E.O.T.T. Energy Pipeline

Work Plan Supplement, Investigation, and Revised Closure Proposal

for the

Texaco Buckeye Site

Reference: #LF-2000-34 and #2001-11040 UNIT LETTER N SEW of the SWW of Section 34, T17S, R34E Lea County, New Mexico

September 2001

Prepared by

Environmental Plus, Inc. 2100 Avenue O P.O. Box 1558 Eunice, New Mexico 88231 Tele 505•394•3481 FAX 505•394•2601

laino - 34053 - EPACOGO2450890 - ePACOGO2451182 ent - nPACO602451217 pplication - pPACOGOa4S1373

TABLE OF CONTENTS

Table of Contents	
1.0 Texaco Buckeye Work Plan Supplement	1
1.1 Introduction	
1.2 Project Organization and Responsibility	
1.3 Environmental Media Characterization	
1.3.1 Delineation Strategy	
1.3.2 Site Description	2
1.3.3 Historical Use	
1.3.4 Photographic documentation	
1.3.5 Ecological Description	2
1.3.6 Area Ground Water Levels	
1.3.7 Depth to Ground Water Calculation	
1.3.8 Ground Water Gradient	
1.3.9 Wellhead Protection Area	
1.3.10 Distance to Nearest Surface Water Body	
1.4 Analytical Results	
1.4.1 Borehole #1 (BH1) was not advanced	
1.4.2 Borehole #2 (BH2)	
1.4.3 Borehole #3 (BH3)	
1.4.4 Borehole #4 (BH4) 1.4.5 Borehole #5 (BH5)	
1.4.5 Borehole #5 (BH5) 1.4.6 Borehole #6 (BH6)	
1.4.7 Median Borehole (MBH)	
1.5 Discussion of Data	
1.6 Remediation, Construction, and Closure Proposal	
1.6.1 Risk/Exposure Assessment	
1.6.1.1 Simulation 1: with Barrier, Evaporation, and Bio-decay	
1.6.1.2 Simulation 2: with no Barrier, Evaporation, or Bio-decay	
1.7 Conclusions	
Attachment I - Site Information and Metrics FORM	
Attachment II – Site Maps	
Attachment III - Photographs	
Attachment IV: Analytical Reports and Summary	
Attachment V: Environmental Plus, Inc. Quality Assurance Plan (EPIQAP)	27
1 Environmental Plus, Inc. Quality Assurance Plan	
1.8 Project Safety	
1.9 Data Quality Objectives	
1.10 Methodology	
1.10.1 Borehole Drilling, Lithologic Sampling, Logging, and Abandonr	
29	
1.10.1.1 General Drilling or Hand Augering Procedures	29
1.10.1.2 Borehole Abandonment	29
1.10.2 Sample Handling	29
1.10.3 Sample Identification	
1.10.4 Sampling protocols	
1.10.5 Sample Containers	30
1.10.6 Sample Custody	30

i

1.10.7 Quality Control Samples	
1.10.7.1 Field Blank	
1.10.7.2 Equipment Blank	
1.10.7.3 Field Duplicate or Co-located Samples	
1.10.7.4 Trip Blank	
1.10.8 Field Measurements	
1.10.8.1 Equipment Calibration and Quality Control	
1.10.8.2 Equipment Maintenance and Decontamination	
1.10.9 Analyses	
1.11 Data Evaluation and Usability	

1.0 TEXACO BUCKEYE WORK PLAN SUPPLEMENT

This Work Plan Supplement is developed to be consistent with the site characterization and remediation/abatement goals and objectives set forth in the "General Work Plan for Remediation of E.O.T.T. Pipeline Spills, Leaks and Releases in New Mexico, July 2000."

1.1 INTRODUCTION

The most recent leak, i.e. July 2001, at the Texaco Buckeye site was due to the pipe pulling out of a slip type transition coupler and was repaired upon discovery. The pooled oil was reintroduced to the system and the saturated soil placed on a plastic barrier. This plan collected information necessary to determine vertical and horizontal extent of crude oil contamination at this site and provides a reasonable and conservative assessment of risk/exposure using the VADSAT computer model developed by the American Petroleum Institute (API) to simulate transport of hydrocarbon through the vadose zone.

1.2 PROJECT ORGANIZATION AND RESPONSIBILITY

Environmental Plus, Inc., Eunice, New Mexico (EPI) conducted the subsurface investigation with operational support and coordination by EOTT personnel. The Environmental Lab of Texas, Inc., of Odessa, Texas and AnalySys, Inc. of Austin, Texas performed the laboratory analyses and provided reports.

1.3 ENVIRONMENTAL MEDIA CHARACTERIZATION

Chemical parameters of the soil were characterized consistent with the New Mexico Oil Conservation Division (NMOCD) guidelines published in the following documents;

- Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993)
- Unlined Surface Impoundment Closure Guidelines (February 1993)

Ground water was not encountered during the investigation, nevertheless, research of reliable sources, i.e., New Mexico Bureau of Mines and Minerals and New Mexico State Engineer databases, indicate the saturated zone occurring in the area at -93 feet below ground surface ('bgs). According to the NMOCD ranking criteria, the site has a ranking of 10, based on the delineation of the Constituents of Concern (CoCs), i.e., TPH and BTEX and the following site characteristics;

- Depth to Ground water, i.e., distance from the lower most acceptable concentration to the ground water.
- Wellhead Protection Area, i.e., distance from fresh water supply wells.
- Distance to Surface Water Body, i.e., horizontal distance to all down gradient surface water bodies.

1.3.1 Delineation Strategy

The site maps included in Attachment II, shows the sampling borehole locations. Boreholes 2, 3, 4, and 6 were located to verify the affected area horizontal perimeter, while boreholes 5 and MBH were located to delineate the vertical extent of contamination.

1.3.2 Site Description

The remediation site is adjacent and south of the Texaco E & P, Inc. West Vacuum Unit Battery. The area is congested with production flow lines and is situated in open grazing land Unit Letter – N in the SEU SWU of Section 34, T17S, R34E, approximately 3 miles west of Buckeye in Lea County, New Mexico. The site information and metrics form is included as Attachment I.

1.3.3 Historical Use

The area has been used historically for livestock grazing and access to oil and gas production facilities.

1.3.4 Photographic documentation

Photographs of the sites are included as Attachment III.

1.3.5 Ecological Description

The area is in the transition zone between the Upper Chihuahuan Desert and Great Plains/Great Basin Biomes. This area consists primarily of dark to gray sandy clay loam overlaying an indurated caliche bed that pervades the general area. Vegetation consists primarily of typical desert grasses and weeds with interspersions of Honey Mesquite (Prosopis glandulosa). Mammals represented, include Orrd's and Merriam's Kangaroo Rat, Deer Mouse, White Throated Wood Rat, Cottontail Rabbit, Black Tailed Jackrabbit, Pronghorn Antelope, and the Mule Deer. Reptiles, Amphibians, and Birds are numerous and typical of area. A survey of Listed, Threatened, or Endangered species was not conducted.

1.3.6 Area Ground Water Levels

According to the database information provided by the New Mexico State Engineers Office and the New Mexico Bureau of Mines and Mineral Resources(NMBMMR), the uppermost unconfined aquifer occurs in the area at -93' bgs as the Ogallala Formation.

1.3.7 Depth to Ground Water Calculation

The NMOCD requires the site be ranked to determine which soil CoC thresholds will apply and defines depth to ground water as, "the vertical distance from the lowermost contaminants to the seasonal high water elevation of the ground water." The uppermost occurrence of ground water is conservatively estimated to be 93' bgs. The lower most contamination above the CoC thresholds occurs at 20'bgs.

1.3.8 Ground Water Gradient

Using water level and altitude information provided by the NMBMMR the calculated ground water gradient is at a bearing of 96.0°, i.e., generally to the northeast. Water level documentation is included in Attachment I.

1.3.9 Wellhead Protection Area

The listed water wells are greater than 1,000 feet from the site.

1.3.10 Distance to Nearest Surface Water Body

There are no naturally occurring surface water bodies located within a 1,000 foot radius of the site.

1.4 ANALYTICAL RESULTS

The original analytical results are included as Attachment IV along with a summary and illustrations. Boreholes 2, 3, 4, 5, and 6 were advanced and sampled in February 2001. The area was inundated by another leak in July 2001. A central borehole, MBH, was advanced in August 2001 following mitigation to determine if the July leak had migrated beyond the previously delineated vertical interval.

1.4.1 Borehole #1 (BH1) was not advanced

1.4.2 Borehole #2 (BH2)

This boring is located west of the leak origin and is a perimeter boring. TPH^{8015m}, Benzene, and BTEX are nominal and well below the NMOCD remedial goals.

1.4.3 Borehole #3 (BH3)

This boring is located east of the leak origin and is a perimeter boring. TPH^{8015m}, Benzene, and BTEX are nominal and well below the NMOCD remedial goals.

1.4.4 Borehole #4 (BH4)

This perimeter boring identified CoC contamination approaching the NMOCD remedial goals in the near surface, i.e. <5'bgs. Contamination is surficial and will be removed.

1.4.5 Borehole #5 (BH5)

This interior soil boring was advanced in the center of pooling area with the longest residence time and deepest contamination. The NMOCD remedial goals were exceeded down to the 20'bgs interval.

1.4.6 Borehole #6 (BH6)

This perimeter boring identified CoC contamination approaching the NMOCD remedial goals in the near surface, i.e. <5'bgs. Contamination is surficial and will be removed.

1.4.7 Median Borehole (MBH)

Following immediate mitigation of the July 2001 spill, this borehole was advanced to determine if the release had impacted soil below the previously identified vertical interval of 20'bgs. The data indicate that the second leak had not penetrated to a depth >20'bgs.

1.5 DISCUSSION OF DATA

The analytical results meet the quality standards set forth in the Quality Assurance Plan included as Attachment V. Analytical results from the perimeter boreholes indicate that the soil in the non pooling flow path areas is contaminated generally to the top of the caliche rock interbed underlying the site, i.e. 2-3'bgs. The interior BH5 delineates contamination of the CoCs to -20'bgs and the MBH determined that the vertical impact from the July 2001 occurrence did not extend >20'bgs.

1.6 REMEDIATION, CONSTRUCTION, AND CLOSURE PROPOSAL

It is proposed to excavate soil contaminated above the NMOCD remedial guidelines down to 15'bgs mechanically shred and aerate and treated with bio-nutrients. The total expanded volume of soil to be excavated and remediated is -3372yd³. The remaining contaminated soil >15'bgs will be isolated from the surface environment with the installation of an impermeable clay barrier. The treated and shredded soil will be placed on top of the barrier and sampled quarterly until the NMOCD remedial goals for the CoCs are achieved. The bio-cell will be divided into east and west sections and sampled at 6'bgs and 11'bgs at least quarterly to monitor attenuation. A quarterly report will be submitted to the NMOCD Hobbs office. The barrier will also mechanically eliminate the vertical transport mechanism required to impact the ground water resource. The following risk/exposure assessment is included as justification and support for approval of the proposed increase in the NMOCD remedial goals for the CoCs.

1.6.1 Risk/Exposure Assessment

Results from a conservative VADSAT transport and fate simulation justifies leaving contaminated soil in the subsurface that is above the NMOCD guideline remedial action goals. Confidence in these results relies on the conservative nature of the input variables, i.e., artificially high concentrations of CoCs and exaggerated subsurface porosity. The actual hydraulic infiltration rate for southeast New Mexico is a negative number, however a value of 6.0⁻⁵ is being used. Similarly, the evaporation and bio-decay rates are not being increased even though bio-nutrients and microbes will be added. The installation of an impermeable barrier (clay) will essentially eliminate transport and supports the conservative nature of the risk/exposure assessment. The following model variables are used for the simulations and are considered conservative.

Parameter	Description or Value
Unsaturated Zone Waste zone thickness	10' bgs
Depth to Ground water	93' bgs
Total Petroleum Hydrocarbon (Highest measured TPH ^{8015m} value = 10,273 mg/Kg)	51,886 mg/Kg
Benzene	
Ethyl Benzene	
Toluene	
Total Xylene	
BTEX (used as the inputted Benzene source term)	538.9 mg/Kg
Lithology	Sand (conservative)
Hydrogeology	Sand and Gravel (conservative)
Bgs=below ground surface	

1.6.1.1 SIMULATION 1: WITH BARRIER, EVAPORATION, AND BIO-DECAY

The chart below illustrates that the unsaturated zone Benzene source term will not impact ground water using the conservative input parameters. This simulation takes credit for the installation of an impermeable clay barrier, evaporation, and bio-decay.

1.6.1.2 SIMULATION 2: WITH NO BARRIER, EVAPORATION, OR BIO-DECAY

This simulation eliminated the clay barrier, source term evaporation, and biodecay. The resulting illustration supports the proposed remedial goals for the CoCs as being acceptable for the site, i.e., TPH @ 51,886 mg/Kg and Benzene @ 538.9 mg/Kg.

1.7 CONCLUSIONS

The information and data collected during this investigation are of adequate quality to provide a basis for viable environmental management decisions, in particular, whether the NMOCD should allow CoC contamination to remain in the subsurface that is above the NMOCD guideline remedial goals and allow the development of a monitored bio-attenuation cell at the site. The proposed process will utilize aeration, treatment, isolation, and an engineered barrier to obviate risk of ground water contamination. The conservative risk/exposure assessment illustrates the adequacy and effectiveness of the coupling of these remediation strategies. It is therefore concluded that the remediation/closure proposal, when implemented, will be protective of the ground water resource and restore the near surface to agricultural productivity. Following implementation, the process will be documented and a request for "no further action required" submitted to the NMOCD.

ATTACHMENT I - SITE INFORMATION AND METRICS FORM

E.O.T.T. ENERGY PIPELINE

		E.O.I.I. ENERGY PIPELINE
	Site Information and Metric	
SITE: Texaco Buckeye	Assigned Site Reference #: I	F-2000-34 and 2001-11040
Company: E.O.T.T. Ener	gy Pipeline	
Company Street Address: 5	805 E. Highway 80, Midland, Texas 797	01
Company Mailing Address		· · · · · · · · · · · · · · · · · · ·
Company City, State, Zip	: Midland, Texas 79702	
Company Representative:	Frank Hernandez	· · · · · · · · · · · · · · · · · · ·
Company Representative	Felephone: 915.438.3799	
	6.684.3479 Fax: 915.684.3456	
Fluid volume released (bb		
	OCD verbally within 24 hrs and submit for	
(Also ap	plies to unauthorized releases >500 mcf 1	Natural Gas)
5-25 bbls: Submit form C-1	41 within 15 days (Also applies to unauthorized Gas)	d releases of 50-500 mcf Natural
Leak, Spill, or Pit (LSP) 1	Name: Texaco Buckeye	
Source of contamination:	Pipeline	
Land Owner, i.e., BLM, S	T, Fee, Other: State of New Mexico	·
	area leak origin pooling area = 75' x 100)' Flow path = -325 ft
LSP Area = -7224 ft ²		
Location of Reference Poi	nt (RP):	
Location distance and dir	ection from RP:	
Latitude: 32º 47' 14"N	,	
Longitude: 103° 33' 10"	W	
Elevation above mean sea	level: - 4,039 amsl	
Feet from South Section I	Line	
Feet from West Section L	ine	
Location - Unit or 1/4 1/4 = S	E¼ of WW¼	· · · · · · · · · · · · · · · · · · ·
Location - Section = 34		
Location - Township = 175	5	· · ·
Location- Range = 34E		
	1000 ' radius of site: None	
	nin 1000' radius of site: None	
	vithin 1000' radius of site: None	
Public water supply wells	within 1000' radius of site: None	
Depth from land surface 1	o ground water (DG): -93'bgs	
Depth of contamination (DC): 20'bgs	
Depth to ground water (D		
		3. Distance to Surface
1. Ground Water	2. Wellhead Protection Area	Water Body
If Depth to GW <50	If <1000' from water source, or;	<200 horizontal feet: 20
feet: 20 points		points
If Depth to GW 50 to	<200' from private domestic water source: 20 points	200-100 horizontal feet: 10
99 feet: 10 points	source. 20 points	points
If Depth to GW >100	If >1000' from water source, or; >200'	>1000 horizontal feet: 0
feet: 0 points	from private domestic water source: 0	1
-	points	points
Ground water Score = 10	Wellhead Protection Area Score= 0	Surface Water Score= 0
Site Rank (1+2+3) = 10	points	
Total Site Ranking Sco	ore and Acceptable Concentrations	
Parameter >19		0-9
Benzene ¹ 10 pp		10 ppm
BTEX ¹ 50 pp		50 ppm
TPH 100 pr		5000 ppm
	space measurement may be substituted fo	or lab analysis

NM IMS

Page 1 of 2

http://geoinfo.nmt.edu/.esrimap?Cache=VADITO1131200184105057765&File=print.htm

8/4/2001

Identify Results

Shape	Point	Shape	Point	Shape	Point	Shape	Point
Area	0.000	Area	0.000	Area	0.000	Area	0.000
Perimeter	0.000	Perimeter	0.000	Perimeter	0.000	Perimeter	0.000
Water_wells#	7693	Water_wells#	7755	Water_wells#	7862	Water_wells#	7946
Water_wells-id	7693	Water_wells-id	7755	Water_wells-id	7862	Water_wells-id	7946
Index_no	7693	Index_no	7755	Index_no	7862	Index_no	7946
Siteid	324711103333801	Siteid	324735103320001	Siteid	324805103334501	Siteid	324825103332601
Latitude	324711	Latitude	324735	Latitude	324805	Latitude	324825
Longitud	1033338	Longitud	1033200	Longitud	1033345	Longitud	1033326
Lociname	11324	Lociname	10213	Lociname	10211	Lociname	No Data
Altitude	4060	Altitude	4021	Altitude	4073	Altitude	4058
Use	U	Use	U	Use	U	Use	No Data
Depth	0.00	Depth	132.00	Depth	240.00	Depth	0.00
Geo-unit	No Data						
Waterlev	127.25	Waterlev	125.02	Waterlev	125.80	Waterlev	148.91
WI-date	19710216	WI-date	19800103	WI-date	19610117	WI-date	19760303
Wlingwsi	3	Wlingwsi	No Data	Wlingwsi	31	Wlingwsi	4
Sitestat	No Data						
Discharg	0.00	Discharg	0.00	Discharg	0.00	Discharg	0.00
Spc	0	Spc	0	Spc	0	Spc	0
Spc-date	No Data						
Qwyear	1961	Qwycar	1940	Qwyear	1951	Qwycar	1961
Тетр	0.0	Тетр	0.0	Temp	0.0	Temp	0.0
Tempdate	No Data						
Obs-well	No Data						

http://geoinfo.nmt.edu/.esrimap?nameX=nm-poolmaps232e465c&Cmd=Id&VName=NM+IMS&sz=514%2C372&sc=931131&ll... 8/4/2001

Page 1 of 1

...

Identify Results

Page 1 of 1

Shape	Point	Shape	Point	Shape	Point
	0.000	Area	0.000	Area	0.000
Perimeter	0.000	Perimeter	0.000	Perimeter	0.000
Water_wells#	7618	Water_wells#	7627	Water_wells#	7634
Water wells-id	7618	Water wells-id	7627	Water_wells-id	7634
Index_no	7618	Index_no	7627	Index_no	7634
Siteid	324653103321001	Siteid	324655103323201	Siteid	324656103321001
Latitude	324653	Latitude	324655	Latitude	324656
Longitud	1033210	Longitud	1033232	Longitud	1033210
Lociname	No Data	Lociname	05065	Lochame	11325
Altitude	4021	Altitude	4031	Altitude	4013
Usc	No Data	Use	ប	Use	ប
Depth	0.00	Depth	0.00	Depth	0.00
Geo-unit	No Data	Geo-unit	No Data	Geo-unit	No Data
Waterlev	88.30	Waterley	150.39	Waterlev	88.42
WI-date	19610306	WI-date	19860408	WI-date	19610306
Wlingwsl	1	Wiingwsi	-1	Wlingwsi	1
Sitestat	No Data	Sitestat	No Data	Sitestat	P
Discharg	0.00	Discharg	0.00	Discharg	0.00
Spc	0	Spe	0	Spc	0
Spc-date	No Data	Spc-date	No Duta	Spc-date	No Data
Qwyear	1961	Qwyear	No Data	Qwyear	1961
Temp	0.0	Тетр	0.0	Temp	0.0
Tempdate	No Data	Tempdate	No Data	Tempdate	No Data
Obs-well	Νο Data	Obs-well	No Data	Obs-well	No Data

http://geoinfo.nmt.edu/.esrimap?nameX=nm-poolmaps232e465c&Cmd=ld&VName=NM+IMS&sz=514%2C372&sc=50902.3&1... 8/4/2001

New Mexico Office of the State	Engineer	Page 1 of 1
	New Mercico Office of the State Engineer Well Reports and Downloads	
Texaeship 178	Range 34E Sections 34,26,27,28,33,35	
NAD27 X:	Y: Zone Search Radius	
County 🖉 A.	sön: 💌 Narnber: Safi	ix
Owner Name: (First)	(Last) C Nan-Danzsstic 에 All	C Damestic
Weil/Surfa		
Water Column Report Clear Form: WATERS Monu Hop AVERAGE BEPTH OF HATER REPORT 10/01/2001 (Depth Ester in Fuel) Ban Tree Rog Sec Sone X Y Hells Him Noix Argi 1. 1758 3.18 26 2. 0. 10.7 40.0 1. 1758 3.18 26 0. 1.07 40.0 1. 1758 3.18 26 0. 1.07 40.0 1. 1758 3.18 26 0. 1.07 40.0 1. 1753 3.47, 206 0. 1.25 1.09. 4.75 1. 1757 1.47. 3.4 2. 9.0 9.0 8		
AVERAGE MEPTH OF	WATER REPORT 10/01/2001	· · · · · · · · · · · · · · · · · · ·
1. 1998 848 86 1. 1993 848 84 1. 1983 848 84	E T Heile Him Máx Avg 3. 20 107 559 3 135 115 275 2 135 115 275 2 10 91 22	
	Kange 34E Sections 2.3.4	
NAD27 N:	Y Zone Zone Search Kadius (i
Commy: 🖉 B	sin 🔄 Suiter Suit	ā. [
Owner Name" (Porst)		· C Domestic
Wells Suth	ce Data Report Avg Depth to Water Report	
	Weter Cokam Report	;
۲۵۵۵ ۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	Clear Form WATERS Menu Hub	
average objects of	WATER ESPORT 10/01/2001	
Ban Two Rog Sec Soce L 105 308 CC L 105 308 CT Resord Sound: 2	10eprb Hater in Free N T Heils Min Max Avg 2 102 102 100 3 60 100 67	Г :
	dProd/awd.html?email_address=en.iplus1@aol.com&t	m s =t ¹ №1/2601

ŧ

ł

ATTACHMENT II – SITE MAPS

E.O.T.T. TEXACO BUCKEYE REVISED WORK PLAN SUPPLEMENT

,

Original Site Map prior to discovery of east portion contamination.

E.O.T.T. ENERGY PIPELINE

E.O.T.T. ENERGY PIPELINE

Proposed location of clay barrier installations.

ATTACHMENT III - PHOTOGRAPHS

ATTACHMENT IV: ANALYTICAL REPORTS AND SUMMARY

E.O.T.T. ENERGY PIPELINE

				Texaco	BUCKEYE	ANALYTI	CAL RESU	ILT SUMMA	RY					
SAMPLE ID#	Date	BOREHOLE	SAMPLING INTERVAL (FT. BGS)	LITHOLOGY	HEADSPACE VOC (PPM)	GRO' MG/KG	DRO ² MG/KG	GRO+DRO TPH ⁷ - MG/KG	BTEX ³ MG/KG	BENZENE MG/KG	TOLUENE MG/KG	EHTYL Benzene mg/Kg	M,P-XYLENE MG/KG	0-XYLENE MG/KG
ETBS22301BH2-2	2/23/2001		2	Oily Brown Soil & Rock	1025.0	1203	2408	3611	27.115	0.025	1.940	4.220	12.600	8.330
ETBS22301BH2-5	2/23/2001		5	Light Brown, Oily Soil	291.0	216	904	1120	3.580	0.025	1.070	0.488	1.190	0.807
ETBS22301BH2-10	2/23/2001	BH2	10	Beige Sand & Rock	67.4	60	527	587	0.911	0.025	0.118	0.226	0.372	0.170
ETBS22301BH2-15	2/23/2001		15	Beige Sand	25.4	15	326	341	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH3-2	2/23/2001		2	Brown, Oily Soil	1.2	10	10	20	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH3-5	2/23/2001	BH3	5	Light Brown Sand & Rock	0.6	10	10	20	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH3-10	2/23/2001	Brts	10	Beige Sand	0.4	10	10	20	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH3-15	2/23/2001		15	Beige Sand	0.1	10	10	20	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH4-2	2/23/2001		2	Brown, Oily Soil	650.0	550	432	982	31.416	0.386	5.330	3.660	15.200	6.840
ETBS22301BH4-5	2/23/2001	BH4	5	Light Brown Sand	58.8	10	68	78	0.136	0.025	0.025	0.025	0.036	0.025
ETBS22301BH4-10	2/23/2001	BH4	10	Light Brown Sand	28.1	10	10	20	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH4-15	2/23/2001		15	Beige Sand	15.9	10	10	20	0.125	0.025	0.025	0.025	0.025	0.025
ETBS22301BH5-2	2/23/2001		2	Black Oily Dirt	627.0	9305	42581	51886	356.700	22.600	111.000	87.800	96.800	38.500
ETBS22301BH5-5	2/23/2001		5	Gray Sand	1391.0	4382	4573	8955	374.200	11.200	108.000	109.000	109.000	37.000
ETBS22301BH5-10	2/23/2001		10	Grayish Brown Sand	1360.0	2591	2075	4666	220.650	8.650	64.000	63.700	63.800	20,500
ETBS22301BH5-15	2/23/2001	BH5	15	Light Brown Sand & Rock	95 0	4428	4713	9141	538,900	16.400	179.000	150.000	139.000	54.500
ETBS22301BH5-20	2/23/2001		20	Light Brown Sand	260	92	327	419	2.292	0.025	0.236	0.655	0.858	0.518
ETBS22301BH5-25	2/23/2001		25	Light Brown Sand	80.4	63	385	448	0.440	0.025	0.025	0.074	0.227	0.089
ETBS22301BH5-30	2/23/2001		30	Beige Sand	23.7	111	242	353	0.446	0.025	0.025	0.078	0.238	0.080
ETBS22301BH6-2	2/23/2001		2	Light Brown Sand	1362	1391	1938	3329	82.625	0.025	15.600	25,900	29.600	11.500
ETBS22301BH6-5	2/23/2001	BH6	5	Light Brown Sand & Rock	250.0	22	92	114	0.234	0.025	0.025	0.040	0.088	0.056
ETBS22301BH6-10	2/23/2001	BH0	- 10	Beige Sand	82.2	33	155	188	0.549	0.025	0.037	0.133	0.223	0.131
ETBS22301BH6-15	2/23/2001		15	Beige Sand	40.1	42	206	248	0.332	0.025	0.025	0.061	0.147	0.074
TWVU8601MBH-2	8/6/2001		2	Light Brown Sand & Rock	200.0	1500	302.1	1802.1	2.1968	0.0200	0.0848	0.6970	0.8540	0.5410
TWVU8601MBH-5	8/6/2001		5	Light Brown Sand & Rock	187.4	76.2	243	319.2	1.0000	0.0200	0.1640	0.3270	0.3350	0.1540
TWVU8601MBH-10	8/6/2001		10	Light Brown Sand & Rock	47.9	164	28.7	192.7	0.1000	0.0200	0.0200	0.0200	0.0200	0.0200
TWVU8601MBH-15	8/6/2001	MBH	15	Light Brown Sand & Rock	15.4	6.8	88.4	95.2	0.1000	0.0200	0.0200	0.0200	0.0200	0.0200
TWVU8601MBH-20	8/6/2001		20	Light Brown Sand & Rock	9.7	5	23.7	28.7	0.1000	0.0200	0.0200	0.0200	0.0200	0.0200
WVU8601MBH-25	8/6/2001	-	25	Light Brown Sand & Rock	7.9	5	64	69	0.1000	0.0200	0.0200	0.0200	0.0200	0.0200
'GRO - GASOLINE RA	NGE ORGANI	ICS CC10												
DRO - DIESEL RANG														
		10 20		, AND M,P, &O XYLENE										
	DENZENE,	IULUENE, EII	TIL DENZENE	, AND MIP, QU ATLENE										
NA - NOT ANALYZED			M=	0										
				CONSERVATION DIVISION GU	IDELINE I HRE	SHOLD FOR	THE PARAME	IER						
TALICIZED VALUES														
GRO+DRO (TPH) -	TOTAL PETR	OLEUM HYDRO	CARBON EPA	METHOD 8015M			· · · · ·							

E.O.T.T. ENERGY PIPELINE

E.O.T.T. TEXACO BUCKEYE Revised Work Plan Supplement

E.O.T.T. TEXACO BUCKEYE BTEX DELINEATION

E.O.T.T. TEXACO BUCKEYE BENZENE DELINEATION

Client: EOTT Energy Corp. Attn: Frank Hernandez Address: 5805 East Hwy 80 Midland Phone: 915 638-3799 FAX	Гх 79701 : 915 684-3456					Report#/Lab ID Project ID: 200 Sample Name: Sample Matrix: Date Received: Date Sampled:	1-11040-4"We FWVU8601MI soil 08/10/2001	st Vacuu	17:24	04/01	
REPORT OF ANALYSIS		<u>, , , , , , , , , , , , , , , , , , , </u>		•			QUALITY	ASSUR	ANCE DA	ATA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	164	mg/Kg	10	<10	08/30/01	8015 mod	S,M,P	Mt. Int	Mt. Intf.	95	79.4
TPH by GC (as diesel-ext)					08/20/01	3540	*	-NA-	-NA-	-NA-	-NA-
TPH by GC (as gasoline)	28.7	mg/Kg	5	<5	08/17/01	8015 mod.		5.36	98.4	101.5	100.13
Volatile organics-8260b/BTEX	•				08/17/01	8260b					
Benzene	<20	µg/Kg	20	<20	08/17/01	8260b		4.3	81.5	86.4	85.7
Ethylbenzene	<20	µg/Kg	20	<20	08/17/01	8260b		4.4	93.3	96.7	96.6
m,p-Xylenes	<20	µg/Kg	20	<20	08/17/01	8260b	J .	4.3	95.5	99.8	99.3
o-Xylene	<20	µg/Kg	20	<20	08/17/01	8260b		4.2	95.8	98.2	100.6
Toluene	<20	µg/Kg	20	<20	08/17/01	8260b	J	4.3	87.1	93.2	93.6
This analytical report is respectfully submitte have been carefully reviewed and, to the best are consistent with AnalySys, Inc.'s Quality Copyright 2000, AnalySys, Inc., Austin, TX publication may be reproduced or transmitted express written consent of AnalySys, Inc.	of my knowledge, the ana Assurance/Quality Contro All rights reserved. No	lytical results I Program. © part of this cans without the bmitted,	of the recove express e (RQL) typical dilutio associa	relative percent (red from a spike sed as the percent , typically at or ly denote USEP ns. 7. Data Qu ated method blas	(%) difference l ad sample. ant (%) recovery above the Prace A procedures. alifiers are J = nk(s). S1 =MS	mple batch which inclue between duplicate measu 4. Calibration Verification of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e =MS and/or MSD and Pl	rements. 3. Rec on (CCV) and Lab n standard or mat t (PQL) of the ana effect nominal qua ent between the PC xceed advisory lin	overy (Rec poratory Co rix. 5. Re alytical met antitation li QL and the nits. S2 = 1	ov.) is the per- portrol Sample porting Quar thod. 6. Me mits adjusted MDL. B = A Post digestion	rcent (%) of (LCS) rest titation Li thod numb for any re analyte det spike (PI	of analyte sults are mits cers quired ected in OS)

Richard Laster

than advisory limit. M =Matrix interference.

. .

EOTT Energy Corp. **Client:**

Frank Hernandez Attn:

Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-10

Report#/Lab ID#:117853 Sample Matrix: soil

FAX (512) 447-4766

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
p-Terphenyl	8015 mod	none/diluted	diluted @ 1X	D
Chlorobenzene-d5(Sur)	8015 mod.	87.5	50 - 150	
1,2-Dichloroethane-d4	8260b	99.1	65-115	
Toluene-d8	8260b	94.1	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates cutside advisory recovery limits.

٠

ŀ

Exceptions Report:

Report #/Lab ID#:117853 Matrix: soil Client: EOTT Energy Corp. Project ID: 2001-11940-4"West Vacuum Sample Name: TW/U8601MBH-10

Attn: Frank Hernandez

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

.

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyses where MS/MSD are not run) is outside advisory/acceptance limits.
TPH by GC (as diesel)	S,M	MS and/or MSD recoveries outside advisory/acceptance limits. LCS recovery in-limits; indicative of matrix interference as evidenced by M-flag.
Volatile organics-8260b/BTEX	Н	Hold time for this parameter exceeded by 3* days.
m,p-Xylenes	l	See J-flag discussion above.
Toluene	l	See J-flag discussion above.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

Comments pertaining to Data Qualifiers and QC data:

Notes:

Attn: Frank Hermandez Address: 5805 East Hwy 80 Midland	805 East Hwy 80 Sample Name: TWVU8601MBH-2 fidland Tx 79701 Date Received: 08/10/2001 Time: 17:24										
REPORT OF ANALYSIS							QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	1500	mg/Kg	100	<100	08/30/01	8015 mod	S,M,P	Mt. Int	Mt. Intf.	95	79.4
TPH by GC (as diesel-ext)					08/20/01	3540		-NA-	-NA-	-NA-	-NA-
TPH by GC (as gasoline)	302.1	mg/Kg	5	<5	08/17/01	8015 mod.		5.36	98.4	101.5	100.13
Volatile organics-8260b/BTEX					08/17/01	8260b					
Benzene	<20	µg/Kg	20	<20	08/17/01	8260b		4.3	81.5	86.4	85.7
Ethylbenzene	697	μg/Kg	20	<20	08/17/01	8260b		4.4	93.3	96.7	96.6
m,p-Xylenes	854	μg/Kg	20	<20	08/17/01	8260b		4.3	95.5	99.8	99.3
o-Xylene	541	μg/Kg	20	<20	08/17/01	8260b		4.2	95.8	98.2	100.6
Toluene	84.8	µg/Kg	20	<20	08/17/01	8260b		4.3	87.1	93.2	93.6

express written consent of AnalySys, Inc.

A D. A

00/04/01

Respectfully Submitted,

Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analytic recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Client:EOTT Energy Corp.Attn:Frank Hernangez

Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-2 Report#/Lab ID#: 117854 Sample Matrix: soil

REPORT OF SURROGATE RECOVERY

overy Recovery Limit	Data Qualifiers
/diluted @ 2X	D
4.4 50 - 150	
4.7 65-115	
2.2 50-120	
	4.4 50 - 150 4.7 65-115

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

é p

Exceptions Report:

Report #/Lab ID#:117854 Matrix: soil Client: EOTT Energy Corp. Project ID: 2001-11040-4"West Vacuum Sample Name: TW U8601MBH-2

Attn: Frank Hernandez

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

4

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for -background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)		The precision of the MS & MSD (or sample and sample duplicate for those analyses where MS/MSD are not run) is outside advisory/acceptance limits.
TPH by GC (as diesel)	S,M	MS and/or MSD recoveries outside advisory/acceptance limits. LCS recovery in-limits; indicative of matrix interference as evidenced by M-flag.
Volatile organics-8260b/BTEX	Н	Hold time for this parameter exceeded by 3* days.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

Comments pertaining to Data Qualifiers and QC data:

Notes:

CINCLYSYS							eidrich Lane, Padre Island 14-5896 •	Dr., Cor		i, TX 7	
Client: EOTT Energy Corp. Attn: Frank Hernandez Address: 5805 East Hwy 80 Midland Phone: 915 638-3799 FAX: 91	Tx 79701 5 684-3456					Report#/Lab ID Project ID: 200 Sample Name: T Sample Matrix: Date Received: Date Sampled:	1-11040-4"We FWVU8601MI soil 08/10/2001	st Vacuur BH-5 Time:		04/01	
REPORT OF ANALYSIS							QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	243	mg/Kg	10	<10	08/30/01	8015 mod	S,M,P	Mt. Int	Mt. Intf.	95	79.4
TPH by GC (as diesel-ext)					08/20/01	3540		-NA-	-NA-	-NA-	-NA-
TPH by GC (as gasoline)	76.2	mg/Kg	5	<5	08/17/01	8015 mod.		5.36	98.4	101.5	100.13
Volatile organics-8260b/BTEX					08/17/01	8260b					
Benzene	<20	µg/Kg	20	<20	08/17/01	8260b		4.3	81.5	86.4	85.7
Ethylbenzene	327	µg/Kg	20	<20	08/17/01	8260b		4.4	93.3	96.7	96.6
m,p-Xylenes	335	µg/Kg	20	<20	08/17/01	8260b		4.3	95.5	99.8	99.3
o-Xylene	154	µg/Kg	20	<20	08/17/01	8260b		4.2	95.8	98.2	100.6
Toluene	164	µg/Kg	20	<20	08/17/01	8260b		4.3	87.1	93.2 ⁻	93.6
This analytical report is respectfully submitted by have been carefully reviewed and, to the best of my are consistent with AnalySys, Inc.'s Quality Assur Copyright 2000, AnalySys, Inc., Austin, TX. All publication may be reproduced or transmitted in ar express written consent of AnalySys, Inc.	knowledge, the ana ance/Quality Contro rights reserved. No	lytical results I Program. © part of this eans without th	of the recove expres (RQL)	relative percent red from a spik sed as the perce , typically at o	(%) difference ed sample. nt (%) recover r above the Pra	ample batch which includ between duplicate measu 4. Calibration Verification y of analyte from a know ctical Quantitation Limit Less than ("<") values re	rements. 3. Rec on (CCV) and Lat n standard or mat t (PQL) of the ana	overy (Rec coratory Co rix. 5. Re alytical met	ov.) is the pe ontrol Sample porting Quan thod. 6. Me	rcent (%) o e (LCS) res ntitation Li ethod numb	of analyte sults are mits bers

Respectfully Submitted,

Richard Laster **Richard Laster**

n .

n

ш

typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.
	67	C	75
		J	int.

Client: EOTT Energy Corp.

Attn: Frank Hernandez

Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-5 Report#/Lab ID#: 117855 Sample Matrix: soil

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
p-Terphenyl	8015 mod	none/diluted	diluted @ 1X	D
Chlorobenzene-d5(Sur)	8015 mod.	86.9	50 - 150	
1,2-Dichloroethane-d4	8260b	90.8	65-115	***
Toluene-d8	8260b	97.9	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

2209 N. Padre Island Dr., Corpus Christi, TX 7840408

(512) 444-5896 • FAX (512) 447-4766

ų,

Exceptions Report:

Report #/Lab ID#:117855 Matrix:soil Client: EOTT Energy Corp. Project ID: 2001-11940-4"West Vacuum Sample Name: TWY U8601MBH-5

Attn: Frank Hernandez

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

 \dot{e}_{i}

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)		The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TPH by GC (as diesel)	S,M	MS and/or MSD recoveries outside advisory/acceptance limits. LCS recovery in-limits; indicative of matrix interference as evidenced by M-flag.
Volatile organics-8260b/BTEX	Н	Hold time for this parameter exceeded by 3* days.
p-Terphenyl p-Terphenyl		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

Comments pertaining to Data Qualifiers and QC data:

Notes:

Charysys							eidrich Lane, Padre Island 4-5896 •	Dr., Cor		i, TX 7	44 & 8408
Client: EOTT Energy Corp. Attn: Frank Herbandez Address: 5805 East Hwy 80 Midland Phone: 915 638-3799 FAX: 915 63	Tx 79701 84-3456					Report#/Lab ID Project ID: 200 Sample Name: 7 Sample Matrix: Date Received: Date Sampled:	1-11040-4"We FWVU8601MI soil 08/10/2001	st Vacuu	17:24	/04/01	
REPORT OF ANALYSIS							QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	88.4	mg/Kg	10	<10	08/30/01	8015 mod	S,M,P	Mt. Int	Mt. Intf.	95	79.4
TPH by GC (as diesel-ext)					08/20/01	3540		-NA-	-NA-	-NA-	-NA-
TPH by GC (as gasoline)	6.8	mg/Kg	5	<5	08/17/01	8015 mod.		5.36	98.4	101.5	100.13
Volatile organics-8260b/BTEX			***	••••	08/17/01	8260b					
Benzene	<20	µg/Kg	20	<20	08/17/01	8260b		. 5	87	94.8	101.8
Ethylbenzene	<20	µg/Kg	20	<20	08/17/01	8260b		6.4	104.8	105.6	106.3
m,p-Xylenes	<20	µg/Kg	20	<20	08/17/01	8260b		7.6	106.4	109.1	109.5
o-Xylene	<20	µg/Kg	20	<20	08/17/01	8260b		7	107.5	108	108.3
Toluene	<20	µg/Kg	20	<20	08/17/01	8260b		4.6	91.3	94.3	106.5
				relative percent (red from a spike sed as the percent , typically at or ly denote USEP ns. 7. Data Qu ated method blar	(%) difference led sample. ed sample. above the Prave A procedures. halifiers are J = hk(s). S1 =MS sory limit. S3	ample batch which include between duplicate measu 4. Calibration Verification of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e =MS and/or MSD and Pl ference.	rements. 3. Rec on (CCV) and Lab n standard or mat t (PQL) of the ana effect nominal qua ent between the PC xceed advisory lin	overy (Rec poratory Co rix. 5. Re alytical met untitation li QL and the mits. S2 =	ov.) is the per- portrol Sample porting Quar- thod. 6. Me mits adjusted MDL. B = A Post digestion	rcent (%) c c (LCS) res ntitation Li ethod numb l for any re Analyte det n spike (PE	of analyte sults are mits bers quired ected in DS)

Daga#. 1 Donant Datas 00/04/01

) inc.

EOTT Energy Corp. **Client:**

Frank Hernandez Attn:

Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-15

Report#/Lab 1D#: 117856 Sample Matrix: soil

84040

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
p-Terphenyl	8015 mod	none/diluted	diluted @ 1X	D
Chlorobenzene-d5(Sur)	8015 mod.	84.4	50 - 150	
1,2-Dichloroethane-d4	8260b	98.2	65-115	
Toluene-d8	8260b	90.8	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

Report #/Lab ID#:117856 Matrix: soil Client: EOTT Energy Corp. Project ID: 2001-11040-4"West Vacuum Sample Name: TW/U8601MBH-15

Attn: Frank Hernandez

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

1.

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TPH by GC (as diesel)	S,M	MS and/or MSD recoveries outside advisory/acceptance limits. LCS recovery in-limits; indicative of matrix interference as evidenced by M-flag.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

Comments pertaining to Data Qualifiers and QC data:

Notes:

Client: EOTT Energy Corp. Attn: Frank Hernandez Address: 5805 East Hwy 80 Midland Phone: 915 638-3799 FAX: 9	Tx 79701 5 684-3456						0#: 117857 1-11040-4"We FWVU8601MI soil 08/10/2001	Dr., Cor FAX Report est Vacuu BH-20 Time:	pus Christ (512) 447- Date: 09/	i, TX 7 4766	
REPORT OF ANALYSIS	;						QUALITY	ASSUR	ANCE DA	ATA ¹	I
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diese)	23.7	mg/Kg	1	<1	08/24/01	8015 mod	S,M,P	Mt. Int	Mt. Intf.	95	79.4
TPH by GC (as diesel-ext)					08/20/01	3540	·	-NA-	-NA-	-NA-	-NA-
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	08/17/01	8015 mod.		5.36	98.4	101.5	100.13
Volatile organics-8260b/BTEX	•••				08/17/01	8260b					
Benzene	<20	µg/Kg	20	<20	08/17/01	8260b		5	87	94.8	101.8
Ethylbenzene	<20	µg/Kg	20	<20	08/17/01	8260ь		6.4	104.8	105.6	106.3
m,p-Xylenes	<20	μg/Kg	20	<20	08/17/01	8260b		7.6	106.4	109.1	109.5
o-Xylene	<20	μg/Kg	20	<20	08/17/01	8260b		7	107.5	108	108.3
Toluene	<20	μg/Kg	20	<20	08/17/01	8260b		4.6	91.3	94.3	106.5
This analytical report is respectfully submitted by have been carefully reviewed and, to the best of m are consistent with AnalySys, Inc.'s Quality Assu Copyright 2000, AnalySys, Inc., Austin, TX. Al publication may be reproduced or transmitted in a express written consent of AnalySys, Inc.	y knowledge, the ana rance/Quality Contro rights reserved. No	lytical results I Program. © part of this cans without th bmitted,	e (RQL) typical dilutio associa	relative percent red from a spike sed as the perce , typically at or ly denote USEF ns. 7. Data Qu ated method bla	(%) difference 1 ed sample. nt (%) recovery above the Prac A procedures. nalifiers are J = nk(s). S1 = MS	mple batch which include between duplicate measu 4. Calibration Verification of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e =MS and/or MSD and PI	rements. 3. Rec on (CCV) and Lab n standard or mat (PQL) of the ana effect nominal qua ent between the PC xceed advisory lin	overy (Rec poratory Co rix. 5. Re allytical met antitation li QL and the mits. S2 =	ov.) is the per- porting Quar thod. 6. Me mits adjusted MDL. B = A Post digestior	rcent (%) of c (LCS) rest ntitation Li thod numb for any re analyte det n spike (PE	of analyte sults are imits bers quired ected in DS)

Richard Laster

than advisory limit. M =Matrix interference. ISD and PDS recoveries

|--|

Client:	EOTT Energy, Corp
Attn:	EOTT Energy Corp. Frank Hernandez

Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-20

Report#/Lab ID#: 117857 Sample Matrix: soil

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
p-Terphenyl	8015 mod	75.4	50-150	
Chlorobenzene-d5(Sur)	8015 mod.	79.9	50 - 150	
1,2-Dichloroethane-d4	8260b	98.5	65-115	
Toluene-d8	8260b	94.4	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

4331 Freidnich Lans Spite 100 Austing TX 787 2209 N. Padre Island Dr., Corpus Christi, TX (512) 444-5896 • FAX (512) 447-4766 7840408

ĵ.

Exceptions Report:

Report #/Lab ID#:117857 Matrix: soil Client: EOTT Energy Corp. Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-20

Attn: Frank Hernandez

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

.,,

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)		The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TPH by GC (as diesel)	S,M	MS and/or MSD recoveries outside advisory/acceptance limits. LCS recovery in-limits; indicative of matrix interference as evidenced by M-flag.
Notes:		

Client: EOTT Energy Corp. Attn: Frank Hernandez Address: 5805 East Hwy 80 Midland Tx 79701 Phone: 915 638-3799 FAX: 915 684-3456						Report#/Lab IE Project ID: 200 Sample Name: 7 Sample Matrix: Date Received: Date Sampled:	1-11040-4"We FWVU8601ME soil 08/10/2001	st Vacuur	17:24	04/01	
REPORT OF ANALYSIS							QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
TPH by GC (as diesel)	64	mg/Kg	10	<10	08/27/01	8015 mod	S,M,P	Mt. Int	Mt. Intf.	95	79.4
IPH by GC (as diesel-ext)					08/20/01	3540		-NA-	-NA-	-NA-	-NA-
TPH by GC (as gasoline)	<5	mg/Kg	5	<5	08/17/01	8015 mod.		5.36	98.4	101.5	100.13
Volatile organics-8260b/BTEX					08/17/01	8260b					
Benzene	<20	µg/Kg	20	<20	08/17/01	8260b		5	87	94.8	101.8
Ethylbenzene	<20	µg/Kg	20	<20	08/17/01	8260b		6.4	104.8	105.6	106.3
m,p-Xylenes	<20	µg/Kg	20	<20	08/17/01	8260b		7.6	106.4	109.1	109.5
o-Xylene	<20	µg/Kg	20	<20	08/17/01	8260b		7	107.5	108	108.3
Foluene	<20	µg/Kg	20	<20	08/17/01	8260b		4.6	91.3	94.3	106.5
Toluene<20μg/KgThis analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.Respectfully Submitted, LatterRichard LasterKichard Laster				relative percent of red from a spike sed as the perce , typically at or ly denote USEP ns. 7. Data Qu ated method bla	(%) difference ed sample. nt (%) recovery above the Pra A procedures. nalifiers are J = nk(s). S1 =MS sory limit. S3	ample batch which include between duplicate measure 4. Calibration Verification of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e =MS and/or MSD and Pl	rements. 3. Reco on (CCV) and Lab n standard or matu t (PQL) of the ana effect nominal qua ent between the PC xceed advisory lir	overy (Reco oratory Co rix. 5. Re lytical met ntitation lin QL and the nits. S2 =F	ov.) is the per- ntrol Sample porting Quar hod. 6. Me mits adjusted MDL. B = A Post digestion	rcent (%) c (LCS) res ititation Li thod numb for any re- analyte det spike (PE	of analyte sults are mits bers quired ected in DS)

.

7177	ובו	5	75
			INC.

Frank Hernandez Attn:

Project ID: 2001-11040-4"West Vacuum Sample Name: TWVU8601MBH-25

Report#/Lab ID#: 117858 Sample Matrix: soil

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
p-Terphenyl	8015 mod	none/diluted	diluted @ 1X	D
Chlorobenzene-d5(Sur)	8015 mod.	87.3	50 - 150	
1,2-Dichloroethane-d4	8260b	87	65-115	
Toluene-d8	8260b	85.3	50-120	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

(512) 444-5896 6

Exceptions Report:

Report #/Lab ID#:117858 Matrix:soil Client: EOTT Energy Corp. Project ID: 2001-11040-4"West Vacuum Sample Name: TWY U8601MBH-25

Attn: Frank Hernandez

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

÷.

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyses where MS/MSD are not run) is outside advisory/acceptance limits.
TPH by GC (as diesel)	S,M	MS and/or MSD recoveries outside advisory/acceptance limits. LCS recovery in-limits; indicative of matrix interference as evidenced by M-flag.
p-Terphenyl p-Terphenyl		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

Comments pertaining to Data Qualifiers and QC data:

Notes:

CHAIN-OI	F-CUSTOD	Y								- 		;		ſ			מניים	CY	S
Send Reports	Го:			Bill (to (if	difte	cnt):					,	i.	L				IN	С.
Company Name	e EOTT			Com	pany	Nam	e	Sam					42	21 Fre	eidric		e, Suite 190, A	•	X 7874 4
Address 580) & East It	ghuran	· 80_	Addr	ess_										,	()	12) 444-5896		
City Midly	State	TX Zip_	7419	City		<u> </u>		State	_ Z	ip	_								
ATTN: Fra					'N:								-		A	naly	ses Requ	ested (1)
	8.3749 Fax 9													Ple	ase at	tach ex	xplanatory info	rmation as	required
Rush Status (m	ust be confirme	d with lat	b mgr.):														///		
Project Name/F	PO#: <u>2001 - /</u>	1040	_ Samp	ler:	1/L	2/2	/				15		9						
A We	FLACULA	<u> </u>				\square		_				Y				/			
Client San Description/Ic	nple No. lentification	Date Sampled S	Time Sampled	No. of Containers	-Soil-	Water	Waste	Lab I.D. # (Lab only)		X	Ľ		\angle	\angle		\angle		mment	S
TWVU 8601	MBH-10	31.01	1445	1	V			117853	~	レ									
TWVU860	IMBH-2	8.6.01	1400	1	\checkmark			117854	V										
TWVU8601		8.6.01	-		-			117855	\checkmark	v									
TWVU8601	MBH-15	8.601	1515	1	4	-		117856	V	<									
TWV4860					~			117857	1	~							· · · · · · · · · · · · · · · · · · ·		
	MMBH-25			1	L			117858	2	>									
																		",	
(1)Unless specifically re limits (MDL/PQL). For ASI's HSL list at ASI's o	GC/MS volatiles and exption. Specific compou	xtractables, un	less specific	analytical par for all GC pro	rameter cedures.	lists are	specified	will be conducted on this chain-of $Or(q) = n_{e} p$	custo	dy or a	ttached	d of cl I to thi Part	is chai	n-of-cu /1	istody, /	ASI E	reported to AS will default to P PL, PO Survey RA	Priority Po グイノ	llutants or
	Sample H	Relinquis	hed By			Ţ	T	10						ceiv	_		FAX 5US		2101
Name	Affiliati	on	I	Date	Т	ime	1	Name				iliat	_				Date	Tir	
hopfler	ERF		84	101	13	20			F	ied	2	<	r						
				•			E	· 25-72	\$	A	sź	_				8	10-01	17;	24

[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

Environmental LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

EOTT ENERGY ATTN: MR. WAYNE BRUNETTE P.O. BOX 1660 MIDLAND, TEXAS 79703 FAX: 915-684-3456 FAX: 505-394-2601 (Pat McCasland)

Sample Type: Soil Sample Condition: Intact/Iced/ -1 deg C Project #: LF 2000-34 Project Name: EOTT Texaco / Buckeye Project Location: EOTT Texaco Buckeye

· · 라.

Sampling Date: 02/23/01 Receiving Date: 02/27/01 Analysis Date: 02/27/01

ELT#	FIELD CODE	GRO C6-C10 mg/kg	DRO >C10-C28 mg/kg	
37702	ETBS22301BH2-2	1203	2408	
37703	ETBS22301BH2-5	216	904	
37704	ETBS22301BH2-10	60	527	
37705	ETBS22301BH2-15	15	326	
37706	ETBS22301BH3-2	<10	<10	
37707	ETBS22301BH3-5	<10	<10	,
37708	ETBS22301BH3-10	<10	<10	
37709	ETBS22301BH3-15	<10	<10	
37710	ETBS22301BH4-2	550	432	
37711	ETBS22301BH4-5	<10	68	
37712	ETBS22301BH4-10	<10	<10	
37713	ETBS22301BH4-15	<10	<10	
37714	ETBS22301BH5-2	9305	42581	
37715	ETBS22301BH5-5	4382	4573	
37716	ETBS22301BH5-10	2591	2075	
37717	ETBS22301BH5-15	4428	4713	
37718	ETBS22301BH5-20	92	327	
37719	ETBS22301BH5-25	63	385	
37720	ETBS22301BH5-30	111	242	
37721	ETBS22301BH6-2	1391	1938	
	% IA	113	103	
	%EA	. 93	86	
	BLANK	<10	<10	

Methods: EPA SW 846-8015M GRO/DRO

Rala

'-0

Environmental LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

EOTT ENERGY ATTN: MR. WAYNE BRUNETTE P.O. BOX 1660 MIDLAND, TEXAS 79703 FAX: 915-684-3456 FAX: 505-394-2601 (Pat McCasland)

Sample Type: Soil

taga in

Sampling Date: 02/23/01 Receiving Date: 02/27/01 Analysis Date: 02/28/01

Sample Condition: Intact/Iced/ -1 deg C Project #: LF 2000-34 Project Name: EOTT Texaco / Buckeye Project Location: EOTT Texaco Buckeye

GRO DRO C6-C10 >C10-C28 ELT# FIELD CODE mg/kg mg/kg 37722 ETBS22301BH6-5 92 22 37723 ETBS22301BH6-10 33 155 37724 ETBS22301BH6-15 42 206

%	IA
%	EA
BL	ANK

109 118 105 115 <10 <10

Methods: EPA SW 846-8015M GRO/DRO

dk hin

-1-0/

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

EOTT ENERGY ATTN: MR. WAYNE BRUNETTE P.O. BOX 1660 MIDLAND, TEXAS 79703 FAX: 915-684-3456 FAX: 505-394-2601 (Pat Mc Casland) Sampling Date: 02/23/01

Sample Type: Soil Sample Condition: Intact/ Iced/ -1 deg. C Project #: LF 2000-34 Project Name: EOTT Texaco / Buckeye Project Location: EOTT Texaco Buckeye,

. .

ELT#	FIELD CODE	BENZENE mg/kg	TOLUENE mg/kg	ETHYLBENZENE mg/kg	m,p-XYLENE mg/kg	o-XYLENE mg/kg
37702	ETBS22301BH2-2	<0.025	1.94	4.22	12.6	8,33
37703	ETBS22301BH2-5	<0.025	1.07	0.488	1.19	0.807
37704	ETBS22301BH2-10	< 0.025	0.118	0.226	0.372	0.170
37705	ETBS22301BH2-15	<0.025	<0.025	<0.025	<0.025	<0.025
37706	ETBS22301BH3-2	<0.025	<0.025	<0.025	<0.025	<0.025
37707	ETBS22301BH3-5	< 0.025	<0.025	<0.025	<0.025	.<0.025
37708	ETBS22301BH3-10	<0.025	<0.025	<0.025	<0.025	<0.025
37709	ETBS22301BH3-15	<0.025	<0.025	<0.025	<0.025	<0.025
37710	ETBS22301BH4-2	0.386	5.33	3.66	15.2	6.84
37711	ETBS22301BH4-5	<0.025	<0.025	<0.025	0.036	<0.025
37712	ETBS22301BH4-10	<0.025	<0.025	<0.025	<0.025	<0.025
37713	ETBS22301BH4-15	< 0.025	<0.025	<0.025	<0.025	<0.025
37714	ETBS22301BH5-2	22.6	111	87.8	96.8	38.5

%IA	88	88	90	87	89
%EA	94	95	98	98	103
BLANK	<0.02	5 <0.025	<0.025	<0.025	<0.025

METHODS: EPA SW 846-8021B ,5030

Raland K. Tuttle

<u>3-1-0/</u> Date

Receiving Date: 02/27/01

Analysis Date: 02/27/01

112 TELE

ENVIRONMENTAL LAB OF 📿 , Inc.

"Don't Treat Your Soil Like Dirt!"

EOTT ENERGY ATTN: MR. WAYNE BRUNETTE P.O. BOX 1660 MIDLAND, TEXAS 79703 FAX: 915-684-3456 FAX: 505-394-2601 (Pat Mc Casland) Sampling Date: 02/23/01

Sample Type: Soil Sample Condition: Intact/ Iced/ -1 deg. C Project #: LF 2000-34 Project Name: EOTT Texaco / Buckeye Project Location: EOTT Texaco Buckeye

ELT#	FIELD CODE	BENZENE mg/kg	TOLUENE mg/kg	ETHYLBENZENE mg/kg	m,p-XYLENE mg/kg	o-XYLENE mg/kg	
37715	ETBS22301BH5-5	11.2	108	109	109	37.0	
37716	ETBS22301BH5-10	8.65	64.0	63.7	63.8	20.5	

%IA		88	94	98	97	101
%EA	1	91	89	94	91	95
BLANK		<0.025	<0.025	<0.025	<0.025	<0.025

METHODS: EPA SW 846-8021B ,5030

l. dk pour

Raland K. Tuttle

3-01-0/ Date

Receiving Date: 02/27/01

Analysis Date: 02/28/01

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

EOTT ENERGY ATTN: MR. WAYNE BRUNETTE P.O. BOX 1660 MIDLAND, TEXAS 79703 FAX: 915-684-3456 FAX: 505-394-2601 (Pat Mc Casland) Sampling Date: 02/23/01

Sample Type: Soil Sample Condition: Intact/ Iced/ -1 deg. C Project #: LF 2000-34 Project Name: EOTT Texaco / Buckeye Project Location: EOTT Texaco Buckeye

TOLUENE **ETHYLBENZENE** BENZENE m,p-XYLENE o-XYLENE ELT# FIELD CODE mg/kg mg/kg mg/kg mg/kg mg/kg 37717 16.4 179 150 ETBS22301BH5-15 139 54.5

%IA	100	106	111	106	111
%EA	90	95	100	107	104
BLANK	<0.025	<0.025	<0.025	<0.025	<0.025

METHODS: EPA SW 846-8021B ,5030

ck Tue

Raland K. Tuttle

<u>3-0/-0/</u> Date

Receiving Date: 02/27/01

Analysis Date: 02/28/01

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

EOTT ENERGY ATTN: MR. WAYNE BRUNETTE P.O. BOX 1660 MIDLAND, TEXAS 79703 FAX: 915-684-3456 FAX: 505-394-2601 (Pat Mc Casland) Sampling Date: 02/23/01

Sample Type: Soil Sample Condition: Intact/ Iced/ -1 deg. C Project #: LF 2000-34 Project Name: EOTT Texaco / Buckeye Project Location: EOTT Texaco Buckeye

ELT#	FIELD CODE	BENZENE mg/kg	TOLUENE mg/kg	ETHYLBENZENE mg/kg	m,p-XYLENE mg/kg	o-XYLENE mg/kg
37718	ETBS22301BH5-20	<0.025	0.236	0.655	0.858	0.518
37719	ETBS22301BH5-25	<0.025	<0.025	0.074	0.227	0.089
37720	ETBS22301BH5-30	<0.025	<0.025	0.078	0.238	0.080
37721	ETBS22301BH6-2	<0.050	15.6	25.9 ·	29.6	11.5
37722	ETBS22301BH6-5	<0.025	<0.025	0.040	0.088	0.056
37723	ETBS22301BH6-10	<0.025	0.037	0.133	0.223	0.131
37724	ETBS22301BH6-15	<0.025	<0.025	0.061	0.147	0.074

%IA	99	103	106	114	106
%EA	97	98	109	108	105
BLANK	<0.025	<0.025	<0.025	<0.025	<0.025

METHODS: EPA SW 846-8021B ,5030

ak Raland K.

3-01-01

Receiving Date: 02/27/01

Analysis Date: 02/27/01

LIMIN OF CUSTODY RECORDICIO AMALY VIS KEQUENT	ANALYSIS REQUEST				110	PO P	10 g	V DV (415 Meisis Meisis	101				-					- .		XIII	. Is to W Brunettet P. MCarland	EPT.	(the E-mil to W. Brunette	+ P. McCasland 344.2601	Lec - "/C.
915) 563-1800 FAX (915) 563-1713	5	+19 . (14	•	Project Name :	EoTT Texaca Buck Cye	Sumpler Signature	24	NUTTIC RESERVATIVE SUMPLING		711ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME 710ME	S 9 5 9 5 9 7 7 7 2 9 9 9 9	10:00	11.10		X 33.00 (3.50)		10350	 2 2 2	10.0			Received by:	3:30 Dan 11 July Ung	There is a function of the floor	1303 100 100	That: Received by Labor wort
<u>istikusionsenttiitikusiitiiti hikkii</u>	Project Manarger	(UAYNE BRUNIEITE EDII	Compay Name & Add with the second sec		15200-34	Project Locations	Ett Todara Buckeye					- SHULUCLOSESTS	ETBS22330	37704 ETBS22301 BHQ-10 1	37705 ETBS2233016HO 1)	37706 ETBS 223301 BH3-2 1		 37709 ETBS223301 BH3-15 1	37110 ETB5223 01844-2 1	N			Findle Flame 2-2401	AAA SAA	V/V/ Wer 2-27-01	Rellinguished by: Date:

Project Manager:					Phone	#: (915	5 5	56	· C1	40					4	ANA	TAZ	as e	e de la companya de la company	EST						
1UAYNE BRU	NETTE EDTI		<u></u>		FAT	• 9	15	• 6.	j.4.	34	156			+			+	T	1		T		- - -		T-1		
ompany Name & Address							•																				
E.O.T.T. TE	exoce					<u> </u>	. <u> </u>				- <u></u>		_		86												
Toject S:	• <i>•</i> •		~		Projec			Ð							Cr Pb Hg 8e												
LF 200			20		<u>lex</u>	20	0	<u>Bue</u>	CK	<u>en</u>	e.		-	1 < 1		5											
c 4	aco Butkeye							-	~		-			3	0	3											
CoTT/le				e	<u>S</u> z	20		v d	VAT	LA IVE	<u>م</u>		- =	8	A 8		1						· ·				
		II: US	Ē	-1	- <u>1</u>	+		MET			545		NU20/5030	-			Sel										
- 123 # FIE	D CODE	U CONTAINERS	Volume/Amount		-				-				¥112	Į	TCI.P Melale Ag Aa Ba Cd Tolat Malala Ag Aa Ba Cd	TCLP Volailles	Serial Volatiles					.		$\left \ldots \right $		_	
LABUSE		Ē.		WATER SOIL	SLUDGE	OTHER	i S E	I IFIOS	- III	OTHER	alvu	TIME	UTEX	I b I	CIP	CL	TCLP		Ē								
CNLY			<u>s 1</u> :	3 ŭ ₹	2 5	2	Ē		=	 2			_				7	-	=	-+	╇	+	\vdash	$\left \cdot \right $	+	+-	Ļ
1713 ETB520		<u>-</u>	-+	-[:]-		$\left - \right $		+	+			2:46 2:58	1		+					+	╋	+			_	+	╞
TTIL ETBS22	301 BHS-2	<u>-</u>		X		\square	-+	X	+	1	01		Ŕ	X		+ -		\dashv	-+		-	+-		-		+	╞
TIS ETBS 22	SOLBHS-S	<u> </u>		<u> </u>				<u> </u>		$\left \cdot \right $	2-03 01		X	1			-		╼┝	-	+-	-	\square	+		<u> </u>	Ļ
MIG ETBS 223	01 BH5-10	4		X	\bot			_ <u>IX</u>	<u> </u>	\square		3:24	44	X		\vdash		-	-		+		\square			╀┥	┡
TIT ETBS223	01 BHS-15			X							•••	3:36	<u></u>	ХĻ	+	\square		_	_	\perp				_	_	1-1	┡
ET BSZZZ SILL	21 BHS-20							<u> </u>				3:48	444	<u>X</u>			\downarrow	\downarrow	\downarrow	1	\bot			\perp		\square	1
MIGETBS223	01845-25							_ <u> </u>]			<i>U '</i>	4.00	KI	X				\bot	\perp				-	\perp	\bot	\square	
7120 ET B.5223	01 BHS-30			X				<u> X</u>			<i>U</i>	4:10	X	X		\square										\square	
1721 ETB5223	018116-2			X				_χ		ľ	2.23 01	4:6	X	<u>X</u>		\square										\square	
1722 ETBS223	01846-5			X				X			01	4:36	X	X												\square	
M23 ETBS223	01 BH6 - 10			IXI		T		X			2-23 01	4:38	X	X													
nquished by:	Date:	The	ket:			1	_	ved by:				REMA					,	0					ว		•		
radly Blains	2.2601		34	30			Ben	~M	ll	en	ļ	Ori	'gi-				2. 1	5,	Чп	u †1	te	4 7	<u>.</u> n	ny	. 41	 4n	d
qubled by:	Dute:	Time	œ			2	lecet	red by:				. .	_		.6]	-	~	_	ί,				-	,			
	2-27-01		13	205			R	ali	-C/A	E D	w	FA	X	+		r 2	-	m	n	+		W.	S	ru	ne'	TY	•
nquished by:	Date:	Time	c1:			R		rd by	La bor	านอย	· · · · •		+	P.	N	14		:/~	no	13	594	1.	260	21			

Project Man		NETTE EDT	-				Phene FAX I							40 156	<u> </u>					AN	ALY	(515)	REC)0E2	r					
Company Na									•				-																	
Project #:						1	Projec	* Nar	De :							1		Cr Pb Hg 8.	Cr Pb Hg 8.											
Project Locat	- <u>F Jaco - 3</u>	34.		_2	07	\mathbb{Z}	70	<u>Ko</u>	<u>C</u>		<u>Rc</u>	<u>cl</u>	<u>-</u> 9	ye	,	-	3													
Eo	TT / TOXOC	34. De Bickeye			,	Ā	フレクシ	d	Por		<i>7</i>]	bis	u	ye , sui			2061	Ba Cd	8											
		y	RS	=	N	ut	REC		P	RES	ERV	ATT	Æ	su	PLINC	150121		Ag Ai		'olatile										:
LAS # LAS USE CNLY	Fiel	D CODE	U CONTAINERS	'olume/Amou	WATER		SLUDGE	FTHER	1101.	111103	ICE	110116	DILER	911E	TIME	UTEX 8020	26 1-18+4 11d1	TCI.P Melale Ag As	Total Metals Ag As Ba Cd 7/1 B Valation	TCL P Send V	r()S	RCI		* j 						-
	ETRSZZ	301RH6-15	1					Ē	-	-	χ	-		2.23	4:35	X	X	1	Ť	+	ŀ.				╉	\uparrow	[]	+	╋	+
		301BH6-15					T				-			<u>v I</u>					Ţ										1	1
																									T		П	\square	T]
						\downarrow						\rightarrow	\downarrow		<u> </u>	\square		_	_			$\left \cdot \right $	\downarrow	_	╀		\vdash	+	╇	┦
						-	-					-+	+			$\left \cdot \right $		+	+		-	$\left \cdot \right $	+		╀	$\left - \right $	╞┼┥	╇	- -	╀
			$\left - \right $			+	+	$\left - \right $		-		+	╉			$\left \cdot \right $	-+	+	+			╞┼	+	+	╋	$\left \right $	-+	+	╀	╀
			$\left - \right $	-+		┼╌	+	$\left - \right $		-+	-+	+	╉			╞┤	+	╈	╀	\square		┠╌╂	+	╉	╋	F	+	╋	┢	t
							╀─		-			-+-	╁				-+	+	+-	┟╶┨			+	+	+	┟╴┨	+	+	\vdash	t
						╞				-†		+	╈					1	\uparrow				╈	+	\uparrow		╈	T		t
						T																								Γ
equitabled by:	Blevis	Date:	r	îlmes:	3:3	80)	1		₩~1 > DeM	-	LÉ.	ln		REMAR Orig	225 9	يا م	*	<u>,</u>	N.	B	r41	\ e "	tte	4	P. 1	ทร		I A	
Ben	Males	Dute: 2.27-0/	, I	læc:	130	-5	-	ľ		end 1		ſĸ	-/-	9	FA		+)r									he	t)	r
quibbed by:		Dute:	[т	lmes:								bor 1		·					ng		s 4	n nc		34	4.	26	21			

ATTACHMENT V: ENVIRONMENTAL PLUS, INC. QUALITY ASSURANCE PLAN (EPIQAP)

E.O.T.T. TEXACO BUCKEYE REVISED WORK PLAN SUPPLEMENT

1 ENVIRONMENTAL PLUS, INC. QUALITY ASSURANCE PLAN

This Quality Assurance Plan (QAP) ensures the quality and usability of information and data used to support a successful site investigation and subsequent environmental management decisions.

1.8 PROJECT SAFETY

Occupational and Environmental Safety are key to the efficacy of this QAP. Hazards encountered at remediation sites include the following;

Moving equipment Buried pipelines Rotary Equipment Highway ingress/egress Excavation Potential Hydrogen Sulfide Gas

Employees and subcontractors are required to confirm current training in these hazards. Standard personal protective equipment included;

Personal H₂S Monitor Hard-hat Steel Toed Boots/Shoes Safety Glasses

1.9 DATA QUALITY OBJECTIVES

For analytical information derived from samples, the following quality controls are documented and verified. Data within these specifications are deemed quantitative and acceptable for use in making environmental management decisions.

- Laboratory data must have extraction recovery for TPH, BTEX and general chemistry parameters •30.0%. Or a "%Extraction Accuracy" between 70 and 130%.
- Laboratory data must have <30% Relative Percent Difference or a "%Instrument Accuracy" between 70 and 130%.
- Field headspace analyses must be supported with instrument calibration data and calibration gas certification.

1.10 METHODOLOGY

Collecting representative site samples and information require that the sampling and observational processes and procedures be implemented within strict bounds. These control procedures further ensure the quality of site data and information. Likewise, line personnel implement standard occupational and environmental safety protocols.

1.10.1 Borehole Drilling, Lithologic Sampling, Logging, and Abandonment

Boreholes are located strategically to best determine vertical and horizontal extent of contamination in the vadose zone. Borelogs are developed for each boring noting site lithology. Laboratory samples may be collected to determine more detailed lithologic characteristics, i.e., porosity, transmissivity, etc. Each borehole is plugged with Sodium Bentonite in accordance with the NMOCD guidelines.

1.10.1.1 GENERAL DRILLING OR HAND AUGERING PROCEDURES

The investigation employs either the Environmental Plus, Inc. drill rig with hollow stem auger and "thin-wall probe" method of discrete sampling or the 2.5" stainless steel hand auger.

1.10.1.1.1 SOIL SAMPLING WITH HOLLOW STEM AUGER AND PROBE

Upon advancing to the desired sampling interval the probe is extended through the end of the hollow stem auger and pushed into the soil matrix to collect the sample. As the 1.5" X 48" stainless steel probe with a vinyl sampling sleeve was detached from the sampling bar, it is immediately placed on the rack and logged. A 4 oz. sample is then taken from the bottom end of the sleeve sample and decanted into the sample jar for refrigeration and preparation with the remainder (~1 Kg) placed in a 1 gallon Ziploc® bag, warmed to ambient ~ 70-80 °F and the VOC Headspace concentration measured and recorded. All pertinent information is recorded on the field borelog data sheet.

1.10.1.1.2 SOIL SAMPLING WITH THE HAND AUGER

The auger is rotated into the ground to the desired sampling interval, removed from the subsurface, and the sample decanted into the appropriate container.

1.10.1.2 BOREHOLE ABANDONMENT

The boreholes are filled with a mixture of distilled or drinking water and Sodium Bentonite and a wooden marker denoting the borehole number driven into the center of each backfilled hole.

1.10.2 Sample Handling

Soil samples are collected and prepared in accordance with accepted ASTM and EPA SW846 methods.

1.10.3 Sample Identification

Sample identification numbers are designated as follows;

Site: Evron Dan Wall	Soil/Ground Water	Date	Borehole #	Interval feet bgs
EDW	S/GW	4-5-01	BH1	e.g., 20'

Example: EDWS4501BH1-20

1.10.4 Sampling protocols

- Decontaminate sampling equipment and area with Alconox distilled water after each sample.
- Prepare samples and refrigerate as soon as practicable.

Duplicates or blanks may be submitted to the laboratory, if deemed appropriate.

1.10.5 Sample Containers

Laboratory and field analyses of soil and water require specific containers and are listed in the matrix below.

Media	ТРН	BTEX	VOC Headspace	Metals	РАН	General Chemistry
Soil	4 oz. Jars with Teflon seal	4 oz. Jars with Teflon seal	1-gallon Ziploc® bags			
Water	1 liter amber glass w/HCL	2-40 ml VOA vials w/ HCL		16 oz. Plastic w/1ml HNO ₃	1 liter Amber Glass	1 liter Plastic

1.10.6 Sample Custody

All analytical request forms are completed and signatured by EPI as sampler. EPI personnel ascension the samples to the contracting laboratory samplereceiving personnel under chain-of-custody signature.

1.10.7 Quality Control Samples

Quality control samples are collected, prepared, and analyzed as deemed appropriate.

1.10.7.1 FIELD BLANK

A field blank for soil or water will identify contamination of the sample.

1.10.7.2 EQUIPMENT BLANK

An equipment blank will document that the sampling equipment used during the sampling event was clean.

1.10.7.3 FIELD DUPLICATE OR CO-LOCATED SAMPLES

Duplicates or Co-located samples will support data quality by establishing laboratory reproducibility.

1.10.7.4 TRIP BLANK

A laboratory prepared trip blank accompanies only water samples and will identify sample perturbations during transit.

1.10.8 Field Measurements

The VOC Headspace concentration for each soil sample is measured using the Ultra-Rae PID manufactured by Rae Systems and calibrated with 100.0 ppm isobutylene standard gas from Scott Specialty Gases, Freemont, Colorado.

1.10.8.1 EQUIPMENT CALIBRATION AND QUALITY CONTROL

The PID is calibrated at least 3 times daily and checked with the calibration gas hourly. When a check with the calibration gas indicates the instrument reading is 10 ppm too high or low it is calibrated. Variation in the daytime ambient temperature causes the variation. Care is taken to ensure the calibration gas and the instrument are at the same temperature.

1.10.8.2 EQUIPMENT MAINTENANCE AND DECONTAMINATION

All sampling and survey equipment is routinely decontaminated between samples. Nitrile gloves are worn and changed with each sampling iteration.

1.10.9 Analyses

Soil and ground water are analyzed in accordance with the following EPA Methods.

The analytical suite for soil samples includes;

- TPH (EPA method 8015M)
- BTEX (EPA method 8020 or equivalent)
- Chloride (EPA method 4500 Cl⁻B)
- SPLP for selected samples

The analytical suite for water samples include:

- TPH (EPA method 8015B)
- Metals (EPA method 600/4-79-020) New Mexico WQCC and EPA RCRA as listed
- BTEX (EPA method 8021B)
- Total Dissolved Solid's (EPA method 150.1)
- PAH (EPA method 8270)

1.11 DATA EVALUATION AND USABILITY

All data is reviewed based on the Data Quality Objectives in the section 1.2. The contracting laboratory provides Quality Assurance/Quality Control (QA/QC) information to support the quality of each batch of sample data. TPH and BTEX results are deemed adequate and usable if the "% extraction accuracy" (%EA) is \pm 30% and "% instrument accuracy" (%IA) is \pm 30%. QA/QC data is reported for each sample batch at the bottom of each analytical report and were all deemed acceptable.