Basin Environmental Service Technologies, LLC

3100 Plains Highway
P. O. Box 301
Lovington, New Mexico 88260
jwlowry@basinenv.com
Office: (575) 396-2378
Fax: (575) 396-1429

REMEDIATION SUMMARY &

SITE CLOSURE REQUEST

SOUTHERN UNION GAS SERVICES TRUNK "O" 30-INCH (1RP-1020) HISTORICAL RELEASE SITE Lea County, New Mexico Unit Letter "O" (SW/SE), Section 33, Township 21 South, Range 36 East Latitude 32° 25.762' North, Longitude 103° 16.212' West NMOCD Reference # 1RP-1020

Prepared For:

Southern Union Gas Services 801 S. Loop 464 Monahans, TX 79756

Prepared By: Basin Environmental Service Technologies, LLC 3100 Plains Highway Lovington, New Mexico 88260

October 2012

Joel W. Lowry Project Manager

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	NMOCD SITE CLASSIFICATION	1
3.0	SUMMARY OF SOIL REMEDIATION ACTIVITIES	2
4.0	QA/QC PROCEDURES	3
	4.1 Soil Sampling	3
	4.2 Decontamination of Equipment	3
	4.3 Laboratory Protocol	3
	SITE CLOSURE REQUEST	
	LIMITATIONS	
7.0	DISTRIBUTION	5

FIGURES

Figure 1 – Site Location Map Figure 2 – Site & Sample Location Map

TABLES

Table 1 - Concentrations of Benzene, BTEX, TPH & Chloride in Soil

APPENDICES

Appendix A – Photographs

Appendix B – Laboratory Analytical Reports

Appendix C – Release Notification and Corrective Action (Form C-141)

1.0 INTRODUCTION & BACKGROUND INFORMATION

Basin Environmental Service Technologies, LLC (Basin), on behalf of Southern Union Gas Services (Southern Union), has prepared this *Remediation Summary & Site Closure Request* for the Trunk "O" 30-Inch Historical Release Site (1RP-1020). The legal description of the release site is Unit Letter "O" (SW/SE), Section 33, Township 21 South, Range 36 East, in Lea County, New Mexico. The geographic coordinates of the release site are 32° 25.762' North latitude and 103° 16.212' West longitude. The property affected by the release is owned by the State of New Mexico and administered by the New Mexico State Land Office (NMSLO). Please reference Figure 1 for a "Site Location Map".

On August 21, 2006, Southern Union discovered a release had occurred on the Trunk "O" Pipeline. The Form C-141 indicated failure of a section of a thirty-inch (30") low-pressure pipeline resulted in the release of approximately ten barrels (10 bbls) of crude oil and thirty-three (33) Mcf of natural gas. During initial response activities the pipeline was shut in, and a vacuum truck was utilized to recover approximately five barrels (5 bbls) of free-standing fluid. Heavily saturated soil was blended with clean soil to reduce the risk to livestock and wildlife. The release was reported to the New Mexico Oil Conservation Division (NMOCD) Hobbs District Office on September 5, 2006. The C-141 indicated the release affected approximately seven hundred square feet (700 ft²) of pasture land. General photographs of the release site are provided as Appendix A. The Form C-141 is provided as Appendix C.

Previous remediation activities were conducted at the Trunk "O" 30-Inch Release Site by an environmental contractor that is no longer affiliated with Southern Union. The nature and extent of the aforementioned activities remains unclear, as environmental reports and work records are not readily available.

On June 22, 2012, at the request of Southern Union, Basin assumed remediation responsibilities at the Trunk "O" 30-Inch Historical Release Site.

2.0 NMOCD SITE CLASSIFICATION

A search of the New Mexico Water Rights Reporting System (NMWRRS) database maintained by the New Mexico Office of the State Engineer (NMOSE) indicated information was unavailable for Section 33, Township 21 South, Range 36 East. An NMOCD representative indicated the depth to groundwater is approximately one hundred ninety-nine feet (199') below ground surface (bgs) on the initial C-141. Based on the NMOCD ranking system, zero (0) points will be assigned to the site as a result of this criterion.

A search of the NMWRRS database indicated there are no water wells within one thousand feet (1,000') of the release. Based on the NMOCD ranking system, zero (0) points will be assigned to the site as a result of this criterion.

There are no surface water bodies within one thousand feet (1,000') of the release. Based on the NMOCD ranking system, zero (0) points will be assigned to the site as a result of this criterion.

NMOCD guidelines indicate the Trunk "O" 30-Inch Historical Release Site has an initial ranking score of zero (0) points. The soil remediation levels for a site with a ranking score of zero (0) points are as follows:

- Benzene -10 mg/Kg (ppm)
- Benzene, toluene, ethylbenzene and xylene (BTEX) 50 mg/Kg (ppm)
- Total petroleum hydrocarbons (TPH) 5,000 mg/Kg (ppm)

The New Mexico Administrative Code (NMAC) does not currently specify a remediation level for chloride concentrations in soil. Chloride remediation levels are set by the NMOCD on a site-specific basis.

3.0 SUMMARY OF SOIL REMEDIATION ACTIVITIES

On August 10, 2012, Basin responded to the Trunk "O" 30-Inch Historical Release Site. An initial investigation indicated previous remediation activities had been conducted at the release site. A series of test trenches were advanced in the disturbed areas around the release point in an effort to determine if impacted soil containing BTEX, TPH and chloride concentrations above NMOCD regulatory standards remained in-situ.

Test Trench #1 was advanced to approximately four feet (4') bgs near the inferred release point, within the disturbed area. During the advancement of the test trench, select soil samples were field screened using a photo-ionization detector (PID) and chloride field test kit. Two (2) soil samples (TT-1 @ Surface and TT-1 @ 4') were collected and submitted to TraceAnalysis Inc., of Midland, Texas for determination of BTEX, TPH and chloride concentrations in accordance with EPA Methods SW 846-8021B, SW 846-8015M and SM 4500-Cl B, respectively. Laboratory analytical results indicated benzene and BTEX concentrations were less than the appropriate laboratory method detection limit (MDL) for each of the soil samples submitted. Chloride concentrations were less than the laboratory MDL for each of the soil samples submitted. Table 1 summarizes the "Concentrations of Benzene, BTEX, TPH & Chloride in Soil". Soil sample locations are depicted in Figure 2, "Site & Sample Location Map". Laboratory analytical reports are provided as Appendix B.

Test Trench #2 was advanced approximately twenty feet (20') north of the inferred release point, west of the Trunk "O" 30" Line. Test Trench #2 was advanced to approximately one foot (1') bgs. During the advancement of the test trench, select soil samples were field screened using a PID and chloride field test kit. One (1) soil sample (TT-2 @ 1') was collected and submitted to the laboratory for analysis. Laboratory analytical results indicated benzene and BTEX concentration were less than the appropriate laboratory MDL. Analytical results indicated the TPH concentration was less than the laboratory MDL. The chloride concentrations was 270 mg/Kg. Laboratory analytical results indicated the area defined by soil sample TT-2 @ 1' was not fully delineated.

Test Trench #3 was advanced approximately thirty feet (30') south of the inferred release point, west of the Trunk "O" 30" Line. Test Trench #3 was advanced to approximately one foot (1') bgs. During the advancement of the test trench, select soil samples were field-screened using a

PID and chloride field test kit. One (1) soil sample (TT-3 @ 1') was collected and submitted to the laboratory for analysis. Laboratory analytical results indicated benzene and BTEX concentrations were less than the appropriate laboratory MDL. Analytical results indicated the TPH concentration was less than the laboratory MDL. The chloride concentration was 198 mg/Kg.

On August 10, 2012, one (1) five-point composite soil sample (Stockpile) was collected from the stockpiled material and submitted to the laboratory for analysis. Laboratory analytical results indicated benzene and BTEX concentrations were less than the appropriate laboratory MDL. Analytical results indicated the TPH concentration was less than the laboratory MDL. The chloride concentration was 545 mg/Kg. Based on laboratory analytical results from the stockpile soil sample, the material was deemed suitable for use as backfill.

On September 3, 2012, delineation activities resumed at the Trunk "O" 30-Inch Historical Release Site in the area defined by soil sample TT-2 @ 1'. Test Trench #2 was advanced to approximately two feet (2') bgs. During the advancement of the test trench, select soil samples were field-screened using a chloride field test kit. One (1) soil sample (TT-2 @ 2') was collected and submitted to Xenco Laboratories, Inc., of Oddessa, Texas, for analysis of chloride concentrations in accordance with EPA Method 300.0. Laboratory analytical results indicated the chloride concentration was 57.2 mg/Kg.

4.0 QA/QC PROCEDURES

4.1 Soil Sampling

Soil samples were delivered to TraceAnalysis, Inc., of Midland, Texas, of Xenco Laboratories, Inc., of Odessa, Texas, for BTEX, TPH, and/or chloride analyses using the methods described below:

- BTEX concentrations in accordance with EPA Method SW-846 8021b
- TPH concentrations in accordance with modified EPA Method SW-846 8015M
- Chloride concentrations in accordance with EPA Method SM 4500-Cl B or 300.0

4.2 Decontamination of Equipment

Cleaning of the sampling equipment was the responsibility of the environmental technician. Prior to use, and between each sample, the sampling equipment was cleaned with Liqui-Nox® detergent and rinsed with distilled water.

4.3 Laboratory Protocol

The laboratory was responsible for proper QA/QC procedures after signing the chain-of-custody form(s). These procedures were either transmitted with the laboratory reports or are on file at the laboratory.

5.0 SITE CLOSURE REQUEST

Confirmation soil samples collected from the three (3) on-site test trenches indicated previous remediation activities at the Trunk "O" 30-Inch Release Site met the requirements of the NMOCD's "Guidelines for Remediation of Leaks, Spills and Releases". Laboratory analytical results indicated benzene, BTEX, TPH and chloride concentrations were less than NMOCD regulatory remdiation action levels in each of the submitted soil samples. Based on these laboratory analytical results, Basin recommends Southern Union provide the NMOCD Hobbs District Office a copy of this *Remediation Summary & Site Closure Request* and request the NMOCD grant site closure to the Trunk "O" 30-Inch Historical Release Site.

6.0 LIMITATIONS

Basin Environmental Service Technologies, LLC, has prepared this *Remediation Summary & Site Closure Request* to the best of its ability. No other warranty, expressed or implied, is made or intended. Basin has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. Basin has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Basin has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Southern Union Gas Services. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and/or Southern Union Gas Services.

7.0 **DISTRIBUTION**

- Copy 1: Geoffrey Leking New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (District 1) 1625 French Drive Hobbs, NM 88240 GeoffreyR.Leking@state.nm.us
- Copy 2: Rose Slade Southern Union Gas Services 801 S. Loop 464 Monahans, Texas 79756 rose.slade@sug.com
- Copy 3: Basin Environmental Service Technologies, LLC P.O. Box 301 Lovington, New Mexico 88260

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH & CHLORIDE IN SOIL

SOUTHERN UNION GAS SERVICES TRUNK "O" 30-Inch HISTORICAL RELEASE SITE LEA COUNTY, NEW MEXICO NMOCD REF# 1RP-1020

					METHOD: EI	PA SW 846-80	21B, 5030		ME	THOD: 801	5M	TOTAL	SM 4500-CI B
SAMPLE LOCATION	SAMPLE DEPTH (BGS)	SAMPLE DATE	SOIL STATUS	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	TOTAL XYLENES (mg/Kg)	TOTAL BTEX (mg/Kg)	GRO C ₆ -C ₁₂ (mg/Kg)	DRO C ₁₂ -C ₂₈ (mg/Kg)	ORO C ₂₈ -C ₃₅ (mg/Kg)	TPH C ₆ -C ₃₅ (mg/Kg)	CHLORIDE (mg/Kg)
TT-1 @ Surface	surface	8/10/2012	In-Situ	<0.0200	<0.0200	<0.0200	<0.0200	< 0.0200	<4.00	<50.0	<50.0	<50.0	<50.0
TT-1 @ 4'	4'	8/10/2012	In-Situ	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<4.00	<50.0	<50.0	<50.0	<50.0
TT-2 @ 1'	1'	8/10/2012	In-Situ	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<4.00	<50.0	<50.0	<50.0	270
TT-3 @ 1'	1'	8/10/2012	In-Situ	<0.0400	< 0.0400	<0.0400	< 0.0400	< 0.0400	<8.00	<50.0	<50.0	<50.0	198
Stockpile	N/A	8/10/2012	Stockpile	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<4.00	<50.0	<50.0	<50.0	545
TT-2 @ 2ft	2'	9/4/2012	In-Situ	-	-	-	-	-	-	-	-	-	57.2*
NMOCD Standard				10				50				5,000	1,000

- = Not analyzed.

* Analyzed by Xenco Laboratories utilizing EPA Method 300.0

Photograph of initial release at the Trunk "O" 30-Inch Historical Release Site.

Photograph of initial release at the Trunk "O" 30-Inch Historical Release Site.

Photograph of initial release at the Trunk "O" 30-Inch Historical Release Site.

Photograph of initial release at the Trunk "O" 30-Inch Historical Release Site.

Photograph of the disturbed area at the Trunk "O" 30-Inch Historical Release Site.

Photograph of the disturbed area at the Trunk "O" 30-Inch Historical Release Site.

Photograph of the disturbed area at the Trunk "O" 30-Inch Historical Release Site.

Photograph of the disturbed area at the Trunk "O" 30-Inch Historical Release Site.

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Lubbock, Texas 79424 El Paso, Texas 79922 Texas 79703 Midland. Carroliton. Texas 75006 E-Mail: lab@traceanalysis.com

WEB: www.traceanalysis.com

915-585-3443 FAX 915 • 585 • 4944 432-689-6301 FAX 432 • 689 • 6313 972-242 -7750

Certifications

NCTRCA NELAP DoD LELAP WBE HUB DBE Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

Rose Slade Southern Union Gas Services, Ltd.-Monahans 801 S. Loop 464 Monahans, TX, 79756

Report Date: August 22, 2012

Work Order: 12081428

Project Location: Lea Co., NM **Project Name:** Trunk O 30 inch (RP 1020) Project Number: SUG Historical Releases

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
306710	TT-1 @ Surface	soil	2012-08-10	12:30	2012-08-14
306711	TT-1 @ 4'	soil	2012-08-10	12:50	2012-08-14
306712	TT-2 @ 1'	soil	2012-08-10	13:00	2012-08-14
306713	TT-3 @ 1'	soil	2012-08-10	13:30	2012-08-14
306714	Stockpile	soil	2012-08-10	15:00	2012-08-14

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 28 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Tichas alm

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Report Contents

Case Narrative	4
	5 6 8 10 12
QC Batch 93964 - Method Blank (1)	15 15 15 15 15 16
QC Batch 93964 - LCS (1)	 18 18 18 19 20 20 21 21 22
QC Batch 93964 - CCV (1) QC Batch 93964 - CCV (2) QC Batch 93964 - CCV (3) QC Batch 93965 - ICV (1) QC Batch 93965 - CCV (1) QC Batch 93966 - ICV (1) QC Batch 93966 - CCV (1) QC Batch 93966 - CCV (1) QC Batch 93966 - CCV (1) QC Batch 93981 - CCV (1) QC Batch 94090 - CCV (1) QC Batch 94090 - CCV (2) QC Batch 94091 - CCV (1) QC Batch 94091 - CCV (2)	23 23 23 23 23 23 24 24 24 24 25 25 25 26 26 26

Appendix

 $\mathbf{27}$

Report Definitions	27
Laboratory Certifications	27
Standard Flags	27
Result Comments	27
Attachments	27

Case Narrative

Samples for project Trunk O 30 inch (RP 1020) were received by TraceAnalysis, Inc. on 2012-08-14 and assigned to work order 12081428. Samples for work order 12081428 were received intact at a temperature of 1.5 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	79758	2012-08-20 at 10:27	94090	2012-08-20 at 10:27
Chloride (Titration)	SM 4500-Cl B $$	79658	2012-08-16 at $09:00$	93965	2012-08-16 at $09:00$
Chloride (Titration)	SM 4500-Cl B $$	79660	2012-08-16 at $10:00$	93966	2012-08-16 at $10:00$
TPH DRO - NEW	S 8015 D	79657	2012-08-15 at $10:00$	93964	2012-08-16 at $14:49$
TPH GRO	S 8015 D	79758	2012-08-20 at $10:27$	94091	2012-08-20 at $10:27$
TPH ORO	S 8015 D	79680	2012-08-15 at $09:00$	93981	2012-08-17 at $10:57$

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 12081428 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 306710 - TT-1 @ Surface

Laboratory: Lubbock									
Analysis: BTEX		Analytica	al Method:	S 80211	3	Prep Method: S 50			
QC Batch: 94090		Date Ana	lyzed:	2012-08	-20		Analyzed By	: MT	
Prep Batch: 79758		Sample P	reparation	: 2012-08	-20		Prepared By	: MT	
				RL					
Parameter	Flag	Cert		Result	Units	3	Dilution	RL	
Benzene	U	1	<	0.0200	mg/Kg	r	1	0.0200	
Toluene	U	1	<	0.0200	mg/Kg	S	1	0.0200	
Ethylbenzene	U	1	<	0.0200	$\mathrm{mg/Kg}$	S	1	0.0200	
Xylene	U	1	<	0.0200	mg/Kg	m mg/Kg		0.0200	
						Spike	Percent	Recovery	
Surrogate	Flag	g Cert	Result	Units	Dilution	Amount	Recovery	Limits	
Trifluorotoluene (TFT)			1.67	mg/Kg	1	2.00	84	70 - 130	
4-Bromofluorobenzene (4-BFB)			1.86	mg/Kg	1	2.00	93	70 - 130	

Sample: 306710 - TT-1 @ Surface

Laboratory:	Lubbock					
Analysis:	Chloride (Titration)	Analy	vtical Method:	SM 4500-Cl B $$	Prep Method:	N/A
QC Batch:	93965	Date	Analyzed:	2012-08-16	Analyzed By:	LM
Prep Batch:	79658	Samp	ble Preparation:	2012-08-16	Prepared By:	LM
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			<50.0	mg/Kg	10	5.00
				· ·		

Sample: 306710 - TT-1 @ Surface

Laboratory:	Midland						
Analysis:	TPH DRO - NE	ZW	Analytic	eal Method:	S 8015 D	Prep Method:	N/A
QC Batch:	93964		Date Ar	nalyzed:	2012-08-16	Analyzed By:	CW
Prep Batch:	79657		Sample	Preparation:	2012-08-15	Prepared By:	CW
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
DRO		U	2	<50.0	mg/Kg	1	50.0

Report Date: Au SUG Historical R		Tr	Work Order: runk O 30 inc	Page Number: 6 of 28 Lea Co., NM				
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane			125	m mg/Kg	1	100	125	70 - 130

Sample: 306710 - TT-1 @ Surface

Laboratory: Lubbock Analysis: TPH GRO QC Batch: 94091 Prep Batch: 79758	Da			al Methoo alyzed: Preparatio	2012-0	Prep Metho Analyzed B Prepared B	y: MT			
	RL									
Parameter	Flag		Cert		Result	Uni	$^{ m ts}$	Dilution	RL	
GRO	JЪ		1		<4.00	m mg/Kg		1	4.00	
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotoluene (TFT)				1.73	mg/Kg	1	2.00	86	70 - 130	
4-Bromofluorobenzene (4-BFB)	1			2.00	mg/Kg	1	2.00	100	70 - 130	

Sample: 306710 - TT-1 @ Surface

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH OR 93981 79680	0		Date Analyzed:			S 8015 D 2012-08-17 2012-08-15			Prep M Analyz Prepare	v	N/A CW CW
			MDL	MQL	PQL	RL						
Parameter	Flag	Cert	Result	Result	Result	Result	Units	Dilution	MDL	MQL	PQL	RL
ORO	U		<14.5	$<\!50.0$	$<\!50.0$	<50.0	mg/Kg	1	14.5	50.0	50.0	50.0
Surrogate		Flag	Cert	Resu	ılt	Units	Dilution	Spike Amoun		Percent Recovery		covery imits
n-Tricosane				1	25 n	ng/Kg	1	100		125	70	- 130
n-Triacontane	e			89).2 n	ng/Kg	1	100		89	70	- 130

Sample: 306711 - TT-1 @ 4'

Laboratory:	Lubbock				
Analysis:	BTEX	Analytical Method:	S 8021B	Prep Method:	S 5035
QC Batch:	94090	Date Analyzed:	2012-08-20	Analyzed By:	\mathbf{MT}
Prep Batch:	79758	Sample Preparation:	2012-08-20	Prepared By:	\mathbf{MT}

Report Date SUG Histori	: August 22, 2012 cal Releases		Work Ore runk O 30	Page Number: 7 of 2 Lea Co., NI						
					RL					
Parameter		Flag	Cert		Result		Units		Dilution	RL
Benzene		U	1	<	< 0.0200		mg/Kg		1	0.0200
Toluene		U	1	<	< 0.0200		mg/Kg		1	0.0200
Ethylbenzene	9	U	1	<	< 0.0200		mg/Kg		1	0.0200
Xylene		U	1	<	< 0.0200		mg/Kg		1	0.0200
							S	pike	Percent	Recovery
Surrogate		Flag	Cert	Result	Units	Dilı		nount	Recovery	Limits
Trifluorotolu	ene (TFT)			1.69	mg/Kg	g	1 2	2.00	85	70 - 130
	cobenzene (4-BFB			1.78	mg/Kg			2.00	89	70 - 130
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride	Lubbock Chloride (Titrat 93965 79658	ion) Flag	Date	ytical Me e Analyzec ple Prepa	d:	SM 4500 2012-08- 2012-08-	-16		Prep Met Analyzed Prepared Dilution 10	By: LM
Sample: 30 Laboratory: Analysis: QC Batch: Prep Batch:	6711 - TT-1 @ Midland TPH DRO - NE 93964 79657		Dat	alytical M e Analyze aple Prepa	ed:	S 8015 2012-08 2012-08	8-16		Prep Met Analyzed Prepared	By: CW
D					RL		TT •/			DI
Parameter		Flag	Cert		Result		Units		Dilution	RL
DRO		U	2		<50.0		mg/Kg		1	50.0
							Spike		Percent	Recovery
Surrogate	Flag	Cert	Result	Units	D;	lution	Amoun	t	Recovery	Limits
n-Tricosane	1 lag	0016	126	mg/Kg		1	100 Announ	U	126	70 - 130
I IIICOSalie			140	1118/ 11 8	>	T	100		120	10 - 100

Sample: 306711 - TT-1 @ 4'

Laboratory:	Lubbock				
Analysis:	TPH GRO	Analytical Method:	S 8015 D	Prep Method:	S 5035
QC Batch:	94091	Date Analyzed:	2012-08-20	Analyzed By:	\mathbf{MT}
Prep Batch:	79758	Sample Preparation:	2012-08-20	Prepared By:	MT

Report Date: August 22, 2012 SUG Historical Releases			Tr	Page Number: 8 of 28 Lea Co., NM					
Parameter	Elo m		Cert		RL Result	Unit		Dilution	DI
	Flag		Cert			0		Dilution	RL
GRO	JЪ		1		<4.00	mg/K	g	1	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)				1.76	mg/Kg	1	2.00	88	70 - 130
4-Bromofluorobenzene (4-BFB)				1.83	mg/Kg	1	2.00	92	70 - 130

Sample: 306711 - TT-1 @ 4'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH OR 93981 79680	0		Dat	lytical M e Analyz ple Prep	ed:	S 8015 D 2012-08-17 2012-08-15			Prep M Analyz Prepare	v	N/A CW CW
			MDL	MQL	PQL	RL						
Parameter	Flag	Cert	Result	Result	Result	Result	Units	Dilution	MDL	MQL	PQL	RL
ORO	U		<14.5	$<\!50.0$	$<\!50.0$	$<\!50.0$	m mg/Kg	1	14.5	50.0	50.0	50.0
Surrogate		Flag	Cert	Resi	ılt	Units	Dilution	Spike Amoun		Percent Recovery		covery imits
n-Tricosane				1	24 n	ng/Kg	1	100		124	70	- 130
n-Triacontane	е			92	2.5 n	ng/Kg	1	100		92	70	- 130

Sample: 306712 - TT-2 @ 1'

Laboratory: Lubbock Analysis: BTEX QC Batch: 94090 Prep Batch: 79758		Analytical Method: Date Analyzed: Sample Preparation:		2012-08	S 8021B 2012-08-20 2012-08-20			: S 5035 MT MT
				RL				
Parameter	Flag	Cert		Result	Unit	s	Dilution	RL
Benzene	U	1	<	0.0200	mg/Kg	r S	1	0.0200
Toluene	U	1	<	0.0200	mg/K_{2}	r S	1	0.0200
Ethylbenzene	U	1	<	0.0200	$\mathrm{mg/Kg}$	r 5	1	0.0200
Xylene	U	1	<	0.0200	mg/K_s	r S	1	0.0200
Surrogate	Flag	g Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
0	r lag	s Cert			1			
Trifluorotoluene (TFT)			1.59	mg/Kg	1	2.00	80	70 - 130
4-Bromofluorobenzene (4-BFB)			1.80	$\mathrm{mg/Kg}$	1	2.00	90	70 - 130

Report Date: August 22, 2012	Work Order: 12081428	Page Number: 9 of 28
SUG Historical Releases	Trunk O 30 inch (RP 1020)	Lea Co., NM

Sample: 306712 - TT-2 @ 1'

Laboratory: Analysis: QC Batch: Prep Batch:	s: Chloride (Titration) ch: 93965		cal Method: nalyzed: Preparation:	SM 4500-Cl B 2012-08-16 2012-08-16	Prep Method: Analyzed By: Prepared By:	ĹM
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			270	mg/Kg	20	5.00

Sample: 306712 - TT-2 @ 1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NE 93964 79657	Ċ₩	Date	lytical Metho e Analyzed: ple Preparat	2012-0	08-16	Prep Me Analyzed Prepared	ł By: CW
]	RL			
Parameter		Flag	Cert	Res	ult	Units	Dilution	RL
DRO		U	2	<5	0.0	mg/Kg	1	50.0
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane			128	m mg/Kg	1	100	128	70 - 130

Sample: 306712 - TT-2 @ 1'

Laboratory: Lubbock Analysis: TPH GR QC Batch: 94091 Prep Batch: 79758	PH GROAnalytical Method:S 8015 D4091Date Analyzed:2012-08-20								d: S 5035 y: MT y: MT
					RL				
Parameter	Flag		Cert		Result	Unit	\mathbf{ts}	Dilution	RL
GRO	U		1		<4.00	mg/K	g	1	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)				1.64	mg/Kg	1	2.00	82	70 - 130
4-Bromofluorobenzene ((4-BFB)			1.92	mg/Kg	1	2.00	96	70 - 130

Report Date: August 22, 2012	Work Order: 12081428	Page Number: 10 of 28
SUG Historical Releases	Trunk O 30 inch (RP 1020)	Lea Co., NM

Sample: 306712 - TT-2 @ 1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH OR 93981 79680	0		Dat	llytical M e Analyze nple Prepa	ed:	S 8015 D 2012-08-17 2012-08-15			Prep M Analyz Prepare	v	N/A CW CW
			MDL	MQL	PQL	RL						
Parameter	Flag	Cert	Result	Result	Result	Result	Units	Dilution	MDL	MQL	PQL	RL
ORO	U		$<\!\!14.5$	$<\!50.0$	$<\!50.0$	$<\!50.0$	m mg/Kg	1	14.5	50.0	50.0	50.0
Surrogate		Flag	Cert	Resu	ılt T	Units	Dilution	Spike Amour		Percent Recovery		covery imits
n-Tricosane				1:	27 m	ıg/Kg	1	100		127	70	- 130
n-Triacontane	е			89		ng/Kg	1	100		89	70	- 130

Sample: 306713 - TT-3 @ 1'

Laboratory: Lubbock Analysis: BTEX QC Batch: 94090 Prep Batch: 79758		Date Ana	l Method: lyzed: reparatior	2012-08	-20		Prep Method Analyzed By Prepared By:	: MT
T					-		· r · · · · · · · · · · · · · · · · · · ·	_
Parameter	Flag	Cert		RL Result	Uni	ta	Dilution	RL
Benzene 1	~			< 0.0400	mg/K		2	0.0200
	U	1						
Toluene	U	1	<	< 0.0400	mg/K	g	2	0.0200
Ethylbenzene	U	1	<	< 0.0400	mg/K	g	2	0.0200
Xylene	U	1	<	< 0.0400	mg/K	g	2	0.0200
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.78	mg/Kg	2	2.00	89	70 - 130
4-Bromofluorobenzene (4-BFB)			1.89	mg/Kg	2	2.00	94	70 - 130

Sample: 306713 - TT-3 @ 1'

Laboratory:	Lubbock				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	93965	Date Analyzed:	2012-08-16	Analyzed By:	LM
Prep Batch:	79658	Sample Preparation:	2012-08-16	Prepared By:	LM

continued ...

Cert	Resu F Resu	RL	Units Units mg/Kg	Dilution Dilution 10		RL 5.00
	Resu F Resu	ılt RL ılt	Units	Dilution		RL
Cert	Resu	ılt				
	1	98	mg/Kg	10		5.00
Date		2012-0	8-16	v	d By:	N/A CW CW
Cert			Units	Dilution		RL
2			mg/Kg	1		50.0
Result	Units	Dilution	Spike Amount	Percent Recovery	Reco Lin	nits
	Sam Cert 2	F Cert Resu 2 <50 Result Units	Sample Preparation: 2012-08 RL 2 <50.0 Result Units Dilution	Sample Preparation: 2012-08-15 RL Cert Result Units 2 <50.0 mg/Kg Result Units Dilution Amount	Sample Preparation: 2012-08-15 Prepared RL Units Dilution 2 <50.0	Sample Preparation: 2012-08-15 Prepared By: RL Dilution 2 <50.0

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH GRO 94091 79758		Date An	al Methoo alyzed: Preparatio	2012-0	8-20		Prep Metho Analyzed B Prepared By	y: MT
					RL				
Parameter		Flag	Cert		Result	Uni	ts	Dilution	RL
GRO	2	U	1		<8.00	mg/ŀ	Kg	2	4.00
Surrogate		Fla	g Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue	ene (TFT)			1.79	mg/Kg	2	2.00	90	70 - 130
4-Bromofluor	cobenzene (4-BFB)			1.98	$\mathrm{mg/Kg}$	2	2.00	99	70 - 130

Report Date: August 22, 2012	Work Order: 12081428	Page Number: 12 of 28
SUG Historical Releases	Trunk O 30 inch (RP 1020)	Lea Co., NM

Sample: 306713 - TT-3 @ 1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH OR 93981 79680	0		Dat	llytical M e Analyz nple Prej		S 8015 D 2012-08-17 2012-08-15			Prep M Analyz Prepare	ed By:	N/A CW CW
			MDL	MQL	PQL	RL						
Parameter	Flag	Cert	Result	Result	Result	Result	Units	Dilution	MDL	MQL	PQL	RL
ORO	U		$<\!14.5$	$<\!50.0$	$<\!50.0$	<50.0	m mg/Kg	1	14.5	50.0	50.0	50.0
Surrogate		Flag	Cert	Res	ult	Units	Dilution	Spike Amour		Percent Recovery		covery imits
n-Tricosane	Qsr	Qsr			131	mg/Kg	1	100		131	70	- 130
n-Triacontane	9			9		mg/Kg	1	100		100	70	- 130

Sample: 306714 - Stockpile

Sample, Journal Stockpile								
Laboratory: Lubbock Analysis: BTEX QC Batch: 94090 Prep Batch: 79758		Date Ana	l Method: lyzed: reparation	2012-08	-20		Prep Method Analyzed By Prepared By	v: MT
				RL				
Parameter	Flag	Cert		Result	Unit	s	Dilution	RL
Benzene	U	1	<	0.0200	mg/Kg	r	1	0.0200
Toluene	U	1	<	0.0200	$\mathrm{mg/Kg}$	r 5	1	0.0200
Ethylbenzene	U	1	<	0.0200	$\mathrm{mg/Kg}$	S	1	0.0200
Xylene		1	<	(0.0200)	mg/Kg	5	1	0.0200
						Spike	Percent	Recovery
Surrogate	Flag	g Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.58	m mg/Kg	1	2.00	79	70 - 130
4-Bromofluorobenzene (4-BFB)			1.87	m mg/Kg	1	2.00	94	70 - 130

Sample: 306714 - Stockpile

Lubbock				
Chloride (Titration)	Analytical Method:	SM 4500-Cl B $$	Prep Method:	N/A
93966	Date Analyzed:	2012-08-16	Analyzed By:	LM
79660	Sample Preparation:	2012-08-16	Prepared By:	LM
		Chloride (Titration)Analytical Method:93966Date Analyzed:	Chloride (Titration)Analytical Method:SM 4500-Cl B93966Date Analyzed:2012-08-16	Chloride (Titration)Analytical Method:SM 4500-Cl BPrep Method:93966Date Analyzed:2012-08-16Analyzed By:

continued ...

Report Date SUG Historie	: August 22, 2012 cal Releases			Work Order: 12081428 Trunk O 30 inch (RP 1020)						Page Number: 13 of 28 Lea Co., NM			
sample 30671	14 continued												
Parameter		Flag		Cert]	RL Result		Uni	ts	Dilution	RL		
Parameter		Flag		Cert]	RL Result		Uni		Dilution	RL		
Chloride						545		mg/K	g	20	5.00		
Sample: 30	6714 - Stockpile												
Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NEV 93964 79657	V		Dat	dytical Me e Analyze uple Prepa	d:	S 8015 2012-0 2012-0	8-16		Prep Met Analyzed Prepared	By: CW		
Parameter		Flag		Cert	1	RL Result		Uni	ts	Dilution	RL		
DRO		1 1005		2		<50.0		mg/K		1	50.0		
Surrogate	Flag	Cert		Result	Units	D	ilution		pike nount	Percent Recovery	Recovery Limits		
n-Tricosane				122	m mg/Kg		1		100	122	70 - 130		
Sample: 30 Laboratory: Analysis: QC Batch: Prep Batch:	6714 - Stockpile Lubbock TPH GRO 94091 79758			Date An	al Method alyzed: Preparatio	201	015 D 2-08-20 2-08-20			Prep Metho Analyzed B Prepared B	y: MT		
Parameter		Flag		Cert	1	RL Result		Uni	s	Dilution	RL		
GRO		U		1		<4.00		mg/K		1	4.00		
Surrogate Trifluorotolue	ene (TFT)		Flag	Cert	Result 1.59	Units mg/K		ution	Spike Amount 2.00	Percent Recovery 80	Recovery Limits 70 - 130		
	obenzene (4-BFB)				1.95	mg/K mg/K	-	1	2.00 2.00	98	70 - 130 70 - 130		

Report Date: SUG Historic				Order: 1 0 30 inch	2081428 (RP 1020)	Page Number: 14 of 28 Lea Co., NM						
Sample: 300	6714 - Ste	ockpile										
Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH OR 93981 79680	0		Dat	llytical M e Analyz 1ple Prep	ed:	S 8015 D 2012-08-17 2012-08-15			Prep M Analyz Prepar	v	N/A CW CW
			MDL	MQL	PQL	RL						
Parameter	Flag	Cert	Result	Result	Result	Result	Units	Dilution	MDL	MQL	PQL	RL
ORO	U		<14.5	$<\!50.0$	$<\!50.0$	<50.0	m mg/Kg	1	14.5	50.0	50.0	50.0
								Spike		Percent	Re	covery
Surrogate		Flag	Cert	Resi	ılt	Units	Dilution	Amoun	t	Recovery	\mathbf{L}	$_{ m imits}$
n-Tricosane				1	23 n	ng/Kg	1	100		123	70	- 130
n-Triacontane	e			89	0.3 n	ng/Kg	1	100		89	70	- 130

Method Blanks

Method Blank (1)	QC B	atch: 9396	64					
QC Batch: 93964 Prep Batch: 79657				nalyzed: paration:	2012-08-16 2012-08-15		v	d By: CW d By: CW
					Μ	IDL		
Parameter		Fla	ģ	Cert	Re	sult	Units	RL
DRO				2	<1	14.5	m mg/Kg	50
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane			110	mg/Kg	; 1	100	110	70 - 130

Method Blank (1)	QC Batch: 93965				
QC Batch: 93965 Prep Batch: 79658		Date Analyzed: QC Preparation:	2012-08-16 2012-08-16	Analyzed By Prepared By	
Parameter	Flag	Cert	MDL Result	Units	RL
Chloride	1 145	Cert	<3.05	mg/Kg	5

Method Blank (1)	QC Batch: 93966				
QC Batch: 93966 Prep Batch: 79660		Date Analyzed: QC Preparation:	2012-08-16 2012-08-16	Analyzed By: Prepared By:	
_			MDL		
Parameter	Flag	Cert	Result	Units	RL
Chloride			<3.05	m mg/Kg	5

Report Date: August SUG Historical Releas	,			Vork Order: ink O 30 inch	Page Number: 16 of 28 Lea Co., NM			
Method Blank (1)	QC Ba	tch: 93981						
QC Batch: 93981 Prep Batch: 79680			12-08-17 12-08-15		Analyze Preparec	v		
					MI	DL		
Parameter		Flag		Cert	Res	ılt	Units	RL
ORO					<14	1.5	m mg/Kg	50
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane			108	mg/Kg	1	100	108	70 - 130
n-Triacontane			81.5	$\mathrm{mg/Kg}$	1	100	82	70 - 130

0
0

QC Batch: 94090		Date A	nalyzed:	2012-08-2	0	Analyzed	By: MT		
Prep Batch: 79758	QC Preparation:			2012-08-2	0	Prepared	By: MT		
					MDL				
			a .				TT •,	DI	
Parameter	Flag		Cert		Result		Units	$\frac{\text{RL}}{0.02}$	
Benzene			1		< 0.00365	1	mg/Kg		
Toluene			1		< 0.00816	1	mg/Kg		
Ethylbenzene			1		< 0.00560	1	mg/Kg	0.02	
Xylene			1		< 0.00460]	mg/Kg	0.02	
						Spike	Percent	Recovery	
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits	
Trifluorotoluene (TFT)			1.86	mg/Kg	1	2.00	93	70 - 130	
4-Bromofluorobenzene (4-BFB)	1.82			mg/Kg	1	2.00	70 - 130		

Method Blank (1) QC Batch: 94091

QC Batch: 94091 Prep Batch: 79758		Date Analyzed: QC Preparation:		Analyzed By: Prepared By:	
			MDL		
Parameter	Flag	Cert	Result	Units	RL
GRO		1	0.984	m mg/Kg	4

Report Date: August 22, 2012 SUG Historical Releases			Work Ord unk O 30		Page Numb L	er: 17 of 28 ea Co., NM	
Surrogate	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)			$2.07 \\ 1.97$	m mg/Kg $ m mg/Kg$	$2.00 \\ 2.00$	104 98	70 - 130 70 - 130

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch: 93964 Prep Batch: 79657			Analyzed: reparation		2-08-16 2-08-15			v	zed By red By	
-	-		LCS		5.1	Spike		trix		Rec.
Param DRO	F		Result	Units	Dil.	Amount		$\frac{\text{sult}}{4.5}$ Re		Limit
	.,	2	251	mg/Kg		250		4.5 10	10	70 - 130
Percent recovery is based on the	spike resu	ult. RPD	is based o	on the sp	pike and sp	pike duplica	ate resu	lt.		
		LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F} \mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	2	241	mg/Kg	1	250	$<\!14.5$	96	70 - 130	4	20
Percent recovery is based on the	spike resu	ılt. RPD	is based o	on the sp	pike and sp	oike duplica	ate resu	lt.		
	LCS	LCS	D			Spike	LCS	5 LCS	D	Rec.
Surrogate	Result	Resu		nits	Dil.	Amount	Rec			Limit
n-Tricosane	116	109	mg	g/Kg	1	100	116	109		70 - 130
Laboratory Control Spike (I QC Batch: 93981	LCS-1)	Data	Analyzed		2-08-17			Analy	zed By	r: CW
Prep Batch: 79680			reparation		2-08-17 2-08-15			v	red By	
riep batch. 79080	LCS	QC F	-	1. 201.	2-08-13	Spike	LCS	-	v	Rec.
Surrogate	Resul			Jnits	Dil.	Amount	Rec			Limit
n-Tricosane	116	10	08 m	g/Kg	1	100	116	5 108		70 - 130

Laboratory Control Spike (LCS-1)

n-Triacontane

87.5

77.0

QC Batch:	94090	Date Analyzed:	2012-08-20	Analyzed By:	\mathbf{MT}
Prep Batch:	79758	QC Preparation:	2012-08-20	Prepared By:	\mathbf{MT}

mg/Kg

1

100

88

77

70 - 130

Report Date: August 22, 2012 SUG Historical Releases				rk Order: 1 O 30 inch	Pa	0	ber: 19 of 28 Lea Co., NM		
Param	F	С	LCS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit
Benzene	Г	1	1.88	mg/Kg	1	2.00	<0.00365	94	75.4 - 120
Toluene		1	1.81	mg/Kg	1	2.00	< 0.00816	90	74.9 - 120
Ethylbenzene		1	1.84	mg/Kg	1	2.00	< 0.00560	92	78.1 - 120
Xylene		1	5.54	$\mathrm{mg/Kg}$	1	6.00	< 0.00460	92	77.3 - 120

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	F	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene		1	1.89	mg/Kg	1	2.00	< 0.00365	94	75.4 - 120	0	20
Toluene		1	1.85	$\mathrm{mg/Kg}$	1	2.00	< 0.00816	92	74.9 - 120	2	20
Ethylbenzene		1	1.88	$\mathrm{mg/Kg}$	1	2.00	< 0.00560	94	78.1 - 120	2	20
Xylene		1	5.65	$\mathrm{mg/Kg}$	1	6.00	< 0.00460	94	77.3 - 120	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.94	1.92	mg/Kg	1	2.00	97	96	70 - 130
4-Bromofluorobenzene (4-BFB)	1.84	1.88	$\mathrm{mg/Kg}$	1	2.00	92	94	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch:	94091		D	ate Analyz	ed: 2012-	-08-20			Analyze	d By: MT
Prep Batch:	79758		Q	C Preparat	tion: 2012	-08-20			Prepareo	l By: MT
				LCS			Spike	Matrix		Rec.
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO			1	19.5	mg/Kg	1	20.0	0.984	92	68.9 - 120

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	M	a trix		Rec			RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil	. Amoun	t Re	esult	Rec.	Lim	it	RPD	Limit
GRO		1	20.0	$\mathrm{mg/Kg}$	g 1	20.0	0.	.984	95	68.9 -	120	2	20
Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.													
			LC	S L	CSD			$\mathbf{S}_{\mathbf{I}}$	pike	LCS	LC	SD	Rec.
Surrogate			Res	ult R	esult	Units	Dil.	Am	nount	Rec.	$R\epsilon$	ec.	Limit
Trifluorotoluene (TFT)			2.0)7 2	2.08	mg/Kg	1	2	.00	104	10)4	70 - 130
4-Bromofluorobenzene (4-BFB)			1.8	30 2	2.07	$\mathrm{mg/Kg}$	1	2	.00	90	10	4	70 - 130

Matrix Spike (MS-1) Spiked QC Batch: 93964 Prep Batch: 79657	d Sample:		1						
			e Analyzeo Preparatio		-08-16 -08-15			Analyzed Prepared	•
Param	F	С	MS Result	Units	Dil.	Spike Amount	Matriz Resul		Rec. Limit
DRO		2	299	mg/Kg	1	250	15.5	113	70 - 130
Percent recovery is based on the s	spike resu	lt. RPE) is based	on the sp	ike and sp	ike duplica	te result.		
Param	F C	MSD Result	Units	Dil.	Spike Amount	Matrix Result		Rec. Jimit RI	RPD PD Limit
DRO	2	306	mg/Kg	g 1	250	15.5	116 70	- 130	2 20
Percent recovery is based on the s	spike resu	lt. RPE) is based	on the sp	ike and sp	ike duplica	te result.		
	MS	٦	MSD			Spile	MS	MSD	Rec.
Surrogate	Resul		lesult	Units	Dil.	Spike Amount	Rec.	Rec.	Limit
n-Tricosane _{Qsr} _{Qsr}	131		128	mg/Kg	1	100	131	128	70 - 130
Matrix Spike (MS-1) Spiked QC Batch: 93965 Prep Batch: 79658	ł Sample:	Date	3 e Analyze Preparati		2-08-16 2-08-16			Analyzed Prepared	*
Param	F	С	MS Result	Units	Dil.	Spike Amount	Matriz Resul		Rec. Limit
Chloride	1	0	607	mg/Kg	10	500	<30.5		80 - 120
Percent recovery is based on the s	nike resu	lt RPF							
	pine reca			on one op	-				
D	БŐ	MSD Dereilt		וית	Spike	Matrix		Rec.	RPD
Param Chloride	F C	Result 607	t Units mg/Kg		Amount 500	Result <30.5			$\frac{PD}{D} \frac{Limit}{20}$
Percent recovery is based on the s			- , - ,	-	000	~30.0	121 00	- 120	, 20

QC Batch:	93966	Date Analyzed:	2012-08-16	Analyzed By:	LM
Prep Batch:	79660	QC Preparation:	2012-08-16	Prepared By:	LM

Matrix Spike (MS-1) Spiked Sample: 306717

SUG Historical Releases						12081428 n (RP 1020))	Page Number: 21 of 28 Lea Co., NM					
				MS			Spike	М	atrix			Rec.	
Param		\mathbf{F}	\mathbf{C}	Result	Units	B Dil.	Amount		esult	t Rec.		Limit	
Chloride				521	mg/K	g 10	500	<	30.5	104	8	0 - 120	
Percent recovery is based on the	e spik	e res	ult. RP	D is based	d on the	spike and	spike duplic	ate res	ult.				
			MSE			Spike	Matrix		Rec.			RPD	
Param	F	С	Resul			Amount		Rec.	Limit		PD	Limit	
Chloride			521	mg/k	Kg 10	500	$<\!30.5$	104	80 - 12	20	0	20	
Matrix Spike (MS-1) Spik	xed Sa	mple	e: 30670	4									
QC Batch: 93981	icu st	mpr		te Analyz	ed· 20	12-08-17			Ar	nalyzed	Bv∙	CW	
Prep Batch: 79680				Preparat		12-08-15				repared	•	CW	
T			-0 -	.1						.1			
		λ	IS	MSD			Spike	1	MS	MSD		Rec.	
Surrogate			sult	Result	Units	bil.	Amount		Rec.	Rec.		Limit	
n-Tricosane _{Qsr} _{Qsr}			34	127	mg/K		100		134	127		$\frac{1}{0} - 130$	
n-Triacontane		91	1.2	88.9	mg/K	g 1	100		91	89	7	0 - 130	
Matrix Spike (MS-1) Spik QC Batch: 94090	xed Sa		e: 30670 Dat		ed: 20	g 1 12-08-20 12-08-20	100		Aı	89 nalyzed	ł By:		
QC Batch: 94090	ced Sa		e: 30670 Dat	4 te Analyz Preparat	ed: 20	12-08-20			Aı Pr	nalyzec	l By: l By:	MT MT	
Matrix Spike (MS-1) Spik QC Batch: 94090 Prep Batch: 79758	ced Sa	mple	e: 30670 Dat QC	4 te Analyz Preparat MS	ed: 20 tion: 20	12-08-20 12-08-20	Spike	Mat	Aı Pr rix	nalyzec	l By: l By:	MT MT Rec.	
Matrix Spike (MS-1) Spik QC Batch: 94090 Prep Batch: 79758 Param	ced Sa		e: 30670 Dat QC C 1	4 te Analyz Preparat MS Result	ed: 20 tion: 20 Units	12-08-20 12-08-20 Dil.	Spike Amount	Mat Res	Aı Pr rix ult	nalyzed repared Rec.	l By: l By: l I	MT MT Rec.	
Matrix Spike (MS-1) Spik QC Batch: 94090 Prep Batch: 79758 Param Benzene	ced Sa	mple	e: 30670 Dat QC <u>C</u>	4 te Analyz Preparat MS Result 1.83	ed: 20 tion: 20 <u>Units</u> mg/Kg	12-08-20 12-08-20 Dil. 1	Spike Amount 2.00	Mat Res <0.00	Aı Pr rix ult 0365	nalyzed epared Rec. 92	l By: l By:] <u>[</u> 37.0	MT MT Rec. .imit 6 - 142	
Matrix Spike (MS-1) Spik QC Batch: 94090 Prep Batch: 79758 Param Benzene Toluene	ced Sa	mple	e: 30670 Dat QC <u>C</u>]	4 te Analyz Preparat MS <u>Result</u> 1.83 1.94	ed: 20 tion: 20 <u>Units</u> mg/Kg mg/Kg	12-08-20 12-08-20 Dil. 1 1	Spike Amount 2.00 2.00	Mat Ress <0.00 <0.00	Aı Pr rix ult 0365 0816	nalyzec epared Rec. 92 97	ł By: l By: I 37.0 38.0	MT MT Limit 6 - 142 6 - 153	
Matrix Spike (MS-1) Spik QC Batch: 94090 Prep Batch: 79758 Param Benzene Foluene Ethylbenzene	ced Sa	mple	e: 30670 Dat QC C] 1 1	4 te Analyz Preparat MS <u>Result</u> 1.83 1.94 2.03	ed: 20 tion: 20 <u>Units</u> mg/Kg mg/Kg mg/Kg	12-08-20 12-08-20 Dil. 1 1 1	Spike Amount 2.00 2.00 2.00 2.00	Mat Res: <0.00 <0.00 <0.00	A1 Pr ult 2 0365 0816 0560	nalyzec epared Rec. 92 97 102	ł By: l By: l By: 37.0 38.0 36.1	MT MT 	
Matrix Spike (MS-1) Spik QC Batch: 94090 Prep Batch: 79758 Param Benzene Foluene Ethylbenzene Xylene		mple F	e: 30670 Dat QC C	4 9 Preparat MS Result 1.83 1.94 2.03 6.06	ed: 20 tion: 20 Units mg/Kg mg/Kg mg/Kg mg/Kg	12-08-20 12-08-20 Dil. 1 1 1 1 1	Spike Amount 2.00 2.00 2.00 6.00	Mat Res <0.00 <0.00 <0.00 <0.00	A1 Pr ult)365)816)560)460	nalyzec epared Rec. 92 97	ł By: l By: l By: 37.0 38.0 36.1	MT MT	
Matrix Spike (MS-1) Spik QC Batch: 94090 Prep Batch: 79758 Param Benzene Toluene Ethylbenzene Xylene		mple F	e: 30670 Dat QC C 1 1 1 1 ult. RP	4 9 Preparat MS Result 1.83 1.94 2.03 6.06	ed: 20 tion: 20 Units mg/Kg mg/Kg mg/Kg mg/Kg	12-08-20 12-08-20 Dil. 1 1 1 1 spike and s	Spike Amount 2.00 2.00 2.00 6.00 spike duplica	Mat Res <0.00 <0.00 <0.00 <0.00	A1 Pr ult)365)816)560)460 ult.	nalyzed repared 92 97 102 101	ł By: l By: l By: 37.0 38.0 36.1	MT MT .imit 6 - 142 6 - 153 7 - 172 7 - 173	
Matrix Spike (MS-1) Spik QC Batch: 94090 Prep Batch: 79758 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the	e spik	ample F	e: 30670 Dat QC <u>C 1</u> 1 1 1 1 ult. RP. MSD	4 te Analyz Preparat MS Result 1.83 1.94 2.03 6.06 D is based	ed: 20 tion: 20 <u>Units</u> <u>mg/Kg</u> <u>mg/Kg</u> <u>mg/Kg</u> <u>mg/Kg</u> d on the	12-08-20 12-08-20 Dil. 1 1 1 spike and s	Spike Amount 2.00 2.00 2.00 6.00 spike duplica Matrix	Mat Ress <0.00 <0.00 <0.00 <0.00 ate res	A1 Pr ult)365)816)560)460 ult. Rec.	nalyzed repared <u>92</u> 97 102 101	l By: l By: <u>I</u> 37.0 38.0 36.7 36.7	MT MT <u>.imit</u> 6 - 142 6 - 153 7 - 172 7 - 173 RPD	
Matrix Spike (MS-1) Spik QC Batch: 94090 Prep Batch: 79758 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the Param		F F C	e: 30670 Dat QC <u>C</u> 1 1 1 ult. RP Result	4 te Analyz Preparat MS Result 1.83 1.94 2.03 6.06 D is based Units	ed: 20 tion: 20 <u>Units</u> <u>mg/Kg</u> <u>mg/Kg</u> <u>mg/Kg</u> d on the Dil.	12-08-20 12-08-20 Dil. 1 1 1 spike and s Spike Amount	Spike Amount 2.00 2.00 2.00 6.00 spike duplic: Matrix Result	Mat Res: <0.00 <0.00 <0.00 <0.00 ate res Rec.	A1 Pr ult)365)816)560)460 ult. Rec. Limit	nalyzed repared 92 97 102 101	l By: l By: I 37.0 38.0 36.' 36.'	MT MT .imit 6 - 142 6 - 153 7 - 172 7 - 173 RPD Limit	
Matrix Spike (MS-1) Spik QC Batch: 94090 Prep Batch: 79758 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the Param Benzene	e spik	F F C 1	e: 30670 Dat QC <u>C</u> 1 1 1 1 ult. RP Result 1.81	4 te Analyz Preparat MS Result 1.83 1.94 2.03 6.06 D is based Units mg/Kg	ed: 20 tion: 20 mg/Kg mg/Kg mg/Kg d on the Dil.	12-08-20 12-08-20 Dil. 1 1 1 spike and s Spike Amount 2.00	Spike Amount 2.00 2.00 2.00 6.00 spike duplica Matrix Result <0.00365	Mat Ress <0.00 <0.00 <0.00 ate res Rec. 90	An Pr ult 20 0365 0816 0560 0460 ult. Rec. Limit 37.6 - 1	nalyzec repared 92 97 102 101 t R 42	H By: H By: H By: I 37.4 38.4 36.7 36.7 2 PD 1	MT MT 	
Matrix Spike (MS-1) Spik QC Batch: 94090 Prep Batch: 79758 Param Benzene Foluene Ethylbenzene Xylene Percent recovery is based on the Param Benzene Foluene	e spik	F e rest C 1	e: 30670 Dat QC <u>C</u> 1 1 1 ult. RP Result 1.81 1.93	4 te Analyz Preparat MS Result 1.83 1.94 2.03 6.06 D is based Units mg/Kg mg/Kg	ed: 20 tion: 20 Units mg/Kg mg/Kg mg/Kg d on the Dil. 1 1	12-08-20 12-08-20 Dil. 1 1 1 spike and s Spike Amount 2.00 2.00	Spike Amount 2.00 2.00 6.00 spike duplic: Matrix Result <0.00365 <0.00816	Mat Ress <0.00 <0.00 <0.00 ate res Rec. 90 96	An Pr ult 0365 0816 0560 0460 ult. Rec. Limit 37.6 - 1 38.6 - 1	nalyzec repared 92 97 102 101 t R 42 53	H By: H By:	MT MT cimit 6 - 142 6 - 153 7 - 172 7 - 173 RPD Limit 20 20	
Matrix Spike (MS-1) Spik QC Batch: 94090 Prep Batch: 79758 Param Benzene	e spik	F F C 1	e: 30670 Dat QC <u>C</u> 1 1 1 1 ult. RP Result 1.81	4 te Analyz Preparat MS Result 1.83 1.94 2.03 6.06 D is based Units mg/Kg	ed: 20 tion: 20 Units mg/Kg mg/Kg mg/Kg d on the Dil. 1 1 1	12-08-20 12-08-20 Dil. 1 1 1 spike and s Spike Amount 2.00	Spike Amount 2.00 2.00 2.00 6.00 spike duplica Matrix Result <0.00365	Mat Ress <0.00 <0.00 <0.00 ate res Rec. 90	An Pr ult 20 0365 0816 0560 0460 ult. Rec. Limit 37.6 - 1	Rec. 92 97 102 101 t R 42 53 72	H By: H By: H By: I 37.4 38.4 36.7 36.7 2 PD 1	MT MT 	

Report Date: August 22, 2012 SUG Historical Releases		fork Order ak O 30 in	Page Number: 22 of 28 Lea Co., NM					
	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.98	1.98	$\mathrm{mg/Kg}$	1	2	99	99	70 - 130
4-Bromofluorobenzene (4-BFB)	1.92	1.91	mg/Kg	1	2	96	96	70 - 130

Matrix Spike (MS-1) Spiked Sample: 306704

QC Batch:	94091	Date Analyzed:	2012-08-20	Analyzed By:	\mathbf{MT}
Prep Batch:	79758	QC Preparation:	2012-08-20	Prepared By:	\mathbf{MT}

			MS			Spike	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO		1	16.0	m mg/Kg	1	20.0	< 0.359	80	68.9 - 120

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO		1	16.8	$\mathrm{mg/Kg}$	1	20.0	< 0.359	84	68.9 - 120	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.82	1.82	mg/Kg	1	2	91	91	70 - 130
4-Bromofluorobenzene (4-BFB)	2.13	2.17	m mg/Kg	1	2	106	108	70 - 130
Calibration Standards

Standard (CCV-1)

QC Batch:	93964	Date Analyzed:				2012-08-16		Analy	Analyzed By: CW	
					CCVs	$\rm CCVs$	CCVs	Percent		
					True	Found	Percent	Recovery	Date	
Param	I	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
DRO			2	mg/Kg	250	248	99	80 - 120	2012-08-16	

Standard (CCV-2)

QC Batch:	93964	Date Analyzed			2012-08-16		Analy	Analyzed By: CW	
				$\rm CCVs$	CCVs	CCVs	Percent		
				True	Found	Percent	Recovery	Date	
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
DRO		2	m mg/Kg	250	235	94	80 - 120	2012-08-16	

Standard (CCV-3)

QC Batch:	93964	Date Analyzed:				2012-08-16		Analyz	Analyzed By: CW	
					CCVs	CCVs	CCVs	Percent		
					True	Found	Percent	Recovery	Date	
Param	Fl	ag Ce	rt	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
DRO		2		mg/Kg	250	258	103	80 - 120	2012-08-16	

Standard (ICV-1)

QC Batch:	93965		Date Analyzed: 2012-08-16						Analyzed By: LM		
					ICVs True	ICVs	ICVs Democrat	Percent	Data		
					True	Found	Percent	Recovery	Date		
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed		
Chloride				mg/Kg	100	99.8	100	85 - 115	2012-08-16		

	Report Date: August 22, 2012 SUG Historical Releases			Work Orde Trunk O 30 i))	Page Nu	mber: 24 of 2 Lea Co., NN	
Standard (CC	CV-1)							
QC Batch: 93	965		Date A	Analyzed: 2	2012-08-16		Analy	zed By: LM
				CCVs	CCVs	$\rm CCVs$	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			mg/Kg	100	100	100	85 - 115	2012-08-10
Standard (IC	V-1)							
QC Batch: 93966			Date A	Analyzed: 2	2012-08-16		Analy	zed By: LM
				ICVs	ICVs	ICVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			mg/Kg	100	99.8	100	85 - 115	2012-08-1
Standard (CC QC Batch: 93			Date A	Analyzed: 2	2012-08-16		Analy	zed By: LM
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			mg/Kg	100	100	100	85 - 115	2012-08-1
Standard (CC	,							
QC Batch: 939	981		Date A	·	2012-08-17		· ·	zed By: CW
				CCVs	CCVs	CCVs	Percent	_
			TT •	True	Found	Percent	Recovery	Date
D	ירד			L'one	Conc.	Recovery	Limits	Analyzed
Param ORO	Flag	Cert	Units mg/Kg	$\frac{\text{Conc.}}{250}$	0.170	0	_	2012-08-

Standard (CCV-1)

QC Batch: 94090

Date Analyzed: 2012-08-20

Analyzed By: MT

Report Date: August 22, 2012 SUG Historical Releases				Vork Order: nk O 30 inc	Page Number: 25 of 28 Lea Co., NM			
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.0928	93	80 - 120	2012-08-20
Toluene		1	m mg/kg	0.100	0.0904	90	80 - 120	2012-08-20
Ethylbenzene		1	m mg/kg	0.100	0.0903	90	80 - 120	2012-08-20
Xylene		1	mg/kg	0.300	0.274	91	80 - 120	2012-08-20

Standard (CCV-2)

QC Batch: 94090			Date Ana	alyzed: 201	Analyzed By: MT			
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.0934	93	80 - 120	2012-08-20
Toluene		1	m mg/kg	0.100	0.0918	92	80 - 120	2012-08-20
Ethylbenzene		1	m mg/kg	0.100	0.0914	91	80 - 120	2012-08-20
Xylene		1	mg/kg	0.300	0.272	91	80 - 120	2012-08-20

Standard (CCV-3)

QC Batch: 94090			Date Ana	Analyzed By: MT				
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.0921	92	80 - 120	2012-08-20
Toluene		1	m mg/kg	0.100	0.0902	90	80 - 120	2012-08-20
Ethylbenzene		1	m mg/kg	0.100	0.0923	92	80 - 120	2012-08-20
Xylene		1	m mg/kg	0.300	0.276	92	80 - 120	2012-08-20

Standard (CCV-1)

QC Batch:	94091	Date Analyzed			2012-08-20		Analy	Analyzed By: MT	
				CCVs	CCVs	CCVs	Percent		
				True	Found	Percent	Recovery	Date	
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
GRO		1	m mg/Kg	1.00	1.01	101	80 - 120	2012-08-20	

Page Number: 26 of 28 Lea Co., NM))	r: 12081428 nch (RP 1020		Report Date: August 22, 2012 SUG Historical Releases			
							V-2)	Standard (CC
zed By: MT	Analy		012-08-20	Analyzed: 2	QC Batch: 94091			
	Percent	CCVs	CCVs	CCVs				
Date	Recovery	Percent	Found	True				
Analyzed	Limits	Recovery	Conc.	Conc.	Units	Cert	Flag	Param
2012-08-20	80 - 120	87	0.867	1.00	mg/Kg	1		GRO

Standard (CCV-3)

QC Batch:	94091			Date A	Analyzed:	2012-08-20		Analyz	zed By: MT
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Fla	ag Ce	ert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO			1	m mg/Kg	1.00	1.05	105	80 - 120	2012-08-20

Work Order: 12081428 Trunk O 30 inch (RP 1020) Page Number: 27 of 28 Lea Co., NM

Appendix

Report Definitions

NameDefinitionMDLMethod Detection LimitMQLMinimum Quantitation LimitSDLSample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
С	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	NELAP	T104704219-12-8	Lubbock
2	NELAP	T104704392-12-4	Midland

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Result Comments

- 1 Sample dilution due to surfactants.
- 2 Sample dilution due to surfactants.

Report Date: August 22, 2012 SUG Historical Releases Work Order: 12081428 Trunk O 30 inch (RP 1020) Page Number: 28 of 28 Lea Co., NM

Attachments

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.

Page of	ting Ste 100 575006 7750	e#: 575-396-2378 (Circle or Specify Mothod No.)		pm@basinenv.com	60109	Тг лик "О" 30- лось (8Р 1000) 56 Н9 56 Н9 56 Н9 56 Н9	Deprive Contraction of the contr	PRESERVATIVE SAMPLING 502 / 82 005 / 60 005 / 60	Mg, K, Mg, K,	TIME MTBE 8 BTEX 80 Point of 20, 1 Moisture TCLP Pe TCLP PE TC								Company: Date: Time: INST LAB USE REMARKS: g Iu /IZ = 0:00 OBS - 0 ONLY + 0 = 0.0 V S < 0/S = 0 ONLY + 0 = 0.0 S = 0 ONLY + 0 = 0.0 S = 0 ONLY + 0 = 0.0 S		200	1.5 U.U. D. 1.4
12001420	FraceAnalysis, Inc. email: lab@traceanalysis.com	Basin Environmental Service Technologies	P.O. 301 Lovington, NM, 88260	Rose Slade (SUG) Joel Lowry (Basin)	Southern Union Gas Services	SUG Historical Releases	Sampler Lea County. New Mexico	541	omA\ə	Aolum Aolum * CON	TT-1 @ Surface 1 X	TT-1@4' 1 X	TT-2@1' 1 X	TT-3@1' 1 X	Stockpile 1 X			 Company: Use: Ime: Received by: Co X date work (). 5:00 5007 (04.04	Company: Date: Time: Received by: Co ୧୦୦୦ କୁମ୍ବାମ କୁ:୦୦	Company: Date: Time: Received by: Co	samples constitutes agreement to Terms and Conditions-
LAB Order ID #	$\mathbf{T}_{\mathbf{I}}$	Company Name:	Address:	Contact Person:	Invoice to:	Project #:	Project Location: (include state)		LAB #		306710 TT-1			<u>д 13 п.</u>	J-C Stoo			Louinquistion by	Relinquished by: "Sobr laway	Relinquisher by	Submittal of samples cons

Analytical Report 448468

for PLAINS ALL AMERICAN EH&S

Project Manager: Ben Arguijo

Trunk "O" "30"

RP 1020

07-SEP-12

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

07-SEP-12

Project Manager: **Ben Arguijo PLAINS ALL AMERICAN EH&S** 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 448468 Trunk "O" "30" Project Address: Lea, N.M.

Ben Arguijo:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 448468. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 448468 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Nicholas Straccione Project Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 448468

PLAINS ALL AMERICAN EH&S, Midland, TX

Trunk "O" "30"

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
TT-2 @ 2FT	S	09-04-12 12:10		448468-001

CASE NARRATIVE

XENCO Laboratories

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: Trunk "O" "30"

Project ID:RP 1020Work Order Number:448468

Report Date: 07-SEP-12 Date Received: 09/04/2012

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Project Id: RP 1020

Project Location: Lea, N.M.

Contact: Ben Arguijo

Certificate of Analysis Summary 448468

PLAINS ALL AMERICAN EH&S, Midland, TX

Date Received in Lab: Tue Sep-04-12 04:07 pm

Report Date: 07-SEP-12

Project Manager: Nicholas Straccione

				I i ofeet mininger.		
Lab Id:	448468-001					
Field Id:	TT-2 @ 2FT					
Depth:						
Matrix:	SOIL					
Sampled:	Sep-04-12 12:10					
Extracted:	Sep-06-12 15:30					
Analyzed:	Sep-07-12 00:29					
Units/RL:	mg/kg RL					
	57.2 1.04					
Extracted:						
Analyzed:	Sep-05-12 11:00					
Units/RL:	% RL					
	3.61 1.00					
	Field Id: Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed:	Field Id: TT-2 @ 2FT Depth: SOIL Matrix: SOIL Sampled: Sep-04-12 12:10 Extracted: Sep-06-12 15:30 Analyzed: Sep-07-12 00:29 Units/RL: mg/kg RL Extracted: Sep-07-12 00:29 Units/RL: mg/kg RL Analyzed: Sep-05-12 1:00 Units/RL: % RL	Field Id: TT-2 @ 2FT Depth: Matrix: SOIL Sampled: Sep-04-12 12:10 Extracted: Sep-06-12 15:30 Analyzed: Sep-07-12 00:29 Units/RL: mg/kg RL Extracted: Sep-05-12 11:00 Extracted: Sep-05-12 11:00 Units/RL: % RL	Field Id: TT-2 @ 2FT Depth:	Lab Id: 448468-001 Field Id: TT-2 @ 2FT Depth:	Lab Id: 448468-001 Field Id: TT-2 @ 2FT Depth:

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Ctr. Nul

Nicholas Straccione Project Manager

Page 5 of 11

Final 1.000

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit
- MDL Method Detection Limit **SDL** Sample Detection Limit LOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit
- **DL** Method Detection Limit
- NC Non-Calculable
- NELAC certification not offered for this compound.
- (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

LOQ Limit of Quantitation

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr. Stafford, TX 77477 9701 Harry Hines Blvd , Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 12600 West I-20 East, Odessa, TX 79765 6017 Financial Drive, Norcross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040

Phone	Fax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Final 1.000

Project Name: Trunk "O" "30"

Work Order #: 448468			(D		•				ject ID: F			
Analyst: DEP		Da	ate Prepar	ed: 09/06/201	2			Date A	naryzeu: (9/06/2012		
Lab Batch ID: 895991	BKS Batch #: 1				Matrix: Solid							
Units: mg/kg			BLAN	K /BLANK S	SPIKE / E	BLANK S	PIKE DUPL	ICATE	RECOVE	ERY STUD	Y	
Inorganic Anions by E	EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes			[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride		<1.00	100	98.9	99	100	99.9	100	1	80-120	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Chloride

Form 3 - MS Recoveries

Laboratories					Ľ		A DAY
	Project Name: T	runk ''O''	"30"				490RATORI
Work Order #: 448468							
Lab Batch #: 895991				Pr	oject ID:	RP 1020	
Date Analyzed: 09/06/2012	Date P	repared: 09/0	6/2012	A	Analyst: D	EP	
QC- Sample ID: 448012-003 S		Batch #: 1			Matrix: So	oil	
Reporting Units: mg/kg		MATE	RIX / MA'	TRIX SPIKE	RECOV	VERY STU	DY
Inorganic Anio	ns by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Anal	ytes	[A]	[B]		נשן	/0K	

980

1050

2150

111

80-120

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Sample Duplicate Recovery

Project Name: Trunk "O" "30"

Work Order #: 448468

Lab Batch #: 895803				Project I	D: RP 1020	
Date Analyzed: 09/05/2012 09:30	Date Prepar	ed: 09/05/2012	2 Anal	lyst:WRU		
QC- Sample ID: 448467-001 D	Batch	#: 1	Mat	rix: Soil		
Reporting Units: %		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture		Parent Sample Result [A]	Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte			[B]			
Percent Moisture		4.00	4.38	9	15	

Cenco Laboratories	- <u></u>		12600 West I-20 Eas Odessa, Texas 7976	ik 1977 16	DRD AND ANALYSIS REQ Phone: 432-56 Fax: 432-56	:3-1800 :3-1713
Project Manager: <u>Ben ARgu</u>	<u>jo</u>			Project	Namo: TRANK "O"	
Project Manager: <u>Ben AR 9 L</u> Company Name <u>BASIN EN L</u>	inon mental	/S.U.	<u>G.S.</u>	Pr	ojset #: <u>RP 1021</u>	
Company Address: P.O. Box 3	0]	 	na manya aya aya kata da yaƙa tanga tanga kata da yaka ya Manaka tanga kata aka sa kata bana ba	Proje	octlos: Leg Nil	η,
City/State/Zip: Lovington	N.M.			ger stratien stange in S		an a sana a sana ya jaka na pakina na matu a sana na matu a na ma na paka na paka mataka s
Telephone No: 575-396-2	378	Fax No:		Report For	rmat: [] Standard []	
Telephone No: <u>575-396-</u> Sampler Signature: <u>Troy Na</u>	hn	e-mail:		an sama ana ana ana ana ana ana ana ana ana	Analyzo For:	ran kanan
the sume apply			•		TOTAL	na sa ka na
RDER #: 448468			Preservation & # of Cent	alnere Mourix B		
(Au o esi ge) ## SY FIELD CODE *	Seginning Depth Ending Depth Date Sampled	Time Sampled	Rotal #. of Containers loce HAC H2C H2C MacM MacM MacM	None Other (Specify) Other (Specify) OV-Dintong Vater SL-Stange GN = Soundwater SL-Stange GN = Soundwater SL-Stange NP-Non-Pataks Specify Other IPH: 418.1 8015M 8	TPH: TX 1006 TX 1006 Caffons (Ca, Ng, Na, K) Antons (Ca, Ng, Na, K) Antons (C, SC4, Atenimy) SAR / ESP, / CCC Mathic: As Ag Da Cd Cr Po Hg Se Mathic: As Ag Da Cd Cr Po Hg Se	NORIA NORIA CALORS ACS , NUSH TAT ANS SAMATURE 2
<u> </u>	09/04/12	1210				X
			·		wandow to an af Jacob Canada Canad	
			╋╍╊╍╢╍╆╍╂╧┤╍╉╼			
						erie Linea argent en lander and verset and aller are and aller are and aller are and aller are and all are are a
		-	┨╍┨╍┨╍┨╼┤╼┥			u 11 - Tara (11 - 11 - 11 - 11 - 11 - 11 - 11 - 1
			┠╍┠╍╂╍╂╍┼╍			
		L			Laboratory Commenter	
pecial instructions:	• • • • • • • • • • • • • • • • • • •				Sample Containers Intact? VOCs Free of Headepace?	O N
ellinguished by: Date	Time Received by: ////7 Time Received by:			Date Time Date Time	Labels on container(s) Custody seals on container(Custody seals on cooler(s) Sample Hand Delivered by Samplar/Cliant Rep. 7	
elinquished by: Date	Time Received by E		sille	Date Time 9-4-12 [[6]:0	Tamasatara Ibon Receipt	DHL FOREX Lone SI

XENCO Laboratories

Comments

Prelogin/Nonconformance Report- Sample Log-In

Client: PLAINS ALL AMERICAN EH&S	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 09/04/2012 04:07:00 PM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 448468	Temperature Measuring device used :

Sample Receipt Checklist	
#1 *Temperature of cooler(s)?	3.6
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Yes
#5 Custody Seals intact on sample bottles/ container?	Yes
#6 *Custody Seals Signed and dated for Containers/coolers	Yes
#7 *Chain of Custody present?	Yes
#8 Sample instructions complete on Chain of Custody?	Yes
#9 Any missing/extra samples?	No
#10 Chain of Custody signed when relinquished/ received?	Yes
#11 Chain of Custody agrees with sample label(s)?	Yes
#12 Container label(s) legible and intact?	Yes
#13 Sample matrix/ properties agree with Chain of Custody?	Yes
#14 Samples in proper container/ bottle?	Yes
#15 Samples properly preserved?	Yes
#16 Sample container(s) intact?	Yes
#17 Sufficient sample amount for indicated test(s)?	Yes
#18 All samples received within hold time?	Yes
#19 Subcontract of sample(s)?	Yes
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	Yes
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	Yes
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date:

Checklist reviewed by:

Date: _____

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

			Rele	ease Notific	atior	n and Co	orrective A	ction			$\overline{}$
						OPERA	FOR	\checkmark	🛛 Initia	l Report	Final Repor
Name of Co	mpany			n Gas Services,		Contact	,	[Jony Savoie
Address Facility Nar	no	P.C		26 Jal, N.M. 88 County Field D		Telephone 1 Facility Typ		£		Matu	505-395-2116 ral Gas Gathering
								\geq			
Surface Ow	ner: State	of New Mex	ico	Mineral C)wner:	State of Nev	v Mexico		Lease N	lo <u>.</u>	
				LOCA	TIO	N OF RE	LEASE				
Unit Letter O	Section 33	Township 21S	Range 36E	Feet from the	North	South Line	Feet from the	East/V	West Line	County	Lea
[(29'	•	<u> </u>	Latitude N32	25.762	Longitud	e W103 16.21	2			
				NAT	URE	OF REL					
Type of Rele	ase : Crude	oil and natura	ıl gas			Volume of 10 bbls oil	Release 33 mc	f gas,	Volume F	lecovered	5 bbls
Source of Re	lease	<u></u>		Pipeline		Date and H Unknown	Iour of Occurrent	ce	Date and Time: 12:		covery 8/2106
Was Immedia	ate Notice (Yes 🗵	No 🗌 Not R	equired	If YES, To	Whom?		<u>1 11110. 12.</u>	02 p.m.	
		e, Southern Ur	nion Gas S	Services		Date and H					
Was a Water	course Read		Yes 🗵	No		If YES, V	olume Impacting	the Wat	ercourse.		
Normal operation Describe Are and response NMOCD Red I hereby certi regulations a public health	a Affected activities. I commended ify that the Il operators or the envi	and Cleanup A Remediation a d Guidelines F information g are required t ronment. The	Action Tal Action Tal activities v or The Re- iven above o report ac- acceptan	nd/or file certain i ce of a C-141 rep	area is p ction of ks and S blete to t release n ort by th	pasture. An ar the pipeline l Spills. the best of my notifications a the NMOCD m	of 4000 ppm. ea covering appro- nas been replaced knowledge and p nd perform corre narked as "Final F	oximate All ren understa ctive act Report" (ly 700 sq. fi nediation ac nd that pur- tions for rel does not rel	was affected tivities will suant to NM eases which ieve the open	d by the release follow the OCD rules and may endanger ator of liability
or the enviro	nment. In a		OCD accept	y investigate and 1 ptance of a C-141							ter, Auman health
							<u>OIL CON</u>	SERV	ATION	DIVISIO	NY PAR
Signature:				Tony Savoie			ENVIE	Engr		No. 1.	
Printed Nam	e:			John A. Savoie		Approved by	District Supervis	sor:		••••••••••••••••••••••••••••••••••••••	Lager Chil
Title:			EH&	S Comp. Coord.		Approval Da	te: 9.5.06		Expiration	Date: ((、	1.06
E-mail Addr	ess:	<u> </u>	jasavoie@	sidrichgas.com		Conditions o	Approval: No	FIFA R SUB	RIOR TO SMIT	Attached	
Date: 8/2806 Attach Addi	tional She	ets If Necess	Pho	one: 505-395-21	16	ATTRONE	REFORT W	SAM	rei		o + t
Înci	dent	EnPI	ÄC O(one: 505-395-21 62573 162573	087(C (PCA)	~ ~ ((HDLE)		ULIED)	RI	U7+1020
appli	cate	in pr	PACC	1620 13	100	4					

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

			OPERATOR	Initial Report	K Final Report
Name of Company	Southern Union Ga	as Services, Ltd.	Contact	Сгу	ystal Callaway
Address	801 S. Loop 464, Monah	ans, TX, 79756	Telephone No.	(817) 302-9407
Facility Name: Trunk	"O" 30" (RP-1020) Lea Co	unty Field Dept.	Facility Type	Natu	ral Gas Gathering
Surface Owner Stat	e of New Mexico	Mineral Owner:	State of New Mexico	Lease No.	

LOCATION OF RELEASE

	Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County	
	0	33	21S	36E					Lea	
1										

Latitude N32 25.762 Longitude W103 16.212

NATURE OF RELEASE

Type of Release Crude Oil and N	atural Gas	Volume of Release 33 mcf gas, Volume Recovered 5 bbls				
De Constituire (10 Selbor		10 bbls oil				
Source of Release Pipeline		Date and Hour of Occurrence	Date and Hour of Discovery 8/21/06			
		Unknown	Time: 12:02 p.m.			
Was Immediate Notice Given?		If YES, To Whom?				
	Yes No Not Required					
By Whom? Tony Savoie, Souther	n Union Gas Services	Date and Hour:				
Was a Watercourse Reached?		If YES, Volume Impacting the Watercourse.				
	🗌 Yes 🖾 No					
If a Watercourse was Impacted, Describe Fully.*						
Describe Cause of Problem and Re	medial Action Taken:					

The 30" steel gathering pipeline, operating at 25 p.s.i. developed a leak, the line was excavated and the affected area was clamped at 3:46 p.m. on 8/21/06. All of the free standing fluid was removed with a vacuum truck. Clean soil was added to the impacted area to eliminate the risk to livestock and wildlife. Normal operating pressure on the line is 20 psi to 30 psi, with a potential H2S content of 4000 ppm. The affected section of pipeline has since been replaced.

Describe Area Affected and Cleanup Action Taken. The affected area is pasture. An area covering approximately 700 sq. ft. was affected by the release and response activities.

On or around August 30, 2006, remediation activities were conducted at the Trunk "O" 30" Release Site by an environmental contractor that is no longer affiliated with the site. On August 10, 2012, the site was revisited in an effort to determine if soil exhibiting benzene, BTEX, TPH and chloride concentrations above NMOCD regulatory standards remained in-situ and collect confirmation soil samples. Laboratory analytical reports from the confirmation soil samples suggested previous remediation activities met the requirements of the NMOCD.

Please see the attached Basin Environmental Services Technologies Remediation Summary and Site Closure Request for details of remedial activities and the site investigation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases, which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal state or local laws and/or regulations.

rederal, state, or local laws and or regulations.						
Signature: MAC Callence	OIL CONSERVATION DIVISION					
Printed Name: Crystal Callaway	Approved by District Supervisor:					
Title: Crystal.Callaway@Regencygas.com	Approval Date:	Expiration Date:				
E-mail Address: Crystal.Callaway@Regencygas.com	Conditions of Approval:					
Date: 11/17/2014 Phone: (817) 302-9407						