Basin Environmental Service Technologies, LLC

3100 Plains Highway
P. O. Box 301
Lovington, New Mexico 88260
jwlowry@basinenv.com
Office: (575) 396-2378
Fax: (575) 396-1429

REMEDIATION SUMMARY &

SITE CLOSURE REQUEST

SOUTHERN UNION GAS SERVICES S & W 4" LATERAL (1RP-1018) HISTORICAL RELEASE SITE Lea County, New Mexico Unit Letter "J" (NW/SE), Section 16, Township 20 South, Range 37 East Latitude 32° 34.160' North, Longitude 103° 15.249' West NMOCD Reference # 1RP-1018

Prepared For:

Southern Union Gas Services 801 S. Loop 464 Monahans, TX 79756

Prepared By: Basin Environmental Service Technologies, LLC 3100 Plains Highway Lovington, New Mexico 88260

November 2014

Joel W. Lowry Project Manager

TABLE OF CONTENTS

1.0	INTRODUCTION & BACKGROUND INFORMATION	1
2.0	NMOCD SITE CLASSIFICATION	1
3.0	SUMMARY OF SOIL REMEDIATION ACTIVITIES	2
4.0	QA/QC PROCEDURES	3
	4.1 Soil Sampling	3
	4.2 Decontamination of Equipment	3
	4.3 Laboratory Protocol	
5.0	SITE CLOSURE REQUEST	3
6.0	LIMITATIONS	4
7.0	DISTRIBUTION	5

FIGURES

Figure 1 – Site Location Map Figure 2 – Site & Sample Location Map

TABLES

Table 1 – Concentrations of Benzene, BTEX, TPH & Chloride in Soil

APPENDICES

Appendix A – Photographs

Appendix B – Laboratory Analytical Reports Appendix C – Release Notification and Corrective Action (Form C-141)

1.0 INTRODUCTION & BACKGROUND INFORMATION

Basin Environmental Service Technologies, LLC (Basin), on behalf of Southern Union Gas Services (Southern Union), has prepared this *Remediation Summary & Site Closure Request* for the S & W 4" Lateral Historical Release Site (1RP-1018). The legal description of the release site is Unit Letter "J" (NW/SE), Section 16, Township 20 South, Range 37 East, in Lea County, New Mexico. The geographic coordinates of the release site are 32° 34.160' North latitude and 103° 15.249' West longitude. The property affected by the release is owned by the State of New Mexico and administered by the New Mexico State Land Office (NMSLO). Please reference Figure 1 for a "Site Location Map".

On May 22, 2008, Southern Union discovered a release had occurred on the S & W 4" Lateral Pipeline. The "Release Notification and Corrective Action Form" (Form C-141) indicated failure of a section of four-inch (4") steel natural gas gathering pipeline resulted in the release of twenty-two and one half (22.5) Mcf of natural gas and fifteen barrels (15 bbls) of natural gas liquids, including iron sulfide. The release was reported to the New Mexico Oil Conservation Division (NMOCD) Hobbs District Office on August 28, 2006. During initial response activites, the line was blocked in and allowed to blow down. The affected segmet of pipe was replaced on September 11, 2006. The Form C-141 indicated a mist of iron sulfide and natural gas liquids affected approximately two thousand, one hundred and seventy-five square feet (2,175 ft²) of pasture land. General photographs of the release site are provided as Appendix A. The Form C-141 is provided as Appendix C.

Between August 4 and September 18, 2006, remediation activities were conducted at the S & W 4" Lateral Historical Release Site by an environmental contractor that is no longer affiliated with the site. Work records indicate at least one hundred and thirty-two cubic yards (132 yd³) of impacted material was transported to Southern Union's Landfarm (Discharge Permit # NM-02-0019) for treatment during this time.

On June 22, 2012, at the request of Southern Union, Basin assumed remediation responsibilities at the S & W 4" Lateral Historical Release Site.

2.0 NMOCD SITE CLASSIFICATION

A search of the New Mexico Water Rights Reporting System (NMWRRS) database maintained by the New Mexico Office of the State Engineer (NMOSE) indicated information was unavailable for Section 16, Township 20 South, Range 37 East. An inferred depth to groundwater gradient map utilized by the NMOCD indicated groundwater should be encountered at approximately twenty-five feet (25') below ground surface (bgs). Based on the NMOCD ranking system, twenty (20) points will be assigned to the site as a result of this criterion.

A search of the NMWRRS database indicated there are no water wells within one thousand feet (1,000') of the release. Based on the NMOCD ranking system, zero (0) points will be assigned to the site as a result of this criterion.

There are no surface water bodies within one thousand feet (1,000') of the release. Based on the NMOCD ranking system, zero (0) points will be assigned to the site as a result of this criterion.

NMOCD guidelines indicate the S & W 4" Lateral Historical Release Site has an initial ranking score of twenty (20) points. The soil remediation levels for a site with a ranking score of greater than nineteen (>19) points are as follows:

- Benzene -10 mg/Kg (ppm)
- Benzene, toluene, ethylbenzene and xylene (BTEX) 50 mg/Kg (ppm)
- Total petroleum hydrocarbons (TPH) 100 mg/Kg (ppm)

The New Mexico Administrative Code (NMAC) does not currently specify a remediation level for chloride concentrations in soil. Chloride remediation levels are set by the NMOCD on a site-specific basis.

3.0 SUMMARY OF SOIL REMEDIATION ACTIVITIES

On or around August 14, 2006, excavation activities began at the S & W 4" Lateral Historical Release Site. Eight (8) initial soil samples (Release Point Surface, Release Point 4' BGS, Release Point 6' BGS, West Bell Hole 1' BGS, West Bell Hole 4' BGS, West Ponded Area 6" BGS, West Ponded Area 1' BGS and West Ponded Area Surface) were collected near the release point and submitted to the Environmental Lab of Texas, of Odessa, Texas, for analysis of TPH concentrations. Laboratory analytical results indicated TPH concentrations ranged from 17.5 mg/Kg for soil sample West Ponded Area 1' BGS and West Ponded Area 1' BGS to 4,020 mg/Kg for soil sample Release Point 6' BGS and West Ponded Area 1' BGS were also analyzed for concentrations of BTEX, which were determined to be less than the laboratory method detection limit (MDL). Table 1 summarizes the "Concentrations of Benzene, BTEX, TPH & Chloride in Soil". Soil sample locations are depicted in Figure 2, "Site & Sample Location Map". Laboratory analytical reports are provided as Appendix B.

On September 7, 2006, one (1) confirmation soil sample (SW-1) was collected from excavated area for analysis of TPH concentrations. Laboratory analytical results indicated TPH concentration was less than the laboratory MDL.

On September 18, 2006, seven (7) confirmation soil samples (PR @ 9', B-Comp., S-Comp., NW-Copm., SW-Comp., P-Comp. and S-5) were collected from the floor and sidewalls of the excavated area for analysis of TPH concentrations. Laboratory analytical results indicated TPH concentrations were less than the laboratory MDL for each of the submitted soil samples, with the exception of soil sample S-5, which exhibited a concentration of 10.3 mg/Kg. Soil sample S-5 was also analyzed for concentrations of BTEX, which were determined to be less than the laboratory MDL. Confirmation soil samples were not analyzed for concentrations of sulfide or chloride

On December 20, 2012, Basin responded to the S & W 4" Lateral Historical Release Site. During the initial investigation, a series of test trenches (TT-1 through TT-7) were advanced in the disturbed areas in an effort to determine if soil containing sulfide, BTEX, TPH and chloride concentrations above NMOCD regulatory standards remained in-situ, and to collect confirmation soil samples. During the advancement of the test trenches, soil samples were collected from the surface, four feet (4') and six feet (6') bgs and submitted to Xenco Laboratories, of Odessa, Texas, for determination of TPH and chloride concentrations. Laboratory analytical results

indicated TPH concentrations were less than the appropriate laboratory MDL for each of the submitted soil samples. with the exception of soil sample TT-3 @ 6', which had a concentration of 74.1 mg/Kg. Chloride concentrations were less than 10 mg/Kg for each of the submitted soil samples with the exception of soil sample TT-5 @ Surface which had a concentration of 10.7 mg/Kg. Soil samples TT-2 @ 6', TT-3 @ 6' and TT-4 @ 6' were also analyzed for concentrations of BTEX, which were determined to be less than the appropriate laboratory MDL for each of the soil samples. Soil samples TT-2 @ 6', TT-3 @ 6' and TT-4 @ 6' were also analyzed for concentrations of sulfide, which were determined to be less than the laboratory MDL for each of the soil samples with the exception of soil samples TT-4 @ 6', which had a concentration of 64.0 mg/Kg. Concentrations of BTEX, TPH, chloride and sulfide were below NMOCD regulatory standards for each of the submitted soil samples.

On January 24, 2012, upon receiving analytical results from the initial investigation, a handauger was utlizied to advance a soil bore in the area represented by test trench TT-3. During the advancement of the soil bore, two (2) soil samples (SB#1 @ 8' and SB#1 @ 10') were collected and submitted to the laboratory for analysis of TPH concentrations. Laboratory analytical results indicated TPH concentrations were less than the laboratory MDL for each of the submitted soil samples.

4.0 QA/QC PROCEDURES

4.1 Soil Sampling

Soil samples were delivered to Xenco Laboratories, of Odessa, Texas, and/or Environmental Labs of Texas, of Odessa, Texas, for BTEX, TPH, chloride, and/or sulfide analyses using the methods described below:

- BTEX concentrations in accordance with EPA Method SW-846 8021B
- TPH concentrations in accordance with modified EPA Method SW-846 8015M
- Chloride concentrations in accordance with EPA Method 300/300.1
- Sulfide concentrations in accordance with EPA Method SW-846 9030B

4.2 Decontamination of Equipment

Cleaning of the sampling equipment was the responsibility of the environmental technician. Prior to use, and between each sample, the sampling equipment was cleaned with Liqui-Nox® detergent and rinsed with distilled water.

4.3 Laboratory Protocol

The laboratory was responsible for proper QA/QC procedures after signing the chain-of-custody form(s). These procedures were either transmitted with the laboratory reports or are on file at the laboratory.

5.0 SITE CLOSURE REQUEST

Confirmation soil samples collected from the S & W 4" Lateral Historical Release Site were analyzed by an NMOCD-approved laboratory, which determined that benzene, BTEX, TPH, chloride and sulfide concentrations were less than NMOCD regulatory remediation action levels for each of the submitted soil samples. Based on these laboratory analytical results, Basin recommends Southern Union provide the NMOCD Hobbs District Office and the NMSLO a copy of this *Remediation Summary & Site Closure Request* and request the NMOCD grant site closure to the S & W 4" Lateral Historical Release Site.

6.0 LIMITATIONS

Basin Environmental Service Technologies, LLC, has prepared this *Remediation Summary & Site Closure Request* to the best of its ability. No other warranty, expressed or implied, is made or intended. Basin has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. Basin has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Basin has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Southern Union Gas Services. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and/or Southern Union Gas Services.

7.0 **DISTRIBUTION**

- Copy 1: Geoffrey Leking New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (District 1) 1625 French Drive Hobbs, NM 88240 GeoffreyR.Leking@state.nm.us
- Copy 2: Bill Sonnamaker New Mexico State Land Office 2702-D North Grimes Hobbs, NM 88240
- Copy 3: Rose Slade Southern Union Gas Services 801 S. Loop 464 Monahans, Texas 79756 rose.slade@sug.com
- Copy 4: Basin Environmental Service Technologies, LLC P.O. Box 301 Lovington, New Mexico 88260

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH & CHLORIDE IN SOIL

SOUTHERN UNION GAS SERVICES S & W 4" LATERAL HISTORICAL RELEASE SITE LEA COUNTY, NEW MEXICO NMOCD REF# 1RP-1018

SAMPLE LOCATION	SAMPLE DEPTH (BGS)	SAMPLE DATE	SOIL STATUS	SULFIDE (mg/Kg)	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	TOTAL XYLENES (mg/Kg)	TOTAL BTEX (mg/Kg)	GRO C ₆ -C ₁₂ (mg/Kg)	DRO C ₁₂ -C ₂₈ (mg/Kg)	ORO C ₂₈ -C ₃₅ (mg/Kg)	TOTAL TPH C ₆ -C ₂₈ (mg/Kg)	CHLORIDE (mg/Kg)
Release Point Surface	Surface	8/14/2006	Excavated		-	-	-	-	-	344.0	2,770.0	903.0	4,020.0	-
Release Point 4' BGS	4'	8/14/2006	Excavated		-	-	-	-	-	11.4	18.7	<10.0	30.1	-
Release Point 6' BGS	6'	8/14/2006	Excavated		<0.0250	<0.0250	< 0.0250	< 0.0250	< 0.0250	-	-	-	-	-
West Bell Hole 1' BGS	1'	8/14/2006	Excavated		-	-	-	-	-	37.8	39.6	<10.0	77.4	-
West Bell Hole 4' BGS	4'	8/14/2006	Excavated		-	-	-	-	-	1,490.0	354.0	67.3	1,910.0	-
West Ponded Area 6" BGS	6"	8/14/2006	Excavated		-	-	-	-	-	639.0	638.0	162.0	1,440.0	-
West Ponded Area 1' BGS	1'	8/14/2006	Excavated		<0.0250	<0.0250	< 0.0250	< 0.0250	< 0.0250	<10.0	17.5	<10.0	17.5	-
West Ponded Area Surface	3'	8/14/2006	Excavated		-	-	-	-	-	129.0	2,100.0	429.0	2,660.0	-
P.R. @ 9'	9'	9/18/2009	N/A		-	-	-	-	-	<10.0	<10.0	<10.0	<10.0	-
B-Comp.	N/A	9/18/2009	N/A		-	-	-	-	-	<10.0	<10.0	<10.0	<10.0	-
S-Comp.	N/A	9/18/2009	N/A		-	-	-	-	-	<10.0	<10.0	<10.0	<10.0	-
NW-Comp.	N/A	9/18/2009	N/A		-	-	-	-	-	<10.0	<10.0	<10.0	<10.0	-
SW-Comp.	N/A	9/18/2009	N/A		-	-	-	-	-	<10.0	<10.0	<10.0	<10.0	-
P-Comp.	N/A	9/18/2009	N/A		-	-	-	-	-	<10.0	<10.0	<10.0	<10.0	-
S-5	N/A	9/18/2009	N/A		<0.025	< 0.025	< 0.025	< 0.025	<0.025	10.3	<10.0	<10.0	10.3	-
TT-1 @ Surface	Surface	12/20/2012	In-Situ	-	-	-	-	-	-	<19.7	<19.7	<19.7	<19.7	4.26
TT-1 @ 4'	4'	12/20/2012	In-Situ	-	-	-	-	-	-	<18.0	<18.0	<18.0	<18.0	2.36
TT-1 @ 6'	6'	12/20/2012	In-Situ	-	-	-	-	-	-	<19.0	<19.0	<19.0	<19.0	1.79
TT-2 @ Surface	Surface	12/20/2012	In-Situ	-	-	-	-	-	-	<15.4	<15.4	<15.4	<15.4	<1.03
TT-2 @ 4'	4'	12/20/2012	In-Situ	-	-	-	-	-	-	<17.2	<17.2	<17.2	<17.2	1.28
TT-2 @ 6'	6'	12/20/2012	In-Situ	<50.0	< 0.00103	< 0.00206	< 0.00103	< 0.00206	< 0.00206	<15.4	<15.4	<15.4	<15.4	<1.03
TT-3 @ Surface	Surface	12/20/2012	In-Situ	-	-	-	-	-	-	<18.7	<18.7	<18.7	<18.7	1.54
TT-3 @ 4'	4'	12/20/2012	In-Situ	-	-	-	-	-	-	<18.5	<18.5	<18.5	<18.5	1.31
TT-3 @ 6'	6'	12/20/2012	In-Situ	<50.0	<0.00116	<0.00232	<0.00116	< 0.00232	< 0.00232	<17.5	74.1	<17.5	74.1	4.16
TT-4 @ Surface	Surface	12/20/2012	In-Situ	-	-	-	-	-	-	<19.5	<19.5	<19.5	<19.5	<1.31
TT-4 @ 4'	4'	12/20/2012	In-Situ	-	-	-	-	-	-	<15.4	<15.4	<15.4	<15.4	<1.03
TT-4 @ 6'	6'	12/20/2012	In-Situ	64.0	<0.00122	< 0.00244	< 0.00122	< 0.00244	< 0.00244	<18.3	<18.3	<18.3	<18.3	<1.22
TT-5 @ Surface	Surface	12/20/2012	In-Situ	-	-	-	-	-	-	<21.2	<21.2	<21.2	<21.2	10.9
TT-5 @ 4'	4'	12/20/2012	In-Situ	-	-	-	-	-	-	<19.8	<19.8	<19.8	<19.8	4.10
TT-5 @ 6'	6'	12/20/2012	In-Situ	-	-	-	-	-	-	<18.3	<18.3	<18.3	<18.3	3.60
TT-6 @ Surface	Surface	12/20/2012	In-Situ	-	-	-	-	-	-	<19.8	<19.8	<19.8	<19.8	<1.32
TT-6 @ 4'	4'	12/20/2012	In-Situ	-	-	-	-	-	-	<17.1	<17.1	<17.1	<17.1	<1.14
TT-6 @ 6'	6'	12/20/2012	In-Situ	-	-	-	-	-	-	<18.0	<18.0	<18.0	<18.0	<1.20
TT-7 @ Surface	Surface	12/20/2012	In-Situ	-	-	-	-	-	-	<19.3	<19.3	<19.3	<19.3	<1.28
TT-7 @ 4'	4'	12/20/2012	In-Situ	-	-	-	-	-	-	<20.3	<20.3	<20.3	<20.3	2.16
TT-7 @ 6'	6'	12/20/2012	In-Situ	-	-	-	-	-	-	<15.3	<15.3	<15.3	<15.3	<1.02
SB#1 @ 8'	8'	1/24/2013	In-Situ	-	-	-	-	-	-	<16.0	<16.0	<16.0	<16.0	-
SB#1 @ 10'	10'	1/24/2013	In-Situ	-	-	-	-	-	-	<15.4	<15.4	<15.4	<15.4	-
NMOCD Standard					10				50				100	250

Photograph of the initial release at the S & W 4" Historical Release Site.

Photograph of the initial release at the S & W 4" Historical Release Site.

Photograph of the pipeline replacement and excavation activities at the S & W 4" Historical Release Site.

Photograph of the pipeline replacement and excavation activities at the S & W 4" Historical Release Site.

Photograph of delineation activities at the S & W 4" Historical Release Site.

Photograph of delineation activities at the S & W 4" Historical Release Site.

Photograph of the advancement of Soil Boring SB-1 at the S & W 4" Historical Release Site.

Photograph of the S & W 4" Historical Release Site after delineation activities.

Analytical Report

Prepared for:

Tony Savoie Southern Union Gas Services- Jal P.O. Box 1226 Jal, NM 88252

Project: S & W 4" Lateral Project Number: 2006-036 Location: North of Oil Center

Lab Order Number: 6H15006

Report Date: 08/18/06

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Release Point Surface	6H15006-01	Soil	08/14/06 08:50	08-15-2006 09:35
Release Point 4' BGS	6H15006-02	Soil	08/14/06 08:53	08-15-2006 09:35
Release Point 6' BGS	6H15006-03	Soil	08/14/06 08:57	08-15-2006 09:35
West Bellhole 1' BGS	6H15006-04	Soil	08/14/06 09:00	08-15-2006 09:35
West Bellhole 4' BGS	6H15006-05	Soil	08/14/06 09:05	08-15-2006 09:35
West Ponded area 6" BGS	6H15006-06	Soil	08/14/06 09:10	08-15-2006 09:35
West Ponded area 1' BGS	6H15006-07	Soil	08/14/06 09:12	08-15-2006 09:35
West Ponded area Surface	6H15006-08	Soil	08/14/06 09:08	08-15-2006 09:35

Organics by GC

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Release Point Surface (6H15006-01) Soil									
Carbon Ranges C6-C12	344	100	mg/kg dry	10	EH61508	08/15/06	08/15/06	EPA 8015M	
Carbon Ranges C12-C28	2770	100	"	"	"	"	"	"	
Carbon Ranges C28-C35	903	100	"	"	"	"	"		
Total Hydrocarbons	4020	100	"	"	"	"	"		
Surrogate: 1-Chlorooctane		9.40 %	70-1.	30	"	"	"	"	S-06
Surrogate: 1-Chlorooctadecane		11.4 %	70-1.	30	"	"	"	"	S-06
Release Point 4' BGS (6H15006-02) Soil									
Carbon Ranges C6-C12	11.4	10.0	mg/kg dry	1	EH61508	08/15/06	08/16/06	EPA 8015M	
Carbon Ranges C12-C28	18.7	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"		
Total Hydrocarbons	30.1	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		101 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		92.6 %	70-1.	30	"	"	"	"	
Release Point 6' BGS (6H15006-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH61514	08/15/06	08/16/06	EPA 8021B	
Toluene	ND	0.0250	"	"		"	"	"	
Ethylbenzene	ND	0.0250	"	"	"	"	"		
Xylene (p/m)	ND	0.0250	"	"		"	"	"	
Xylene (o)	ND	0.0250	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		92.8 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.5 %	80-12	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH61508	08/15/06	08/16/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	"	"		
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"		
Surrogate: 1-Chlorooctane		104 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		95.6 %	70-1.	30	"	"	"	"	

Organics by GC

		Environ	mental L	ab of Te	exas				
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
West Bellhole 1' BGS (6H15006-04) Soil	I								
Carbon Ranges C6-C12	37.8	10.0	mg/kg dry	1	EH61508	08/15/06	08/16/06	EPA 8015M	
Carbon Ranges C12-C28	39.6	10.0	"	"		"	"	"	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	77.4	10.0	"	"		"	"	"	
Surrogate: 1-Chlorooctane		107 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		95.0 %	70-1	30	"	"	"	"	
West Bellhole 4' BGS (6H15006-05) Soi	l								
Carbon Ranges C6-C12	1490	10.0	mg/kg dry	1	EH61508	08/15/06	08/16/06	EPA 8015M	
Carbon Ranges C12-C28	354	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	67.3	10.0	"	"		"	"	"	
Total Hydrocarbons	1910	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		133 %	70-1	30	"	"	"	"	S-04
Surrogate: 1-Chlorooctadecane		99.0 %	70-1	30	"	"	"	"	
West Ponded area 6'' BGS (6H15006-06	5) Soil								
Carbon Ranges C6-C12	639	10.0	mg/kg dry	1	EH61508	08/15/06	08/16/06	EPA 8015M	
Carbon Ranges C12-C28	638	10.0	"	"		"	"	"	
Carbon Ranges C28-C35	162	10.0	"	"		"	"	"	
Total Hydrocarbons	1440	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		117 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		97.4 %	70-1	30	"	"	"	"	
West Ponded area 1' BGS (6H15006-07)) Soil								
Benzene	ND	0.0250	mg/kg dry	25	EH61514	08/15/06	08/16/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	"	"		
Ethylbenzene	ND	0.0250	"	"	"	"	"		
Xylene (p/m)	ND	0.0250	"	"	"	"	"		
Xylene (o)	ND	0.0250	"	"	"	"	"		
Surrogate: a,a,a-Trifluorotoluene		103 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.2 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	J [9.82]	10.0	mg/kg dry	1	EH61508	08/15/06	08/16/06	EPA 8015M	J
Carbon Ranges C12-C28	17.5	10.0	"	"	"	"	"		
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	17.5	10.0	"	"	"	"	"		
Surrogate: 1-Chlorooctane		103 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		93.2 %	70-1					"	

Environmental Lab of Texas

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
West Ponded area Surface (6H15006-0	8) Soil								
Carbon Ranges C6-C12	129	10.0	mg/kg dry	1	EH61508	08/15/06	08/16/06	EPA 8015M	
Carbon Ranges C12-C28	2100	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	429	10.0	"	"	"	"	"	"	
Total Hydrocarbons	2660	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		110 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		99.0 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
1) Soil								
7.3	0.1	%	1	EH61601	08/15/06	08/16/06	% calculation	
2) Soil								
19.2	0.1	%	1	EH61601	08/15/06	08/16/06	% calculation	
8) Soil								
J [1.90]	5.00	mg/kg	10	EH61511	08/15/06	08/15/06	EPA 300.0	J
17.1	0.1	%	1	EH61601	08/15/06	08/16/06	% calculation	
4) Soil								
14.1	0.1	%	1	EH61601	08/15/06	08/16/06	% calculation	
5) Soil								
17.0	0.1	%	1	EH61601	08/15/06	08/16/06	% calculation	
06-06) Soil								
17.5	0.1	%	1	EH61601	08/15/06	08/16/06	% calculation	
06-07) Soil								
J [2.16]	5.00	mg/kg	10	EH61511	08/15/06	08/15/06	EPA 300.0	J
17.2	0.1	%	1	EH61601	08/15/06	08/16/06	% calculation	
06-08) Soil								
24.8	0.1	%	1	EH61601	08/15/06	08/16/06	% calculation	
	1) Soil 7.3 7.3 7.3 7.3 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 17.1 17.1 14.1 5) Soil 14.1 17.0 106-06) Soil 17.5 17.5 17.5 17.5 17.5 17.2 17.2 17.2 17.2	Result Limit 1) Soil 7.3 0.1 7.3 0.1 3) Soil 19.2 0.1 3) Soil 5.00 17.1 4) Soil 14.1 0.1 5) Soil 06-06) Soil 0.1 17.5 0.1 06-06) Soil 17.5 0.1 06-07) Soil 5.00 17.2 0.1	Result Limit Units 1) Soil 7.3 0.1 % 7.3 0.1 % 3) Soil 9 9 19.2 0.1 % 3) Soil 9 5.00 mg/kg 17.1 0.1 % 4) Soil 9 9 14.1 0.1 % 5) Soil 9 9 17.0 0.1 % 06-06) Soil 9 9 17.5 0.1 % 17.5 0.1 % 17.2 0.1 % 06-08) Soil 9 9	Result Limit Units Dilution 1) Soil 7.3 0.1 % 1 (a) Soil 1 % 1 1 (b) Soil 1 % 1 1 (b) Soil 1 % 1 1 (c) Soil 1 1 % 1 (c) Soil 1 1 1 1 (c) Soil 1 1 1 1 (c) Soil 1 1 1 1 (c) CoOSoil 1 1 1 1 (c) CoOSoil 1 1 1 1 (c) CoOSoil 1 1 1 1	Result Limit Units Dilution Batch 1) Soil 7.3 0.1 % 1 EH61601 3) Soil 7.1 0.1 % 1 EH61511 17.1 0.1 % 1 EH61601 5) Soil 7.1 0.1 % 1 EH61601 5) Soil 7.1 0.1 % 1 EH61601 60-06) Soil 7.5 0.1 % 1 EH61601 7.5 0.1 % 1 EH61601 7.6 5.00 mg/kg 10 EH61511 7.2 0.1 % 1 EH61601 60-08) Soil 7.2 0.1 % 1 EH61601	Result Limit Units Dilution Batch Prepared 1) Soil 7.3 0.1 % 1 EH61601 08/15/06 (a) Soil 1 20.1 % 1 EH61601 08/15/06 (b) Soil 1 20.1 % 1 EH61601 08/15/06 (b) Soil 1 20.1 % 1 EH61601 08/15/06 (c) Soil 1 1 20.1 % 1 EH61601 08/15/06 (c) CoCoOS Soil 1 20.1 % 1 EH61601 08/15/06 (c) CoCoOS Soil 1 20.1 % 1 EH61601 08/15/06 (c) CoCoOS Soil 1 20.1 %<	Result Limit Units Dilution Batch Prepared Analyzed 1) Soil 7.3 0.1 % 1 EH61601 08/15/06 08/16/06 (a) Soil 1 EH61601 08/15/06 08/16/06 08/16/06 (b) Soil 1 EH61601 08/15/06 08/16/06 (b) Soil 1 EH61601 08/15/06 08/16/06 (c) All % 1 EH6160	Result Limit Units Dilution Batch Prepared Analyzed Method 1) Soil 7.3 0.1 % 1 EH61601 08/15/06 08/16/06 % calculation () Soil 1 EH61601 08/15/06 08/16/06 % calculation () Soil 1 EH61601 08/15/06 08/15/06 % calculation () Soil 1 EH61601 08/15/06 08/15/06 EPA 300.0 () Soil 1 EH61601 08/15/06 08/16/06 % calculation () Soil 1 <t< td=""></t<>

Environmental Lab of Texas

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH61508 - EPA 5030C (GC)										
Blank (EH61508-BLK1)				Prepared &	Analyzed:	08/15/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	50.5		mg/kg	50.0		101	70-130			
Surrogate: 1-Chlorooctadecane	48.3		"	50.0		96.6	70-130			
LCS (EH61508-BS1)				Prepared &	Analyzed:	08/15/06				
Carbon Ranges C6-C12	470	10.0	mg/kg wet	500		94.0	75-125			
Carbon Ranges C12-C28	481	10.0	"	500		96.2	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00			75-125			
Total Hydrocarbons	951	10.0	"	1000		95.1	75-125			
Surrogate: 1-Chlorooctane	54.0		mg/kg	50.0		108	70-130			
Surrogate: 1-Chlorooctadecane	46.8		"	50.0		93.6	70-130			
Calibration Check (EH61508-CCV1)				Prepared: (08/15/06 A	nalyzed: 08	8/16/06			
Carbon Ranges C6-C12	236		mg/kg	250		94.4	80-120			
Carbon Ranges C12-C28	273		"	250		109	80-120			
Total Hydrocarbons	509		"	500		102	80-120			
Surrogate: 1-Chlorooctane	63.4		"	50.0		127	70-130			
Surrogate: 1-Chlorooctadecane	56.9		"	50.0		114	70-130			
Matrix Spike (EH61508-MS1)	Sou	rce: 6H15000	6-03	Prepared: (08/15/06 A	nalyzed: 08	8/16/06			
Carbon Ranges C6-C12	559	10.0	mg/kg dry	603	ND	92.7	75-125			
Carbon Ranges C12-C28	572	10.0	"	603	ND	94.9	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125			
Total Hydrocarbons	1130	10.0	"	1210	ND	93.4	75-125			
Surrogate: 1-Chlorooctane	56.0		mg/kg	50.0		112	70-130			
Surrogate: 1-Chlorooctadecane	48.3		"	50.0		96.6	70-130			

Environmental Lab of Texas

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH61508 - EPA 5030C (GC)										

Matrix Spike Dup (EH61508-MSD1)	Source	Source: 6H15006-03			Prepared: 08/15/06 Analyzed: 08/16/06				
Carbon Ranges C6-C12	578	10.0 mg/kg dry	603	ND	95.9	75-125	3.34	20	
Carbon Ranges C12-C28	589	10.0 "	603	ND	97.7	75-125	2.93	20	
Carbon Ranges C28-C35	ND	10.0 "	0.00	ND		75-125		20	
Total Hydrocarbons	1170	10.0 "	1210	ND	96.7	75-125	3.48	20	
Surrogate: 1-Chlorooctane	58.1	mg/kg	50.0		116	70-130			
Surrogate: 1-Chlorooctadecane	49.2	"	50.0		98.4	70-130			

Batch EH61514 - EPA 5030C (GC)

Blank (EH61514-BLK1)				Prepared: 08/15	/06 Analyzed: 08/	16/06	
Benzene	ND	0.0250	mg/kg wet				
Toluene	ND	0.0250	"				
Ethylbenzene	ND	0.0250	"				
Xylene (p/m)	ND	0.0250	"				
Xylene (o)	ND	0.0250	"				
Surrogate: a,a,a-Trifluorotoluene	38.1		ug/kg	40.0	95.2	80-120	
Surrogate: 4-Bromofluorobenzene	41.0		"	40.0	102	80-120	
LCS (EH61514-BS1)				Prepared & Ana	lyzed: 08/15/06		
Benzene	1.21	0.0250	mg/kg wet	1.25	96.8	80-120	
Toluene	1.38	0.0250	"	1.25	110	80-120	
Ethylbenzene	1.22	0.0250	"	1.25	97.6	80-120	
Xylene (p/m)	2.97	0.0250	"	2.50	119	80-120	
Xylene (o)	1.38	0.0250	"	1.25	110	80-120	
Surrogate: a,a,a-Trifluorotoluene	39.6		ug/kg	40.0	99.0	80-120	
Surrogate: 4-Bromofluorobenzene	47.8		"	40.0	120	80-120	

Environmental Lab of Texas

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH61514 - EPA 5030C (GC)						-				
Calibration Check (EH61514-CCV1)				Prepared: 0	08/15/06 A	nalyzed: 08	/17/06			
Benzene	47.2		ug/kg	50.0		94.4	80-120			
Toluene	51.8		"	50.0		104	80-120			
Ethylbenzene	55.0		"	50.0		110	80-120			
Xylene (p/m)	112		"	100		112	80-120			
Xylene (o)	55.2		"	50.0		110	80-120			
Surrogate: a,a,a-Trifluorotoluene	45.7		"	40.0		114	80-120			
Surrogate: 4-Bromofluorobenzene	44.5		"	40.0		111	80-120			
Matrix Spike (EH61514-MS1)	Sour	rce: 6H15008	3-01	Prepared: 0	08/15/06 A	nalyzed: 08	/17/06			
Benzene	1.33	0.0250	mg/kg dry	1.35	ND	98.5	80-120			
Toluene	1.54	0.0250	"	1.35	ND	114	80-120			
Ethylbenzene	1.30	0.0250	"	1.35	ND	96.3	80-120			
Xylene (p/m)	3.19	0.0250	"	2.71	ND	118	80-120			
Xylene (o)	1.45	0.0250	"	1.35	ND	107	80-120			
Surrogate: a,a,a-Trifluorotoluene	84.1		ug/kg	80.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	84.0		"	80.0		105	80-120			
Matrix Spike Dup (EH61514-MSD1)	Sour	rce: 6H15008	3-01	Prepared: 0	08/15/06 A	nalyzed: 08	/17/06			
Benzene	1.28	0.0250	mg/kg dry	1.35	ND	94.8	80-120	3.83	20	
Toluene	1.56	0.0250	"	1.35	ND	116	80-120	1.74	20	
Ethylbenzene	1.53	0.0250	"	1.35	ND	113	80-120	16.0	20	
Xylene (p/m)	3.24	0.0250	"	2.71	ND	120	80-120	1.68	20	
Xylene (o)	1.58	0.0250	"	1.35	ND	117	80-120	8.93	20	
Surrogate: a,a,a-Trifluorotoluene	44.4		ug/kg	40.0		111	80-120			

"

40.0

47.6

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

119

80-120

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH61511 - Water Extraction										
Blank (EH61511-BLK1)				Prepared &	Analyzed:	: 08/15/06				
Chloride	ND	0.500	mg/kg							
LCS (EH61511-BS1)				Prepared &	Analyzed:	: 08/15/06				
Chloride	9.79	0.500	mg/kg	10.0		97.9	80-120			
Calibration Check (EH61511-CCV1)				Prepared &	Analyzed:	: 08/15/06				
Chloride	9.49		mg/L	10.0		94.9	80-120			
Duplicate (EH61511-DUP1)	Sour	rce: 6H15002	-02	Prepared &	Analyzed:	: 08/15/06				
Chloride	42.2	5.00	mg/kg		43.4			2.80	20	
Duplicate (EH61511-DUP2)	Sour	rce: 6H15010	-01	Prepared &	Analyzed:	: 08/15/06				
Chloride	647	10.0	mg/kg		642			0.776	20	
Matrix Spike (EH61511-MS1)	Sour	ce: 6H15002	-02	Prepared &	Analyzed:	: 08/15/06				
Chloride	149	5.00	mg/kg	100	43.4	106	80-120			
Matrix Spike (EH61511-MS2)	Sour	rce: 6H15010	-01	Prepared &	Analyzed:	: 08/15/06				
Chloride	900	10.0	mg/kg	200	642	129	80-120			S-0′
Batch EH61601 - General Preparation (Prep)										
Blank (EH61601-BLK1)				Prepared: (08/15/06 A	nalyzed: 08	/16/06			
% Solids	100		%	-		-				
Duplicate (EH61601-DUP1)	Sour	ce: 6H15002	-01	Prepared: (08/15/06 A	nalyzed: 08	/16/06			
% Solids	90.3		%		89.0			1.45	20	

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH61601 - General Preparation (Prep)										
Duplicate (EH61601-DUP2)	Sour	ce: 6H15007-	04	Prepared: 08	3/15/06 A	nalyzed: 08	/16/06			
% Solids	97.3		%		96.9			0.412	20	
Duplicate (EH61601-DUP3)	Sour	ce: 6H15013-	01	Prepared: 08	3/15/06 A	nalyzed: 08	/16/06			
% Solids	90.1		%		90.1			0.00	20	

Notes and Definitions

S-07	Recovery outside Laboratory historical or method prescribed limits.
S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
J	Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Peggy Allen, QA Officer

Raland K Just

8/18/2006

Raland K. Tuttle, Lab Manager

Celey D. Keene, Lab Director, Org. Tech Director

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

Texas
ō
C R L
D D
Be
íron
N L

		ł	t	71	ı					_					\ r	<u> </u>	- \ _T	-	<u>\</u>	<u>'</u> ⊤			-		· .		
				7		ŝ	٢	\$JU	77 '8Þ	7 '92	(ainbaria2-a	ia) LAT Pri TAT brisb		<u>}</u>	-		2	7	*	7			_	7.7	z (z)z	Star	ပ္
		ال		140		NPDES		T					31101	-									-		~ (6)~	N Lone Star	a
		ୢୖୠ		eg.	ĺ	[]																		ÐE	0-8		
	_	hatera		Ц.			1							_												Fedfx	. 10
ST	1800	-1	4	Øil	1	TRRP	:	<u> </u>															_			DHL	$\frac{1}{N}$
SUE	563-1 563-1		2	W								.M.5	и.о.н н.о.н		-				-	_				S 8	ei(s) s)	¢.	bt:
REC	432-563-1800 432-563-1713	- - -	6	0 F					$\mathbf{\Sigma}$	0978	8 X 3 1 8 1 9 0 6	8051B/202	+			1				7				nts: ntaci space	oler(L Rep JPS	Recei
SIS	11	- E		2		70	Analica					zəlitslov	vime8											mme iers l leads		Clien	Ng -
۲X ۲	Phone Fax:	귀	ď	Norh		ndar	4					sə	üeloV										_	of H	Sals C	pler.	
ANA		Stw	2006-036	2	1	L Standard	;			∍S 6	C4 CLP H												_	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	Custody seals on container(s) Custody seals on cooler(s) conside thand Delivered	by Sempler/Client Rep.	ਰੇ ∕ੁ
ND			I	N		<u>ج</u>		TCLP	TOTAL:	6	соз' неоз	ESP / CEC	i			7				7				abor amp	tusto	à2¥25 ĕ	A02 Somper
Ρd		4ame	Project #:	t Lo(PO #:	at:			╘	1.		16 (Ca, Mg,				-		-		_			-	<u> </u>	000	Î Î	
SOR		Project Name:	Proj	Project Loc:		-orm	-		9	9001	· · · · · · · · · · · · · · · · · · ·			Z	7	7	7	7	7	7	7				Time	Time	Time
REC		Proj		ď		Report Format:	<u>ک</u> ہ	a de se d	×	7	Specify Other	eldsto9-ne		-												·	0
λ						Rep	Ŭ		Matrix	A IGH	bilo2tilo2=3]e}eMþUhojé	9 = MD	5	5	$\langle n \rangle$	$\langle n \rangle$	S	S	S	()						9
ST0		1		[1	1	ອ ວ					({noodo)) I∋/6W gniXirin	IO=MO										_		Date	Date	Date 15/00
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST							<u> </u>		ters	<u>.</u>		(Specify)	anoN					-					-				
9	ast 765						8		ontair				SZEN													1	
IAIN	20 E(s 79;								# of C	5		ŀ	-QPN														
£	12600 West I-20 East Odessa, Texas 79765						Savoi		Preservation & # of Contrainers			ب م 	O\$²H									_					
) We sa,]								Serva				HCI	_									\neg				
	260(Ddes						ž		Pre	-		· · · ·	ONH eoi	7	·	4	7	1	7	7	\mathbf{H}		_				1.
	-0		~				e-mail: tony e				1613	nístnoð to				-					~				!		
			Services			l G				-							-	- \			3						12
			ů v			Fax No:	Sm-e				ņ	alqma2 e		00	53	57	00	50	0	3	ଭ						9
			2			ů ří	Ŧ				6	0 00005.0	, contraction of the second se	085	085	80	0	- 6	0	09	0						
		1	പ്പ	+	•		ı.			┢					0	٤.	> ∢		0	0	0	_					
			ŝ											901											i ph:	.Xq	
			Ø	l		N N					p	elqme2 :	Date	8/14	11	=	l c	3	-	¥	5				Received	Received by	eived
		6	\odot			- 9376	øЗ																		Rec	Rec	Rec
48		Savoie	2	5	2	0	anne					կյվթը նւ	nibn3	ok	- T	ه ا	به ا	בי	ۍ ً	-,-	`	1			ิ เก	υ	Ð
ő		୍ଚି) v	11)	N N	١	Z					ອປ ຄູກinr	ufaa			و ا	,		2	-	~				0935	Time	Time
a a		S		111	う	6	c Â			Ļ	ųju	AC paíor		Q	*		_	4	e		0						-
⊨				COMMINCE		631	VY							9	ą	Ņ	ł		G .6.S	0. 0. 0.	(م ل				Date 8/15/06	e.	te.
0		- 5	<u></u>	ں ا	Í	۲,				3			1	ğ	5 0	0.0.5	0	6.5.	5	ം ര	12				Date /IS/	Date	Date
ŏ		1022	4	~		S I	8	\mathbf{z}						SURFACE	Q	Q	فک	৩								· [
ស៊			1	610	R	00		T					ш	10	3	د	0	ର୍	areal	Pended areal'	1						
			R	S			v/-+						FIELD CODE	•		+	\	<u>े</u> ज	2	ېر م	2					ຄ	
<u>m</u>							<u>`</u> ا		N.C.	Ž			Ē	Ś	Bin+	5	<u>د</u>	ŀ	A o	1	2				6	3	
C		e L	ត្	(ess			ture		ν ς	2			ΡIE	Poivt	l da	Po.	6	12	Ponded	- Ac	de					3	
e		nag	Nan	Add	Zip	, No	igne		1	-				· ·		9	E	E	چ	2	S.				l d	Ĩ	
S		t Ma	any	, Yne	ate/	lone	erS		Ż	3				6036	10.50	20.	ര്	Q	+	ŧ				ions		Х NI	
Õ		Project Manager:	Company Name	Company Address:	City/State/Zip.	Telephone No:	Sampler Signature:							Rel		a 1	alon Bell hole	West Bulliole	10est	14 (QC-4	4624			truct		2D	py:
		۲ ط	ပိ	ပိ	0	Te	ŝ	vino	π Ω	⊭ ⊻ -	<u></u>			8	142		3	3	1		[≼			11ns	ished	isheo	ishea
Environmental Lab of Texas								(lab use only)		5	(ʎjuo	əsn qej)	# 9VT	C		\$	ß	5	9	5	X		(,	Special Instructions:	Relinquíshed by:	Relinquished by	Relinquished by:
								(lat	Ċ	5					17	$ \nabla$	∇	∇	\sum	∇	[N]		:	တိ		Re	Re

., . .

Spec

 \supset

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	SUGS	
Date/ Time:	8/15/06 9:35	
Lab iD # :	6415006	
Inifials:		

Sample Receipt Checklist

Client Initials °C 1.5 No Yes Temperature of container/ cooler? #1 No œ Shipping container in good condition? #2 Yes No <<u>Not Present</u> Custody Seals intact on shipping container/ cooler? #3 Not Present Yes No Custody Seals intact on sample bottles/ container? #4 No ¥@S Chain of Custody present? #5 Sample instructions complete of Chain of Custody? (e) No #6 Chain of Custody signed when relinquished/ received? No (øş #7 ID written on Cont./ Lid Chain of Custody agrees with sample label(s)? No Yês #8 Not Applicable No Yæs Container label(s) legible and intact? #9 #10 Sample matrix/ properties agree with Chain of Custody? No YBS No ¥8ş Containers supplied by ELOT? #11 No γēs, See Below #12 Samples in proper container/ bottle? No See Below Yeg #13 Samples properly preserved? œ No #14 Sample bottles intact? Preservations documented on Chain of Custody? No Yêş #15 No #16 Containers documented on Chain of Custody? (ES) No See Below Sufficient sample amount for indicated test(s)? γ⁄eş #17 (és) No See Below #18 All samples received within sufficient hold time? YES Not Applicable No #19 VOC samples have zero headspace?

Variance Documentation

Contact:		Contacted by:	Date/ Time:
Regarding:			
Corrective Action Taker	: 		
· · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Check all that Apply:		See attached e-mail/ fax Client understands and would like to proceed with anal Cooling process had begun shortly after sampling ever	ysis nt

Analytical Report

Prepared for:

Tony Savoie Southern Union Gas Services- Jal P.O. Box 1226 Jal, NM 88252

Project: S & W 4" Lateral Project Number: 2006-036 Location: SE of Monument

Lab Order Number: 6I08004

Report Date: 09/11/06

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SW-1	6108004-01	Soil	09/07/06 15:20	09-08-2006 09:55

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SW-1 (6108004-01) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI60813	09/08/06	09/08/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		74.4 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		77.4 %	70-1.	30	"	"	"	"	

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SW-1 (6108004-01) Soil									
% Moisture	15.6	0.1	%	1	EI61103	09/08/06	09/11/06	% calculation	

Environmental Lab of Texas

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EI60813 - Solvent Extraction (GC)										
Blank (EI60813-BLK1)				Prepared &	Analyzed:	09/08/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	39.3		mg/kg	50.0		78.6	70-130			
Surrogate: 1-Chlorooctadecane	37.7		"	50.0		75.4	70-130			
LCS (EI60813-BS1)				Prepared &	Analyzed:	09/08/06				
Carbon Ranges C6-C12	464	10.0	mg/kg wet	500		92.8	75-125			
Carbon Ranges C12-C28	403	10.0	"	500		80.6	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00			75-125			
Total Hydrocarbons	867	10.0		1000		86.7	75-125			
Surrogate: 1-Chlorooctane	51.4		mg/kg	50.0		103	70-130			
Surrogate: 1-Chlorooctadecane	40.2		"	50.0		80.4	70-130			
Calibration Check (EI60813-CCV1)				Prepared &	Analyzed:	09/08/06				
Carbon Ranges C6-C12	208		mg/kg	250		83.2	80-120			
Carbon Ranges C12-C28	271		"	250		108	80-120			
Total Hydrocarbons	479			500		95.8	80-120			
Surrogate: 1-Chlorooctane	51.0		"	50.0		102	70-130			
Surrogate: 1-Chlorooctadecane	46.3		"	50.0		92.6	70-130			
Matrix Spike (EI60813-MS1)	Source: 6108009-02			Prepared & Analyzed: 09/08/06						
Carbon Ranges C6-C12	556	10.0	mg/kg dry	577	ND	96.4	75-125			
Carbon Ranges C12-C28	478	10.0	"	577	ND	82.8	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125			
Total Hydrocarbons	1030	10.0	"	1150	ND	89.6	75-125			
Surrogate: 1-Chlorooctane	53.0		mg/kg	50.0		106	70-130			
Surrogate: 1-Chlorooctadecane	43.8		"	50.0		87.6	70-130			

Environmental Lab of Texas

Environmental Lab of Texas

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EI60813 - Solvent Extraction (GC)

Matrix Spike Dup (EI60813-MSD1)	Source: 6108009-02			Prepared &	Analyzed:	09/08/06				
Carbon Ranges C6-C12	567	10.0	mg/kg dry	577	ND	98.3	75-125	1.96	20	-
Carbon Ranges C12-C28	498	10.0	"	577	ND	86.3	75-125	4.10	20	
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125		20	
Total Hydrocarbons	1060	10.0	"	1150	ND	92.2	75-125	2.87	20	
Surrogate: 1-Chlorooctane	54.5		mg/kg	50.0		109	70-130			
Surrogate: 1-Chlorooctadecane	45.1		"	50.0		90.2	70-130			

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI61103 - General Preparation (Prep)										
Blank (EI61103-BLK1)				Prepared: 09	9/08/06 A	nalyzed: 09/	11/06			
% Solids	99.9		%							
Duplicate (EI61103-DUP1)	Source: 6I08001-01		Prepared: 09	9/08/06 A	nalyzed: 09/	11/06				
% Solids	100		%		100			0.00	20	

Environmental Lab of Texas

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Raland K Jul

9/11/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas
	7					ţ				Pre-Schedule (Pre-Schedule TAT bisbnsi2	<u>}</u>							
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	Stro 4" LATERA	2006-036	SEOF MONWARNT			A DESTRUCTION OF A	-		03	Metals: As Ag Ba Cd Cr Pb Hg Volatiles Semivolatiles NO.R.M.					itacl?	Labels on container? & N Custody Seals: Cottaffers / Cooler Temperature Upon Receipt: 2, ()	Laboratory Comments:	AUC Scars
CHAIN OF CUSTODY RE	Project Name: 5 & W	Project #:	Project Loc: SE	HO #:	ī		TCLP	TOTAL	Matrix 6	SPK LESP / CEC SPK / ESP / CEC Callous (C1, SO4, CO3, HCO3) Other (Secily): Other (specify): Soil Soil	7				Sampi	Labels Custoc Tempe	Pate Time Labor	
									Preservative	_М эгец О ц на (26eqit)) К ² 2O ¹ И ³ ОН НСГ НОС							4	
					Fax No:			·····		Time Sampled No. of Containers	3:20 11						al hel.	200
300 713	. प्व		્ય	88252	1					bəlqms2 ətsO	9-2-06			 	· · · · · · · · · · · · · · · · · · ·		Time Received by:	Time Received by ELOT
Phone: 432-563-1800 Fax: 432-563-1713	Teny SAVOIR	54.65.	610 COMPARTICE	JAL, K.M.	Telephone No: 505 - 395-2116	Du Seen				FIELD CODE	4 - Z						Date 9 - 8-06	
12600 West I-20 East Odessa, Texas 79765	Project Manager:	Сотрапу Мате	Company Address:	City/State/Zip:	Telephone No:	Sampler Signature:	- Fmail			LAB # (lab use only)	M5 19-2				Special Instructions:	-	Relinquished by:	Relinquistred by Olar

Environmental Lab of Texas

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Dlient:	SUGB	
Date/ Time:	<u>alside 9.55</u>	
.ab ID # :	6708009	
nitials:		

Sample Receipt Checklist

				Client Initials
¥1	Temperature of container/ cooler?	Yes	No	3.0 °C
7 2	Shipping container in good condition?	YES	No	
# 3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present
¥5	Chain of Custody present?	Yes	No	
#6	Sample instructions complete of Chain of Custody?	Yes	No	
¥7	Chain of Custody signed when relinquished/ received?	Ves	No	
¥8	Chain of Custody agrees with sample label(s)?	Veş	No	ID written on Cont./ Lid
# 9	Container label(s) legible and intact?	Ves	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	(Yes	No	
# 11	Containers supplied by ELOT?	Xes	No	
<u>‡1</u> 2	Samples in proper container/ bottle?	Ves	No	See Below
¥13	Samples properly preserved?	Xes	No	See Below
‡14	Sample bottles intact?	Yes	No	
‡ 15	Preservations documented on Chain of Custody?	Yes	No	
‡1 6	Containers documented on Chain of Custody?	Xes	No	· · · · · · · · · · · · · · · · · · ·
<i>‡</i> 17	Sufficient sample amount for indicated test(s)?	Ves	No	See Below
‡1 8	All samples received within sufficient hold time?	785	No	See Below
<i>‡</i> 19	VOC samples have zero headspace?	Yes	No	Not Applicable

Variance Documentation

Contact:	Contacted by:	Date/ Time:
Regarding:		
	······································	
Corrective Action Taken;		
······································		······································

Check all that Apply:

See attached e-mail/ fax

Client understands and would like to proceed with analysis

Cooling process had begun shortly after sampling event

Analytical Report

Prepared for:

Tony Savoie Southern Union Gas Services- Jal P.O. Box 1226 Jal, NM 88252

> Project: SW 4" Lateral Project Number: 2006-036 Location: None Given

Lab Order Number: 6I18008

Report Date: 09/20/06

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
P.R.@ 9'	6I18008-01	Soil	09/18/06 12:00	09-18-2006 14:45
B- Comp.	6I18008-02	Soil	09/18/06 12:00	09-18-2006 14:45
S- Comp.	6I18008-03	Soil	09/18/06 12:00	09-18-2006 14:45
NW- Comp.	6I18008-04	Soil	09/18/06 12:00	09-18-2006 14:45
SW- Comp.	6118008-05	Soil	09/18/06 12:00	09-18-2006 14:45
P- Comp.	6118008-06	Soil	09/18/06 12:00	09-18-2006 14:45
S-5	6I18008-07	Soil	09/18/06 12:00	09-18-2006 14:45

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
P.R.@ 9' (6118008-01) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61820	09/18/06	09/19/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		93.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		123 %	70-1	30	"	"	"	"	
B- Comp. (6I18008-02) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61820	09/18/06	09/19/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		80.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		102 %	70-1	30	"	"	"	"	
S- Comp. (6I18008-03) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61820	09/18/06	09/19/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		79.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		100 %	70-1	30	"	"	"	"	
NW- Comp. (6I18008-04) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61820	09/18/06	09/19/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		78.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		102 %	70-1	30	"	"	"	"	

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SW- Comp. (6I18008-05) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61820	09/18/06	09/19/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"		"	"	"	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		79.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		100 %	70-1	30	"	"	"	"	
P- Comp. (6I18008-06) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61820	09/18/06	09/19/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		76.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		98.0 %	70-1	30	"	"	"	"	
S-5 (6118008-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EI61904	09/19/06	09/19/06	EPA 8021B	
Toluene	J [0.0136]	0.0250	"		"	"	"	"	J
Ethylbenzene	J [0.0162]	0.0250	"	"		"	"	"	J
Xylene (p/m)	0.0316	0.0250	"	"		"	"	"	
Xylene (o)	ND	0.0250	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		123 %	80-1	20	"	"	"	"	S-04
Surrogate: 4-Bromofluorobenzene		107 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	10.3	10.0	mg/kg dry	1	EI61820	09/18/06	09/19/06	EPA 8015M	
Carbon Ranges C12-C28	J [8.93]	10.0	"		"	"	"	"	J
Carbon Ranges C28-C35	ND	10.0	"	"		"	"	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		81.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		102 %	70-1	30	"	"	"	"	

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
P.R.@ 9' (6I18008-01) Soil									
% Moisture	1.5	0.1	%	1	EI61901	09/18/06	09/19/06	% calculation	
B- Comp. (6I18008-02) Soil									
% Moisture	1.9	0.1	%	1	EI61901	09/18/06	09/19/06	% calculation	
S- Comp. (6I18008-03) Soil									
% Moisture	8.8	0.1	%	1	EI61901	09/18/06	09/19/06	% calculation	
NW- Comp. (6I18008-04) Soil									
% Moisture	1.9	0.1	%	1	EI61901	09/18/06	09/19/06	% calculation	
SW- Comp. (6I18008-05) Soil									
% Moisture	4.5	0.1	%	1	EI61901	09/18/06	09/19/06	% calculation	
P- Comp. (6I18008-06) Soil									
% Moisture	5.4	0.1	%	1	EI61901	09/18/06	09/19/06	% calculation	
S-5 (6118008-07) Soil									
% Moisture	18.1	0.1	%	1	EI61901	09/18/06	09/19/06	% calculation	

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI61820 - Solvent Extraction (GC)										
Blank (EI61820-BLK1)				Prepared &	Analyzed:	09/18/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet		-					
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	38.9		mg/kg	50.0		77.8	70-130			
Surrogate: 1-Chlorooctadecane	48.7		"	50.0		97.4	70-130			
LCS (EI61820-BS1)				Prepared &	Analyzed:	09/18/06				
Carbon Ranges C6-C12	485	10.0	mg/kg wet	500		97.0	75-125			
Carbon Ranges C12-C28	401	10.0	"	500		80.2	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00			75-125			
Total Hydrocarbons	886	10.0	"	1000		88.6	75-125			
Surrogate: 1-Chlorooctane	52.7		mg/kg	50.0		105	70-130			
Surrogate: 1-Chlorooctadecane	52.8		"	50.0		106	70-130			
Calibration Check (EI61820-CCV1)				Prepared: (09/18/06 A	nalyzed: 09	/19/06			
Carbon Ranges C6-C12	229		mg/kg	250		91.6	80-120			
Carbon Ranges C12-C28	298		"	250		119	80-120			
Total Hydrocarbons	527		"	500		105	80-120			
Surrogate: 1-Chlorooctane	51.2		"	50.0		102	70-130			
Surrogate: 1-Chlorooctadecane	58.7		"	50.0		117	70-130			
Matrix Spike (EI61820-MS1)	Sou	ırce: 6I18006	-01	Prepared &	Analyzed:	09/18/06				
Carbon Ranges C6-C12	563	10.0	mg/kg dry	571	ND	98.6	75-125			
Carbon Ranges C12-C28	489	10.0	"	571	ND	85.6	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125			
Total Hydrocarbons	1050	10.0	"	1140	ND	92.1	75-125			
Surrogate: 1-Chlorooctane	52.5		mg/kg	50.0		105	70-130			
Surrogate: 1-Chlorooctadecane	53.4		"	50.0		107	70-130			

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EI61820 - Solvent Extraction (GC)

Matrix Spike Dup (EI61820-MSD1)	Source	Source: 6I18006-01			Analyzed:	09/18/06			
Carbon Ranges C6-C12	547	10.0	mg/kg dry	571	ND	95.8	75-125	2.88	20
Carbon Ranges C12-C28	467	10.0	"	571	ND	81.8	75-125	4.60	20
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125		20
Total Hydrocarbons	1010	10.0	"	1140	ND	88.6	75-125	3.88	20
Surrogate: 1-Chlorooctane	52.0		mg/kg	50.0		104	70-130		
Surrogate: 1-Chlorooctadecane	51.5		"	50.0		103	70-130		

Batch EI61904 - EPA 5030C (GC)

Blank (EI61904-BLK1)				Prepared & Ana	alyzed: 09/19/06		
Benzene	ND	0.0250	mg/kg wet				
Toluene	ND	0.0250	"				
Ethylbenzene	ND	0.0250	"				
Xylene (p/m)	ND	0.0250	"				
Xylene (o)	ND	0.0250	"				
Surrogate: a,a,a-Trifluorotoluene	38.7		ug/kg	40.0	96.8	80-120	
Surrogate: 4-Bromofluorobenzene	32.4		"	40.0	81.0	80-120	
LCS (EI61904-BS1)				Prepared & Ana	alyzed: 09/19/06		
Benzene	1.42	0.0250	mg/kg wet	1.25	114	80-120	
Toluene	1.29	0.0250	"	1.25	103	80-120	
Ethylbenzene	1.19	0.0250	"	1.25	95.2	80-120	
Xylene (p/m)	2.65	0.0250	"	2.50	106	80-120	
Xylene (o)	1.22	0.0250	"	1.25	97.6	80-120	
Surrogate: a,a,a-Trifluorotoluene	42.4		ug/kg	40.0	106	80-120	

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI61904 - EPA 5030C (GC)										
Calibration Check (EI61904-CCV1)				Prepared &	Analyzed:	09/19/06				
Benzene	0.0512		mg/kg wet	0.0500		102	80-120			
Toluene	0.0454		"	0.0500		90.8	80-120			
Ethylbenzene	0.0450		"	0.0500		90.0	80-120			
Xylene (p/m)	0.0887		"	0.100		88.7	80-120			
Xylene (o)	0.0440		"	0.0500		88.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.4		ug/kg	40.0		98.5	80-120			
Surrogate: 4-Bromofluorobenzene	32.8		"	40.0		82.0	80-120			
Matrix Spike (EI61904-MS1)	Sour	rce: 6I15017-	-30	Prepared &	Analyzed:	09/19/06				
Benzene	1.47	0.0250	mg/kg dry	1.31	ND	112	80-120			
Toluene	1.33	0.0250	"	1.31	ND	102	80-120			
Ethylbenzene	1.21	0.0250	"	1.31	ND	92.4	80-120			
Xylene (p/m)	2.81	0.0250	"	2.62	ND	107	80-120			
Xylene (o)	1.32	0.0250	"	1.31	ND	101	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.2		ug/kg	40.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	39.3		"	40.0		98.2	80-120			
Matrix Spike Dup (EI61904-MSD1)	Sour	rce: 6I15017-	-30	Prepared &	a Analyzed:	09/19/06				
Benzene	1.55	0.0250	mg/kg dry	1.31	ND	118	80-120	5.22	20	
Toluene	1.32	0.0250	"	1.31	ND	101	80-120	0.985	20	
Ethylbenzene	1.32	0.0250	"	1.31	ND	101	80-120	8.89	20	
Xylene (p/m)	2.75	0.0250	"	2.62	ND	105	80-120	1.89	20	
Xylene (o)	1.36	0.0250	"	1.31	ND	104	80-120	2.93	20	
Surrogate: a,a,a-Trifluorotoluene	39.9		ug/kg	40.0		99.8	80-120			

"

40.0

44.5

Environmental Edo of Texas	Environmental	Lab of	Texas
----------------------------	---------------	--------	-------

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

111

80-120

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch EI61901 - General Preparation (Prep)												
Blank (EI61901-BLK1)				Prepared: 09	Prepared: 09/18/06 Analyzed: 09/19/06							
% Solids	100		%									
Duplicate (EI61901-DUP1)	Source: 6I18006-01		Prepared: 09	9/18/06 A	nalyzed: 09/	19/06						
% Solids	87.3		%		87.6			0.343	20			

Notes and Definitions

S-04	The surrogate recover	for this sample is outside o	of established control limits due	to a sample matrix affect
5-04	The surrogate recovery	for this sample is outside o	of established control minus due	to a sample matrix effect.

- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Jut

Date:

9/20/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	Project #: 200 6 - 03 2.	Project Lac:	PO #:	Fax No:	Analyze For:	TCLP: TOTAL:	560	а, влех в 9 Сс Бр нё 93' нСОЗ) 1002 36	Time Sampled (Time Sampled (O, of Containers (O, of Containers (O) (O) (O) (O) (O) (O) (O) (O)			1 9	M	- 1				Sample Containers Intact Labels on container? N Custody Seals: Kontainers / Cooler Tornocreture Liohn Berfelot:	Date Laboratory Comments:	Date Time
Environmental Lab of Texas 12600 West 1-20 East Odessa, Texas 79765 Fax: 432-563-1713	Zong.	10 200	6/6/ (-6/10/ - 1 al		Sampler Signature: 22, 40 Lall	Email:			Pelqme2 etc	FIELD CODE	2691 41800	2 Comp 41306	3/80	1 306 1	P 100 00 00 00 00 00 00 0	918061		Special Instructions:	Relinquished by: Date Time Received by:	Reinquisited by: Date Time Received by ELOT.

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

ent:	SUBS	
te/ Time:	a/18/06 1:45	
b ID # :	6718006	
tials:	Cle	

Sample Receipt Checklist

			Client I	nitials
Temperature of container/ cooler?	Yes	No	2,5 °C	
Shipping container in good condition?	Xes?	No		
Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	\neg
Custody Seals intact on sample bottles/ container?	(Xes	No	Not Present	
Chain of Custody present?	Xas	No		
Sample instructions complete of Chain of Custody?	Y⁄es,	No		
Chain of Custody signed when relinquished/ received?	Xes	No		
Chain of Custody agrees with sample label(s)?	Xes	No	ID written on Cont./ Lid	
Container label(s) legible and intact?	Yes	No	Not Applicable	
Sample matrix/ properties agree with Chain of Custody?	Yes.	No		
1 Containers supplied by ELOT?	Yes	No		
2 Samples in proper container/ bottle?	Yes	No	See Below	
3 Samples properly preserved?	Yeş	No	See Below	
4 Sample bottles intact?	Yeş	No		-
5 Preservations documented on Chain of Custody?	Yes	No		
6 Containers documented on Chain of Custody?	Yes	No		
7 Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
8 All samples received within sufficient hold time?	Yes	No	See Below	
9 VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

ontact:		Contacted by:			Date/ Time:	
egarding: _					 	
prrective Actio	n Taken:					
			····		 	
			<u> </u>	· · · · · · · · · · · · · · · · · · ·	 	
·				··	 	

heck all that Apply:

See attached e-mail/ fax

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Analytical Report 454753

for

Southern Union Gas Services- Monahans

Project Manager: Joel Lowry

SW 4-Inch Lateral

1RP-1018

07-JAN-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

07-JAN-13

Project Manager: **Joel Lowry Southern Union Gas Services- Monahans** 801 South Loop 464 Monahans, TX 79756

Reference: XENCO Report No(s): 454753 SW 4-Inch Lateral Project Address: Lovington, NM

Joel Lowry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 454753. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 454753 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Nicholas Straccione Project Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 454753

Southern Union Gas Services- Monahans, Monahans, TX

SW 4-Inch Lateral

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
TT-1 @ Surface	S	12-20-12 09:00		454753-001
TT-1 @ 4'	S	12-20-12 09:05		454753-002
TT-1 @ 6'	S	12-20-12 09:10		454753-003
TT-2 @ Surface	S	12-20-12 09:20		454753-004
TT-2 @ 4'	S	12-20-12 09:25		454753-005
TT-2 @ 6'	S	12-20-12 09:30		454753-006
TT-3 @ Surface	S	12-20-12 09:40		454753-007
TT-3 @ 4'	S	12-20-12 09:45		454753-008
TT3- @ 6'	S	12-20-12 09:50		454753-009
TT4- @ Surface	S	12-20-12 10:00		454753-010
TT4- @ 4'	S	12-20-12 10:05		454753-011
TT4- @ 6'	S	12-20-12 10:10		454753-012
TT-5 @ Surface	S	12-20-12 10:20		454753-013
TT-5 @ 4'	S	12-20-12 10:25		454753-014
TT-5 @ 6'	S	12-20-12 10:30		454753-015
TT-6 @ Surface	S	12-20-12 10:40		454753-016
TT-6 @ 4'	S	12-20-12 10:45		454753-017
TT-6 @ 6'	S	12-20-12 10:50		454753-018
TT-7 @ Surface	S	12-20-12 11:00		454753-019
TT-7 @ 4'	S	12-20-12 11:05		454753-020
TT-7 @ 6'	S	12-20-12 11:10		454753-021

CASE NARRATIVE

Client Name: Southern Union Gas Services- Monahans Project Name: SW 4-Inch Lateral

Project ID:1RP-1018Work Order Number(s):454753

Report Date: 07-JAN-13 Date Received: 12/24/2012

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Certificate of Analysis Summary 454753

Southern Union Gas Services- Monahans, Monahans, TX

Project Name: SW 4-Inch Lateral

Date Received in Lab: Mon Dec-24-12 03:00 pm

Report Date: 07-JAN-13

Contact: Joel Lowry Project Location: Lovington, NM

Project Id: 1RP-1018

roject Location: Lovington, NM													
								Project Mar	ager:	Nicholas Strac	ccione		
	Lab Id:	454753-0	01	454753-00	02	454753-00	03	454753-0	04	454753-0	05	454753-0	006
Are alugia De any ested	Field Id:	TT-1 @ Su	rface	TT-1 @ 4	4'	TT-1 @ (6'	TT-2 @ Sur	face	TT-2 @	4'	TT-2 @	6'
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Dec-20-12 (09:00	Dec-20-12 0	9:05	Dec-20-12 0	9:10	Dec-20-12 0	9:20	Dec-20-12 (09:25	Dec-20-12	09:30
BTEX by EPA 8021B	Extracted:											Jan-03-13	08:30
	Analyzed:											Jan-03-13	13:36
	Units/RL:											mg/kg	RL
Benzene												ND	0.00103
Toluene												ND	0.00206
Ethylbenzene												ND	0.00103
m,p-Xylenes												ND	0.00206
o-Xylene												ND	0.00103
Total Xylenes												ND	0.00103
Total BTEX												ND	0.00103
Inorganic Anions by EPA 300/300.1	Extracted:	Dec-28-12	17:06	Dec-28-12 1	7:41	Dec-28-12 1	8:15	Dec-28-12 1	8:33	Dec-28-12	18:50	Dec-28-12	19:42
SUB: E871002	Analyzed:	Dec-28-12	17:06	Dec-28-12 1	7:41	Dec-28-12 1	8:15	Dec-28-12 1	8:33	Dec-28-12	18:50	Dec-28-12	19:42
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		4.26	1.31	2.36	1.20	1.79	1.27	ND	1.03	1.28	1.14	ND	1.03
Percent Moisture	Extracted:												
SUB: E871002	Analyzed:	Dec-28-12	11:06	Dec-28-12 1	1:06	Dec-28-12 1	1:06	Dec-28-12 1	1:06	Dec-28-12	11:06	Dec-28-12	11:06
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		23.9	1.00	16.6	1.00	21.0	1.00	2.94	1.00	12.6	1.00	2.78	1.00
Sulfides by SW-846 9030B	Extracted:												
SUB: E871002	Analyzed:											Jan-03-13	16:36
	Units/RL:											mg/kg	RL
Sulfide, total												ND	50.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

the Nul

Nicholas Straccione Project Manager

Certificate of Analysis Summary 454753

Southern Union Gas Services- Monahans, Monahans, TX

Project Name: SW 4-Inch Lateral

Date Received in Lab: Mon Dec-24-12 03:00 pm

Report Date: 07-JAN-13

								Project Mar	ager:	Nicholas Strac	cione		
	Lab Id:	454753-0	01	454753-00)2	454753-0	03	454753-0	04	454753-0	05	454753-0	06
Anglusis Deguested	Field Id:	TT-1 @ Sur	face	TT-1 @ 4	ť l	TT-1 @	6'	TT-2 @ Sur	face	TT-2 @	4'	TT-2 @	6'
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Dec-20-12 0	9:00	Dec-20-12 0	9:05	Dec-20-12 0	9:10	Dec-20-12 0	9:20	Dec-20-12 (9:25	Dec-20-12 (09:30
TPH By SW8015 Mod	Extracted:	Dec-27-12 1	2:00	Dec-27-12 1	2:00	Dec-27-12 1	2:00	Dec-27-12 1	2:00	Dec-27-12 1	2:00	Dec-27-12 1	12:00
	Analyzed:	Dec-28-12 (00:10	Dec-28-12 0	0:36	Dec-28-12 0	01:02	Dec-28-12 0	1:28	Dec-28-12 ()1:54	Dec-28-12 (02:20
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	19.7	ND	18.0	ND	19.0	ND	15.4	ND	17.2	ND	15.4
C12-C28 Diesel Range Hydrocarbons		ND	19.7	ND	18.0	ND	19.0	ND	15.4	ND	17.2	ND	15.4
C28-C35 Oil Range Hydrocarbons		ND	19.7	ND	18.0	ND	19.0	ND	15.4	ND	17.2	ND	15.4
Total TPH		ND	19.7	ND	18.0	ND	19.0	ND	15.4	ND	17.2	ND	15.4

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Ch-Nul

Nicholas Straccione Project Manager

Certificate of Analysis Summary 454753

Southern Union Gas Services- Monahans, Monahans, TX

Project Name: SW 4-Inch Lateral

Date Received in Lab: Mon Dec-24-12 03:00 pm

Report Date: 07-JAN-13

Contact: Joel Lowry Project Location: Lovington, NM

Project Id: 1RP-1018

roject Location: Lovington, NM								-					
								Project Mar	ager:	Nicholas Strad	ccione		
	Lab Id:	454753-0	07	454753-0	008	454753-0)09	454753-0	10	454753-0	011	454753-	012
A surface in Decouver (s. 1	Field Id:	TT-3 @ Su	rface	TT-3 @	4'	TT3-@	6'	TT4-@Su	face	TT4- @	4'	TT4- @	6'
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	_
	Sampled:	Dec-20-12 ()9:40	Dec-20-12 (09:45	Dec-20-12	09:50	Dec-20-12 1	0:00	Dec-20-12	10:05	Dec-20-12	10:10
BTEX by EPA 8021B	Extracted:					Jan-03-13 (08:30					Jan-03-13	08:30
	Analyzed:					Jan-03-13	13:53					Jan-03-13	15:31
	Units/RL:					mg/kg	RL					mg/kg	RL
Benzene						ND	0.00116					ND	0.00122
Toluene						ND	0.00232					ND	0.00244
Ethylbenzene						ND	0.00116					ND	0.00122
m,p-Xylenes						ND	0.00232					ND	
o-Xylene						ND	0.00116					ND	
Total Xylenes						ND	0.00116					ND	0.00122
Total BTEX						ND	0.00116					ND	0.00122
Inorganic Anions by EPA 300/300.1	Extracted:	Dec-28-12 20:00		Dec-28-12 20:17		Dec-28-12 20:35		Dec-28-12 2	0:52	Dec-28-12	21:09	Dec-28-12	21:44
SUB: E871002	Analyzed:	Dec-28-12	20:00	Dec-28-12 20:17		Dec-28-12 20:35		Dec-28-12 20:52		Dec-28-12 21:09		Dec-28-12 21:44	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		1.54	1.25	1.31	1.24	4.16	1.16	ND	1.31	ND	1.03	ND	1.22
Percent Moisture	Extracted:												
SUB: E871002	Analyzed:	Dec-28-12	11:06	Dec-28-12	11:06	Dec-28-12	11:06	Dec-28-12 1	1:06	Dec-28-12	11:06	Dec-28-12	11:06
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		19.8	1.00	19.2	1.00	14.1	1.00	23.4	1.00	2.59	1.00	17.9	1.00
Sulfides by SW-846 9030B	Extracted:												
SUB: E871002	Analyzed:					Jan-03-13	16:38					Jan-03-13	16:40
	Units/RL:					mg/kg	RL					mg/kg	RL
Sulfide, total						ND	50.0					64.0	50.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Ch. Nul

Nicholas Straccione Project Manager

Page 7 of 29

Certificate of Analysis Summary 454753

Southern Union Gas Services- Monahans, Monahans, TX

Project Name: SW 4-Inch Lateral

Date Received in Lab: Mon Dec-24-12 03:00 pm

Report Date: 07-JAN-13

								Project Man	ager:	Nicholas Strac	cione		
	Lab Id:	454753-0	07	454753-00	08	454753-0	09	454753-0	10	454753-0	11	454753-0	12
Anglusis Deguested	Field Id:	TT-3 @ Sur	face	TT-3 @ 4	4'	TT3-@	6'	TT4-@Sur	face	TT4- @	4'	TT4-@	6'
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Dec-20-12 0	9:40	Dec-20-12 0	9:45	Dec-20-12 0)9:50	Dec-20-12 1	0:00	Dec-20-12 1	0:05	Dec-20-12 1	0:10
TPH By SW8015 Mod	Extracted:	Dec-28-12 1	5:00	Dec-28-12 1	5:00	Dec-28-12 1	15:00	Dec-28-12 1	5:00	Dec-28-12 1	5:00	Dec-28-12 1	5:00
	Analyzed:	Dec-28-12 1	9:55	Dec-28-12 2	0:21	Dec-28-12 2	20:46	Dec-28-12 2	1:12	Dec-28-12 2	1:37	Dec-28-12 2	22:03
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	18.7	ND	18.5	ND	17.5	ND	19.5	ND	15.4	ND	18.3
C12-C28 Diesel Range Hydrocarbons		ND	18.7	ND	18.5	74.1	17.5	ND	19.5	ND	15.4	ND	18.3
C28-C35 Oil Range Hydrocarbons		ND	18.7	ND	18.5	ND	17.5	ND	19.5	ND	15.4	ND	18.3
Total TPH		ND	18.7	ND	18.5	74.1	17.5	ND	19.5	ND	15.4	ND	18.3

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Ch-Nul

Nicholas Straccione Project Manager

Certificate of Analysis Summary 454753

Southern Union Gas Services- Monahans, Monahans, TX

Project Name: SW 4-Inch Lateral

Date Received in Lab: Mon Dec-24-12 03:00 pm

Report Date: 07-JAN-13

roject Location: Lovington, NM													
	1							Project Mar	nager:	Nicholas Strac	cione		
	Lab Id:	454753-0	13	454753-0	14	454753-0	15	454753-0	16	454753-0	17	454753-0	18
A - aluaia Do - a anto d	Field Id:	TT-5 @ Su	rface	TT-5 @ -	4'	TT-5 @ (6'	TT-6 @ Su	face	TT-6 @	4'	TT-6 @ (6'
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Dec-20-12	0:20	Dec-20-12 1	0:25	Dec-20-12 1	10:30	Dec-20-12 1	0:40	Dec-20-12 1	10:45	Dec-20-12 1	10:50
Inorganic Anions by EPA 300/300.1	Extracted:	Dec-28-12	22:02	Dec-28-12 2	2:19	Dec-28-12 2	23:11	Dec-28-12 2	23:29	Dec-28-12 2	23:46	Dec-29-12 0	00:04
SUB: E871002	Analyzed:	Dec-28-12	22:02	Dec-28-12 2	2:19	Dec-28-12 2	23:11	Dec-28-12 2	23:29	Dec-28-12 2	23:46	Dec-29-12 0	00:04
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		10.9	1.42	4.10	1.32	3.60	1.23	ND	1.32	ND	1.14	ND	1.20
Percent Moisture	Extracted:												
SUB: E871002	Analyzed:	Dec-28-12	11:06	Dec-28-12 1	1:06	Dec-28-12 1	11:06	Dec-28-12 1	1:06	Dec-28-12 1	11:06	Dec-28-12 1	11:06
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		29.6	1.00	24.3	1.00	18.5	1.00	24.4	1.00	12.0	1.00	16.5	1.00
TPH By SW8015 Mod	Extracted:	Dec-28-12	15:00	Dec-28-12 1	5:00	Dec-28-12 1	15:00	Dec-28-12 1	5:00	Dec-28-12 1	15:00	Dec-28-12 1	15:00
	Analyzed:	Dec-28-12	22:28	Dec-28-12 2	2:53	Dec-28-12 2	23:17	Dec-28-12 2	23:42	Dec-29-12 (00:31	Dec-29-12 0	00:56
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	21.2	ND	19.8	ND	18.3	ND	19.8	ND	17.1	ND	18.0
C12-C28 Diesel Range Hydrocarbons		ND	21.2	ND	19.8	ND	18.3	ND	19.8	ND	17.1	ND	18.0
C28-C35 Oil Range Hydrocarbons		ND	21.2	ND	19.8	ND	18.3	ND	19.8	ND	17.1	ND	18.0
Total TPH		ND	21.2	ND	19.8	ND	18.3	ND	19.8	ND	17.1	ND	18.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

the Nul

Nicholas Straccione Project Manager

Certificate of Analysis Summary 454753

Southern Union Gas Services- Monahans, Monahans, TX

Project Name: SW 4-Inch Lateral

Date Received in Lab: Mon Dec-24-12 03:00 pm

Report Date: 07-JAN-13

Project Manager: Nicholas Straccione

019 urface	454753-0 TT-7 @ -	-	454753-02 TT-7 @ 0				
ırface	TT-7 @ -	4'	TT-7 @ (6'			1
				0		1	
	SOIL		SOIL				
11:00	Dec-20-12 1	1:05	Dec-20-12 1	1:10			
00:21	Dec-29-12 0	00:38	Dec-29-12 0)1:48			
00:21	Dec-29-12 0	00:38	Dec-29-12 0	01:48			
RL	mg/kg	RL	mg/kg	RL			
1.28	2.16	1.36	ND	1.02			
11:06	Dec-28-12 1	1:06	Dec-28-12 1	1:06			
RL	%	RL	%	RL			
1.00	26.3	1.00	1.91	1.00			
15:00	Dec-28-12 1	5:00	Dec-28-12 1	5:00			
01:20	Dec-29-12 0)1:45	Dec-29-12 0	02:09			
RL	mg/kg	RL	mg/kg	RL			
19.3	ND	20.3	ND	15.3			
19.3	ND	20.3	ND	15.3			
19.3	ND	20.3	ND	15.3			
19.3	ND	20.3	ND	15.3			
	1.28 11:06 RL 1.00 01:20 RL 19.3 19.3 19.3	O0:21 Dec-29-12 (00:21 Dec-29-12 (RL mg/kg 1.28 2.16 RL % 11:06 Dec-28-12 1 RL % 1.00 26.3 15:00 Dec-28-12 1 01:20 Dec-29-12 (RL mg/kg 19.3 ND 19.3 ND 19.3 ND	O0:21 Dec-29-12 OU:38 00:21 Dec-29-12 OU:38 Dec-29-12 OU:38 Dec-29-12 OU:38 RL mg/kg RL 1.28 2.16 1.36 I1:06 Dec-28-12 II:06 RL RL % RL 1.00 26.3 1.00 15:00 Dec-28-12 II:00 01:20 01:20 Dec-29-12 OI:45 RL RL mg/kg RL 19.3 ND 20.3 19.3 ND 20.3 19.3 ND 20.3	OD:21 Dec-29-12 OD:38 Dec-29-12 OD:38 00:21 Dec-29-12 OD:38 Dec-29-12 OD:38 RL mg/kg RL mg/kg 1.28 2.16 1.36 ND I1:06 Dec-28-12 I1:06 Dec-28-12 OD:21 RL % RL % 1.00 26.3 1.00 1.91 15:00 Dec-28-12 1:45 Dec-28-12 1 01:20 Dec-29-12 01:45 Dec-29-12 0 RL mg/kg RL mg/kg ND 19.3 ND 20.3 ND 19.3 ND 20.3 ND	00:21 Dec-29-12 00:38 Dec-29-12 01:48 00:21 Dec-29-12 00:38 Dec-29-12 01:48 RL mg/kg RL mg/kg RL 1.28 2.16 1.36 ND 1.02 RL Mg/kg RL mg/kg RL 1.28 2.16 1.36 ND 1.02 RL Dec-28-12 11:06 Dec-28-12 11:06 RL RL % RL % RL 1.00 26.3 1.00 1.91 1.00 15:00 Dec-28-12 15:00 Dec-28-12 15:00 102 02 01:20 Dec-29-12 01:45 Dec-29-12 02:09 02 02 02 02 RL mg/kg RL mg/kg RL 15.3 19.3 ND 20.3 ND 15.3 19.3 ND 20.3 ND 15.3	OD:21 Dec-29-12 00:38 Dec-29-12 01:48 00:21 Dec-29-12 00:38 Dec-29-12 01:48 RL mg/kg RL mg/kg RL 1.28 2.16 1.36 ND 1.02 I1:06 Dec-28-12 11:06 Dec-28-12 11:06 Dec-28-12 11:06 RL % RL % RL 1.00 26.3 1.00 1.91 1.00 15:00 Dec-29-12 01:45 Dec-29-12 02:09 1.91 1.00 11:20 Dec-29-12 01:45 Dec-29-12 02:09 1.93 ND 20.3 ND 15.3 19.3 ND 20.3 ND 15.3 1.93 ND 15.3 19.3 ND 20.3 ND 15.3 1.93 ND 20.3 ND 15.3	Image: Dec-29-12 01:38 Dec-29-12 01:48 Dec-29-12 01:48 00:21 Dec-29-12 00:38 Dec-29-12 01:48 Dec-29-12 01:48 RL mg/kg RL mg/kg RL mg/kg RL 1.28 2.16 1.36 ND 1.02 Dec-29-12 01:48 Dec-29-12 01:48 I1:06 Dec-29-12 01:45 Dec-29-12 01:45 Dec-29-12 01:45 Dec-28-12 11:06 RL % RL % RL M RL 100 Dec-28-12 11:06 Dec-28-12 11:06 Dec-28-12 11:06 Dec-28-12 11:06 RL % RL % RL M RL 100 Dec-28-12 11:06 Dec-28-12 15:00 Dec-28-12 15:00 Dec-29-12 01:45 Dec-29-12 02:09 RL mg/kg RL mg/kg RL mg/kg RL 19.3 ND 20.3 ND 15.3 Dec-28-12 Dec-28-12 19.3 ND 20.3 ND 15.3 Dec-28-12 Dec-28-12 19.3

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Ch. Nul

Nicholas Straccione Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
----------------------------	-----------------------------------	------------------------

- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 12600 West I-20 East, Odessa, TX 79765 6017 Financial Drive, Norcross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040
 Phone
 Fax

 (281) 240-4200
 (281) 240-4280

 (214) 902 0300
 (214) 351-9139

 (210) 509-3334
 (210) 509-3335

 (813) 620-2000
 (813) 620-2033

 (432) 563-1800
 (432) 563-1713

 (770) 449-8800
 (770) 449-5477

 (602) 437-0330
 (210) 509-3335

Final 1.002

Project Name: SW 4-Inch Lateral

Vork Orders : 454753	, 454753 Sample: 454753-001 / SMP	D 4		D: 1RP-1018		
Lab Batch #: 903786	Date Analyzed: 12/28/12 00:10	Bate SI	h: ¹ Matrix		STUDY	
Units: mg/kg	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		97.0	100	97	70-135	
o-Terphenyl		48.6	50.0	97	70-135	
Lab Batch #: 903786	Sample: 454753-002 / SMP	Bato	h: ¹ Matrix	:Soil		
Units: mg/kg	Date Analyzed: 12/28/12 00:36	SU	RROGATE R	ECOVERY S	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		98.2	100	98	70-135	
o-Terphenyl		49.6	50.0	99	70-135	
Lab Batch #: 903786	Sample: 454753-003 / SMP	Bato	h: ¹ Matrix	:Soil	I	
Units: mg/kg	Date Analyzed: 12/28/12 01:02	SU	RROGATE R	ECOVERY S	STUDY	
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
	Analytes			[D]		
1-Chlorooctane		101	100	101	70-135	
o-Terphenyl		50.6	50.0	101	70-135	
Lab Batch #: 903786	Sample: 454753-004 / SMP	Bato	-			
Units: mg/kg	Date Analyzed: 12/28/12 01:28	SU	RROGATE R	ECOVERY S	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		92.8	99.8	93	70-135	
o-Terphenyl		45.0	49.9	90	70-135	
Lab Batch #: 903786	Sample: 454753-005 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 12/28/12 01:54	SU	RROGATE R	ECOVERY S	STUDY	
TPH]	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		95.6	100	96	70-135	
· · · · · · ·		20.0	100		, , , , , , , , , , , , , , , , , , , ,	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: SW 4-Inch Lateral

ork Orders : 454753 Lab Batch #: 903786	, 454753 Sample: 454753-006 / SMP	Bate		D: 1RP-1018		
Units: mg/kg	Date Analyzed: 12/28/12 02:20		RROGATE R		STUDY	
	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]	RY STUDYryControl Limits %R70-13570-135RY STUDYryControl Limits %R70-13570-135RY STUDYryControl Limits %R70-13570-135RY STUDYryControl Limits %R70-13570-135RY STUDYryControl Limits %R70-13570-135RY STUDYryControl Limits %R70-13570-135RY STUDYControl Limits %R70-13570-135	
1-Chlorooctane		93.7	99.8	94		
o-Terphenyl		46.0	49.9	92	70-135	
Lab Batch #: 903894	Sample: 454753-007 / SMP	Bato				
Units: mg/kg	Date Analyzed: 12/28/12 19:55	SU	RROGATE R	ECOVERY S	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Limits	Flags
1-Chlorooctane		93.2	99.9	93	70-135	
o-Terphenyl		47.1	50.0	94		
Lab Batch #: 903894	Sample: 454753-008 / SMP	Bato	h: ¹ Matrix	soil	1 1	
Units: mg/kg	Date Analyzed: 12/28/12 20:21	SU	RROGATE R	ECOVERY S	STUDY	
TPH 1	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Limits	Flags
	Analytes			[D]		
1-Chlorooctane		92.5	99.6	93		
o-Terphenyl		46.8	49.8	94	70-135	
Lab Batch #: 903894	Sample: 454753-009 / SMP	Bato	-			
Units: mg/kg	Date Analyzed: 12/28/12 20:46	SU	RROGATE R	ECOVERY S	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Limits	Flage
1-Chlorooctane		94.2	100	94	70-135	
o-Terphenyl		48.3	50.1	96	70-135	
Lab Batch #: 903894	Sample: 454753-010 / SMP	Bato	h: 1 Matrix	x: Soil	<u> </u>	
Units: mg/kg	Date Analyzed: 12/28/12 21:12	SU	RROGATE R	ECOVERY S	STUDY	
TPH]	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Limits	Flags
1-Chlorooctane		92.0	99.7	92	70-135	
o-Terphenyl			1			

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: SW 4-Inch Lateral

Vork Orders: 454753			0			
Lab Batch #: 903894	Sample: 454753-011 / SMP					
Units: mg/kg	Date Analyzed: 12/28/12 21:37	SU	RROGATE R	ECOVERY	STUDY	
TPH]	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	21:37 SURROGATE RECOVERY STUDY Amount Found [A] True Amount [B] Recovery %R [D] Control Limits %R 92.9 100 93 70-135 45.8 50.0 92 70-135 012 / SMP Batch: 1 Matrix: Soil 22:03 SURROGATE RECOVERY STUDY Amount Found [A] True Amount [B] Recovery %R [D] Control Limits %R 94.9 100 95 70-135 013 / SMP Batch: 1 Matrix: Soil 22:28 SURROGATE RECOVERY STUDY Amount Found [A] True Amount [B] Recovery %R [D] Control Limits %R 22:28 SURROGATE RECOVERY STUDY 48.3 50.0 97 70-135 013 / SMP Batch: 1 Matrix: Soil 22:28 SURROGATE RECOVERY STUDY Imits %R [D] 106 106 99.7 106 70-135 53.3 49.9 107 70-135 014 / SMP Batch: 1 Matrix: Soil				
1-Chlorooctane		92.9	100	93	70-135	
o-Terphenyl		45.8	50.0	92	70-135	
Lab Batch #: 903894	Sample: 454753-012 / SMP	Batc	ch: ¹ Matrix	k: Soil		
Units: mg/kg	Date Analyzed: 12/28/12 22:03	SU	RROGATE R	ECOVERY S	STUDY	
TPH]	By SW8015 Mod Analytes	Found	Amount	%R	Limits	Flags
1-Chlorooctane	Anarytes	04.0	100		70.125	
o-Terphenyl						
	G 1 454752 012 / SMD				10 155	
Lab Batch #: 903894	Sample: 454753-013 / SMP				TUDV	
Units: mg/kg	Date Analyzed: 12/28/12 22:28	50	KKUGAIE K			
TPH	By SW8015 Mod	Found	Amount	%R	Limits	Flags
	Analytes			[D]		
1-Chlorooctane		106	99.7	106	70-135	
o-Terphenyl		53.3	49.9	107	70-135	
Lab Batch #: 903894	Sample: 454753-014 / SMP	Batc	ch: 1 Matrix	k: Soil		
Units: mg/kg	Date Analyzed: 12/28/12 22:53	SU	RROGATE R	ECOVERY S	STUDY	
TPH	By SW8015 Mod Analytes	Found	Amount	%R	Limits	Flags
1-Chlorooctane	-	94.4	100	94	70-135	
o-Terphenyl		47.3	50.0	95	70-135	
Lab Batch #: 903894	Sample: 454753-015 / SMP	Bate	h: 1 Matrix	soil		
Units: mg/kg	Date Analyzed: 12/28/12 23:17	SU	RROGATE R	ECOVERY S	STUDY	
TPH]	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		97.9	99.7	98	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: SW 4-Inch Lateral

ork Orders : 454753 Lab Batch #: 903894	5, 454753 Sample: 454753-016 / SMP	Rate	0			
Units: mg/kg	Date Analyzed: 12/28/12 23:42				STUDY	
	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	2 23:42SURROGATE RECOVERY STUDYAmount Found [A]True Amount [B]Recovery $\frac{0}{NR}$ [D]Control Limits $\frac{0}{NR}$ [D]F95.799.79670-1359095.799.79670-13590017 / SMPBatch:1Matrix: Soil2 00:31SURROGATE RECOVERY STUDYAmount Found [A]True Amount [B]Recovery $\frac{0}{NR}$ $\frac{0}{NR}$ Control Limits $\frac{0}{NR}$ 97.11009770-135018 / SMPBatch:1Matrix: Soil2 00:56SURROGATE RECOVERY STUDY2 00:56SURROGATE RECOVERY STUDY2 00:56SURROGATE RECOVERY STUDY018 / SMPBatch:11009770-135018 / SMPBatch:11009870-135018 / SMPBatch:11009870-135019 / SMPBatch:11009870-135019 / SMPBatch:1101100981019 / SMPBatch:1Manount [A]True [B]Recovery $\frac{NR}{(D)}$ 98.31009898.310098020 / SMPBatch:1020 / SMPBatch:1020 / SMPBatch:1020 / SMPBatch:1020 / SMPBatch:1021:45SURROGATE RECOVERY STUDY<				
1-Chlorooctane						
o-Terphenyl		46.7	49.9	94	70-135	
Lab Batch #: 903894	Sample: 454753-017 / SMP					
Units: mg/kg	Date Analyzed: 12/29/12 00:31	SU	RROGATE R	ECOVERY S	STUDY	
TPH	By SW8015 Mod Analytes	Found	Amount	%R	Limits	Flags
1-Chlorooctane		97.1	100	97	70-135	
o-Terphenyl						
Lab Batch #: 903894	Sample: 454753-018 / SMP	Batc	h: ¹ Matrix	x: Soil	I	
Units: mg/kg	Date Analyzed: 12/29/12 00:56	SU			STUDY	
TPH]	By SW8015 Mod	Found	Amount	•	Limits	Flags
	Analytes			[D]		
1-Chlorooctane		97.5	100	98	70-135	
o-Terphenyl		47.6	50.1	95	70-135	
Lab Batch #: 903894	Sample: 454753-019 / SMP					
Units: mg/kg	Date Analyzed: 12/29/12 01:20	SU	RROGATE R	ECOVERY S	STUDY	
TPH	By SW8015 Mod Analytes	Found	Amount	%R	Limits	Flags
1-Chlorooctane		98.3	100	98	70-135	
o-Terphenyl		49.5	50.0	99	70-135	
Lab Batch #: 903894	Sample: 454753-020 / SMP	Batc	h: 1 Matrix	x: Soil		
Units: mg/kg	Date Analyzed: 12/29/12 01:45	SU	RROGATE R	ECOVERY S	STUDY	
TPH	By SW8015 Mod Analytes			Recovery %R [D]		Flage
1-Chlorooctane	·	96.1	99.8	96	70-135	
o-Terphenyl				97		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: SW 4-Inch Lateral

fork Orders : 454753		n ()	0	D: 1RP-1018		
Lab Batch #: 903894	Sample: 454753-021 / SMP	Batcl	h: 1 Matrix RROGATE R		STUDY	
Units: mg/kg	Date Analyzed: 12/29/12 02:09 By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		93.0	100	93	70-135	
o-Terphenyl		44.1	50.1	88	70-135	
Lab Batch #: 904067	Sample: 454753-006 / SMP	Batc	h: ¹ Matrix	:Soil		
Units: mg/kg	Date Analyzed: 01/03/13 13:36	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 4 Differench and an	Analytes	0.0254	0.0200		00.120	
1,4-Difluorobenzene 4-Bromofluorobenzene		0.0254	0.0300	85	80-120 80-120	
					80-120	
Lab Batch #: 904067	Sample: 454753-009 / SMP	Batcl	h: ¹ Matrix RROGATE R		STUDV	
Units: mg/kg	Date Analyzed: 01/03/13 13:53	50				
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1,4-Difluorobenzene		0.0302	0.0300	101	80-120	
4-Bromofluorobenzene		0.0339	0.0300	113	80-120	
Lab Batch #: 904067	Sample: 454753-012 / SMP	Batc	h: 1 Matrix	:Soil	1 1	
Units: mg/kg	Date Analyzed: 01/03/13 15:31	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
140.0	Analytes	0.02.52	0.0200		00.100	
1,4-Difluorobenzene 4-Bromofluorobenzene		0.0262	0.0300	87	80-120 80-120	
					00-120	
Lab Batch #: 903786	Sample: 631807-1-BLK / BI		h: 1 Matrix RROGATE R		STUDY	
Units: mg/kg	Date Analyzed: 12/27/12 15:52	30	KAUGAIE K			
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
	Analytes	[A]	[2]	[D]		
1-Chlorooctane	Analytes	94.4	100	[D] 94	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: SW 4-Inch Lateral

Vork Orders : 454753		IK ne	-			
Lab Batch #: 903894	-				STUDY	
Units: mg/kg	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			: Solid ECOVERY STUDY Recovery $\begin{tabular}{lllllllllllllllllllllllllllllllllll$		
1-Chlorooctane		Found [A] Amount [B] Recovery %R [D] Limits %R Flag %R 93.6 99.7 94 70-135				
o-Terphenyl		47.5	49.9	95	70-135	
Lab Batch #: 904067	Sample: 631984-1-BLK / B	LK Bate	h: ¹ Matrix	x: Solid		
Units: mg/kg	Date Analyzed: 01/03/13 09:49	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021B Analytes	Found	Amount	%R	Limits	Flags
1,4-Difluorobenzene	Analytes	0.0252	0.0300		80.120	
4-Bromofluorobenzene				-		
Lab Batch #: 903786	Sample: 631807-1-BKS / B	KS Boto	h. 1 Matrix	v Solid		
Units: mg/kg	Date Analyzed: 12/27/12 14:57				STUDY	
	By SW8015 Mod	Found	Amount	·	Limits	Flage
	Analytes	[A]	[B]		%R	
1-Chlorooctane		91.1	100	91	70-135	
o-Terphenyl		52.9	50.1	106	70-135	
Lab Batch #: 903894	Sample: 631869-1-BKS / B	KS Bate	h: 1 Matrix	x: Solid		
Units: mg/kg	Date Analyzed: 12/28/12 18:36	SU	RROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod	Found	Amount	%R	Limits	Flags
	Analytes					
1-Chlorooctane						
o-Terphenyl					70-135	
Lab Batch #: 904067	•					
Units: mg/kg	Date Analyzed: 01/03/13 09:17	<u> </u>	KRUGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B	Found	Amount	%R	Limits	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0321	0.0300	107	80-120	
4-Bromofluorobenzene		0.0321	0.0300	107	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: SW 4-Inch Lateral

fork Orders : 454753			0	D: 1RP-1018		
Lab Batch #: 903786	Sample: 631807-1-BSD / BS		h: ¹ Matrix		STUDY	
Units: mg/kg	Date Analyzed: 12/27/12 15:25 By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]	RY STUDY Control Limits %R 70-135 70-135 RY STUDY ry Control Limits %R 70-135 70-135 RY STUDY ry Control Limits %R 80-120 80-120 RY STUDY ry Control Limits %R 80-120 80-120 RY STUDY ry Control Limits %R 70-135 70-135 RY STUDY Control Limits %R 70-135 70-135 RY STUDY	
1-Chlorooctane		93.7	100	94	70-135	
o-Terphenyl		47.8	50.1	95	70-135	
Lab Batch #: 903894	Sample: 631869-1-BSD / BS	SD Bate	h: ¹ Matrix	c:Solid		
Units: mg/kg	Date Analyzed: 12/28/12 19:03	SU	RROGATE R	ECOVERY S	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Limits	Flage
1-Chlorooctane		94.5	99.8	95	70-135	
o-Terphenyl		54.0	49.9	108		
Lab Batch #: 904067	Sample: 631984-1-BSD / BS	SD Bate	h: ¹ Matrix	:Solid	1 1	
Units: mg/kg	Date Analyzed: 01/03/13 09:33		RROGATE R	ECOVERY S	STUDY	
BTEZ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Limits	Flage
1,4-Difluorobenzene	Analytes	0.0217	0.0200		00.120	
4-Bromofluorobenzene		0.0317	0.0300	106		
	a				80-120	
Lab Batch #: 903786	Sample: 454643-001 S / MS				STUDY	
Units: mg/kg	Date Analyzed: 12/27/12 16:52 By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits	Flage
1-Chlorooctane		84.9	100	85	70-135	
o-Terphenyl		49.3	50.1	98	70-135	
Lab Batch #: 903894	Sample: 454753-009 S / MS	Batc	h: 1 Matrix	: Soil		
Units: mg/kg	Date Analyzed: 12/29/12 03:22	SU	RROGATE R	ECOVERY S	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]		Flage
1-Chlorooctane		97.9	99.9	98	70-135	
o-Terphenyl		-				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: SW 4-Inch Lateral

Vork Orders: 454753		~		D: 1RP-1018		
Lab Batch #: 904067	Sample: 454753-006 S / MS		-			
Units: mg/kg	Date Analyzed: 01/03/13 15:47	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1.4-Difluorobenzene	Anaryus	0.0273	0.0300	91	80-120	
4-Bromofluorobenzene		0.0273	0.0300	118	80-120	
Lab Batch #: 903786	Sample: 454643-001 SD / N					
Units: mg/kg	Date Analyzed: 12/27/12 17:23		RROGATE R		STUDY	
	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		92.0	99.9	92	70-135	
o-Terphenyl		48.6	50.0	97	70-135	
Lab Batch #: 903894	Sample: 454753-009 SD / M	MSD Bate	h: ¹ Matrix	:Soil		
Units: mg/kg	Date Analyzed: 12/29/12 03:46	SU	RROGATE R	ECOVERY S	STUDY	
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		97.2	99.9	97	70-135	
o-Terphenyl		54.4	50.0	109	70-135	
Lab Batch #: 904067	Sample: 454753-006 SD / M	ASD Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 01/03/13 16:03	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
	Analytes			[D]		
1,4-Difluorobenzene		0.0315	0.0300	105	80-120	
4-Bromofluorobenzene		0.0349	0.0300	116	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Work Order #: 454753, 454753							Pro	ject ID: 1	RP-1018						
Analyst: KEB	Da	ate Prepar	ed: 01/03/201	3			Date A	nalyzed: (01/03/2013						
Lab Batch ID: 904067 Sample: 631984-1-B	SKS	Batch	n#: 1					Matrix: S	Solid						
Units: mg/kg		BLAN	K /BLANK S	SPIKE / E	BLANK S	ANK SPIKE DUPLICATE RECOVERY STUDY									
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag				
Benzene	<0.000992	0.0992	0.0829	84	0.0998	0.0821	82	1	70-130	35					
Toluene	<0.00198	0.0992	0.0795	80	0.0998	0.0817	82	3	70-130	35					
Ethylbenzene	< 0.000992	0.0992	0.0780	79	0.0998	0.0817	82	5	71-129	35					
m,p-Xylenes	<0.00198	0.198	0.153	77	0.200	0.160	80	4	70-135	35					
o-Xylene	<0.000992	0.0992	0.0775	78	0.0998	0.0829	83	7	71-133	35					
Analyst: JOL	Da	ate Prepar	ed: 12/28/201	2			Date A	nalyzed: 1	2/28/2012						
Lab Batch ID: 903868 Sample: 631862-1-E	SKS	Batcl	n#: 1					Matrix: S	Solid						
Units: mg/kg		BLAN	K /BLANK S	SPIKE / E	BLANK S	PIKE DUPI	JCATE 1	RECOVE	ERY STUD	Y					
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag				
Chloride	<1.00	100	105	105	100	105	105	0	80-120	20					

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Work Order #: 454753, 454	753								ject ID: 1			
Analyst: JOL		Da	ate Prepar	ed: 12/29/201	2			Date A	nalyzed: 1			
Lab Batch ID: 903869	Sample: 631863-1-B	KS	Batcl	n#: 1					Matrix: S	Solid		
Units: mg/kg			BLAN	K /BLANK S	SPIKE / E	BLANK S	SPIKE DUPI	LICATE	RECOVE	ERY STUD	ŶY	
Inorganic Anions by El	PA 300/300.1	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes												
Chloride		<1.00	100	107	107	100	108	108	1	80-120	20	
Analyst: PRB		Da	ate Prepar	ed: 01/03/201	3			Date A	nalyzed: (01/03/2013		
Lab Batch ID: 904060	Sample: 904060-1-B	KS	Batcl	n#: 1					Matrix: S	Solid		
Units: mg/kg			BLAN	K /BLANK S	SPIKE / E	BLANK S	SPIKE DUPI	LICATE	ŶY			
Sulfides by SW-84 Analytes	6 9030B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Sulfide, total		<50.0	10000	10800	108	10000	10800	108	0	60-120	20	
Analyst: KEB		Da	ate Prepar	ed: 12/27/201	2	!	•	Date A	nalyzed: 1	2/27/2012		!
Lab Batch ID: 903786	Sample: 631807-1-B	KS	Batcl	n#: 1					Matrix: S	Solid		
Units: mg/kg		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE REC								ERY STUD	Y	
TPH By SW8015 Analytes	5 Mod	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarb	oons	<15.0	1000	1040	104	1000	1000	100	4	70-135	35	
	0113	<15.0	1000	1040	104	1000	1000	100		10-155	35	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Work Order #: 454753, 454 Analyst: KEB	4753	Da	te Preparo	ed: 12/28/201	2		Project ID: 1RP-1018 Date Analyzed: 12/28/2012							
Lab Batch ID: 903894	Sample: 631869-1-BKS		Batch	n#: 1			Matrix: Solid							
Units: mg/kg			BLAN	K /BLANK S	SPIKE / E	BLANK S	LANK SPIKE DUPLICATE RECOVERY STUDY							
TPH By SW801	Sampl	Blank Die Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Analytes			[B]	[C]	[D]	[E]	Result [F]	[G]						
C6-C12 Gasoline Range Hydrocar	rbons <	<15.0	997	1090	109	998	1040	104	5	70-135	35			
C12-C28 Diesel Range Hydrocarb	oons <	<15.0	997	1080	108	998	1020	102	6	70-135	35			

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

8.73

115

130

105

80-120

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Chloride

Form 3 - MS / MSD Recoveries

Project Name: SW 4-Inch Lateral

Work Order #: 454753											
Lab Batch ID: 904067 Date Analyzed: 01/03/2013	QC- Sample ID: Date Prepared:				tch #: alyst:	1 Matrix KEB	k: Soil				
Reporting Units: mg/kg					•	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Fla
Benzene	<0.00103	0.103	0.0907	88	0.102	0.101	99	11	70-130	35	
Toluene	< 0.00206	0.103	0.0910	88	0.102	0.0988	97	8	70-130	35	
Ethylbenzene	< 0.00103	0.103	0.0880	85	0.102	0.0953	93	8	71-129	35	
m,p-Xylenes	< 0.00206	0.206	0.170	83	0.205	0.177	86	4	70-135	35	
o-Xylene	<0.00103	0.103	0.0869	84	0.102	0.0959	94	10	71-133	35	
Lab Batch ID: 903786	QC- Sample ID:			Ba	tch #:	1 Matrix	k: Soil				
Lab Batch ID: 903786 Date Analyzed: 12/27/2012 Reporting Units: mg/kg	QC- Sample ID: Date Prepared:	12/27/2	012	An	alyst:	1 Matrix KEB KE DUPLICA		OVERY	STUDY		
Date Analyzed: 12/27/2012 Reporting Units: mg/kg TPH By SW8015 Mod	Date Prepared: Parent Sample Result	12/27/2 M Spike Added	012	An E / MAT Spiked Sample %R	alyst: RIX SPI Spike Added	KEB	TE REC Spiked Dup. %R	OVERY RPD %	STUDY Control Limits %R	Control Limits %RPD	Fla
Date Analyzed: 12/27/2012 Reporting Units: mg/kg TPH By SW8015 Mod Analytes	Date Prepared: Parent Sample Result [A]	12/27/2 M Spike Added [B]	012 IATRIX SPIK Spiked Sample Result [C]	An E / MAT Spiked Sample %R [D]	alyst: RIX SPI Spike Added [E]	KEB KE DUPLICA Duplicate Spiked Sample Result [F]	TE REC Spiked Dup. %R [G]	RPD %	Control Limits %R	Limits %RPD	Fla
Date Analyzed: 12/27/2012 Reporting Units: mg/kg TPH By SW8015 Mod	Date Prepared: Parent Sample Result	12/27/2 M Spike Added	012 IATRIX SPIK Spiked Sample Result	An E / MAT Spiked Sample %R	alyst: RIX SPI Spike Added	KEB KE DUPLICA Duplicate Spiked Sample	TE REC Spiked Dup. %R	RPD	Control Limits	Limits	Fla
Date Analyzed: 12/27/2012 Reporting Units: mg/kg TPH By SW8015 Mod Analytes C6-C12 Gasoline Range Hydrocarbons C12-C28 Diesel Range Hydrocarbons Lab Batch ID: 903894 Date Analyzed: 12/29/2012	Date Prepared: Parent Sample Result [A] <16.3	12/27/2 M Spike Added [B] 1090 1090 454753 12/28/2	012 ATRIX SPIK Spiked Sample Result [C] 1020 1010 -009 S 012	An E / MAT Spiked Sample %R [D] 94 93 Ba An	alyst: RIX SPI Spike Added [E] 1090 1090 tch #: alyst:	KEB KE DUPLICA Duplicate Spiked Sample Result [F] 1070 1020 1 Matrix KEB	TE REC Spiked Dup. %R [G] 98 94 x: Soil	RPD %	Control Limits %R 70-135 70-135	Limits %RPD 35	Fla
Date Analyzed: 12/27/2012 Reporting Units: mg/kg TPH By SW8015 Mod Analytes C6-C12 Gasoline Range Hydrocarbons C12-C28 Diesel Range Hydrocarbons Lab Batch ID: 903894	Date Prepared: Parent Sample Result [A] <16.3 <16.3 QC- Sample ID:	12/27/2 M Spike Added [B] 1090 1090 454753 12/28/2	012 ATRIX SPIK Spiked Sample Result [C] 1020 1010 -009 S 012	An E / MAT Spiked Sample %R [D] 94 93 Ba An E / MAT	alyst: RIX SPI Spike Added [E] 1090 1090 tch #: alyst:	KEB KE DUPLICA Duplicate Spiked Sample Result [F] 1070 1020 1 Matrix	TE REC Spiked Dup. %R [G] 98 94 x: Soil	RPD %	Control Limits %R 70-135 70-135	Limits %RPD 35	
Date Analyzed: 12/27/2012 Reporting Units: mg/kg TPH By SW8015 Mod Analytes C6-C12 Gasoline Range Hydrocarbons C12-C28 Diesel Range Hydrocarbons Lab Batch ID: 903894 Date Analyzed: 12/29/2012 Reporting Units: mg/kg TPH By SW8015 Mod	Date Prepared: Parent Sample Result [A] <16.3 <16.3 QC- Sample ID: Date Prepared: Parent Sample Result	12/27/2 M Spike Added [B] 1090 1090 454753 12/28/2 M Spike Added	012 ATRIX SPIK Spiked Sample Result [C] 1020 1010 -009 S 012 ATRIX SPIK Spiked Sample Result	An E / MAT Spiked Sample %R [D] 94 93 Ba An E / MAT Spiked Sample %R	alyst: RIX SPI Spike Added [E] 1090 1090 tch #: alyst: RIX SPI Spike Added	KEB KE DUPLICA Duplicate Spiked Sample Result [F] 1070 1020 1 Matrix KEB KE DUPLICA Duplicate Spiked Sample	TE REC Spiked Dup. %R [G] 98 94 x: Soil X: Soil TE REC Spiked Dup. %R	RPD % 5 1 OVERY RPD	Control Limits %R 70-135 70-135 STUDY Control Limits	Limits %RPD 35 35 Control Limits	Fla

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Work Order #: 454753					
Lab Batch #: 903801			Project I	D: 1RP-101	8
Date Analyzed: 12/28/2012 11:06 Date Prep	ared: 12/28/2012	2 Ana	lyst:RKO		
QC- Sample ID: 454753-001 D Bat	ch #: 1	Ma	t rix: Soil		
Reporting Units: %	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	23.9	23.8	0	20	
Lab Batch #: 903801					
	ared: 12/28/2012	2 Ana	lyst:RKO		
QC- Sample ID: 454753-011 D Bat	ch #: 1	Ma	t rix: Soil		
Reporting Units: %	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	2.59	2.56	1	20	
	2.39	2.30	1	20	
Lab Batch #: 903801	ared: 12/28/2012	2 4			
	ch #: 1		lyst:RKO trix: Soil		
Reporting Units: %		/ SAMPLE		ATE DEC	OVEDV
	_		DUPLIC	I	OVERI
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	1.91	1.87	2	20	
Lab Batch #: 904060					
Date Analyzed: 01/03/2013 16:42 Date Prep	ared: 01/03/2013	3 Ana	lyst:PRB		
QC- Sample ID: 454753-012 D Bat	ch #: 1	Ma	t rix: Soil		
Reporting Units: mg/kg	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Sulfides by SW-846 9030B Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Sulfide, total	64.0	72.0	12	20	

Spike Relative Difference RPD 200 * $|\,(B\text{-}A)/(B\text{+}A)\,|$ All Results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

1	Houston: 4143 Greenbria Hobbs: 4008 N Grimes H			1)240-4200			T. T. T. T.			(432)563-1	800		Pag W.O # illable H	:	of 3 4	54753	GC Glass Clear ZB Zip Lock Bag PA Plastic Amber PC Plastic Clear
Compa	ny: Basin Environmental Service Tech	nologies, LL	c :	Phone:	(575)39	6-2378	TAT W	/ork Day	ys = D	Need r	esults b	у:			Tim	e:	PC Plastic Clear Other
Addres	s: 3100 Plains Hwy.			Fax:	(575)39	6-1429		Std (5-	-7D) 5H	rs 1D 2	2D 3D	4D <u>5D</u>	<u>7D</u> 100	D 14D	Other_		Size(s): 20z, 40z, 80z, 160z, 320z , 1Gal 40ml, 125 ml, 250 ml, 500 ml, 1L, Other
City:	Lovington		State: NM	Zip:	88260					ani	NEVE	BR	QUES				** Preservative Type Codes
PM/Attr	Joel Lowly, Rose Slade		Email:	rose sla	sinenv.co de@sua.c		econ (16/75) Vé	60	OC.	60							A. None E. HCL I. Ice B. HNO3 F. MeOH J. MCAA Z-5 C.
Project	ID: S&W 4-Inch Lateral (1RP-1018)			PO#:	SUG000	09	Pros Tradi B	I	i i	I.							H ₂ SO ₄ G. Na ₂ S ₂ O ₃ K. ZnAc&NaOH D. NaOH H. NaHSO ₄ L Asbc Acid&NaOH
Invoice	To: Southern Union Gas Services - Mo	onahans		Quote #	•		00										o ^ Matrix Type Codes
Sample	r Signature:	Circle One Semi-Annua	Event: Daily I Annual	Weekly N/A	Monthly	Quartel		TPH	BTEX	Chloride	: -						GW Ground Water S Soil/Sediment/Solid WW Waste Water W Wipe DW Drinking Water A Air
(n)elle:	Sampie ID	Ciolteci Daue	Collect Three	Maina Gelie "	frici Hittoriti Attentio	ots (GAN) (GEUES of Other and	lexan Voietiles			ប៍	· • ·					(())	SW Surface Water O Oil OW Ocean/Sea Water T Tissue PL Product-Liquid U Urine PS Product-Solid B Blood SL Sludge Other
S.								Lab Onl	y:								REMARKS
1	TT-1 @ Surface	12/20/12	9:00	S	-	1		X		x							Hold for BTEX & Iron Sulfide
2	TT-1 @ 4'	12/20/12	9:05	S		1		X		X							Π
3	TT-1 @ 6'	12/20/12	9:10	S		1		Х		x							Hard Hard Hard Hard Hard Hard Hard Hard
4	TT-2 @ Surface	12/20/12	9:20	S		1		х		X							
_5	TT-2 @ 4'	12/20/12	9:25	s		1		X		x			-				IT IT
6	TT-2 @ 6'	12/20/12	9:30	S		1		х		x							10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7	TT-3 @ Surface	12/20/12	9:40	S		1		X		X							11
8	TT-3 @ 4'	12/20/12	9:45	s		1		X									
9	TT-3 @ 6'	12/20/12	9:50	S		1		X									U
0	TT-4 @ Surface	12/20/12	10:00	s		1		X		X			1				
1. 1. A. A. A.	Regi. Program / Cleanna Sin	회율 소설 이 이 가슴을 가슴을 다 다 다 다 가슴을 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	for Conte &				e & Cauid			EDDS			ii.aireiks		୬୭୦୫	Tiems °C	Labluse Only YES NO IN/A
CTLs Other:	TRRP DW NPDES LPST DryCln	AL NM Oth			NELAC	DoD-ELA			XLS Othe			Absent	ncomplete Unclear	1	_2	_3	Non-Conformances found?
1			Basin		a hanna an	aic 21-12	S farming francisco and		<i>[.].</i>	eceivec ,,),00		Basi	altion	1Z-Z	16 1-17	9.00	Received on Wet Ice? X
2	Toch 1 wille		Basi			1-12			1 1	Te b	the	Shi)		12-0		0500	Received within holding time?
3	your -								M	\sim	10	Xen		12-2		151.00	Proper containers used?
4																	Received on time to meet HTs?

B&A Laboratories: Hobbs 575-392-7550 Dallas 214-902-0300 Houston 281-242-4200 Odessa 432-563-1800 San Antonio 210-509-3334 Phoenix 602-437-0330 FTS Service Centers: Atlanta 770-449-8800 Lakeland 863-646-8526 Tampa 803-543-8099 Philadelphia 610-955-5649 South Carolina 803-543-8099

C.O.C. Serial #

Execution of this document by client creates a legal and binding agreement between client and Xenco for analytical and testing services provided by Xenco to client under Xenco's standard terms and conditions unless previously agreed in writing. Terms of payment are Net 30 days, and all past due amounts shall accrue interest at 1.5% per month until paid in full. All laboratory analytical data and reports generated by Xenco remain the exclusive property of Xenco until invoices for such data are paid in full. Revision Date: Nov 12, 2009

Final 1.002

	Houston: 4143 Greenbri Hobbs: 4008 N Grimes			1)240-4200						432)563-1	800		Pag W.O # illable H	e_2 ∶ rs∶	IS	4753	VA Vial Amber ES Encore Sampler VC Vial Clear TS TerraCore Sampler VC Vial Pre-preserved AC Air Canister GA Glass Amber TB Tedlar Bag GC Glass Clear ZB Zip Lock Bag PA Plastic Amber PC Plastic Clear
Comp	any: Basin Environmental Service Tec	hnologies, LL	c isi	Phone:	(575)396	6-2378	TAT W	ork Day	/s = D	Need r	esults b	y:					PC Plastic Clear Other
Addre	ss: 3100 Plains Hwy.			Fax:	(575)396	6-1429		Std (5-	7D) 5H	rs 1D 2	2D 3D	4D <u>5D</u>	<u>7D</u> 100) 14D	Other_		Size(s): 2oz, 4oz, 8oz, 16oz, 32oz , 1Gal 40ml, 125 ml, 250 ml, 500 ml, 1L, Other
City:	Lovington		State: NM	Zip:	88260	t tri i g					<u>ALVA</u>	5 RE	ouizs	17(E(B)			** Preservative Type Codes
PM/At	Joer Lowry, Rose Slade		Email:	rose sla	sinenv.co: de@sua.c		Receive Traces	60	60	60							A. None E. HCL I. ICE B. HNO ₃ F. MeOH J. MCAA Z - 5 C.
Projec	t ID: S&W 4-Inch Lateral (1RP-1018)			PO#:	SUG000	9	Pres Topes ⁴⁴ E			1			-				H ₂ SO ₄ G. Na ₂ S ₂ O ₃ K. ZnAc&NaOH D. NaOH H. NaHSO ₄ L Asbc Acid&NaOH
Invoice	e To: Southern Union Gas Services - M	ionahans		Quote #		:	(0)										o ^^Matrix+Type Codes
Sampl	er Signature: Stor C. UtUNN Sample ID		Event: Daily I Annual Califaet		Monthly	Quartely	ieskennigtet Vogletitets for 692	ТРН	BTEX	Chloride							GW Ground Water S Soil/Sediment/Solid WW Waste Water W Wipe DW Drinking Water A Air SW Surface Water O Oil OW Ocean/Sea Water T Tissue PL Product-Liquid U Urine PS Product-Solid B Blood
(Select					an Maria	90 91 91		Lab Onl	<u>у</u>			L					
1	TT-4 @ 4'	12/20/12	10:05	S		1		Х		X							Hold for BTEX & Iron Sulfide
_2	TT-4 @ 6'	12/20/12	10:10	s		1		Х		x							
3	TT-5 @ Surface	12/20/12	10:20	s		1		X	· · · ·		 						
4	TT-5 @ 4'	12/20/12	10:25	S		1	4.	X		X							
5	TT-5 @ 6'	12/20/12	10:30	s		1		Х		x							
6	TT-6 @ Surface	12/20/12	10:40	S		1		х									
_7	TT-6 @ 4'	12/20/12	10:45	S		1		Х		X							
8	TT-6 @ 6'	12/20/12	10:50	s S		<u> </u>		X		• X •							
9	TT-7 @ Surface	12/20/12	11:00	S		1		х		X							
0	TT-7 @ 4'	12/20/12	11:05	s		1		X		x		·					
CTLs Other:	Reguierant / Cleanauth Stole			A OK LA	1 <u>2</u> 3 NELAC [4 CLF DoD-ELAF		APP	XLS Oth			Match li Absent	ncomplete Unclear	1	2	Teme *S	Lab/US8_OFIV VES_NO_V/A Non-Conformances found?
1	San Languer		Basin	tion Env.	JZ-21		8:0	10 0 0	10	ecenced 1. Dall		Bas		5.51	10 1-12	8:00	Received on Wet Ice?
2	Auch win alter	<u>.</u>	Basi		12.2		9:0		M	ve B	utter			12-2		0900	Custody seals intact?
3																	Proper containers used? PH verified-acceptable, excl VOCs? Received on time to meet HTs?
	Laboratories: Hobbs 575-392-755	Dellas 24	4 002 0200		am 201	242 49		a 422 E	22 4900	C		1 500	2224	l	000 40	7.0000	C.O.C. Serial #

B&A Laboratories: Hobbs 575-392-7550 Dallas 214-902-0300 Houston 281-242-4200 Odessa 432-563-1800 San Antonio 210-509-3334 Phoenix 602-437-0330 FTS Service Centers: Atlanta 770-449-8800 Lakeland 863-646-8526 Tampa 803-543-8099 Philadelphia 610-955-5649 South Carolina 803-543-8099

Execution of this document by client creates a legal and binding agreement between client and Xenco for analytical and testing services provided by Xenco to client under Xenco's standard terms and conditions unless previously agreed in writing. Terms of payment are Net 30 days, and all past due amounts shall accrue interest at 1.5% per month until paid in full. All laboratory analytical data and reports generated by Xenco remain the exclusive property of Xenco until invoices for such data are paid in full. All laboratory analytical data and reports generated by Xenco remain the exclusive property of Xenco until invoices for such data are paid in full. All laboratory analytical data and reports generated by Xenco remain the exclusive property of Xenco until invoices for such data are paid in full.

	Houston: 4143 Greenbrian Hobbs: 4008 N Grimes H	r Dr. Stafford, T)240-4200						432)563-18	300	LAB Field bi		1.1.1		1753	VA Vial Amber ES Encore Sampler VC Vial Clear TS TerraCore Sampler VP Vial Pre-preserved AC Air Canister GA Glass Amber TB Teclar Bag GC Glass Clear ZB Zip Lock Bag PA Plastic Amber PC Plastic Clear
Company:	Basin Environmental Service Tech	nologies, LLC		Phone:	(575)39	6-2378	TAT W	ork Day	rs = D	Need re	esults b	y:			Time	ə:	PC Plastic Clear Other
Address:	3100 Plains Hwy.			Fax:	(575)396	6-1429		Std (5-	7D) 5H	rs 1D 2	D 3D	4D <u>5D</u>	<u>7D</u> 10D) 14D	Other_		Size(s): 2oz, 4oz, 8oz, 16oz, 32oz , 1Gal 40ml, 125 ml, 250 ml, 500 ml, 1L, Other
City:	Lovington		State: NM	Zip:	88260					<u>AA</u>	NEVS:	SRE	QUES	ied -			Preservative Type Codes
PM/Attn:	Joel Lowry; Rose Slade		Email:	pm@bas rose_slac			COMP TYNO YC	BC.	66	ec							A. None E. HCL I. Ice B. HNO ₃ F. MeOH J. MCAA 2.5 C
Project ID:	S&W 4-Inch Lateral (1RP-1018)			PO#:	SUG000		itms Rypo ^{la} E.U						:				H ₂ SO ₄ G. Na ₂ S ₂ O ₃ K. ZnAc&NaOH D. NaOH H. NaHSO ₄ L Asbc Acid&NaOH O
Invoice To	Southern Union Gas Services - Mo	onahans		Quote #:			2(5(0)									ili.	A: Matrix Type: Codes GW Ground Water S Soil/Sediment/Solid
Sampler S	ignature: <i>In C. Unand</i> Sample: ID	Circle One Semi-Annua Collecti Date	Event: Daily I Annual Seilteat	Weekly N/A Metrix Classe	Monthly	Quartely	Etxennille Woletifies By 6	HAT	BTEX	Chloride							GW Ground Water S Soil/Sediment/Solid WW Waste Water W Wipe DW Drinking Water A Air SW Surface Water O Oil OW Ocean/Sea Water T Tissue PL Product-Iquid U Urine PS Product-Solid B Blood SL Sludge Other
						(0) <u> </u>	. Cont	Lab Onl	y:					·			REMARKS
1	TT-7 @ 6'	12/20/12	11:10	S		1		х		x							Hold for BTEX & Iron Sulfide
										1							
											Ī						
5									1								
6	<u>an an an an an an an an an an an</u> an			+													
					┼╌┼╴								† – –				
8		<u>· </u>			┼┼	<u> </u>			+		<u> </u>	1	1				
9					┼╌┼								1				
0		A STATE	e tor Catio	2 Dage		രിറ്റ് ക്രം	។ ដែលផ្លារពីពី	ີ່ ເອົາກິດກຳ				000			L Conters	Tamp ⁹ C	Lab Yuse Chiv. YES NO Yu
	ag Program / Clean⇒up Std RP DW NPDES LPST DryCln		NC SC NJ		1 2		AFCEE Q		XLS Of	SEDD	ERPIMS	Match Absent	Incomplete Unclear	1	_2	3	Non-Conformances found? X Samples infact upon arrival? X
	Relinguished by					lateration 2/-12	8.0	he co	1 7/	leceiver A.J.	1		iation sine		aie 21·12	E:60	Labeled with proper preservatives?
	Sol wany		_	<u>Env.</u>	-	21-12	9.6		10	J Wat	3. The		sper		4-12	0900	Custody seals intact?
2	1/10 Nal		Basi		16-2	116	1.00		X	h l	AL	Xen			412	15100	Proper containers used? pH verified-acceptable, excl VOCs?
4	horatories: Hobbs 575-392-75									<u>-~</u> ,							Received on time to meet HTs?

B&A Laboratories: Hobbs 575-392-7550 Dallas 214-902-0300 Houston 281-242-4200 Odessa 432-563-1800 San Antonio 210-509-3334 Phoenix 602-437-0330 FTS Service Centers: Atlanta 770-449-8800 Lakeland 863-646-8526 Tampa 803-543-8099 Philadelphia 610-955-5649 South Carolina 803-543-8099

Execution of this document by client creates a legal and binding agreement between client and Xenco for analytical and testing services provided by Xenco to client under Xenco's standard terms and conditions unless previously agreed in writing. Terms of payment are Net 30 days, and all past due amounts shall accrue interest at 1.5% per month until paid in full. All laboratory analytical data and reports generated by Xenco remain the exclusive property of Xenco until invoices for such data are paid in full. All laboratory analytical data and reports generated by Xenco remain the exclusive property of Xenco until invoices for such data are paid in full.

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Southern Union Gas Services- MonahanAcceptable Temperature Range: 0 - 6 degCDate/ Time Received: 12/24/2012 03:00:00 PMAir and Metal samples Acceptable Range: AmbientWork Order #: 454753Temperature Measuring device used :

Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?	2.5
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Yes
#5 Custody Seals intact on sample bottles?	Yes
#6 *Custody Seals Signed and dated?	Yes
#7 *Chain of Custody present?	Yes
#8 Sample instructions complete on Chain of Custody?	Yes
#9 Any missing/extra samples?	No
#10 Chain of Custody signed when relinquished/ received?	Yes
#11 Chain of Custody agrees with sample label(s)?	Yes
#12 Container label(s) legible and intact?	Yes
#13 Sample matrix/ properties agree with Chain of Custody?	Yes
#14 Samples in proper container/ bottle?	Yes
#15 Samples properly preserved?	Yes
#16 Sample container(s) intact?	Yes
#17 Sufficient sample amount for indicated test(s)?	Yes
#18 All samples received within hold time?	Yes
#19 Subcontract of sample(s)?	Yes
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	Yes
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	Yes
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 12/26/2012

Checklist reviewed by:

Date: 12/26/2012

State of New Mexico **Energy Minerals and Natural Resources**

> **Oil Conservation Division** 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

			OPERATOR	🛛 Initial Report	Final Report
Name of Company	Southern Union	Gas Services, Ltd.	Contact		Tony Savoie
Address	P.O. Box 122	26 Jal, N.M. 88252	Telephone No.		505-395-2116
Facility Name	Lea	County Field Dept.	Facility Type	Nati	ural Gas Gathering
Surface Owner: State o	f New Mexico	Mineral Owner	: State of New Mexico	Lease No.	

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County	į
J	16	205	37E					Lea	
									i.

Latitude N32 34.160 Longitude W103 15.249

	NATURE	OF RELEASE	
Type of Release	Natural Gas, gas liquids and iron	Volume of Release 22.5 mcf	Volume Recovered 0 bbls
sulfide.		nat. gas, 15 bbls nat.gas liquids	
Source of Release	Pipeline	Date and Hour of Occurrence	Date and Hour of Discovery 5/27/06
		5/27/06. Hour unknown.	Hour unknown
Was Immediate Notice Given?		If YES, To Whom?	
	🗌 Yes 🛛 No 🗌 Not Required		
By Whom?		Date and Hour:	
Was a Watercourse Reached?		If YES, Volume Impacting the Wat	
was a watercourse Reached?	🗌 Yes 🖾 No	IT TES, Volume impacting the war	
If a Watercourse was Impacted, I	Describe Fully.*		1722-24 25 20g
			1778/ 18/18/
Describe Cause of Droblem and E	amedial Action Talan *		- 9 . 5 . 5
Describe Cause of Problem and F	nerating at 20 psi developed a leak the l	ine was blocked in an allowed to blow	v down of 5/27/06. Reparerews replaced
the affected area of pipe by replace	cing approximately 400 ft of steel pine y	with poly-pipe on 8/11/06. Normal on	erating pressure on the line is 20 nsi to 30
nsi, with a potential H2S content	of 4000 ppm		change pressure on the fixe is zo psi to so
p,	••••••••••••••••••••••••••••••••••••••	<i>,</i>	erating pressure on the line is 20 psi to 30
Describe Area Affected and Clea	nun Action Taken * An area measuring	approximately 2175 sq. ft of pasture 1	and was affected around the immediate leak
			soil will be remediated using the NMOCD
	sketch and remediation plan is attached.		
	on given above is true and complete to the	he best of my knowledge and understa	and that pursuant to NMOCD rules and
regulations all operators are requi	ired to report and/or file certain release n	otifications and perform corrective ac	tions for releases which may endanger
public health or the environment.	The acceptance of a C-141 report by the	e NMOCD marked as "Final Report"	does not relieve the operator of liability
should their operations have faile	d to adequately investigate and remediat	e contamination that pose a threat to g	ground water, surface water, human health
	NMOCD acceptance of a C-141 report d		
federal, state, or local laws and/or	r regulations.		
		OIL CONSERV	VATION DIVISION
		- <u></u>	
Signature:	Tony Savoie	ENVIRO EN	ur -
		Approved by District Supervisor:	
Printed Name:	John A. Savoie	<u> </u>	Jox >
(T)1 - 1		9.70 0	
Title:	EH&S Comp. Coord.	Approval Date: 8.28 OL	Expiration Date:
E mail Address	in an in the internet of the second	T	
E-mail Address:	jasavoie@sidrichgas.com	Conditions of Approval:	Attached
Date: 8/11/06	Phone: 505-395-2116	SUBALIT SITE PHOTOS, JA RESULTS FOR THI, SU	ut le
Attach Additional Sheets If Ne	Fnone. 505-595-2110	RESULTS FOR THE, SC	Act De,
	Alt of along 200	# CHCUZLDE	Swiccosce Ferry
int dont	NHLUGAYUSSSX/	DINOV. I,	$(2006,))$ []] [] (Λ)
VILLANV	1 AACAL MILLADORILO	1	KT'' IUID
mint	PACO624038327 - pPACO624038327		$(\setminus l)$
upper anon.		as Con	
11 2	u la	- C. P.	

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Release Notification and Corrective Action

			OPERATOR	Initial Repo	ort 🛛 🖾 Final Report
Name of Company	Southern Union Ga	s Services, Ltd.	Contact		Crystal Callaway
Address	801 S. Loop 464, Monaha	ns, TX, 79756	Telephone No.		817-302-9407
Facility Name: S &	W 4" Lateral (RP-1018) Le	a Co. Field Dept.	Facility Type]	Natural Gas Gathering
Surface Owner State of New Mexico Mineral Owner: S			State of New Mexico	Lease No.	

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
J	16	205	37E					Lea

Latitude N32 34.160 Longitude W103 15.249

NATURE OF RELEASE Volume of Release 22.5 mcf nat. Volume Recovered 0 bbls Type of Release Natural Gas, gas liquids and iron sulfide gas, 15 bbls nat. gas liquids Date and Hour of Discovery 5/27/06 Date and Hour of Occurrence Source of Release Pipeline 5/27/06 Hour unknown. Hour unknown If YES, To Whom? Was Immediate Notice Given? ☐ Yes No Not Required Date and Hour: 7/21/07 By Whom? Tony Savoie If YES, Volume Impacting the Watercourse. Was a Watercourse Reached? Yes 🛛 No If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken: The 4" steel gathering pipeline, operating at 20 psi developed a leak, the line was blocked in and allowed to blow down on 5/27/06. Repair crews replaced the affected area of pipe by replacing approximately 400 ft. of steel pipe with poly-pipe on 8/11/06. Normal operating pressure on the line is 20 psi to 30 psi, with a potential H₂S content of 4000 ppm. Describe Area Affected and Cleanup Action Taken. An area measuring approximately 2175 ft² of pasture land was affected around the immediate leak area with a mist of iron sulfide and natural gas liquids. No immediate cleanup action was taken. The impacted soil will be remediated using the NMOCD recommended guidelines. On or around August 14, 2006, remediation activities were conducted at the S & W 4" Lateral Release Site by an environmental contractor that is no longer affiliated with the site. During remediation activities at least 132 yd³ of impacted material was excavated from the release site and hauled to SUGs Landfarm. On December 20, 2012, the site was revisited in an effort to determine if soil exhibiting sulfide, benzene, BTEX, TPH and chloride concentrations above NMOCD regulatory standards remained in-situ and collect confirmation soil samples. Laboratory analytical reports from the confirmation soil samples suggested previous remediation activities met the requirements of the NMOCD. Please see the attached Basin Environmental Services Technologies Remediation Summary and Site Closure Request for details of remedial activities and the site investigation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases, which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

ρ $() () () \rho$	OIL CONSER	VATION DIVISION
Signature: Motal Children of	Approved by District Supervisor:	
Printed Name: Crystal Callaway		
Title: Senior Environmental Remediation Specialist	Approval Date:	Expiration Date:
E-mail Address: Crystal.Callaway@Regencygas.com	Conditions of Approval:	
Date: 11/14/2014 Phone: 817-302-9407		