	10
	C. List of Low Pressure Producing Wells and 100 & 500	20-25
	ppm ROE's	20-25
	D. List of High Pressure Producing Wells and 100 & 500 ppm ROE's	26
	E. List of Produced Gas Injectors and 100 & 500 ppm ROE's	27
	F. List of Legal Descriptions of Hobbs RMT Facilities	28
V.	Emergency Telephone List (Table of Contents)	29
_	OXY Permian HOTLINE	30
	Caprock Answering Service	30
	Hobbs RMT Team Leaders	30
	Health, Environmental & Safety Personnel	31
	Emergency Services, medical/ ambulance/physician	32-33
	Law Enforcement and Fire Departments	34
	Govt. Agencies/Airports/Poison Control	35
	Hobbs RMT Operating Personnel	36
	Oxy Corporate Security	37
	Oxy Corporate Security Contractor Support	<u> </u>

REACTION-TYPE CONTINGENCY PLAN FOR A HYDROGEN SULFIDE GAS EMERGENCY INVOLVING THE OXY PERMIAN-HOBBS RMT

Section I.

A. <u>Purpose and Scope of Plan Coverage</u>

The purpose of this plan is to provide for the logical, efficient and safe emergency response action to be taken by the Occidental Permian Hobbs Reservoir Management Team (Hobbs RMT). The protection of the general public and workers in the event of an accidental release of potentially hazardous quantity of Hydrogen Sulfide Gas (H_2S) from it operations is of the highest priority.

A reaction-type contingency plan is a pre-planned, written procedure for alerting and protecting the public, within an area of exposure, where it is impossible or impractical to brief in advance all of the public that might possibly be within the area of exposure at the moment of an accidental release of a potentially hazardous volume of hydrogen sulfide. It is intended that the senior emergency response official (e.g. Oxy Team Leader or his designee) will become the individual in charge of the Site specific Incident Command System (ICS). All emergency responders and their communication will be coordinated through the individual in charge of the ICS.

The Hobbs RMT is responsible for the operation of the Occidental Permian oil and gas leases located in southern Lea County, New Mexico. A significant portion of the facilities/wells operated by the Hobbs RMT are located within or near the proper city limits of the City of Hobbs, New Mexico

The operations consist of approximately 253 producing oil and gas wells, 10 Tank Batteries, 16 production satellites, 1 CO2 Recompression Facility, 3 Water Injection facilities and several thousand feet of underground pipeline injection or production gathering systems. The RMT has operated a secondary recovery waterflood program of the properties and has recently implemented a tertiary recovery program which will utilize carbon dioxide (CO2) flood as a means of additional recovery of oil and gas production.

The operational areas of the Hobbs RMT are divided into two areas, the North Hobbs and South Hobbs Units. A map of the RMT boundaries is included as Appendix A in Section IV of this plan

Sources of potentially hazardous volumes of H2S gas in the Hobbs RMT operations include:

- Oil and gas producing wells and associated flow lines
- Fluid gathering and handling facilities (satellites and batteries)
- Gas gathering systems (pipelines)
- Produced Gas Injection Compression Facility, it's distribution system and associated injection wells

Leaks from these sources could create an H₂S exposure area. Whether such exposure areas would be hazardous would depend upon their location and size. The calculations of the exposure potential, leak size is assumed to be the maximum possible from the particular system. This is generally and intentionally a conservative calculation because the vast majority of leaks will occur as small fraction of the system. These calculations are based on the escape rates as allowed by New Mexico Hydrogen Sulfide standard for existing and new operations. The H2S concentrations were determined using applicable ASTM or GPA standards or another method approved by the NMOCD. Radiuses of exposure were calculated using the Pasquill-Gifford derived equation as defined by the standard.

The calculated ROEs for the OXY facilities and wells are located in Section IV of this plan.

B. Hobbs RMT Key Contact Information

Physical Address: 1017 Stanolind Road, Hobbs, New Mexico Office Telephone Number: 505-397-8200 Office Fax Number: 505-397-8204 24 Hour Answering Service: 505-397-8255 Mailing Address: 1017 Stanolind Road, Hobbs, New Mexico 88240 Key Contact - Plan Development and Maintenance: Steve Bishop 505-397-8251 Name of RMT Team Leader: Tommy McKenzie (office number 713-366-5176)

C. Coordination with State Emergency Plans

Under certain conditions as provided for in the New Mexico Hazardous Materials Emergency Response Plan (HMER), the New Mexico State Police responding to the emergency may elect to assume the position of FIC or they may establish a Unified Command of which the OXY FIC may be a key member. Under the Unified Command scenario, the OXY FIC shall cooperate with the other involved emergency responders, such as the New Mexico State Police, local fire department, City Police, Sheriff's Office, NMOCD or other appropriate public emergency response agencies to manage the effective and safe response to the emergency situation.

The FIC's responsibility is to ensure control of the emergency incident. The Hobbs RMT FIC will notify or delegate notifications of all OXY Permian or contract personnel as well as the civil authorities needed for response to the situation. The OXY FIC will assign additional OXY personnel to support roles as needed. Upon notification or discovery of a potential emergency situation, the following steps should be taken by the OXY FIC or relief

- 1. Assume the role of Field Incident Commander (FIC) and attempt to gather as much information as possible as to the scope and severity of the situation.
- 2. Alert other emergency response personnel of the situation.
- 3. Arrange for back up personnel to be dispatched to the scene.

- 4. Proceed to the site to further assess the emergency response measures.
- 5. Establish an on-site mobile command station.
- 6. Implement the Emergency Action Plan as necessary.
- 7. Remain on site as FIC until relieved or the emergency is over.

See additional roles and responsibilities of the Field Incident Commander in the Section III Roles and Responsibilities of Emergency Response Personnel.

II. Emergency Procedures

A. Discovery and Implementation of Immediate Action Plan

Upon discovering or recognizing a potentially hazardous H2S release OXY employees should immediately implement the following immediate action plan:

- a. Alert and account for facility personnel
 - 1. Move away from the source and get away from the affected area
 - 2. Don personal protective breathing equipment
 - 3. Alert other affected personnel
 - 4. Assist personnel in distress
 - 5. Proceed to the designated emergency assembly area
 - 6. Account for on-site personnel
- b. Take immediate measures to control the presence of or potential H2S discharge and to eliminate possible ignition sources. Emergency shutdown procedures should be initiated as deemed necessary to correct or control the specific situation. When the required action cannot be accomplished in time to prevent exposing operating personnel or the public to hazardous concentration of H2S proceed to the following steps, as appropriate for the site specific conditions.
- c. Alert the public (directly or through appropriate government agencies).
- d. Initiate evacuation operations
- e. Contact the first available designated supervisor on the call list. Notify the supervisor of the circumstances and whether or not immediate assistance is needed. The supervisor should notify (or arrange for notification of) other supervisors and other appropriate personnel (including public officials) on the call list.
- f. Make recommendations to public officials regarding blocking unauthorized access to the unsafe area and assist as appropriate.
- g. Make recommendations to public officials regarding the evacuating the public and assist as appropriate.
- h. Notify, as required, state and local officials and the National Response Center to comply with release reporting requirements.
- i. Monitor the ambient air in the area of exposure (after following abatement measures) to determine when it is safe for re-entry.

B. Initial Response

- 1. The OXY Permian employee (first responder) responding to or receiving notification of an emergency situation shall immediately proceed to the location and attempt to assess the situation and then notify the Team Leader or his relief.
 - a. Provide the Team Leader with as much data possible concerning the location, the extent of emergency and need for additional assistance.
 - b. Warn others in the area of situation, evacuate if necessary.
 - c. Remain at site, at a safe distance, and available for communication. Wait for assistance to arrive before attempting to enter into any potentially hazardous area.
 - d. Initiate rescue and first aid as situation dictates.
- 2. Upon notification of an emergency the Team Leader (or relief) shall:
 - a. Notify other key RMT personnel and alert them to situation.
 - b. The Team leader shall then proceed to the site to assess the situation.
 - c. The Team leader shall determine if the emergency response plan is to be initiated.
 - d. In the absence of the Team Leader (or relief) the OXY employee at the site shall determine whether or not to activate the Reaction-type emergency response plan and shall remain at the scene until relieved by another OXY employee or the Civil Authorities.

C. Activation Of Hydrogen Sulfide Contingency Plan

The hydrogen sulfide contingency plan shall be activated when the release creates a concentration of hydrogen sulfide of more than

- 100 ppm in any public area,
- 500 ppm at any public road
- or 100 ppm ROE is greater than 3000 feet from the site of the release

The Hobbs RMT Team Leader or designated relief will serve as the Field Incident Commander (FIC). It is the responsibility of the FIC to ensure control of the emergency response management system and if necessary to coordinate these efforts with any state or local emergency plans.

D. Evacuation of Public Areas

When the situation requires the evacuation of the public from areas which contain or could contain potentially hazardous volumes of H2S the information regarding the calculated radius of exposures (ROE) contained in Section IV shall be utilized. This information will assist in determining the areas of concern to a specific release site. Since a large portion of the Hobbs RMT operations are located within the city limits of Hobbs New Mexico, it is impossible or impractical

to include a listing of all the locations of potentially affected public areas and public roads into this plan.

Therefore, this reaction –type contingency plan is the best means for allowing for the timely notification of the persons located in the potentially affected public areas or roads. ROEs have been calculated for well sites, tank batteries, satellite facilities, and production and gas gathering and injection distribution systems and are maintained and reviewed periodically to ensure accuracy. Information contained in this plan will them to readily determine the radius of exposures and with the assistance of emergency responders such as the fire department, local law enforcement and other public agencies and authorities will be able to respond in timely and effective manner consistent with the requirements of the New Mexico H2S standard.

E. Training and Drills

The value of training and drills in emergency response procedures can not be over emphasized. All OXY personnel identified in this plan shall be trained on the emergency response plan and procedures annually. The importance of each role of the emergency responders and the effects that each person has during an emergency will be stressed. In additional, the needs for emergency preparedness will emphasized through the use of drills and other exercise that simulate an emergency in which personnel perform or demonstrate their duties. These exercises will consist of table-top or classroom discussions or can be a realistic drill in which equipment is deployed, communications equipment is tested and "victims" are sent to the hospital with simulated injuries. Public officials will be informed and preferably involved in these exercises.

Review and critiques of the drills or exercises will be conducted after completed to identify any potential improvement opportunities for the plan.

The plan will be periodically reviewed and updated anytime its provisions or coverage change.

Documentation of the training, drills and reviews will be on file in the RMT files.

F. Physical Properties and Physiological Effects of Hydrogen Sulfide

Physical Data Chemical Name: Hydrogen Sulfide CAS Number: 7783-06-4 Synonyms: Sulfureted hydrogen, hydrosulfuric acid, dihydrogen sulfide Chemical Family: Inorganic sulfide Chemical Formula: H₂S Normal Physical State: Colorless Gas, slightly heavier than air. Vapor Density (specific gravity) at 59°F (15° C) and 1 atmosphere = 1.189 Auto ignition Temperature: 500°F (260° C) Boiling Point: -76.4°F (-60.2° C) Melting Point: -117°F (-82.9° C) Flammable Limits: 4.3 – 46 percent vapor by volume in air. Solubility: Soluble in water and oil; solubility decreases as the fluid temperature increases. Combustibility: Burns with a blue flame to produce Sulfur Dioxide (SO₂) Odor and Warning Properties: Hydrogen Sulfide has an extremely unpleasant odor, characteristic of rotten eggs, and is easily detected at low concentrations, however, due to rapid onset of olfactory fatigue and paralysis (inability to smell) ODOR SHALL NOT BE USED AS A WARNING MEASURE

Exposure Limits

The American Conference of Governmental Industrial Hygienists (ACGIH) recommends a Threshold Limit Value (TLV) of 10 ppm (8-hour TWA) and a short term exposure limit (STEL) of 15 ppm averaged over 15 minutes. (Action Level) Exposure at the STEL should not be repeated more than 4 times a day with least 60 minutes between successive exposures in this range.

Physiological Effects

Inhalation at certain concentrations can lead to injury or death. The 300 ppm is considered by the ACGI as Immediately Dangerous to Life and Health (IDLH) Hydrogen Sulfide is an extremely toxic, flammable gas that may be encountered in the production of gas well gas, high-sulfur content crude oil, crude oil fractions, associated gas, and waters. Since hydrogen sulfide is heavier than air, it can collect in low places. It is colorless and has a foul, rotten egg odor. In low concentrations, H2S can be detected by its characteristic odor; however smell cannot be relied on to forewarn of dangerous concentrations because exposure to high concentrations (greater than 100 ppm) of the gas rapidly paralyzes the sense of smell due to paralysis of the olfactory nerve. A longer exposure to lower concentrations has a similar desensitizing effect on the sense of smell.

It should be well understood that the sense of smell will be rendered ineffective by hydrogen sulfide, which can result in the individual failing to recognize the presence of dangerously high concentrations. Exposure to hydrogen sulfide causes death by poisoning the respiratory system at the cellular level. Symptoms from repeated exposure to low concentrations usually disappear after not being exposed for a period of time. Repeated exposure to low concentrations that do not produce effects initially may eventually lead to irritation if the exposures are frequent.

Respiratory Protection

Respiratory protection shall be worn above the action level.

G. Physical Properties and Physiological Effects of Sulfur Dioxide

<u>Physical Data</u>
Chemical Name: Sulfur Dioxide
CAS Number: 7446-09-05
Synonyms: Sulfurous acid anhydride, sulfurous oxide, sulfur oxide
Chemical Family: Inorganic
Chemical Formula: SO₂
Normal Physical State: Colorless Gas, slightly heavier than air.
Boiling Point: 148°F
Flammable Limits: Non-flammable (produced by burning hydrogen sulfide)
Solubility: Soluble in water and oil; solubility decreases as the fluid temperature increases.
Odor and Warning Properties: Sulfur Dioxide has a pungent odor associated with burning sulfur. It produces a suffocating effect and produces sulfurous acid on membranes of the nose and throat.

Exposure Limits

The American Conference of Governmental Industrial Hygienist recommends 2 ppm as an 8-hour TWA. Threshold Limit Value and the 5 ppm as a STEL, averaged over 15 minutes for sulfur dioxide.

Physiological Effects

Acute Toxicity: Inhalation at certain concentrations can lead to injury or death. 100 ppm is considered by the ACGIH as Immediately Dangerous to Life and Health.

Respiratory Protection

Respiratory protection shall be worn above the action level.

H. "Non-OXY" Emergencies

It is possible that an OXY employee could discover a potentially hazardous leak from a pipeline or other facility not operated by OXY. Also, leaks could be reported to OXY personnel but upon investigation, turn out to be from someone else's facility. In such instances, the OXY employee(s) involved should lend assistance without unduly endangering themselves. Generally, such assistance would include the following actions:

- 1. Alert and/or assist any person apparently in immediate danger.
- 2. Notify the appropriate Public Safety personnel of the location and nature of the emergency and assistance needed, if any.
- 3. Notify the Operator of the facility if the identity can be determined, see list of outside operators and pipeline in Section V of this plan.
- 4. Continue to lend assistance, such as manning road barricades, until relieved by employees of the Operator or Public Safety Personnel.

Section III

1. Roles and Responsibilities of Emergency Response Personnel

Following is a description of key personnel responsibilities for incident response.

a. **Team Leader:** Team Leader or designated relief will serve as the Field Incident Commander (FIC). Under certain conditions, the New Mexico State Police responding to the emergency may elect to assume the position of FIC or they may establish a Unified Command of which the OXY Team Leader may be a key member. The FIC's responsibility is to ensure control of the emergency incident. Team Leader will notify or delegate notifications of all OXY Permian or contract personnel as well as the civil authorities needed for response to the situation. Team Leader will assign additional OXY personnel to support roles as needed.

Note: The Field Incident Commander, or relief, remains on site until the emergency is over. The Field Incident Commander ensures repairs have been completed and ensures the operation has returned to normal, before releasing emergency team members.

- b. **Field Incident Commander:** The initial priority for the Field Incident Commander (FIC) is to assess the size and scope of the incident scene. Such factors as the immediate level of danger to employees, contractors, and the general public should be high on the list of considerations. The following is an abbreviated list concerning the responsibilities and recommended sequence for the FIC to achieve his/her responsibilities.
 - 1. Assess the size and scope of the incident scene.
 - 2. Establish preliminary "hot and safe zones" based on the information available.
 - 3. Set up a mobile command post at the scene of the incident.
 - 4. Initiate any "municipal emergency response" requests as deemed appropriate.
 - 5. Manage all aspects of the incident as OXY's FIC or as a key player in a Unified Command.
 - 6. Communicate routinely with the OXY Crisis Team's Operations Manager in Houston.
 - 7. FIC is responsible for assigning support roles as listed below.
- c. **Operations and Planning Section Chief:** The Operations and Planning Section Chief (OPSC) plays an integral role in interfacing

with the various State and Local emergency responders in coordinating all response activities. This allows the FIC to focus on the incident and its big picture decisions.

- 1. Facilitate onsite responder personnel briefings and status updates.
- 2. Arrange for humanitarian assistance with the OXY Human Resources Manager if required by the scope of the incident with coordination from the FIC.
- 3. If requested, assist the local municipalities in a "search and rescue" operation categorized as a specialized employee under the OSHA HAZWOPER guidelines.
- 4. Perform all other response functions as requested by the FIC.
- d. **Technical Specialist:** Technical Specialists, those individuals possessing critical skills, experience and knowledge in specific areas of OXY's or industry operations may be enlisted to assist in providing operational solutions for controlling releases in their areas of expertise. The Technical Specialist will function through the OPSC.

Examples of Technical Specialists include:

- Downhole Specialist
- Critical Well Control Specialist
- Drilling Specialist
- Construction Specialist
- Electrician
- Maintenance Specialist
- e. **Facility Engineers:** Local Facility Engineers will function through the OPSC and assist in providing operational solutions to controlling the size and scope of an incident. The ability to identify process related equipment for isolation and routing for field sources often proves to be one of the biggest challenges during a crisis situation. The following tasks should receive the initial priority for responding Facility Engineers and operations personnel.
 - 1. Identify source location and isolation equipment if available.
 - Provide detailed isolation instructions for responding personnel. Keep in mind the responders may or may not be OXY employees and may or may not have a good understanding of E&P operations.

- 3. Be prepared to provide the operational technical portion of update sessions with the onsite field response groups.
- 4. Begin the operational aspect of a facility recovery plan to first address operational needs to return to "normal" operating mode and second to complete long term considerations for site mitigation.
- f. **Safety Officer**: The Safety Officer (SO) plays an integral part in assisting the FIC in managing the onsite issues surrounding an incident. Focused internally on the incident, the Safety Officer is constantly evaluating the safety and health issues involved with the incident and monitors pieces of the response process to allow the FIC to address "bigger picture" issues. The following is an abbreviated list of the responsibilities and recommended sequence for the SO to achieve his/her responsibilities.
 - 1. Confirm the FIC's preliminary "hot and safe zones" are still applicable or adjust accordingly for such activities as staging areas, media crew locations, decontamination operations, etc.
 - 2. Address Safety, Health, Environmental, and Regulatory issues including notifications.
 - 3. If required, coordinate the development of a Site Safety and Health Plan or request this service from the OXY Crisis Team in Houston.
 - 4. If required, develop an "incident mitigation or recovery plan" or request this service from the OXY Crisis Team in Houston.

Note: The SO must stay abreast of the incident status and situation in order provide relief as an alternate FIC if the situations dictates a change needs to be made.

- g. Logistics Section Chief: The Logistics Section Chief (LSC) is responsible for assisting the FIC by arranging all aspects of field logistical support. The LSC must accommodate not only OXY responders but also municipal or other industrial responders as requested by the FIC or OPSC. Because there may be limited logistical support capabilities at the location, it is recommended the LSC rely heavily on the OXY Crisis Team Logistical Manager in Houston. The Logistical Manager's staff has multiple contracts and processes already in place to assist in such issues as food, lodging, vehicles, aircraft, etc. The following is an abbreviated list and recommended sequence to ensure the LSC is able to achieve his/her responsibilities.
 - 1. Initiate both victim and emergency responder "personnel accountability systems" upon arrival to the incident scene.

- 2. Establish and maintain a communication tool between the FIC and the OXY Crisis Team Operations Manager in Houston.
- 3. Assist in media interactions and establish the "OXY Point of Contact" for media inquiries.
- 4. Initiate and maintain an incident documentation system to ensure all activities are captured and a summary report will be available.
- 5. Begin supplying logistical support to the incident scene, staging operations, and local areas as soon as practical
- 6. Coordinate site security capabilities with the FIC, OPCS, SO, and responding municipalities.
- h. **Media Contact:** The designated Media Contact is assigned to the Logistics Section and will function through the LSC. The Media Contact will work very closely with the FIC, OPSC, and the OXY Public Affairs Representative located in Houston. Initial priorities for the Media Contact will include the following:
 - 1. Establish themselves as the onsite Media Contact for all media inquiries.
 - 2. Work with the Public Affairs to establish and distribute an initial press release as soon as feasible and with an announced time of when additional updates would be available.
 - 3. Either assist the FIC or personally conduct all initial media interviews until relieved by a member of the External Affairs group.
 - 4. Assist in all other functions of the Logistics Section as requested by the LSC or FIC.
- i. **Other Employees**: All other personnel should stand by and wait for instructions from the FIC.

Once accounted for, Hobbs RMT employees may be called upon by the LSC to provide logistical support in many different directions. These may include contacting vendors for supplies, contacting local company support groups for assistance to the general public, providing onsite logistical support to the responders "staging area" where others wait to assist in the actual response efforts, escorting vendors to remote locations as a guide, blocking roads, assisting with evacuations, etc.

It should be understood however, <u>no employee or contractor</u> of the Hobbs RMT will be asked to provide incident scene support that they are not comfortable in their ability to perform or have not been specifically trained to do.

- j. **Caprock Answering Service:** Upon notification of a possible emergency on Occidental Permian property, the answering service operator should ensure that he/she has all of the following information and proceed to call the OXY Technician on call and provide:
 - 1. Name, phone number, and/or address of the person reporting emergency.
 - 2. Location of emergency.
 - 3. Concise statement of what is happening.
 - 4. What type of emergency services are needed on location.

Section IV Appendices

Appendix A

Map Of Hobbs RMT Unit Boundaries

.

Appendix B

MCF/ <u>Month</u>	PPM <u>H2S</u>	ROE (ft) 100 PPM	ROE (ft)
<u>Month</u>	<u>H2S</u>	100 PPM	EAA DDIA
			<u>500 PPM</u>
16055	39000	668	305
10331	55000	628	287
9731	64000	665	304
27934	40000	959	438
5035	135000	703	321
261809	6200	1212	554
658642	11200	3125	1428
22908	20000	549	251
2265	58000	251	115
1806	56000	213	97
401528	4200	1241	567
481352	7900	2064	943
281201	6600	1318	602
209078	4200	825	377
21732	22000	564	258
175086	4600	782	357
13742	51000	716	327
161818	17800	1735	793
59314	31800	1331	608
105527	29000	1802	823
2461400	10300	6767	3092
1128	50	2	1
4209	300	14	6
10675	240	21	10
122	140	1	0
214	29000	37	17
17110	170	23	11
<u>.</u>			
	9731 27934 5035 261809 658642 22908 2265 1806 401528 481352 281201 209078 21732 175086 13742 161818 59314 105527 2461400 1128 4209 10675 122 214	9731 64000 27934 40000 5035 135000 261809 6200 658642 11200 22908 20000 2265 58000 1806 56000 401528 4200 481352 7900 281201 6600 209078 4200 21732 22000 175086 4600 13742 51000 161818 17800 59314 31800 105527 29000 2461400 10300 1128 50 4209 300 10675 240 122 140 214 29000	9731640006652793440000959503513500070326180962001212658642112003125229082000054922655800025118065600021340152842001241481352790020642812016600131820907842008252173222000564175086460078213742510007161618181780017355931431800133110552729000180224614001030067671128502420930014106752402112214012142900037

List of Hobbs RMT Facilities and 100 & 500 ppm ROE's

Appendix C

List of Hobbs RMT Low Pressure Producing Wells and 100 & 500 ppm ROE's

Lease / Facility	MCF/	Mole %	PPM	ROE (ft)	ROE (ft)
	Month	<u>H2S</u>	H2S	<u>100 PPM</u>	<u>500 PPM</u>
NHU13341	8448	.62	6200	141	65
NHU14421	0	2	20000	0	0
NHU19121	31537	1.1	11000	461	211
NHU19141	36752	.62	6200	355	162
NHU19221	10400	.62	6200	161	74
NHU19242	41022	.62	6200	380	174
NHU19615	6008	1.1	11000	163	75
NHU19616	217219	.62	6200	380	174
NHU19627	133925	.62	6200	114	52
NHU19733	8845	.62	6200	797	364
NHU19943	6405	.62	6200	119	54
NHU20141	335	.62	6200	19	9
NHU20341	152	5.6	56000	45	21
NHU23331	640	2	20000	59	27
NHU23421	17110	1.1	11000	315	144
NHU23441	30	2	20000	9	4
NHU24141	33214	1.1	11000	477	218
NHU24211	7747	1.1	11000	192	88
NHU24221	19977	1.1	11000	347	158
NHU24231	25650	1.1	11000	405	185
NHU24241	21441	1.1	11000	362	166
NHU24311	9729	1.1	11000	221	101
NHU24321	32421	1.1	11000	469	215
NHU24341	12322	1.1	11000	256	117
NHU24411	8997	1.1	11000	210	96
NHU24412	9180	1.1	11000	213	97
NHU 24421	14670	1.1	11000	286	131
NHU 24431	135023	1.1	11000	1146	524
NHU 24441	19916	1.1	11000	346	158
NHU24539	26992	1.1	11000	419	191
NHU24549	30662	1.1	11000	453	207
NHU 24611	76829	1.1	11000	805	368
NHU24612	3965	1.1	11000	126	58
NHU24613	10034	1.1	11000	225	103
NHU24614	17141	1.1	11000	315	144
NHU25241	0	2	20000	0	0
NHU25331	1952	2	20000	118	54
NHU25411	396	2	20000	43	20
NHU25421	15860	1.1	11000	300	137
NHU25641	3782	1.1	11000	122	56
NHU25642	5856	.66	6600	117	53

Appendix C continued: Lease / Facility	MCF/	Mole %	PPM	ROE (ft)	ROE (ft)	
	Month	H2S	H2S	100 PPM	500 PPM	
NHU25731	10339	1.1	11000	230	105	
NHU25744	1830	.66	6600	56	26	
NHU27121	152	5.8	58000	46	21	
NHU27131	579	5.8	58000	107	49	
NHU27141	60	5.8	58000	26	12	
NHU27231	152	5.8	58000	46	21	
NHU28121	7259	.42	4200	101	46	
NHU28122	213	5.6	56000	56	26	
NHU28132	6649	.42	4200	95	44	
NHU28141	29615	.42	4200	243	111	
NHU28142	25803	.42	4200	223	102	
NHU28241	518	5.1	51000	92	42	
NHU28243	7838	.42	4200	106	48	
NHU28321	183	5.6	56000	51	23	
NHU28331	183	5.1	51000	48	22	
NHU28341	396	5.1	51000	78	36	
NHU28342	701	5.1	51000	111	51	
NHU28411	0	5.6	56000	0	0	
NHU28431	1006	5.6	56000	148	68	
NHU28644	335	5.8	58000	76	35	
NHU29111	0	.79	7900	0	0	
NHU29121	1433	.79	7900	54	25	
NHU29131	8723	.79	7900	168	77	
NHU29221	8784	.42	4200	113	52	
NHU29231	11651	.42	4200	135	62	
NHU29311	3263	2.2	22000	172	79	
NHU29323	16165	.42	4200	166	76	
NHU29341	135847	.42	4200	630	288	
NHU29431	14182	.42	4200	153	70	
NHU29441	50935	.42	4200	341	156	
NHU29533	7991	.42	4200	107	49	
NHU29544	51636	.42	4200	344	157	
NHU29623	29676	.42	4200	243	111	
NHU29624	15951	.42	4200	165	75	
NHU29625	7259	.42	4200	101	46	
NHU29634	30652	.42	4200	248	113	
NHU29636	7747	.42	4200	105	48	
NHU29643	20099	.42	4200	191	87	
NHU29721	7198	.42	4200	100	46	
NHU29742	7447	.42	4200	102	47	
NHU29814	37637	.79	7900	419	191	
NHU29923	28456	.42	4200	237	108	
NHU29944	65300	.42	4200	398	182	
NHU30121	17141	1.1	11000	315	144	
NHU30141	2287	.66	6600	65	30	
NHU30211	31079	.79	7900	372	170	

Appendix C continued: Lease / Facility	MCF/	Mole %	PPM	ROE (ft)	ROE (ft)
Lease / Facility	Month	H2S	H2S	100 PPM	· · · · ·
NHU30221	53588	.79	7900	523	239
NHU30231	19398	2	20000	495	239
NHU30312	19390	.62	6200	228	104
NHU30321	15463	.02	7900	220	110
NHU30341	11559	.79	7900	240	91
NHU30412	5124	.79	7900	120	55
NHU30421	24461	.79	7900	320	146
NHU30441	26535	.79	7900	337	140
		.79			94
NHU30525	12017		7900	205	
NHU30527	19764	.79	7900	280	128
NHU30538	55479	.79	7900	534	244
NHU30546	11681	.79	7900	201	92
NHU30547	67252	.79	7900	602	275
NHU30617	43889	1.1	11000	567	259
NHU30618	78141	.66	6600	591	270
NHU30621	54686	.79	7900	529	242
NHU30713	32025	.79	7900	379	173
NHU31111	5764	.66	6600	116	53
NHU31131	0	2	20000	0	0
NHU31211	6862	.66	6600	129	59
NHU31231	5398	.66	6600	111	51
NHU31311	8448	.66	6600	147	67
NHU31321	50508	.66	6600	450	206
NHU31331	15860	.66	6600	218	100
NHU31411	91774	.66	6600	654	299
NHU31421	5063	.66	6600	107	49
NHU31422	10339	.66	6600	167	76
NHU31431	9272	.66	6600	156	71
NHU31722	11834	.66	6600	181	83
NHU31743	6405	.66	6600	124	56
NHU32111	41724	.66	6600	399	182
NHU32131	14182	.66	6600	203	93
NHU32143	91	.46	4600	7	3
NHU32211	49623	.46	4600	355	162
NHU32212	36234	.46	4600	292	133
NHU32221	10919	2.2	22000	367	168
NHU32231	10339	2.2	22000	354	162
NHU32232	18818	.46	4600	194	88
NHU32241	1586	.46	4600	41	19
NHU32313	48617	.46	4600	351	160
NHU32322	45140	.46	4600	335	153
NHU32332	3111	.46	4600	63	29
NHU32343	793	2.2	22000	71	32
NHU32411	162748	.46	4600	756	345
NHU32421	9424	.43	4300	120	55
NHU32424	13054	.43	4300	148	67

Appendix C continued: Lease / Facility	MCF/	Mole %	PPM	ROE (ft)	ROE (ft)	
	Month	H2S	H2S	100 PPM	500 PPM	
NHU32441	1372	.43	4300	36	16	
NHU32512	18239	.46	4600	190	87	
NHU32514	22417	.66	6600	271	124	
NHU32531	19367	.43	4300	189	86	
NHU32532	0	2.2	22000	0	0	
NHU32537	82838	.46	4600	489	224	
NHU32541	27572	.43	4300	236	108	
NHU32542	4849	.43	4300	79	36	
NHU32548	46421	.43	4300	1535	701	
NHU32844	640	2.2	22000	62	28	
NHU32913	6710	.46	4600	102	46	
NHU33114	10126	.43	4300	126	58	
NHU33121	4361	.43	4300	74	34	
NHU33123	3690	.43	4300	67	31	
NHU33131	6740	.43	4300	98	45	
NHU33141	396	2.2	22000	46	21	
NHU33213	3782	.43	4300	68	31	
NHU33233	1006	5.1	51000	140	64	
NHU33234	1403	5.1	51000	172	79	
NHU33241	671	5.1	51000	108	49	
NHU33311	1006	5.1	51000	140	64	
NHU33312	518	5.1	51000	92	42	
NHU33321	457	5.1	51000	85	39	
NHU33323	1616	5.1	51000	188	86	
NHU33331	0	5.1	51000	0	0	
NHU33341	610	5.1	51000	102	47	
NHU33411	224	5.1	51000	57	26	
NHU33412	549	5.1	51000	96	44	
NHU33421	427	5.1	51000	82	37	
NHU33431	579	5.1	51000	99	45	
NHU33433	549	5.1	51000	96	44	
NHU33511	5368	.43	4300	85	39	
NHU33513	1067	.43	4300	31	14	
NHU33521	58102	.43	4300	376	172	
NHU33523	1525	.43	4300	39	18	
NHU33524	671	5.1	51000	108	49	
NHU33526	488	5.1	51000	89	41	
NHU33535	793	5.1	51000	120	55	
NHU33545	549	5.1	51000	96	44	
NHU33734	610	5.1	51000	102	47	
NHU33843	244	5.1	51000	57	26	
NHU34211	244	5.8	58000	62	28	
NHU34311	213	5.8	58000	57	26	
NHU34341	305	5.8	58000	72	33	
NHU36311	0	2	20000	0	0	
			1	-		

Appendix C continued: Lease / Facility	MCF/	Mole %	PPM	ROE (ft)	ROE (ft)
	Month	H2S	H2S	100 PPM	500 PPM
SHU002	1067	6.4	64000	167	76
SHU003	793	6.4	64000	139	63
SHY004	396	6.4	64000	90	41
SHU005	14609	5.5	55000	780	357
SHU006	701	6.4	64000	128	59
SHU007	671	6.4	64000	125	57
SHU014	1464	3.9	39000	149	68
SHU015	0	5.5	55000	0	0
SHU016	640	4	40000	90	41
SHU017	61	4	40000	21	9
SHU018	640	5.5	55000	110	50
SHU019	244	5.5	55000	60	28
SHU020	1067	6.4	64000	167	76
SHU021	610	6.4	64000	118	54
SHU044	1494	5.5	55000	187	86
SHU046	0	6.4	64000	0	0
SHU075	0	5.5	55000	0	0
SHU086	0	6.4	64000	0	0
SHU122	3019	5.5	55000	291	133
SHU124	91	4	40000	27	12
SHU130	61	4	40000	21	9
SHU131	122	4	40000	32	15
SHU132	640	5.5	55000	110	50
SHU133	610	6.4	64000	118	54
SHU135	2104	4	40000	190	87
SHU136	91	4	40000	27	12
SHU137	762	5.5	55000	123	56
SHU138	1037	5.5	55000	149	68
SHU140	0	5.5	55000	0	0
SHU141	122	4	40000	32	15
SHU142	2226	5.5	55000	240	110
SHU145	0	6.4	64000	0	0
SHU148	1281	5.5	55000	170	78
SHU150	0	6.4	64000	0	0
SHU156	0	5.5	55000	0	0
SHU157	0	6.4	64000	0	0
SHU162	91	5.5	55000	33	15
SHU177	671	3.9	39000	92	42
SHU178	457	3.9	39000	72	33
SHU179	457	3.9	39000	72	33
SHU180	0	5.5	55000	0	0
SHU181	0	5.5	55000	0	0
SHU183	1860	3.9	39000	173	79
SHU184	1098	3.9	39000	125	57
SHU185	0	5.5	55000	0	0
SHU186	0	5.5	55000	0	0

Lease / Facility	MCF/	Mole %	PPM	ROE (ft)	ROE (ft)
	Month	<u>H2S</u>	<u>H2S</u>	<u>100 PPM</u>	<u>500 PPM</u>
SHU189	488	3.9	39000	75	34
SHU190	0	5.5	55000	0	0
SHU191	0	5.5	55000	0	0
SHU194	457	3.9	39000	72	33
SHU197	1220	6.4	64000	181	83
SHU211	20709	3.9	39000	783	358
SHU214	213	4	40000	45	21
SHU220	61	4	40000	21	9
SHU221	274	4	40000	53	24
SHU222	305	6.4	64000	76	35
SHU224	3904	5.5	55000	342	156
SHU225	457	6.4	64000	98	45
SHU228	732	3.9	39000	97	44
SHU231	12962	4	40000	593	271
SHU232	1159	5.5	55000	160	73
SHU234	31	4	40000	14	6
SHU236	31	4	40000	14	6
SHU240	0	6.4	64000	0	0
SHU241	0	4	40000	0	0
SHU242	305	4	40000	57	26
SHU243	305	4	40000	57	26
SHU244	1220	6.4	64000	181	83
SHU246	1372	5.5	55000	178	81
				<u> </u>	
Updated					

11/07/2006

Appendix D

List of Hobbs RMT High Pressure Produc	ing Wells and 100 & 500 ppm ROE's
--	-----------------------------------

Lease / Facility	MCF/	Mole %	PPM	ROE (ft)	ROE (ft)
	<u>Month</u>	<u>H2S</u>	<u>H2S</u>	<u>100 PPM</u>	<u>500 PPM</u>
There are currently no High Pressure					
Producing Wells in the Hobbs RMT					
Updated 11/07/2006					

Appendix E

Lease / Facility	MCF/	Mole %	PPM	ROE (ft)	ROE (ft)
	<u>Month</u>	<u>H2S</u>	<u>H2S</u>	<u>100 PPM</u>	<u>500 PPM</u>
NHU 19-131	274500	1.03	10300	1715	784
NHU 19-142	183000	1.03	10300	1331	608
NHU 19-232	106750	1.03	10300	950	434
NHU 24-121	244000	1.03	10300	1593	728
NHU 24-131	183000	1.03	10300	1331	608
NHU 24-212	122000	1.03	10300	1032	472
NHU 24-242	213500	1.03	10300	1465	670
NHU 24-331	366000	1.03	10300	2053	938
NHU 24-432	183000	1.03	10300	1331	608
NHU 24-442	183000	1.03	10300	1331	608
NHU 24-622	244000	1.03	10300	1593	728
NHU 24-637	122000	1.03	10300	1032	472
NHU 30-111	274500	1.03	10300	1715	784
NHU 30-112	305000	1.03	10300	1832	837
NHU 30-222	244000	1.03	10300	1593	728
NHU 30-223	91500	1.03	10300	862	394
NHU 30-232	91500	1.03	10300	862	394
NHU 30-233	122000	1.03	10300	1032	472
NHU 30-333	91500	1.03	10300	862	394
NHU 30-442	91500	1.03	10300	862	394
NHU 30-444	244000	1.03	10300	1593	728
NHU 30-536	244000	1.03	10300	1593	728
Updated 11/07/2006			•		

Proposed List of Hobbs RMT Produced Gas Injection Wells 100 & 500 ppm ROE's

Appendix F

List of Legal Descriptions of Hobbs RMT Facilities

	<u>Unit</u> Letter	Section	Township	Range	<u>North</u> Latitude	<u>West</u> Longitude
Lease/Facitlity	Letter	Section	TOWNSHIP	Kange	Latitude	Longitude
SHU SAT 1	F	5	19-S	38-E	32°41'10.03"	103°10'22.17"
SHU SAT 2	В	9	19-S	38-E	32°40'49.33"	103°09'08.38"
SHU SAT 3	Ð	10	19-S	38-E	32"40"47.05"	103*08*33.64"
SHU SAT 5	K	4	19-S	38-E	32°41'17.81"	103°09'24.93"
SHU CTB	A	9	. 19-S	38-E	32110143.69"	103"08'52.64"
NHU SAT 19-C	N	19	18-S	38-E	32°43'44.17"	103°11'23.49"
NHU SAT 24-C	Ó	24	18-S	→ 37-E	32°43'43.51*	103°12'13.81"
NHU SAT 25	J	25	18-S	37-E	32°43'03.55"	103°12'02.04"
NHUSAT 27	Ň	-27	18-S	38-E	32°42'49.16"	103°08'36.41"
NHU SAT 28	F	28	18-S	38-E	32°43'16.22"	103°09'14.86"
NHUSAT 29-C	G	- 29+	18-S	38-E	32°43'11.56"	103*10*12.24*
NHU SAT 30-C		30	18-S	38-E	32°42'26.91"	103°11'01.36"
NHUSAT 31 E-C	J	31 , ,	. 18-S	38-E	32*4213.73"	103*1103.08"
NHU 32 SAT E - C	Н	32	18-S	38-E	32°42'15.80"	103°09'48.46"
NHU SAT 32 W	K	32	18-S	38-E	32 42 03 73	103°10'20.57"
NHU SAT 32 W - C	K	32	18-S	38-E	32°42'05.71"	103°10'23.39"
NHU SAT 33	K	33		38-E ,	32"42"13.28"	103°09"20.43"
NHU CTB	L	29	18-S	<u>38-E</u>	32°43'05.76"	103°10'46.14"
NHU NIB	6	33 🌷	18-S	38-E	32"42'23.54"	103*09:41.88"
NHU WIB	Н	25	18-S	37-E	32°43'14.96"	103°11'59.65"
NHURCE	Н	25	18-S	• 37-E	32°43'14.96"	103°11'59.65"
	Cartelling at 152	1. The Assessment of the		iyo ya kawaka t		
STATE AB	H	32	18-S	38-E	32*42*20.74*	103°09'55.40"
STATE HF	В	9	19-S	38-E	32°40'55.40"	103°09'08.47"
TURNER TR. 2		10	19-S	38-E	32°40'47.05"	103*08'33.64"
Hobbs Deep A	P	13	18-S	37-E	32°44'33.42"	103°11'55.71"
STATEA		29	18-S	38-E	32*42*54.36*	103*09'59,49"
B. HARDIN	D	19	<u>18-S</u>	38-E	32°44'20.33"	103°11'40.63"
	r	1. 1. 2. 1997年1996年1996年1998年1998	<u>, ny taona 171</u>			and the second
	k	l	1	·		

Section V Emergency Telephone Lists

TABLE OF CONTENTS

	PAGE
HOTLINE	30
Caprock Answering Service	30
Hobbs Reservoir Management Team Leaders	30
Health, Environmental, & Safety Personnel	31
Emergency Services (Medical, Ambulance, Physicians)	32-33
Law Enforcement	34
Government Agencies/Airports/Poison Control Center	35
Hobbs RMT Operational Personnel	36
Corporate Security	37
Contractor Support	38
Outside Producing Companies Telephone List	39

OXY PERMIAN HOTLINE	713-935-7210
CAPROCK ANSWERING SERVICE	505-397-8255
HOBBS OFFICE INTERCOM	56

HOBBS FLOOD MANAGEMENT TEAM EMERGENCY TELEPHONE LIST

TEAM LEADERS AND ALTERNATES

Calvin Stewart	Office	806-592-6256
Operation Team Leader	Cell	806-215-0370
	Home	806-592-5078
Gilbert Williams	Office	806-592-6300
Operation Team Leader	Cell	806-215-0009
-	Home	806-592-3722
Butch Shivers	Office	806-592-6245
Operation Team Leader	Cell	806-215-0060
-	Home	806-592-9577

HOBBS RESERVOIR MANAGEMENT TEAM EMERGENCY TELEPHONE LIST

HES SUPPORT PERSONNEL

Steve Bishop	Office	505-397-8251
HES Technician	Cell	505-390-4784
	Home	505-392-7428
Mark Andersen	Office	505-397-8210
HES Specialist	Cell	806-215-0077
-	Home	505-392-7714

OXY PERMIAN HOUSTON OFFICE

Harry Hufft	Office	713-366-5022
Asset Manager	Cell	713-560-8071
	Home	281-304-0994
Greg Hardin	Office	713-366-5324
HES Team Leader	Cell	713-560-8037
	Home	281-343-8452
Roy Escobedo	Office	713-366-5325
HES Specialist	Cell	713-560-8031
-	Home	281-256-9656

EMERGENCY SERVICES OUTSIDE SUPPORT PHONE NUMBERS

MEDICAL

HOSPITAL NAME	ADDRESS	CITY	PHONE NUMBER
Lea Regional Hospital	5419 Lovington Highway	Hobbs, NM	505-492-5000
Memorial Hospital	209 NW 8th	Seminole, TX	432-758-5811
Nor-Lea General Hospital	1600 N. Main Street	Lovington, NM	505-396-6611
Yoakum County Hospital	412 Mustang Drive	Denver City, TX	806-592-5484
Brownfield Regional Medical Center	705 E. Felt	Brownfield, TX	806-637-3551
Covenant Health Systems	4000 24th Street	Lubbock, TX	806-725-6000
Covenant Medical Center	2615 19th Street	Lubbock, TX	806-725-1011
University Medical Center	602 Indiana	Lubbock, TX	806-743-3111

AMBULANCE

Hobbs, New Mexico	911 or 505-397-9308	
Lovington, New Mexico	911 or 505-396-2811	
Eunice, New Mexico	911	
Seminole, Texas	432-758-9871	
Denver City, Texas	911 or 806-592-3516	

AIR AMBULANCE

AEROCARE Methodist Hospital	1-800-627-2376
Lubbock, Texas - Aerocare will	
respond to a call from any OXY	
personnel. ETA Lubbock to Hobbs 42	
minutes.	

PHYSICIANS

DOCTOR	CITY	PHONE NUMBER
Dr. Bodindr Thepchatri	Denver City, Texas	806-592-3591
Dr. Carl Smith	Brownfield, Texas	806-637-2558
Dr. Morris Knox	Brownfield, Texas	806-637-2566
Dr. William Croom	Lubbock, Texas	806-799-4999

LAW ENFORCEMENT 911

POLICE

CITY	PHONE NUMBER
Hobbs, New Mexico	911 or 505-397-9265
Eunice, New Mexico	911 or 505-394-2112
Lovington, New Mexico	911 or 505-396-2811

SHERIFF

CITY/COUNTY	PHONE NUMBER
Lea County Sheriff - Hobbs	505-393-2515
Lea County Sheriff - Lovington	505-396-3611

STATE HIGHWAY PATROL

CITY	PHONE NUMBER
Hobbs, New Mexico	505-392-5588

FIRE DEPARTMENT

CITY	PHONE NUMBER
Hobbs, New Mexico	911 or 505-397-9308
Lovington, New Mexico	911
Denver City, Texas	911 or 806-592-3516
Seminole, Texas	911 or 432-758-9871

GOVERNMENT AGENCIES

AGENCY	PHONE NUMBER
New Mexico Oil Conservation Division	505-393-6161
Bureau of Land Management	505-393-3612
Air Quality Bureau, Santa Fe, NM	505-827-1494
LEPC – Jerry Reynolds, Lovington, NM	505-396-8600 or FAX 505-396-2093

AIRPORTS

CITY	PHONE NO.
Lea County Airport - Carlsbad Hwy	505-393-4943
Lea County Lovington Airport	505-396-9911
Lubbock International Airport	806-762-6411
Midland International Airport	432-563-2033

POISON CONTROL CENTER	1-800-432-6866
POISON CONTROL CENTER	1-800-437-6866

CHEMTREC**	1-800-424-9300

** Call CHEMTREC for questions concerning response or chemical hazards in the event of a chemical spill.

NALCO 24 HR EMERGENCY	1-800-462-5378 or 1-800-IM-ALERT

NALCO 24 HR MSDS FAX	
	281-263-7245
INALUU 74 OK WOUD FAA	/ / 0 =/ 0.3=/ /43

EMPLOYEE	CELL PHONE NUMBERS	HOME PHONE NUMBERS
Hubbard, Glen	505-631-6881	505-392-7663
Jones, Steve	505-631-4469	505-394-3124
King, Jimmy	505-390-0068	505-392-8854
Puckett, Johnny	806-215-1892	505-393-9307
Ragsdale, Monty	505-390-3803	505-392-1740
Shaffer, Jessie	806-215-0115	505-397-0899
Shipman, Robert	505-390-2071	505-392-4135
Whitley, Chuck	505-631-6259	505-397-0018

HOBBS RMT OPERATIONAL PERSONNEL

Appendix

CORPORATE SECURITY

Security Representat	ive		
Frank Zapalac**	Office	713-215-7157	
-	Home	281-681-0559	
	Cell/Pager	713-898-6099	
	Fax	713-215-7538	
Alternate			
Hugo Moreno	Office	713-215-7162	
	Home	281-778-8111	
	Cell/pager	713-817-3322	
	Fax	713-215-7538	

**Must be notified to assist in providing site security for all major emergencies and spills or response for any bomb threats or terrorist activities.

GREENWAY EMERGENCY OPERATION CENTER (EOC)

(713) 366-EXTENSION

5091	Fax
5095	Receptionist
5590	EOC Coordinator
5790	HES Manager
5791	Incident Manager
5792	HR Manager
5793	Planning Manager
5794	Operations Manager
5795	Logistics Manager

CONTRACTOR SUPPORT

ELECTRIC SERVICE COMPANIES

COMPANY NAME	PHONE NUMBER(S)
Custom Submersibles	505-397-0271
	24 hour 505-393-2146
Dixie Electric – Hobbs, NM	505-939-4466 24 hour
K & S Electric - Hobbs, NM	505-393-3114 24 hour

WATER SERVICE AND VACUUM TRUCKS

Key Energy Services – Hobbs , NM	505-397-4994 24 hour
Maclaskey Oilfield Services Hobbs, NM	505-393-1016 24 hour

ROUSTABOUT CREWS

Key Energy Services – Hobbs, NM	505-391-7725 24 hour
Banta Oilfield Service – Hobbs, NM	505-393-3875 24 hour

DIRT WORK EQUIPMENT

Key Energy Services – Hobbs, NM	505-391-7725 24 hour	
B & H Construction – Eunice, NM	505-394-2588 24 hour	

WELDERS

Custom Welding - Hobbs, NM	505-393-5904 24 hour

SAFETY EQUIPMENT

Callaway Safety Equipment – Hobbs, NM 505-392-2973 24 hour

OUTSIDE PRODUCING COMPANIES

L		
Amerada Hess	Office Phone	393-2144 or 393-2145
	After Hours	393-2144
Apache Corp	Office Phone	505-394-2743
	Emergency Number	1-888-561-5516
	Answering Service	1-888-257-6840
Bruton, Ralph	Business Phone	505-390-0366
Brothers	24 Hours	505-369-9135
Chevron	Office Phone	393-4121
	After Hours	393-4121
Conoco/Phillips	Office Phone	393-0130 24 hour
Dynegy	Office Phone	505-393-2823
	Fax Phone	505-393-4780
	Pager	505-370-6262
	Randy Duncan (C)	505-631-7065
	Floyd Evans (C)	505-631-7074
Duke	Office Phone	505-397-5600
	After Hours	505-393-4165
Marathon	Office Phone	393-7106 24 hour
Conoco/Phillips	Office Phone	505-396-7955
Pipeline	CO2 Plan	505-396-7923
Saga Petroleum	Office – Ans. Machine	505-391-9291
-	Ronny Long (Home)	432-524-3822
	Ronny Long (Cell)	432-638-6476
	Ronny Pryor (Home)	505-391-8698
	Ronny Pryor (Cell)	432-638-5826
Texland Petroleum	Office Phone	505-397-7450
	After Hours (24 Hours)	806-894-4316
	Johnny Tarin Operator	432-894-1463
	Kirk Jackson Foreman	432-894-1461