REMEDIATION PROPOSAL

NORTH MONUMENT GRAYBURG SAN ANDRES UNIT #603 (NMGSAU #603) NMOCD 1RP# 1019 EPI REF: 240014

UL-C (NE¹/₄ of the NW¹/₄) of Section 20 T19S R37E ~2 Miles North-Northwest of Monument Lea County, New Mexico Latitude: N 32° 39' 04.30" Longitude: W 103° 16' 33.43"

FEBRUARY 2006

PREPARED BY:

ENVIRONMENTAL PLUS, INC. 2100 AVENUE O EUNICE, NEW MEXICO 88231

Distribution List

Apache Corporation – North Monument Grayburg San Andres Unit #603

NMOCD 1RP# 1019; EPI Ref: 240014

Name	11tle	Company or Agency	Mailing Address	Contact Information
Larry Johnson	Environmental Engineer	NMOCD – Hobbs, NM	1625 French Drive Hobbs, NM 88240	larry.johnson@state.nm.us
David Woolf	Environmental Manager	Apache Corporation – Houston, TX	2000 Post Oak Blvd. Suite 100 Houston, TX 7056	david.woolf@apachecorp.com
Guinn Burks	EH&S Technician- South/Central Permian	Apache Corporation – Wink, TX	P.O. Box 848 Wink, TX 89789	guinn.burks@apachecorp.com
Mike Warren	Senior Production Foreman	Apache Corporation – Monument, NM	17 Hess Lane Monument, NM 88262	mike.warren@apachecorp.com
Jimmie T. Cooper	Landowner	-	Box 55 Monument, NM 88256	505-397-2045 (Home) 505-369-7108 (Mobile)
File	1	Environmental Plus, Inc.	P.O. Box 1558 Eunice, NM 88231	jstegemoller@envplus.net

North Monument Grayburg San Andres Unit #603 240014

~

STANDARD OF CARE

Delineation Proposal North Monument Grayburg San Andres Unit #603 NMOCD 1RP # 1019 (EPI Ref. #240014)

The information provided in this report was collected consistent with the New Mexico Oil Conservation Division (NMOCD) *Guidelines for Remediation of Leaks, Spills and Releases* (August 13, 1993), the NMOCD *Unlined Surface Impoundment Closure Guidelines* (February, 1993) and Environmental Plus, Inc. (EPI) *Standard Operating Procedures and Quality Assurance/Quality Control Plan.* The conclusions are based on field observations and laboratory analytical reports as presented in the report. Recommendations follow NMOCD guidance and represent the professional opinions of EPI staff. These opinions were derived using currently accepted geologic, hydrogeologic and engineering practices at this time and location. The report was prepared or reviewed by a certified or registered professional with a background in engineering, environmental and/or natural sciences.

This report was prepared by:

semil Jason Stegemoller

Environmental Scientist

<u>Feb 8, 2007</u> Date

This report was reviewed by:

David Duncan Civil Engineer

-08-07

Table of Contents

1.0	Project Synopsis	.iv
2.0	Site and Release Information	.1
3.0	NMOCD Site Ranking	.2
4.0	Excavation Soil Information	.3
5.0	Sampling Information	.4
6.0	Analytical Results	.5
7.0	Discussion	.6
8.0	Conclusion and Recommendations	.7

FIGURES

Figure 1: Area Map Figure 2: Site Location Map Figure 3: Site Map Figure 4: Sample Location Map Figure 5: Soil Boring Location Map

TABLES

Table 1: Well Data Table 2: Summary of Excavation Soil Sample Analytical Results Table 3: Summary of Soil Boring Analytical Results

APPENDICES

Appendix I: Laboratory Analytical Reports and Chain-of-Custody Forms Appendix II: Project Photographs Appendix III: Soil Boring Logs Appendix IV: Informational Copy of Initial NMOCD C-141 Form

1.0 **PROJECT SYNOPSIS**

Site Specific:

- Company Name: Apache Corporation
- *Facility Name*: North Monument Grayburg San Andres Unit #603
- Project Reference: NMOCD 1RP # 1019; EPI # 240014
- Company Contacts: Mike Warren
- Site Location: WGS84 N32° 39' 04.30"; W103° 16' 33.43"
- Legal Description: Unit Letter-C, (NE¹/₄ of the NW¹/₄), Section 20, T19S, R37E
- General Description: Approximately 2-miles north-northwest of Monument, New Mexico
- *Elevation:* 3,680-ft amsl
- Land Ownership: Jimmie T. Cooper
- EPI Personnel: Project Consultant Jason Stegemoller

Release Specific:

- **Product Released:** Injection Water
- Volume Released: 85 barrels
 Volume Recovered: 60 barrels
- Time of Occurrence: July 16, 2006 a.m. Time of Discovery: July 16, 2006 @ 08:45 hrs
- Release Source: Plug blew out on injection line
- Initial Surface Area Affected: ~ 42,770 square feet

Remediation Specific:

- Final Vertical extent of contamination: unknown
- **Depth to Ground Water:** Approximately 50-ft bgs (based on an average depth of wells nearest the release site)
- Water wells within 1,000-ft: None
- Private domestic water sources within 200-ft: None
- Surface water bodies within 1,000-ft: None at the point of release; however an ephemeral pond resides approximately 75-feet south of the southernmost point of the flowpath.
- NMOCD Site Ranking Index: 20 points
- ♦ Remedial goals for Soil: TPH 100 mg/Kg; BTEX 50 mg/Kg; Benzene 10 mg/Kg; Chloride and sulfate residuals may not be capable of impacting groundwater above NMWQCC groundwater standards of 250 mg/L and 600 mg/L, respectively.
- RCRA Waste Classification: Exempt
- *Remediation Option Selected:* Not applicable
- Disposal Facility: Not applicable
- Volume disposed: Not applicable
- Project Completion Date: Ongoing

2.0 SITE AND RELEASE INFORMATION

- 2.1 Describe the land use and pertinent geographic features within 1,000 feet of the site. Land surrounding the area is rangeland in native grasses utilized for livestock grazing along with oilfield operations.
- 2.2 Identify and describe the source or suspected source(s) of the release. Plug on injection line blew out.
- 2.3 What is the volume of the release? (if known): <u>approximately 85</u> barrels of <u>injection</u> water
- 2.4 What is the volume recovered? (if any): approximately 60 barrels
- 2.5 When did the release occur? (if known): July 16, 2006

2.6 Geological Description

The United States Geological Survey (USGS) Ground-Water Report 6, "Geology and Ground-water Conditions in Southern Lea County, New Mexico," A. Nicholson and A. Clebsch, 1961, describes the near surface geology of southern Lea County as "an intergrade of the Quaternary Alluvium (QA) sediments, i.e., fine to medium sand, with the mostly eroded Cenozoic Ogallala (CO) formation. Typically, the QA and CO formations in the area are capped by a thick interbed of caliche and generally overlain by sandy soil."

The release site is located in the Laguna Valley physiographic subdivision, described by Nicholson & Clebsch as an area that "is a vast sand dune area, stable or semi-stable over most of the area, but which drifts locally. The surface is very irregular and has no drainage features except at the edges of several playas."

2.7 Ecological Description

The area is typical of the Upper Chihuahuan Desert Biome consisting primarily of sandy soil covered with short semi-arid grasses, interspersed with Honey Mesquite and forbs. Mammals represented include Orrd's and Merriam's Kangaroo Rats, Deer Mouse, White Throated Wood Rat, Cottontail Rabbit, Black Tailed Jackrabbit, Mule Deer, Bobcat, Red Fox and Coyote. Reptiles, amphibians and birds are numerous and typical of the area. A survey of Listed, Threatened or Endangered species was not conducted.

2.8 Area Groundwater

The unconfined groundwater aquifer at this site is projected to be ~ 50 feet (ft) bgs based on water depth data obtained from the New Mexico State Engineers Office and the United States Geological Survey data base (reference *Table 2*).

2.9 Area Water Wells

There are no wells within a 1,000-foot radius of the site. (reference *Table 1* and *Figure 2*).

2.10 Area Surface Water Features

There are no surface water features within a 1,000-foot radius of the point of release (reference *Figure 2*). However, an ephemeral pond resides approximately 75-feet south of the southernmost portion of the flowpath.

1

3.0 <u>NMOCD SITE RANKING</u>

Contaminant delineation and remedial work done at this site indicate chemical parameters of the soil and physical parameters of the groundwater were characterized consistent with the characterization and remediation/abatement goals and objectives set forth in the following New Mexico Oil Conservation Division (NMOCD) publications:

- Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993)
- Unlined Surface Impoundment Closure Guidelines (February, 1993)
- Pit and Below-Grade Tank Guidelines (November, 2004)

Acceptable thresholds for contaminants/constituents of concern (CoC) were determined based on the NMOCD Ranking Criteria as follows:

- Depth to Groundwater (i.e., distance from the lower most acceptable concentration to ground-water);
- Wellhead Protection Area (i.e., distance from fresh water supply wells);
- Distance to Surface Water Body (i.e., horizontal distance to all down gradient surface water bodies).

Based on the proximity of the site to protectable area water wells, surface water bodies, and depth to groundwater from the lower most contamination, the NMOCD ranking score for the site is twenty points with the soil remedial goals highlighted in the Site Ranking table presented below:

1. GROUNE	OWATER	2. WELLHEAD PROTECTION AREA	3. DISTANCE TO SURFACE WATER
Depth to GW <50 fe	eet: 20 points	If <1,000° from water source, or <200° from	<200 horizontal feet: 20 points
Depth to GW 50 to 10 points	99 feet:	private domestic water source: 20 points	200-1,000 horizontal feet: 10 points
Depth to GW >100	feet: 0 points	If >1,000' from water source, or >200' from private domestic water source: <i>0 points</i>	>1,000 horizontal feet: <i>0 points</i>
Site Rank (1+2+3) =	= 20 + 0 + 0 = 2	0 points	
	Total Site	Ranking Score and Acceptable Remedial Go	al Concentrations
Parameter	20 0	or > 10	0
Benzene ¹	10 p	ppm 10 ppm	10 ppm
BTEX ¹	50 p	opm 50 ppm	50 ppm
ТРН	100	ppm 1,000 ppm	5,000 ppm

¹ A field soil vapor headspace measurement of 100 ppm can be substituted in lieu of laboratory analyses for benzene and BTEX.

4.0 EXCAVATED SOIL INFORMATION

4.1 Was soil excavated for off-site treatment or disposal? 🛛 🖾 Yes 🗌 No

Date excavated: July 25 through August 3, 2006

Total volume removed: Approximately 1,344-cubic yards

- 4.2 Indicated soil treatment type:
- Disposal
 Land Treatement
 Composting/Biopiling
 Other ()

Name and location of treatment/disposal facility: Sundance Services, Eunice, New Mexico

5.0 SAMPLING INFORMATION

5.1 Briefly describe the field screening methods used to distinguish contaminated from uncontaminated soil.

Organic Vapor Concentrations – A portion of each soil sample was placed in a polyethylene bag and allowed sufficient time and temperature for organic vapors to volatilize. The detector portion of a Photoionization Detector equipped with a 10.6 electron volt lamp was placed in the bag to analyze organic vapor concentration.

Chloride Concentrations – A La Motte Chloride Test Kit was utilized for field chloride concentration analyses.

5.2 Briefly describe the soil analytical sampling and handling procedures used.

Soil samples collected from the excavation were collected utilizing hand and/or mechanical excavation equipment to gather the sample from at least 6-inches below/within the surface of the excavation. Prior to the collection of each sample, the sampling instrument was decontaminated with an Alconox solution.

Upon collection of each sample, a portion was immediately placed in a laboratory provided container, labeled and set on ice for transport to an independent laboratory for quantification of total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and total xylenes (BTEX), chloride and sulfate concentrations.

5.3 Discuss sample locations and provide rationale for their locations.

Soil samples were collected on July 25, 26 and 31 and August 1 and 2, 2006 from 26 locations within the excavation area utilizing a backhoe. Soil samples were collected at a depth of 1-ft bgs. Soil sample locations were chosen to provide the best representative example of soil within the excavation floor and sidewalls (reference *Figure 4*).

Soil samples were collected on November 29, 2006 from a series of four (4) soil borings (i.e., SB-1, SB-2, SB-3 and SB-4). Soil borings were advanced within the excavation floor, the pooling area west of the Lanexco pad and the center of the ephemeral pond area (reference *Figure 5*). Soil boring placement was chosen to allow collection of soil samples to delineate vertical extents of impacted soil.

4

6.0 ANALYTICAL RESULTS

6.1 Describe the vertical and horizontal extent and magnitude of soil contamination.

Laboratory analyses of the excavation soil samples indicated BTEX constituent concentrations were non-detectable (ND) at or above laboratory analytical method detection limits (MDL). TPH was reported as ND at or above laboratory analytical MDL, with the exception of the collected from BH-21 (6"). Analytical results of BH-21 (6") indicated TPH concentrations were 71 mg/Kg, below the NMOCD remedial threshold of 100 mg/Kg. Reported chloride concentrations ranged from 126 to 2,110 mg/Kg. Sulfate concentrations ranged from 17.6 to 2,380 mg/Kg (reference *Table 1* and *Figure 4*).

Laboratory analyses of soil samples collected during soil boring advancement indicated TPH and BTEX constituent concentrations were ND at or above laboratory MDL. Chloride concentrations were below the 250 mg/Kg remedial goal in all sampling intervals, with the exception of sample SB-1 (5') (i.e., 464 mg/Kg). Sulfate concentrations ranged from ND to 148 mg/Kg, below the 600 mg/Kg remedial goal.

6.2 Is surface soil contamination present at the site (i.e., soil in the uppermost two feet that is visibly stained, contaminated at greater than 10 ppm (PID) or hydrocarbon saturated)?

🗌 yes 🛛 🖾 no

If yes, attach a site map identifying extent(s) of surface soil contamination.

Visibly stained soil was excavated and transported to Sundance Services for disposal.

7.0 <u>DISCUSSION</u>

7.1 Discuss the risks associated with the remaining soil contamination:

Laboratory analytical results indicated TPH and BTEX constituent concentrations were below NMOCD remedial thresholds. Chloride residuals exist below the current excavation floor. Based on depth to groundwater (approximately 50- ft bgs), chloride residuals remaining in the soil may be capable of impacting groundwater above NMWQCC groundwater standards.

- 7.2 Discuss the risks associated with the impacted groundwater: Chloride residuals remaining in the soil may be capable of impacting local groundwater above the NMWQCC groundwater standard of 250 mg/L.
- 7.3 Discuss other concerns not mentioned above: NA

8.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

8.1 Recommendation for the site:

Site Closure

Additional Groundwater Monitoring Corrective Action

8.2 Base the recommendation above on <u>Guidelines for Remediation of Leaks, Spills and</u> <u>Releases (August 13, 1993)</u>. Describe below how you applied the policy to support your recommendation. If closure is recommended, please summarize significant site investigative events and describe how site specific risk issues have been adequately addressed or minimized to acceptable low risk levels.

Approximately 1,344 cubic yards of impacted soil were removed from an excavation area of approximately 42,770 square feet to a depth of 1-ft bgs in the pasture area and 6-inches bgs on the caliche well pad and road. Excavated soil was transported to Sundance Services for disposal.

Laboratory analytical results of soil samples collected by EPI personnel from the excavation floor indicate TPH and BTEX constituent concentrations were below each analytes' respective NMOCD remedial threshold. Chloride concentrations at 1-ft bgs were in excess of the remediation goal of 250 mg/Kg in 21 of 26 sample locations . Reported sulfate concentrations were below the 600 mg/Kg remedial goal in all sample locations, except sample BH-25 (6'') (i.e., 2,300 mg/Kg).

Laboratory analyses of soil samples collected from soil boring SB-1 indicated chloride concentrations were in excess of chloride remedial goals to approximately 5-feet bgs. TPH, BTEX constituent, chloride and sulfate concentrations were below each analytes' respective remedial threshold or goal in all other soil boring soil samples.

Laboratory analyses of soil samples collected from soil boring SB-4 (i.e., ephemeral pond area) indicated TPH and BTEX constituent concentrations were ND at or above laboratory MDL. Chloride concentrations ranged from ND to 32 mg/Kg, below the 250 mg/Kg remedial goal. Sulfate concentrations ranged from ND to 134 mg/Kg, below the 600 mg/Kg remedial goal. Based on laboratory analyses the ephemeral pond area was not impacted from the injection water release (reference *Figure 5* and *Table 3*).

8.3 If additional groundwater monitoring is recommended, indicate the proposed monitoring schedule and frequency. Conduct quarterly monitoring until the NMOCD responds to this report. NA

8.4 If corrective action is recommended, provide a conceptual approach.

Based on laboratory analyses of soil samples collected from the excavation floor and during soil boring advancement, chloride impacted soil is limited to within 5-feet bgs in the initial release area. Laboratory analyses of soil samples collected from the excavation floor and soil borings indicate TPH and BTEX constituents were below each analytes' respective NMOCD remedial threshold.

Environmental Plus, Inc., on behalf of Apache Corporation, recommends the following remedial action:

1) Excavate impacted soil in the area of SB-1 (i.e., pooling area west of Lanexco pad) to approximately 5-feet bgs.

7

- 2) Excavate the remainder of the release area to a depth of approximately 2.5-feet bgs. Final excavation depth will be dictated by field analysis of chloride concentration.
- 3) Upon satisfactory field analyses indicating permissible chloride concentrations, collect soil samples and submit for laboratory analyses.
- 4) Transport excavated, impacted soil to Sundance Services, Inc. for disposal.
- 5) Upon receipt of laboratory analyses indicating remedial threshold/goals have been achieved, backfill the excavation with clean soil.
- 6) Seed area with blend approved by the landowner.

FIGURES

APPENDICES

v

<u>Well Data</u>

Apache Corporation - North Monument Grayburg San Andres Unit #603 (Ref. # 240014)

Well Number	Diversion ^A	Owner	Use	Twsp	Rng	Sec q q q	Latitude	Longitude	Date Measured	Surface Elevation ^B	Depth to Water
											(ft bgs)
01975 APPRO	3	0 & W DRLG. CO.	PRO	19S	37E 1	16 4 3	N32° 39' 10.30"	W103° 15' 21.56"	12-Feb-53	3,638	20
03185	3	CARPER DRILLING CO.	PRO	19S	37E 1	1624	N32° 39' 36.37"	W103° 15' 6.16"	24-Apr-56	3,668	45
03228	3	MAKIN DRILLING COMPANY	PRO	19S	37E 1	16 44	N32° 39' 10.26"	W103° 15' 6.14"	18-Jun-56	3,641	42
06933 (E)	0	GULF OIL CORPORATION	PRO	19S	37E 1	17 423	N32° 39' 23.47"	W103° 16' 7.86"	12-Apr-72	3,678	65
02033	0	MONUMENT WATER USERS	DOM	19S	37E 1	18 111	N32° 39' 50.42"	W103° 17' 55.35"	12-Sep-47	3,717	35
10271 EXPL	0	INC. SNYDER RANCHES	EXP	19S	37E 1	111181	N32° 39' 50.42"	W103° 17' 55.35"	13-Jul-92	3,717	70
04313	3	MCVAY AND STAFFORD DRILLING CO	PRO	19S	37E 1	19 11	N32° 38' 58.03"	W103° 17' 55.36"	23-Oct-59	3,704	52
10277	3	INC. SNYDER RANCHES	STK	19S	37E 1	19 422	N32° 38' 31.48"	W103° 17' 9.65"	10-Jul-92	3,678	40
02621	3	LA MANCE DRILLING COMPANY	PRO	19S	37E 2	21 323	N32° 38' 31.20"	W103° 15' 37.02"	14-Sep-54	3,642	40
04108	3	R.H. HUSTON	PRO	19S	37E 2	21 42	N32° 38' 31.15"	W103° 15' 6.17"	01-Apr-59	3,619	22
05336	0	GULF OIL CORPORATION	PRO	19S	37E 2	21 124	N32° 38' 57.29"	W103° 15' 37.00"	15-Feb-64	3,639	30
09163	3	LEROY LOTT	DOM	19S	37E 2	21 232	N32° 38' 44.21"	W103° 15' 21.58"	16-Apr-83	3,632	47
10238	3	W. S. ISRAEL	DOM	19S	37E 2	21 343	N32° 38' 18.16"	W103° 15' 37.03"	19-Mar-92	3,637	30
10295	3	TERRY ISRAEL	DOM	19S	37E 2	21 343	N32° 38' 18.16"	W103° 15' 37.03"	29-Oct-92	3,637	30
JSGS #1				19S	37E 1	16 233			08-Mar-91	3,648	26.94
JSGS #2				19S	37E 1	17 134			27-Feb-96	3,706	62.54
JSGS #3				19S	37E 1	17 431			24-Apr-91	3,670	36.96
JSGS #4				19S	37E 1	18 331			18-Mar-54	3,701	51.93
JSGS #5				19S	37E 1	18 111			22-Feb-91	3,716	63.87
JSGS #6				19S	37E 1	19 321			21-Feb-91	3,670	58.43
JSGS #7				19S	37E 1	19 113			06-Mar-96	3,702	57.31
JSGS #8				19S	37E 2	20 2 3 1			19-Apr-68	3,662	47.85
JSGS #9				19S	37E 2	21 132			29-Feb-96	3,640	24.13
JSGS #10				19S	37E 2	21 4 3 1			09-Jan-86	3,614	16.19
1SGS #17				195	37E 3	30 1 1 1			11-Feb-66	3 654	26.88

Well Data

Apache Corporation - North Monument Grayburg San Andres Unit #603 (Ref. # 240014)

th to ter	(ft bgs)		05 () ()
Depth to Water			35 13
Surface Elevation ^B		 87 5606 91 5999 91 5999 91 5996 91 5996	
Date Measured		A UDINESTICAL DINESTICAL DINESTI	A School School
Longitude			
Latitude		ARCH FEASION NEOCOLONIA NEOCOLONI	
Sec q q q		60 111 111 111 1111 1111 1111 1111 1111	20 444 29 333
Rng	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		325
Use Twsp Rng		LESS CONTRACTOR	Ser
Use	Series States	NON SUCCE	
Owner		A CALLENCE AND A CALLENCE	
Diversion ^A			
Well Number		LI ONRATIA LI ONRATIA LI ONSER LI ONSER	USCS #15 USCS #16

^A = In acre feet per annum
 ^B = Elevation interpolated from USGS topographical map based on referenced location.
 PRO = Prospecting or development of natural resource
 DOM = Domestic

 $EXP \approx Exploration$ STK= Livestock watering quarters are 1=NW, 2=NE, 3=SW, 4=SE; quarters are biggest to smallest Shaded areas indicate wells not shown on Figure 2

Summary of Excavation Soil Sample Laboratory Analytical Results

Apache Corporation - North Monument Grayburg San Andres Unit #603 (Ref. #240014)

Sample I.D.	Depth (feet)	PID analysis	Field Chloride Analysis	Soil Status	Sample Date	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Total Xylenes (mg/Kg)	Total BTEX (mg/Kg)	Carbon C6- C12 Range (mg/Kg)	Carbon C12- C28 Range (mg/Kg)	Carbon C28- C35 Range (mg/Kg)	Total TPH (mg/Kg)	Chloride (mg/Kg)	Sulfate (mg/Kg)
BH-1 (1')	1	8.9	240	In Situ	26-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	126	43.0
BH-2 (1')	Ι	12.4	096	In Situ	26-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	605	111
BH-3 (1')	1	0.0	520	In Situ	26-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	7.91 ^B	<10.0	<10.0	428	63.6
BH-4 (1')	1	18.8	006	In Situ	25-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	540	151
BH-5 (1')	1	18.9	560	In Situ	25-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	511	98.5
BH-6 (1')	1	4.0	560	In Situ	25-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	12.7	8.53 ^B	12.7	436	117
BH-7 (1')	1	18.9	500	In Situ	25-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	283	49.3
BH-8 (1')	1	0.0	1,200	In Situ	26-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	4.45 ^B	1.98 ^B	<10.0	949	131
(1,) 6-HB	1	0.0	1,760	In Situ	26-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1.320	172
BH-10 (1')	1	8.3	800	In Situ	26-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	976	134
BH-11 (6")	0.5	4.3	2,000	In Situ	31-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	2,110	281
BH-12 (6")	0.5	4.1	960	In Situ	31-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	000.1	74.5
BH-13 (6")	0.5	4.3	1,200	In Situ	31-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1.500	178
BH-14 (6")	0.5	4.1	1,760	In Situ	31-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1.750	216

Summary of Excavation Soil Sample Laboratory Analytical Results

Apache Corporation - North Monument Grayburg San Andres Unit #603 (Ref. #240014)

Sample I.D.	Depth (feet)	Depth PID (feet) analysis	Field Chloride Analysis	Soil Status	Sample Date	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Total Xylenes (mg/Kg)	Total BTEX (mg/Kg)	Carbon C6- C12 Range (mg/Kg)	Carbon C12- C28 Range (mg/Kg)	Carbon C12- Carbon C28- C28 Range C35 Range (mg/Kg) (mg/Kg)	Total TPH (mg/Kg)	Chloride (mg/Kg)	Sulfate (mg/Kg)
BH-15 (6")	0.5	11.1	2,000	In Situ	In Situ 01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	2,510	146
BH-16 (6")	0.5	0.0	400	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	226	84.6
BH-17 (6")	0.5	0.0	1,600	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1,720	290
BH-18 (6")	0.5	0.0	1,200	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1,240	176
BH-19 (6")	0.5	0.0	1,360	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1.550	253
BH-20 (6")	0.5	0.0	160	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	7.20	21.8
BH-21 (6")	0.5	0.0	1,280	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	13.4	57.8	<10.0	71.2	920	168
BH-22 (6")	0.5	0.0	1,280	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	976	121
BH-23 (6")	0.5	0.0	120	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	6.09	17.6
BH-24 (6")	0.5	18.3	1,440	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	0.0361	0.0361	<10.0	<10.0	<10.0	<10.0	202	65.3
BH-25 (6")	0.5	19.5	1,040	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1.250	2.380
BH-26 (6")	0.5	0.0	320	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	136	151
NMOCD Remedial Thresho	MOCI	D Reme	NMOCD Remedial Thresholds	sholds		10				50				100	250 ^A	600 ^A

Bulded values are in excess of NMOCD Remediation Thresholds

-- =Not Analyzed

^AChloride and Sulfate residuals may not be capable of impacting local groundwater above the NMWQCC standards of 250 mg/L and 650 mg/L respectively. ^B = Estimated value, analyte detected below reporting limit.

-40

~9 ca

-4

~4 *

....

• - 9

.

*

4

Summary of Soil Boring Analytical Results

Apache Corporation - North Monument Grayburg San Andres Unit #603 (Ref. #240014)

Sample I.D.	Depth (feet)	PID analysis	Field Chloride Analysis	Soil Status	Sample Date	Benzene (ma/Ka)	Toluene (ma/Ka)	Ethylbenzene (mg/Kg)	Total Xylenes (ma/Ka)	Total BTEX (ma/Ka)	TPH (as gasoline) (ma/Ka)	TPH (as diesel) (ma/Ka)	Total TPH (ma/Ka)	Chloride (ma/Ka)	Sulfate (ma/Ka)
SB-1 (5')	5	1	480	In Situ	29-Nov-06	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<10.0	464	148
SB-1 (10')	10	1	240	In Situ	29-Nov-06	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<10.0	144	45
SB-1 (15')	15	ł	160	In Situ	29-Nov-06	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<10.0	80	40.2
SB-2 (5')	5	1	240	In Situ	29-Nov-06	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<10.0	144	269
SB-2 (10')	10	1	160	In Situ	29-Nov-06	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<10.0	80	198
SB-3 (5')	s		240	In Situ	29-Nov-06	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<10.0	176	245
SB-3 (10')	10	1	160	In Situ	29-Nov-06	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<10.0	96	158
SB-4 (1')	-	1	160	In Situ	30-Nov-06	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<10.0	<16	~
SB-4 (5')	s	ł	160	In Situ	29-Nov-06	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<10.0	<16	104
SB-4 (10')	10		160	In Situ	29-Nov-06	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<10.0	32	134
	OMN	CD Rem	NMOCD Remedial Thresholds	holds		10				95			100	250 ^A	_v 009
Ruldad values are in excess of NMOCD Remarkation Thresholds	wrose of NA	10CD Remedi	ation Thresholds												

Bolded values are in excess of NMOCD Remediation Thresholds

-- = Not Analyzed ^AChloride and Sulfate residuals may not be capable of impacting local groundwater above the NMWQCC standards of 250 mg/L and 650 mg/L respectively.

APPENDIX I

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORM

Analytical Report

Prepared for:

Jason Stegemoller Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Location: UL-C, Sect. 20, T 19 S, R 37 E

Lab Order Number: 6G28008

Report Date: 08/03/06

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-1 1'	6G28008-01	Soil	2006-07-26 10:15	2006-07-28 10:50
BH-2 1'	6G28008-02	Soil	2006-07-26 10:35	2006-07-28 10:50
BH-3 1'	6G28008-03	Soil	2006-07-26 10:45	2006-07-28 10:50
BH-4 1'	6G28008-04	Soil	2006-07-25 10:20	2006-07-28 10:50
BH-5 1'	6G28008-05	Soil	2006-07-25 10:40	2006-07-28 10:50
BH-6 1'	6G28008-06	Soil	2006-07-25 13:30	2006-07-28 10:50
BH-7 1'	6G28008-07	Soil	2006-07-25 13:45	2006-07-28 10:50
BH-8 1'	6G28008-08	Soil	2006-07-26 13:15	2006-07-28 10:50
BH-9 1'	6G28008-09	Soil	2006-07-26 13:30	2006-07-28 10:50
BH-10 1'	6G28008-10	Soil	2006-07-26 13:45	2006-07-28 10:50

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
BH-1 1' (6G28008-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250	"	**	**	u	u	н	
Ethylbenzene	ND	0.0250	"	"	11	ц	IF	**	
Xylene (p/m)	ND	0.0250	**	**	п	н	н	"	
Xylene (o)	ND	0.0250	"	"		н	11		
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.5 %	80-1.	20	"	n	n	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n			н	н	11	
Carbon Ranges C28-C35	ND	10.0	"	"	**	н	"	-	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	н	
Surrogate: 1-Chlorooctane		113 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		111 %	70-1.	30	"	"	"	"	
BH-2 1' (6G28008-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250	"	н	н	u	11	H	
Ethylbenzene	ND	0.0250	ti			u		"	
Xylene (p/m)	ND	0.0250	н				17	u.	
Xylene (0)	ND	0.0250	н	н	Ħ		"	н	
Surrogate: a,a,a-Trifluorotoluene		100 %	80-1.	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.2 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0		u.	"	"	"	н	
Carbon Ranges C28-C35	ND	10.0	н	"	"	"	н	"	
Total Hydrocarbons	ND	10.0	н			"	н	н	
Surrogate: 1-Chlorooctane		114 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		111 %	70-1.	30	"	u	"	u.	
BH-3 1' (6G28008-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250	ц		"	u	м	"	
Ethylbenzene	ND	0.0250	н	ч	"	ч	"	**	
Xylene (p/m)	ND	0.0250	**	"	u	"	n	*1	
Xylene (o)	ND	0.0250	"	"	u	"	п	"	
Surrogate: a,a,a-Trifluorotoluene		91.8 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.8 %	80-12	20	п	"	n	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety,

with written approval of Environmental Lab of Texas.

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-3 1' (6G28008-03) Soil	····		·						
Carbon Ranges C12-C28	J [7.91]	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	н	"	"	н		**	
Total Hydrocarbons	ND	10.0	н		11	u	"	н	
Surrogate: 1-Chlorooctane		117 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	"	"	"	"	
BH-4 1' (6G28008-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250	"	и	"	"	н	11	
Ethylbenzene	ND	0.0250	11	"	"	"	*	u	
Xylene (p/m)	ND	0.0250		и		"	"	n	
Xylene (o)	ND	0.0250	0			н	и	11	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	**	11	11	"	н	
Carbon Ranges C28-C35	ND	10.0	"	н	н	н	"	н	
Total Hydrocarbons	ND	10.0	"	11	"	"	н	н	
Surrogate: 1-Chlorooctane	-	116 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		113 %	70-1	30	"	"	"	"	
BH-5 1' (6G28008-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250		"	ır	"	u	"	
Ethylbenzene	ND	0.0250		u	0	н	**	"	
Xylene (p/m)	ND	0.0250	н	**		п	11	**	
Xylene (o)	ND	0.0250	"		"		и	11	
Surrogate: a,a,a-Trifluorotoluene		88.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.0 %	80-1	20	"	"	"	"	

Environmental Lab of Texas

Carbon Ranges C6-C12

Carbon Ranges C12-C28

Carbon Ranges C28-C35

Surrogate: 1-Chlorooctane

Surrogate: 1-Chlorooctadecane

Total Hydrocarbons

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

EG62817

,1

,1

н

"

,,

1

70-130

70-130

07/28/06

••

.,

"

"

.,

EPA 8015M

••

...

...

"

,,

07/30/06

...

11

....

..

,,

10.0 mg/kg dry

10.0

10.0

10.0

116 %

113%

ND

ND

ND

ND

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller Fax: 505-394-2601

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-6 1' (6G28008-06) Soil		···= ·····							
Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B	
Toluene	ND	0.0250	н		н	"	п	н	
Ethylbenzene	ND	0.0250	н		"	"			
Xylene (p/m)	ND	0.0250	ti.			"	"		
Xylene (0)	ND	0.0250	*	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		83.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	12.7	10.0		u	"	11	u	n	
Carbon Ranges C28-C35	J [8.53]	10.0	"	u		11		n	
Total Hydrocarbons	12.7	10.0	"	u	н	н	**	н	
Surrogate: 1-Chlorooctane		118 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	"	"	"	"	
BH-7 1' (6G28008-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B	
Toluene	ND	0.0250	н	н		н	н	"	
Ethylbenzene	ND	0.0250	11	н	н	п	н	"	
Xylene (p/m)	ND	0.0250	н	11	н	п	н	"	
Xylene (o)	ND	0.0250	**	"	н	11	п	"	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	0	u	н		
Carbon Ranges C28-C35	ND	10.0	"		11	17	11	**	
Total Hydrocarbons	ND	10.0	"	"	"	11	11	"	
Surrogate: 1-Chlorooctane		118 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	"	"	п	n	
BH-8 1' (6G28008-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B	
Toluene	ND	0.0250	"	u	"	11	11	"	
Ethylbenzene	ND	0.0250	"	11	н	"	"	н	
Xylene (p/m)	ND	0.0250	н	**			"		
Xylene (0)	ND	0.0250	н	"	34	н		II	
Surrogate: a,a,a-Trifluorotoluene		93.0 %	80-1	20	"	н	"	"	
Surrogate: 4-Bromofluorobenzene		84.0 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND		mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples

received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated
P.O. Box 1558
Eunice NM, 88231

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-8 1' (6G28008-08) Soil									
Carbon Ranges C12-C28	J [4.45]	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	J
Carbon Ranges C28-C35	J [1.98]	10.0	11	н	н	"	н	H	J
Total Hydrocarbons	ND	10.0	н	u	н	"	"		
Surrogate: 1-Chlorooctane		116 %	70-1	30	"	"	н	n	
Surrogate: 1-Chlorooctadecane		114 %	70-1	30	"	"	"	"	

BH-9 1' (6G28008-09) Soil

Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B
Toluene	ND	0.0250	н	**	н	н	"	и
Ethylbenzene	ND	0.0250		n	"	"	"	"
Xylene (p/m)	ND	0.0250	"	н	"	11	n	21
Xylene (o)	ND	0.0250	"	"	п		"	n
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80-120)	"	"	"	"
Surrogate: 4-Bromofluorobenzene		85.5 %	80-120)	"	"	"	"
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M
Carbon Ranges C12-C28	ND	10.0	н		н	н	"	
Carbon Ranges C28-C35	ND	10.0		н	"	"	н	0
Total Hydrocarbons	ND	10.0	"	u	и	н	"	51
Surrogate: 1-Chlorooctane		113 %	70-130)	"	"	"	"
Surrogate: 1-Chlorooctadecane		110 %	70-130)	"	"	"	"

BH-10 1' (6G28008-10) Soil

Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B
Toluene	ND	0.0250	11	u.	"	"	"	
Ethylbenzene	ND	0.0250	11	**	u –	н	"	"
Xylene (p/m)	ND	0.0250	**	"		"	п	n
Xylene (o)	ND	0.0250	"	н	"	"	"	n
Surrogate: a,a,a-Trifluorotoluene		90.0 %	80-120)	"	"	"	"
Surrogate: 4-Bromofluorobenzene		81.8 %	80-120)	"	n	"	14
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M
Carbon Ranges C12-C28	ND	10.0	ч	м	н	"	"	ц
Carbon Ranges C28-C35	ND	10.0	11	"	u	н		11
Total Hydrocarbons	ND	10.0	н	**	11		"	ц
Surrogate: 1-Chlorooctane		117 %	70-130)	"	"	"	"
Surrogate: 1-Chlorooctadecane		114 %	70-130)	"	"	"	"

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-1 1' (6G28008-01) Soil									
Chloride	126	5.00	mg/kg	10	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	11.0	0.1	%	1	EG63118		07/31/06	% calculation	
Sulfate	43.0	5.00	mg/kg	10	EG63104	"	07/31/06	EPA 300.0	
BH-2 1' (6G28008-02) Soil									
Chloride	605	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	11.5	0.1	%	1	EG63118	и	07/31/06	% calculation	
Sulfate	111	10.0	mg/kg	20	EG63104	н	07/31/06	EPA 300.0	
BH-3 1' (6G28008-03) Soil									
Chloride	428	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	3.1	0.1	%	1	EG63118	"	07/31/06	% calculation	
Sulfate	63.6	10.0	mg/kg	20	EG63104	п	07/31/06	EPA 300.0	
BH-4 1' (6G28008-04) Soil									<u>.</u>
Chloride	540	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	14.6	0.1	%	1	EG63118	н	07/31/06	% calculation	
Sulfate	151	10.0	mg/kg	20	EG63104	n	07/31/06	EPA 300.0	
BH-5 1' (6G28008-05) Soil									
Chloride	511	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	16.1	0.1	%	1	EG63118	н	07/31/06	% calculation	
Sulfate	98.5	10.0	mg/kg	20	EG63104	н	07/31/06	EPA 300.0	
BH-6 1' (6G28008-06) Soil							<u></u>		
Chloride	436	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	12.0	0.1	%	1	EG63118	н	07/31/06	% calculation	
Sulfate	117	10.0	mg/kg	20	EG63104	"	07/31/06	EPA 300.0	
BH-7 1' (6G28008-07) Soil		- <u></u> ,							
Chloride	283	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	8.7	0.1	%	1	EG63118	"	07/31/06	% calculation	
Sulfate	49.3	10.0	mg/kg	20	EG63104	"	07/31/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result		Reporting Limit Units		Batch	Prepared	Analyzed	Method	Note
BH-8 1' (6G28008-08) Soil									
Chloride	949	20.0	mg/kg	40	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	5.5	0.1	%	1	EG63118	"	07/31/06	% calculation	
Sulfate	131	20.0	mg/kg	40	EG63104	н	07/31/06	EPA 300.0	
BH-9 1' (6G28008-09) Soil									
Chloride	1320	25.0	mg/kg	50	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	6.8	0.1	%	I	EG63118	*1	07/31/06	% calculation	
Sulfate	172	25.0	mg/kg	50	EG63104	11	07/31/06	EPA 300.0	
BH-10 1' (6G28008-10) Soil									
Chloride	976	20.0	mg/kg	40	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	11.2	0.1	%	1	EG63118	н	07/31/06	% calculation	
Sulfate	134	20.0	mg/kg	40	EG63104	"	07/31/06	EPA 300.0	

Environmental Lab of Texas

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC - Quality Control

Environmental Lab of Texas

			and a second							·····	
			Reporting		Spike	Source		%REC		RPD	
1	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EG62817 - Solvent Extraction (GC)

Blank (EG62817-BLK1)				Prepared: 0	7/28/06 A	nalyzed: 0	7/30/06	
Carbon Ranges C6-C12	ND	10.0	mg/kg wet					
Carbon Ranges C12-C28	ND	10.0						
Carbon Ranges C28-C35	ND	10.0	u					
Total Hydrocarbons	ND	10.0	n					
Surrogate: 1-Chlorooctane	64.7		mg/kg	50.0		129	70-130	
Surrogate: 1-Chlorooctadecane	64.1		"	50.0		128	70-130	
LCS (EG62817-BS1)				Prepared: 0	7/28/06 A	nalyzed: 0	7/30/06	
Carbon Ranges C6-C12	574	10.0	mg/kg wet	500		115	75-125	
Carbon Ranges C12-C28	417	10.0	"	500		83.4	75-125	
Carbon Ranges C28-C35	ND	10.0	11	0.00			75-125	
Total Hydrocarbons	991	10.0	11	1000		99.1	75-125	
Surrogate: 1-Chlorooctane	62.8		mg/kg	50.0		126	70-130	
Surrogate: 1-Chlorooctadecane	63.4		"	50.0		127	70-130	
Calibration Check (EG62817-CCV1)				Prepared: 0	7/28/06 A	nalyzed: 0	7/31/06	
Carbon Ranges C6-C12	298		mg/kg	250		119	80-120	
Carbon Ranges C12-C28	228		н	250		91.2	80-120	
Total Hydrocarbons	526		н	500		105	80-120	
Surrogate: 1-Chlorooctane	83.3		"	100		83.3	70-130	_
Surrogate: 1-Chlorooctadecane	80.8		"	100		80.8	70-130	
Matrix Spike (EG62817-MS1)	Source	e: 6G28008	8-02	Prepared: 0	7/28/06 A	nalyzed: 0	7/31/06	
Carbon Ranges C6-C12	663	10.0	mg/kg dry	565	ND	117	75-125	•
Carbon Ranges C12-C28	501	10.0	п	565	ND	88.7	75-125	
Carbon Ranges C28-C35	ND	10.0	н	0.00	ND		75-125	
Total Hydrocarbons	1160	10.0	н	1130	ND	103	75-125	
Surrogate: 1-Chlorooctane	62.2		mg/kg	50.0		124	70-130	
Surrogate: 1-Chlorooctadecane	63.3		"	50.0		127	70-130	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.
Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EG62817 - Solvent Extraction (GC)

Matrix Spike Dup (EG62817-MSD1)	Source	e: 6G28008	8-02	Prepared: 0	7/28/06 A	nalyzed: 0'	7/30/06		
Carbon Ranges C6-C12	654	10.0	mg/kg dry	565	ND	116	75-125	1.37	20
Carbon Ranges C12-C28	474	10.0	**	565	ND	83.9	75-125	5.54	20
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125		20
Total Hydrocarbons	1130	10.0	"	1130	ND	100	75-125	2.62	20
Surrogate: 1-Chlorooctane	61.6		mg/kg	50.0		123	70-130		
Surrogate: 1-Chlorooctadecane	64.9		n	50.0		130	70-130		

Batch EG63119 - EPA 5030C (GC)

Blank (EG63119-BLK1)				Prepared & Anal	lyzed: 07/31/06	
Benzene	ND	0.0250	mg/kg wet			
Toluene	ND	0.0250	"			
Ethylbenzene	ND	0.0250	п			
Xylene (p/m)	ND	0.0250	h			
Xylene (o)	ND	0.0250	"			
Surrogate: a,a,a-Trifluorotoluene	37.5		ug/kg	40.0	93.8	80-120
Surrogate: 4-Bromofluorobenzene	33.3		п	40.0	83.2	80-120
LCS (EG63119-BS1)				Prepared & Anal	lyzed: 07/31/06	
Benzene	1.27	0.0250	mg/kg wet	1.25	102	80-120
Toluene	1.26	0.0250	n	1.25	101	80-120
Ethylbenzene	1.23	0.0250	IF.	1.25	98.4	80-120
Xylene (p/m)	2.74	0.0250	"	2.50	110	80-120
Xylene (o)	1.37	0.0250	"	1.25	110	80-120
Surrogate: a,a,a-Trifluorotoluene	39.5		ug/kg	40.0	98.8	80-120
Surrogate: 4-Bromofluorobenzene	38.1		"	40.0	95.2	80-120

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental La	ab of T	exas
------------------	---------	------

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EG63119 - EPA 5030C (GC)

Calibration Check (EG63119-CCV1)				Prepared: 0	7/31/06 A	nalyzed: 0	8/01/06
Benzene	51.5		ug/kg	50.0		103	80-120
Toluene	49.9		н	50.0		99.8	80-120
Ethylbenzene	51.7		н	50.0		103	80-120
Xylene (p/m)	103		п	100		103	80-120
Xylene (o)	50.8		н	50.0		102	80-120
Surrogate: a,a,a-Trifluorotoluene	35.7		"	40.0		89.2	80-120
Surrogate: 4-Bromofluorobenzene	33.7		"	40.0		84.2	80-120
Matrix Spike (EG63119-MS1)	Sour	ce: 6G28008	3-01	Prepared: 0	7/31/06 A	nalyzed: 0	8/01/06
Benzene	1.51	0.0250	mg/kg dry	1.40	ND	108	80-120
Toluene	1.52	0.0250		1.40	ND	109	80-120
Ethylbenzene	1.47	0.0250	"	1.40	ND	105	80-120
Xylene (p/m)	3.25	0.0250	н	2.81	ND	116	80-120
Xylene (o)	1.58	0.0250	**	1.40	ND	113	80-120
Surrogate: a,a,a-Trifluorotoluene	38.5		ug/kg	40.0		96.2	80-120
Surrogate: 4-Bromofluorobenzene	40.9		"	40.0		102	80-120

Matrix Spike Dup (EG63119-MSD1)	Sour	ce: 6G28008	8-01	Prepared: 0	7/31/06 A	nalyzed: 0	8/01/06			
Benzene	1.43	0.0250	mg/kg dry	1.40	ND	102	80-120	5.71	20	
Toluene	1.41	0.0250	11	1.40	ND	101	80-120	7.62	20	
Ethylbenzene	1.35	0.0250	п	1.40	ND	96.4	80-120	8.54	20	
Xylene (p/m)	3.00	0.0250	н	2.81	ND	107	80-120	8.07	20	
Xylene (o)	1.49	0.0250	"	1.40	ND	106	80-120	6.39	20	
Surrogate: a,a,a-Trifluorotoluene	40.4		ug/kg	40.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	39.2		"	40.0		98.0	80-120			

Batch EH60114 - EPA 5030C (GC)

Blank (EH60114-BLK1)				Prepared: 08/01	06 Analyzed: 08	3/02/06	
Benzene	ND	0.0250	mg/kg wet				
Toluene	ND	0.0250	"				
Ethylbenzene	ND	0.0250	"				
Xylene (p/m)	ND	0.0250					
Xylene (o)	ND	0.0250	u.				
Surrogate: a,a,a-Trifluorotoluene	35.5	* **** * **	ug/kg	40.0	88.8	80-120	
Surrogate: 4-Bromofluorobenzene	33.2		"	40.0	83.0	80-120	

Organics by GC - Quality Control

Environmental Lab of Texas

	5.1	Reporting	** *.	Spike	Source	AUDIC	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60114 - EPA 5030C (GC)							- <u></u>			
LCS (EH60114-BS1)				Prepared: (08/01/06 A	nalyzed: 08	/02/06			
Benzene	1.20	0.0250	mg/kg wet	1.25		96.0	80-120			
Toluene	1.27	0.0250		1.25		102	80-120			
Ethylbenzene	1.13	0.0250	"	1.25		90.4	80-120			
Xylene (p/m)	2.68	0.0250	11	2.50		107	80-120			
Xylene (0)	1.33	0.0250	н	1.25		106	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.7		ug/kg	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	38.8		"	40.0		97.0	80-120			
Calibration Check (EH60114-CCV1)				Prepared: ()8/01/06 A	nalyzed: 08	/02/06			
Benzene	53.8		ug/kg	50.0	······································	108	80-120			
Toluene	54.3			50.0		109	80-120			
Ethylbenzene	51.0		"	50.0		102	80-120			
Xylene (p/m)	110		"	100		110	80-120			
Xylene (o)	54.8		"	50.0		110	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.1		"	40.0		92.8	80-120			
Surrogate: 4-Bromofluorobenzene	33.0		n	40.0		82.5	80-120			
Matrix Spike (EH60114-MS1)	Sour	rce: 6G28010	-01	Prepared: (08/01/06 A	nalyzed: 08	/02/06			
Benzene	1.43	0.0250	mg/kg dry	1.39	ND	103	80-120			
Toluene	1.44	0.0250		1.39	ND	104	80-120			
Ethylbenzene	1.37	0.0250	11	1.39	ND	98.6	80-120			
Xylene (p/m)	3.09	0.0250	"	2.78	ND	111	80-120			
Xylene (0)	1.51	0.0250		1.39	ND	109	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.9		ug/kg	40.0		97.2	80-120			
Surrogate: 4-Bromofluorobenzene	36.9		"	40.0		92.2	80-120			
Matrix Spike Dup (EH60114-MSD1)	Sour	ce: 6G28010	-01	Prepared: 0	08/01/06 A	nalyzed: 08	/02/06			
Benzene	1.30	0.0250	mg/kg dry	1.39	ND	93.5	80-120	9.67	20	
Toluene	1.37	0.0250		1.39	ND	98.6	80-120	5.33	20	
Ethylbenzene	1.29	0.0250		1.39	ND	92.8	80-120	6.06	20	
Xylene (p/m)	2.88	0.0250		2.78	ND	104	80-120	6.51	20	
Xylene (0)	1.42	0.0250	"	1.39	ND	102	80-120	6.64	20	
Surrogate: a,a,a-Trifluorotoluene	32.7		ug/kg	40.0	· ·	81.8	80-120			
Surrogate: 4-Bromofluorobenzene	37.0		"	40.0		92.5	80-120			

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Notes
Batch EG63104 - General Preparation (WetChem)									
Blank (EG63104-BLK1)				Prepared: 0	07/28/06	Analyzed: 01	7/31/06			
Chloride	ND	0.500	mg/kg							
Sulfate	ND	0.500								
LCS (EG63104-BS1)				Prepared: 0	07/28/06	Analyzed: 07	7/31/06			
Sulfate	10.4	0.500	mg/kg	10.0		104	80-120			
Chloride	9.56	0.500	"	10.0		95.6	80-120			
Calibration Check (EG63104-CCV1)				Prepared: 0	07/28/06	Analyzed: 07	7/31/06			
Sulfate	10.1		mg/L	10.0		101	80-120			
Chloride	10.1		"	10.0		101	80-120			
Duplicate (EG63104-DUP1)	Sou	rce: 6G21001	-01	Prepared: 0	07/28/06	Analyzed: 07	7/31/06			
Sulfate	560	5.00	mg/kg		523			6.83	20	
Chloride	344	5.00	"		320			7.23	20	
Duplicate (EG63104-DUP2)	Sou	rce: 6G28008-	-09	Prepared: 0	07/28/06	Analyzed: 07	7/31/06			
Sulfate	177	25.0	mg/kg	·	172			2.87	20	
Chloride	1350	25.0	"		1320			2.25	20	
Matrix Spike (EG63104-MS1)	Sou	rce: 6G21001-	-01	Prepared: 0	07/28/06	Analyzed: 07	7/31/06			
Chloride	452	5.00	mg/kg	100	320	132	80-120			S-0
Sulfate	625	5.00	11	100	523	102	75-125			
Matrix Spike (EG63104-MS2)	Sou	rce: 6G28008-	.09	Prepared: 0	7/28/06	Analyzed: 07	7/31/06			
Sulfate	669	25.0	mg/kg	500	172	99.4	75-125			
Chloride	1890	25.0	н	500	1320	114	80-120			

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG63118 - General Preparation (Prep)										
Blank (EG63118-BLK1)				Prepared: (07/28/06 A	nalyzed: 07	/31/06			
% Moisture	ND	0.1	%							
Duplicate (EG63118-DUP1)	Sou	rce: 6G21001-(01	Prepared: 0	07/28/06 A	nalyzed: 07	/31/06			
% Solids	90.8		%	// // // // // // // // // // // //	91.9			1.20	20	
Duplicate (EG63118-DUP2)	Sou	rce: 6G28008-(03	Prepared: (07/28/06 A	nalyzed: 07	/31/06			
% Solids	97.4		%		96.9			0.515	20	
Duplicate (EG63118-DUP3)	Sou	rce: 6G28013-(01	Prepared: 0	7/28/06 A	nalyzed: 07.	/31/06			
% Solids	93.9		%		93.5			0.427	20	

Environmental Lab of Texas

Notes and Definitions

- S-07 Recovery outside Laboratory historical or method prescribed limits.
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Jut

Date:

8/3/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

finered by:	have	Ar al 1/12/ Arm	Sampler Relinquished		- イウ 10 BH-10 (1)		(н) в-на в ХО-	入り 7BH-7 (1')	(.L) 9-H8 9 の ウ ~	-05 2 BH-5 (1')	- ろひ 4 ВН-4 (1')	(1) 3-HB	-072 2 BH-2 (1')	(1) 1-HBI (1)	LAB .D		EPI Sampler Name	Project Reference	Location	Facility Name	Client Company	EPI Phone#/Fax#	City, State, Zip	Mailing Address	EPI Project Manager	Company Name	2100 Avenue O, Eunice, NM 88231 (505) 394-3481 FAX: (505) 394-26	Environmental Plus ,
Sample Cool & Intact Cres No	Lite	Time 7:30	22 - Cared		(1)	1')	1)	(')	(')	(*1	1')	[¹]	1')	(')	SAMPLE I.D.		Jacob Melancon	240014	UL-C, Sec 20, T19S, R37E	N. Mon. Grayburg SA 603	Apache Corporation	505-394-3481 / 505-394-2601	Eunice New Mexico 88231	P.O. BOX 1558	Jason Stegemoller	<u>,</u> ,	Eunice, NM 88231 FAX: (505) 394-2601	tal Plus, Inc.
Cool	Received By: (lab staff	I.	Received By		G	ດ	G	ດ	G	G	9	G	G	G	(G)RAB OR (C)OMP	>.			R37	A 60;		94-2	8823			Inc,	P.O. Box 1558, Eunice, NM 88231	
Intac	/ed B	and .	/ed By						4.	und.		•••• 1		4	# CONTAINERS	•			m	ω		601	7				Bo	
(~~	/: (lat	X	6												GROUND WATER	Į											X 12	
	staff	4													WASTEWATER	_	L	I	L							1495180	558,	
	3	XA row	1							<u> </u>				\$ 	SOIL.	MATRIX											Eu	
Sec.		7													CRUDE OIL	ļ₿										1999 1997	nice	
Checked By															SLUDGE OTHER:	1											Ň	
										_					ACID/BASE	<u> </u>	m		ъ								88 M	
		Z	ц,			×		×	×	X		X	X	X	ICE/COOL	PRESERV.	lų.	P,O	it i			ıll	8				231	
		NOTES:	mail		×	Ĥ	X	\square	귀	2	×	\square		(OTHER	ÿ	ĕ		lai		manie	ALL .	me	sus .		31		
2,50) }o		E-mail results to: jstege		26-Jul-06	26-Jul-06	26-Jul-06	25-Jul-06	25-Jul-06	25-Jul-06	25-Jul-06	26-Jul-06	26-Jul-06	26-Jul-06		V. SAMPLING	M 8823	P.O. Box 1558	Attn: lain Olness	740 334			P			BIITO		
	Ŷ		jstegemoller@envplus.net		13:45	13:30	13:15	13:45	13:30	10:40	10:20	10:45	10:35	10:15	Т Ж	NG			10-41 MINUT	يصاطرانين			in codina Par					
	18-2 glass	-	Vplu	3	X	×	×	×	×	×	×	×	×	×	BTEX 8021B		-			de ársian de	ndin Antipole	**					ĺ	
Ś	No.	ъ. ъ.	S.nei		X	×	×	×	×	\simeq	\times	X	×	×	TPH 8015M			•						madabutatik				
	× i				X	×	Ž		×	Ž	X	\sim	X	-	CHLORIDES (CI')				e an	ink baltaris	-	i da que poyadado	******	******		AN	l	2
	~				×	\succeq	×	\preceq	츼	Ň	×	Ň	X	×	SULFATES (SO4 ⁻)													ain
										-			1500 ANI		TCLP	Addantad	al la spanne		19-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		WWW.00		ar di sayat	u).uyayaya		315	<u>ب</u>	of
							_		\neg						OTHER >>>				*******			izdativani	ene stan	4 49999999	****		1 of 7 1	2
							-	\neg	\neg						РАН	59, Wragen	191 407		www.2746	an a	40640 ⁴²	4854 GAMPA				ANALYSIS REQUEST	12	istc
						\neg	-1		┪							dere formelse	and an all com			*******	narr ngi th	in instant	a dan ka			3		Й
							-1	1	1	T						in an				7818088625	******	angala serien	alana karini		~~~~			Chain of Custody Form
			5			anahari d			ş		mang	a la senara d	atteriorise (an a					210110101	ASSANCIAL	9999902999794	eksterija (a	*****			I	7

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

ent:	EPI
ite/ Time-	7/28/06 10:50
b ID # :	691,8006
tials:	CK

Sample Receipt Checklist

			Client Ir	nitials
Temperature of container/ cooler?	Yes	No	2.5 °C	
? Shipping container in good condition?	tes	No		
Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
5 Chain of Custody present?	Yes	No		
3 Sample instructions complete of Chain of Custody?	Yes	No		
7 Chain of Custody signed when relinquished/ received?	Ves	No		
3 Chain of Custody agrees with sample label(s)?	(es	No	ID written on Cont./ Lid	
3 Container label(s) legible and intact?	Xes	No	Not Applicable	
10 Sample matrix/ properties agree with Chain of Custody?	Tes	No		
11 Containers supplied by ELOT?	res	No		
12 Samples in proper container/ bottle?	Yes	No	See Below	*****
13 Samples properly preserved?	Xes	No	See Below	
14 Sample bottles intact?	Yes	No		
15 Preservations documented on Chain of Custody?	Yes	No		
16 Containers documented on Chain of Custody?	Fes	No		
17 Sufficient sample amount for indicated test(s)?	Ves	No	See Below	
18 All samples received within sufficient hold time?	Yes	No	See Below	
19 VOC samples have zero headspace?	Nes	No	Not Applicable	

Variance Documentation

Contact:		Contacted by:	Date/ Time:	******
tegarding:	an dara badar bara mangan seperahan dara da			energi ander an
Sorrective Action Taker	9 9 1			
Sheck all that Apply:		See attached e-mail/ fax Client understands and would like to proce Cooling process had begun shortly after sa		

Analytical Report

Prepared for:

Jason Stegemoller Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Location: UL-C, Sec. 20, T19S, R37E

Lab Order Number: 6H02007

Report Date: 08/08/06

Environmental Plus, Incorporated	Project:	Apache/ N. Mon. Grayburg SA 603	Fax: 505-394-2601
P.O. Box 1558	Project Number:	240014	
Eunice NM, 88231	Project Manager:	Jason Stegemoller	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-15 6"	6H02007-01	Soil	2006-08-01 08:55	2006-08-02 11:15
BH-16 6"	6H02007-02	Soil	2006-08-01 10:10	2006-08-02 11:15
BH-17 6"	6H02007-03	Soil	2006-08-01 11:25	2006-08-02 11:15
BH-18 6"	6H02007-04	Soil	2006-08-01 13:10	2006-08-02 11:15
BH-19 6"	6H02007-05	Soil	2006-08-01 14:25	2006-08-02 11:15
BH-20 6"	6H02007-06	Soil	2006-08-01 15:25	2006-08-02 11:15

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-15 6'' (6H02007-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
Toluene	ND	0.0250	"	"		"	"	"	
Ethylbenzene	ND	0.0250	11	"	"	n	"	"	
Xylene (p/m)	ND	0.0250	**	н	*1	"	н	**	
Xylene (0)	ND	0.0250	н	U.	u.	"	11		
Surrogate: a,a,a-Trifluorotoluene		96.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0				11	н	"	
Carbon Ranges C28-C35	ND	10.0		**	"	"	ч	"	
Total Hydrocarbons	ND	10.0	"		n	*	"	**	
Surrogate: 1-Chlorooctane		96.0 %	70-1	30	"	n	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	"	"	"	"	
BH-16 6'' (6H02007-02) Soil									
Panaana	ND	0.0250	maka day	25	EU(0702	C 2/04/06	08/06/06	EPA 2021B	

Benzene	ND	0.0250	mg/kg dry	25	EH60702	G8/04/06	08/06/06	EPA 8021B
Toluene	ND	0.0250	"			"	"	n
Ethylbenzene	ND	0.0250	"	"		11	н	tt.
Xylene (p/m)	ND	0.0250	**		"	11	"	н
Xylene (0)	ND	0.0250	н		"	н	11	IT
Surrogate: a,a,a-Trifluorotoluene		97.5 %	80-120		"	"	"	"
Surrogate: 4-Bromofluorobenzene		90.5 %	80-120		"	"	"	"
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M
Carbon Ranges C12-C28	ND	10.0	н	н	"	ц	н	"
Carbon Ranges C28-C35	ND	10.0	11	н	"	н	н	H
Total Hydrocarbons	ND	10.0	н	н	п	**	**	**
Surrogate: 1-Chlorooctane		96.4 %	70-130		"	"	"	"
Surrogate: 1-Chlorooctadecane		113 %	70-130		"	"	"	"

BH-17 6" (6H02007-03) Soil

ND	0.0050					08/06/06	EPA 8021B	
	0.0250	"		11	"	11		
ND	0.0250	"	н	н	"	n	"	
ND	0.0250	"	и	н	**	н	"	
ND	0.0250	"	н	н	"	u	"	
	98.5 %	80-120		"	и		"	
	93.5 %	80-120		"	"	"	n	
ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
	ND ND	ND 0.0250 ND 0.0250 98.5 % 93.5 %	ND 0.0250 " ND 0.0250 " ND 0.0250 " 98.5 % 80-120 93.5 % 80-120	ND 0.0250 " " ND 0.0250 " " ND 0.0250 " " 98.5 % 80-120 93.5 % 80-120	ND 0.0250 " " " ND 0.0250 " " " ND 0.0250 " " " 98.5 % 80-120 " 93.5 % 80-120 "	ND 0.0250 " " " " " ND 0.0250 " " " " " ND 0.0250 " " " " " 98.5 % 80-120 " "	ND 0.0250 " " ND 0.0250 " " ND 0.0250 " " 98.5 % 80-120 " " 93.5 % 80-120 " "	ND 0.0250 " " " " ND 0.0250 " " " " ND 0.0250 " " " " 98.5 % 80-120 " " " "

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety.

with written approval of Environmental Lab of Texas.

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
BH-17 6'' (6H02007-03) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	н	11	"	н	n	"	
Total Hydrocarbons	ND	10.0		н	11	"	"	"	
Surrogate: 1-Chlorooctane		93.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		112 %	70-1	30	"	"	"	"	
BH-18 6'' (6H02007-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
Toluene	ND	0.0250	"	11		"	'n	"	
Ethylbenzene	ND	0.0250	"	н		н	н	"	
Xylene (p/m)	ND	0.0250	н	"	и	*	n	11	
Xylene (0)	ND	0.0250	"	"	н		"	н	
Surrogate: a,a,a-Trifluorotoluene		92.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.2 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	н	н	ti	*1	
Carbon Ranges C28-C35	ND	10.0	11	"	0	"	11	"	
Total Hydrocarbons	ND	10.0	н	**	"	"	H	11	
Surrogate: 1-Chlorooctane		93.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		112 %	70-1	30	n	"	"	"	
BH-19 6'' (6H02007-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
Toluene	ND	0.0250	"	"	н	"	11	"	
Ethylbenzene	ND	0.0250	"	"		"		"	
Xylene (p/m)	ND	0.0250	"	н		"	II.	н	
Xylene (0)	ND	0.0250	II	"	"	11		n 	
Surrogate: a,a,a-Trifluorotoluene		90.5 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		90.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	"	"	11	"	"	
Carbon Ranges C28-C35	ND	10.0	п	"	**	n	и	n	
Total Hydrocarbons	ND	10.0		**	u	н		"	
Surrogate: 1-Chlorooctane		96.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		113 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

•

- 19

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-20 6'' (6H02007-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/07/06	EPA 8021B	
Toluene	ND	0.0250	н	n	"	"	n	**	
Ethylbenzene	ND	0.0250		"	"	•	н	11	
Xylene (p/m)	ND	0.0250		**	н		u.	н	
Xylene (o)	ND	0.0250	**	н		"	"		
Surrogate: a,a,a-Trifluorotoluene		98.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0		н			н	н	
Carbon Ranges C28-C35	ND	10.0	"	"	"	*	"		
Total Hydrocarbons	ND	10.0	"	"	"	"	"		
Surrogate: 1-Chlorooctane		104 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		123 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-15 6" (6H02007-01) Soil			_						
Chloride	2510	50.0	mg/kg	100	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	13.6	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	146	50.0	mg/kg	100	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-16 6'' (6H02007-02) Soil									
Chloride	226	10.0	mg/kg	20	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	10.6	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	84.6	10.0	mg/kg	20	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-17 6'' (6H02007-03) Soil									
Chloride	1720	50.0	mg/kg	100	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	11.8	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	290	50.0	mg/kg	100	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-18 6'' (6H02007-04) Soil									
Chloride	1240	25.0	mg/kg	50	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	8.3	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	176	25.0	mg/kg	50	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-19 6'' (6H02007-05) Soil									
Chloride	1550	25.0	mg/kg	50	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	9.0	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	253	25.0	mg/kg	50	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-20 6'' (6H02007-06) Soil									
Chloride	7.20	5.00	mg/kg	10	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	4.6	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	21.8	5.00	mg/kg	10	EH60307	08/02/06	08/04/06	EPA 300.0	

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60209 - EPA 5030C (GC)					/					
				Durana d. 0	A	08/02/07				
Blank (EH60209-BLK1)				Prepared &	Analyzed:					
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	'n							
Carbon Ranges C28-C35	ND	10.0								
Total Hydrocarbons	ND	10.0								
Surrogate: 1-Chlorooctane	64.0		mg/kg	50.0		128	70-130			
Surrogate: 1-Chlorooctadecane	61.1		"	50.0		122	70-130			
LCS (EH60209-BS1)				Prepared &	Analyzed:	08/02/06				
Carbon Ranges C6-C12	441	10.0	mg/kg wet	500		88.2	75-125			
Carbon Ranges C12-C28	451	10.0	н	500		90.2	75-125			
Carbon Ranges C28-C35	ND	10.0	н	0.00			75-125			
Total Hydrocarbons	892	10.0	"	1000		89.2	75-125			
Surrogate: I-Chlorooctane	49.0		mg/kg	50.0		98.0	70-130			
Surrogate: 1-Chlorooctadecane	37.1		"	50.0		74.2	70-130			
Calibration Check (EH60209-CCV1)				Prepared: 0	08/02/06 A	nalyzed: 08	3/03/06			
Carbon Ranges C6-C12	210		mg/kg	250		84.0	80-120			
Carbon Ranges C12-C28	271		н	250		108	80-120			
Total Hydrocarbons	481		"	500		96.2	80-120			
Surrogate: 1-Chlorooctane	87.7		"	100		87.7	70-130			
Surrogate: 1-Chlorooctadecane	75.9		"	100		75.9	70-130			
Matrix Spike (EH60209-MS1)	Sou	rce: 6H02005	5-01	Prepared &	Analyzed:	08/02/06				
Carbon Ranges C6-C12	466	10.0	mg/kg dry	520	ND	89.6	75-125			
Carbon Ranges C12-C28	479	10.0	н	520	ND	92.1	75-125			
Carbon Ranges C28-C35	ND	10.0		0.00	ND		75-125			
Total Hydrocarbons	945	10.0	**	1040	ND	90.9	75-125			
Surrogate: 1-Chlorooctane	49.7		mg/kg	50.0		99.4	70-130			
Surrogate: I-Chlorooctadecane	38.3		"	50.0		76.6	70-130			

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60209 - EPA 5030C (GC)										

Matrix Spike Dup (EH60209-MSD1)		e: 6H02005		Prepared &						
Carbon Ranges C6-C12	470	10.0	mg/kg dry	520	ND	90.4	75-125	0.855	20	
Carbon Ranges C12-C28	484	10.0	н.	520	ND	93.1	75-125	1.04	20	
Carbon Ranges C28-C35	ND	10.0		0.00	ND		75-125		20	
Total Hydrocarbons	954	10.0	"	1040	ND	91.7	75-125	0.948	20	
Surrogate: 1-Chlorooctane	50.5		mg/kg	50.0	-	101	70-130			
Surrogate: 1-Chlorooctadecane	37.2		"	50.0		74.4	70-130			

Batch EH60702 - EPA 5030C (GC)

Blank (EH60702-BLK1)				Prepared: 08/04/06	5 Analyzed: 08	/06/06		
Benzene	ND	0.0250	mg/kg wet					
Toluene	ND	0.0250	"					
Ethylbenzene	ND	0.0250	"					
Xylene (p/m)	ND	0.0250	"					
Xylene (0)	ND	0.0250	"					
Surrogate: a,a,a-Trifluorotoluene	37.0		ug/kg	40.0	92.5	80-120	· · ···	·
Surrogate: 4-Bromofluorobenzene	33.9		"	40.0	84.8	80-120		
LCS (EH60702-BS1)				Prepared: 08/04/06	Analyzed: 08	/06/06		
Benzene	1.19	0.0250	mg/kg wet	1.25	95.2	80-120		
Toluene	1.21	0.0250	"	1.25	96.8	80-120		
Ethylbenzene	1.08	0.0250		1.25	86.4	80-120		
Xylene (p/m)	2.66	0.0250	"	2.50	106	80-120		
Xylene (0)	1.31	0.0250	11	1.25	105	80-120		
Surrogate: a,a,a-Trifluorotoluene	39.7		ug/kg	40.0	99.2	80-120	· ·	
Surrogate: 4-Bromofluorobenzene	40.7		"	40.0	102	80-120		

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60702 - EPA 5030C (GC)										
Calibration Check (EH60702-CCV1)				Prepared: (08/04/06 A	nalyzed: 08	/07/06			
Benzene	50.4		ug/kg	50.0		101	80-120			
Toluene	49.1		11	50.0		98.2	80-120			
Ethylbenzene	49.4		н	50.0		98.8	80-120			
Xylene (p/m)	99.8		н	100		99.8	80-120			
Xylene (0)	48.8		н	50.0		97.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.3			40.0		93.2	80-120			
Surrogate: 4-Bromofluorobenzene	34.2		"	40.0		85.5	80-120			
Matrix Spike (EH60702-MS1)	Sou	rce: 6H04011	1-01	Prepared: (08/04/06 A	nalyzed: 08	/07/06			
Benzene	1.27	0.0250	mg/kg dry	1.36	ND	93.4	80-120			
Toluene	1.27	0.0250	п	1.36	ND	93.4	80-120			
Ethylbenzene	1.23	0.0250		1.36	ND	90.4	80-120			
Xylene (p/m)	2.67	0.0250	н	2.72	ND	98.2	80-120			
Xylene (0)	1.36	0.0250		1.36	ND	100	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.8		ug/kg	40.0		82.0	80-120			
Surrogate: 4-Bromofluorobenzene	35.8		"	40.0		89.5	80-120			
Matrix Spike Dup (EH60702-MSD1)	Sou	rce: 6H04011	1-01	Prepared: (08/04/06 A	nalyzed: 08	/07/06			
Benzene	1.24	0.0250	mg/kg dry	1.36	ND	91.2	80-120	2.38	20	
Toluene	1.24	0.0250	ч	1.36	ND	91.2	80-120	2.38	20	
Ethylbenzene	1.20	0.0250	"	1.36	ND	88.2	80-120	2.46	20	
Xylene (p/m)	2.62	0.0250		2.72	ND	96.3	80-120	1.95	20	
Xylene (0)	1.31	0.0250	"	1.36	ND	96.3	80-120	3.77	20	
Surrogate: a,a,a-Trifluorotoluene	33.1		ug/kg	40.0		82.8	80-120			
Surrogate: 4-Bromofluorobenzene	35.5		"	40.0		88.8	80-120			

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60302 - General Preparation (P	rep)									
Blank (EH60302-BLK1)				Prepared:	08/02/06	Analyzed: 08	3/03/06			
% Solids	100		%							
Duplicate (EH60302-DUP1)	Sou	rce: 6H02001	-01	Prepared:	08/02/06	Analyzed: 08	8/03/06			
% Solids	99.5	····	%		99.4		iner.	0.101	20	
Batch EH60307 - Water Extraction										
Blank (EH60307-BLK1)				Prepared:	08/02/06	Analyzed: 08	3/04/06			
Sulfate	ND	0.500	mg/kg							
Chloride	ND	0.500	н							
LCS (EH60307-BS1)				Prepared:	08/02/06	Analyzed: 08	3/04/06			
Chloride	8.90	0.500	mg/kg	10.0		89.0	80-120			
Sulfate	9.47	0.500	н	10.0		94.7	80-120			
Calibration Check (EH60307-CCV1)				Prepared:	08/02/06	Analyzed: 08	3/04/06			
Chloride	10.1		mg/L	10.0		101	80-120			
Sulfate	9.57		"	10.0		95.7	80-120			
Duplicate (EH60307-DUP1)	Sour	·ce: 6H01008-	-03	Prepared:	08/02/06	Analyzed: 08				
Sulfate	327	10.0	mg/kg		325			0.613	20	
Chloride	7.30	10.0	**		9.22			23.2	20	S-08,
Duplicate (EH60307-DUP2)	Sour	·ce: 6H01009-	-06	Prepared:	08/02/06	Analyzed: 08	3/04/06			
Sulfate	30.1	5.00	mg/kg		30.1			0.00	20	· · · · · ·
Chloride	13.3	5.00	μ		13.3			0.00	20	

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60307 - Water Extraction										
Matrix Spike (EH60307-MS1)	Sour	ce: 6H01008	-03	Prepared: (08/02/06 A	nalyzed: 08	/04/06			
Chloride	221	10.0	mg/kg	200	9.22	106	80-120			
Sulfate	539	10.0	**	200	325	107	80-120			
Matrix Spike (EH60307-MS2)		ce: 6H01009	-06	Prepared: (08/02/06 A	nalyzed: 08	/04/06			
Chloride	109	5.00	mg/kg	100	13.3	95.7	80-120			
Sulfate	120	5.00		100	30.1	89.9	80-120			

Environmental Lab of Texas

Notes and Definitions

S-08 Value outside Laboratory historical or method prescribed QC limits.

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Junes 8/8/2006 Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Chain of Custody Form 1 of 1	ANALYSISREGUES 31 SAMPLING	Данист Данист Данист Данист Данист Данист ВТЕХ 8021В Данист Польт Данист ВТЕХ 8021В Данист СНСОВПРЕЗ (СГ) Данист ВТЕХ 8021В Данист Польт Данист ВТЕХ 8021В Данист </th <th>01-Aug-06 8:55 X X X X X 1 1 1 1 1 0 01-Aug-06 10:10 X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th>11:25 X X X 13:10 V V V</th> <th>14:25 X X X</th> <th>01-Aug-06 15:25 X X X X 01-Aug-06 15:25 X X X X</th> <th></th> <th>E-mail results to: jstegemoller@envplus.net NOTES:</th> <th>und label & Jer Scell 3.0</th>	01-Aug-06 8:55 X X X X X 1 1 1 1 1 0 01-Aug-06 10:10 X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11:25 X X X 13:10 V V V	14:25 X X X	01-Aug-06 15:25 X X X X 01-Aug-06 15:25 X X X X		E-mail results to: jstegemoller@envplus.net NOTES:	und label & Jer Scell 3.0
P.O. Box 1558, Eunice, NM 88231	Bill Io Attn: Iain Olness P.O. Box 1558 Eunice, NM 88231 MATRIX PRESERV.	OTHER ICE/COOL ACID/BASE OTHER: SLUDGE	1 X 01-		××	1 X 0 1		E-mail results NOTES:	C) C) C) S)acked By:
IS, Inc.	331 2601 7E	R Contriners B Coudd Weter F Tewater	G 1 1 1		┥╼┥	5		Date Received By:	DAVE 2: 22 PROFIVED BY: (120 Staff) Time (12, 22 BORDIE COOL & INTOCH (0) Sample Cool & INTOCH
Environmental Plus, Inc. 2100 Avenue O, Eunice, NM 88231 (505) 394-3481 FAX: (505) 394-2601	Company Name EPI Project Manager Mailing Address City, State, Zip EPI Phone#/Fax# Client Company Facility Name Location Project Reference EPI Sampler Name	LABI.D. MOLOOD	- 01 1 BH-15 (6") - 677 2 BH-16 (6")	-02 3 BH-17(6")	- CS 5 BH-19 (6")		10	Sampler Rekinquished:	Relinquished by: K Déilvéred by: //

-4

ж

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

ent:	EPI
ite/ Time:	R/2/06 11:15
b 1D # :	6fl02007
tials:	CK

Sample Receipt Checklist

				Client Initials
	Temperature of container/ cooler?	Yes	No	2,0 °C
1	Shipping container in good condition?	C	No	
. ;	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present,
Ţ	Custody Seals intact on sample bottles/ container?	海	No	Not Present
5	Chain of Custody present?	Yos	No	
, , ,	Sample instructions complete of Chain of Custody?	Tes	No	
7	Chain of Custody signed when relinquished/ received?	Yes	No	
* 3	Chain of Custody agrees with sample label(s)?	Xes	No	ID written on Cont./ Lid
) J	Container label(s) legible and intact?	(Yes)	No	Not Applicable
<u>10</u>	Sample matrix/ properties agree with Chain of Custody?	Xes	No	
11	Containers supplied by ELOT?	(Xes	No	
12	Samples in proper container/ bottle?	Xes	No	See Below
13	Samples properly preserved?	1 AS	No	See Below
14	Sample bottles intact?	Xeg	No	
15	Preservations documented on Chain of Custody?	Yes	No	
16	Containers documented on Chain of Custody?	Yes	No	
17	Sufficient sample amount for indicated test(s)?	Xes	No	See Below
ं ाध	All samples received within sufficient hold time?	Yes	No	See Below
11	VOC samples have zero headspace?	(Yes)	No	Not Applicable

Variance Documentation

Contact:		Contacted by:	Date/ Time:	
Regarding:		·		
Corrective Action Taker	1;			
	· .			
Check all that Apply:		See attached e-mail/ fax Client understands and would like to proceed with a	nalysis	

Cooling process had begun shortly after sampling event

Analytical Report

Prepared for:

Jason Stegemoller Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Location: EUL-C, Sec. 20, T19S, R37E

Lab Order Number: 6H08004

Report Date: 08/10/06

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-21 6"	6H08004-01	Soil	08/02/06 08:15	08-08-2006 10:40
BH-22 6"	6H08004-02	Soil	08/02/06 09:50	08-08-2006 10:40
BH-23 6"	6H08004-03	Soil	08/02/06 12:00	08-08-2006 10:40
BH-24 6"	6H08004-04	Soil	08/02/06 13:30	08-08-2006 10:40
BH-25 6"	6H08004-05	Soil	08/02/06 14:35	08-08-2006 10:40
BH-26 6"	6H08004-06	Soil	08/02/06 15:06	08-08-2006 10:40

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-21 6" (6H08004-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/09/06	EPA 8021B	
Toluene	ND	0.0250	н	н	11	u.	n	"	
Ethylbenzene	ND	0.0250	"	"	**	0	и	"	
Xylene (p/m)	ND	0.0250	"	"	**	"	"	"	
Xylene (o)	ND	0.0250	"	"	**	"	**	"	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	13.4	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	57.8	10.0	н	**	"	"	н	"	
Carbon Ranges C28-C35	ND	10.0	"	"	**	"	"	"	
Total Hydrocarbons	71.2	10.0	"	н	н	и	н	11	
Surrogate: 1-Chlorooctane		125 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		121 %	70-1	30	"	"	"	"	
BH-22 6'' (6H08004-02) Soil			_						
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/09/06	EPA 8021B	
Toluene	ND	0.0250	**	"		н	н		
Ethylbenzene	ND	0.0250	u	**	"	н	н	"	
Xylene (p/m)	ND	0.0250	11	н	"	"	"	**	
Xylene (o)	ND	0.0250	"	"	"	"	ч	"	
Surrogate: a,a,a-Trifluorotoluene		89.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.2 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	**			"	
Carbon Ranges C28-C35	ND	10.0	н	н	"	н	н	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	u	
Surrogate: 1-Chlorooctane		120 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		117 %	70-1	30	"	"	л	"	
BH-23 6'' (6H08004-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/09/06	EPA 8021B	
Toluene	ND	0.0250	"	n	"	"	"	"	
Ethylbenzene	ND	0.0250	11			11		п	
Xylene (p/m)	ND	0.0250	31	п	"	"	"	"	
Xylene (o)	ND	0.0250	"	11	н		"	u	
Surrogate: a,a,a-Trifluorotoluene		97.0 %	80-1	20		,,		"	
Surrogate: 4-Bromofluorobenzene		91.8 %	80-1		"	"	"	п	
Carbon Ranges C6-C12	ND	10.0		1	EH60808	08/08/06	08/08/06	EPA 8015M	
Environmental Lab of Texas									

received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Г

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-23 6'' (6H08004-03) Soil	<u></u>				· · · · · · · · · · · · · · · · · · ·				
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	н	"	н	н			
Total Hydrocarbons	ND	10.0	н	"	"	"	"	n	
Surrogate: 1-Chlorooctane		130 %	70-130			"	"	"	
Surrogate: 1-Chlorooctadecane		121 %	70-130		"	"	"	"	
BH-24 6" (6H08004-04) Soil									-
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/08/06	EPA 8021B	
Toluene	ND	0.0250	*	н		"		ш	
Ethylbenzene	ND	0.0250	11	11		"	н	**	
Xylene (p/m)	0.0361	0.0250	н	н	"		"	11	
Xylene (o)	ND	0.0250		"		н	n	**	
Surrogate: a,a,a-Trifluorotoluene		98.8 %	80-120		"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	11	
Surrogate: 4-Bromofluorobenzene		87.5 %	80-120		"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"		"	н	**	
Carbon Ranges C28-C35	ND	10.0	"	н	"	н	Let	и	
Total Hydrocarbons	ND	10.0	11		"	"	"	**	
Surrogate: 1-Chlorooctane		129 %	70-130		"	"	"	"	
Surrogate: 1-Chlorooctadecane		117 %	70-130		"	"	"	"	
BH-25 6" (6H08004-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/08/06	EPA 8021B	
Toluene	ND	0.0250	11	"		11	11		
Ethylbenzene	ND	0.0250	11	н	"	"	н	••	
Xylene (p/m)	ND	0.0250	н	"		"	**	**	
Xylene (o)	ND	0.0250		"	"	**	"	11	
Surrogate: a,a,a-Trifluorotoluene		85.0 %	80-120		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.5 %	80-120		"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	*	"		11	н	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	n		
Total Hydrocarbons	ND	10.0	*	'n		"	n	"	
Surrogate: 1-Chlorooctane		125 %	70-130		"	"	"	"	
Surrogate: 1-Chlorooctadecane		117 %	70-130		"	"	"	"	

Environmental Lab of Texas

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-26 6'' (6H08004-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/08/06	EPA 8021B	
Toluene	ND	0.0250	**			н	н	"	
Ethylbenzene	ND	0.0250	н	"	"	"		11	
Xylene (p/m)	ND	0.0250	н	"	"	"		"	
Xylene (o)	ND	0.0250	"	и	н	"	"	н	
Surrogate: a,a,a-Trifluorotoluene		101 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	18	11	u	н	"	
Carbon Ranges C28-C35	ND	10.0	"			"	"	"	
Total Hydrocarbons	ND	10.0		"		"	"	"	
Surrogate: 1-Chlorooctane		121 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		113 %	70-1	30	"	"	"	n	

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Davis	D. (1	D	41		N. /
			Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-21 6" (6H08004-01) Soil									
Chloride	920	25.0	mg/kg	50	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	14.4	0.1	%	I	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	168	25.0	mg/kg	50	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-22 6" (6H08004-02) Soil									
Chloride	976	25.0	mg/kg	50	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	12.0	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	121	25.0	mg/kg	50	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-23 6'' (6H08004-03) Soil									
Chloride	6.09	5.00	mg/kg	10	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	10.9	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	17.6	5.00	mg/kg	10	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-24 6'' (6H08004-04) Soil									
Chloride	705	20.0	mg/kg	40	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	10.1	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	65.3	20.0	mg/kg	40	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-25 6'' (6H08004-05) Soil									
Chloride	1250	50.0	mg/kg	100	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	10.2	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	2380	50.0	mg/kg	100	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-26 6'' (6H08004-06) Soil									
Chloride	136	10.0	mg/kg	20	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	12.8	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	151	10.0	mg/kg	20	EH60812	08/08/06	08/08/06	EPA 300.0	

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60808 - EPA 5030C (GC)										
Blank (EH60808-BLK1)				Prepared &	Analyzed:	08/08/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	58.0		mg/kg	50.0		116	70-130			
Surrogate: 1-Chlorooctadecane	55.6		"	50.0		Ш	70-130			
LCS (EH60808-BS1)				Prepared &	Analyzed:	08/08/06				
Carbon Ranges C6-C12	483	10.0	mg/kg wet	500		96.6	75-125			
Carbon Ranges C12-C28	426	10.0	*1	500		85.2	75-125			
Carbon Ranges C28-C35	ND	10.0		0.00			75-125			
Total Hydrocarbons	909	10.0	"	1000		90.9	75-125			
Surrogate: I-Chlorooctane	63.2		mg/kg	50.0		126	70-130			
Surrogate: 1-Chlorooctadecane	56.3		"	50.0		113	70-130			
Calibration Check (EH60808-CCV1)				Prepared &	Analyzed:	08/08/06				
Carbon Ranges C6-C12	215		mg/kg	250		86.0	80-120			
Carbon Ranges C12-C28	224		"	250		89.6	80-120			
Total Hydrocarbons	439			500		87.8	80-120			
Surrogate: 1-Chlorooctane	64.1		"	50.0		128	70-130			
Surrogate: 1-Chlorooctadecane	62.2		"	50.0		124	70-130			
Matrix Spike (EH60808-MS1)	Sou	rce: 6H08003	3-02	Prepared &	Analyzed:	08/08/06				
Carbon Ranges C6-C12	597	10.0	mg/kg dry	561	ND	106	75-125			
Carbon Ranges C12-C28	520	10.0		561	ND	92.7	75-125			
Carbon Ranges C28-C35	ND	10.0	**	0.00	ND		75-125			
Total Hydrocarbons	1120	10.0		1120	ND	100	75-125			
Surrogate: 1-Chlorooctane	64.9		mg/kg	50.0		130	70-130			
Surrogate: 1-Chlorooctadecane	63.8		"	50.0		128	70-130			

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60808 - EPA 5030C (GC)			_							
Matrix Spike Dup (EH60808-MSD1)	Sou	rce: 6H08003	3-02	Prepared &	k Analyzed:	08/08/06				
Carbon Ranges C6-C12	585	10.0	mg/kg dry	561	ND	104	75-125	2.03	20	
Carbon Ranges C12-C28	498	10.0	"	561	ND	88.8	75-125	4.32	20	
Carbon Ranges C28-C35	ND	10.0	11	0.00	ND		75-125		20	
Total Hydrocarbons	1080	10.0	"	1120	ND	96.4	75-125	3.64	20	
Surrogate: 1-Chlorooctane	64.1	-	mg/kg	50.0		128	70-130			
Surrogate: 1-Chlorooctadecane	63.3		"	50.0		127	70-130			
Blank (EH60809-BLK1)				Prepared &	Analyzed:	08/08/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Toluene Ethylbenzene	ND ND	0.0250 0.0250	"							
	ND ND	0.0250 0.0250	11							
Ethylbenzene Xylene (p/m)	ND	0.0250	"							
Ethylbenzene Xylene (p/m) Xylene (o)	ND ND	0.0250 0.0250	11	40.0		92.5	80-120			
Ethylbenzene Xylene (p/m) Xylene (0) Surrogale: a.a.a-Triffuorotoluene	ND ND ND	0.0250 0.0250	11 11 11	40.0 40.0		92.5 83.8	80-120 80-120			
Ethylbenzene Xylene (p/m) Xylene (o) Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene	ND ND ND 37.0	0.0250 0.0250	" " ug/kg	40.0	z Analyzed:	83.8				
Ethylbenzene Xylene (p/m) Xylene (o) Surrogate: a.a.a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene LCS (EH60809-BS1)	ND ND ND 37.0	0.0250 0.0250	" " ug/kg	40.0	z Analyzed:	83.8				
Ethylbenzene	ND ND 37.0 33.5	0.0250 0.0250 0.0250	" " ug/kg "	40.0 Prepared &	z Analyzed:	<i>83.8</i> 08/08/06	80-120			

2.50

1.25

40.0

40.0

2.78

1.39

34.8

36.8

0.0250

0.0250

ug/kg

Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene

Xylene (p/m)

Xylenc (o)

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

111

111

87.0

92.0

80-120

80-120

80-120

80-120

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60809 - EPA 5030C (GC)										
Calibration Check (EH60809-CCV1)			_	Prepared &	Analyzed:	08/08/06	_			_
Benzene	49.2		ug/kg	50.0		98.4	80-120		-	
Toluene	48.6		11	50.0		97.2	80-120			
Ethylbenzene	48.4		"	50.0		96.8	80-120			
Xylene (p/m)	101			100		101	80-120			
Xylene (0)	50.0			50.0		100	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.8		<i>"</i>	40.0		82.0	80-120	· · ·	~	
Surrogate: 4-Bromofluorobenzene	32.1		"	40.0		80.2	80-120			
Matrix Spike (EH60809-MS1)	Sou	rce: 6H07012	-01	Prepared &	Analyzed:	08/08/06				
Benzene	1.38	0.0250	mg/kg dry	1.38	ND	100	80-120			
Toluene	1.42	0.0250	"	1.38	ND	103	80-120			
Ethylbenzene	1.40	0.0250	**	1.38	ND	101	80-120			
Xylene (p/m)	3.09	0.0250	н	2.76	ND	112	80-120			
Xylene (0)	1.50	0.0250	"	1.38	ND	109	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.4		ug/kg	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	39.6		"	40.0		99.0	80-120			
Matrix Spike Dup (EH60809-MSD1)	Sou	rce: 6H07012	-01	Prepared &	Analyzed:	08/08/06				
Benzene	1.37	0.0250	mg/kg dry	1.38	ND	99.3	80-120	0.702	20	
Toluene	1.41	0.0250	"	1.38	ND	102	80-120	0.976	20	
Ethylbenzene	1.39	0.0250	"	1.38	ND	101	80-120	0.00	20	
Xylene (p/m)	3.10	0.0250	11	2.76	ND	112	80-120	0.00	20	
Xylene (o)	1.54	0.0250		1.38	ND	112	80-120	2.71	20	
Surrogate: a,a,a-Trifluorotoluene	41.8		ug/kg	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	40.1		"	40.0		100	80-120			

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60812 - Water Extraction										
Blank (EH60812-BLK1)				Prepared &	Analyzed:	08/08/06				
Chloride	ND	0.500	mg/kg							
Sulfate	ND	0.500	"							
LCS (EH60812-BS1)				Prepared &	Analyzed:	08/08/06				
Sulfate	8.06	0.500	mg/kg	10.0		80.6	80-120			
Chloride	9.00	0.500	11	10.0		90.0	80-120			
Calibration Check (EH60812-CCV1)				Prepared &	z Analyzed:	08/08/06				
Chloride	10.1		mg/L	10.0		101	80-120			
Sulfate	10.9		"	10.0		109	80-120			
Duplicate (EH60812-DUP1)	Sour	-ce: 6H07014-	-04	Prepared &	Analyzed:	08/08/06				
Chloride	4.20	5.00	mg/kg		3.93			6.64	20	
Duplicate (EH60812-DUP2)	Sour	·ce: 6H08004	-05	Prepared &	z Analyzed:	08/08/06				
Sulfate	2200	50.0	mg/kg		2380			7.86	20	
Chloride	1150	50.0	н		1250			8.33	20	
Matrix Spike (EH60812-MS1)	Sour	-ce: 6H07014-	-04	Prepared &	Analyzed:	08/08/06				
Chloride	100	5.00	mg/kg	100	3.93	96.1	80-120			
Matrix Spike (EH60812-MS2)	Sour	ce: 6H08004	·05	Prepared &	Analyzed:	08/08/06				
Chloride	2200	50.0	mg/kg	1000	1250	95.0	80-120			
Sulfate	3190	50.0	"	1000	2380	81.0	80-120			

Batch EH60906 - General Preparation (Prep)

Prepared: 08/08/06 Analyzed: 08/09/06 Blank (EH60906-BLK1) % Solids 100 %

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60906 - General Preparatio	on (Prep)			<u></u>						
Duplicate (EH60906-DUP1)		rce: 6H08003-	-01	Prepared: (nalyzed: 08	/09/06			
% Solids	83.3		%		82.9			0.481	20	

Environmental Lab of Texas

Notes and Definitions

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Raland K Just

8/10/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

Report Approved By:

Environm	Environmental Plus, Inc.															Ċ	<u>Chain of Custody Form</u>	ŏ	Cn	sto	S	For	EI
2100 Avenue O, Eunice, NM 88231 (505) 394-3481 FAX: (505) 394-26	Eunice, NM 88231 FAX: (505) 394-2601	P.O.		× 75	58,	iun i	ce,	MN	Box 1558, Eunice, NM 88231	Ξ								10	1 of 1				
Company Name	Environmental Plus, Inc.	, Inc.								8	BIILTO					NW	ANALYSIS REQUEST	SIS	REC	DE	ST		
EPI Project Manager	ler Jason Stegemoller														\square	\vdash	┝	ļ					
Mailing Address	P.O. BOX 1558										00200 00200 700												-
City, State, Zip	Eunice New Mexico 88231	882	5								L												
EP! Phone#/Fax#	505-394-3481 / 505-394-2601	394-2	601	[- FN -	m	° L												
Client Company	Apache Corporation				—																		
Facility Name	N. Mon. Grayburg S	A 60	6		-						2. 1.121 2.				_	-							
Location	UL-C, Sec 20, T19S, R37E	, R37	ш						Att	č	γbo	Attn:Cody Miller											
Project Reference	240014								٩.	о	Š	P.O. Box 1558											
EPI Sampler Name	Jacob Melancon								Eun	ice,	MN	Eunice, NM 88231											
		•			Ŵ	MATRIX			PRE	PRESERV.	₹۷.	SAMPLING	(G										
		_		_													<u> </u>						****
					ਸਤ।									٤			205						· · · · ·
	SAMPLE I.U.				WANT			۶ł			ł			3021E			1531		<<< }				
(CHO)		IAA(D)	NOO #	กอยอ	TSAW JIOS	свир	srno	IIHTO	ACID/E		азнто	DATE	TIME	3 XƏTƏ	08 H9T	снго	SULFA Hq	тсгь	ТЭНТО	НАЧ			
	1 BH-21 (6")	G	1		1					×		02-Aug-06	8:15	X	X	×	×						
-CC 2B	2 BH-22 (6")	U	+		-					X		02-Aug-06	9:50	Х	Х	X	×						
-63 3 B	3 BH-23 (6")	G	-		-					×		02-Aug-06	12:00	×	Х	X	X						
-04 4B	4 BH-24 (6")	G			-					×		02-Aug-06	1:30	×	×	×	Х						Γ
	5 BH-25 (6")	G	-		-	_				×		02-Aug-06	2:35	×	×	×	×						
- (Q() -	6 BH-26 (6")	G	-	┥	-					×		02-Aug-06	3:06	×	×	×	×						
7			╉	╡		_				╡	┪					-							
8			╡	+		_			┪	1	┥				_	_	_						
6					_						┫												
10																			_				
Sampler Relinquished;	Date Timo	Receiv	Received By:							E-mail r NOTES:	ail re	E-mail results to: jstegemoller@envplus.net NOTES: A ் ீர்ந்த	moller ଙ୍କ ୧୯୯୫	uldvr	s.ne								
Relinquished by:	101 × 10 Janit	Becel	Received By: (lab staff	with the second	staff		J			Ú,	<i>%</i> 0	4010	2										
Delivered by		Sample Cool & Intact	N Intac	}	1	200	lecked By:	ä.	1	•		WI label											
									1														٦

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	EFL
Date/ Time:	8/8/de 10:40
.ab ID # :	6408064
nitials:	(K

Sample Receipt Checklist

				CI	ient Initials
7 1	Temperature of container/ cooler?	Yes	No	3.0 °C	
7 2	Shipping container in good condition?	Xe3	No		
¥3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
7 5	Chain of Custody present?	Yes	No		
4 6	Sample instructions complete of Chain of Custody?	1 Jas	No		
¥7	Chain of Custody signed when relinquished/ received?	Yes	No		
7 8	Chain of Custody agrees with sample label(s)?	Xes	No	ID written on Cont./ Lid	
7 9	Container label(s) legible and intact?	Yes	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	Xes .	No		
#11	Containers supplied by ELOT?	Yes	No		
#12	Samples in proper container/ bottle?	Tos	No	See Below	
#13	Samples properly preserved?	1/23	No	See Below	
#14	Sample bottles intact?	Xes	No		
#15	Preservations documented on Chain of Custody?	Ves	No		
#16	Containers documented on Chain of Custody?	X	No		
#17	Sufficient sample amount for indicated test(s)?	Ve s	No	See Below	
#18	All samples received within sufficient hold time?	Yes)	No	See Below	
#19	VOC samples have zero headspace?	YES	No	Not Applicable	

Variance Documentation

Contact:	 Contacted by:	 Date/ Time:	
Regarding:		 	
Corrective Action Taken	 	 	
Check all that Apply:	See attached e-mail/ fax		

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event
Environmei 2100 Avenue O, Euni (505) 204-3481 EAV	Environmental Plus, Inc. 2100 Avenue O, Eunice, NM 88231 (505) 204-3481 EAV. (505) 204 2601	P.O. Box 155	X 15	58,	Euni	ce, I	NM 8	8, Eunice, NM 88231	~					5	ain	<u>0</u>	<i>of Cu</i> 1 of 1	sto	dy H	<u>Chain of Custody Form</u> 1 of 1
Q	Environmental Plus, Inc.	lnc.		-					Bill	Bill To				AN	ANAI YSIS		REC	REQUEST	Ŀ	Ì
EPI Project Manager	Jason Stegemoller			-				5- 10- 1			a and a state of the second			-	1		Ĩ	۶L	;Ľ	┝
Mailing Address	P.O. BOX 1558			Т									_							
City, State, Zip	Eunice New Mexico 88231	88231		Г					-(≡́										
EPI Phone#/Fax#	505-394-3481 / 505-394-2601	394-2601		Т				:) Juli	山 。										
Client Company	Apache Corporation			T					F	-}-						_				
Facility Name	N. Mon. Grayburg SA 603	A 603		Г												<u></u>				
Location	UL-C, Sec 20, T19S, R37E	R37E		Γ				Attn	Ö	Attn:Codv Miller										
Project Reference	240014			T				P P	З М	P.O. Box 1558										
EPI Sampler Name	George Blackburn						_	Euni	ce, l	Eunice, NM 88231								ياستحدي		
				Σ	MATRIX			PRESERV.	SER	/ SAMPLING	ING									
			<u>ਬ</u>	⊢	╞─			┝	┝─						(
LAB I.D.	SAMPLE I.D.			8314	ا۲ 							8	V							
		о аая(є Іатиоэ	ROUND	Matew,		глоее	:нен:	SA8/QID	<u>тнев</u> ;е\соог	тнея		1EX 8021	VSLO8 Ha		SATAJU I	с.		н		
HINGLE - 1 SB-1 (5')	(5')					-+-	0	-+-		DATE	┿	8	11>		14	-+-	-+-	14		-
- 2 SB-1 (10')	(10')		\dagger	┼	+	Ļ	T	ť	十	20-A0N-62	╋	{ }	ネ	╋	╎	╇	\downarrow			+
	(15')	+	╈	╀	+	\downarrow	T	Ŧ	╎	00-70N-67	╋	、	え	-	$\frac{1}{2}$	\downarrow	+	1		╡
	(13)	 5 (╈	╀	+	\downarrow	T	+	╎	90-70N-62	┯╋	×	X			-	-			
100-7-00-1 100-1-01-0-1-0-1-0-1-0-1-0-1-0-1-0	(2) (101)	- , 5 (╈	╀	_		T	ť		90-70N-62	-	×	×	+-	×	\dashv	\downarrow	\square		
10-2-00 1-2-00 1-2-00	(10) (51)	 5 (╋	-	+			+	×,	29-Nov-06		×	×	-+-	×	4	\downarrow	\downarrow		-
- 7 SB-3 (10')	(10')	_	╋	- -	+			+	$\frac{1}{2}$	90-101-62	14:13	× >	朩		╧	-	\downarrow		Ţ	+
- 8 SB-4 (1')	(1)	 5 (5	╀	<u> </u> -	+		Γ	Ŧ	ł×	30-VOV-06	+	< >	$\langle \rangle$	<u> </u>	╎	╇	_		I	+
- 9 SB-4 (5')	(5')	G 1	┢	F				F		29-Nov-06	╋	<			╎>	╇	1			+
- 10 SB-4 (10')	(10')	G 1		╉╌┥						29-Nov-06	┿╾	×	< ×			+	4-		T	╈
] .	1	1	$\left \right $]	1
Sampler Rotinquished:	Date Date 1. UK	Received By:	5	1	5	in	4		E-mail NOTES:	E-mail results to: jstegemoller@envplus.net NOTES:	gemoller@e	nlqvn	Is.ne							İ
ind in the	70-1-2 Died March 2 - 1- 2	Received/By:		statt)	0															
Delivered by:	Sarpet	Sample Cool & Intact Yes		}	οΓ	Checked By:	By:							•						

.

PHONE (325) 673-7001 · 2111 BEECHWOOD · ABILENE, TX 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR ENVIRONMENTAL PLUS, INC. ATTN: JASON STEGEMOLLER P.O. BOX 1558 EUNICE, NM 88231 FAX TO: (505) 394-2601

Receiving Date: 12/01/06 Reporting Date: 12/05/06 Project Owner: APACHE CORPORATION (240014) Project Name: N. MON. GRAYBURG SA 603 Project Location: UL-C, SEC 20, T19S, R37E Sampling Date: 11/29/06 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: NF Analyzed By: BC

	GRO	DRO			ETHYL	TOTAL
LAB NO. SAMPLE ID	(C ₆ -C ₁₀)	(>C ₁₀ -C ₂₈)	BENZENE	TOLUENE	BENZENE	XYLENES
	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
		·····	· · · · · · · · · · · · · · · · · · ·			
ANALYSIS DATE:	12/04/06	12/04/06	12/04/06	12/04/06	12/04/06	12/04/06
H11861-1 SB-1 (5')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-2 SB-1 (10')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-3 SB-1 (15')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-4 SB-2 (5')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-5 SB-2 (10')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-6 SB-3 (5')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-7 SB-3 (10')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-8 SB-4 (1')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-9 SB-4 (5')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
H11861-10 SB-4 (10')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
					· · · · · · · · · · · · · · · · · · ·	
Quality Control	777	778	0.101	0.101	0.102	0.294
True Value QC	800	800	0.100	0.100	0.100	0.300
% Recovery	97.1	97.2	101	101	102	97.9
Relative Percent Difference	1.9	1.3	2.7	0.7	1.2	0.9

METHODS: TPH GRO & DRO - EPA SW-846 8015 M; BTEX - SW-846 8260.

H11861A

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim ansing, whether based in contract or tort, shall be limited to the amount paid by client for analyses All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incloantal or consequential damages, including, without limitation, business interruptions. loss of use, or loss of profits incurred by client, its subsidiaries affiliates or successors arising out of or related to the parformance of services increander by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

PHONE (505) 393-2326 + 101 E. MARLAND + HOBBS, NM 88240

ANALYTICAL RESULTS FOR ENVIRONMENTAL PLUS, INC. ATTN: JASON STEGEMOLLER P.O. BOX 1558 EUNICE, NM 88231 FAX TO: (505) 394-2601

SO.

Receiving Date: 12/01/06 Reporting Date: 12/05/06 Project Owner: APACHE CORPORATION (240014) Project Name: N. MON. GRAYBURG SA 603 Project Location: UL-C, SEC 20, T19S, R37E Sampling Date: 11/29/06 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: NF Analyzed By: HM/NF

CI

LAB NUMBER SAMPLE ID	(mg/Kg)	(mg/Kg)
ANALYSIS DATE:	12/05/06	12/05/06
H11861-1 SB-1 (5')	148	464

H11861-1	SB-1 (5')	148	464
H11861-2	SB-1 (10')	45.2	144
H11861-3	SB-1 (15')	40.2	80
H11861-4	SB-2 (5')	269	144
H11861-5	SB-2 (10')	198	80
H11861-6	SB-3 (5')	245	176
H11861-7	SB-3 (10')	158	96
H11861-8	SB-4 (1')	<1	< 16
H11861-9	SB-4 (5')	104	< 16
H11861-10	SB-4 (10')	134	32
Quality Contro)	26.2	470
True Value Q(2	25.0	500
% Recovery		105	94
Relative Perce	ent Difference	7.2	8.2

METHODS: EPA 600/4-79-020375.4SM 4500 Cl BNOTE: Analyses performed on 1:4 w:v aqueous extracts.

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyse. All our spiculating those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In holevent shall be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client. Its subsidiaries affiliates or successors ansing out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

PHONE (325) 673-7001 · 2111 BEECHWOOD · ABILENE, TX 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

~~

ANALYTICAL RESULTS FOR EDDIE SEAY CONSULTING ATTN: EDDIE SEAY 601 W. ILLINOIS HOBBS, NM 88242 FAX TO: (505) 392-6949 Receiving Date: 03/07/07 Reporting Date: 03/07/07 Project Owner: J. COOPER Project Name: APACHE SAU #603 / #1019 Project Location: MONUMENT, NM

Analysis Date: 03/07/07 Sampling Date: 03/07/07 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: HM Analyzed By: HM

LAB NO.	SAMPLE ID	Cl (mg/Kg)
H12307-1		< 16
Quality Cont	trol	500
True Value		500
% Recovery		100
Relative Per	rcent Difference	1.0

METHOD: Standard Methods 4500-CI⁻B NOTE: Analysis performed on a 1:4 w:v aqueous extract.

Moreno

<u>03-07-07</u> Date SAMPLE FREM LOWER AREA SUD OF LEAK DEEP dill NEXT TO READ - 1' BELOW SWEFACE

H12307

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by **Cardinal** within thirty (30) days after completion of the applicable service. In no event shall **Cardinal** be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, service. In the event shall carumat be hable for incluential or consequential damages, including, whiled initiation, dusiness interruptions, loss or use, or loss or profile incluted by dietric, is subside affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST			Terms and Conditions: Interest will be charged on all accounts more than 30 days past due at the rate of 24% per annum from the original date of involce, and all costs of collections, including attorney's fees.	
CHAIN-OF-CU Marland, Hobbs, NM 88240 -2326 Fax (505) 393-2476	8/14-110	P.O.#: Company: Company: Company: Attn: Attn: Attn: Attn: Company: Company: State: State: State: State: City: Company: Attn:	eed in contract or toot, stall be immediate the amount paid by the cleart for the set of in contract or toot, stall be immediate to the amount paid by the cleart for the primer paid of the contract of the substallance, interruptions, loss of use, or loss of profits incurred by cleart, its subsidiaries,	A Received By: Phone are denored and a prover stated reserves or otherway. 3O Received By: Fax Result: Test Result: 3O Received By: Lab Staff) A Acpue No Cool A Sample Condition CHECKED BY: Cool Cool Intact (Initials) Cool No No
DINAL LABORATORIES, INC. 11 Beechwood, Abilene, TX 79603 101 East (915) 673-7001 Fax (915) 673-7020 (505) 393	Eddie Same Consult.	Contrainers	c. Cardinal's liability and client's exclusive remedy for any claim arising whether be negligence and any obser cause whatoover string to doemned waived urtees made the briodenant or consequential champes, including without instruction, business redeed to the performance of services however to be of even.	Date: 3 Time: 1. Date: 1. Date: 1. 1. 1. 1. 3.0 1. 1. 3.0 1. 1. 3.0 0 te: 3.0 1. 1. 3.0 0 te: 3.0 1. 1. 3.0 0 te: 3.0 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

f Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476.

APPENDIX II

PROJECT PHOTOGRAPHS

Photo #1: Well location sign.

Photo #2: Lanexco well location sign.

Photo #3: Looking westerly at point of release. Dark stained soil indicates contamination.

Photo #4: Looking westerly from point of release at Lanexco well pad. Dark stained soil indicates contamination.

Photo #5: Looking northerly at excavation of the south flowpath area.

Photo #7: Looking west-northwesterly at excavation of Lanexco caliche well pad.

Photo #8: Looking northeasterly across ephemeral pond to excavation.

Photo #9: Looking northeasterly at pooling area west of Lanexco caliche well pad (i.e., location of soil boring SB-1).

Photo #10: Looking west-southwesterly at southern-most berm (i.e., location of soil boring SB-4), ephemeral pond area is in background.

Photo #11: Looking southerly across release area at center berm in southern portion of excavation.

APPENDIX III

-

SOIL BORING LOGS

					Ĺ	٥g	Of Test	; Borings (NOTE - Page 1 of 1)
						-7	Projec	t Number: NMOCD 1RP# 1019; EPI Ref. #240014
	<u> </u>				LUS, IN	vc. [t Name: Apache Corporation - NMGSAU #603
₹,		REM	EDIAL	TING AN	ICTION		Location	
•1	ľ	EL	505-39	NE₩ MEX 94-3481	(ICU	Ì	Boring N	umber: SB-1 Surface Elevation: 3,680-feet amsl
	u .		e L	SOC	a sis G		50	Start Date: 11-29-06 Time: 08:00
Time	Sample Type	Recovery (inches)	Maisture	PID Readings (ppm)	Chlaride Analysis (mg/Kg)	U.S.C.S. Symbol	Depth (feet)	Completion Date: <u>11-29-06</u> Time: <u>12:00</u>
 	<u>о</u> .	8.5 9.5	Ψ	Re	ς ₹Ω			Description
							-	1' Topsoll - Sandy Loam
ļ			ļ					
							5	4' Fractured Limestone
0915	22	5	Dry_		480			5' Caliche, White to Tan, Hard to Firm
							-	—
ł		1						
	_							
1020	22	5	Dry		240			_
							-	—
			ļ					-
					_		15	
1123	22	4	Dry		160			Sandstone, Hard to Firm
							—	End of Soil Boring at 16' bgs
							-	—
								_
			-					
							\vdash	_
							<u> </u>	
								—
							25	
			ľ				 	
							\vdash	_
								—
Date		e Sa	mple	<u>urement</u> Casing Depth	s (feet Cave-li	n W		illing Method: HSA 3.5" ID
	-	De	epth -	Depth -	Depth -		.evel Bo	ckfill Method: Bentonite
	-		-	-	-		- Fie	eld Representative: GB
			P			•		

Tine	Sample	REM	CONSUL EDIAL INICE, 505-39	ITAL F TING AN CONSTRU NEW MEX 94-3481	ND ICTION	NC.	Projec	t Number: NMOCD 1RP# 1019; EPI Ref. #240014 t Name: Apache Corporation - NMGSAU #603
Time	Sample Type	REME	CONSUL EDIAL INICE, 505-39	TING AN CONSTRU NEW MEX 94-3481	ND ICTION	NC.	Projec	
Time	Sample	REME	EDIAL INICE, 505-39	CONSTRU NEW MEX 94-3481	ICTION	ľ		
Time .	Sample Type		505-39	94-3481	NICU		Locatio	n UL-C, Section 20, Township 19 South, Range 37 East
Time	Sample Type	ecovery nches)	ure	S		Ī	Boring N	lumber: SB-2 Surface Elevation: 3,680-feet amsl
Time	Sampl	ecove	2		als g		62	Start Date: 11-29-06 Time: 12:30
	<u> </u>	20	ist	PID Readings (ppm)	Chloride Analysis (mg/Kg)	U.S.C.S. Symbol	Depth (feet)	Completion Date: <u>11-29-06</u> Time: <u>13:30</u>
		80	Mo	Re	5¢?	_⊃∾		Description
1 I							\vdash	
							-	—
							5	4' Fractured Limestone
1305	22	5	Dry		240		+	5' Caliche, White to Tan, Hard to Firm
							<u> </u>	_
							\vdash	—
								_
1325	22	4	Dry		160		10	Sandstone, Hard to Firm
								End of Soil Boring at 11' bgs
							-	
							\vdash	_
	İ							
							-	_
							\vdash	—
							-25	
							<u> </u>	_
							\vdash	
							\vdash	—
							30	
	Vata	n Louis	Maar		c /faa-	->		
Date	Wate Tim	e Sa	mple	urement Casing Depth	Cave-1	n V		illing Method: HSA 3.5' ID
-			pth -	Jeptn -	Depth -			ackfill Method: Bentonite
-	-				-			eld Representative: GB

Image: Solution is a start in the solution is the solution is a start in the solutin the solution is a start in the solution is a sta						L	.og	Of Tes	t Borings (NOTE - Page 1 of 1)
Environmental Pulus, Inc. Project Name Apache Corporation - NMGSAU #603 CDUSLING AND REMEDIAL CONSTRUCTION ELVICE, NV MEXIC SUSS-394-3481 Inc. Project Name Apache Corporation - NMGSAU #603 Image: Start Date: Image: Start Date		- <u> </u>						Projec	t Number: NMOCD 1RP# 1019; EPI Ref. #240014
Received in the intervence of the i			Envi		ITAL F	LUS, IN	IC.		
305-394-3481 Boring Numberi SB-3 Surface Elevation: 3,680-feet ans a b b b b b c			REM	EDIAL	CONSTRU	CTION		Locatio	on: UL-C, Section 20, Township 19 South, Range 37 East
1413 SS 5 Dry 240 1413 SS 5 Dry 240 1430 SS 4 Dry 160 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 15 1450	11	P	EL	505-39	94-3481			Boring	Number: SB-3 Surface Elevation: 3,680-feet amsl
1413 SS 5 Dry 240 1413 SS 5 Dry 240 1430 SS 4 Dry 160 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 15 1450		۵.	ery 5)	a L	gs	e Sis O	60	تعا	Start Date: 11-29-06
1413 SS 5 Dry 240 1433 SS 5 Dry 240 1430 SS 4 Dry 160 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 S 15	Time	Type	2 U L N N	listu	PID adin (ppm	iolc 2/2 2/5	U.S.C.)ept	
1413 SS 5 Dry 240 1450 SS 4 Dry 160 10 1450 SS 4 Dry 160 10 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm End of Soli Boring at 11' bgs -		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	&⇒	Σ	Re Re	₽ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			Description
1413 SS 5 Dry 240 1450 SS 4 Dry 160 10 1450 SS 4 Dry 160 10 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm End of Soli Boring at 11' bgs -		! 							_
1413 SS 5 Dry 240 1450 SS 4 Dry 160 10 1450 SS 4 Dry 160 10 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm End of Soli Boring at 11' bgs -		1						E	
1413 SS 5 Dry 240 1450 SS 4 Dry 160 10 1450 SS 4 Dry 160 10 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm End of Soli Boring at 11' bgs -									
1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 15 -15 -20 -20 -20 -20 <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>0.10</td> <td></td> <td>5</td> <td>5 4' Fractured Limestone</td>			<u> </u>			0.10		5	5 4' Fractured Limestone
1450 SS 4 Dry 160 Intervention of Soli Boring at 11' bgs 1450 SS 4 Dry 160 Intervention of Soli Boring at 11' bgs 1450 SS 4 Dry 160 1450 SS 1450 SS 1450 SS 1450 SS	1413	SS	5	Dry		240			_
1450 SS 4 Dry 160 10 Sandstone, Hard to Firm 1450 SS 4 Dry 160 1450 I I I I I I 15 I I I I I I 20 I I I I I I 21 I I I I I I I I I 220 I I I I I I I I I I I 230 I I I </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5' Caliche, White to Jan. Hand to Firm</td>									5' Caliche, White to Jan. Hand to Firm
1450 SS 4 Dry 160 Sanastone, Hard to Firm End of Soil Boring at 11' bgs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -									
End of Soil Boring at 11' bgs			<u> </u>					10	
	1450	22	4	Dry		160		<u> </u>	
Water Level Measurements (feet) -									End of Soil Boring at 11' bgs
Water Level Measurements (feet) -									_
Water Level Measurements (feet) -								15	
Vater Level Measurements (feet)									_
Vater Level Measurements (feet)									_
Vater Level Measurements (feet)								-	—
Vater Level Measurements (feet)									
Water Level Measurements (feet)									
Water Level Measurements (feet)								\vdash	_
Water Level Measurements (feet)								\vdash	_
Water Level Measurements (feet)									_
Water Level Measurements (feet)									
Water Level Measurements (feet)								-	_
Water Level Measurements (feet)								-	
Water Level Measurements (feet)								<u>├</u>	_
Water Level Measurements (feet) Drilling Method: HSA 3.5' ID Date Time Sample Casing Cave-in Water Drilling Method: HSA 3.5' ID								<u> </u>	
Date Time Sample Casing Cave-in Water Drilling Method: HSA 3.5' ID		\/a+-		Maa-		- (fait	<u></u>		
	Date		ne Sa	mole	Urement Casing Depth	Cave-ir	n V		Drilling Method: HSA 3.5' ID
Backfill Methodi Bentonite				-	-	-			Backfill Method: Bentonite
Field Representative: GB	-	_	·	-		-			leld Representative: GB

Image: Second state of the second s)
CDNSULTING AND REHERIDAL CONSTRUCTION EUNICE, NEV MEXICO 505-394-3481 Location UL-C, Section 20, Township 19 South, Range 37 Boring Number: Image: Sign of the section of the s	
EMEDIAL CONSTRUCTION EUNICE, NEW REXED SUS-394-3481Location: UL-C, Section 20, Township 19 South, Range 37 Boring Number: SB-4 $\frac{9}{\mu}$ $\frac{9}{42}$ $\frac{1645}{2}$ 1515SS5Dry1601545SS5Dry1601640SS3Dry160	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	'East
1515 SS 5 Dry 160 1' Topsoll-Sandy Loam 1545 SS 5 Dry 160 1545 SS 5 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 -10 Sandstone, Tan, Hard to Firm 1640 SS 3 Dry 160 -10 Sandstone, Tan, Hard to Firm	t amsl
1515 SS 5 Dry 160 1' Topsoll-Sandy Loam 1545 SS 5 Dry 160 1545 SS 5 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 -10 Sandstone, Tan, Hard to Firm 1640 SS 3 Dry 160 -10 Sandstone, Tan, Hard to Firm	
1515 SS 5 Dry 160 1' Topsoll-Sandy Loam 1545 SS 5 Dry 160 1545 SS 5 Dry 160 1640 SS 3 Dry 160	5
1545 SS 5 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160	
1545 SS 5 Dry 160 1640 SS 3 Dry 160 10 Sandstone, Tan, Hard to Firm 1640 SS 3 Dry 160 10 End of Soll Boring at 11' bgs 1640 SS 3 Dry 160 10 1640 SS 3 Dry 15 - 15 - - - - - - 15 - - - - - - 16 - - - - - - - 16	
1545 SS 5 Dry 160 1640 SS 3 Dry 160 10 Sandstone, Tan, Hard to Firm 1640 SS 3 Dry 160 10 Sandstone, Tan, Hard to Firm 1640 SS 3 Dry 160 10 Sandstone, Tan, Hard to Firm 1640 SS 3 Dry 160 10 Sandstone, Tan, Hard to Firm 1640 SS 3 Dry 160 10 Sandstone, Tan, Hard to Firm 1640 SS 3 Dry 160 10 Sandstone, Tan, Hard to Firm 1640 S Image: Sandstone in the same i	_
1545 SS 5 Dry 160 1640 SS 3 Dry 160 10 Sandstone, Tan, Hard to Firm 1640 SS 3 Dry 160 10 End of Soll Boring at 11' bgs 1640 SS 3 Dry 160 10 1640 SS 3 Dry 15 - 15 - - - - - - 15 - - - - - - 16 - - - - - - - 16	
1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 160 1640 SS 3 Dry 15 15 15 1640 15	/
1640 SS 3 Dry 160 Sandstone, Ian, Hard to Firm Image: Image of the state o	_
1640 SS 3 Dry 160 Sandstone, Ian, Hard to Firm Image: Image of the state o	_
1640 SS 3 Dry 160 Sandstone, Ian, Hard to Firm Image: Image of the state o	
	_
	—
	—
	_
	_
25	
	_
30	
Water Level Measurements (feet) Date Time Sample Casing Cave-in Water Drilling Method: HSA 3.5' ID	
Depth Depth Depth Level Backfill Method: Bentonite	
Field Representative: GB	

APPENDIX IV

INFORMATIONAL COPY OF INITIAL NMOCD C-141 FORM

.

· · · · · · · ·

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

.....

	Fe, NM 87505						
Release notification	on and Corrective Action						
Name of Company Apache Corp	OPERATOR Initial Report Final Report						
Address 17 Hess have	Telephone No. 505 - 441 - 21248						
Facility Name NMGSAU # 603	Facility Type Injection well						
Surface Owner State of NM Mineral Owner	State of NM Lease No. 3-1651-9						
LOCATIO	DN OF RELEASE						
	th/South Line Feet from the East/West Line County						
C 20 195 37E 660 N	forth 1980 West Lea						
Latitude <u>N32°39.01</u>	<u>741 Longitude 10103 16,560</u>						
NATUR	E OF RELEASE						
Type of Release Invection lenk	Volume of Release \$5 bb/5 Volume Recovered (00 bb/5						
Source of Release Plug blew out	Date and Hour of Occurrence Date and Hour of Discovery 7/16/06 \$145.44						
Was Immediate Notice Given?	d Gary Wink						
By Whom? Doug Mathews	Date and Hour $7/1/4/06$ 12:00 PM						
Was a Watercourse Reached?	If YES, Volume Impacting the Watercourse.						
TYes 🔀 No							
f a Watercourse was Impacted, Describe Fully.*							
Plug blew out of injection line	. Trucks were called and all						
fluid was picked up.	in and down hill to the usest,						
Describe Area Affected and Cleanup Action Taken.*	I down hill to the usest, 1.0						
Injection water ran off locati	and all all all all all all all all all al						
Vacuum trucks picked up all							
hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and write in set							
egulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger ublic health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability							
hould their operations have failed to adequately investigate and remedi	ate contamination that pose a threat to ground water, surface water, human health						
r the environment. In addition, NMOCD acceptance of a C-141 report	does not relieve the operator of responsibility for compliance with any other						
ederal, state, or local laws and/or regulations.	OIL CONSERVATION DIVISION						
Run latter							
ignature: KOUL Mattens	Approved by District Supervisor						
rinted Name: Doug Mathews	Approved by District Supervisor						
in: himper II	Approval Date: 5:15:07 Expiration Date: 7:15:07						
1-mail Address: Jug, mathews Dusa, apachecorpu	Conditions of Approval:						
Mula april 2010							
ttach Additional Sheets If Necessary	1						